201
|
Matrone G, Meng S, Gu Q, Lv J, Fang L, Chen K, Cooke JP. Lmo2 (LIM-Domain-Only 2) Modulates Sphk1 (Sphingosine Kinase) and Promotes Endothelial Cell Migration. Arterioscler Thromb Vasc Biol 2017; 37:1860-1868. [PMID: 28775072 DOI: 10.1161/atvbaha.117.309609] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 07/10/2017] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Lmo (LIM-domain-only)2 transcription factor is involved in hematopoiesis and vascular remodeling. Sphk (sphingosine kinase)1 phosphorylates sphingosine to S1P (sphingosine-1-phosphate). We hypothesized that Lmo2 regulates Sphk1 to promote endothelial cell (EC) migration and vascular development. APPROACH AND RESULTS: Lmo2 and Sphk1 knockdown (KD) were performed in Tg(fli1:EGFP) y1 zebrafish and in human umbilical vein EC. Rescue of phenotypes or overexpression of these factors were achieved using mRNA encoding Lmo2 or Sphk1. EC proliferation in vivo was assessed by BrdU (bromodeoxyuridine) immunostaining and fluorescence-activated cell sorter analysis of dissociated Tg(fli1:EGFP) y1 embryos. Cell migration was assessed by scratch assay in human umbilical vein EC and mouse aortic rings. Lmo2 interactions with Sphk1 promoter were assessed by ChIP-PCR (chromatin immunoprecipitation-polymerase chain reaction). Lmo2 or Sphk1 KD reduced number and length of intersegmental vessels. There was no reduction in the numbers of GFP+ (green fluorescent protein) ECs after Lmo2 KD. However, reduced numbers of BrdU+GFP+ nuclei were observed along the dysmorphic intersegmental vessels, accumulating instead at the sprouting origin of the intersegmental vessels. This anomaly was likely because of impaired EC migration, which was confirmed in migration assays using Lmo2 KD human umbilical vein ECs and mouse aortic rings. Both in vivo and in vitro, Lmo2 KD reduced Sphk1 gene expression, associated with less Lmo2 binding to the Sphk1 promoter as assessed by ChIP-PCR. Sphk1 mRNA rescued the Lmo2 KD phenotype. CONCLUSIONS Our data showed that Lmo2 is necessary for Sphk1 gene expression in ECs. Lmo2 KD reduced Lmo2-Sphk1 gene interaction, impaired intersegmental vessels formation, and reduced cell migration. We identified for the first time Sphk1 as downstream effector of Lmo2.
Collapse
Affiliation(s)
- Gianfranco Matrone
- From the Department of Cardiovascular Sciences, Houston Methodist Research Institute, TX
| | - Shu Meng
- From the Department of Cardiovascular Sciences, Houston Methodist Research Institute, TX
| | - Qilin Gu
- From the Department of Cardiovascular Sciences, Houston Methodist Research Institute, TX
| | - Jie Lv
- From the Department of Cardiovascular Sciences, Houston Methodist Research Institute, TX
| | - Longhou Fang
- From the Department of Cardiovascular Sciences, Houston Methodist Research Institute, TX
| | - Kaifu Chen
- From the Department of Cardiovascular Sciences, Houston Methodist Research Institute, TX
| | - John P Cooke
- From the Department of Cardiovascular Sciences, Houston Methodist Research Institute, TX.
| |
Collapse
|
202
|
Mannioui A, Vauzanges Q, Fini JB, Henriet E, Sekizar S, Azoyan L, Thomas JL, Pasquier DD, Giovannangeli C, Demeneix B, Lubetzki C, Zalc B. The Xenopus tadpole: An in vivo model to screen drugs favoring remyelination. Mult Scler 2017; 24:1421-1432. [PMID: 28752787 DOI: 10.1177/1352458517721355] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND In multiple sclerosis, development of screening tools for remyelination-promoting molecules is timely. OBJECTIVE A Xenopus transgenic line allowing conditional ablation of myelinating oligodendrocytes has been adapted for in vivo screening of remyelination-favoring molecules. METHODS In this transgenic, the green fluorescent protein reporter is fused to E. coli nitroreductase and expressed specifically in myelinating oligodendrocytes. Nitroreductase converts the innocuous pro-drug metronidazole to a cytotoxin. Spontaneous remyelination occurs after metronidazole-induced demyelinating responses. As tadpoles are transparent, these events can be monitored in vivo and quantified. At the end of metronidazole-induced demyelination, tadpoles were screened in water containing the compounds tested. After 72 h, remyelination was assayed by counting numbers of oligodendrocytes per optic nerve. RESULTS Among a battery of molecules tested, siponimod, a dual agonist of sphingosine-1-phosphate receptor 1 and 5, was among the most efficient favoring remyelination. Crispr/cas9 gene editing showed that the promyelinating effect of siponimod involves the sphingosine-1-phosphate receptor 5. CONCLUSION This Xenopus transgenic line constitutes a simple in vivo screening platform for myelin repair therapeutics. We validated several known promyelinating compounds and demonstrated that the strong remyelinating efficacy of siponimod implicates the sphingosine-1-phosphate receptor 5.
