201
|
Cooley LF, Glaser AP, Meeks JJ. Mutation signatures to Pan-Cancer Atlas: Investigation of the genomic landscape of muscle-invasive bladder cancer. Urol Oncol 2020; 40:279-286. [PMID: 32122728 DOI: 10.1016/j.urolonc.2020.01.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 11/25/2019] [Accepted: 01/29/2020] [Indexed: 10/24/2022]
Abstract
The Cancer Genome Atlas (TCGA) for bladder cancer was published in 2014 with updated annotation of over 400 patients with muscle-invasive bladder cancer (MIBC) in 2017. This tremendous work established the foundation of the genomic landscape of MIBC. The next steps to utilize information from The Cancer Genome Atlas is to (1) identify the causes of mutation, (2) determine the significant differences and sources of heterogeneity, and (3) apply these tools toward patient care. In this review, we discuss the full spectrum of the genomic landscape of MIBC toward the goal of therapeutic application.
Collapse
Affiliation(s)
- Lauren Folgosa Cooley
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Alexander P Glaser
- Division of Urology, Department of Surgery, North Shore University Health System, Evanston, IL
| | - Joshua J Meeks
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL; Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL.
| |
Collapse
|
202
|
Zhu B, Xiao Y, Yeager M, Clifford G, Wentzensen N, Cullen M, Boland JF, Bass S, Steinberg MK, Raine-Bennett T, Lee D, Burk RD, Pinheiro M, Song L, Dean M, Nelson CW, Burdett L, Yu K, Roberson D, Lorey T, Franceschi S, Castle PE, Walker J, Zuna R, Schiffman M, Mirabello L. Mutations in the HPV16 genome induced by APOBEC3 are associated with viral clearance. Nat Commun 2020; 11:886. [PMID: 32060290 PMCID: PMC7021686 DOI: 10.1038/s41467-020-14730-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 01/28/2020] [Indexed: 12/24/2022] Open
Abstract
HPV16 causes half of cervical cancers worldwide; for unknown reasons, most infections resolve within two years. Here, we analyze the viral genomes of 5,328 HPV16-positive case-control samples to investigate mutational signatures and the role of human APOBEC3-induced mutations in viral clearance and cervical carcinogenesis. We identify four de novo mutational signatures, one of which matches the COSMIC APOBEC-associated signature 2. The viral genomes of the precancer/cancer cases are less likely to contain within-host somatic HPV16 APOBEC3-induced mutations (Fisher's exact test, P = 6.2 x 10-14), and have a 30% lower nonsynonymous APOBEC3 mutation burden compared to controls. We replicate the low prevalence of HPV16 APOBEC3-induced mutations in 1,749 additional cases. APOBEC3 mutations also historically contribute to the evolution of HPV16 lineages. We demonstrate that cervical infections with a greater burden of somatic HPV16 APOBEC3-induced mutations are more likely to be benign or subsequently clear, suggesting they may reduce persistence, and thus progression, within the host.
Collapse
Affiliation(s)
- Bin Zhu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Yanzi Xiao
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Meredith Yeager
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Gary Clifford
- Infections and Cancer Epidemiology Group, International Agency for Research on Cancer, 150 Cours Albert Thomas, 69372, Lyon, Cedex 08, France
| | - Nicolas Wentzensen
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Michael Cullen
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Joseph F Boland
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Sara Bass
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Mia K Steinberg
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Tina Raine-Bennett
- Women's Health Research Institute, Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - DongHyuk Lee
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Robert D Burk
- Departments of Pediatrics, Microbiology and Immunology, and Obstetrics & Gynecology and Women's Health, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Maisa Pinheiro
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Lei Song
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Michael Dean
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Chase W Nelson
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY, USA
| | - Laurie Burdett
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Kai Yu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - David Roberson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Thomas Lorey
- Regional Laboratory, Kaiser Permanente Northern California, Oakland, CA, USA
| | | | - Philip E Castle
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Joan Walker
- University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Rosemary Zuna
- University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Mark Schiffman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Lisa Mirabello
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA.
| |
Collapse
|
203
|
Driscoll CB, Schuelke MR, Kottke T, Thompson JM, Wongthida P, Tonne JM, Huff AL, Miller A, Shim KG, Molan A, Wetmore C, Selby P, Samson A, Harrington K, Pandha H, Melcher A, Pulido JS, Harris R, Evgin L, Vile RG. APOBEC3B-mediated corruption of the tumor cell immunopeptidome induces heteroclitic neoepitopes for cancer immunotherapy. Nat Commun 2020; 11:790. [PMID: 32034147 PMCID: PMC7005822 DOI: 10.1038/s41467-020-14568-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 01/21/2020] [Indexed: 12/21/2022] Open
Abstract
APOBEC3B, an anti-viral cytidine deaminase which induces DNA mutations, has been implicated as a mediator of cancer evolution and therapeutic resistance. Mutational plasticity also drives generation of neoepitopes, which prime anti-tumor T cells. Here, we show that overexpression of APOBEC3B in tumors increases resistance to chemotherapy, but simultaneously heightens sensitivity to immune checkpoint blockade in a murine model of melanoma. However, in the vaccine setting, APOBEC3B-mediated mutations reproducibly generate heteroclitic neoepitopes in vaccine cells which activate de novo T cell responses. These cross react against parental, unmodified tumors and lead to a high rate of cures in both subcutaneous and intra-cranial tumor models. Heteroclitic Epitope Activated Therapy (HEAT) dispenses with the need to identify patient specific neoepitopes and tumor reactive T cells ex vivo. Thus, actively driving a high mutational load in tumor cell vaccines increases their immunogenicity to drive anti-tumor therapy in combination with immune checkpoint blockade.
Collapse
Affiliation(s)
- Christopher B Driscoll
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, 55905, USA
- Virology and Gene Therapy Track, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, 55905, USA
| | - Matthew R Schuelke
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Immunology, Mayo Clinic, Rochester, MN, 55905, USA
- Medical Scientist Training Program, Mayo Clinic, Rochester, MN, 55905, USA
| | - Timothy Kottke
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jill M Thompson
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | | | - Jason M Tonne
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Amanda L Huff
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, 55905, USA
- Virology and Gene Therapy Track, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, 55905, USA
| | - Amber Miller
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Kevin G Shim
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Immunology, Mayo Clinic, Rochester, MN, 55905, USA
- Medical Scientist Training Program, Mayo Clinic, Rochester, MN, 55905, USA
| | - Amy Molan
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Cynthia Wetmore
- Center for Cancer and Blood Disorders, Phoenix Children's, Phoenix, AZ, 85016, USA
| | - Peter Selby
- Leeds Institute of Cancer and Pathology (LICAP), Faculty of Medicine and Health, St James' University Hospital, University of Leeds, West Yorkshire, UK
| | - Adel Samson
- Leeds Institute of Cancer and Pathology (LICAP), Faculty of Medicine and Health, St James' University Hospital, University of Leeds, West Yorkshire, UK
| | - Kevin Harrington
- Targeted Therapy Team, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Hardev Pandha
- Postgraduate Medical School, University of Surrey, Guildford, GU2 7XH, UK
| | - Alan Melcher
- Translational Immunotherapy Team, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Jose S Pulido
- Department of Ophthalmology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Reuben Harris
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Laura Evgin
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Richard G Vile
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, 55905, USA.
- Department of Immunology, Mayo Clinic, Rochester, MN, 55905, USA.
- Leeds Cancer Research UK Clinical Centre, Faculty of Medicine and Health, St James' University Hospital, University of Leeds, West Yorkshire, UK.
| |
Collapse
|
204
|
Takahashi H, Asaoka M, Yan L, Rashid OM, Oshi M, Ishikawa T, Nagahashi M, Takabe K. Biologically Aggressive Phenotype and Anti-cancer Immunity Counterbalance in Breast Cancer with High Mutation Rate. Sci Rep 2020; 10:1852. [PMID: 32024876 PMCID: PMC7002588 DOI: 10.1038/s41598-020-58995-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 01/23/2020] [Indexed: 12/22/2022] Open
Abstract
While cancer cells gain aggressiveness by mutations, abundant mutations release neoantigens, attracting anti-cancer immune cells. We hypothesized that in breast cancer (BC), where mutation is less common, tumors with high mutation rates demonstrate aggressive phenotypes and attract immune cells simultaneously. High mutation rates were defined as the top 10% of the mutation rate, utilizing TCGA and METABRIC transcriptomic data. Mutation rate did not impact survival although high mutation BCs were associated with aggressive clinical features, such as more frequent in ER-negative tumors (p < 0.01), in triple-negative subtype (p = 0.03), and increased MKI-67 mRNA expression (p < 0.01) in both cohorts. Tumors with high mutation rates were associated with APOBEC3B and homologous recombination deficiency, increasing neoantigen loads (all p < 0.01). Cell proliferation and immune activity pathways were enriched in BCs with high mutation rates. Furthermore, there were higher lymphocytes and M1 macrophage infiltration in high mutation BCs. Additionally, T-cell receptor diversity, cytolytic activity score (CYT), and T-cell exhaustion marker expression were significantly elevated in BCs with high mutation rates (all p < 0.01), indicating strong immunogenicity. In conclusion, enhanced immunity due to neoantigens can be one of possible forces to counterbalance aggressiveness of a high mutation rate, resulting in similar survival rates to low mutation BCs.
Collapse
Affiliation(s)
- Hideo Takahashi
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Mariko Asaoka
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Li Yan
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Omar M Rashid
- Department of Surgical Oncology, Holy Cross Hospital, Trinity Health, Ft Lauderdale, FL, USA.,Department of Surgery, Massachusetts General Hospital, Boston, MA, USA.,University of Miami Miller School of Medicine, Miami, FL, USA
| | - Masanori Oshi
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Takashi Ishikawa
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo, Japan
| | - Masayuki Nagahashi
- Department of Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kazuaki Takabe
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA. .,Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo, Japan. .,Department of Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan. .,Department of Surgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, the State University of New York, Buffalo, NY, USA. .,Department of Surgery, Yokohama City University, Yokohama, Japan.
| |
Collapse
|
205
|
Li Y, Niu Y, Zhu J, Gao C, Xu Q, He Z, Chen D, Xu M, Liu Y. Tailor-made legumain/pH dual-responsive doxorubicin prodrug-embedded nanoparticles for efficient anticancer drug delivery and in situ monitoring of drug release. NANOSCALE 2020; 12:2673-2685. [PMID: 31942900 DOI: 10.1039/c9nr08558k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Legumain enzyme is a well-conserved lysosomal cysteine protease and is over-expressed in many tumor cells and tumor stromal cells and exhibits higher protease activity under acidic conditions, such as in lysosomes and endosomes. Legumain enzyme-triggered drug delivery systems have demonstrated potential therapeutic values in cancer targeted therapy. To realize a more efficient delivery of anticancer therapeutic agents, we herein report a legumain/pH dual-responsive drug delivery system for enhancing site-specific controlled release of antitumor drugs. The carrier (named "DS-NA") is a hybrid vector constituting PEG-b-PBLA polymers, pH-responsive OAPI polymers, and legumain-sensitive peptide-doxorubicin prodrug decorated fluorescent carbon dots (CDs-C9-AANL-DOX). In tumor cells, DS-NA could disassemble rapidly in acidic environments, and then release doxorubicin through legumain digestion. Except as a drug vector, the drug release process from DS-NA could also be dynamically monitored by CLSM as the DOX was released from the surface of CDs through the AANL peptide linker digested by legumain, then transferred into the cell nucleus and exerted cytotoxicity, while the CDs themselves remained in the cytoplasm. As a control, the CDs-C9-DOX, which did not contain the AANL peptide linker, also still resided in the cytoplasm. Furthermore, in vivo studies show that DS-NA had a stronger inhibitory effect on tumor tissue with attenuated side effects to normal tissues than control nanoparticles or free drugs, which may be due to comprehensive effects including pH/legumain dual-triggered drug release, long blood circulation periods, and EPR effects. Together, a combination strategy of acid sensitivity and legumain enzyme sensitivity used for site-specific controlled release of drugs provides a novel method for enhanced and precise antitumor chemotherapy.
Collapse
Affiliation(s)
- Yang Li
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, Jiangsu, China. and Department of Occupational Disease Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, Jiangsu, China. and Department of Pharmacy, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China
| | - Yimin Niu
- Department of Pharmacy, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China
| | - Jianhua Zhu
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, Jiangsu, China.
| | - Cuicui Gao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Qunwei Xu
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, Jiangsu, China.
| | - Zhiyu He
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Dawei Chen
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Ming Xu
- Department of Occupational Disease Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, Jiangsu, China. and School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Yang Liu
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, Jiangsu, China.
| |
Collapse
|
206
|
Pozdeyev N, Rose MM, Bowles DW, Schweppe RE. Molecular therapeutics for anaplastic thyroid cancer. Semin Cancer Biol 2020; 61:23-29. [PMID: 31991166 DOI: 10.1016/j.semcancer.2020.01.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/08/2020] [Accepted: 01/13/2020] [Indexed: 02/07/2023]
Abstract
Anaplastic thyroid cancer (ATC) represents one of the most lethal human cancers and although this tumor type is rare, ATC accounts for the majority of deaths from thyroid cancer. Due to the rarity of ATC, a comprehensive genomic characterization of this tumor type has been challenging, and thus the development of new therapies has been lacking. To date, there is only one mutation-driven targeted therapy for BRAF-mutant ATC. Recent genomic studies have used next generation sequencing to define the genetic landscape of ATC in order to identify new therapeutic targets. Together, these studies have confirmed the role of oncogenic mutations of MAPK pathway as key drivers of differentiated thyroid cancer (BRAF, RAS), and that additional genetic alterations in the PI3K pathway, TP53, and the TERT promoter are necessary for anaplastic transformation. Recent novel findings have linked the high mutational burden associated with ATC with mutations in the Mismatch Repair (MMR) pathway and overactivity of the AID/APOBEC family of cytidine deaminases. Additional novel mutations include cell cycle genes, SWI/SNF chromatin remodeling complex, and histone modification genes. Mutations in RAC1 were also identified in ATC, which have important implications for BRAF-directed therapies. In this review, we summarize these novel findings and the new genetic landscape of ATC. We further discuss the development of therapies targeting these pathways that are being tested in clinical and preclinical studies.
Collapse
Affiliation(s)
- Nikita Pozdeyev
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, Aurora, CO, USA; Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, Aurora, CO, USA
| | - Madison M Rose
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, Aurora, CO, USA
| | - Daniel W Bowles
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Rebecca E Schweppe
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, Aurora, CO, USA.
| |
Collapse
|
207
|
Yamazaki H, Shirakawa K, Matsumoto T, Kazuma Y, Matsui H, Horisawa Y, Stanford E, Sarca AD, Shirakawa R, Shindo K, Takaori-Kondo A. APOBEC3B reporter myeloma cell lines identify DNA damage response pathways leading to APOBEC3B expression. PLoS One 2020; 15:e0223463. [PMID: 31914134 PMCID: PMC6948746 DOI: 10.1371/journal.pone.0223463] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/16/2019] [Indexed: 12/19/2022] Open
Abstract
Apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like (APOBEC) DNA cytosine deaminase 3B (A3B) is a DNA editing enzyme which induces genomic DNA mutations in multiple myeloma and in various other cancers. APOBEC family proteins are highly homologous so it is especially difficult to investigate the biology of specifically A3B in cancer cells. To easily and comprehensively investigate A3B function in myeloma cells, we used CRISPR/Cas9 to generate A3B reporter cells that contain 3×FLAG tag and IRES-EGFP sequences integrated at the end of the A3B gene. These reporter cells stably express 3xFLAG tagged A3B and the reporter EGFP and this expression is enhanced by known stimuli, such as PMA. Conversely, shRNA knockdown of A3B decreased EGFP fluorescence and 3xFLAG tagged A3B protein levels. We screened a series of anticancer treatments using these cell lines and identified that most conventional therapies, such as antimetabolites or radiation, exacerbated endogenous A3B expression, but recent molecular targeted therapeutics, including bortezomib, lenalidomide and elotuzumab, did not. Furthermore, chemical inhibition of ATM, ATR and DNA-PK suppressed EGFP expression upon treatment with antimetabolites. These results suggest that DNA damage triggers A3B expression through ATM, ATR and DNA-PK signaling.
