201
|
Touyz RM, Schiffrin EL. Reactive oxygen species in vascular biology: implications in hypertension. Histochem Cell Biol 2004; 122:339-52. [PMID: 15338229 DOI: 10.1007/s00418-004-0696-7] [Citation(s) in RCA: 449] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2004] [Indexed: 02/05/2023]
Abstract
Reactive oxygen species (ROS), including superoxide (*O2-), hydrogen peroxide (H2O2), and hydroxyl anion (OH-), and reactive nitrogen species, such as nitric oxide (NO) and peroxynitrite (ONOO-), are biologically important O2 derivatives that are increasingly recognized to be important in vascular biology through their oxidation/reduction (redox) potential. All vascular cell types (endothelial cells, vascular smooth muscle cells, and adventitial fibroblasts) produce ROS, primarily via cell membrane-associated NAD(P)H oxidase. Reactive oxygen species regulate vascular function by modulating cell growth, apoptosis/anoikis, migration, inflammation, secretion, and extracellular matrix protein production. An imbalance in redox state where pro-oxidants overwhelm anti-oxidant capacity results in oxidative stress. Oxidative stress and associated oxidative damage are mediators of vascular injury and inflammation in many cardiovascular diseases, including hypertension, hyperlipidemia, and diabetes. Increased generation of ROS has been demonstrated in experimental and human hypertension. Anti-oxidants and agents that interrupt NAD(P)H oxidase-driven *O2- production regress vascular remodeling, improve endothelial function, reduce inflammation, and decrease blood pressure in hypertensive models. This experimental evidence has evoked considerable interest because of the possibilities that therapies targeted against reactive oxygen intermediates, by decreasing generation of ROS and/or by increasing availability of antioxidants, may be useful in minimizing vascular injury and hypertensive end organ damage. The present chapter focuses on the importance of ROS in vascular biology and discusses the role of oxidative stress in vascular damage in hypertension.
Collapse
Affiliation(s)
- R M Touyz
- Multidisciplinary Research Group on Hypertension, Clinical Research Institute of Montreal, University of Montreal, 110 Pine Avenue West, Montreal, Quebec, H2W 1R7, Canada.
| | | |
Collapse
|
202
|
Liu J, Ormsby A, Oja-Tebbe N, Pagano PJ. Gene transfer of NAD(P)H oxidase inhibitor to the vascular adventitia attenuates medial smooth muscle hypertrophy. Circ Res 2004; 95:587-94. [PMID: 15308582 DOI: 10.1161/01.res.0000142317.88591.e6] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We previously showed that a systemic inhibitor of gp91(phox) (nox2)-based NAD(P)H oxidase abolishes angiotensin II (Ang II)-induced vascular hypertrophy. In the present study, we tested whether perivascular transfection with Ad-gp91ds-eGFP (an adenoviral bicistronic construct targeting NAD(P)H oxidase in fibroblasts) or controls Ad-CMV-eGFP and Ad-scrmb-eGFP would affect medial hypertrophy in response to Ang II. In C57BL/6J mice, we applied Ad-gp91ds-eGFP or controls to the left carotid adventitia, and 2 days later we implanted minipumps delivering vehicle or Ang II (750 microg/kg per day) for 7 days. None of the viral treatments affected Ang II-induced systolic blood pressure elevation. Immunohistochemical staining showed marker eGFP in adventitial fibroblasts and some macrophages, indicating expression of the gp91ds inhibitor. As expected, Ang II induced medial hypertrophy (medial cross-sectional area, 32.96+/-2.04 versus 20.57+/-1.00x10(3) microm2, Ang II versus control; P<0.001) that was significantly inhibited by Ad-gp91ds-eGFP (26.23+/-0.90x10(3) microm2; P<0.01) but not control viruses. Application of viruses alone did not change medial size under control conditions. Immunohistochemical staining and semiquantitative analysis showed a 70% increase in reactive oxygen species levels measured by the lipid peroxidation byproduct 4-hydroxynonenal (4-HNE) throughout the carotid wall in the Ang II group versus vehicle. After treatment with Ad-gp91ds-eGFP, 4-HNE generation was normalized. Thus NAD(P)H oxidases in adventitial fibroblasts and macrophages appear to modulate Ang II-induced medial hypertrophy.