Collapse
Affiliation(s)
- Abdelkrim Mannioui
- Sorbonne Universités UPMC Univ Paris 06, Inserm, CNRS, ICM-GH Pitié-Salpêtrière, and IBPS F-75013 Paris, France
| | - Quentin Vauzanges
- Sorbonne Universités UPMC Univ Paris 06, Inserm, CNRS, APHP, Institut du Cerveau et de la Moelle épinière (ICM), GH Pitié-Salpêtrière, Paris, France
| | | | - Esther Henriet
- Sorbonne Universités UPMC Univ Paris 06, Inserm, CNRS, APHP, Institut du Cerveau et de la Moelle épinière (ICM), GH Pitié-Salpêtrière, Paris, France
| | - Somya Sekizar
- Sorbonne Universités UPMC Univ Paris 06, Inserm, CNRS, APHP, Institut du Cerveau et de la Moelle épinière (ICM), GH Pitié-Salpêtrière, Paris, France
| | - Loris Azoyan
- Sorbonne Universités UPMC Univ Paris 06, Inserm, CNRS, APHP, Institut du Cerveau et de la Moelle épinière (ICM), GH Pitié-Salpêtrière, Paris, France
| | - Jean Léon Thomas
- Sorbonne Universités UPMC Univ Paris 06, Inserm, CNRS, APHP, ICM-GH Pitié-Salpêtrière, Paris, France; Department of Neurology, School of Medicine, Yale University, New Haven, CT, USA
| | | | | | - Barbara Demeneix
- CNRS UMR 7221, Muséum National d'Histoire Naturelle, Paris, France
| | - Catherine Lubetzki
- Sorbonne Universités UPMC Univ Paris 06, Inserm, CNRS, APHP, Institut du Cerveau et de la Moelle épinière (ICM), GH Pitié-Salpêtrière, Paris, France
| | - Bernard Zalc
- Sorbonne Universités UPMC Univ Paris 06, Inserm, CNRS, APHP, Institut du Cerveau et de la Moelle épinière (ICM), GH Pitié-Salpêtrière, Paris, France
| |
Collapse
|
203
|
Abstract
Sphingosine 1-phosphate (S1P) is a potent lipid mediator that works on five kinds of S1P receptors located on the cell membrane. In the circulation, S1P is distributed to HDL, followed by albumin. Since S1P and HDL share several bioactivities, S1P is believed to be responsible for the pleiotropic effects of HDL. Plasma S1P levels are reportedly lower in subjects with coronary artery disease, suggesting that S1P might be deeply involved in the pathogenesis of atherosclerosis. In basic experiments, however, S1P appears to possess both pro-atherosclerotic and anti-atherosclerotic properties; for example, S1P possesses anti-apoptosis, anti-inflammation, and vaso-relaxation properties and maintains the barrier function of endothelial cells, while S1P also promotes the egress and activation of lymphocytes and exhibits pro-thrombotic properties. Recently, the mechanism for the biased distribution of S1P on HDL has been elucidated; apolipoprotein M (apoM) carries S1P on HDL. ApoM is also a modulator of S1P, and the metabolism of apoM-containing lipoproteins largely affects the plasma S1P level. Moreover, apoM modulates the biological properties of S1P. S1P bound to albumin exerts both beneficial and harmful effects in the pathogenesis of atherosclerosis, while S1P bound to apoM strengthens anti-atherosclerotic properties and might weaken the pro-atherosclerotic properties of S1P. Although the detailed mechanisms remain to be elucidated, apoM and S1P might be novel targets for the alleviation of atherosclerotic diseases in the future.