Collapse
Affiliation(s)
- Hiroyuki Yamazaki
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kotaro Shirakawa
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tadahiko Matsumoto
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yasuhiro Kazuma
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroyuki Matsui
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshihito Horisawa
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Emani Stanford
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Anamaria Daniela Sarca
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ryutaro Shirakawa
- Department of Molecular and Cellular Biology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Keisuke Shindo
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akifumi Takaori-Kondo
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
208
|
Shi K, Demir Ö, Carpenter MA, Banerjee S, Harki DA, Amaro RE, Harris RS, Aihara H. Active site plasticity and possible modes of chemical inhibition of the human DNA deaminase APOBEC3B. FASEB Bioadv 2020; 2:49-58. [PMID: 32123856 PMCID: PMC6996314 DOI: 10.1096/fba.2019-00068] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 08/19/2019] [Accepted: 11/30/2019] [Indexed: 01/24/2023] Open
Abstract
The single-stranded DNA cytosine deaminase APOBEC3B (A3B) functions in innate immunity against viruses, but it is also strongly implicated in eliciting mutations in cancer genomes. Because of the critical role of A3B in promoting virus and tumor evolution, small molecule inhibitors are desirable. However, there is no reported structure for any of the APOBEC3-family enzymes in complex with a small molecule bound in the active site, which hampers the development of small molecules targeting A3B. Here we report high-resolution structures of an active A3B catalytic domain chimera with loop 7 residues exchanged with those from the corresponding region of APOBEC3G (A3G). The structures reveal novel open conformations lacking the catalytically essential zinc ion, with the highly conserved active site residues extensively rearranged. These inactive conformations are stabilized by 2-pyrimidone or an iodide ion bound in the active site. Molecular dynamics simulations corroborate the remarkable plasticity of the engineered active site and identify key interactions that stabilize the native A3B active site. These data provide insights into A3B active site dynamics and suggest possible modes of its inhibition by small molecules, which would aid in rational design of selective A3B inhibitors for constraining virus and tumor evolution.
Collapse
Affiliation(s)
- Ke Shi
- Department of Biochemistry, Molecular Biology and BiophysicsUniversity of MinnesotaMinneapolisMNUSA
- Masonic Cancer CenterUniversity of MinnesotaMinneapolisMNUSA
- Institute for Molecular VirologyUniversity of MinnesotaMinneapolisMNUSA
| | - Özlem Demir
- Department of Chemistry and BiochemistryUniversity of California, San DiegoLa JollaCAUSA
| | - Michael A. Carpenter
- Department of Biochemistry, Molecular Biology and BiophysicsUniversity of MinnesotaMinneapolisMNUSA
- Masonic Cancer CenterUniversity of MinnesotaMinneapolisMNUSA
- Institute for Molecular VirologyUniversity of MinnesotaMinneapolisMNUSA
- Center for Genome EngineeringUniversity of MinnesotaMinneapolisMNUSA
- Howard Hughes Medical InstituteUniversity of MinnesotaMinneapolisMNUSA
| | - Surajit Banerjee
- Northeastern Collaborative Access TeamCornell UniversityLemontILUSA
| | - Daniel A. Harki
- Masonic Cancer CenterUniversity of MinnesotaMinneapolisMNUSA
- Institute for Molecular VirologyUniversity of MinnesotaMinneapolisMNUSA
- Department of Medicinal ChemistryUniversity of MinnesotaMinneapolisMNUSA
| | - Rommie E. Amaro
- Department of Chemistry and BiochemistryUniversity of California, San DiegoLa JollaCAUSA
| | - Reuben S. Harris
- Department of Biochemistry, Molecular Biology and BiophysicsUniversity of MinnesotaMinneapolisMNUSA
- Masonic Cancer CenterUniversity of MinnesotaMinneapolisMNUSA
- Institute for Molecular VirologyUniversity of MinnesotaMinneapolisMNUSA
- Center for Genome EngineeringUniversity of MinnesotaMinneapolisMNUSA
- Howard Hughes Medical InstituteUniversity of MinnesotaMinneapolisMNUSA
| | - Hideki Aihara
- Department of Biochemistry, Molecular Biology and BiophysicsUniversity of MinnesotaMinneapolisMNUSA
- Masonic Cancer CenterUniversity of MinnesotaMinneapolisMNUSA
- Institute for Molecular VirologyUniversity of MinnesotaMinneapolisMNUSA
| |
Collapse
|
209
|
Barzak FM, Harjes S, Kvach MV, Kurup HM, Jameson GB, Filichev VV, Harjes E. Selective inhibition of APOBEC3 enzymes by single-stranded DNAs containing 2'-deoxyzebularine. Org Biomol Chem 2019; 17:9435-9441. [PMID: 31603457 DOI: 10.1039/c9ob01781j] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
To restrict pathogens, in a normal human cell, APOBEC3 enzymes mutate cytosine to uracil in foreign single-stranded DNAs. However, in cancer cells, APOBEC3B (one of seven APOBEC3 enzymes) has been identified as the primary source of genetic mutations. As such, APOBEC3B promotes evolution and progression of cancers and leads to development of drug resistance in multiple cancers. As APOBEC3B is a non-essential protein, its inhibition can be used to suppress emergence of drug resistance in existing anti-cancer therapies. Because of the vital role of APOBEC3 enzymes in innate immunity, selective inhibitors targeting only APOBEC3B are required. Here, we use the discriminative properties of wild-type APOBEC3A, APOBEC3B and APOBEC3G to deaminate different cytosines in the CCC-recognition motif in order to best place the cytidine analogue 2'-deoxyzebularine (dZ) in the CCC-motif. Using several APOBEC3 variants that mimic deamination patterns of wild-type enzymes, we demonstrate that selective inhibition of APOBEC3B in preference to other APOBEC3 constructs is feasible for the dZCC motif. This work is an important step towards development of in vivo tools to inhibit APOBEC3 enzymes in living cells by using short, chemically modified oligonucleotides.
Collapse
Affiliation(s)
- Fareeda M Barzak
- School of Fundamental Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | | | | | | | | | | | | |
Collapse
|
210
|
Elango R, Osia B, Harcy V, Malc E, Mieczkowski PA, Roberts SA, Malkova A. Repair of base damage within break-induced replication intermediates promotes kataegis associated with chromosome rearrangements. Nucleic Acids Res 2019; 47:9666-9684. [PMID: 31392335 PMCID: PMC6765108 DOI: 10.1093/nar/gkz651] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 07/12/2019] [Accepted: 08/02/2019] [Indexed: 02/01/2023] Open
Abstract
Break induced replication (BIR) is a double strand break repair pathway that can promote genetic instabilities similar to those observed in cancer. Instead of a replication fork, BIR is driven by a migration bubble where asynchronous synthesis between leading and lagging strands leads to accumulation of single-stranded DNA (ssDNA) that promotes mutation. However, the details of the mechanism of mutagenesis, including the identity of the participating proteins, remain unknown. Using yeast as a model, we demonstrate that mutagenic ssDNA is formed at multiple positions along the BIR track and that Pol ζ is responsible for the majority of both spontaneous and damage-induced base substitutions during BIR. We also report that BIR creates a potent substrate for APOBEC3A (A3A) cytidine deaminase that can promote formation of mutation clusters along the entire track of BIR. Finally, we demonstrate that uracil glycosylase initiates the bypass of DNA damage induced by A3A in the context of BIR without formation of base substitutions, but instead this pathway frequently leads to chromosomal rearrangements. Together, the expression of A3A during BIR in yeast recapitulates the main features of APOBEC-induced kataegis in human cancers, suggesting that BIR might represent an important source of these hyper-mutagenic events.
Collapse
Affiliation(s)
- Rajula Elango
- Department of Biology, University of Iowa, Iowa City, IA 52245, USA
| | - Beth Osia
- Department of Biology, University of Iowa, Iowa City, IA 52245, USA
| | - Victoria Harcy
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Ewa Malc
- Department of Genetics, Lineberger Comprehensive Cancer Center and Carolina Center for Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Piotr A Mieczkowski
- Department of Genetics, Lineberger Comprehensive Cancer Center and Carolina Center for Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Steven A Roberts
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Anna Malkova
- Department of Biology, University of Iowa, Iowa City, IA 52245, USA
| |
Collapse
|
211
|
Asaoka M, Ishikawa T, Takabe K, Patnaik SK. APOBEC3-Mediated RNA Editing in Breast Cancer is Associated with Heightened Immune Activity and Improved Survival. Int J Mol Sci 2019; 20:E5621. [PMID: 31717692 PMCID: PMC6888598 DOI: 10.3390/ijms20225621] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 11/07/2019] [Accepted: 11/08/2019] [Indexed: 12/15/2022] Open
Abstract
APOBEC3 enzymes contribute significantly to DNA mutagenesis in cancer. These enzymes are also capable of converting C bases at specific positions of RNAs to U. However, the prevalence and significance of this C-to-U RNA editing in any cancer is currently unknown. We developed a bioinformatics workflow to determine RNA editing levels at known APOBEC3-mediated RNA editing sites using exome and mRNA sequencing data of 1040 breast cancer tumors. Although reliable editing determinations were limited due to sequencing depth, editing was observed in both tumor and adjacent normal tissues. For 440 sites (411 genes), editing was determinable for ≥5 tumors, with editing occurring in 0.6%-100% of tumors (mean 20%, SD 14%) at an average level of 0.6%-20% (mean 7%, SD 4%). Compared to tumors with low RNA editing, editing-high tumors had enriched expression of immune-related gene sets, and higher T cell and M1 macrophage infiltration, B and T cell receptor diversity, and immune cytolytic activity. Concordant with this, patients with increased RNA editing in tumors had better disease- and progression-free survivals (hazard ratio = 1.67-1.75, p < 0.05). Our study identifies that APOBEC3-mediated RNA editing occurs in breast cancer tumors and is positively associated with elevated immune activity and improved survival.
Collapse
Affiliation(s)
- Mariko Asaoka
- Department of Breast Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Takashi Ishikawa
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Kazuaki Takabe
- Department of Breast Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo 160-8402, Japan
- Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY 14263, USA
- Department of Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
- Department of Surgery, Yokohama City University, Yokohama 236-0004, Japan
| | - Santosh K. Patnaik
- Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY 14263, USA
- Department of Thoracic Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| |
Collapse
|
212
|
Tao L, Jiang Z, Xu M, Xu T, Liu Y. Induction of APOBEC3C Facilitates the Genotoxic Stress-Mediated Cytotoxicity of Artesunate. Chem Res Toxicol 2019; 32:2526-2537. [DOI: 10.1021/acs.chemrestox.9b00358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Li Tao
- College of Medicine, Yangzhou University, Yangzhou, Jiangsu 225001, China
- The State Administration of Traditional Chinese Medicine Key Laboratory of Toxic Pathogens-Based Therapeutic Approaches of Gastric Cancer, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Zhuangzhuang Jiang
- College of Medicine, Yangzhou University, Yangzhou, Jiangsu 225001, China
- The State Administration of Traditional Chinese Medicine Key Laboratory of Toxic Pathogens-Based Therapeutic Approaches of Gastric Cancer, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Min Xu
- College of Medicine, Yangzhou University, Yangzhou, Jiangsu 225001, China
- The State Administration of Traditional Chinese Medicine Key Laboratory of Toxic Pathogens-Based Therapeutic Approaches of Gastric Cancer, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Tingting Xu
- College of Medicine, Yangzhou University, Yangzhou, Jiangsu 225001, China
- The State Administration of Traditional Chinese Medicine Key Laboratory of Toxic Pathogens-Based Therapeutic Approaches of Gastric Cancer, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yanqing Liu
- College of Medicine, Yangzhou University, Yangzhou, Jiangsu 225001, China
- The State Administration of Traditional Chinese Medicine Key Laboratory of Toxic Pathogens-Based Therapeutic Approaches of Gastric Cancer, Yangzhou University, Yangzhou, Jiangsu 225009, China
| |
Collapse
|
213
|
Genetic and Genomic Advances in Breast Cancer Diagnosis and Treatment. Nurs Womens Health 2019; 23:518-525. [PMID: 31669147 DOI: 10.1016/j.nwh.2019.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/18/2019] [Accepted: 09/01/2019] [Indexed: 02/06/2023]
Abstract
Advances in genetic testing for people at high risk for cancer and in targeted gene therapy for breast cancer are rapidly emerging, including newly developed key hormone receptor-targeted therapies and individualized molecular fusion identification and treatment options. These advances are contributing to a new era in cancer treatment modalities and care delivery. As more innovative and advanced treatment options emerge, women's health outcomes and survival rates may improve. Nursing professionals in primary care and women's health specialties must be aware of the latest options for testing, referrals, and treatment modalities.
Collapse
|
214
|
Cho RJ, Alexandrov LB, den Breems NY, Atanasova VS, Farshchian M, Purdom E, Nguyen TN, Coarfa C, Rajapakshe K, Prisco M, Sahu J, Tassone P, Greenawalt EJ, Collisson EA, Wu W, Yao H, Su X, Guttmann-Gruber C, Hofbauer JP, Hashmi R, Fuentes I, Benz SC, Golovato J, Ehli EA, Davis CM, Davies GE, Covington KR, Murrell DF, Salas-Alanis JC, Palisson F, Bruckner AL, Robinson W, Has C, Bruckner-Tuderman L, Titeux M, Jonkman MF, Rashidghamat E, Lwin SM, Mellerio JE, McGrath JA, Bauer JW, Hovnanian A, Tsai KY, South AP. APOBEC mutation drives early-onset squamous cell carcinomas in recessive dystrophic epidermolysis bullosa. Sci Transl Med 2019; 10:10/455/eaas9668. [PMID: 30135250 DOI: 10.1126/scitranslmed.aas9668] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 04/09/2018] [Accepted: 08/01/2018] [Indexed: 01/05/2023]
Abstract
Recessive dystrophic epidermolysis bullosa (RDEB) is a rare inherited skin and mucous membrane fragility disorder complicated by early-onset, highly malignant cutaneous squamous cell carcinomas (SCCs). The molecular etiology of RDEB SCC, which arises at sites of sustained tissue damage, is unknown. We performed detailed molecular analysis using whole-exome, whole-genome, and RNA sequencing of 27 RDEB SCC tumors, including multiple tumors from the same patient and multiple regions from five individual tumors. We report that driver mutations were shared with spontaneous, ultraviolet (UV) light-induced cutaneous SCC (UV SCC) and head and neck SCC (HNSCC) and did not explain the early presentation or aggressive nature of RDEB SCC. Instead, endogenous mutation processes associated with apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like (APOBEC) deaminases dominated RDEB SCC. APOBEC mutation signatures were enhanced throughout RDEB SCC tumor evolution, relative to spontaneous UV SCC and HNSCC mutation profiles. Sixty-seven percent of RDEB SCC driver mutations was found to emerge as a result of APOBEC and other endogenous mutational processes previously associated with age, potentially explaining a >1000-fold increased incidence and the early onset of these SCCs. Human papillomavirus-negative basal and mesenchymal subtypes of HNSCC harbored enhanced APOBEC mutational signatures and transcriptomes similar to those of RDEB SCC, suggesting that APOBEC deaminases drive other subtypes of SCC. Collectively, these data establish specific mutagenic mechanisms associated with chronic tissue damage. Our findings reveal a cause for cancers arising at sites of persistent inflammation and identify potential therapeutic avenues to treat RDEB SCC.
