201
|
Wang R, Zhou R, Chen Z, Gao S, Zhou F. The Glial Cells Respond to Spinal Cord Injury. Front Neurol 2022; 13:844497. [PMID: 35599739 PMCID: PMC9120539 DOI: 10.3389/fneur.2022.844497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/08/2022] [Indexed: 12/24/2022] Open
Abstract
It is been over 100 years since glial cells were discovered by Virchow. Since then, a great deal of research was carried out to specify these further roles and properties of glial cells in central nervous system (CNS). As it is well-known that glial cells, such as astrocytes, microglia, oligodendrocytes (OLs), and oligodendrocyte progenitor cells (OPCs) play an important role in supporting and enabling the effective nervous system function in CNS. After spinal cord injury (SCI), these glial cells play different roles in SCI and repair. In this review, we will discuss in detail about the role of glial cells in the healthy CNS and how they respond to SCI.
Collapse
|
202
|
Poggi G, Albiez J, Pryce CR. Effects of chronic social stress on oligodendrocyte proliferation-maturation and myelin status in prefrontal cortex and amygdala in adult mice. Neurobiol Stress 2022; 18:100451. [PMID: 35685682 PMCID: PMC9170777 DOI: 10.1016/j.ynstr.2022.100451] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/13/2022] [Accepted: 04/16/2022] [Indexed: 10/26/2022] Open
Abstract
Stress-related neuropsychiatric disorders present with excessive processing of aversive stimuli. Whilst underlying pathophysiology remains poorly understood, within- and between-regional changes in oligodendrocyte (OL)-myelination status in anterior cingulate cortex and amygdala (ACC-AMY network) could be important. In adult mice, a 15-day chronic social stress (CSS) protocol leads to increased aversion responsiveness, accompanied by increased resting-state functional connectivity between, and reduced oligodendrocyte- and myelin-related transcript expression within, medial prefrontal cortex and amygdala (mPFC-AMY network), the analog of the human ACC-AMY network. In the current study, young-adult male C57BL/6 mice underwent CSS or control handling (CON). To assess OL proliferation-maturation, mice received 5-ethynyl-2'-deoxyuridine via drinking water across CSS/CON and brains were collected on day 16 or 31. In mPFC, CSS decreased the density of proliferative OL precursor cells (OPCs) at days 16 and 31. CSS increased mPFC myelin basic protein (MBP) integrated density at day 31, as well as increasing myelin thickness as determined using transmission electron microscopy, at day 16. In AMY, CSS increased the densities of total CC1+ OLs (day 31) and CC1+/ASPA+ OLs (days 16 and 31), whilst decreasing the density of proliferative OPCs at days 16 and 31. CSS was without effect on AMY MBP content and myelin thickness, at days 16 and 31. Therefore, CSS impacts on the OL lineage in mPFC and AMY and to an extent that, in mPFC at least, leads to increased myelination. This increased myelination could contribute to the excessive aversion learning and memory that occur in CSS mice and, indeed, human stress-related neuropsychiatric disorders.
Collapse
Affiliation(s)
- Giulia Poggi
- Preclinical Laboratory for Translational Research Into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Switzerland
| | - Jamie Albiez
- Preclinical Laboratory for Translational Research Into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Switzerland
| | - Christopher R. Pryce
- Preclinical Laboratory for Translational Research Into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Switzerland
| |
Collapse
|
203
|
Dion V, Schumacher N, Masar N, Pieltain A, Tocquin P, Lesoinne P, Malgrange B, Vandenbosch R, Franzen R. Cyclin-dependent kinase 7 contributes to myelin maintenance in the adult central nervous system and promotes myelin gene expression. Glia 2022; 70:1652-1665. [PMID: 35488490 DOI: 10.1002/glia.24186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 04/08/2022] [Accepted: 04/21/2022] [Indexed: 11/08/2022]
Abstract
Mechanisms regulating oligodendrocyte differentiation, developmental myelination and myelin maintenance in adulthood are complex and still not completely described. Their understanding is crucial for the development of new protective or therapeutic strategies in demyelinating pathologies such as multiple sclerosis. In this perspective, we have investigated the role of Cyclin-dependent kinase 7 (Cdk7), a kinase involved in cell-cycle progression and transcription regulation, in the oligodendroglial lineage. We generated a conditional knock-out mouse model in which Cdk7 is invalidated in post-mitotic oligodendrocytes. At the end of developmental myelination, the number and diameter of myelinated axons, as well as the myelin structure, thickness and protein composition, were normal. However, in young adult and in aged mice, there was a higher number of small caliber myelinated axons associated with a decreased mean axonal diameter, myelin sheaths of large caliber axons were thinner, and the level of some major myelin-associated proteins was reduced. These defects were accompanied by the appearance of an abnormal clasping phenotype. We also used an in vitro oligodendroglial model and showed that Cdk7 pharmacological inhibition led to an altered myelination-associated morphological modification combined with a decreased expression of myelin-specific genes. Altogether, we identified novel functions for Cdk7 in CNS myelination.
Collapse
Affiliation(s)
- Valérie Dion
- Laboratory of Nervous System Disorders and Therapies, GIGA Neurosciences, University of Liège, Liège, Belgium
| | - Nathalie Schumacher
- Laboratory of Nervous System Disorders and Therapies, GIGA Neurosciences, University of Liège, Liège, Belgium
| | - Nathalie Masar
- Laboratory of Nervous System Disorders and Therapies, GIGA Neurosciences, University of Liège, Liège, Belgium
| | - Alexandra Pieltain
- Laboratory of Nervous System Disorders and Therapies, GIGA Neurosciences, University of Liège, Liège, Belgium
| | - Pierre Tocquin
- CARE PhytoSYSTEMS, Integrative Biological Sciences, University of Liège, Liège, Belgium
| | - Pierre Lesoinne
- Laboratory of Nervous System Disorders and Therapies, GIGA Neurosciences, University of Liège, Liège, Belgium
| | - Brigitte Malgrange
- Laboratory of Developmental Neurobiology, GIGA Stem Cells & GIGA Neurosciences, University of Liège, Liège, Belgium
| | - Renaud Vandenbosch
- Laboratory of Developmental Neurobiology, GIGA Stem Cells & GIGA Neurosciences, University of Liège, Liège, Belgium.,Division of Histology, Department of Biomedical and Preclinical Sciences, University of Liège, Liège, Belgium
| | - Rachelle Franzen
- Laboratory of Nervous System Disorders and Therapies, GIGA Neurosciences, University of Liège, Liège, Belgium
| |
Collapse
|
204
|
Jansen MI, Thomas Broome S, Castorina A. Exploring the Pro-Phagocytic and Anti-Inflammatory Functions of PACAP and VIP in Microglia: Implications for Multiple Sclerosis. Int J Mol Sci 2022; 23:ijms23094788. [PMID: 35563181 PMCID: PMC9104531 DOI: 10.3390/ijms23094788] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 02/04/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic neuroinflammatory and demyelinating disease of the central nervous system (CNS), characterised by the infiltration of peripheral immune cells, multifocal white-matter lesions, and neurodegeneration. In recent years, microglia have emerged as key contributors to MS pathology, acting as scavengers of toxic myelin/cell debris and modulating the inflammatory microenvironment to promote myelin repair. In this review, we explore the role of two neuropeptides, pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP), as important regulators of microglial functioning during demyelination, myelin phagocytosis, and remyelination, emphasising the potential of these neuropeptides as therapeutic targets for the treatment of MS.
Collapse
|
205
|
Marenna S, Huang SC, Dalla Costa G, d’Isa R, Castoldi V, Rossi E, Comi G, Leocani L. Visual Evoked Potentials to Monitor Myelin Cuprizone-Induced Functional Changes. Front Neurosci 2022; 16:820155. [PMID: 35495042 PMCID: PMC9051229 DOI: 10.3389/fnins.2022.820155] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/07/2022] [Indexed: 11/17/2022] Open
Abstract
The visual system is one of the most accessible routes to study the central nervous system under pathological conditions, such as in multiple sclerosis (MS). Non-invasive visual evoked potential (VEP) and optical coherence tomography (OCT) were used to assess visual function and neuroretinal thickness in C57BL/6 taking 0.2% cuprizone for 7 weeks and at 5, 8, 12, and 15 days after returning to a normal diet. VEPs were significantly delayed starting from 4 weeks on cuprizone, with progressive recovery off cuprizone, becoming significant at day 8, complete at day 15. In contrast, OCT and neurofilament staining showed no significant axonal thinning. Optic nerve histology indicated that whilst there was significant myelin loss at 7 weeks on the cuprizone diet compared with healthy mice, at 15 days off cuprizone diet demyelination was significantly less severe. The number of Iba 1+ cells was found increased in cuprizone mice at 7 weeks on and 15 days off cuprizone. The combined use of VEPs and OCT allowed us to characterize non-invasively, in vivo, the functional and structural changes associated with demyelination and remyelination in a preclinical model of MS. This approach contributes to the non-invasive study of possible effective treatments to promote remyelination in demyelinating pathologies.
Collapse
Affiliation(s)
- Silvia Marenna
- Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), IRCCS-Scientific Institute San Raffaele, Milan, Italy
| | - Su-Chun Huang
- Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), IRCCS-Scientific Institute San Raffaele, Milan, Italy
| | - Gloria Dalla Costa
- Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), IRCCS-Scientific Institute San Raffaele, Milan, Italy
- Faculty of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Raffaele d’Isa
- Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), IRCCS-Scientific Institute San Raffaele, Milan, Italy
| | - Valerio Castoldi
- Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), IRCCS-Scientific Institute San Raffaele, Milan, Italy
| | - Elena Rossi
- Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), IRCCS-Scientific Institute San Raffaele, Milan, Italy
| | - Giancarlo Comi
- Faculty of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Casa di Cura Privata del Policlinico, Milan, Italy
| | - Letizia Leocani
- Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), IRCCS-Scientific Institute San Raffaele, Milan, Italy
- Faculty of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- *Correspondence: Letizia Leocani,
| |
Collapse
|
206
|
Li Y, Su P, Chen Y, Nie J, Yuan TF, Wong AH, Liu F. The Eph receptor A4 plays a role in demyelination and depression-related behavior. J Clin Invest 2022; 132:e152187. [PMID: 35271507 PMCID: PMC9012277 DOI: 10.1172/jci152187] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 03/08/2022] [Indexed: 11/22/2022] Open
Abstract
Proper myelination of axons is crucial for normal sensory, motor, and cognitive function. Abnormal myelination is seen in brain disorders such as major depressive disorder (MDD), but the molecular mechanisms connecting demyelination with the pathobiology remain largely unknown. We observed demyelination and synaptic deficits in mice exposed to either chronic, unpredictable mild stress (CUMS) or LPS, 2 paradigms for inducing depression-like states. Pharmacological restoration of myelination normalized both synaptic deficits and depression-related behaviors. Furthermore, we found increased ephrin A4 receptor (EphA4) expression in the excitatory neurons of mice subjected to CUMS, and shRNA knockdown of EphA4 prevented demyelination and depression-like behaviors. These animal data are consistent with the decrease in myelin basic protein and the increase in EphA4 levels we observed in postmortem brain samples from patients with MDD. Our results provide insights into the etiology of depressive symptoms in some patients and suggest that inhibition of EphA4 or the promotion of myelination could be a promising strategy for treating depression.
Collapse
Affiliation(s)
- Yuan Li
- Shanghai Mental Health Center, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Ping Su
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health
| | - Yuxiang Chen
- Shanghai Mental Health Center, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Jing Nie
- Shanghai Mental Health Center, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Ti-Fei Yuan
- Shanghai Mental Health Center, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Albert H.C. Wong
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health
- Departments of Psychiatry
- Institutes of Medical Science
- Pharmacology and Toxicology, and
| | - Fang Liu
- Shanghai Mental Health Center, Shanghai Jiaotong University, School of Medicine, Shanghai, China
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health
- Departments of Psychiatry
- Institutes of Medical Science
- Physiology at the University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
207
|
Enriched Environment Effects on Myelination of the Central Nervous System: Role of Glial Cells. Neural Plast 2022; 2022:5766993. [PMID: 35465398 PMCID: PMC9023233 DOI: 10.1155/2022/5766993] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 01/20/2022] [Accepted: 03/09/2022] [Indexed: 12/24/2022] Open
Abstract
Myelination is regulated by various glial cells in the central nervous system (CNS), including oligodendrocytes (OLs), microglia, and astrocytes. Myelination of the CNS requires the generation of functionally mature OLs from OPCs. OLs are the myelin-forming cells in the CNS. Microglia play both beneficial and detrimental roles during myelin damage and repair. Astrocyte is responsible for myelin formation and regeneration by direct interaction with oligodendrocyte lineage cells. These glial cells are influenced by experience-dependent activities such as environmental enrichment (EE). To date, there are few studies that have investigated the association between EE and glial cells. EE with a complex combination of sensorimotor, cognitive, and social stimulation has a significant effect on cognitive impairment and brain plasticity. Hence, one mechanism through EE improving cognitive function may rely on the mutual effect of EE and glial cells. The purpose of this paper is to review recent research into the efficacy of EE for myelination and glial cells at cellular and molecular levels and offers critical insights for future research directions of EE and the treatment of EE in cognitive impairment disease.