Collapse
Affiliation(s)
- Makoto Kurano
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo
| | - Yutaka Yatomi
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo
| |
Collapse
|
204
|
S1P Provokes Tumor Lymphangiogenesis via Macrophage-Derived Mediators Such as IL-1 β or Lipocalin-2. Mediators Inflamm 2017; 2017:7510496. [PMID: 28804221 PMCID: PMC5539930 DOI: 10.1155/2017/7510496] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/15/2017] [Indexed: 12/17/2022] Open
Abstract
A pleiotropic signaling lipid, sphingosine-1-phosphate (S1P), has been implicated in various pathophysiological processes supporting tumor growth and metastasis. However, there are only a few descriptive studies suggesting a role of S1P in tumor lymphangiogenesis, which is critical for tumor growth and dissemination. Corroborating own data, the literature suggests that apoptotic tumor cell-derived S1P alters the phenotype of tumor-associated macrophages (TAMs) to gain protumor functions. However, mechanistically, the role of TAM-induced lymphangiogenesis has only been poorly described, mostly linked to the production of lymphangiogenic factors such as vascular endothelial growth factor C (VEGF-C) and VEGF-D, or transdifferentiation into lymphatic endothelial cells. Recent findings highlight a rather underappreciated role of S1P in tumor lymphangiogenesis, referring to the production of interleukin-1β (IL-1β) and lipocalin-2 (LCN2) by a tumor-promoting macrophage phenotype. In this review, we aim to provide to the readers with the current understanding of the molecular mechanism how apoptotic cell-derived S1P triggers TAMs to promote lymphangiogenesis.
Collapse
|
205
|
Kwong EK, Li X, Hylemon PB, Zhou H. Sphingosine Kinases/Sphingosine 1-Phosphate Signaling in Hepatic Lipid Metabolism. ACTA ACUST UNITED AC 2017; 3:176-183. [PMID: 29130028 DOI: 10.1007/s40495-017-0093-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The ever-increasing prevalence of metabolic diseases such as dyslipidemia and diabetes in the western world continues to be of great public health concern. Biologically active sphingolipids, such as sphingosine 1-phosphate (S1P) and ceramide, are important regulators of lipid metabolism. S1P not only directly functions as an active intracellular mediator, but also activates multiple signaling pathways via five transmembrane G-protein coupled receptors (GPCRs), S1PR1-5. S1P is exclusively formed by sphingosine kinases (SphKs). Two isoforms of SphKs, SphK1 and SphK2, have been identified. Recent identification of the conjugated bile acid-induced activation of S1PR2 as a key regulator of SphK2 opened new directions for both the sphingolipid and bile acid research fields. The role of SphKs/S1P-mediated signaling pathways in health and various human diseases has been extensively reviewed elsewhere. This review focuses on recent findings related to SphKs/S1P-medaited signaling pathways in regulating hepatic lipid metabolism.
Collapse
Affiliation(s)
- Eric K Kwong
- Department of Microbiology and Immunology, Medical College of Virginia Campus, McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, Richmond, Virginia, 23298
| | - Xiaojiaoyang Li
- Department of Microbiology and Immunology, Medical College of Virginia Campus, McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, Richmond, Virginia, 23298
| | - Phillip B Hylemon
- Department of Microbiology and Immunology, Medical College of Virginia Campus, McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, Richmond, Virginia, 23298
| | - Huiping Zhou
- Department of Microbiology and Immunology, Medical College of Virginia Campus, McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, Richmond, Virginia, 23298
| |
Collapse
|
206
|
Tatin F, Renaud-Gabardos E, Godet AC, Hantelys F, Pujol F, Morfoisse F, Calise D, Viars F, Valet P, Masri B, Prats AC, Garmy-Susini B. Apelin modulates pathological remodeling of lymphatic endothelium after myocardial infarction. JCI Insight 2017; 2:93887. [PMID: 28614788 DOI: 10.1172/jci.insight.93887] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 05/10/2017] [Indexed: 11/17/2022] Open
Abstract