Collapse
Affiliation(s)
- Raymond J Cho
- Department of Dermatology, University of California, San Francisco, CA 94115, USA
| | - Ludmil B Alexandrov
- Department of Cellular and Molecular Medicine and Department of Bioengineering and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | | | - Velina S Atanasova
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Mehdi Farshchian
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Elizabeth Purdom
- Department of Statistics, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Tran N Nguyen
- Departments of Anatomic Pathology and Tumor Biology, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Cristian Coarfa
- Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Kimal Rajapakshe
- Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Marco Prisco
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Joya Sahu
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Patrick Tassone
- Department of Otolaryngology-Head and Neck Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Evan J Greenawalt
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Eric A Collisson
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94115, USA.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Wei Wu
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94115, USA.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA.,Translational Medical Center, Central Hospital, Zhengzhou University, Zhengzhou, China
| | - Hui Yao
- Bioinformatics and Computational Biology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiaoping Su
- Bioinformatics and Computational Biology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Christina Guttmann-Gruber
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology, University Hospital Salzburg, Paracelsus Medical University, A-5020 Salzburg, Austria
| | - Josefina Piñón Hofbauer
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology, University Hospital Salzburg, Paracelsus Medical University, A-5020 Salzburg, Austria
| | - Raabia Hashmi
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Ignacia Fuentes
- Fundación DEBRA Chile, Santiago 7760099, Chile.,Centro de Genética y Genómica, Facultad de Medicina Clínica Alemana Universidad del Desarrollo, Santiago 7710162, Chile
| | | | | | - Erik A Ehli
- Avera Institute for Human Genetics, Sioux Falls, SD 57108, USA
| | | | - Gareth E Davies
- Avera Institute for Human Genetics, Sioux Falls, SD 57108, USA
| | | | - Dedee F Murrell
- St. George Hospital, University of New South Wales, Sydney, New South Wales 2217, Australia
| | - Julio C Salas-Alanis
- Escuela de Medicina y Ciencias de la Salud TecSalud del Tecnologico de Monterrey, Morones Prieto 3000, Los doctores, Monterrey, Nuevo León 64710, Mexico
| | - Francis Palisson
- Fundación DEBRA Chile, Santiago 7760099, Chile.,Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 7710162, Chile
| | - Anna L Bruckner
- Departments of Dermatology and Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - William Robinson
- Cutaneous Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Cristina Has
- Department of Dermatology, Medical Center-University of Freiburg, 79104 Freiburg, Germany
| | | | - Matthias Titeux
- INSERM UMR 1163, Paris, France.,Imagine Institute, 75015 Paris, France
| | - Marcel F Jonkman
- Center for Blistering Diseases, Department of Dermatology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, Netherlands
| | - Elham Rashidghamat
- St. John's Institute of Dermatology, King's College London (Guy's Campus), London SE1 9RT, UK
| | - Su M Lwin
- St. John's Institute of Dermatology, King's College London (Guy's Campus), London SE1 9RT, UK
| | - Jemima E Mellerio
- St. John's Institute of Dermatology, King's College London (Guy's Campus), London SE1 9RT, UK
| | - John A McGrath
- St. John's Institute of Dermatology, King's College London (Guy's Campus), London SE1 9RT, UK
| | - Johann W Bauer
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology, University Hospital Salzburg, Paracelsus Medical University, A-5020 Salzburg, Austria
| | - Alain Hovnanian
- INSERM UMR 1163, Paris, France.,Imagine Institute, 75015 Paris, France
| | - Kenneth Y Tsai
- Departments of Anatomic Pathology and Tumor Biology, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Andrew P South
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
215
|
Angus L, Smid M, Wilting SM, van Riet J, Van Hoeck A, Nguyen L, Nik-Zainal S, Steenbruggen TG, Tjan-Heijnen VCG, Labots M, van Riel JMGH, Bloemendal HJ, Steeghs N, Lolkema MP, Voest EE, van de Werken HJG, Jager A, Cuppen E, Sleijfer S, Martens JWM. The genomic landscape of metastatic breast cancer highlights changes in mutation and signature frequencies. Nat Genet 2019; 51:1450-1458. [PMID: 31570896 PMCID: PMC6858873 DOI: 10.1038/s41588-019-0507-7] [Citation(s) in RCA: 211] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 08/29/2019] [Indexed: 02/02/2023]
Abstract
The whole-genome sequencing of prospectively collected tissue biopsies from 442 patients with metastatic breast cancer reveals that, compared to primary breast cancer, tumor mutational burden doubles, the relative contributions of mutational signatures shift and the mutation frequency of six known driver genes increases in metastatic breast cancer. Significant associations with pretreatment are also observed. The contribution of mutational signature 17 is significantly enriched in patients pretreated with fluorouracil, taxanes, platinum and/or eribulin, whereas the de novo mutational signature I identified in this study is significantly associated with pretreatment containing platinum-based chemotherapy. Clinically relevant subgroups of tumors are identified, exhibiting either homologous recombination deficiency (13%), high tumor mutational burden (11%) or specific alterations (24%) linked to sensitivity to FDA-approved drugs. This study provides insights into the biology of metastatic breast cancer and identifies clinically useful genomic features for the future improvement of patient management.
Collapse
Affiliation(s)
- Lindsay Angus
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Marcel Smid
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Saskia M Wilting
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Job van Riet
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
- Cancer Computational Biology Center, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, The Netherlands
| | - Arne Van Hoeck
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Luan Nguyen
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Serena Nik-Zainal
- Department of Medical Genetics, The Clinical School, University of Cambridge, Cambridge, UK
| | - Tessa G Steenbruggen
- Department of Medical Oncology, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Vivianne C G Tjan-Heijnen
- Department of Medical Oncology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Mariette Labots
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Johanna M G H van Riel
- Department of Internal Medicine, Elisabeth-TweeSteden Hospital, Tilburg, The Netherlands
| | - Haiko J Bloemendal
- Department of Medical Oncology, Meander Medical Center, Amersfoort, The Netherlands
- Center for Personalized Cancer Treatment, Rotterdam, The Netherlands
| | - Neeltje Steeghs
- Department of Medical Oncology, the Netherlands Cancer Institute, Amsterdam, The Netherlands
- Center for Personalized Cancer Treatment, Rotterdam, The Netherlands
| | - Martijn P Lolkema
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
- Center for Personalized Cancer Treatment, Rotterdam, The Netherlands
| | - Emile E Voest
- Department of Medical Oncology, the Netherlands Cancer Institute, Amsterdam, The Netherlands
- Center for Personalized Cancer Treatment, Rotterdam, The Netherlands
| | - Harmen J G van de Werken
- Cancer Computational Biology Center, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, The Netherlands
| | - Agnes Jager
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Edwin Cuppen
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Utrecht, The Netherlands
- Hartwig Medical Foundation, Amsterdam, The Netherlands
| | - Stefan Sleijfer
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
- Center for Personalized Cancer Treatment, Rotterdam, The Netherlands
| | - John W M Martens
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands.
- Center for Personalized Cancer Treatment, Rotterdam, The Netherlands.
| |
Collapse
|
216
|
Keller L, Pantel K. Unravelling tumour heterogeneity by single-cell profiling of circulating tumour cells. Nat Rev Cancer 2019; 19:553-567. [PMID: 31455893 DOI: 10.1038/s41568-019-0180-2] [Citation(s) in RCA: 375] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/09/2019] [Indexed: 12/17/2022]
Abstract
Single-cell technologies have contributed to unravelling tumour heterogeneity, now considered a hallmark of cancer and one of the main causes of tumour resistance to cancer therapies. Liquid biopsy (LB), defined as the detection and analysis of cells or cell products released by tumours into the blood, offers an appealing minimally invasive approach that allows the characterization and monitoring of tumour heterogeneity in individual patients. Here, we will review and discuss how circulating tumour cell (CTC) analysis at single-cell resolution provides unique insights into tumour heterogeneity that are not revealed by analysis of circulating tumour DNA (ctDNA) derived from LBs. The molecular analysis of CTCs provides complementary information to that of genomic aberrations determined using ctDNA to fully describe many different cellular components (for example, DNA, RNA, proteins and metabolites) that can influence tumour heterogeneity.
Collapse
Affiliation(s)
- Laura Keller
- Department of Tumour Biology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Klaus Pantel
- Department of Tumour Biology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
217
|
Chen Z, Wen W, Bao J, Kuhs KL, Cai Q, Long J, Shu XO, Zheng W, Guo X. Integrative genomic analyses of APOBEC-mutational signature, expression and germline deletion of APOBEC3 genes, and immunogenicity in multiple cancer types. BMC Med Genomics 2019; 12:131. [PMID: 31533728 PMCID: PMC6751822 DOI: 10.1186/s12920-019-0579-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 09/05/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Although APOBEC-mutational signature is found in tumor tissues of multiple cancers, how a common germline APOBEC3A/B deletion affects the mutational signature remains unclear. METHODS Using data from 10 cancer types generated as part of TCGA, we performed integrative genomic and association analyses to assess inter-relationship of expressions for isoforms APOBEC3A and APOBEC3B, APOBEC-mutational signature, germline APOBEC3A/B deletions, neoantigen loads, and tumor infiltration lymphocytes (TILs). RESULTS We found that expression level of the isoform uc011aoc transcribed from the APOBEC3A/B chimera was associated with a greater burden of APOBEC-mutational signature only in breast cancer, while germline APOBEC3A/B deletion led to an increased expression level of uc011aoc in multiple cancer types. Furthermore, we found that the deletion was associated with elevated APOBEC-mutational signature, neoantigen loads and relative composition of T cells (CD8+) in TILs only in breast cancer. Additionally, we also found that APOBEC-mutational signature significantly contributed to neoantigen loads and certain immune cell abundances in TILs across cancer types. CONCLUSIONS These findings reveal new insights into understanding the genetic, biological and immunological mechanisms through which APOBEC genes may be involved in carcinogenesis, and provide potential genetic biomarker for the development of disease prevention and cancer immunotherapy.
Collapse
Affiliation(s)
- Zhishan Chen
- 0000 0004 1936 9916grid.412807.8Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37203 USA
| | - Wanqing Wen
- 0000 0004 1936 9916grid.412807.8Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37203 USA
| | - Jiandong Bao
- 0000 0004 1936 9916grid.412807.8Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37203 USA
| | - Krystle L. Kuhs
- 0000 0004 1936 9916grid.412807.8Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37203 USA
| | - Qiuyin Cai
- 0000 0004 1936 9916grid.412807.8Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37203 USA
| | - Jirong Long
- 0000 0004 1936 9916grid.412807.8Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37203 USA
| | - Xiao-ou Shu
- 0000 0004 1936 9916grid.412807.8Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37203 USA
| | - Wei Zheng
- 0000 0004 1936 9916grid.412807.8Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37203 USA
| | - Xingyi Guo
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, 37203, USA.
| |
Collapse
|
218
|
Ni F, Tang H, Wang C, Wang Z, Yu F, Chen B, Sun L. Berzosertib (VE-822) inhibits gastric cancer cell proliferation via base excision repair system. Cancer Manag Res 2019; 11:8391-8405. [PMID: 31571995 PMCID: PMC6750847 DOI: 10.2147/cmar.s217375] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 09/03/2019] [Indexed: 12/15/2022] Open
Abstract
Background Current investigations suggest that the Base Excision Repair (BER) system may change DNA repair capacity and affect clinical gastric cancer progression such as overall survival. However, the prognostic value of BER system members in gastric cancer remains unclear. Methods We explored the prognostic correlation between 7 individual BER genes, including uracil-DNA glycosylase (UNG), Single-strand-selective monofunctional uracil-DNA glycosylase 1 (SMUG1), Methyl-CpG binding domain 4 (MBD4), thymine DNA glycosylase (TDG), 8-oxoguanine DNA glycosylase (OGG1), MutY DNA glycosylase (MUTYH) and Nei like DNA glycosylase 1 (NEIL1), expression and overall survival (OS) in different clinical data, such as Lauren classification, pathological stages, human epidermal growth factor receptor-2 (HER2) expression status, treatment strategy, gender and differentiation degree in gastric cancer patients, using Kaplan-Meier plotter (KM plotter) online database. Based on the bioinformatics analysis, we utilized Berzosertib (VE-822) to inhibit DNA damage repair in cancer cells compared to solvent control group via real-time cellular analysis (RTCA), flow cytometry, colony formation and migration assay. Finally, we utilized reverse transcription-polymerase chain reaction (RT-PCR) to confirm the expression of BER members between normal and two gastric cancer cells or solvent and VE-822 treated groups. Results Our work revealed that high UNG mRNA expression was correlated with high overall survival probability; however, high SMUG1, MBD4, TDG, OGG1, MUTYH and NEIL1 mRNA expression showed relatively low overall survival probability in all GC patients. Additionally, UNG was associated with high overall survival probability in intestinal and diffuse types, but SMUG1 and NEIL1 showed opposite results. Further, VE-822 pharmacological experiment suggested that inhibition of DNA damage repair suppressed gastric cancer cells’ proliferation and migration ability via inducing apoptosis. Further, real-time polymerase chain reaction results proposed the inhibition of gastric cancer cells by VE-822 may be through UNG, MUTYH and OGG-1 of BER system. Conclusion We comprehensively analyze the prognostic value of the BER system (UNG, SMUG1, MBD4, TDG, OGG1, MUTYH and NEIL1) based on bioinformatics analysis and experimental confirmation. BER members are associated with distinctive prognostic significance and maybe new valuable prognostic indicators in gastric cancer.
Collapse
Affiliation(s)
- Fubiao Ni
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Zhejiang Provincial Top Key Discipline in Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Hengjie Tang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Zhejiang Provincial Top Key Discipline in Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Cheng Wang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Zhejiang Provincial Top Key Discipline in Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Zixiang Wang
- First College of Clinical Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Fangyi Yu
- First College of Clinical Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Bicheng Chen
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Zhejiang Provincial Top Key Discipline in Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Linxiao Sun
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Zhejiang Provincial Top Key Discipline in Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| |
Collapse
|
219
|
The KT Jeang Prize 2019: Reuben S. Harris : Romancing the Mutator. Retrovirology 2019; 16:24. [PMID: 31462326 PMCID: PMC6714304 DOI: 10.1186/s12977-019-0486-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
220
|
Sakhtemani R, Senevirathne V, Stewart J, Perera MLW, Pique-Regi R, Lawrence MS, Bhagwat AS. Genome-wide mapping of regions preferentially targeted by the human DNA-cytosine deaminase APOBEC3A using uracil-DNA pulldown and sequencing. J Biol Chem 2019; 294:15037-15051. [PMID: 31431505 DOI: 10.1074/jbc.ra119.008053] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 08/13/2019] [Indexed: 12/16/2022] Open
Abstract
Activation-induced deaminase (AID) and apolipoprotein B mRNA-editing enzyme catalytic subunit (APOBEC) enzymes convert cytosines to uracils, creating signature mutations that have been used to predict sites targeted by these enzymes. Mutation-based targeting maps are distorted by the error-prone or error-free repair of these uracils and by selection pressures. To directly map uracils created by AID/APOBEC enzymes, here we used uracil-DNA glycosylase and an alkoxyamine to covalently tag and sequence uracil-containing DNA fragments (UPD-Seq). We applied this technique to the genome of repair-defective, APOBEC3A-expressing bacterial cells and created a uracilation genome map, i.e. uracilome. The peak uracilated regions were in the 5'-ends of genes and operons mainly containing tRNA genes and a few protein-coding genes. We validated these findings through deep sequencing of pulldown regions and whole-genome sequencing of independent clones. The peaks were not correlated with high transcription rates or stable RNA:DNA hybrid formation. We defined the uracilation index (UI) as the frequency of occurrence of TT in UPD-Seq reads at different original TC dinucleotides. Genome-wide UI calculation confirmed that APOBEC3A modifies cytosines in the lagging-strand template during replication and in short hairpin loops. APOBEC3A's preference for tRNA genes was observed previously in yeast, and an analysis of human tumor sequences revealed that in tumors with a high percentage of APOBEC3 signature mutations, the frequency of tRNA gene mutations was much higher than in the rest of the genome. These results identify multiple causes underlying selection of cytosines by APOBEC3A for deamination, and demonstrate the utility of UPD-Seq.