Collapse
Affiliation(s)
- Jianhua Liu
- Hypertension and Vascular Research Division, Henry Ford Hospital, Detroit, Mich 48202-2689, USA
| | | | | | | |
Collapse
|
203
|
Herkert O, Djordjevic T, BelAiba RS, Görlach A. Insights into the redox control of blood coagulation: role of vascular NADPH oxidase-derived reactive oxygen species in the thrombogenic cycle. Antioxid Redox Signal 2004; 6:765-76. [PMID: 15242558 DOI: 10.1089/1523086041361695] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Various cardiovascular diseases including thrombosis, atherosclerosis, (pulmonary) hypertension and diabetes, are associated with disturbed coagulation. Alterations in the vessel wall common to many cardiovascular disorders have been shown to initiate the activity of the coagulation system, but also to be the result of an abnormal coagulation system. The primary link between the coagulation and the vascular system appears to be tissue factor (TF), which is induced on the surface of vascular cells and initiates the extrinsic pathway of the blood coagulation cascade, leading to the formation of thrombin. Thrombin can also interact with the vascular wall via specific receptors and can increase vascular TF expression. Such a "thrombogenic cycle" may be essentially involved in the pathogenesis of cardiovascular disorders associated with an abnormal coagulation. Therefore, the identification of the signaling pathways regulating this cycle and each of its relevant connecting links is of fundamental importance for the understanding of these disorders and their putative therapeutic potential. Reactive oxygen species (ROS) and the ROS-generating NADPH oxidases have been shown to play important roles as signaling molecules in the vasculature. In this review, we summarize the data supporting a substantial role of ROS in promoting a thrombogenic cycle in the vascular system.
Collapse
Affiliation(s)
- Olaf Herkert
- Experimental Pediatric Cardiology, Clinic for Pediatric Cardiology and Congenital Heart Diseases, German Heart Center Munich at the Technical University Munich, 80636
| | | | | | | |
Collapse
|
204
|
Tabet F, Savoia C, Schiffrin EL, Touyz RM. Differential Calcium Regulation by Hydrogen Peroxide and Superoxide in Vascular Smooth Muscle Cells from Spontaneously Hypertensive Rats. J Cardiovasc Pharmacol 2004; 44:200-8. [PMID: 15243301 DOI: 10.1097/00005344-200408000-00009] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We investigated the role of reactive oxygen species (ROS), particularly hydrogen peroxide (H2O2) and superoxide anion (*O2-) in the regulation of vascular smooth muscle cell (VSMC) Ca2+ concentration ([Ca2+]i) and vascular contraction and assessed whether redox-dependent Ca2+ signaling and contraction are altered in hypertension. VSMCs and mesenteric arteries from Wistar Kyoto (WKY) and spontaneously hypertensive rats (SHR) were studied. Cells were stimulated with H2O2 (10(-4) mol/l) or LY83583 (*O2- generator, 10(-5) mol/l). [Ca2+]i and cytosolic *O2- were measured by fura-2AM and tempo-9-AC fluorescence respectively. L-type and T-type Ca2+ channels were assessed using verapamil/diltiazem and mibefradil respectively and mRNA and protein expression of these channels was assessed by real-time PCR and immunoblotting respectively. H2O2 time-dependently increased [Ca2+]i and contraction with significantly greater effects in SHR versus WKY (P < 0.001). LY83583 increased [Ca2+]i in both strains, but responses were blunted in SHR. Removal of extracellular Ca2+ abrogated [Ca2+]i responses to H2O2 and *O2-. Verapamil and diltiazem, but not mibefradil, significantly decreased H2O2 -induced [Ca2+]i responses with greater effects in SHR (P < 0.01). L-type and T-type Ca2+ channel inhibition reduced LY83583-mediated [Ca2+]i increase only in WKY cells. Both types of Ca2+ channels were expressed (mRNA and protein) in VSMCs from WKY and SHR, with greater abundance in SHR than WKY (2- to 3-fold). These results demonstrate that ROS increase vascular [Ca2+]i and contraction, primarily via extracellular Ca2+ influx. Whereas responses to H2O2 are enhanced, *O2- -mediated actions are blunted in SHR. These effects may relate to differential activation of Ca2+ channels by H2O2 and *O2-. Enhanced activation of L-type Ca2+ channels and increased Ca2+ influx by H2O2 may contribute to increased Ca2+ signaling in VSMCs from SHR.