Lymphatic endothelium serves as a barrier to control fluid balance and immune cell trafficking to maintain tissue homeostasis. Long-term alteration of lymphatic vasculature promotes edema and fibrosis, which is an aggravating factor in the onset of cardiovascular diseases such as myocardial infarction. Apelin is a bioactive peptide that plays a central role in angiogenesis and cardiac contractility. Despite an established role of apelin in lymphangiogenesis, little is known about its function in the cardiac lymphatic endothelium. Here, we show that apelin and its receptor APJ were exclusively expressed on newly formed lymphatic vasculature in a pathological model of myocardial infarction. Using an apelin-knockout mouse model, we identified morphological and functional defects in lymphatic vasculature associated with a proinflammatory status. Surprisingly, apelin deficiency increased the expression of lymphangiogenic growth factors VEGF-C and VEGF-D and exacerbated lymphangiogenesis after myocardial infarction. Conversely, the overexpression of apelin in ischemic heart was sufficient to restore a functional lymphatic vasculature and to reduce matrix remodeling and inflammation. In vitro, the expression of apelin prevented the alteration of cellular junctions in lymphatic endothelial cells induced by hypoxia. In addition, we demonstrated that apelin controls the secretion of the lipid mediator sphingosine-1-phosphate in lymphatic endothelial cells by regulating the level of expression of sphingosine kinase 2 and the transporter SPNS2. Taken together, our results show that apelin plays a key role in lymphatic vessel maturation and stability in pathological settings. Thus, apelin may represent a novel candidate to prevent pathological lymphatic remodeling in diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Fanny Viars
- MetaToul-Lipidomique Core Facility, I2MC INSERM 1048, Toulouse, France
| | | | | | | | | |
Collapse
|
207
|
Cantalupo A, Gargiulo A, Dautaj E, Liu C, Zhang Y, Hla T, Di Lorenzo A. S1PR1 (Sphingosine-1-Phosphate Receptor 1) Signaling Regulates Blood Flow and Pressure. Hypertension 2017; 70:426-434. [PMID: 28607130 DOI: 10.1161/hypertensionaha.117.09088] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/01/2017] [Accepted: 05/10/2017] [Indexed: 01/16/2023]
Abstract
Nitric oxide is one of the major endothelial-derived vasoactive factors that regulate blood pressure (BP), and the bioactive lipid mediator S1P (sphingosine-1-phosphate) is a potent activator of endothelial nitric oxide synthase through G protein-coupled receptors. Endothelial-derived S1P and the autocrine/paracrine activation of S1PR (S1P receptors) play an important role in preserving vascular functions and BP homeostasis. Furthermore, FTY720 (fingolimod), binding to 4 out of 5 S1PRs recently approved by the Food and Drug Administration to treat autoimmune conditions, induces a modest and transient decrease in heart rate in both animals and humans, suggesting that drugs targeting sphingolipid signaling affect cardiovascular functions in vivo. However, the role of specific S1P receptors in BP homeostasis remains unknown. The aim of this study is to determine the role of the key vascular S1P receptors, namely, S1PR1 and S1PR3, in BP regulation in physiological and hypertensive conditions. The specific loss of endothelial S1PR1 decreases basal and stimulated endothelial-derived nitric oxide and resets BP to a higher-than-normal value. Interestingly, we identified a novel and important role for S1PR1 signaling in flow-mediated mechanotransduction. FTY720, acting as functional antagonist of S1PR1, markedly decreases endothelial S1PR1, increases BP in control mice, and exacerbates hypertension in angiotensin II mouse model, underlining the antihypertensive functions of S1PR1 signaling. Our study identifies S1P-S1PR1-nitric oxide signaling as a new regulatory pathway in vivo of vascular relaxation to flow and BP homeostasis, providing a novel therapeutic target for the treatment of hypertension.
Collapse
Affiliation(s)
- Anna Cantalupo
- From the Department of Pathology and Laboratory Medicine, Center for Vascular Biology, Weill Cornell Medicine, New York (A.C., A.G., E.D., C.L., Y.Z., T.H., A.D.L.); and Department of Pharmacy, Faculty of Pharmacy, University of Naples "Federico II", Naples, Italy (A.G.)
| | - Antonella Gargiulo
- From the Department of Pathology and Laboratory Medicine, Center for Vascular Biology, Weill Cornell Medicine, New York (A.C., A.G., E.D., C.L., Y.Z., T.H., A.D.L.); and Department of Pharmacy, Faculty of Pharmacy, University of Naples "Federico II", Naples, Italy (A.G.)
| | - Elona Dautaj
- From the Department of Pathology and Laboratory Medicine, Center for Vascular Biology, Weill Cornell Medicine, New York (A.C., A.G., E.D., C.L., Y.Z., T.H., A.D.L.); and Department of Pharmacy, Faculty of Pharmacy, University of Naples "Federico II", Naples, Italy (A.G.)
| | - Catherine Liu
- From the Department of Pathology and Laboratory Medicine, Center for Vascular Biology, Weill Cornell Medicine, New York (A.C., A.G., E.D., C.L., Y.Z., T.H., A.D.L.); and Department of Pharmacy, Faculty of Pharmacy, University of Naples "Federico II", Naples, Italy (A.G.)
| | - Yi Zhang
- From the Department of Pathology and Laboratory Medicine, Center for Vascular Biology, Weill Cornell Medicine, New York (A.C., A.G., E.D., C.L., Y.Z., T.H., A.D.L.); and Department of Pharmacy, Faculty of Pharmacy, University of Naples "Federico II", Naples, Italy (A.G.)