Collapse
Affiliation(s)
- Ramin Sakhtemani
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202
| | | | - Jessica Stewart
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202
| | - Madusha L W Perera
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202
| | - Roger Pique-Regi
- Center for Molecular Medicine and Genetics, Wayne State University, Wayne State University School of Medicine, Detroit, Michigan 48201
| | - Michael S Lawrence
- Department of Pathology and Cancer Center, Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Ashok S Bhagwat
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202 .,Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, Michigan 48201
| |
Collapse
|
221
|
Ladányi A, Tímár J. Immunologic and immunogenomic aspects of tumor progression. Semin Cancer Biol 2019; 60:249-261. [PMID: 31419526 DOI: 10.1016/j.semcancer.2019.08.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/12/2019] [Accepted: 08/12/2019] [Indexed: 12/11/2022]
Abstract
Tumor progression to metastatic disease is characterized by continuous genetic alterations due to instability of the genome. Immune sensitivity was found to be linked to tumor mutational burden (TMB) and the resulting amount of neoantigens. However, APOBEC activity resulting in increase in TMB causes immune evasion. On the other hand, clonal or acquired genetic loss of HLA class I also hampers immune sensitivity of tumors. Rare amplification of the PD-L1 gene in cancers may render them sensitive to immune checkpoint inhibitors but involvement of broader regions of chromosome 9p may ultimately lead again to immune evasion due to inactivation of the IFN-γ signaling pathway. Such genetic changes may occur not only in the primary tumor but at any phase of progression: in lymphatic as well as in visceral metastases. Accordingly, it is rational to monitor these changes continuously during disease progression similar to target therapies. Moreover, beside temporal variability, genomic features of tumors such as mutation profiles, as well as the tumor immune microenvironment also show considerable inter- and intratumoral spatial heterogeneity, suggesting the necessity of multiple sampling in biomarker studies.
Collapse
Affiliation(s)
| | - József Tímár
- 2nd Department of Pathology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
222
|
Pan T, Song Z, Wu L, Liu G, Ma X, Peng Z, Zhou M, Liang L, Liu B, Liu J, Zhang J, Zhang X, Huang R, Zhao J, Li Y, Ling X, Luo Y, Tang X, Cai W, Deng K, Li L, Zhang H. USP49 potently stabilizes APOBEC3G protein by removing ubiquitin and inhibits HIV-1 replication. eLife 2019; 8:48318. [PMID: 31397674 PMCID: PMC6701944 DOI: 10.7554/elife.48318] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/08/2019] [Indexed: 12/18/2022] Open
Abstract
The antiviral activity of host factor apolipoprotein B mRNA editing enzyme catalytic polypeptide-like 3G (APOBEC3G, A3G) and its degradation mediated by human immunodeficiency virus type 1 (HIV-1) Vif protein are important topics. Although accumulating evidence indicates the importance of deubiquitination enzymes (DUBs) in innate immunity, it is unknown if they participate in A3G stability. Here, we found that USP49 directly interacts with A3G and efficiently removes ubiquitin, consequently increasing A3G protein expression and significantly enhancing its anti-HIV-1 activity. Unexpectedly, A3G degradation was also mediated by a Vif- and cullin-ring-independent pathway, which was effectively counteracted by USP49. Furthermore, clinical data suggested that USP49 is correlated with A3G protein expression and hypermutations in Vif-positive proviruses, and inversely with the intact provirus ratio in the HIV-1 latent reservoir. Our studies demonstrated a mechanism to effectively stabilize A3G expression, which could comprise a target to control HIV-1 infection and eradicate the latent reservoir.
Collapse
Affiliation(s)
- Ting Pan
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zheng Song
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Liyang Wu
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Guangyan Liu
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiancai Ma
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zhilin Peng
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Mo Zhou
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Liting Liang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Bingfeng Liu
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jun Liu
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Junsong Zhang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xuanhong Zhang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Ryan Huang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jiacong Zhao
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yonghong Li
- Infectious Disease Center, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xuemei Ling
- Infectious Disease Center, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yuewen Luo
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiaoping Tang
- Infectious Disease Center, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Weiping Cai
- Infectious Disease Center, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Kai Deng
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Linghua Li
- Infectious Disease Center, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Hui Zhang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
223
|
AID, APOBEC3A and APOBEC3B efficiently deaminate deoxycytidines neighboring DNA damage induced by oxidation or alkylation. Biochim Biophys Acta Gen Subj 2019; 1863:129415. [PMID: 31404619 DOI: 10.1016/j.bbagen.2019.129415] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/26/2019] [Accepted: 08/07/2019] [Indexed: 12/29/2022]
Abstract
BACKGROUND AID/APOBEC3 (A3) enzymes instigate genomic mutations that are involved in immunity and cancer. Although they can deaminate any deoxycytidine (dC) to deoxyuridine (dU), each family member has a signature preference determined by nucleotides surrounding the target dC. This WRC (W = A/T, R = A/G) and YC (Y = T/C) hotspot preference is established for AID and A3A/A3B, respectively. Base alkylation and oxidation are two of the most common types of DNA damage induced environmentally or by chemotherapy. Here we examined the activity of AID, A3A and A3B on dCs neighboring such damaged bases. METHODS Substrates were designed to contain target dCs either in normal WRC/YC hotspots, or in oxidized/alkylated DNA motifs. AID, A3A and A3B were purified and deamination kinetics of each were compared between substrates containing damaged vs. normal motifs. RESULTS All three enzymes efficiently deaminated dC when common damaged bases were present in the -2 or -1 positions. Strikingly, some damaged motifs supported comparable or higher catalytic efficiencies by AID, A3A and A3B than the WRC/YC motifs which are their most favored normal sequences. Based on the resolved interactions of AID, A3A and A3B with DNA, we modeled interactions with alkylated or oxidized bases. Corroborating the enzyme assay data, the surface regions that recognize normal bases are predicted to also interact robustly with oxidized and alkylated bases. CONCLUSIONS AID, A3A and A3B can efficiently recognize and deaminate dC whose neighbouring nucleotides are damaged. GENERAL SIGNIFICANCE Beyond AID/A3s initiating DNA damage, some forms of pre-existing damaged DNA can constitute favored targets of AID/A3s if encountered.
Collapse
|
224
|
McCann JL, Klein MM, Leland EM, Law EK, Brown WL, Salamango DJ, Harris RS. The DNA deaminase APOBEC3B interacts with the cell-cycle protein CDK4 and disrupts CDK4-mediated nuclear import of Cyclin D1. J Biol Chem 2019; 294:12099-12111. [PMID: 31217276 PMCID: PMC6690700 DOI: 10.1074/jbc.ra119.008443] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/27/2019] [Indexed: 12/13/2022] Open
Abstract
Apolipoprotein B mRNA editing enzyme catalytic subunit-like protein 3B (APOBEC3B or A3B), as other APOBEC3 members, is a single-stranded (ss)DNA cytosine deaminase with antiviral activity. A3B is also overexpressed in multiple tumor types, such as carcinomas of the bladder, cervix, lung, head/neck, and breast. A3B generates both dispersed and clustered C-to-T and C-to-G mutations in intrinsically preferred trinucleotide motifs (TCA/TCG/TCT). A3B-catalyzed mutations are likely to promote tumor evolution and cancer progression and, as such, are associated with poor clinical outcomes. However, little is known about cellular processes that regulate A3B. Here, we used a proteomics approach involving affinity purification coupled to MS with human 293T cells to identify cellular proteins that interact with A3B. This approach revealed a specific interaction with cyclin-dependent kinase 4 (CDK4). We validated and mapped this interaction by co-immunoprecipitation experiments. Functional studies and immunofluorescence microscopy experiments in multiple cell lines revealed that A3B is not a substrate for CDK4-Cyclin D1 phosphorylation nor is its deaminase activity modulated. Instead, we found that A3B is capable of disrupting the CDK4-dependent nuclear import of Cyclin D1. We propose that this interaction may favor a more potent antiviral response and simultaneously facilitate cancer mutagenesis.
Collapse
Affiliation(s)
- Jennifer L McCann
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455; Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota 55455; Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455; Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota 55455
| | - Madeline M Klein
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455
| | - Evelyn M Leland
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455
| | - Emily K Law
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455; Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota 55455; Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455; Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota 55455; Howard Hughes Medical Institute, University of Minnesota, Minneapolis, Minnesota 55455
| | - William L Brown
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455; Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota 55455; Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455; Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota 55455
| | - Daniel J Salamango
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455; Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota 55455; Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455; Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota 55455.
| | - Reuben S Harris
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455; Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota 55455; Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455; Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota 55455; Howard Hughes Medical Institute, University of Minnesota, Minneapolis, Minnesota 55455.
| |
Collapse
|
225
|
Faden DL, Ding F, Lin Y, Zhai S, Kuo F, Chan TA, Morris LG, Ferris RL. APOBEC mutagenesis is tightly linked to the immune landscape and immunotherapy biomarkers in head and neck squamous cell carcinoma. Oral Oncol 2019; 96:140-147. [PMID: 31422205 DOI: 10.1016/j.oraloncology.2019.07.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/12/2019] [Accepted: 07/24/2019] [Indexed: 12/11/2022]
Abstract
HNSCC is an immunologically active tumor with high levels of immune cell infiltration, high mutational burden and a subset of patients who respond to immunotherapy. One of the primary sources of mutations in HNSCC is the cytidine deaminase APOBEC3, which is a known participant in innate immunity. Why particular HNSCCs have higher rates of APOBEC mutations and how these mutations relate to the immune microenvironment remains unknown. Utilizing whole exome and RNA-Seq datasets from TCGA HNSCCs we annotated APOBEC mutations, immune cell populations, activating and end effectors of immunity and neoantigens in order to interrogate the relationship between APOBEC mutations and the immune landscape. Immune cell populations and composite scores of immune activation were tightly associated with APOBEC mutational burden (p = 0.04-1.17e-5). HNSCC had the highest levels of IFNy across cancer types with high APOBEC mutational burden, with the highest IFNy scores in HPV mediated HNSCC. Tumor specific neoantigens were significantly correlated with APOBEC mutational burden while other sources of neoantigens were not (0.53 [0.24, 0.76] p = 8e-5). The presence of a germline APOBEC polymorphism was more prevalent in non-white, non-black patients and within this group, patients with the polymorphism had higher APOBEC mutational burden (p = 0.002). APOBEC mutations are tightly linked to immune activation and infiltration in HNSCC. Multiple mechanisms may exist within HNSCC leading to APOBEC mutations including immune upregulation in response to neoantigens and viral infection, via induction of IFNy. These mechanisms may be additive and not mutually exclusive, which could explain higher levels of APOBEC mutations in HPV mediated HNSCC.
Collapse
Affiliation(s)
- Daniel L Faden
- Head and Neck Surgical Oncology, Department of Otolaryngology, Massachusetts Eye and Ear, Boston, MA, United States; Harvard Medical School, Boston, MA, United States; Broad Institute of MIT and Harvard, Cambridge, MA, United States.
| | - Fei Ding
- Biostatistics Facility, UPMC Hillman Cancer Center, Pittsburgh, PA, United States
| | - Yan Lin
- Biostatistics Facility, UPMC Hillman Cancer Center, Pittsburgh, PA, United States; Department of Biostatistics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, United States
| | - Shuyan Zhai
- Biostatistics Facility, UPMC Hillman Cancer Center, Pittsburgh, PA, United States
| | - Fengshen Kuo
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Timothy A Chan
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Luc G Morris
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY, United States; Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Robert L Ferris
- Cancer Immunology Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA, United States; Department of Otolaryngology-Head and Neck Surgery, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
226
|
Chen H, Chong W, Teng C, Yao Y, Wang X, Li X. The immune response-related mutational signatures and driver genes in non-small-cell lung cancer. Cancer Sci 2019; 110:2348-2356. [PMID: 31222843 PMCID: PMC6676111 DOI: 10.1111/cas.14113] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 06/01/2019] [Accepted: 06/01/2019] [Indexed: 01/02/2023] Open
Abstract
Immune checkpoint blockade (ICB) therapy has achieved remarkable clinical benefit in non‐small‐cell lung cancer (NSCLC), but our understanding of biomarkers that predict the response to ICB remain obscure. Here we integrated somatic mutational profile and clinicopathologic information from 113 NSCLC patients treated by ICB (CTLA‐4/PD‐1). High tumor mutation burden (TMB) and neoantigen burden were identified significantly associated with improved efficacy in NSCLC immunotherapy. Furthermore, we identified apolipoprotein B mRNA editing enzyme, catalytic polypeptide‐like (APOBEC) mutational signature was markedly associated with responding of ICB therapy (log‐rank test, P = .001; odds ratio (OR), 0.18 [95% CI, 0.06‐0.50], P < .001). The association with progression‐free survival remained statistically significant after controlling for age, sex, histological type, smoking, PD‐L1 expression, hypermutation, smoking signature and mismatch repair (MMR) (HR, 0.30 [95% CI, 0.12‐0.75], P = .010). Combined high TMB with APOBEC signature preferably predict immunotherapy responders in NSCLC cohort. The CIBERSORT algorithm revealed that high APOBEC mutational activity samples were associated with increased infiltration of CD4 memory activated T cells, CD8+ T cells and natural killer (NK) cells, but reduced infiltration of regulatory T cells. Besides, individual genes mutation of IFNGR1 or VTCN1 were only found in responders; however, the PTEN mutation was only found in non‐responders (Fisher's exact test, all P < .05). These findings may be applicable for guiding immunotherapy for patients with NSCLC.