Collapse
MESH Headings
- Aminoquinolines/metabolism
- Aminoquinolines/pharmacology
- Animals
- Calcium/metabolism
- Calcium Channels, L-Type/chemistry
- Calcium Channels, L-Type/drug effects
- Calcium Channels, L-Type/genetics
- Calcium Channels, T-Type/chemistry
- Calcium Channels, T-Type/drug effects
- Calcium Channels, T-Type/genetics
- Calcium Signaling/drug effects
- Calcium Signaling/physiology
- Diltiazem/pharmacology
- Dose-Response Relationship, Drug
- Hydrogen Peroxide/metabolism
- Male
- Mesenteric Arteries/cytology
- Mesenteric Arteries/drug effects
- Mibefradil/pharmacology
- Muscle Contraction/drug effects
- Muscle Contraction/physiology
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Rats
- Rats, Inbred SHR
- Rats, Inbred WKY
- Reactive Oxygen Species/metabolism
- Superoxides/metabolism
- Verapamil/pharmacology
Collapse
Affiliation(s)
- Fatiha Tabet
- CIHR Multidisciplinary Research Group on Hypertension, Clinical Research Institute of Montreal, University of Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
205
|
Touyz RM, Tabet F, Schiffrin EL. Redox-dependent signalling by angiotensin II and vascular remodelling in hypertension. Clin Exp Pharmacol Physiol 2004; 30:860-6. [PMID: 14678251 DOI: 10.1046/j.1440-1681.2003.03930.x] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
1. Hypertension is associated with structural alterations of resistance arteries, a process known as remodelling (increased media-to-lumen ratio). 2. At the cellular level, vascular remodelling involves changes in vascular smooth muscle cell (VSMC) growth, cell migration, inflammation and fibrosis. These processes are mediated via multiple factors, of which angiotensin (Ang) II appears to be one of the most important in hypertension. 3. Angiotensin II signalling, via AT1 receptors, is upregulated in VSMC from resistance arteries of hypertensive patients and rats. This is associated with hyperactivation of vascular NADPH oxidase, leading to increased generation of reactive oxygen species (ROS), particularly O2- and H2O2. 4. Reactive oxygen species function as important intracellular second messengers to activate many downstream signalling molecules, such as mitogen-activated protein kinase, protein tyrosine phosphatases, protein tyrosine kinases and transcription factors. Activation of these signalling cascades leads to VSMC growth and migration, modulation of endothelial function, expression of pro-inflammatory mediators and modification of extracellular matrix. 5. Furthermore, ROS increase intracellular free Ca2+ concentration ([Ca2+]i), a major determinant of vascular reactivity. 6. All these processes play major roles in vascular injury associated with hypertension. Accordingly, ROS and the signalling pathways that they modulate provide new targets to regress vascular remodelling, reduce peripheral resistance and prevent hypertensive end-organ damage. 7. In the present review, we discuss the role of ROS as second messengers in AngII signalling and focus on the implications of these events in the processes underlying vascular remodelling in hypertension.
Collapse
Affiliation(s)
- Rhian M Touyz
- Canadian Institute of Health Research Multidisciplinary Research Group on Hypertension, Clinical Research Institute of Montreal, University of Montreal, Quebec, Canada.
| | | | | |
Collapse
|
206
|
Daou GB, Srivastava AK. Reactive oxygen species mediate Endothelin-1-induced activation of ERK1/2, PKB, and Pyk2 signaling, as well as protein synthesis, in vascular smooth muscle cells. Free Radic Biol Med 2004; 37:208-15. [PMID: 15203192 DOI: 10.1016/j.freeradbiomed.2004.04.018] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2004] [Revised: 03/31/2004] [Accepted: 04/16/2004] [Indexed: 11/22/2022]
Abstract
Reactive oxygen species (ROS) have been shown to mediate the effects of several growth factors and vasoactive peptides, such as epidermal growth factor, platelet-derived growth factor, and angiotensin II (AII). Endothelin-1 (ET-1) is a vasoactive peptide which also exhibits mitogenic activity in vascular smooth muscle cells (VSMCs), and is believed to contribute to the pathogenesis of vascular abnormalities such as atherosclerosis, hypertension, and restenosis after angioplasty. However, a possible role for ROS generation in mediating the ET-1 response on extracellular signal-regulated kinases 1 and 2 (ERK1/2), protein kinase B (PKB), and protein tyrosine kinase 2 (Pyk2), key components of the growth-promoting and proliferative signaling pathways, has not been examined in detail. Our aim was to investigate the involvement of ROS in ET-1-mediated activation of ERK1/2, PKB, and Pyk2 in A-10 VSMCs. ET-1 stimulated ERK1/2, PKB, and Pyk2 phosphorylation in a dose- and time-dependent manner. Pretreatment of A-10 VSMCs with diphenyleneiodonium (DPI), an inhibitor of reduced nicotinamide adenine dinucleotide phosphate oxidase, attenuated ET-1-enhanced ERK1/2, PKB, and Pyk2 phosphorylation. In addition, in parallel with an inhibitory effect on the above signaling components, DPI also blocked ET-1-induced protein synthesis. ET-1 was also found to increase ROS production, which was suppressed by DPI treatment. N-Acetylcysteine, a ROS scavenger, exhibited a response similar to that of DPI and inhibited ET-1-stimulated ERK1/2, PKB, and Pyk2 phosphorylation. These results demonstrate that ROS are critical mediators of ET-1-induced signaling events linked to growth-promoting proliferative and hypertrophic pathways in VSMCs.