Collapse
|
208
|
Sliz E, Shin J, Ahmad S, Williams DM, Frenzel S, Gauß F, Harris SE, Henning AK, Hernandez MV, Hu YH, Jiménez B, Sargurupremraj M, Sudre C, Wang R, Wittfeld K, Yang Q, Wardlaw JM, Völzke H, Vernooij MW, Schott JM, Richards M, Proitsi P, Nauck M, Lewis MR, Launer L, Hosten N, Grabe HJ, Ghanbari M, Deary IJ, Cox SR, Chaturvedi N, Barnes J, Rotter JI, Debette S, Ikram MA, Fornage M, Paus T, Seshadri S, Pausova Z. Circulating Metabolome and White Matter Hyperintensities in Women and Men. Circulation 2022; 145:1040-1052. [PMID: 35050683 PMCID: PMC9645366 DOI: 10.1161/circulationaha.121.056892] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 12/02/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND White matter hyperintensities (WMH), identified on T2-weighted magnetic resonance images of the human brain as areas of enhanced brightness, are a major risk factor of stroke, dementia, and death. There are no large-scale studies testing associations between WMH and circulating metabolites. METHODS We studied up to 9290 individuals (50.7% female, average age 61 years) from 15 populations of 8 community-based cohorts. WMH volume was quantified from T2-weighted or fluid-attenuated inversion recovery images or as hypointensities on T1-weighted images. Circulating metabolomic measures were assessed with mass spectrometry and nuclear magnetic resonance spectroscopy. Associations between WMH and metabolomic measures were tested by fitting linear regression models in the pooled sample and in sex-stratified and statin treatment-stratified subsamples. Our basic models were adjusted for age, sex, age×sex, and technical covariates, and our fully adjusted models were also adjusted for statin treatment, hypertension, type 2 diabetes, smoking, body mass index, and estimated glomerular filtration rate. Population-specific results were meta-analyzed using the fixed-effect inverse variance-weighted method. Associations with false discovery rate (FDR)-adjusted P values (PFDR)<0.05 were considered significant. RESULTS In the meta-analysis of results from the basic models, we identified 30 metabolomic measures associated with WMH (PFDR<0.05), 7 of which remained significant in the fully adjusted models. The most significant association was with higher level of hydroxyphenylpyruvate in men (PFDR.full.adj=1.40×10-7) and in both the pooled sample (PFDR.full.adj=1.66×10-4) and statin-untreated (PFDR.full.adj=1.65×10-6) subsample. In men, hydroxyphenylpyruvate explained 3% to 14% of variance in WMH. In men and the pooled sample, WMH were also associated with lower levels of lysophosphatidylcholines and hydroxysphingomyelins and a larger diameter of low-density lipoprotein particles, likely arising from higher triglyceride to total lipids and lower cholesteryl ester to total lipids ratios within these particles. In women, the only significant association was with higher level of glucuronate (PFDR=0.047). CONCLUSIONS Circulating metabolomic measures, including multiple lipid measures (eg, lysophosphatidylcholines, hydroxysphingomyelins, low-density lipoprotein size and composition) and nonlipid metabolites (eg, hydroxyphenylpyruvate, glucuronate), associate with WMH in a general population of middle-aged and older adults. Some metabolomic measures show marked sex specificities and explain a sizable proportion of WMH variance.
Collapse
Affiliation(s)
- Eeva Sliz
- The Hospital for Sick Children, and Departments of Physiology and Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| | - Jean Shin
- The Hospital for Sick Children, and Departments of Physiology and Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| | - Shahzad Ahmad
- Department of Epidemiology, Erasmus Medical Centre, Rotterdam, The Netherlands
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Dylan M. Williams
- MRC Unit for Lifelong Health and Ageing at UCL, University College London, London, UK
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Stefan Frenzel
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Friederike Gauß
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Sarah E. Harris
- Lothian Birth Cohorts group, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Ann-Kristin Henning
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Maria Valdes Hernandez
- Centre for Clinical Brain Sciences, UK Dementia Research Institute at the University of Edinburgh, Edinburgh, UK
| | - Yi-Han Hu
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Baltimore, MD, USA
| | - Beatriz Jiménez
- National Phenome Centre, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Muralidharan Sargurupremraj
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, team VINTAGE, UMR 1219, 33000 Bordeaux, France
| | - Carole Sudre
- MRC Unit for Lifelong Health and Ageing at UCL, University College London, London, UK
- Centre for Medical Image Computing, Department of Computer Science, University College London
- School of Biomedical Engineering & Imaging Sciences, King’s College London
| | - Ruiqi Wang
- Department of Biostatistics, Boston University, Boston, MA, USA
| | - Katharina Wittfeld
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
- Germany Center for Neurodegenerative Diseases (DZNE), partner site Rostock/Greifswald, Greifswald, Germany
| | - Qiong Yang
- Department of Biostatistics, Boston University, Boston, MA, USA
| | - Joanna M. Wardlaw
- Centre for Clinical Brain Sciences, UK Dementia Research Institute at the University of Edinburgh, Edinburgh, UK
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Meike W. Vernooij
- Department of Epidemiology, Erasmus Medical Centre, Rotterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, and Department of Neurology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Jonathan M Schott
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Marcus Richards
- MRC Unit for Lifelong Health and Ageing at UCL, University College London, London, UK
| | - Petroula Proitsi
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - Matthias Nauck
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Matthew R. Lewis
- National Phenome Centre, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Lenore Launer
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Baltimore, MD, USA
| | - Norbert Hosten
- Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany
| | - Hans J. Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
- Germany Center for Neurodegenerative Diseases (DZNE), partner site Rostock/Greifswald, Greifswald, Germany
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Ian J. Deary
- Lothian Birth Cohorts group, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Simon R. Cox
- Lothian Birth Cohorts group, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Nishi Chaturvedi
- MRC Unit for Lifelong Health and Ageing at UCL, University College London, London, UK
| | - Josephine Barnes
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Jerome I. Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA USA
| | - Stephanie Debette
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, team VINTAGE, UMR 1219, 33000 Bordeaux, France
| | - M. Arfan Ikram
- Department of Epidemiology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Myriam Fornage
- University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, USA
| | - Tomas Paus
- Departments of Psychiatry and Neuroscience and Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, Montreal, QC, Canada
- ECOGENE-21, Chicoutimi, QC, Canada
- Departments of Psychology and Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Sudha Seshadri
- The Framingham Heart Study, Framingham, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Zdenka Pausova
- The Hospital for Sick Children, and Departments of Physiology and Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
209
|
Nimodipine Exerts Beneficial Effects on the Rat Oligodendrocyte Cell Line OLN-93. Brain Sci 2022; 12:brainsci12040476. [PMID: 35448007 PMCID: PMC9029615 DOI: 10.3390/brainsci12040476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 02/04/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system (CNS). Therapy is currently limited to drugs that interfere with the immune system; treatment options that primarily mediate neuroprotection and prevent neurodegeneration are not available. Here, we studied the effects of nimodipine on the rat cell line OLN-93, which resembles young mature oligodendrocytes. Nimodipine is a dihydropyridine that blocks the voltage-gated L-type calcium channel family members Cav1.2 and Cav1.3. Our data show that the treatment of OLN-93 cells with nimodipine induced the upregulation of myelin genes, in particular of proteolipid protein 1 (Plp1), which was confirmed by a significantly greater expression of PLP1 in immunofluorescence analysis and the presence of myelin structures in the cytoplasm at the ultrastructural level. Whole-genome RNA sequencing additionally revealed the upregulation of genes that are involved in neuroprotection, remyelination, and antioxidation pathways. Interestingly, the observed effects were independent of Cav1.2 and Cav1.3 because OLN-93 cells do not express these channels, and there was no measurable response pattern in patch-clamp analysis. Taking into consideration previous studies that demonstrated a beneficial effect of nimodipine on microglia, our data support the notion that nimodipine is an interesting drug candidate for the treatment of MS and other demyelinating diseases.
Collapse
|
210
|
Li Y, Liu H, Tian C, An N, Song K, Wei Y, Sun Y, Xing Y, Gao Y. Targeting the multifaceted roles of mitochondria in intracerebral hemorrhage and therapeutic prospects. Biomed Pharmacother 2022; 148:112749. [PMID: 35219118 DOI: 10.1016/j.biopha.2022.112749] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 11/19/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a severe, life-threatening subtype of stoke that constitutes a crucial health and socioeconomic problem worldwide. However, the current clinical treatment can only reduce the mortality of patients to a certain extent, but cannot ameliorate neurological dysfunction and has a high recurrence rate. Increasing evidence has demonstrated that mitochondrial dysfunction occurs in the early stages of brain injury and participates in all stages of secondary brain injury (SBI) after ICH. As the energy source of cells, various pathobiological processes that lead to SBI closely interact with the mitochondria, such as oxidative stress, calcium overload, and neuronal injury. In this review, we discussed the structure and function of mitochondria and the abnormal morphological changes after ICH. In addition, we discussed recent research on the involvement of mitochondrial dynamics in the pathological process of SBI after ICH and introduced the pathological variations and related molecular mechanisms of mitochondrial dysfunction in the occurrence of brain injury. Finally, we summarized the latest progress in mitochondrion-targeted agents for ICH, which provides a direction for the development of emerging therapeutic strategies targeting the mitochondria after ICH.
Collapse
Affiliation(s)
- Yuanyuan Li
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China; Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing 100700, China; Beijing University of Chinese Medicine, Beijing 100029, China
| | - Haoqi Liu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China; Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Chao Tian
- Beijing University of Chinese Medicine, Beijing 100029, China; China-Japan Friendship Hospital, Beijing 100029, China
| | - Na An
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China; Guang'an men Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Ke Song
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Yufei Wei
- Department of Internal Neurology, First Affiliated Hospital, Guangxi University of Chinese Medicine, Guangxi 530000, China
| | - Yikun Sun
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Yanwei Xing
- Guang'an men Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Yonghong Gao
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China; Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing 100700, China.
| |
Collapse
|
211
|
Scalabrino G. Newly Identified Deficiencies in the Multiple Sclerosis Central Nervous System and Their Impact on the Remyelination Failure. Biomedicines 2022; 10:biomedicines10040815. [PMID: 35453565 PMCID: PMC9026986 DOI: 10.3390/biomedicines10040815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 12/14/2022] Open
Abstract
The pathogenesis of multiple sclerosis (MS) remains enigmatic and controversial. Myelin sheaths in the central nervous system (CNS) insulate axons and allow saltatory nerve conduction. MS brings about the destruction of myelin sheaths and the myelin-producing oligodendrocytes (ODCs). The conundrum of remyelination failure is, therefore, crucial in MS. In this review, the roles of epidermal growth factor (EGF), normal prions, and cobalamin in CNS myelinogenesis are briefly summarized. Thereafter, some findings of other authors and ourselves on MS and MS-like models are recapitulated, because they have shown that: (a) EGF is significantly decreased in the CNS of living or deceased MS patients; (b) its repeated administration to mice in various MS-models prevents demyelination and inflammatory reaction; (c) as was the case for EGF, normal prion levels are decreased in the MS CNS, with a strong correspondence between liquid and tissue levels; and (d) MS cobalamin levels are increased in the cerebrospinal fluid, but decreased in the spinal cord. In fact, no remyelination can occur in MS if these molecules (essential for any form of CNS myelination) are lacking. Lastly, other non-immunological MS abnormalities are reviewed. Together, these results have led to a critical reassessment of MS pathogenesis, partly because EGF has little or no role in immunology.
Collapse
Affiliation(s)
- Giuseppe Scalabrino
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| |
Collapse
|
212
|
Developmental coupling of cerebral blood flow and fMRI fluctuations in youth. Cell Rep 2022; 38:110576. [PMID: 35354053 PMCID: PMC9006592 DOI: 10.1016/j.celrep.2022.110576] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/03/2022] [Accepted: 03/04/2022] [Indexed: 12/16/2022] Open
Abstract
The functions of the human brain are metabolically expensive and reliant on coupling between cerebral blood flow (CBF) and neural activity, yet how this coupling evolves over development remains unexplored. Here, we examine the relationship between CBF, measured by arterial spin labeling, and the amplitude of low-frequency fluctuations (ALFF) from resting-state magnetic resonance imaging across a sample of 831 children (478 females, aged 8-22 years) from the Philadelphia Neurodevelopmental Cohort. We first use locally weighted regressions on the cortical surface to quantify CBF-ALFF coupling. We relate coupling to age, sex, and executive functioning with generalized additive models and assess network enrichment via spin testing. We demonstrate regionally specific changes in coupling over age and show that variations in coupling are related to biological sex and executive function. Our results highlight the importance of CBF-ALFF coupling throughout development; we discuss its potential as a future target for the study of neuropsychiatric diseases.