Collapse
Affiliation(s)
- Hao Chen
- Clinical Epidemiology Unit, Qilu Hospital of Shandong University, Jinan, China.,Key Laboratory of Cancer Prevention and Therapy of Tianjin, Department of Epidemiology and Biostatistics, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Wei Chong
- Key Laboratory of Cancer Prevention and Therapy, Department of Breast Cancer Pathology and Research Laboratory, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Changcai Teng
- Clinical Laboratory, Affiliated Hospital of Binzhou Medical College, Binzhou, China
| | - Yueliang Yao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xin Wang
- Department of Epidemiology and Biostatistics, First Affiliated Hospital, Army Medical University, Chongqing, China
| | - Xue Li
- Department of Food safety and Toxicology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
227
|
Affiliation(s)
- Hannah Carter
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
228
|
He X, Xu H, Wang X, Wu J, Niu J, Gao P. Associations between the single nucleotide polymorphisms of APOBEC3A, APOBEC3B and APOBEC3H, and chronic hepatitis B progression and hepatocellular carcinoma in a Chinese population. Mol Med Rep 2019; 20:2177-2188. [PMID: 31322199 PMCID: PMC6691201 DOI: 10.3892/mmr.2019.10455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 06/04/2019] [Indexed: 12/12/2022] Open
Abstract
The present study examined the relationships between the single nucleotide polymorphisms (SNPs) of three members of the apolipoprotein B mRNA‑editing catalytic polypeptide‑like 3 (A3) gene family, A3A, A3B and A3H, and hepatitis B virus (HBV) infection and hepatocellular carcinoma (HCC) in a Han Chinese population. A total of 654 patients were enrolled in the study between January 2012 and July 2016, including 104 patients with chronic HBV infection (CHB), 265 patients with HBV‑related liver cirrhosis and 285 patients with HBV‑related HCC. A total of two A3A SNPs (rs7286317 and rs7290153), three A3B SNPs (rs2267398, rs2267401 and rs2076109), and five A3H SNPs (rs56695217, rs139302, rs139297, rs139316 and rs139292) were genotyped using a MassArray system. Statistical analysis and haplotype estimation were conducted using Haploview and Unphased software. No significant associations were observed between the A3A, A3B and A3H SNPs and the development of CHB and HCC. Haplotype analysis revealed that the mutant haplotypes C‑T‑A, C‑T‑G, T‑G‑G and T‑T‑G from the A3B SNPs rs2267398‑rs2267401‑rs2076109 carried a lower risk of HCC than the reference haplotype. These findings suggested that there was no relationship between A3A, A3B and A3H SNPs and CHB progression or HCC development in the Han Chinese population.
Collapse
Affiliation(s)
- Xiuting He
- Department of Geriatrics, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Hongqin Xu
- Department of Hepatology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xiaomei Wang
- Department of Hepatology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jing Wu
- Department of Geriatrics, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Junqi Niu
- Department of Hepatology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Pujun Gao
- Department of Hepatology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
229
|
Saigi M, Alburquerque-Bejar JJ, Sanchez-Cespedes M. Determinants of immunological evasion and immunocheckpoint inhibition response in non-small cell lung cancer: the genetic front. Oncogene 2019; 38:5921-5932. [PMID: 31253869 DOI: 10.1038/s41388-019-0855-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 04/15/2019] [Accepted: 04/15/2019] [Indexed: 12/12/2022]
Abstract
The incorporation into clinical practice of immune-checkpoint inhibitors (ICIs), such as those targeting the cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and the programmed cell death 1 (PD-1) and its ligand (PD-L1), has represented a major breakthrough in non-small cell lung cancer (NSCLC) treatment, especially in cases where the cancer has no druggable genetic alterations. Despite becoming the standard of care in certain clinical settings, either alone or in combination with chemotherapy, a proportion of patients do not respond while others actually progress during treatment. Therefore, there is a clinical need to identify accurate predictive biomarkers and to develop novel therapeutic strategies based on ICIs. Although they have limitations, the current markers evaluated to select which patients will undergo ICI treatment are the levels of PD-L1 and the tumor mutational burden. In this paper we describe what is currently known about the dynamic interaction between the cancer cell and the immune system during carcinogenesis, with a particular focus on the description of the functions and gene alterations that preclude the host immunoresponse in NSCLC. We emphasize the deleterious gene alterations in components of the major histocompatibility complex (HLA-I or B2M) and of the response to IFNγ (such as JAK2) which are mutually exclusive and can affect up to one fifth of the NSCLCs. The participation of other gene alterations, such as those of common oncogenes and tumor suppressors, and of the epigenetic alterations will also be discussed, in detail. Finally, we discuss the potential use of the tumor's genetic profile to predict sensitivity to ICIs.
Collapse
Affiliation(s)
- Maria Saigi
- Genes and Cancer Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain.,Department of Medical Oncology, Catalan Institute of Oncology (ICO), Avda Gran via, 199-203. L'Hospitalet, 08908, Barcelona, Spain
| | - Juan J Alburquerque-Bejar
- Genes and Cancer Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
| | - Montse Sanchez-Cespedes
- Genes and Cancer Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain. .,Cancer Genomics Group, Josep Carreras Leukemia Research Institute, IJC Building, Campus ICO-Germans Trias i Pujol Ctra de Can Ruti, Camí de les Escoles s/n, Badalona, 08916, Barcelona, Spain.
| |
Collapse
|
230
|
Wang S, Pitt JJ, Zheng Y, Yoshimatsu TF, Gao G, Sanni A, Oluwasola O, Ajani M, Fitzgerald D, Odetunde A, Khramtsova G, Hurley I, Popoola A, Falusi A, Ogundiran T, Obafunwa J, Ojengbede O, Ibrahim N, Barretina J, White KP, Huo D, Olopade OI. Germline variants and somatic mutation signatures of breast cancer across populations of African and European ancestry in the US and Nigeria. Int J Cancer 2019; 145:3321-3333. [PMID: 31173346 PMCID: PMC6851589 DOI: 10.1002/ijc.32498] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 04/10/2019] [Accepted: 05/02/2019] [Indexed: 11/09/2022]
Abstract
Somatic mutation signatures may represent footprints of genetic and environmental exposures that cause different cancer. Few studies have comprehensively examined their association with germline variants, and none in an indigenous African population. SomaticSignatures was employed to extract mutation signatures based on whole-genome or whole-exome sequencing data from female patients with breast cancer (TCGA, training set, n = 1,011; Nigerian samples, validation set, n = 170), and to estimate contributions of signatures in each sample. Association between somatic signatures and common single nucleotide polymorphisms (SNPs) or rare deleterious variants were examined using linear regression. Nine stable signatures were inferred, and four signatures (APOBEC C>T, APOBEC C>G, aging and homologous recombination deficiency) were highly similar to known COSMIC signatures and explained the majority (60-85%) of signature contributions. There were significant heritable components associated with APOBEC C>T signature (h2 = 0.575, p = 0.010) and the combined APOBEC signatures (h2 = 0.432, p = 0.042). In TCGA dataset, seven common SNPs within or near GNB5 were significantly associated with an increased proportion (beta = 0.33, 95% CI = 0.21-0.45) of APOBEC signature contribution at genome-wide significance, while rare germline mutations in MTCL1 was also significantly associated with a higher contribution of this signature (p = 6.1 × 10-6 ). This is the first study to identify associations between germline variants and mutational patterns in breast cancer across diverse populations and geography. The findings provide evidence to substantiate causal links between germline genetic risk variants and carcinogenesis.
Collapse
Affiliation(s)
- Shengfeng Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China.,Center for Clinical Cancer Genetics & Global Health, Department of Medicine, University of Chicago, Chicago, IL
| | - Jason J Pitt
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL.,Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Yonglan Zheng
- Center for Clinical Cancer Genetics & Global Health, Department of Medicine, University of Chicago, Chicago, IL
| | - Toshio F Yoshimatsu
- Center for Clinical Cancer Genetics & Global Health, Department of Medicine, University of Chicago, Chicago, IL
| | - Guimin Gao
- Department of Public Health Sciences, University of Chicago, Chicago, IL
| | - Ayodele Sanni
- Department of Pathology & Forensic Medicine, Lagos State University Teaching Hospital, Lagos, Nigeria
| | | | - Mustapha Ajani
- Department of Pathology, University of Ibadan, Ibadan, Nigeria
| | - Dominic Fitzgerald
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL
| | - Abayomi Odetunde
- Institute for Advanced Medical Research and Training, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Galina Khramtsova
- Center for Clinical Cancer Genetics & Global Health, Department of Medicine, University of Chicago, Chicago, IL
| | - Ian Hurley
- Center for Clinical Cancer Genetics & Global Health, Department of Medicine, University of Chicago, Chicago, IL
| | - Abiodun Popoola
- Oncology Unit, Department of Radiology, Lagos State University, Lagos, Nigeria
| | - Adeyinka Falusi
- Institute for Advanced Medical Research and Training, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | | | - John Obafunwa
- Department of Pathology & Forensic Medicine, Lagos State University Teaching Hospital, Lagos, Nigeria
| | - Oladosu Ojengbede
- Centre for Population & Reproductive Health, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Nasiru Ibrahim
- Institute for Advanced Medical Research and Training, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Jordi Barretina
- Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | | | - Dezheng Huo
- Department of Public Health Sciences, University of Chicago, Chicago, IL
| | - Olufunmilayo I Olopade
- Center for Clinical Cancer Genetics & Global Health, Department of Medicine, University of Chicago, Chicago, IL
| |
Collapse
|
231
|
Lu YT, Delijani K, Mecum A, Goldkorn A. Current status of liquid biopsies for the detection and management of prostate cancer. Cancer Manag Res 2019; 11:5271-5291. [PMID: 31239778 PMCID: PMC6559244 DOI: 10.2147/cmar.s170380] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 04/18/2019] [Indexed: 12/14/2022] Open
Abstract
In recent years, new therapeutic options have become available for prostate cancer (PC) patients, generating an urgent need for better biomarkers to guide the choice of therapy and monitor treatment response. Liquid biopsies, including circulating tumor cells (CTCs), circulating nucleic acids, and exosomes, have been developed as minimally invasive assays allowing oncologists to monitor PC patients with real-time cellular or molecular information. While CTC counts remain the most extensively validated prognostic biomarker to monitor treatment response, recent advances demonstrate that CTC morphology and androgen receptor characterization can provide additional information to guide the choice of treatment. Characterization of cell-free DNA (cfDNA) is another rapidly emerging field with novel technologies capable of monitoring the evolution of treatment relevant alterations such as those in DNA damage repair genes for poly (ADP-ribose) polymerase (PARP) inhibition. In addition, several new liquid biopsy fields are emerging, including the characterization of heterogeneity, CTC RNA sequencing, the culture and xenografting of CTCs, and the characterization of extracellular vesicles (EVs) and circulating microRNAs. This review describes the clinical utilization of liquid biopsies in the management of PC patients and emerging liquid biopsy technologies with the potential to advance personalized cancer therapy.
Collapse
Affiliation(s)
- Yi-Tsung Lu
- Division of Medical Oncology, Department of Medicine, Keck School of Medicine and Translational and Clinical Science Program, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Kevin Delijani
- Division of Medical Oncology, Department of Medicine, Keck School of Medicine and Translational and Clinical Science Program, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Andrew Mecum
- Division of Medical Oncology, Department of Medicine, Keck School of Medicine and Translational and Clinical Science Program, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Amir Goldkorn
- Division of Medical Oncology, Department of Medicine, Keck School of Medicine and Translational and Clinical Science Program, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
232
|
Liu W, Wu J, Yang F, Ma L, Ni C, Hou X, Wang L, Xu A, Song J, Deng Y, Xian L, Li Z, Wang S, Chen X, Yin J, Han X, Li C, Zhao J, Cao G. Genetic Polymorphisms Predisposing the Interleukin 6-Induced APOBEC3B-UNG Imbalance Increase HCC Risk via Promoting the Generation of APOBEC-Signature HBV Mutations. Clin Cancer Res 2019; 25:5525-5536. [PMID: 31152021 DOI: 10.1158/1078-0432.ccr-18-3083] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 02/04/2019] [Accepted: 05/29/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE APOBEC3-UNG imbalance contributes to hepatitis B virus (HBV) inhibition and somatic mutations. We aimed to explore the associations between hepatocellular carcinoma (HCC) risk and genetic polymorphisms predisposing the imbalance.Experimental Design: Genetic polymorphisms at APOBEC3 promoter and UNG enhancer regions were genotyped in 5,621 participants using quantitative PCR. HBV mutations (nt.1600-nt.1945, nt.2848-nt.155) were determined by Sanger sequencing. Dual-luciferase reporter assay was applied to detect the transcriptional activity. Effects of APOBEC3B/UNG SNPs and expression levels on HCC prognosis were evaluated with a cohort of 400 patients with HCC and public databases, respectively. RESULTS APOBEC3B rs2267401-G allele and UNG rs3890995-C allele significantly increased HCC risk. rs2267401-G allele was significantly associated with the generation of APOBEC-signature HBV mutation whose frequency consecutively increased from asymptomatic HBV carriers to patients with HCC. Multiplicative interaction of rs2267401-G allele with rs3890995-C allele increased HCC risk, with an adjusted OR (95% confidence interval) of 1.90 (1.34-2.81). rs2267401 T-to-G and rs3890995 T-to-C conferred increased activities of APOBEC3B promoter and UNG enhancer, respectively. IL6 significantly increased APOBEC3B promoter activity and inhibited UNG enhancer activity, and these effects were more evident in those carrying rs2267401-G and rs3890995-C, respectively. APOBEC3B rs2267401-GG genotype, higher APOBEC3B expression, and higher APOBEC3B/UNG expression ratio in HCCs indicated poor prognosis. APOBEC-signature somatic mutation predicts poor prognosis in HBV-free HCCs rather than in HBV-positive ones. CONCLUSIONS Polymorphic genotypes predisposing the APOBEC3B-UNG imbalance in IL6-presenting microenvironment promote HCC development, possibly via promoting the generation of high-risk HBV mutations. This can be transformed into specific prophylaxis of HBV-caused HCC.
Collapse
Affiliation(s)
- Wenbin Liu
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Jianfeng Wu
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Fan Yang
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Longteng Ma
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Chong Ni
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Xiaomei Hou
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Ling Wang
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Aijing Xu
- Department of Infectious Diseases, The First Affiliated Hospital of Second Military Medical University, Shanghai, China
| | - Jiahui Song
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Yang Deng
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Linfeng Xian
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Zixiong Li
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Shuo Wang
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Xi Chen
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Jianhua Yin
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Xue Han
- Division of Chronic Diseases, Center for Disease Control and Prevention of Yangpu District, Shanghai, China
| | - Chengzhong Li
- Department of Infectious Diseases, The First Affiliated Hospital of Second Military Medical University, Shanghai, China
| | - Jun Zhao
- Department of Liver Cancer Surgery, The Third Affiliated Hospital of Second Military Medical University, Shanghai, China
| | - Guangwen Cao
- Department of Epidemiology, Second Military Medical University, Shanghai, China. .,Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer, Ministry of Education, Shanghai, China.,Shanghai Key Laboratory of Hepatobiliary Tumor Biology, Shanghai, China
| |
Collapse
|
233
|
Vlachostergios PJ, Faltas BM. Treatment resistance in urothelial carcinoma: an evolutionary perspective. Nat Rev Clin Oncol 2019; 15:495-509. [PMID: 29720713 DOI: 10.1038/s41571-018-0026-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The emergence of treatment-resistant clones is a critical barrier to cure in patients with urothelial carcinoma. Setting the stage for the evolution of resistance, urothelial carcinoma is characterized by extensive mutational heterogeneity, which is detectable even in patients with early stage disease. Chemotherapy and immunotherapy both act as selective pressures that shape the evolutionary trajectory of urothelial carcinoma throughout the course of the disease. A detailed understanding of the dynamics of evolutionary drivers is required for the rational development of curative therapies. Herein, we describe the molecular basis of the clonal evolution of urothelial carcinomas and the use of genomic approaches to predict treatment responses. We discuss various mechanisms of resistance to chemotherapy with a focus on the mutagenic effects of the DNA dC->dU-editing enzymes APOBEC3 family of proteins. We also review the evolutionary mechanisms underlying resistance to immunotherapy, such as the loss of clonal tumour neoantigens. By dissecting treatment resistance through an evolutionary lens, the field will advance towards true precision medicine for urothelial carcinoma.