| | - Timothy Hla
- From the Department of Pathology and Laboratory Medicine, Center for Vascular Biology, Weill Cornell Medicine, New York (A.C., A.G., E.D., C.L., Y.Z., T.H., A.D.L.); and Department of Pharmacy, Faculty of Pharmacy, University of Naples "Federico II", Naples, Italy (A.G.)
| | - Annarita Di Lorenzo
- From the Department of Pathology and Laboratory Medicine, Center for Vascular Biology, Weill Cornell Medicine, New York (A.C., A.G., E.D., C.L., Y.Z., T.H., A.D.L.); and Department of Pharmacy, Faculty of Pharmacy, University of Naples "Federico II", Naples, Italy (A.G.).
| |
Collapse
|
208
|
Skerry C, Scanlon K, Ardanuy J, Roberts D, Zhang L, Rosen H, Carbonetti NH. Reduction of Pertussis Inflammatory Pathology by Therapeutic Treatment With Sphingosine-1-Phosphate Receptor Ligands by a Pertussis Toxin-Insensitive Mechanism. J Infect Dis 2017; 215:278-286. [PMID: 27815382 PMCID: PMC5853922 DOI: 10.1093/infdis/jiw536] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 10/28/2016] [Indexed: 12/28/2022] Open
Abstract
Recent data have demonstrated the potential of sphingosine 1-phosphate (S1P) receptor (S1PR) agonism in the treatment of infectious diseases. A previous study used a murine model of Bordetella pertussis infection to demonstrate that treatment with the S1PR agonist AAL-R reduces pulmonary inflammation during infection. In the current study, we showed that this effect is mediated via the S1PR1 on LysM+ (myeloid) cells. Signaling via this receptor results in reduced lung inflammation and cellular recruitment as well as reduced morbidity and mortality in a neonatal mouse model of disease. Despite the fact that S1PRs are pertussis toxin-sensitive G protein-coupled receptors, the effects of AAL-R were pertussis toxin insensitive in our model. Furthermore, our data demonstrate that S1PR agonist administration may be effective at therapeutic time points. These results indicate a role for S1P signaling in B. pertussis-mediated pathology and highlight the possibility of host-targeted therapy for pertussis.
Collapse
Affiliation(s)
| | | | | | - Drew Roberts
- Department of Physiology, University of Maryland Medical School, Baltimore
| | - Li Zhang
- Department of Physiology, University of Maryland Medical School, Baltimore
| | - Hugh Rosen
- Departments of Chemical Physiology and Immunology, The Scripps Research Institute, La Jolla, California
| | | |
Collapse
|
209
|
Vestri A, Pierucci F, Frati A, Monaco L, Meacci E. Sphingosine 1-Phosphate Receptors: Do They Have a Therapeutic Potential in Cardiac Fibrosis? Front Pharmacol 2017. [PMID: 28626422 PMCID: PMC5454082 DOI: 10.3389/fphar.2017.00296] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Sphingosine 1-phosphate (S1P) is a bioactive lipid that is characterized by a peculiar mechanism of action. In fact, S1P, which is produced inside the cell, can act as an intracellular mediator, whereas after its export outside the cell, it can act as ligand of specific G-protein coupled receptors, which were initially named endothelial differentiation gene (Edg) and eventually renamed sphingosine 1-phosphate receptors (S1PRs). Among the five S1PR subtypes, S1PR1, S1PR2 and S1PR3 isoforms show broad tissue gene expression, while S1PR4 is primarily expressed in immune system cells, and S1PR5 is expressed in the central nervous system. There is accumulating evidence for the important role of S1P as a mediator of many processes, such as angiogenesis, carcinogenesis and immunity, and, ultimately, fibrosis. After a tissue injury, the imbalance between the production of extracellular matrix (ECM) and its degradation, which occurs due to chronic inflammatory conditions, leads to an accumulation of ECM and, consequential, organ dysfunction. In these pathological conditions, many factors have been described to act as pro- and anti-fibrotic agents, including S1P. This bioactive lipid exhibits both pro- and anti-fibrotic effects, depending on its site of action. In this review, after a brief description of sphingolipid metabolism and signaling, we emphasize the involvement of the S1P/S1PR axis and the downstream signaling pathways in the development of fibrosis. The current knowledge of the therapeutic potential of S1PR subtype modulators in the treatment of the cardiac functions and fibrinogenesis are also examined.