Collapse
|
213
|
Garcia-Martin G, Alcover-Sanchez B, Wandosell F, Cubelos B. Pathways Involved in Remyelination after Cerebral Ischemia. Curr Neuropharmacol 2022; 20:751-765. [PMID: 34151767 PMCID: PMC9878953 DOI: 10.2174/1570159x19666210610093658] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 05/05/2021] [Accepted: 05/12/2021] [Indexed: 11/22/2022] Open
Abstract
Brain ischemia, also known as ischemic stroke, occurs when there is a lack of blood supply into the brain. When an ischemic insult appears, both neurons and glial cells can react in several ways that will determine the severity and prognosis. This high heterogeneity of responses has been a major obstacle in developing effective treatments or preventive methods for stroke. Although white matter pathophysiology has not been deeply assessed in stroke, its remodelling can greatly influence the clinical outcome and the disability degree. Oligodendrocytes, the unique cell type implied in CNS myelination, are sensible to ischemic damage. Loss of myelin sheaths can compromise axon survival, so new Oligodendrocyte Precursor Cells are required to restore brain function. Stroke can, therefore, enhance oligodendrogenesis to regenerate those new oligodendrocytes that will ensheath the damaged axons. Given that myelination is a highly complex process that requires coordination of multiple pathways such as Sonic Hedgehog, RTKs or Wnt/β-catenin, we will analyse new research highlighting their importance after brain ischemia. In addition, oligodendrocytes are not isolated cells inside the brain, but rather form part of a dynamic environment of interactions between neurons and glial cells. For this reason, we will put some context into how microglia and astrocytes react against stroke and influence oligodendrogenesis to highlight the relevance of remyelination in the ischemic brain. This will help to guide future studies to develop treatments focused on potentiating the ability of the brain to repair the damage.
Collapse
Affiliation(s)
- Gonzalo Garcia-Martin
- Departamento de Biología Molecular and Centro Biología Molecular “Severo Ochoa”, Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Berta Alcover-Sanchez
- Departamento de Biología Molecular and Centro Biología Molecular “Severo Ochoa”, Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Francisco Wandosell
- Departamento de Biología Molecular and Centro Biología Molecular “Severo Ochoa”, Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Beatriz Cubelos
- Departamento de Biología Molecular and Centro Biología Molecular “Severo Ochoa”, Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain,Address correspondence to this author at the Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Nicolás Cabrera 1, Universidad Autónoma de Madrid, 28049 Madrid, Spain; Tel: 34-91-1964561; Fax: 34-91-1964420; E-mail:
| |
Collapse
|
214
|
Zhao JW, Wang DX, Ma XR, Dong ZJ, Wu JB, Wang F, Wu Y. Impaired metabolism of oligodendrocyte progenitor cells and axons in demyelinated lesion and in the aged CNS. Curr Opin Pharmacol 2022; 64:102205. [PMID: 35344763 DOI: 10.1016/j.coph.2022.102205] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 12/12/2022]
Abstract
The key pathology of multiple sclerosis (MS) comprises demyelination, axonal damage, and neuronal loss, and when MS develops into the progressive phase it is essentially untreatable. Identifying new targets in both axons and oligodendrocyte progenitor cells (OPCs) and rejuvenating the aged OPCs holds promise for this unmet medical need. We summarize here the recent evidence showing that mitochondria in both axons and OPCs are impaired, and lipid metabolism of OPCs within demyelinated lesion and in the aged CNS is disturbed. Given that emerging evidence shows that rewiring cellular metabolism regulates stem cell aging, to protect axons from degeneration and promote differentiation of OPCs, we propose that restoring the impaired metabolism of both OPCs and axons in the aged CNS in a synergistic way could be a promising strategy to enhance remyelination in the aged CNS, leading to novel drug-based approaches to treat the progressive phase of MS.
Collapse
Affiliation(s)
- Jing-Wei Zhao
- Department of Pathology and Department of Human Anatomy, Histology and Embryology of Sir Run Run Shaw Hospital, System Medicine Research Center, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China; Cryo-Electron Microscope Center, Zhejiang University, Hangzhou 310058, China.
| | - Di-Xian Wang
- Department of Pathology and Department of Human Anatomy, Histology and Embryology of Sir Run Run Shaw Hospital, System Medicine Research Center, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiao-Ru Ma
- Department of Pathology and Department of Human Anatomy, Histology and Embryology of Sir Run Run Shaw Hospital, System Medicine Research Center, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zhao-Jun Dong
- Department of Pathology and Department of Human Anatomy, Histology and Embryology of Sir Run Run Shaw Hospital, System Medicine Research Center, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jian-Bin Wu
- Department of Pathology and Department of Human Anatomy, Histology and Embryology of Sir Run Run Shaw Hospital, System Medicine Research Center, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Fan Wang
- Department of Pathology and Department of Human Anatomy, Histology and Embryology of Sir Run Run Shaw Hospital, System Medicine Research Center, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yang Wu
- Department of Pathology and Department of Human Anatomy, Histology and Embryology of Sir Run Run Shaw Hospital, System Medicine Research Center, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China
| |
Collapse
|
215
|
Buscham TJ, Eichel-Vogel MA, Steyer AM, Jahn O, Strenzke N, Dardawal R, Memhave TR, Siems SB, Müller C, Meschkat M, Sun T, Ruhwedel T, Möbius W, Krämer-Albers EM, Boretius S, Nave KA, Werner HB. Progressive axonopathy when oligodendrocytes lack the myelin protein CMTM5. eLife 2022; 11:75523. [PMID: 35274615 PMCID: PMC8916772 DOI: 10.7554/elife.75523] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 02/27/2022] [Indexed: 11/26/2022] Open
Abstract
Oligodendrocytes facilitate rapid impulse propagation along the axons they myelinate and support their long-term integrity. However, the functional relevance of many myelin proteins has remained unknown. Here, we find that expression of the tetraspan-transmembrane protein CMTM5 (chemokine-like factor-like MARVEL-transmembrane domain containing protein 5) is highly enriched in oligodendrocytes and central nervous system (CNS) myelin. Genetic disruption of the Cmtm5 gene in oligodendrocytes of mice does not impair the development or ultrastructure of CNS myelin. However, oligodendroglial Cmtm5 deficiency causes an early-onset progressive axonopathy, which we also observe in global and tamoxifen-induced oligodendroglial Cmtm5 mutants. Presence of the WldS mutation ameliorates the axonopathy, implying a Wallerian degeneration-like pathomechanism. These results indicate that CMTM5 is involved in the function of oligodendrocytes to maintain axonal integrity rather than myelin biogenesis.
Collapse
Affiliation(s)
- Tobias J Buscham
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Maria A Eichel-Vogel
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Anna M Steyer
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Electron Microscopy Core Unit, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Olaf Jahn
- Proteomics Group, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Translational Neuroproteomics Group, Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Georg-August-University, Göttingen, Germany
| | - Nicola Strenzke
- Institute for Auditory Neuroscience, University Medicine Göttingen, Göttingen, Germany
| | - Rakshit Dardawal
- Functional Imaging Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Tor R Memhave
- Functional Imaging Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Sophie B Siems
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Christina Müller
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University, Mainz, Germany
| | - Martin Meschkat
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Abberior Instruments Gmbh, Göttingen, Germany
| | - Ting Sun
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Torben Ruhwedel
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Electron Microscopy Core Unit, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Wiebke Möbius
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Electron Microscopy Core Unit, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Eva-Maria Krämer-Albers
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University, Mainz, Germany
| | - Susann Boretius
- Functional Imaging Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Hauke B Werner
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| |
Collapse
|
216
|
Meschkat M, Steyer AM, Weil MT, Kusch K, Jahn O, Piepkorn L, Agüi-Gonzalez P, Phan NTN, Ruhwedel T, Sadowski B, Rizzoli SO, Werner HB, Ehrenreich H, Nave KA, Möbius W. White matter integrity in mice requires continuous myelin synthesis at the inner tongue. Nat Commun 2022; 13:1163. [PMID: 35246535 PMCID: PMC8897471 DOI: 10.1038/s41467-022-28720-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 01/24/2022] [Indexed: 12/18/2022] Open
Abstract
Myelin, the electrically insulating sheath on axons, undergoes dynamic changes over time. However, it is composed of proteins with long lifetimes. This raises the question how such a stable structure is renewed. Here, we study the integrity of myelinated tracts after experimentally preventing the formation of new myelin in the CNS of adult mice, using an inducible Mbp null allele. Oligodendrocytes survive recombination, continue to express myelin genes, but they fail to maintain compacted myelin sheaths. Using 3D electron microscopy and mass spectrometry imaging we visualize myelin-like membranes failing to incorporate adaxonally, most prominently at juxta-paranodes. Myelinoid body formation indicates degradation of existing myelin at the abaxonal side and the inner tongue of the sheath. Thinning of compact myelin and shortening of internodes result in the loss of about 50% of myelin and axonal pathology within 20 weeks post recombination. In summary, our data suggest that functional axon-myelin units require the continuous incorporation of new myelin membranes. Myelin is formed of proteins of long half-lives. The mechanisms of renewal of such a stable structure are unclear. Here, the authors show that myelin integrity requires continuous myelin synthesis at the inner tongue, contributing to the maintenance of a functional axon-myelin unit.
Collapse
Affiliation(s)
- Martin Meschkat
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Electron Microscopy Core Unit, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Göttingen Graduate Center for Neurosciences, Biophysics, and Molecular Biosciences (GGNB), Göttingen, Germany.,DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany.,Abberior Instruments GmbH, Göttingen, Germany
| | - Anna M Steyer
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Electron Microscopy Core Unit, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany.,Imaging Centre, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Marie-Theres Weil
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Electron Microscopy Core Unit, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Kathrin Kusch
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
| | - Olaf Jahn
- DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany.,Proteomics Group, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Translational Neuroproteomics Group, Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Lars Piepkorn
- Proteomics Group, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Translational Neuroproteomics Group, Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Paola Agüi-Gonzalez
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
| | - Nhu Thi Ngoc Phan
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany.,Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Torben Ruhwedel
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Electron Microscopy Core Unit, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Boguslawa Sadowski
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Electron Microscopy Core Unit, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Silvio O Rizzoli
- DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany.,Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Hauke B Werner
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Hannelore Ehrenreich
- DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany.,Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Wiebke Möbius
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany. .,Electron Microscopy Core Unit, Max Planck Institute of Experimental Medicine, Göttingen, Germany. .,DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany. .,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany.
| |
Collapse
|
217
|
Konishi H, Koizumi S, Kiyama H. Phagocytic astrocytes: Emerging from the shadows of microglia. Glia 2022; 70:1009-1026. [PMID: 35142399 PMCID: PMC9305589 DOI: 10.1002/glia.24145] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/18/2021] [Accepted: 01/07/2022] [Indexed: 12/12/2022]
Abstract
Elimination of dead or live cells take place in both a healthy and diseased central nervous system (CNS). Dying or dead cells are quickly cleared by phagocytosis for the maintenance of a healthy CNS or for recovery after injury. Live cells or parts thereof, such as the synapses and myelin, are appropriately eliminated by phagocytosis to maintain or refine neural networks during development and adulthood. Microglia, the specific population of resident macrophages in the CNS, are classically considered as primary phagocytes; however, astrocytes have also been highlighted as phagocytes in the last decade. Phagocytic targets and receptors are reported to be mostly common between astrocytes and microglia, which raises the question of how astrocytic phagocytosis differs from microglial phagocytosis, and how these two phagocytic systems cooperate. In this review, we address the consequences of astrocytic phagocytosis, particularly focusing on these elusive points.
Collapse
Affiliation(s)
- Hiroyuki Konishi
- Department of Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Schuichi Koizumi
- Department of Neuropharmacology, University of Yamanashi, Yamanashi, Japan.,GLIA Center, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Hiroshi Kiyama
- Department of Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
218
|
Chen J, Tieleman DP, Liang Q. Effects of Lid Domain Structural Changes on the Interactions between Peripheral Myelin Protein 2 and a Lipid Bilayer. J Phys Chem Lett 2022; 13:991-996. [PMID: 35060724 DOI: 10.1021/acs.jpclett.1c03961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Peripheral myelin protein 2 (P2) plays an important role in the stacking of the myelin membrane and lipid transport. Here we investigate the interactions between P2 and a model myelin membrane using molecular dynamics simulations, focusing on the effect of the L27D mutation and conformational changes in the α2-helix in the lid domain of P2. The L27D mutation weakens the binding of the lid domain of P2 on the membrane. The α2-helix is either folded or unfolded on the membrane. Compared with the α2-helix structure in water, the membrane stabilizes the structure of the α2-helix, whereas the unfolding of the α2-helix reduces the binding affinity of P2 on the membrane. These findings reveal the energetics of the mutant and the structural changes of P2 on the interactions between the protein and the lipid bilayer and help us to understand the microscopic mechanism of the formation of the myelin sheath structure and some neurological disorders.