Collapse
Affiliation(s)
- Panagiotis J Vlachostergios
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Bishoy M Faltas
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, USA. .,Sandra and Edward Meyer Cancer Center at Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
234
|
Van Hoeck A, Tjoonk NH, van Boxtel R, Cuppen E. Portrait of a cancer: mutational signature analyses for cancer diagnostics. BMC Cancer 2019; 19:457. [PMID: 31092228 PMCID: PMC6521503 DOI: 10.1186/s12885-019-5677-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 05/03/2019] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND In the past decade, systematic and comprehensive analyses of cancer genomes have identified cancer driver genes and revealed unprecedented insight into the molecular mechanisms underlying the initiation and progression of cancer. These studies illustrate that although every cancer has a unique genetic make-up, there are only a limited number of mechanisms that shape the mutational landscapes of cancer genomes, as reflected by characteristic computationally-derived mutational signatures. Importantly, the molecular mechanisms underlying specific signatures can now be dissected and coupled to treatment strategies. Systematic characterization of mutational signatures in a cancer patient's genome may thus be a promising new tool for molecular tumor diagnosis and classification. RESULTS In this review, we describe the status of mutational signature analysis in cancer genomes and discuss the opportunities and relevance, as well as future challenges, for further implementation of mutational signatures in clinical tumor diagnostics and therapy guidance. CONCLUSIONS Scientific studies have illustrated the potential of mutational signature analysis in cancer research. As such, we believe that the implementation of mutational signature analysis within the diagnostic workflow will improve cancer diagnosis in the future.
Collapse
Affiliation(s)
- Arne Van Hoeck
- Center for Molecular Medicine and Oncode Institute, University Medical Centre Utrecht, Heidelberglaan 100, 3584CX Utrecht, The Netherlands
| | - Niels H. Tjoonk
- Center for Molecular Medicine and Oncode Institute, University Medical Centre Utrecht, Heidelberglaan 100, 3584CX Utrecht, The Netherlands
- Princess Máxima Center for Pediatric Oncology and Oncode Institute, Heidelberglaan 25, 3584CS Utrecht, The Netherlands
| | - Ruben van Boxtel
- Princess Máxima Center for Pediatric Oncology and Oncode Institute, Heidelberglaan 25, 3584CS Utrecht, The Netherlands
| | - Edwin Cuppen
- Center for Molecular Medicine and Oncode Institute, University Medical Centre Utrecht, Heidelberglaan 100, 3584CX Utrecht, The Netherlands
- Hartwig Medical Foundation, Science Park 408, 1098XH Amsterdam, The Netherlands
| |
Collapse
|
235
|
Evgin L, Huff AL, Kottke T, Thompson J, Molan AM, Driscoll CB, Schuelke M, Shim KG, Wongthida P, Ilett EJ, Smith KK, Harris RS, Coffey M, Pulido JS, Pandha H, Selby PJ, Harrington KJ, Melcher A, Vile RG. Suboptimal T-cell Therapy Drives a Tumor Cell Mutator Phenotype That Promotes Escape from First-Line Treatment. Cancer Immunol Res 2019; 7:828-840. [PMID: 30940643 PMCID: PMC7003288 DOI: 10.1158/2326-6066.cir-18-0013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 05/14/2018] [Accepted: 03/27/2019] [Indexed: 12/19/2022]
Abstract
Antitumor T-cell responses raised by first-line therapies such as chemotherapy, radiation, tumor cell vaccines, and viroimmunotherapy tend to be weak, both quantitatively (low frequency) and qualitatively (low affinity). We show here that T cells that recognize tumor-associated antigens can directly kill tumor cells if used at high effector-to-target ratios. However, when these tumor-reactive T cells were present at suboptimal ratios, direct T-cell-mediated tumor cell killing was reduced and the ability of tumor cells to evolve away from a coapplied therapy (oncolytic or suicide gene therapy) was promoted. This T-cell-mediated increase in therapeutic resistance was associated with C to T transition mutations that are characteristic of APOBEC3 cytosine deaminase activity and was induced through a TNFα and protein kinase C-dependent pathway. Short hairpin RNA inhibition of endogenous APOBEC3 reduced rates of tumor escape from oncolytic virus or suicide gene therapy to those seen in the absence of antitumor T-cell coculture. Conversely, overexpression of human APOBEC3B in tumor cells enhanced escape from suicide gene therapy and oncolytic virus therapy both in vitro and in vivo Our data suggest that weak affinity or low frequency T-cell responses against tumor antigens may contribute to the ability of tumor cells to evolve away from first-line therapies. We conclude that immunotherapies need to be optimized as early as possible so that, if they do not kill the tumor completely, they do not promote treatment resistance.
Collapse
Affiliation(s)
- Laura Evgin
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota
| | - Amanda L Huff
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota
| | - Timothy Kottke
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota
| | - Jill Thompson
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota
| | - Amy M Molan
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, Minnesota
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota
| | | | | | - Kevin G Shim
- Department of Immunology, Mayo Clinic, Rochester, Minnesota
| | | | - Elizabeth J Ilett
- Leeds Institute of Cancer and Pathology, St. James' University Hospital, Leeds, United Kingdom
| | | | - Reuben S Harris
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, Minnesota
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota
| | - Matt Coffey
- Oncolytics Biotech Incorporated, Calgary, Canada
| | - Jose S Pulido
- Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota
| | - Hardev Pandha
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Peter J Selby
- Leeds Institute of Cancer and Pathology, St. James' University Hospital, Leeds, United Kingdom
| | | | - Alan Melcher
- Institute of Cancer Research, London, United Kingdom
| | - Richard G Vile
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota.
- Department of Immunology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
236
|
Duso BA, Ferraro E, Mazzarella L, Dagostim Jeremias C, Curigliano G. An analysis of available biomarker data for targeting cyclin-dependent kinases 4 and 6 (CDK4/6) in breast cancer. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2019. [DOI: 10.1080/23808993.2019.1604136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Bruno Achutti Duso
- Division of Early Drug Development, Istituto Europeo di Oncologia, IRCCS, Milano, Italy
- Department of Oncology and Hematology, University of Milano, Milan, Italy
| | - Emanuela Ferraro
- Division of Early Drug Development, Istituto Europeo di Oncologia, IRCCS, Milano, Italy
- Department of Oncology and Hematology, University of Milano, Milan, Italy
| | - Luca Mazzarella
- Division of Early Drug Development, Istituto Europeo di Oncologia, IRCCS, Milano, Italy
- Department of Oncology and Hematology, University of Milano, Milan, Italy
| | - Camila Dagostim Jeremias
- Division of Early Drug Development, Istituto Europeo di Oncologia, IRCCS, Milano, Italy
- Department of Oncology and Hematology, University of Milano, Milan, Italy
| | - Giuseppe Curigliano
- Division of Early Drug Development, Istituto Europeo di Oncologia, IRCCS, Milano, Italy
- Department of Oncology and Hematology, University of Milano, Milan, Italy
| |
Collapse
|
237
|
Fittall MW, Van Loo P. Translating insights into tumor evolution to clinical practice: promises and challenges. Genome Med 2019; 11:20. [PMID: 30925887 PMCID: PMC6440005 DOI: 10.1186/s13073-019-0632-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Accelerating technological advances have allowed the widespread genomic profiling of tumors. As yet, however, the vast catalogues of mutations that have been identified have made only a modest impact on clinical medicine. Massively parallel sequencing has informed our understanding of the genetic evolution and heterogeneity of cancers, allowing us to place these mutational catalogues into a meaningful context. Here, we review the methods used to measure tumor evolution and heterogeneity, and the potential and challenges for translating the insights gained to achieve clinical impact for cancer therapy, monitoring, early detection, risk stratification, and prevention. We discuss how tumor evolution can guide cancer therapy by targeting clonal and subclonal mutations both individually and in combination. Circulating tumor DNA and circulating tumor cells can be leveraged for monitoring the efficacy of therapy and for tracking the emergence of resistant subclones. The evolutionary history of tumors can be deduced for late-stage cancers, either directly by sampling precursor lesions or by leveraging computational approaches to infer the timing of driver events. This approach can identify recurrent early driver mutations that represent promising avenues for future early detection strategies. Emerging evidence suggests that mutational processes and complex clonal dynamics are active even in normal development and aging. This will make discriminating developing malignant neoplasms from normal aging cell lineages a challenge. Furthermore, insight into signatures of mutational processes that are active early in tumor evolution may allow the development of cancer-prevention approaches. Research and clinical studies that incorporate an appreciation of the complex evolutionary patterns in tumors will not only produce more meaningful genomic data, but also better exploit the vulnerabilities of cancer, resulting in improved treatment outcomes.
Collapse
Affiliation(s)
- Matthew W Fittall
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.,University College London Cancer Institute, 72 Huntley Street, London, WC1E 6DD, UK.,Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Peter Van Loo
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK. .,University of Leuven, Herestraat 49, B-3000, Leuven, Belgium.
| |
Collapse
|
238
|
Wolfe AD, Arnold DB, Chen XS. Comparison of RNA Editing Activity of APOBEC1-A1CF and APOBEC1-RBM47 Complexes Reconstituted in HEK293T Cells. J Mol Biol 2019; 431:1506-1517. [PMID: 30844405 PMCID: PMC6443457 DOI: 10.1016/j.jmb.2019.02.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/22/2019] [Accepted: 02/23/2019] [Indexed: 12/15/2022]
Abstract
RNA editing is an important form of regulating gene expression and activity. APOBEC1 cytosine deaminase was initially characterized as pairing with a cofactor, A1CF, to form an active RNA editing complex that specifically targets APOB RNA in regulating lipid metabolism. Recent studies revealed that APOBEC1 may be involved in editing other potential RNA targets in a tissue-specific manner, and another protein, RBM47, appears to instead be the main cofactor of APOBEC1 for editing APOB RNA. In this report, by expressing APOBEC1 with either A1CF or RBM47 from human or mouse in an HEK293T cell line with no intrinsic APOBEC1/A1CF/RBM47 expression, we have compared direct RNA editing activity on several known cellular target RNAs. By using a sensitive cell-based fluorescence assay that enables comparative quantification of RNA editing through subcellular localization changes of eGFP, the two APOBEC1 cofactors, A1CF and RBM47, showed clear differences for editing activity on APOB and several other tested RNAs, and clear differences were observed when mouse versus human genes were tested. In addition, we have determined the minimal domain requirement of RBM47 needed for activity. These results provide useful functional characterization of RBM47 and direct biochemical evidence for the differential editing selectivity on a number of RNA targets.
Collapse
Affiliation(s)
- Aaron D Wolfe
- Molecular and Computational Biology, Department of Biological Sciences, Chemistry, University of Southern California, Los Angeles, CA 90089, USA; Genetic, Molecular and Cellular Biology Program, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Don B Arnold
- Molecular and Computational Biology, Department of Biological Sciences, Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Xiaojiang S Chen
- Molecular and Computational Biology, Department of Biological Sciences, Chemistry, University of Southern California, Los Angeles, CA 90089, USA; Genetic, Molecular and Cellular Biology Program, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; Center of Excellence in NanoBiophysics, University of Southern California, Los Angeles, CA 90089, USA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
239
|
Carpenter MA, Law EK, Serebrenik A, Brown WL, Harris RS. A lentivirus-based system for Cas9/gRNA expression and subsequent removal by Cre-mediated recombination. Methods 2019; 156:79-84. [PMID: 30578845 PMCID: PMC6397784 DOI: 10.1016/j.ymeth.2018.12.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/10/2018] [Accepted: 12/17/2018] [Indexed: 12/20/2022] Open
Abstract
A major concern of CRISPR and related genome engineering technologies is off-target mutagenesis from prolonged exposure to Cas9 and related editing enzymes. To help mitigate this concern we added a loxP site to the 3'-LTR of an HIV-based lentiviral vector capable of expressing Cas9/gRNA complexes in a wide variety of mammalian cell types. Transduction of susceptible target cells yields an integrated provirus that expresses the desired Cas9/gRNA complex. The reverse transcription process also results in duplication of the 3'-LTR such that the integrated provirus becomes flanked by loxP sites (floxed). Subsequent expression of Cre recombinase results in loxP-to-loxP site-specific recombination that deletes the Cas9/gRNA payload and effectively prevents additional Cas9-mediated mutations. This construct also expresses a gRNA with a single transcription termination sequence, which results in higher expression levels and more efficient genome engineering as evidenced by disruption of the SAMHD1 gene. This hit-and-run CRISPR approach was validated by recreating a natural APOBEC3B deletion and by disrupting the mismatch repair gene MSH2. This hit-and-run strategy may have broad utility in many areas and especially those where cell types are difficult to engineer by transient delivery of ribonucleoprotein complexes.
Collapse
Affiliation(s)
- Michael A Carpenter
- Department of Biochemistry, Molecular Biology and Biophysics, Masonic Cancer Center, Institute for Molecular Virology, Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA; Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Emily K Law
- Department of Biochemistry, Molecular Biology and Biophysics, Masonic Cancer Center, Institute for Molecular Virology, Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA; Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Artur Serebrenik
- Department of Biochemistry, Molecular Biology and Biophysics, Masonic Cancer Center, Institute for Molecular Virology, Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA.
| | - William L Brown
- Department of Biochemistry, Molecular Biology and Biophysics, Masonic Cancer Center, Institute for Molecular Virology, Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Reuben S Harris
- Department of Biochemistry, Molecular Biology and Biophysics, Masonic Cancer Center, Institute for Molecular Virology, Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA; Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
240
|
Ng JCF, Quist J, Grigoriadis A, Malim MH, Fraternali F. Pan-cancer transcriptomic analysis dissects immune and proliferative functions of APOBEC3 cytidine deaminases. Nucleic Acids Res 2019; 47:1178-1194. [PMID: 30624727 PMCID: PMC6379723 DOI: 10.1093/nar/gky1316] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/19/2018] [Accepted: 01/04/2019] [Indexed: 12/25/2022] Open
Abstract
APOBEC3 cytidine deaminases are largely known for their innate immune protection from viral infections. Recently, members of the family have been associated with a distinct mutational activity in some cancer types. We report a pan-tissue, pan-cancer analysis of RNA-seq data specific to the APOBEC3 genes in 8,951 tumours, 786 cancer cell lines and 6,119 normal tissues. By deconvolution of levels of different cell types in tumour admixtures, we demonstrate that APOBEC3B (A3B), the primary candidate as a cancer mutagen, shows little association with immune cell types compared to its paralogues. We present a pipeline called RESPECTEx (REconstituting SPecific Cell-Type Expression) and use it to deconvolute cell-type specific expression levels in a given cohort of tumour samples. We functionally annotate APOBEC3 co-expressing genes, and create an interactive visualization tool which 'barcodes' the functional enrichment (http://fraternalilab.kcl.ac.uk/apobec-barcodes/). These analyses reveal that A3B expression correlates with cell cycle and DNA repair genes, whereas the other APOBEC3 members display specificity for immune processes and immune cell populations. We offer molecular insights into the functions of individual APOBEC3 proteins in antiviral and proliferative contexts, and demonstrate the diversification this family of enzymes displays at the transcriptomic level, despite their high similarity in protein sequences and structures.