Collapse
Affiliation(s)
- Grace Bou Daou
- Research Center, Centre hospitalier de l'Université de Montréal - Hôtel-Dieu, Department of Medicine and Physiology, Université de Montréal, Quebec, Canada
| | | |
Collapse
|
207
|
Adachi T, Pimentel DR, Heibeck T, Hou X, Lee YJ, Jiang B, Ido Y, Cohen RA. S-glutathiolation of Ras mediates redox-sensitive signaling by angiotensin II in vascular smooth muscle cells. J Biol Chem 2004; 279:29857-62. [PMID: 15123696 DOI: 10.1074/jbc.m313320200] [Citation(s) in RCA: 234] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Angiotensin II (AII) increases production of reactive oxygen species from NAD(P)H oxidase, a response that contributes to vascular hypertrophy. Here we show in cultured vascular smooth muscle cells that S-glutathiolation of the redox-sensitive Cys(118) on the small GTPase, Ras, plays a critical role in AII-induced hypertrophic signaling. AII simultaneously increased the Ras activity and the S-glutathiolation of Ras (GSS-Ras) detected by biotin-labeled GSH or mass spectrometry. Both the increase in activity and GSS-Ras was labile under reducing conditions, suggesting the essential nature of this thiol modification to Ras activation. Overexpression of catalase, a dominant-negative p47(phox), or glutaredoxin-1 decreased GSS-Ras, Ras activation, p38, and Akt phosphorylation and the induction of protein synthesis by AII. Furthermore, expression of a Cys(118) mutant Ras decreased AII-mediated p38 and Akt phosphorylation as well as protein synthesis. These results show that H(2)O(2) from NAD(P)H oxidase forms GSS-Ras on Cys(118) and increases its activity leading to p38 and Akt phosphorylation, which contributes to the induction of protein synthesis. This study suggests that GSS-Ras is a redox-sensitive signaling switch that participates in the cellular response to AII.
Collapse
Affiliation(s)
- Takeshi Adachi
- Vascular Biology Unit, Whitaker Cardiovascular Institute, Boston University Medical Center, Boston, Massachusetts 02118, USA.
| | | | | | | | | | | | | | | |
Collapse
|
208
|
Xu JW, Ikeda K, Yamori Y. Genistein Inhibits Expressions of NADPH Oxidase p22phox and Angiotensin II Type 1 Receptor in Aortic Endothelial Cells from Stroke-Prone Spontaneously Hypertensive Rats. Hypertens Res 2004; 27:675-83. [PMID: 15750262 DOI: 10.1291/hypres.27.675] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Phytoestrogens are considered to be natural selective estrogen receptor modulators exerting antioxidant activity and improving vascular function. However, the mechanisms responsible for their antioxidative effects remain largely unknown. This study tested the hypothesis that genistein may provide significant endothelial protection by antioxidative effects through attenuating NADPH oxidase expression and activity. The results showed that genistein suppressed the expressions of the p22phox NADPH oxidase subunit and angiotensin II (Ang II) type 1 (AT1) receptor in a concentration- and time-dependent manner in aortic endothelial cells from stroke-prone spontaneously hypertensive rats examined by Western blot analysis. Treatment with genistein also remarkably reduced the Ang II-induced superoxide by the reduction of nitroblue tetrazolium, inhibited nitrotyrosine formation, and attenuated endothelin-1 production by ELISA via the stimulation of Ang II. However, when cells were pretreated with ICI-182780, an estrogen-receptor antagonist, at a concentration of 50 micromol/l for 30 min and then co-incubated with ICI-182780 and genistein for 24 h, the inhibitory effect of genistein was not blocked. In contrast, the inhibitory effect of genistein treatment was partially reversed by 30-min pretreatment of endothelial cells with GW9662, a peroxisome proliferator-activated receptor gamma (PPARgamma) antagonist. Genistein thus appears to act as an antioxidant at the transcription level by the downregulation of p22phox and AT1 receptor expression. Our data also showed that the PPARgamma pathway was involved, at least in part, in the inhibitory effect of genistein on the expression of p22phox and AT1 receptors. The endothelial-protective effects of phytoestrogen may contribute to improvement of cardiovascular functions.