Collapse
Affiliation(s)
- Jinyu Chen
- Center for Statistical and Theoretical Condensed Matter Physics and Department of Physics, Zhejiang Normal University, Jinhua 321004, P. R. China
| | - D Peter Tieleman
- Centre for Molecular Simulations and Department of Biological Science, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Qing Liang
- Center for Statistical and Theoretical Condensed Matter Physics and Department of Physics, Zhejiang Normal University, Jinhua 321004, P. R. China
| |
Collapse
|
219
|
Watanabe H, Maekawa R, Iikuni S, Kakae M, Matsuo N, Shirakawa H, Kaneko S, Ono M. Characterization of Radioiodinated Diaryl Oxadiazole Derivatives as SPECT Probes for Detection of Myelin in Multiple Sclerosis. ACS Chem Neurosci 2022; 13:363-369. [PMID: 35019269 DOI: 10.1021/acschemneuro.1c00753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Multiple sclerosis (MS) is an intractable disease of the central nervous system that results from destruction of the myelin sheath. Direct measurement of de- and remyelination is required for monitoring the disease stage of MS, but no useful method has been established. In this study, we characterized four diaryl oxadiazole derivatives as novel myelin-imaging probes for single photon emission computed tomography (SPECT). All the diaryl oxadiazole derivatives penetrated the blood-brain barrier in normal mice. Among them, the highest ratio of radioactivity accumulation in the white matter (myelin-rich region) against the gray matter (myelin-deficient region) was observed at 60 min postinjection of [125I]1,3,4-PODP-DM in ex vivo autoradiography using normal mice. In the blocking study with ex vivo autoradiography, the radioactivity accumulation of [125I]1,3,4-PODP-DM in the white matter markedly reduced. [125I]1,3,4-PODP-DM detected demyelination in the ex vivo autoradiographic images of not only the spinal cord of the experimental autoimmune encephalomyelitis mice but also the brain after lysophosphatidylcholine (LPC) injection. In addition, [123I]1,3,4-PODP-DM could image LPC-induced demyelination in the mouse brain with SPECT. These results suggest that [123I]1,3,4-PODP-DM may be a potential SPECT probe for imaging myelin in MS.
Collapse
Affiliation(s)
- Hiroyuki Watanabe
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Rinka Maekawa
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shimpei Iikuni
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masashi Kakae
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho,
Sakyo-ku, Kyoto 606-8501, Japan
| | - Nagisa Matsuo
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho,
Sakyo-ku, Kyoto 606-8501, Japan
| | - Hisashi Shirakawa
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho,
Sakyo-ku, Kyoto 606-8501, Japan
| | - Shuji Kaneko
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho,
Sakyo-ku, Kyoto 606-8501, Japan
| | - Masahiro Ono
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
220
|
Chen JF, Wang F, Huang NX, Xiao L, Mei F. Oligodendrocytes and Myelin: Active players in Neurodegenerative brains? Dev Neurobiol 2022; 82:160-174. [PMID: 35081276 DOI: 10.1002/dneu.22867] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 11/10/2022]
Abstract
Oligodendrocytes (OLs) are a major type of glial cells in the central nervous system that generate multiple myelin sheaths to wrap axons. Myelin ensures fast and efficient propagation of action potentials along axons and supports neurons with nourishment. The decay of OLs and myelin has been implicated in age-related neurodegenerative diseases and these changes are generally considered as an inevitable result of neuron loss and axon degeneration. Noticeably, OLs and myelin undergo dynamic changes in healthy adult brains, that is, newly formed OLs are continuously added throughout life from the differentiation of oligodendrocyte precursor cells (OPCs) and the pre-existing myelin sheaths may undergo degeneration or remodeling. Increasing evidence has shown that changes in OLs and myelin are present in the early stages of neurodegenerative diseases, and even prior to significant neuronal loss and functional deficits. More importantly, oligodendroglia-specific manipulation, by either deletion of the disease gene or enhancement of myelin renewal, can alleviate functional impairments in neurodegenerative animal models. These findings underscore the possibility that OLs and myelin are not passively but actively involved in neurodegenerative diseases and may play an important role in modulating neuronal function and survival. In this review, we summarize recent work characterizing OL and myelin changes in both healthy and neurodegenerative brains and discuss the potential of targeting oligodendroglial cells in treating neurodegenerative diseases. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jing-Fei Chen
- Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Department of Histology and Embryology, Third Military Medical University, Chongqing, 400038, China
| | - Fei Wang
- Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Department of Histology and Embryology, Third Military Medical University, Chongqing, 400038, China
| | - Nan-Xing Huang
- Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Department of Histology and Embryology, Third Military Medical University, Chongqing, 400038, China
| | - Lan Xiao
- Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Department of Histology and Embryology, Third Military Medical University, Chongqing, 400038, China
| | - Feng Mei
- Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Department of Histology and Embryology, Third Military Medical University, Chongqing, 400038, China
| |
Collapse
|
221
|
van Gils JHM, Gogishvili D, van Eck J, Bouwmeester R, van Dijk E, Abeln S. How sticky are our proteins? Quantifying hydrophobicity of the human proteome. BIOINFORMATICS ADVANCES 2022; 2:vbac002. [PMID: 36699344 PMCID: PMC9710682 DOI: 10.1093/bioadv/vbac002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/19/2021] [Accepted: 01/24/2022] [Indexed: 01/28/2023]
Abstract
Summary Proteins tend to bury hydrophobic residues inside their core during the folding process to provide stability to the protein structure and to prevent aggregation. Nevertheless, proteins do expose some 'sticky' hydrophobic residues to the solvent. These residues can play an important functional role, e.g. in protein-protein and membrane interactions. Here, we first investigate how hydrophobic protein surfaces are by providing three measures for surface hydrophobicity: the total hydrophobic surface area, the relative hydrophobic surface area and-using our MolPatch method-the largest hydrophobic patch. Secondly, we analyze how difficult it is to predict these measures from sequence: by adapting solvent accessibility predictions from NetSurfP2.0, we obtain well-performing prediction methods for the THSA and RHSA, while predicting LHP is more challenging. Finally, we analyze implications of exposed hydrophobic surfaces: we show that hydrophobic proteins typically have low expression, suggesting cells avoid an overabundance of sticky proteins. Availability and implementation The data underlying this article are available in GitHub at https://github.com/ibivu/hydrophobic_patches. Supplementary information Supplementary data are available at Bioinformatics Advances online.
Collapse
Affiliation(s)
- Juami Hermine Mariama van Gils
- Computer Science Department, Center for Integrative Bioinformatics (IBIVU), Vrije Universiteit Amsterdam, 1081 HV Noord-Holland, The Netherlands,To whom correspondence should be addressed. or
| | - Dea Gogishvili
- Computer Science Department, Center for Integrative Bioinformatics (IBIVU), Vrije Universiteit Amsterdam, 1081 HV Noord-Holland, The Netherlands
| | - Jan van Eck
- Computer Science Department, Center for Integrative Bioinformatics (IBIVU), Vrije Universiteit Amsterdam, 1081 HV Noord-Holland, The Netherlands
| | - Robbin Bouwmeester
- Computer Science Department, Center for Integrative Bioinformatics (IBIVU), Vrije Universiteit Amsterdam, 1081 HV Noord-Holland, The Netherlands
| | - Erik van Dijk
- Computer Science Department, Center for Integrative Bioinformatics (IBIVU), Vrije Universiteit Amsterdam, 1081 HV Noord-Holland, The Netherlands
| | - Sanne Abeln
- Computer Science Department, Center for Integrative Bioinformatics (IBIVU), Vrije Universiteit Amsterdam, 1081 HV Noord-Holland, The Netherlands,To whom correspondence should be addressed. or
| |
Collapse
|
222
|
Hertanu A, Soustelle L, Le Troter A, Buron J, Le Priellec J, Carvalho VND, Cayre M, Durbec P, Varma G, Alsop DC, Girard OM, Duhamel G. T 1D -weighted ihMT imaging - Part I. Isolation of long- and short-T 1D components by T 1D -filtering. Magn Reson Med 2022; 87:2313-2328. [PMID: 35037302 DOI: 10.1002/mrm.29139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/29/2021] [Accepted: 12/12/2021] [Indexed: 01/15/2023]
Abstract
PURPOSE To identify T1D -filtering methods, which can specifically isolate various ranges of T1D components as they may be sensitive to different microstructural properties. METHODS Modified Bloch-Provotorov equations describing a bi-T1D component biophysical model were used to simulate the inhomogeneous magnetization transfer (ihMT) signal from ihMTRAGE sequences at high RF power and low duty-cycle with different switching time values for the dual saturation experiment: Δt = 0.0, 0.8, 1.6, and 3.2 ms. Simulations were compared with experimental signals on the brain gray and white matter tissues of healthy mice at 7T. RESULTS The lengthening of Δt created ihMT high-pass T1D -filters, which efficiently eliminated the signal from T1D components shorter than 1 ms, while partially attenuating that of longer components (≥ 1 ms). Subtraction of ihMTR images obtained with Δt = 0.0 ms and Δt = 0.8 ms generated a new ihMT band-pass T1D -filter isolating short-T1D components in the 100-µs to 1-ms range. Simulated ihMTR values in central nervous system tissues were confirmed experimentally. CONCLUSION Long- and short-T1D components were successfully isolated with high RF power and low duty-cycle ihMT filters in the healthy mouse brain. Future studies should investigate the various T1D -range microstructural correlations in in vivo tissues.
Collapse
Affiliation(s)
- Andreea Hertanu
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| | - Lucas Soustelle
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| | - Arnaud Le Troter
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| | - Julie Buron
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France.,Aix Marseille Univ, CNRS, IBDM, Marseille, France
| | | | - Victor N D Carvalho
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France.,Aix Marseille Univ, CNRS, ICR, Marseille, France
| | - Myriam Cayre
- Aix Marseille Univ, CNRS, IBDM, Marseille, France
| | | | - Gopal Varma
- Division of MR Research, Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - David C Alsop
- Division of MR Research, Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Olivier M Girard
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| | - Guillaume Duhamel
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| |
Collapse
|
223
|
Yu H, Shi J, Lin Y, Zhang Y, Luo Q, Huang S, Wang S, Wei J, Huang J, Li C, Ji L. Icariin Ameliorates Alzheimer's Disease Pathology by Alleviating Myelin Injury in 3 × Tg-AD Mice. Neurochem Res 2022; 47:1049-1059. [PMID: 35037164 DOI: 10.1007/s11064-021-03507-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 11/09/2021] [Accepted: 12/07/2021] [Indexed: 12/23/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by excessive deposition of β amyloid (Aβ), hyperphosphorylation of tau protein, and neuronal cell death. Recent studies have shown that myelin cell damage, which leads to cognitive dysfunction, occurs before AD-related pathological changes. Here, we examine the effect of icariin (ICA), a prenylated flavonol glycoside, in improving cognitive function in AD model mice. ICA has been reported to exhibit cardiovascular protective functions and antiaging effects. In this study, we used 3 × Tg-AD mice as an AD model. The Morris water maze and Y maze tests were performed to assess the learning and memory of the mice. Immunofluorescence analysis of Aβ1-42 deposition and myelin basic protein (MBP) expression in the mouse hippocampus was performed. Tau protein phosphorylation and MBP protein expression in the hippocampus were further analyzed by Western blotting. Myelin damage in the mouse optic nerve was evaluated by electron microscopy, and LFB staining was performed to assess myelin morphology in the mouse corpus callosum. MBP, Mpp5, and Egr2 transcript levels were quantified by qPCR. We observed that ICA treatment improved the learning and memory of 3 × Tg-AD mice and reduced Aβ deposition and tau protein phosphorylation in the hippocampus. Moreover, this treatment protocol increased myelin-related gene expression and reduced myelin damage.
Collapse
Affiliation(s)
- Hongxia Yu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jianhong Shi
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yiyou Lin
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yehui Zhang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Qihang Luo
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Suo Huang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Sichen Wang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jiale Wei
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Junhao Huang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Changyu Li
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Liting Ji
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
224
|
Sival DA, Noort SAMV, Tijssen MAJ, de Koning TJ, Verbeek DS. Developmental neurobiology of cerebellar and Basal Ganglia connections. Eur J Paediatr Neurol 2022; 36:123-129. [PMID: 34954622 DOI: 10.1016/j.ejpn.2021.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 10/03/2021] [Accepted: 12/01/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND The high prevalence of mixed phenotypes of Early Onset Ataxia (EOA) with comorbid dystonia has shifted the pathogenetic concept from the cerebellum towards the interconnected cerebellar motor network. This paper on EOA with comorbid dystonia (EOA-dystonia) explores the conceptual relationship between the motor phenotype and the cortico-basal-ganglia-ponto-cerebellar network. METHODS In EOA-dystonia, we reviewed anatomic-, genetic- and biochemical-studies on the comorbidity between ataxia and dystonia. RESULTS In a clinical EOA cohort, the prevalence of dystonia was over 60%. Both human and animal studies converge on the underlying role for the cortico-basal-ganglia-ponto-cerebellar network. Genetic -clinical and -in silico network studies reveal underlying biological pathways for energy production and neural signal transduction. CONCLUSIONS EOA-dystonia phenotypes are attributable to the cortico-basal-ganglia-ponto-cerebellar network, instead of to the cerebellum, alone. The underlying anatomic and pathogenetic pathways have clinical implications for our understanding of the heterogeneous phenotype, neuro-metabolic and genetic testing and potentially also for new treatment strategies, including neuro-modulation.