Collapse
Affiliation(s)
- Ambra Vestri
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Molecular and Applied Biology Research Unit, University of FlorenceFlorence, Italy
| | - Federica Pierucci
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Molecular and Applied Biology Research Unit, University of FlorenceFlorence, Italy.,Interuniversity Institutes of MyologyFirenze, Italy
| | - Alessia Frati
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Molecular and Applied Biology Research Unit, University of FlorenceFlorence, Italy
| | - Lucia Monaco
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of RomeRome, Italy
| | - Elisabetta Meacci
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Molecular and Applied Biology Research Unit, University of FlorenceFlorence, Italy.,Interuniversity Institutes of MyologyFirenze, Italy
| |
Collapse
|
210
|
Hatoum D, Haddadi N, Lin Y, Nassif NT, McGowan EM. Mammalian sphingosine kinase (SphK) isoenzymes and isoform expression: challenges for SphK as an oncotarget. Oncotarget 2017; 8:36898-36929. [PMID: 28415564 PMCID: PMC5482707 DOI: 10.18632/oncotarget.16370] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 03/02/2017] [Indexed: 12/16/2022] Open
Abstract
The various sphingosine kinase (SphK) isoenzymes (isozymes) and isoforms, key players in normal cellular physiology, are strongly implicated in cancer and other diseases. Mutations in SphKs, that may justify abnormal physiological function, have not been recorded. Nonetheless, there is a large and growing body of evidence demonstrating the contribution of gain or loss of function and the imbalance in the SphK/S1P rheostat to a plethora of pathological conditions including cancer, diabetes and inflammatory diseases. SphK is expressed as two isozymes SphK1 and SphK2, transcribed from genes located on different chromosomes and both isozymes catalyze the phosphorylation of sphingosine to S1P. Expression of each SphK isozyme produces alternately spliced isoforms. In recent years the importance of the contribution of SpK1 expression to treatment resistance in cancer has been highlighted and, additionally, differences in treatment outcome appear to also be dependent upon SphK isoform expression. This review focuses on an exciting emerging area of research involving SphKs functions, expression and subcellular localization, highlighting the complexity of targeting SphK in cancer and also comorbid diseases. This review also covers the SphK isoenzymes and isoforms from a historical perspective, from their first discovery in murine species and then in humans, their role(s) in normal cellular function and in disease processes, to advancement of SphK as an oncotarget.
Collapse
Affiliation(s)
- Diana Hatoum
- School of Life Sciences, University of Technology Sydney, Ultimo, Sydney, NSW 2007, Australia
| | - Nahal Haddadi
- School of Life Sciences, University of Technology Sydney, Ultimo, Sydney, NSW 2007, Australia
| | - Yiguang Lin
- School of Life Sciences, University of Technology Sydney, Ultimo, Sydney, NSW 2007, Australia
| | - Najah T. Nassif
- School of Life Sciences, University of Technology Sydney, Ultimo, Sydney, NSW 2007, Australia
| | - Eileen M. McGowan
- School of Life Sciences, University of Technology Sydney, Ultimo, Sydney, NSW 2007, Australia
| |
Collapse
|
211
|
Yamamoto R, Aoki T, Koseki H, Fukuda M, Hirose J, Tsuji K, Takizawa K, Nakamura S, Miyata H, Hamakawa N, Kasuya H, Nozaki K, Hirayama Y, Aramori I, Narumiya S. A sphingosine-1-phosphate receptor type 1 agonist, ASP4058, suppresses intracranial aneurysm through promoting endothelial integrity and blocking macrophage transmigration. Br J Pharmacol 2017; 174:2085-2101. [PMID: 28409823 PMCID: PMC5466536 DOI: 10.1111/bph.13820] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 03/28/2017] [Accepted: 03/29/2017] [Indexed: 12/26/2022] Open
Abstract
Background and Purpose Intracranial aneurysm (IA), common in the general public, causes lethal subarachnoid haemorrhage on rupture. It is, therefore, of utmost importance to prevent the IA from rupturing. However, there is currently no medical treatment. Recent studies suggest that IA is the result of chronic inflammation in the arterial wall caused by endothelial dysfunction and infiltrating macrophages. The sphingosine‐1‐phosphate receptor type 1 (S1P1 receptor) is present on the endothelium and promotes its barrier function. Here we have tested the potential of an S1P1 agonist, ASP4058, to prevent IA in an animal model. Experimental Approach The effects of a selective S1P1 agonist, ASP4058, on endothelial permeability and migration of macrophages across an endothelial cell monolayer were tested in vitro using a Transwell system, and its effects on the size of IAs were evaluated in a rat model of IA. Key Results S1P1 receptor was expressed in endothelial cells of human IA lesions and control arterial walls. ASP4058 significantly reduced FITC‐dextran leakage through an endothelial monolayer and suppressed the migration of macrophages across the monolayer in vitro. Oral administration of ASP4058 reduced the vascular permeability, macrophage infiltration and size of the IAs by acting as an S1P1 agonist in the rat model. This effect was mimicked by another two structurally‐unrelated S1P1 agonists. Conclusion and Implications A selective S1P1 agonist is a strong drug candidate for IA treatment as it promotes the endothelial cell barrier and suppresses the trans‐endothelial migration of macrophages in IA lesions.