Collapse
Affiliation(s)
- Jin-Wen Xu
- Frontier Health Science, School of Human Environmental Science, Mukogawa Women's University, Nishinomiya, Japan.
| | | | | |
Collapse
|
209
|
|
210
|
Chade AR, Rodriguez-Porcel M, Herrmann J, Krier JD, Zhu X, Lerman A, Lerman LO. Beneficial effects of antioxidant vitamins on the stenotic kidney. Hypertension 2003; 42:605-12. [PMID: 12925565 DOI: 10.1161/01.hyp.0000089880.32275.7c] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Renal artery stenosis (RAS) may lead to renal injury, partly mediated through increased oxidative stress. However, the potential effects of chronic oral antioxidant intervention on the stenotic kidney remain unknown. This study was designed to test the hypothesis that chronic antioxidant vitamin supplementation in RAS would preserve renal function and structure. Single-kidney hemodynamics and function were quantified in vivo in pigs using electron-beam CT after 12 weeks of unilateral RAS (n=7), a similar degree of RAS orally supplemented with vitamins C (1 g) and E (100 IU/kg) (RAS+Vitamins, n=7), or controls (normal, n=7). Renal tissue was studied ex vivo using Western blotting and immunohistochemistry. Mean arterial pressure was similarly elevated in both RAS groups, while ischemic renal volume and glomerular filtration rate were similarly reduced. Renal blood flow was decreased in RAS compared with normal (326.5+/-99.9 versus 553.4+/-48.7 mL/min, respectively, P=0.01), but preserved in RAS+Vitamins (485.2+/-104.1 mL/min, P=0.3 versus normal). The marked increase in the expression of the NADPH-oxidase subunits p47phox and p67phox, nitrotyrosine, endothelial and inducible nitric oxide synthase, and nuclear factor-kappaB observed in RAS (P<0.05 versus normal) was normalized in RAS+Vitamins (P>0.1). Furthermore, trichrome staining and the expression of transforming growth factor-beta and tissue inhibitor of matrix-metalloproteinase-1 were also decreased in RAS+Vitamins. In conclusion, chronic blockade of the oxidative stress pathway in RAS using antioxidant vitamins improved renal hemodynamics and decreased oxidative stress, inflammation, and fibrosis in the ischemic kidney. These observations underscore the involvement of oxidative stress in renal injury in RAS and support a role for antioxidant vitamins in preserving the ischemic kidney.
Collapse
Affiliation(s)
- Alejandro R Chade
- Division of Hypertension, Department of Internal Medicine, Mayo Clinic, Rochester, Minn 55905, USA
| | | | | | | | | | | | | |
Collapse
|
211
|
Cai H, Griendling KK, Harrison DG. The vascular NAD(P)H oxidases as therapeutic targets in cardiovascular diseases. Trends Pharmacol Sci 2003; 24:471-8. [PMID: 12967772 DOI: 10.1016/s0165-6147(03)00233-5] [Citation(s) in RCA: 528] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Activation of vascular NAD(P)H oxidases and the production of reactive oxygen species (ROS) by these enzyme systems are common in cardiovascular disease. In the past several years, a new family of NAD(P)H oxidase subunits, known as the non-phagocytic NAD(P)H oxidase (NOX) proteins, have been discovered and shown to play a role in vascular tissues. Recent studies make clearer the mechanisms of activation of the endothelial and vascular smooth muscle NAD(P)H oxidases. ROS produced following angiotensin II-mediated stimulation of NAD(P)H oxidases signal through pathways such as mitogen-activated protein kinases, tyrosine kinases and transcription factors, and lead to events such as inflammation, hypertrophy, remodeling and angiogenesis. Studies in mice that are deficient in p47(phox) and gp91(phox) (also known as NOX2) NAD(P)H oxidase subunits show that ROS produced by these oxidases contribute to cardiovascular diseases including atherosclerosis and hypertension. Recently, efforts have been devoted to developing inhibitors of NAD(P)H oxidases that will provide useful experimental tools and might have therapeutic potential in the treatment of human diseases.
Collapse
Affiliation(s)
- Hua Cai
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
212
|
Cifuentes ME, Pagano PJ. c-Src and smooth muscle NAD(P)H oxidase: assembling a path to hypertrophy. Arterioscler Thromb Vasc Biol 2003; 23:919-21. [PMID: 12807712 DOI: 10.1161/01.atv.0000077235.97226.82] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|