Collapse
Affiliation(s)
- Deborah A Sival
- Department of Pediatrics, University of Groningen, Groningen, the Netherlands.
| | - Suus A M van Noort
- Department of Neurology and University of Groningen, Groningen, the Netherlands
| | - Marina A J Tijssen
- Department of Neurology and University of Groningen, Groningen, the Netherlands
| | - Tom J de Koning
- Department of Neurology and University of Groningen, Groningen, the Netherlands
| | - Dineke S Verbeek
- Genetics University Medical Center, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
225
|
Yik JT, Becquart P, Gill J, Petkau J, Traboulsee A, Carruthers R, Kolind SH, Devonshire V, Sayao AL, Schabas A, Tam R, Moore GRW, Li DKB, Stukas S, Wellington C, Quandt JA, Vavasour IM, Laule C. Serum neurofilament light chain correlates with myelin and axonal magnetic resonance imaging markers in multiple sclerosis. Mult Scler Relat Disord 2022; 57:103366. [PMID: 35158472 DOI: 10.1016/j.msard.2021.103366] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/08/2021] [Accepted: 11/01/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Neurofilaments are cytoskeletal proteins that are detectable in the blood after neuroaxonal injury. Multiple sclerosis (MS) disease progression, greater lesion volume, and brain atrophy are associated with higher levels of serum neurofilament light chain (NfL), but few studies have examined the relationship between NfL and advanced magnetic resonance imaging (MRI) measures related to myelin and axons. We assessed the relationship between serum NfL and brain MRI measures in a diverse group of MS participants. METHODS AND MATERIALS 103 participants (20 clinically isolated syndrome, 33 relapsing-remitting, 30 secondary progressive, 20 primary progressive) underwent 3T MRI to obtain myelin water fraction (MWF), geometric mean T2 (GMT2), water content, T1; high angular resolution diffusion imaging (HARDI)-derived axial diffusivity (AD), radial diffusivity (RD), fractional anisotropy (FA); diffusion basis spectrum imaging (DBSI)-derived AD, RD, FA; restricted, hindered, water and fiber fractions; and volume measurements of normalized brain, lesion, thalamic, deep gray matter (GM), and cortical thickness. Multiple linear regressions assessed the strength of association between serum NfL (dependent variable) and each MRI measure in whole brain (WB), normal appearing white matter (NAWM) and T2 lesions (independent variables), while controlling for age, expanded disability status scale, and disease duration. RESULTS Serum NfL levels were significantly associated with metrics of axonal damage (FA: R2WB-HARDI = 0.29, R2NAWM-HARDI = 0.31, R2NAWM-DBSI = 0.30, R2Lesion-DBSI = 0.31; AD: R2WB-HARDI=0.31), myelin damage (MWF: R2WB = 0.29, R2NAWM = 0.30, RD: R2WB-HARDI = 0.32, R2NAWM-HARDI = 0.34, R2Lesion-DBSI = 0.30), edema and inflammation (T1: R2Lesion = 0.32; GMT2: R2WB = 0.31, R2Lesion = 0.31), and cellularity (restricted fraction R2WB = 0.30, R2NAWM = 0.32) across the entire MS cohort. Higher serum NfL levels were associated with significantly higher T2 lesion volume (R2 = 0.35), lower brain structure volumes (thalamus R2 = 0.31; deep GM R2 = 0.33; normalized brain R2 = 0.31), and smaller cortical thickness R2 = 0.31). CONCLUSION The association between NfL and myelin MRI markers suggest that elevated serum NfL is a useful biomarker that reflects not only acute axonal damage, but also damage to myelin and inflammation, likely due to the known synergistic myelin-axon coupling relationship.
Collapse
Affiliation(s)
- Jackie T Yik
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada; International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada
| | - Pierre Becquart
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Jasmine Gill
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - John Petkau
- Department of Statistics, University of British Columbia, Vancouver, BC, Canada
| | - Anthony Traboulsee
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Robert Carruthers
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Shannon H Kolind
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada; International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada; Department of Medicine, University of British Columbia, Vancouver, BC, Canada; Department of Radiology, University of British Columbia, Vancouver, BC, Canada
| | - Virginia Devonshire
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Ana-Luiza Sayao
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Alice Schabas
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Roger Tam
- Department of Radiology, University of British Columbia, Vancouver, BC, Canada
| | - G R Wayne Moore
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - David K B Li
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada; Department of Radiology, University of British Columbia, Vancouver, BC, Canada
| | - Sophie Stukas
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Cheryl Wellington
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Jacqueline A Quandt
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Irene M Vavasour
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada; Department of Radiology, University of British Columbia, Vancouver, BC, Canada
| | - Cornelia Laule
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada; International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada; Department of Radiology, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
226
|
Qiu M, Zong JB, He QW, Liu YX, Wan Y, Li M, Zhou YF, Wu JH, Hu B. Cell Heterogeneity Uncovered by Single-Cell RNA Sequencing Offers Potential Therapeutic Targets for Ischemic Stroke. Aging Dis 2022; 13:1436-1454. [PMID: 36186129 PMCID: PMC9466965 DOI: 10.14336/ad.2022.0212] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/12/2022] [Indexed: 11/06/2022] Open
Abstract
Ischemic stroke is a detrimental neurological disease characterized by an irreversible infarct core surrounded by an ischemic penumbra, a salvageable region of brain tissue. Unique roles of distinct brain cell subpopulations within the neurovascular unit and peripheral immune cells during ischemic stroke remain elusive due to the heterogeneity of cells in the brain. Single-cell RNA sequencing (scRNA-seq) allows for an unbiased determination of cellular heterogeneity at high-resolution and identification of cell markers, thereby unveiling the principal brain clusters within the cell-type-specific gene expression patterns as well as cell-specific subclusters and their functions in different pathways underlying ischemic stroke. In this review, we have summarized the changes in differentiation trajectories of distinct cell types and highlighted the specific pathways and genes in brain cells that are impacted by stroke. This review is expected to inspire new research and provide directions for investigating the potential pathological mechanisms and novel treatment strategies for ischemic stroke at the level of a single cell.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jie-hong Wu
- Correspondence should be addressed to: Dr. Bo Hu () and Dr. Jie-hong Wu (), Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Hu
- Correspondence should be addressed to: Dr. Bo Hu () and Dr. Jie-hong Wu (), Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
227
|
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by irreversible deterioration of upper and lower motor neurons (MNs). Previously, studies on the involvement of glial cells in the pathogenic process of ALS have mainly revolved around astrocytes and microglia. And oligodendrocytes (OLs) have only recently been highlighted. Grey matter demyelination within the motor cortex and proliferation of the oligodendrocyte precursor cells (OPCs) was observed in ALS patients. The selective ablation of mutant SOD1 (the dysfunctional superoxide dismutase) from the oligodendrocyte progenitors after birth significantly delayed disease onset and prolonged the overall survival in ALS mice model (SOD1G37R). In this study, we review the several mechanisms of oligodendrocyte dysfunction involved in the pathological process of myelin damage and MNs death during ALS. Particularly, we examined the insufficient local energy supply from OLs to axons, impaired differentiation from OPCs into OLs mediated by oxidative stress damage, and inflammatory injury to the OLs. Since increasing evidence depicted that ALS is not a disease limited to MNs damage, exploring the mechanisms by which oligodendrocyte dysfunction is involved in MNs death would contribute to a more comprehensive understanding of ALS and identifying potential drug targets.
Collapse
Affiliation(s)
- Zhenxiang Gong
- Department of Neurology and Psychiatry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Li Ba
- Department of Neurology and Psychiatry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Min Zhang
- Department of Neurology and Psychiatry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Min Zhang, Department of Neurology and Psychiatry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Road, Qiaokou District, Wuhan, Hubei 430030, China. Tel: +86-27-83663895, E-mail:
| |
Collapse
|
228
|
Cantuti-Castelvetri L, Gokce O, Simons M. Reparative inflammation in multiple sclerosis. Semin Immunol 2022; 59:101630. [PMID: 35750551 DOI: 10.1016/j.smim.2022.101630] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/09/2022] [Accepted: 06/13/2022] [Indexed: 01/15/2023]
Affiliation(s)
- Ludovico Cantuti-Castelvetri
- Institute of Neuronal Cell Biology, Technical University Munich, 80802 Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | - Ozgun Gokce
- Institute for Stroke and Dementia Research, University Hospital of Munich, LMU Munich, Munich, Germany; Munich Cluster of Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Mikael Simons
- Institute of Neuronal Cell Biology, Technical University Munich, 80802 Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; Munich Cluster of Systems Neurology (SyNergy), 81377 Munich, Germany.
| |
Collapse
|
229
|
Luo JXX, Cui QL, Yaqubi M, Hall JA, Dudley R, Srour M, Addour N, Jamann H, Larochelle C, Blain M, Healy LM, Stratton JA, Sonnen JA, Kennedy TE, Antel JP. Human oligodendrocyte myelination potential; relation to age and differentiation. Ann Neurol 2021; 91:178-191. [PMID: 34952986 DOI: 10.1002/ana.26288] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/02/2021] [Accepted: 12/21/2021] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Myelin regeneration in the human central nervous system relies on progenitor cells within the tissue parenchyma, with possible contribution from previously myelinating oligodendrocytes. In multiple sclerosis, a demyelinating disorder, variables affecting remyelination efficiency include age, severity of initial injury, and progenitor cell properties. Our aim was to investigate the effects of age and differentiation on the myelination potential of human oligodendrocyte lineage cells. METHODS We derived viable primary oligodendrocyte lineage cells from surgical resections of pediatric and adult brain tissue. Ensheathment capacity using nanofiber assays and transcriptomic profiles from RNA sequencing were compared between A2B5+ antibody-selected progenitors and mature oligodendrocytes (non-selected cells). RESULTS We demonstrate that pediatric progenitor and mature cells ensheathed nanofibers more robustly than did adult progenitor and mature cells respectively. Within both age groups, the percentage of fibers ensheathed and ensheathment length per fiber were greater for A2B5+ progenitors. Gene expression of oligodendrocyte progenitor markers PDGFRA and PTPRZ1 were higher in A2B5+ vs A2B5- cells and in pediatric A2B5+ vs adult A2B5+ cells. p38 MAP kinases and actin cytoskeleton-associated pathways were upregulated in pediatric cells; both have been shown to regulate OL process outgrowth. Significant upregulation of "cell senescence" genes was detected in pediatric samples; this could reflect their role in development and the increased susceptibility of pediatric oligodendrocytes to activating cell death responses to stress. INTERPRETATION Our findings identify specific biological pathways relevant to myelination that are differentially enriched in human pediatric and adult oligodendrocyte lineage cells and suggest potential targets for remyelination enhancing therapies. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Julia Xiao Xuan Luo
- Neuroimmunology Unit, Montreal Neurological Institute and Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Qiao-Ling Cui
- Neuroimmunology Unit, Montreal Neurological Institute and Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Moein Yaqubi
- Neuroimmunology Unit, Montreal Neurological Institute and Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Jeffery A Hall
- Department of Neurosurgery, McGill University Health Centre and Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Roy Dudley
- Department of Pediatric Neurosurgery, Montreal Children's Hospital, Montreal, QC, H4A 3J1, Canada
| | - Myriam Srour
- Division of Pediatric Neurology, Montreal Children's Hospital, Montreal, QC, H4A 3J1, Canada
| | - Nassima Addour
- Division of Pediatric Neurology, Montreal Children's Hospital, Montreal, QC, H4A 3J1, Canada
| | - Hélène Jamann
- Department of Neurosciences, Centre de recherche du centre hospitalier de l'Université de Montréal, 900 rue Saint-Denis, Montreal, QC, H2X 0A9, Canada
| | - Catherine Larochelle
- Department of Neurosciences, Centre de recherche du centre hospitalier de l'Université de Montréal, 900 rue Saint-Denis, Montreal, QC, H2X 0A9, Canada
| | - Manon Blain
- Neuroimmunology Unit, Montreal Neurological Institute and Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Luke M Healy
- Neuroimmunology Unit, Montreal Neurological Institute and Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Jo Anne Stratton
- Neuroimmunology Unit, Montreal Neurological Institute and Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Joshua A Sonnen
- Department of Neuropathology, Montreal Neurological Institute and Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Timothy E Kennedy
- Department of Neurology and Neurosurgery, Montreal, QC, H3A 2B4, Canada
| | - Jack P Antel
- Neuroimmunology Unit, Montreal Neurological Institute and Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H3A 2B4, Canada
| |
Collapse
|
230
|
Intisar A, Kim WH, Shin HY, Kim MY, Kim YS, Lim H, Kang HG, Mo YJ, Aly MAS, Lee YI, Kim MS. An electroceutical approach enhances myelination via upregulation of lipid biosynthesis in the dorsal root ganglion. Biofabrication 2021; 14. [PMID: 34933294 DOI: 10.1088/1758-5090/ac457c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 12/21/2021] [Indexed: 11/12/2022]
Abstract
As the myelin sheath is crucial for neuronal saltatory conduction, loss of myelin in the peripheral nervous system (PNS) leads to demyelinating neuropathies causing muscular atrophy, numbness, foot deformities and paralysis. Unfortunately, few interventions are available for such neuropathies, because previous pharmaceuticals have shown severe side effects and failed in clinical trials. Therefore, exploring new strategies to enhance PNS myelination is critical to provide solution for such intractable diseases. This study aimed to investigate the effectiveness of electrical stimulation (ES) to enhance myelination in the mouse dorsal root ganglion (DRG) - an ex vivo model of the PNS. Mouse embryonic DRGs were extracted at E13 and seeded onto Matrigel-coated surfaces. After sufficient growth and differentiation, screening was carried out by applying ES in the 1-100 Hz range at the beginning of the myelination process. DRG myelination was evaluated via immunostaining at the intermediate (19 DIV) and mature (30 DIV) stages. Further biochemical analyses were carried out by utilizing RNA sequencing, qPCR and biochemical assays at both intermediate and mature myelination stages. Imaging of DRG myelin lipids was carried out via time-of-flight secondary ion mass spectrometry (ToF-SIMS). With screening ES conditions, optimal condition was identified at 20 Hz, which enhanced the percentage of myelinated neurons and average myelin length not only at intermediate (129% and 61%) but also at mature (72% and 17%) myelination stages. Further biochemical analyses elucidated that ES promoted lipid biosynthesis in the DRG. ToF-SIMS imaging showed higher abundance of the structural lipids, cholesterol and sphingomyelin, in the myelin membrane. Therefore, promotion of lipid biosynthesis and higher abundance of myelin lipids led to ES-mediated myelination enhancement. Given that myelin lipid deficiency is culpable for most demyelinating PNS neuropathies, the results might pave a new way to treat such diseases via electroceuticals.