Collapse
Affiliation(s)
- Rie Yamamoto
- Center for Innovation in Immunoregulation Technology and Therapeutics, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Tsukuba Research Center, Drug Discovery Research, Astellas Pharma Inc., Ibaraki, Japan
| | - Tomohiro Aoki
- Center for Innovation in Immunoregulation Technology and Therapeutics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hirokazu Koseki
- Center for Innovation in Immunoregulation Technology and Therapeutics, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Neurosurgery, Tokyo Women's Medical University Medical Center East, Tokyo, Japan
| | - Miyuki Fukuda
- Center for Innovation in Immunoregulation Technology and Therapeutics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Jun Hirose
- Center for Innovation in Immunoregulation Technology and Therapeutics, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Tsukuba Research Center, Drug Discovery Research, Astellas Pharma Inc., Ibaraki, Japan
| | - Keiichi Tsuji
- Department of Neurosurgery, Shiga University of Medical Science, Shiga, Japan
| | - Katsumi Takizawa
- Deaprtment of Neurosurgery, Japanese Red Cross Asahikawa Hospital, Hokkaido, Japan
| | - Shinichiro Nakamura
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Shiga, Japan
| | - Haruka Miyata
- Center for Innovation in Immunoregulation Technology and Therapeutics, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Neurosurgery, Shiga University of Medical Science, Shiga, Japan
| | - Nozomu Hamakawa
- Tsukuba Research Center, Drug Discovery Research, Astellas Pharma Inc., Ibaraki, Japan
| | - Hidetoshi Kasuya
- Department of Neurosurgery, Tokyo Women's Medical University Medical Center East, Tokyo, Japan
| | - Kazuhiko Nozaki
- Department of Neurosurgery, Shiga University of Medical Science, Shiga, Japan
| | - Yoshitaka Hirayama
- Center for Innovation in Immunoregulation Technology and Therapeutics, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Tsukuba Research Center, Drug Discovery Research, Astellas Pharma Inc., Ibaraki, Japan
| | - Ichiro Aramori
- Center for Innovation in Immunoregulation Technology and Therapeutics, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Tsukuba Research Center, Drug Discovery Research, Astellas Pharma Inc., Ibaraki, Japan
| | - Shuh Narumiya
- Center for Innovation in Immunoregulation Technology and Therapeutics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
212
|
Targeting sphingosine-1-phosphate signaling for cancer therapy. SCIENCE CHINA-LIFE SCIENCES 2017. [DOI: 10.1007/s11427-017-9046-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
213
|
Lymphatic endothelial S1P promotes mitochondrial function and survival in naive T cells. Nature 2017; 546:158-161. [PMID: 28538737 PMCID: PMC5683179 DOI: 10.1038/nature22352] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 04/07/2017] [Indexed: 02/07/2023]
|
214
|
Jiang H, Shen SM, Yin J, Zhang PP, Shi Y. Sphingosine 1-phosphate receptor 1 (S1PR1) agonist CYM5442 inhibits expression of intracellular adhesion molecule 1 (ICAM1) in endothelial cells infected with influenza A viruses. PLoS One 2017; 12:e0175188. [PMID: 28399143 PMCID: PMC5388330 DOI: 10.1371/journal.pone.0175188] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 03/22/2017] [Indexed: 01/13/2023] Open
Abstract
Background Influenza A virus infection and its complications effect a large population worldwide. Endothelial cells are an important component in lung inflammation caused by influenza A virus infection. The roles of endothelial sphingosine 1-phophate receptor 1 (S1PR1) in the regulation of molecules involved in leukocyte recruitment during influenza A virus infection still remain unknown. In this report, we tested our hypothesis that S1PR1 agonist CYM5442 inhibits expression of intracellular adhesion molecules 1 (ICAM1) in endothelial cells infected with influenza A virus. Methods Human pulmonary microvascular endothelial cells (HPMEC) were infected with influenza A virus H1N1. Expression of cytokines, chemokines, interferons, and cellular adhesion molecules was measured by q-PCR. Expression of ICAM1 was further tested by Western Blotting. A S1PR1 agonist CYM5442 was added to the culture media to assess CYM5442’s inhibitory effects during virus infection. Results HPMEC could be infected with H1N1 and responded to produce pro-inflammatory cytokines, chemokines, type I interferons, and cellular adhesion molecules. Addition of CYM5442 in culture media reduced the production of ICAM1 via a dosage- and time-dependent manner. CYM5442 inhibited the activation of nuclear factor (NF)-κB. The regulatory effects of CYM5442 were β-arrestin2-dependent. Conclusion Activated S1PR1 signaling regulates the production of cellular adhesion molecules by inhibiting NF- κB activation via a β-arrestin2-dependent manner.