Collapse
Affiliation(s)
- Joseph C F Ng
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| | - Jelmar Quist
- Cancer Bioinformatics, School of Cancer and Pharmaceutical Sciences, CRUK King's Health Partners Centre, Breast Cancer Now Research Unit, King's College London, London, UK
| | - Anita Grigoriadis
- Cancer Bioinformatics, School of Cancer and Pharmaceutical Sciences, CRUK King's Health Partners Centre, Breast Cancer Now Research Unit, King's College London, London, UK
| | - Michael H Malim
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Franca Fraternali
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| |
Collapse
|
241
|
Murphy C, Muscat A, Ashley D, Mukaro V, West L, Liao Y, Chisanga D, Shi W, Collins I, Baron-Hay S, Patil S, Lindeman G, Khasraw M. Tailored NEOadjuvant epirubicin, cyclophosphamide and Nanoparticle Albumin-Bound paclitaxel for breast cancer: The phase II NEONAB trial-Clinical outcomes and molecular determinants of response. PLoS One 2019; 14:e0210891. [PMID: 30763338 PMCID: PMC6375556 DOI: 10.1371/journal.pone.0210891] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 12/28/2018] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND This study evaluated the feasibility of achieving high response rates in stage II or III breast cancer by tailoring neoadjuvant therapy using clinical and histopathological features and the Oncotype DX Breast Recurrence Score. Genomic determinants of response and resistance were also explored. PATIENTS AND OUTCOME MEASURES Fifty-one patients were enrolled. The primary cohort comprised 40 patients: 15 human epidermal growth factor receptor type 2 (HER2)-amplified; 15 triple-negative (TNBC); and ten hormone receptor (HR)-positive, HER2-non-amplified tumours; with recurrence scores ≥25. Patients were treated with epirubicin and cyclophosphamide, followed by nab-paclitaxel, with the addition of trastuzumab if HER2-amplified. The primary endpoint was pathological complete response (pCR) in the breast. Pre- and post-treatment tumour samples underwent variant burden, gene and gene pathway, mutational signature profile and clonal evolution analyses. RESULTS The pCR rates were: overall 55% (n = 22), HER2-amplified 80% (n = 12), triple-negative 46% (n = 7) and HR-positive, HER2-non-amplified 30% (n = 3). Grade 3 or 4 adverse events included febrile neutropenia (8%), neutropenia (18%), sensory neuropathy (5%), deranged transaminases (5%), fatigue (2%), diarrhoea (2%), and pneumothorax (2%). Molecular analyses demonstrated strong similarities between residual disease and matched primary tumour. ATM signalling pathway alterations and the presence of a COSMIC Signature 3 implied the majority of tumours contained some form of homologous repair deficiency. ATM pathway alterations were identified in the subset of TNBC patients who did not achieve pCR; Signature 3 was present in both pCR and non-pCR subgroups. Clonal evolution analyses demonstrated both persistence and emergence of chemoresistant clones. CONCLUSIONS This treatment regime resulted in a high rate of pCR, demonstrating that tailored neoadjuvant therapy using a genomic recurrence score is feasible and warrants further investigation. Molecular analysis revealed few commonalities between patients. For TNBC future clinical gains will require precision medicine, potentially using DNA sequencing to identify specific targets for individuals with resistant disease. TRIAL REGISTRATION Clinicaltrials.gov NCT01830244.
Collapse
Affiliation(s)
- Caitlin Murphy
- University Hospital Geelong, Geelong, Victoria, Australia
- School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Andrea Muscat
- School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - David Ashley
- University Hospital Geelong, Geelong, Victoria, Australia
- School of Medicine, Deakin University, Geelong, Victoria, Australia
- Preston Robert Tisch Brain Tumor Center, Duke University, Durham, North Carolina, United States of America
| | - Violet Mukaro
- University Hospital Geelong, Geelong, Victoria, Australia
- School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Linda West
- University Hospital Geelong, Geelong, Victoria, Australia
- Lake Imaging, Geelong, Victoria, Australia
| | - Yang Liao
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - David Chisanga
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Wei Shi
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Ian Collins
- School of Medicine, Deakin University, Geelong, Victoria, Australia
- South West Health Care, Warrnambool, Victoria, Australia
| | - Sally Baron-Hay
- Royal North Shore Hospital, St Leonards, New South Wales, Australia
- North Shore Private Hospital, St Leonards, New South Wales, Australia
| | - Sujata Patil
- Memorial Sloan Kettering Cancer Center, New York, United States of America
| | - Geoffrey Lindeman
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Mustafa Khasraw
- University Hospital Geelong, Geelong, Victoria, Australia
- School of Medicine, Deakin University, Geelong, Victoria, Australia
- National Health and Medical Research Council Clinical Trials Centre, University of Sydney, New South Wales, Australia
| |
Collapse
|
242
|
Borzooee F, Joris KD, Grant MD, Larijani M. APOBEC3G Regulation of the Evolutionary Race Between Adaptive Immunity and Viral Immune Escape Is Deeply Imprinted in the HIV Genome. Front Immunol 2019; 9:3032. [PMID: 30687306 PMCID: PMC6338068 DOI: 10.3389/fimmu.2018.03032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 12/07/2018] [Indexed: 12/16/2022] Open
Abstract
APOBEC3G (A3G) is a host enzyme that mutates the genomes of retroviruses like HIV. Since A3G is expressed pre-infection, it has classically been considered an agent of innate immunity. We and others previously showed that the impact of A3G-induced mutations on the HIV genome extends to adaptive immunity also, by generating cytotoxic T cell (CTL) escape mutations. Accordingly, HIV genomic sequences encoding CTL epitopes often contain A3G-mutable “hotspot” sequence motifs, presumably to channel A3G action toward CTL escape. Here, we studied the depths and consequences of this apparent viral genome co-evolution with A3G. We identified all potential CTL epitopes in Gag, Pol, Env, and Nef restricted to several HLA class I alleles. We simulated A3G-induced mutations within CTL epitope-encoding sequences, and flanking regions. From the immune recognition perspective, we analyzed how A3G-driven mutations are predicted to impact CTL-epitope generation through modulating proteasomal processing and HLA class I binding. We found that A3G mutations were most often predicted to result in diminishing/abolishing HLA-binding affinity of peptide epitopes. From the viral genome evolution perspective, we evaluated enrichment of A3G hotspots at sequences encoding CTL epitopes and included control sequences in which the HIV genome was randomly shuffled. We found that sequences encoding immunogenic epitopes exhibited a selective enrichment of A3G hotspots, which were strongly biased to translate to non-synonymous amino acid substitutions. When superimposed on the known mutational gradient across the entire length of the HIV genome, we observed a gradient of A3G hotspot enrichment, and an HLA-specific pattern of the potential of A3G hotspots to lead to CTL escape mutations. These data illuminate the depths and extent of the co-evolution of the viral genome to subvert the host mutator A3G.
Collapse
Affiliation(s)
- Faezeh Borzooee
- Immunology and Infectious Diseases Program, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Krista D Joris
- Immunology and Infectious Diseases Program, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Michael D Grant
- Immunology and Infectious Diseases Program, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Mani Larijani
- Immunology and Infectious Diseases Program, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
243
|
Klein HL, Bačinskaja G, Che J, Cheblal A, Elango R, Epshtein A, Fitzgerald DM, Gómez-González B, Khan SR, Kumar S, Leland BA, Marie L, Mei Q, Miné-Hattab J, Piotrowska A, Polleys EJ, Putnam CD, Radchenko EA, Saada AA, Sakofsky CJ, Shim EY, Stracy M, Xia J, Yan Z, Yin Y, Aguilera A, Argueso JL, Freudenreich CH, Gasser SM, Gordenin DA, Haber JE, Ira G, Jinks-Robertson S, King MC, Kolodner RD, Kuzminov A, Lambert SAE, Lee SE, Miller KM, Mirkin SM, Petes TD, Rosenberg SM, Rothstein R, Symington LS, Zawadzki P, Kim N, Lisby M, Malkova A. Guidelines for DNA recombination and repair studies: Cellular assays of DNA repair pathways. MICROBIAL CELL (GRAZ, AUSTRIA) 2019; 6:1-64. [PMID: 30652105 PMCID: PMC6334234 DOI: 10.15698/mic2019.01.664] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 08/29/2018] [Accepted: 09/14/2018] [Indexed: 12/29/2022]
Abstract
Understanding the plasticity of genomes has been greatly aided by assays for recombination, repair and mutagenesis. These assays have been developed in microbial systems that provide the advantages of genetic and molecular reporters that can readily be manipulated. Cellular assays comprise genetic, molecular, and cytological reporters. The assays are powerful tools but each comes with its particular advantages and limitations. Here the most commonly used assays are reviewed, discussed, and presented as the guidelines for future studies.
Collapse
Affiliation(s)
- Hannah L. Klein
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Giedrė Bačinskaja
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Jun Che
- Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, USA
| | - Anais Cheblal
- Friedrich Miescher Institute for Biomedical Research (FMI), 4058 Basel, Switzerland
| | - Rajula Elango
- Department of Biology, University of Iowa, Iowa City, IA, USA
| | - Anastasiya Epshtein
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Devon M. Fitzgerald
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Belén Gómez-González
- Centro Andaluz de BIología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla, Seville, Spain
| | - Sharik R. Khan
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Sandeep Kumar
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | | | - Léa Marie
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA
| | - Qian Mei
- Systems, Synthetic and Physical Biology Graduate Program, Rice University, Houston, TX, USA
| | - Judith Miné-Hattab
- Institut Curie, PSL Research University, CNRS, UMR3664, F-75005 Paris, France
- Sorbonne Université, Institut Curie, CNRS, UMR3664, F-75005 Paris, France
| | - Alicja Piotrowska
- NanoBioMedical Centre, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznan, Poland
| | | | - Christopher D. Putnam
- Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, La Jolla, CA, USA
- Department of Medicine, University of California School of Medicine, San Diego, La Jolla, CA, USA
| | | | - Anissia Ait Saada
- Institut Curie, PSL Research University, CNRS, UMR3348 F-91405, Orsay, France
- University Paris Sud, Paris-Saclay University, CNRS, UMR3348, F-91405, Orsay, France
| | - Cynthia J. Sakofsky
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Eun Yong Shim
- Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, USA
| | - Mathew Stracy
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Jun Xia
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Zhenxin Yan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Yi Yin
- Department of Molecular Genetics and Microbiology and University Program in Genetics and Genomics, Duke University Medical Center, Durham, NC USA
| | - Andrés Aguilera
- Centro Andaluz de BIología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla, Seville, Spain
| | - Juan Lucas Argueso
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Catherine H. Freudenreich
- Department of Biology, Tufts University, Medford, MA USA
- Program in Genetics, Tufts University, Boston, MA, USA
| | - Susan M. Gasser
- Friedrich Miescher Institute for Biomedical Research (FMI), 4058 Basel, Switzerland
| | - Dmitry A. Gordenin
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - James E. Haber
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center Brandeis University, Waltham, MA, USA
| | - Grzegorz Ira
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Sue Jinks-Robertson
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC USA
| | | | - Richard D. Kolodner
- Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California School of Medicine, San Diego, La Jolla, CA, USA
- Moores-UCSD Cancer Center, University of California School of Medicine, San Diego, La Jolla, CA, USA
- Institute of Genomic Medicine, University of California School of Medicine, San Diego, La Jolla, CA, USA
| | - Andrei Kuzminov
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Sarah AE Lambert
- Institut Curie, PSL Research University, CNRS, UMR3348 F-91405, Orsay, France
- University Paris Sud, Paris-Saclay University, CNRS, UMR3348, F-91405, Orsay, France
| | - Sang Eun Lee
- Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, USA
| | - Kyle M. Miller
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | | | - Thomas D. Petes
- Department of Molecular Genetics and Microbiology and University Program in Genetics and Genomics, Duke University Medical Center, Durham, NC USA
| | - Susan M. Rosenberg
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Systems, Synthetic and Physical Biology Graduate Program, Rice University, Houston, TX, USA
| | - Rodney Rothstein
- Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Lorraine S. Symington
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA
| | - Pawel Zawadzki
- NanoBioMedical Centre, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznan, Poland
| | - Nayun Kim
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Michael Lisby
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Anna Malkova
- Department of Biology, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
244
|
Oliva M, Spreafico A, Taberna M, Alemany L, Coburn B, Mesia R, Siu LL. Immune biomarkers of response to immune-checkpoint inhibitors in head and neck squamous cell carcinoma. Ann Oncol 2019; 30:57-67. [PMID: 30462163 PMCID: PMC6336003 DOI: 10.1093/annonc/mdy507] [Citation(s) in RCA: 182] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Anti-programmed cell death protein 1 (PD-1) agents have become the standard of care for platinum-refractory recurrent/metastatic head and neck squamous cell carcinoma (HNSCC) and are currently being evaluated in various disease settings. However, despite the gain in overall survival seen in some of the clinical trials, the majority of patients display primary resistance and do not benefit from these agents. Taking into consideration the potentially severe immune-related toxicities and their high cost, the search for predictive biomarkers of response is crucial. Besides Programmed death ligand-1 (PD-L1) expression, other biomarkers such as immune infiltration, tumor mutational burden or immune-gene expression profiling have been explored, but none of them has been validated in this disease. Among these, the microbiota has recently garnered tremendous interest since it has proven to influence the efficacy of PD-1 blockade in some tumor types. With the accumulating evidence on the effect of the microbiota in HNSCC tumorigenesis and progression, the study of its potential role as a predictive immune biomarker is warranted. This review examines the available evidence on emerging immune predictive biomarkers of response to anti-PD-1/PD-L1 therapy in HNSCC, introducing the microbiota and its potential use as a predictive immune biomarker in this disease.
Collapse
Affiliation(s)
- M Oliva
- Division of Medical Oncology and Haematology, Princess Margaret Cancer Centre, Toronto; University of Toronto, Toronto, Canada
| | - A Spreafico
- Division of Medical Oncology and Haematology, Princess Margaret Cancer Centre, Toronto; University of Toronto, Toronto, Canada
| | - M Taberna
- Medical Oncology Department, Catalan Institute of Oncology (ICO), ONCOBELL-IDIBELL, L'Hospitalet de Llobregat, Barcelona; Barcelona University, Barcelona
| | - L Alemany
- Cancer Epidemiology Research Program, Catalan Institute of Oncology (ICO), IDIBELL, L'Hospitalet de Llobregat, Barcelona; CIBER in Epidemiology and Public Health (CIBERESP), Barcelona, Spain
| | - B Coburn
- Division of Infectious Diseases, University Health Network, Toronto; Departments of Medicine and Laboratory of Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - R Mesia
- Medical Oncology Department, B-ARGO Group, Catalan Institute of Oncology (ICO), Badalona, Spain
| | - L L Siu
- Division of Medical Oncology and Haematology, Princess Margaret Cancer Centre, Toronto; University of Toronto, Toronto, Canada.
| |
Collapse
|
245
|
Lerner T, Papavasiliou FN, Pecori R. RNA Editors, Cofactors, and mRNA Targets: An Overview of the C-to-U RNA Editing Machinery and Its Implication in Human Disease. Genes (Basel) 2018; 10:E13. [PMID: 30591678 PMCID: PMC6356216 DOI: 10.3390/genes10010013] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/10/2018] [Accepted: 12/20/2018] [Indexed: 12/22/2022] Open
Abstract
One of the most prevalent epitranscriptomic modifications is RNA editing. In higher eukaryotes, RNA editing is catalyzed by one of two classes of deaminases: ADAR family enzymes that catalyze A-to-I (read as G) editing, and AID/APOBEC family enzymes that catalyze C-to-U. ADAR-catalyzed deamination has been studied extensively. Here we focus on AID/APOBEC-catalyzed editing, and review the emergent knowledge regarding C-to-U editing consequences in the context of human disease.
Collapse
Affiliation(s)
- Taga Lerner
- Division of Immune Diversity, Program in Cancer Immunology, German Cancer Research Centre, 69120 Heidelberg, Germany.