Collapse
Affiliation(s)
- Aseer Intisar
- New Biology, DGIST, 333 Techno Jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988, Korea (the Republic of)
| | - Woon-Hae Kim
- CTCELLS Corp., 333 Techno Jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988, Korea (the Republic of)
| | - Hyun Young Shin
- CTCELLS Corp., 333 Techno Jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988, Korea (the Republic of)
| | - Min Young Kim
- New Biology, DGIST, 333 Techno Jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988, Korea (the Republic of)
| | - Yu Seon Kim
- Well Aging Research Center, DGIST, 333 Techno Jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988, Korea (the Republic of)
| | - Heejin Lim
- New Biology, DGIST, 333 Techno Jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988, Korea (the Republic of)
| | - Hyun Gyu Kang
- New Biology, DGIST, 333 Techno Jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988, Korea (the Republic of)
| | - Yun Jeoung Mo
- Well Aging Research Center, DGIST, 333 Techno Jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988, Korea (the Republic of)
| | - Mohamed Aly Saad Aly
- New Biology, DGIST, 333 Techno Jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988, Korea (the Republic of)
| | - Yun-Il Lee
- Well Aging Research Center, DGIST, 333 Techno Jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988, Korea (the Republic of)
| | - Minseok S Kim
- New Biology, DGIST, Room 313, Building E5, DGIST, Daegu, 42988, Korea (the Republic of)
| |
Collapse
|
231
|
Anti-MAG neuropathy: From biology to clinical management. J Neuroimmunol 2021; 361:577725. [PMID: 34610502 DOI: 10.1016/j.jneuroim.2021.577725] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 09/20/2021] [Indexed: 12/19/2022]
Abstract
The acquired chronic demyelinating neuropathies include a growing number of disease entities that have characteristic, often overlapping, clinical presentations, mediated by distinct immune mechanisms, and responding to different therapies. After the discovery in the early 1980s, that the myelin associated glycoprotein (MAG) is a target antigen in an autoimmune demyelinating neuropathy, assays to measure the presence of anti-MAG antibodies were used as the basis to diagnose the anti-MAG neuropathy. The route was open for describing the clinical characteristics of this new entity as a chronic distal large fiber sensorimotor neuropathy, for studying its pathogenesis and devising specific treatment strategies. The initial use of chemotherapeutic agents was replaced by the introduction in the late 1990s of rituximab, a monoclonal antibody against CD20+ B-cells. Since then, other anti-B cells agents have been introduced. Recently a novel antigen-specific immunotherapy neutralizing the anti-MAG antibodies with a carbohydrate-based ligand mimicking the natural HNK-1 glycoepitope has been described.
Collapse
|
232
|
Quincozes-Santos A, Santos CL, de Souza Almeida RR, da Silva A, Thomaz NK, Costa NLF, Weber FB, Schmitz I, Medeiros LS, Medeiros L, Dotto BS, Dias FRP, Sovrani V, Bobermin LD. Gliotoxicity and Glioprotection: the Dual Role of Glial Cells. Mol Neurobiol 2021; 58:6577-6592. [PMID: 34581988 PMCID: PMC8477366 DOI: 10.1007/s12035-021-02574-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/19/2021] [Indexed: 02/06/2023]
Abstract
Glial cells (astrocytes, oligodendrocytes and microglia) are critical for the central nervous system (CNS) in both physiological and pathological conditions. With this in mind, several studies have indicated that glial cells play key roles in the development and progression of CNS diseases. In this sense, gliotoxicity can be referred as the cellular, molecular, and neurochemical changes that can mediate toxic effects or ultimately lead to impairment of the ability of glial cells to protect neurons and/or other glial cells. On the other hand, glioprotection is associated with specific responses of glial cells, by which they can protect themselves as well as neurons, resulting in an overall improvement of the CNS functioning. In addition, gliotoxic events, including metabolic stresses, inflammation, excitotoxicity, and oxidative stress, as well as their related mechanisms, are strongly associated with the pathogenesis of neurological, psychiatric and infectious diseases. However, glioprotective molecules can prevent or improve these glial dysfunctions, representing glial cells-targeting therapies. Therefore, this review will provide a brief summary of types and functions of glial cells and point out cellular and molecular mechanisms associated with gliotoxicity and glioprotection, potential glioprotective molecules and their mechanisms, as well as gliotherapy. In summary, we expect to address the relevance of gliotoxicity and glioprotection in the CNS homeostasis and diseases.
Collapse
Affiliation(s)
- André Quincozes-Santos
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil.
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil.
- Programa de Pós-Graduação Em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil.
| | - Camila Leite Santos
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Rômulo Rodrigo de Souza Almeida
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Amanda da Silva
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Natalie K Thomaz
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Naithan Ludian Fernandes Costa
- Programa de Pós-Graduação Em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Fernanda Becker Weber
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Izaviany Schmitz
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Lara Scopel Medeiros
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Lívia Medeiros
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Bethina Segabinazzi Dotto
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Filipe Renato Pereira Dias
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Vanessa Sovrani
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Larissa Daniele Bobermin
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
233
|
Neely SA, Lyons DA. Insights Into Central Nervous System Glial Cell Formation and Function From Zebrafish. Front Cell Dev Biol 2021; 9:754606. [PMID: 34912801 PMCID: PMC8666443 DOI: 10.3389/fcell.2021.754606] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/05/2021] [Indexed: 12/23/2022] Open
Abstract
The term glia describes a heterogenous collection of distinct cell types that make up a large proportion of our nervous system. Although once considered the glue of the nervous system, the study of glial cells has evolved significantly in recent years, with a large body of literature now highlighting their complex and diverse roles in development and throughout life. This progress is due, in part, to advances in animal models in which the molecular and cellular mechanisms of glial cell development and function as well as neuron-glial cell interactions can be directly studied in vivo in real time, in intact neural circuits. In this review we highlight the instrumental role that zebrafish have played as a vertebrate model system for the study of glial cells, and discuss how the experimental advantages of the zebrafish lend themselves to investigate glial cell interactions and diversity. We focus in particular on recent studies that have provided insight into the formation and function of the major glial cell types in the central nervous system in zebrafish.
Collapse
Affiliation(s)
- Sarah A. Neely
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - David A. Lyons
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
234
|
Zhang X, Huang N, Xiao L, Wang F, Li T. Replenishing the Aged Brains: Targeting Oligodendrocytes and Myelination? Front Aging Neurosci 2021; 13:760200. [PMID: 34899272 PMCID: PMC8656359 DOI: 10.3389/fnagi.2021.760200] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/02/2021] [Indexed: 11/13/2022] Open
Abstract
Aging affects almost all the aspects of brain functions, but the mechanisms remain largely undefined. Increasing number of literatures have manifested the important role of glial cells in regulating the aging process. Oligodendroglial lineage cell is a major type of glia in central nervous system (CNS), composed of mature oligodendrocytes (OLs), and oligodendroglia precursor cells (OPCs). OLs produce myelin sheaths that insulate axons and provide metabolic support to meet the energy demand. OPCs maintain the population throughout lifetime with the abilities to proliferate and differentiate into OLs. Increasing evidence has shown that oligodendroglial cells display active dynamics in adult and aging CNS, which is extensively involved in age-related brain function decline in the elderly. In this review, we summarized present knowledge about dynamic changes of oligodendroglial lineage cells during normal aging and discussed their potential roles in age-related functional decline. Especially, focused on declined myelinogenesis during aging and underlying mechanisms. Clarifying those oligodendroglial changes and their effects on neurofunctional decline may provide new insights in understanding aging associated brain function declines.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Histology and Embryology, Army Medical University (Third Military Medical University), Chongqing, China
- Department of Ophthalmology, The General Hospital of Western Theater Command, Chengdu, China
| | - Nanxin Huang
- Department of Histology and Embryology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Lan Xiao
- Department of Histology and Embryology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Fei Wang
- Department of Histology and Embryology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Tao Li
- Department of Histology and Embryology, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
235
|
Xue J, Zhu Y, Liu Z, Lin J, Li Y, Li Y, Zhuo Y. Demyelination of the Optic Nerve: An Underlying Factor in Glaucoma? Front Aging Neurosci 2021; 13:701322. [PMID: 34795572 PMCID: PMC8593209 DOI: 10.3389/fnagi.2021.701322] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 10/13/2021] [Indexed: 11/13/2022] Open
Abstract
Neurodegenerative disorders are characterized by typical neuronal degeneration and axonal loss in the central nervous system (CNS). Demyelination occurs when myelin or oligodendrocytes experience damage. Pathological changes in demyelination contribute to neurodegenerative diseases and worsen clinical symptoms during disease progression. Glaucoma is a neurodegenerative disease characterized by progressive degeneration of retinal ganglion cells (RGCs) and the optic nerve. Since it is not yet well understood, we hypothesized that demyelination could play a significant role in glaucoma. Therefore, this study started with the morphological and functional manifestations of demyelination in the CNS. Then, we discussed the main mechanisms of demyelination in terms of oxidative stress, mitochondrial damage, and immuno-inflammatory responses. Finally, we summarized the existing research on the relationship between optic nerve demyelination and glaucoma, aiming to inspire effective treatment plans for glaucoma in the future.
Collapse
Affiliation(s)
- Jingfei Xue
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yingting Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Zhe Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jicheng Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yangjiani Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yiqing Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yehong Zhuo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
236
|
Kang M, Yao Y. Laminin regulates oligodendrocyte development and myelination. Glia 2021; 70:414-429. [PMID: 34773273 DOI: 10.1002/glia.24117] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 11/08/2022]
Abstract
Oligodendrocytes are the cells that myelinate axons and provide trophic support to neurons in the CNS. Their dysfunction has been associated with a group of disorders known as demyelinating diseases, such as multiple sclerosis. Oligodendrocytes are derived from oligodendrocyte precursor cells, which differentiate into premyelinating oligodendrocytes and eventually mature oligodendrocytes. The development and function of oligodendrocytes are tightly regulated by a variety of molecules, including laminin, a major protein of the extracellular matrix. Accumulating evidence suggests that laminin actively regulates every aspect of oligodendrocyte biology, including survival, migration, proliferation, differentiation, and myelination. How can laminin exert such diverse functions in oligodendrocytes? It is speculated that the distinct laminin isoforms, laminin receptors, and/or key signaling molecules expressed in oligodendrocytes at different developmental stages are the reasons. Understanding molecular targets and signaling pathways unique to each aspect of oligodendrocyte biology will enable more accurate manipulation of oligodendrocyte development and function, which may have implications in the therapies of demyelinating diseases. Here in this review, we first introduce oligodendrocyte biology, followed by the expression of laminin and laminin receptors in oligodendrocytes and other CNS cells. Next, the functions of laminin in oligodendrocyte biology, including survival, migration, proliferation, differentiation, and myelination, are discussed in detail. Last, key questions and challenges in the field are discussed. By providing a comprehensive review on laminin's roles in OL lineage cells, we hope to stimulate novel hypotheses and encourage new research in the field.
Collapse
Affiliation(s)
- Minkyung Kang
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Yao Yao
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
237
|
Bonetto G, Belin D, Káradóttir RT. Myelin: A gatekeeper of activity-dependent circuit plasticity? Science 2021; 374:eaba6905. [PMID: 34618550 DOI: 10.1126/science.aba6905] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Giulia Bonetto
- Wellcome-Medical Research Council Cambridge Stem Cell Institute and Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - David Belin
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Ragnhildur Thóra Káradóttir
- Wellcome-Medical Research Council Cambridge Stem Cell Institute and Department of Veterinary Medicine, University of Cambridge, Cambridge, UK.,Department of Physiology, Biomedical Centre, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
238
|
Periods of synchronized myelin changes shape brain function and plasticity. Nat Neurosci 2021; 24:1508-1521. [PMID: 34711959 DOI: 10.1038/s41593-021-00917-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 07/30/2021] [Indexed: 12/11/2022]
Abstract
Myelin, a lipid membrane that wraps axons, enabling fast neurotransmission and metabolic support to axons, is conventionally thought of as a static structure that is set early in development. However, recent evidence indicates that in the central nervous system (CNS), myelination is a protracted and plastic process, ongoing throughout adulthood. Importantly, myelin is emerging as a potential modulator of neuronal networks, and evidence from human studies has highlighted myelin as a major player in shaping human behavior and learning. Here we review how myelin changes throughout life and with learning. We discuss potential mechanisms of myelination at different life stages, explore whether myelin plasticity provides the regenerative potential of the CNS white matter, and question whether changes in myelin may underlie neurological disorders.
Collapse
|
239
|
Activation of 5-HT 1A receptor reduces abnormal emotionality in stress-maladaptive mice by alleviating decreased myelin protein in the ventral hippocampus. Neurochem Int 2021; 151:105213. [PMID: 34673172 DOI: 10.1016/j.neuint.2021.105213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/03/2021] [Accepted: 10/18/2021] [Indexed: 11/21/2022]
Abstract
We previously reported that abnormal emotionality in stress-maladaptive mice was ameliorated by chronic treatment with flesinoxan, a 5-HT1A receptor agonist. Furthermore, the maintenance of hippocampal myelination appeared to contribute to the development of stress adaptation in mice. However, the effects of 5-HT1A receptor activation on myelination under the stress-maladaptive situations and the underlying mechanisms remain unknown. In the present study, we examined using flesinoxan whether activation of 5-HT1A receptor can reduce an abnormal emotional response by acting on oligodendrocytes to preserve myelin proteins in stress-maladaptive mice. Mice were exposed to repeated restraint stress for 4 h/day for 14 days as a stress-maladaptive model. Flesinoxan was given intraperitoneally immediately after the daily exposure to restraint stress. After the final exposure to restraint stress, the emotionality of mice was evaluated by the hole-board test. The expression levels of brain-derived neurotrophic factor (BDNF), phosphorylated-extracellular signal-regulated kinase (p-ERK), phosphorylated-cAMP response element-binding protein (p-CREB), myelin-associated glycoprotein (MAG), myelin basic protein (MBP) and oligodendrocyte transcription factor 2 (olig2) in the hippocampus was assessed by western blotting. Hippocampal oligodendrogenesis were examined by immunohistochemistry. Chronic treatment with flesinoxan suppressed the decrease in head-dipping behaviors in stress-maladaptive mice in the hole-board test. Under this condition, the decreases in MAG and MBP in the hippocampus recovered with increase in BDNF, p-ERK, p-CREB, and olig2. Furthermore, hippocampal oligodendrogenesis in stress-maladaptive mice was promoted by chronic treatment with flesinoxan. These findings suggest that 5-HT1A receptor activation may promote oligodendrogenesis and myelination via an ERK/CREB/BDNF signaling pathway in the hippocampus and reduces abnormal emotionality due to maladaptation to excessive stress.
Collapse
|
240
|
Liu Z, Wang J, Chen H, Zhang G, Lv Z, Li Y, Zhao S, Li W. Coaxial Electrospun PLLA Fibers Modified with Water-Soluble Materials for Oligodendrocyte Myelination. Polymers (Basel) 2021; 13:polym13203595. [PMID: 34685353 PMCID: PMC8537353 DOI: 10.3390/polym13203595] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 12/15/2022] Open
Abstract
Myelin sheaths are essential in maintaining the integrity of axons. Development of the platform for in vitro myelination would be especially useful for demyelinating disease modeling and drug screening. In this study, a fiber scaffold with a core-shell structure was prepared in one step by the coaxial electrospinning method. A high-molecular-weight polymer poly-L-lactic acid (PLLA) was used as the core, while the shell was a natural polymer material such as hyaluronic acid (HA), sodium alginate (SA), or chitosan (CS). The morphology, differential scanning calorimetry (DSC), Fourier transform infrared spectra (FTIR), contact angle, viability assay, and in vitro myelination by oligodendrocytes were characterized. The results showed that such fibers are bead-free and continuous, with an average size from 294 ± 53 to 390 ± 54 nm. The DSC and FTIR curves indicated no changes in the phase state of coaxial brackets. Hyaluronic acid/PLLA coaxial fibers had the minimum contact angle (53.1° ± 0.24°). Myelin sheaths were wrapped around a coaxial electrospun scaffold modified with water-soluble materials after a 14-day incubation. All results suggest that such a scaffold prepared by coaxial electrospinning potentially provides a novel platform for oligodendrocyte myelination.
Collapse
Affiliation(s)
- Zhepeng Liu
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (J.W.); (H.C.); (Y.L.); (S.Z.)
- Correspondence: (Z.L.); (W.L.)
| | - Jing Wang
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (J.W.); (H.C.); (Y.L.); (S.Z.)
| | - Haini Chen
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (J.W.); (H.C.); (Y.L.); (S.Z.)
| | - Guanyu Zhang
- Department of Cell Biology, Second Military Medical University, Shanghai 200433, China; (G.Z.); (Z.L.)
| | - Zhuman Lv
- Department of Cell Biology, Second Military Medical University, Shanghai 200433, China; (G.Z.); (Z.L.)
| | - Yijun Li
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (J.W.); (H.C.); (Y.L.); (S.Z.)
| | - Shoujin Zhao
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (J.W.); (H.C.); (Y.L.); (S.Z.)
| | - Wenlin Li
- Department of Cell Biology, Second Military Medical University, Shanghai 200433, China; (G.Z.); (Z.L.)
- Correspondence: (Z.L.); (W.L.)
| |
Collapse
|
241
|
Ki SM, Jeong HS, Lee JE. Primary Cilia in Glial Cells: An Oasis in the Journey to Overcoming Neurodegenerative Diseases. Front Neurosci 2021; 15:736888. [PMID: 34658775 PMCID: PMC8514955 DOI: 10.3389/fnins.2021.736888] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/31/2021] [Indexed: 12/29/2022] Open
Abstract
Many neurodegenerative diseases have been associated with defects in primary cilia, which are cellular organelles involved in diverse cellular processes and homeostasis. Several types of glial cells in both the central and peripheral nervous systems not only support the development and function of neurons but also play significant roles in the mechanisms of neurological disease. Nevertheless, most studies have focused on investigating the role of primary cilia in neurons. Accordingly, the interest of recent studies has expanded to elucidate the role of primary cilia in glial cells. Correspondingly, several reports have added to the growing evidence that most glial cells have primary cilia and that impairment of cilia leads to neurodegenerative diseases. In this review, we aimed to understand the regulatory mechanisms of cilia formation and the disease-related functions of cilia, which are common or specific to each glial cell. Moreover, we have paid close attention to the signal transduction and pathological mechanisms mediated by glia cilia in representative neurodegenerative diseases. Finally, we expect that this field of research will clarify the mechanisms involved in the formation and function of glial cilia to provide novel insights and ideas for the treatment of neurodegenerative diseases in the future.
Collapse
Affiliation(s)
- Soo Mi Ki
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, South Korea
| | - Hui Su Jeong
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, South Korea
| | - Ji Eun Lee
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, South Korea
- Samsung Medical Center, Samsung Biomedical Research Institute, Seoul, South Korea
| |
Collapse
|
242
|
Ratti S, Rusciano I, Mongiorgi S, Neri I, Cappellini A, Cortelli P, Suh PG, McCubrey JA, Manzoli L, Cocco L, Ramazzotti G. Lamin B1 Accumulation's Effects on Autosomal Dominant Leukodystrophy (ADLD): Induction of Reactivity in the Astrocytes. Cells 2021; 10:2566. [PMID: 34685544 PMCID: PMC8534128 DOI: 10.3390/cells10102566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/30/2021] [Accepted: 09/24/2021] [Indexed: 11/16/2022] Open
Abstract
Autosomal dominant leukodystrophy (ADLD) is an extremely rare and fatal neurodegenerative disease due to the overexpression of the nuclear lamina component Lamin B1. Many aspects of the pathology still remain unrevealed. This work highlights the effect of Lamin B1 accumulation on different cellular functions in an ADLD astrocytic in vitro model. Lamin B1 overexpression induces alterations in cell survival signaling pathways with GSK3β inactivation, but not the upregulation of β-catenin targets, therefore resulting in a reduction in astrocyte survival. Moreover, Lamin B1 build up affects proliferation and cell cycle progression with an increase of PPARγ and p27 and a decrease of Cyclin D1. These events are also associated to a reduction in cell viability and an induction of apoptosis. Interestingly, ADLD astrocytes trigger a tentative activation of survival pathways that are ineffective. Finally, astrocytes overexpressing Lamin B1 show increased immunoreactivity for both GFAP and vimentin together with NF-kB phosphorylation and c-Fos increase, suggesting astrocytes reactivity and substantial cellular activation. These data demonstrate that Lamin B1 accumulation is correlated to biochemical, metabolic, and morphologic remodeling, probably related to the induction of a reactive astrocytes phenotype that could be strictly associated to ADLD pathological mechanisms.
Collapse
Affiliation(s)
- Stefano Ratti
- Cellular Signalling Laboratory, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy; (S.R.); (I.R.); (S.M.); (I.N.); (A.C.); (G.R.)
| | - Isabella Rusciano
- Cellular Signalling Laboratory, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy; (S.R.); (I.R.); (S.M.); (I.N.); (A.C.); (G.R.)
| | - Sara Mongiorgi
- Cellular Signalling Laboratory, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy; (S.R.); (I.R.); (S.M.); (I.N.); (A.C.); (G.R.)
| | - Irene Neri
- Cellular Signalling Laboratory, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy; (S.R.); (I.R.); (S.M.); (I.N.); (A.C.); (G.R.)
| | - Alessandra Cappellini
- Cellular Signalling Laboratory, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy; (S.R.); (I.R.); (S.M.); (I.N.); (A.C.); (G.R.)
| | - Pietro Cortelli
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, 40139 Bologna, Italy;
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC NeuroMet, 40139 Bologna, Italy
| | - Pann-Ghill Suh
- Korea Brain Research Institute, Daegu 41062, Korea;
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798, Korea
| | - James A. McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27834, USA;
| | - Lucia Manzoli
- Cellular Signalling Laboratory, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy; (S.R.); (I.R.); (S.M.); (I.N.); (A.C.); (G.R.)
| | - Lucio Cocco
- Cellular Signalling Laboratory, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy; (S.R.); (I.R.); (S.M.); (I.N.); (A.C.); (G.R.)
| | - Giulia Ramazzotti
- Cellular Signalling Laboratory, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy; (S.R.); (I.R.); (S.M.); (I.N.); (A.C.); (G.R.)
| |
Collapse
|
243
|
Selkirk JV, Dines KC, Yan YG, Ching N, Dalvie D, Biswas S, Bortolato A, Schkeryantz JM, Lopez C, Ruiz I, Hargreaves R. Deconstructing the Pharmacological Contribution of Sphingosine-1 Phosphate Receptors to Mouse Models of Multiple Sclerosis Using the Species Selectivity of Ozanimod, a Dual Modulator of Human Sphingosine-1 Phosphate Receptor Subtypes 1 and 5. J Pharmacol Exp Ther 2021; 379:386-399. [PMID: 34535564 DOI: 10.1124/jpet.121.000741] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/26/2021] [Indexed: 11/22/2022] Open
Abstract
Ozanimod, a sphingosine-1 phosphate (S1P) receptor modulator that binds with high affinity selectively to S1P receptor subtypes 1 (S1P1) and 5 (S1P5), is approved for the treatment of relapsing multiple sclerosis (MS) in multiple countries. Ozanimod profiling revealed a species difference in its potency for S1P5 in mouse, rat, and canine compared with that for human and monkey. Site-directed mutagenesis identified amino acid alanine at position 120 to be responsible for loss of activity for mouse, rat, and canine S1P5 and mutation back to threonine as in human/monkey S1P5 restored activity. Radioligand binding analysis performed with mouse S1P5 confirmed the potency loss is a consequence of a loss of affinity of ozanimod for mouse S1P5 and was restored with mutation of alanine 120 to threonine. Study of ozanimod in preclinical mouse models of MS can now determine the S1P receptor(s) responsible for observed efficacies with receptor engagement as measured using pharmacokinetic exposures of free drug. Hence, in the experimental autoimmune encephalomyelitis model, ozanimod exposures sufficient to engage S1P1, but not S1P5, resulted in reduced circulating lymphocytes, disease scores, and body weight loss; reduced inflammation, demyelination, and apoptotic cell counts in the spinal cord; and reduced circulating levels of the neuronal degeneration marker, neurofilament light. In the demyelinating cuprizone model, ozanimod prevented axonal degradation and myelin loss during toxin challenge but did not facilitate enhanced remyelination post-intoxication. Since free drug levels in this model only engaged S1P1, we concluded that S1P1 activation is neuroprotective but does not appear to affect remyelination. Significance Statement Ozanimod, a selective human S1P1/5 modulator, displays reduced potency for rodent and dog S1P5 compared with human, which results from mutation of threonine to alanine at position 120. Ozanimod can thus be used as a selective S1P1 agonist in mouse models of multiple sclerosis to define efficacies driven by S1P1 but not S1P5 Based on readouts for experimental autoimmune encephalomyelitis and cuprizone intoxication, S1P1 modulation is neuroprotective but S1P5 activity may be required for remyelination.