- Division of Biosciences, Uni Heidelberg, 69120 Heidelberg, Germany.
| | - F Nina Papavasiliou
- Division of Immune Diversity, Program in Cancer Immunology, German Cancer Research Centre, 69120 Heidelberg, Germany.
| | - Riccardo Pecori
- Division of Immune Diversity, Program in Cancer Immunology, German Cancer Research Centre, 69120 Heidelberg, Germany.
| |
Collapse
|
246
|
Huff AL, Wongthida P, Kottke T, Thompson JM, Driscoll CB, Schuelke M, Shim KG, Harris RS, Molan A, Pulido JS, Selby PJ, Harrington KJ, Melcher A, Evgin L, Vile RG. APOBEC3 Mediates Resistance to Oncolytic Viral Therapy. Mol Ther Oncolytics 2018; 11:1-13. [PMID: 30294666 PMCID: PMC6169432 DOI: 10.1016/j.omto.2018.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 08/23/2018] [Indexed: 12/18/2022] Open
Abstract
Tumor cells frequently evade applied therapies through the accumulation of genomic mutations and rapid evolution. In the case of oncolytic virotherapy, understanding the mechanisms by which cancer cells develop resistance to infection and lysis is critical to the development of more effective viral-based platforms. Here, we identify APOBEC3 as an important factor that restricts the potency of oncolytic vesicular stomatitis virus (VSV). We show that VSV infection of B16 murine melanoma cells upregulated APOBEC3 in an IFN-β-dependent manner, which was responsible for the evolution of virus-resistant cell populations and suggested that APOBEC3 expression promoted the acquisition of a virus-resistant phenotype. Knockdown of APOBEC3 in B16 cells diminished their capacity to develop resistance to VSV infection in vitro and enhanced the therapeutic effect of VSV in vivo. Similarly, overexpression of human APOBEC3B promoted the acquisition of resistance to oncolytic VSV both in vitro and in vivo. Finally, we demonstrate that APOBEC3B expression had a direct effect on the fitness of VSV, an RNA virus that has not previously been identified as restricted by APOBEC3B. This research identifies APOBEC3 enzymes as key players to target in order to improve the efficacy of viral or broader nucleic acid-based therapeutic platforms.
Collapse
Affiliation(s)
- Amanda L. Huff
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Timothy Kottke
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Jill M. Thompson
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | - Kevin G. Shim
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Reuben S. Harris
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Amy Molan
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jose S. Pulido
- Department of Ophthalmology, Mayo Clinic, Rochester, MN 55905, USA
| | - Peter J. Selby
- Leeds Institute of Cancer and Pathology, Faculty of Medicine and Health, University of Leeds, St James’s University Hospital, Beckett Street, Leeds, West Yorkshire LS9 7TF, UK
| | | | | | - Laura Evgin
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Richard G. Vile
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
- Leeds Institute of Cancer and Pathology, Faculty of Medicine and Health, University of Leeds, St James’s University Hospital, Beckett Street, Leeds, West Yorkshire LS9 7TF, UK
| |
Collapse
|
247
|
Detection and Application of RNA Editing in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1068:159-170. [PMID: 29943303 DOI: 10.1007/978-981-13-0502-3_13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
RNA editing is the process which happened in the post-transcriptional stage that the genetic information contained in an RNA molecule will be changed. RNA editing has been found to be related with many cancers, so through identifying RNA editing sites, we can find useful information on the process of carcinogenesis. In this review, we will discuss the main types of RNA editing and their role in cancers, as well as the current detection methods of RNA editing and the challenges we should overcome.
Collapse
|
248
|
A Tumor-Promoting Phorbol Ester Causes a Large Increase in APOBEC3A Expression and a Moderate Increase in APOBEC3B Expression in a Normal Human Keratinocyte Cell Line without Increasing Genomic Uracils. Mol Cell Biol 2018; 39:MCB.00238-18. [PMID: 30348839 DOI: 10.1128/mcb.00238-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 10/07/2018] [Indexed: 12/14/2022] Open
Abstract
Phorbol 12-myristate 13-acetate (PMA) promotes skin cancer in rodents. The mutations found in murine tumors are similar to those found in human skin cancers, and PMA promotes proliferation of human skin cells. PMA treatment of human keratinocytes increases the synthesis of APOBEC3A, an enzyme that converts cytosines in single-stranded DNA to uracil, and mutations in a variety of human cancers are attributed to APOBEC3A or APOBEC3B expression. We tested here the possibility that induction of APOBEC3A by PMA causes genomic accumulation of uracils that may lead to such mutations. When a human keratinocyte cell line was treated with PMA, both APOBEC3A and APOBEC3B gene expression increased, anti-APOBEC3A/APOBEC3B antibody bound a protein(s) in the nucleus, and nuclear extracts displayed cytosine deamination activity. Surprisingly, there was little increase in genomic uracils in PMA-treated wild-type or uracil repair-defective cells. In contrast, cells transfected with a plasmid expressing APOBEC3A acquired more genomic uracils. Unexpectedly, PMA treatment, but not APOBEC3A plasmid transfection, caused a cessation in cell growth. Hence, a reduction in single-stranded DNA at replication forks may explain the inability of PMA-induced APOBEC3A/APOBEC3B to increase genomic uracils. These results suggest that the proinflammatory PMA is unlikely to promote extensive APOBEC3A/APOBEC3B-mediated cytosine deaminations in human keratinocytes.
Collapse
|
249
|
Gerhauser C, Favero F, Risch T, Simon R, Feuerbach L, Assenov Y, Heckmann D, Sidiropoulos N, Waszak SM, Hübschmann D, Urbanucci A, Girma EG, Kuryshev V, Klimczak LJ, Saini N, Stütz AM, Weichenhan D, Böttcher LM, Toth R, Hendriksen JD, Koop C, Lutsik P, Matzk S, Warnatz HJ, Amstislavskiy V, Feuerstein C, Raeder B, Bogatyrova O, Schmitz EM, Hube-Magg C, Kluth M, Huland H, Graefen M, Lawerenz C, Henry GH, Yamaguchi TN, Malewska A, Meiners J, Schilling D, Reisinger E, Eils R, Schlesner M, Strand DW, Bristow RG, Boutros PC, von Kalle C, Gordenin D, Sültmann H, Brors B, Sauter G, Plass C, Yaspo ML, Korbel JO, Schlomm T, Weischenfeldt J. Molecular Evolution of Early-Onset Prostate Cancer Identifies Molecular Risk Markers and Clinical Trajectories. Cancer Cell 2018; 34:996-1011.e8. [PMID: 30537516 PMCID: PMC7444093 DOI: 10.1016/j.ccell.2018.10.016] [Citation(s) in RCA: 178] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 08/17/2018] [Accepted: 10/29/2018] [Indexed: 12/28/2022]
Abstract
Identifying the earliest somatic changes in prostate cancer can give important insights into tumor evolution and aids in stratifying high- from low-risk disease. We integrated whole genome, transcriptome and methylome analysis of early-onset prostate cancers (diagnosis ≤55 years). Characterization across 292 prostate cancer genomes revealed age-related genomic alterations and a clock-like enzymatic-driven mutational process contributing to the earliest mutations in prostate cancer patients. Our integrative analysis identified four molecular subgroups, including a particularly aggressive subgroup with recurrent duplications associated with increased expression of ESRP1, which we validate in 12,000 tissue microarray tumors. Finally, we combined the patterns of molecular co-occurrence and risk-based subgroup information to deconvolve the molecular and clinical trajectories of prostate cancer from single patient samples.
Collapse
Affiliation(s)
- Clarissa Gerhauser
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Francesco Favero
- Finsen Laboratory, Rigshospitalet, DK-2200, Copenhagen, Denmark; Biotech Research & Innovation Centre (BRIC), University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Thomas Risch
- Max Planck Institute for Molecular Genetics, Otto Warburg Laboratory Gene Regulation and Systems Biology of Cancer, Ihnestrasse 63-73, 14195 Berlin, Germany
| | - Ronald Simon
- Department of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Lars Feuerbach
- Division Applied Bioinformatics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Yassen Assenov
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Doreen Heckmann
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Nikos Sidiropoulos
- Finsen Laboratory, Rigshospitalet, DK-2200, Copenhagen, Denmark; Biotech Research & Innovation Centre (BRIC), University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Sebastian M Waszak
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69120 Heidelberg, Germany
| | - Daniel Hübschmann
- Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Department for Bioinformatics and Functional Genomics, Institute of Pharmacy and Molecular Biotechnology and Bioquant, University of Heidelberg, Heidelberg 69120, Germany; Department of Pediatric Immunology, Hematology and Oncology, University Hospital, Heidelberg 69120, Germany
| | - Alfonso Urbanucci
- Centre for Molecular Medicine Norway, Nordic European Molecular Biology Laboratory Partnership, Forskningsparken, University of Oslo, 0316 Oslo, Norway; Institute for Cancer Genetics and Informatics, Oslo University Hospital, 0316 Oslo, Norway; Department of Core Facilities, Institute for Cancer Research, Oslo University Hospital, 0316 Oslo, Norway
| | - Etsehiwot G Girma
- Finsen Laboratory, Rigshospitalet, DK-2200, Copenhagen, Denmark; Biotech Research & Innovation Centre (BRIC), University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Vladimir Kuryshev
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Leszek J Klimczak
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, Durham, 27709 NC, USA
| | - Natalie Saini
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Durham, 27709 NC, USA
| | - Adrian M Stütz
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69120 Heidelberg, Germany
| | - Dieter Weichenhan
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Lisa-Marie Böttcher
- Department of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Reka Toth
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Josephine D Hendriksen
- Finsen Laboratory, Rigshospitalet, DK-2200, Copenhagen, Denmark; Biotech Research & Innovation Centre (BRIC), University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Christina Koop
- Department of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Pavlo Lutsik
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Sören Matzk
- Max Planck Institute for Molecular Genetics, Otto Warburg Laboratory Gene Regulation and Systems Biology of Cancer, Ihnestrasse 63-73, 14195 Berlin, Germany
| | - Hans-Jörg Warnatz
- Max Planck Institute for Molecular Genetics, Otto Warburg Laboratory Gene Regulation and Systems Biology of Cancer, Ihnestrasse 63-73, 14195 Berlin, Germany
| | - Vyacheslav Amstislavskiy
- Max Planck Institute for Molecular Genetics, Otto Warburg Laboratory Gene Regulation and Systems Biology of Cancer, Ihnestrasse 63-73, 14195 Berlin, Germany
| | - Clarissa Feuerstein
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Benjamin Raeder
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69120 Heidelberg, Germany
| | - Olga Bogatyrova
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | | | - Claudia Hube-Magg
- Department of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Martina Kluth
- Department of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Hartwig Huland
- Martini-Clinic Prostate Cancer Center at the University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany
| | - Markus Graefen
- Martini-Clinic Prostate Cancer Center at the University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany
| | - Chris Lawerenz
- Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Gervaise H Henry
- Department of Urology, UT Southwestern Medical Center, Dallas, TX 75390-9110, USA
| | - Takafumi N Yamaguchi
- Informatics & Biocomputing Program, Ontario Institute for Cancer Research, Toronto, Canada
| | - Alicia Malewska
- Department of Urology, UT Southwestern Medical Center, Dallas, TX 75390-9110, USA
| | - Jan Meiners
- Department of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Daniela Schilling
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; NCT Trial Center, National Center for Tumor Diseases and German Cancer Research Center, 69120 Heidelberg, Germany
| | - Eva Reisinger
- Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Roland Eils
- Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Department for Bioinformatics and Functional Genomics, Institute of Pharmacy and Molecular Biotechnology and Bioquant, University of Heidelberg, Heidelberg 69120, Germany
| | - Matthias Schlesner
- Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Bioinformatics and Omics Data Analytics (B240), German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Douglas W Strand
- Department of Urology, UT Southwestern Medical Center, Dallas, TX 75390-9110, USA
| | - Robert G Bristow
- Manchester Cancer Research Centre, University of Manchester, 555 Wilmslow Road, Manchester, UK
| | - Paul C Boutros
- Ontario Institute for Cancer Research, Toronto, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Christof von Kalle
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany; Division of Translational Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Dmitry Gordenin
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Durham, 27709 NC, USA
| | - Holger Sültmann
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Benedikt Brors
- Division Applied Bioinformatics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany; German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Guido Sauter
- Department of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Christoph Plass
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Marie-Laure Yaspo
- Max Planck Institute for Molecular Genetics, Otto Warburg Laboratory Gene Regulation and Systems Biology of Cancer, Ihnestrasse 63-73, 14195 Berlin, Germany
| | - Jan O Korbel
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69120 Heidelberg, Germany.
| | - Thorsten Schlomm
- Martini-Clinic Prostate Cancer Center at the University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany; Charité Universitätsmedizin Berlin, Charitéplatz 1, D-10117 Berlin, Germany.
| | - Joachim Weischenfeldt
- Finsen Laboratory, Rigshospitalet, DK-2200, Copenhagen, Denmark; Biotech Research & Innovation Centre (BRIC), University of Copenhagen, DK-2200, Copenhagen, Denmark; European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69120 Heidelberg, Germany; Charité Universitätsmedizin Berlin, Charitéplatz 1, D-10117 Berlin, Germany.
| |
Collapse
|
250
|
Talukdar FR, di Pietro M, Secrier M, Moehler M, Goepfert K, Lima SSC, Pinto LFR, Hendricks D, Parker MI, Herceg Z. Molecular landscape of esophageal cancer: implications for early detection and personalized therapy. Ann N Y Acad Sci 2018; 1434:342-359. [PMID: 29917250 DOI: 10.1111/nyas.13876] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/08/2018] [Accepted: 05/14/2018] [Indexed: 12/12/2022]
Abstract
Esophageal cancer (EC) is one of the most lethal cancers and a public health concern worldwide, owing to late diagnosis and lack of efficient treatment. Esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC) are main histopathological subtypes of EC that show striking differences in geographical distribution, possibly due to differences in exposure to risk factors and lifestyles. ESCC and EAC are distinct diseases in terms of cell of origin, epidemiology, and molecular architecture of tumor cells. Past efforts aimed at translating potential molecular candidates into clinical practice proved to be challenging, underscoring the need for identifying novel candidates for early diagnosis and therapy of EC. Several major international efforts have brought about important advances in identifying molecular landscapes of ESCC and EAC toward understanding molecular mechanisms and critical molecular events driving the progression and pathological features of the disease. In our review, we summarize recent advances in the areas of genomics and epigenomics of ESCC and EAC, their mutational signatures and immunotherapy. We also discuss implications of recent advances in characterizing the genome and epigenome of EC for the discovery of diagnostic/prognostic biomarkers and development of new targets for personalized treatment and prevention.
Collapse
Affiliation(s)
- Fazlur Rahman Talukdar
- Section of Mechanisms of Carcinogenesis, International Agency for Research on Cancer (WHO), Lyon, France
| | | | - Maria Secrier
- Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Markus Moehler
- First Department of Internal Medicine, Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Katrin Goepfert
- First Department of Internal Medicine, Johannes Gutenberg-University of Mainz, Mainz, Germany
| | | | | | - Denver Hendricks
- Division of Medical Biochemistry & Structural Biology, University of Cape Town, Cape Town, South Africa
| | - Mohamed Iqbal Parker
- Division of Medical Biochemistry & Structural Biology, University of Cape Town, Cape Town, South Africa
| | - Zdenko Herceg
- Section of Mechanisms of Carcinogenesis, International Agency for Research on Cancer (WHO), Lyon, France
| |
Collapse
|