Collapse
Affiliation(s)
| | | | | | | | - Deepak Dalvie
- Building 2, Crinetics Pharmaceuticals, United States
| | | | | | | | | | | | | |
Collapse
|
244
|
Derivation of Oligodendrocyte Precursors from Adult Bone Marrow Stromal Cells for Remyelination Therapy. Cells 2021; 10:cells10082166. [PMID: 34440935 PMCID: PMC8391516 DOI: 10.3390/cells10082166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 01/04/2023] Open
Abstract
Transplantation of oligodendrocyte precursors (OPs) is potentially therapeutic for myelin disorders but a safe and accessible cell source remains to be identified. Here we report a two-step protocol for derivation of highly enriched populations of OPs from bone marrow stromal cells of young adult rats (aMSCs). Neural progenitors among the aMSCs were expanded in non-adherent sphere-forming cultures and subsequently directed along the OP lineage with the use of glial-inducing growth factors. Immunocytochemical and flow cytometric analyses of these cells confirmed OP-like expression of Olig2, PDGFRα, NG2, and Sox10. OPs so derived formed compact myelin both in vitro, as in co-culture with purified neurons, and in vivo, following transplantation into the corpus callosum of neonatal shiverer mice. Not only did the density of myelinated axons in the corpus callosum of recipient shiverer mice reach levels comparable to those in age-matched wild-type mice, but the mean lifespan of recipient shiverer mice also far exceeded those of non-recipient shiverer mice. Our results thus promise progress in harnessing the OP-generating potential of aMSCs towards cell therapy for myelin disorders.
Collapse
|
245
|
Kim SE, Jung S, Sung G, Bang M, Lee SH. Impaired cerebro-cerebellar white matter connectivity and its associations with cognitive function in patients with schizophrenia. NPJ SCHIZOPHRENIA 2021; 7:38. [PMID: 34385473 PMCID: PMC8360938 DOI: 10.1038/s41537-021-00169-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/28/2021] [Indexed: 11/20/2022]
Abstract
Schizophrenia is a complex brain disorder of unknown etiology. Based on the notion of “cognitive dysmetria,” we aimed to investigate aberrations in structural white matter (WM) connectivity that links the cerebellum to cognitive dysfunction in patients with schizophrenia. A total of 112 participants (65 patients with schizophrenia and 47 healthy controls [HCs]) were enrolled and underwent diffusion tensor imaging. Between-group voxel-wise comparisons of cerebellar WM regions (superior/middle [MCP]/inferior cerebellar peduncle and pontine crossing fibers) were performed using Tract-Based Spatial Statistics. Cognitive function was assessed using the Trail Making Test Part A/B (TMT-A/B), Wisconsin Card Sorting Test (WCST), and Rey-Kim Memory Test in 46 participants with schizophrenia. WM connectivity, measured as fractional anisotropy (FA), was significantly lower in the MCP in participants with schizophrenia than in HCs. The mean FAs extracted from the significant MCP cluster were inversely correlated with poorer cognitive performance, particularly longer time to complete the TMB-B (r = 0.559, p < 0.001) and more total errors in the WCST (r = 0.442, p = 0.003). Our findings suggest that aberrant cerebro-cerebellar communication due to disrupted WM connectivity may contribute to cognitive impairments, a core characteristic of schizophrenia. Our results may expand our understanding of the neurobiology of schizophrenia based on the cerebro-cerebellar interconnectivity of the brain.
Collapse
Affiliation(s)
- Sung Eun Kim
- Department of Psychiatry, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Sungcheol Jung
- CHA University School of Medicine, Seongnam, Republic of Korea
| | - Gyhye Sung
- Department of Psychiatry, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea.,Department of Psychology, Korea University, Seoul, Republic of Korea
| | - Minji Bang
- Department of Psychiatry, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea.
| | - Sang-Hyuk Lee
- Department of Psychiatry, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| |
Collapse
|
246
|
MyelTracer: A Semi-Automated Software for Myelin g-Ratio Quantification. eNeuro 2021; 8:ENEURO.0558-20.2021. [PMID: 34193510 PMCID: PMC8298095 DOI: 10.1523/eneuro.0558-20.2021] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 06/14/2021] [Accepted: 06/17/2021] [Indexed: 11/21/2022] Open
Abstract
In the central and peripheral nervous systems, the myelin sheath promotes neuronal signal transduction. The thickness of the myelin sheath changes during development and in disease conditions like multiple sclerosis. Such changes are routinely detected using electron microscopy through g-ratio quantification. While g-ratio is one of the most critical measurements in myelin studies, a major drawback is that g-ratio quantification is extremely laborious and time-consuming. Here, we report the development and validation of MyelTracer, an installable, stand-alone software for semi-automated g-ratio quantification based on the Open Computer Vision Library (OpenCV). Compared with manual g-ratio quantification, using MyelTracer produces consistent results across multiple tissues and animal ages, as well as in remyelination after optic nerve crush, and reduces total quantification time by 40-60%. With g-ratio measurements via MyelTracer, a known hypomyelination phenotype can be detected in a Williams syndrome mouse model. MyelTracer is easy to use and freely available for Windows and Mac OS X (https://github.com/HarrisonAllen/MyelTracer).
Collapse
|
247
|
Hughes EG, Stockton ME. Premyelinating Oligodendrocytes: Mechanisms Underlying Cell Survival and Integration. Front Cell Dev Biol 2021; 9:714169. [PMID: 34368163 PMCID: PMC8335399 DOI: 10.3389/fcell.2021.714169] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 06/30/2021] [Indexed: 12/31/2022] Open
Abstract
In the central nervous system, oligodendrocytes produce myelin sheaths that enwrap neuronal axons to provide trophic support and increase conduction velocity. New oligodendrocytes are produced throughout life through a process referred to as oligodendrogenesis. Oligodendrogenesis consists of three canonical stages: the oligodendrocyte precursor cell (OPC), the premyelinating oligodendrocyte (preOL), and the mature oligodendrocyte (OL). However, the generation of oligodendrocytes is inherently an inefficient process. Following precursor differentiation, a majority of premyelinating oligodendrocytes are lost, likely due to apoptosis. If premyelinating oligodendrocytes progress through this survival checkpoint, they generate new myelinating oligodendrocytes in a process we have termed integration. In this review, we will explore the intrinsic and extrinsic signaling pathways that influence preOL survival and integration by examining the intrinsic apoptotic pathways, metabolic demands, and the interactions between neurons, astrocytes, microglia, and premyelinating oligodendrocytes. Additionally, we will discuss similarities between the maturation of newly generated neurons and premyelinating oligodendrocytes. Finally, we will consider how increasing survival and integration of preOLs has the potential to increase remyelination in multiple sclerosis. Deepening our understanding of premyelinating oligodendrocyte biology may open the door for new treatments for demyelinating disease and will help paint a clearer picture of how new oligodendrocytes are produced throughout life to facilitate brain function.
Collapse
Affiliation(s)
- Ethan G Hughes
- Department of Cell and Developmental Biology, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Michael E Stockton
- Department of Cell and Developmental Biology, School of Medicine, University of Colorado, Aurora, CO, United States
| |
Collapse
|
248
|
Kalafatakis I, Karagogeos D. Oligodendrocytes and Microglia: Key Players in Myelin Development, Damage and Repair. Biomolecules 2021; 11:1058. [PMID: 34356682 PMCID: PMC8301746 DOI: 10.3390/biom11071058] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/16/2021] [Accepted: 07/16/2021] [Indexed: 12/13/2022] Open
Abstract
Oligodendrocytes, the myelin-making cells of the CNS, regulate the complex process of myelination under physiological and pathological conditions, significantly aided by other glial cell types such as microglia, the brain-resident, macrophage-like innate immune cells. In this review, we summarize how oligodendrocytes orchestrate myelination, and especially myelin repair after damage, and present novel aspects of oligodendroglial functions. We emphasize the contribution of microglia in the generation and regeneration of myelin by discussing their beneficial and detrimental roles, especially in remyelination, underlining the cellular and molecular components involved. Finally, we present recent findings towards human stem cell-derived preclinical models for the study of microglia in human pathologies and on the role of microbiome on glial cell functions.
Collapse
Affiliation(s)
- Ilias Kalafatakis
- Laboratory of Neuroscience, Department of Basic Science, University of Crete Medical School, 70013 Heraklion, Greece;
- IMBB FORTH, Nikolaou Plastira 100, Vassilika Vouton, 70013 Heraklion, Greece
| | - Domna Karagogeos
- Laboratory of Neuroscience, Department of Basic Science, University of Crete Medical School, 70013 Heraklion, Greece;
- IMBB FORTH, Nikolaou Plastira 100, Vassilika Vouton, 70013 Heraklion, Greece
| |
Collapse
|
249
|
Lwin TT, Yoneyama A, Kokubo S, Maruyama H, Hyodo K, Takeda T. White matter imaging of ethanol-fixed rat brain by phase-contrast X-ray computed tomography. Acta Radiol 2021; 63:1102-1109. [PMID: 34259019 DOI: 10.1177/02841851211030776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Phase-contrast X-ray computed tomography imaging (PCI) based on crystal X-ray interferometry can detect minute density differences within biological soft tissues without contrast agents. Ethanol fixation yields increased tissue-background density differences due to the dehydrating and delipidifying effects of ethanol. PURPOSE To obtain high image contrast of cerebral white matter structures in PCI, tissue fixation using ethanol and routinely used formalin have been examined. MATERIAL AND METHODS Ethanol-fixed (EF) (n = 4) and formalin-fixed (FF) (n = 4) rat brains were imaged by crystal X-ray interferometry-based PCI. Tissue staining/microscopy was also performed for histological comparison and myelin density evaluation. Three-dimensional white matter tract images were reconstructed. RESULTS Superior image contrast was obtained in the images of EF brains (EF images) compared to those of formalin-fixed brains (FF images), particularly for white matter structures. Significant density differences between the white matter structures and hippocampus (P < 0.01)/thalamus (P < 0.001) were observed in the EF, but not FF, images. Ethanol fixation enhanced the image contrast of white matter tracts by approximately sixfold compared to formalin fixation, and close agreement (r2 = 0.97; P < 0.05) between the density values on the CT images and the myelin density values in histological images was observed for the EF brains. Three-dimensional reconstruction of the white matter tracts was possible from the EF images, but not FF images. CONCLUSION Ethanol fixation resulted in marked contrast enhancement of cerebral white matter structures in PCI. Thus, high-resolution PCI using ethanol for tissue fixation could be valuable for experimental neurological studies and postmortem neuropathology evaluation.
Collapse
Affiliation(s)
- Thet-Thet- Lwin
- School of Allied Health Sciences, Kitasato University, Sagamihara, Kanagawa, Japan
- Graduate School of Medical Sciences, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Akio Yoneyama
- SAGA Light Source, Kyushu Synchrotron Light Research Center, SAGA, Japan
| | - Shogo Kokubo
- Graduate School of Medical Sciences, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Hiroko Maruyama
- School of Allied Health Sciences, Kitasato University, Sagamihara, Kanagawa, Japan
- Graduate School of Medical Sciences, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Kazuyuki Hyodo
- Institute of Materials Structure Science, High Energy Accelerator Organization (KEK), Ibaraki, Japan
| | - Tohoru Takeda
- School of Allied Health Sciences, Kitasato University, Sagamihara, Kanagawa, Japan
- Graduate School of Medical Sciences, Kitasato University, Sagamihara, Kanagawa, Japan
| |
Collapse
|
250
|
Chen H, Jerusalem A. A Framework for Low-Intensity Low-Frequency Ultrasound Neuromodulation Sonication Parameter Identification from Micromechanical Flexoelectricity Modelling. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:1985-1991. [PMID: 33820667 DOI: 10.1016/j.ultrasmedbio.2021.02.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 02/23/2021] [Accepted: 02/28/2021] [Indexed: 06/12/2023]
Abstract
Low-intensity, low-frequency ultrasound (LILFU) has recently emerged as a promising technique to modulate non-invasively nerve activities at lower cost than other traditional and more-invasive neuromodulation methods. However, there is currently no consensus on the optimum sonication parameters to be used in LILFU applications, and most of the accepted ranges have arisen from trial-and-error approaches. Here we utilise a recently proposed micromechanics model of membrane flexoelectricity, a potential candidate for neuromodulation, and simulate action potentials/membrane polarisation triggered by acoustic pulses of different pulse frequencies, pulse magnitudes and duty cycles. Results reveal that, at constant duty cycles, increasing the transmit frequency increases the thresholds of both the pulse magnitude and the elastic energy rate density required to mechanically trigger an action potential, whereas at constant frequencies, increasing the duty cycle reduces both. The influence of transmit frequency is weakened at lower duty cycles. Our simulation results offer some guidance on the selections of sonication parameters used in LILFU for neurologic disorder treatments in the context of the flexoelectricity hypothesis.
Collapse
Affiliation(s)
- Haoyu Chen
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Antoine Jerusalem
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|