Collapse
Affiliation(s)
- Hao Jiang
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
- Department of Emergency Medicine, the Second Affiliated Hospital, Southeast University, Nanjing, China
| | - Si-mei Shen
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Jie Yin
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Peng-peng Zhang
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Yi Shi
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
- * E-mail:
| |
Collapse
|
215
|
Garcia‐Gil M, Pierucci F, Vestri A, Meacci E. Crosstalk between sphingolipids and vitamin D3: potential role in the nervous system. Br J Pharmacol 2017; 174:605-627. [PMID: 28127747 PMCID: PMC6398521 DOI: 10.1111/bph.13726] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/16/2016] [Accepted: 01/18/2017] [Indexed: 12/14/2022] Open
Abstract
Sphingolipids are both structural and bioactive compounds. In particular, ceramide and sphingosine 1-phosphate regulate cell fate, inflammation and excitability. 1-α,25-dihydroxyvitamin D3 (1,25(OH)2 D3 ) is known to play an important physiological role in growth and differentiation in a variety of cell types, including neural cells, through genomic actions mediated by its specific receptor, and non-genomic effects that result in the activation of specific signalling pathways. 1,25(OH)2 D3 and sphingolipids, in particular sphingosine 1-phosphate, share many common effectors, including calcium regulation, growth factors and inflammatory cytokines, but it is still not known whether they can act synergistically. Alterations in the signalling and concentrations of sphingolipids and 1,25(OH)2 D3 have been found in neurodegenerative diseases and fingolimod, a structural analogue of sphingosine, has been approved for the treatment of multiple sclerosis. This review, after a brief description of the role of sphingolipids and 1,25(OH)2 D3 , will focus on the potential crosstalk between sphingolipids and 1,25(OH)2 D3 in neural cells.
Collapse
Affiliation(s)
- Mercedes Garcia‐Gil
- Department of BiologyUniversity of PisaPisaItaly
- Interdepartmental Research Center Nutrafood ‘Nutraceuticals and Food for Health’University of PisaPisaItaly
| | - Federica Pierucci
- Department of Experimental and Clinical Biomedical Sciences ‘Mario Serio’, Molecular and Applied Biology Research UnitUniversity of FlorenceFlorenceItaly
- Interuniversitary Miology InstitutesItaly
| | - Ambra Vestri
- Department of Experimental and Clinical Biomedical Sciences ‘Mario Serio’, Molecular and Applied Biology Research UnitUniversity of FlorenceFlorenceItaly
- Interuniversitary Miology InstitutesItaly
| | - Elisabetta Meacci
- Department of Experimental and Clinical Biomedical Sciences ‘Mario Serio’, Molecular and Applied Biology Research UnitUniversity of FlorenceFlorenceItaly
- Interuniversitary Miology InstitutesItaly
| |
Collapse
|
216
|
Nielsen OH, Li Y, Johansson-Lindbom B, Coskun M. Sphingosine-1-Phosphate Signaling in Inflammatory Bowel Disease. Trends Mol Med 2017; 23:362-374. [DOI: 10.1016/j.molmed.2017.02.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 02/10/2017] [Accepted: 02/14/2017] [Indexed: 12/14/2022]
|
217
|
Wollny T, Wątek M, Durnaś B, Niemirowicz K, Piktel E, Żendzian-Piotrowska M, Góźdź S, Bucki R. Sphingosine-1-Phosphate Metabolism and Its Role in the Development of Inflammatory Bowel Disease. Int J Mol Sci 2017; 18:ijms18040741. [PMID: 28362332 PMCID: PMC5412326 DOI: 10.3390/ijms18040741] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/20/2017] [Accepted: 03/27/2017] [Indexed: 12/12/2022] Open
Abstract
Beyond their role as structural molecules, sphingolipids are involved in many important cellular processes including cell proliferation, apoptosis, inflammation, and migration. Altered sphingolipid metabolism is observed in many pathological conditions including gastrointestinal diseases. Inflammatory bowel disease (IBD) represents a state of complex, unpredictable, and destructive inflammation of unknown origin within the gastrointestinal tract. The mechanisms explaining the pathophysiology of IBD involve signal transduction pathways regulating gastro-intestinal system’s immunity. Progressive intestinal tissue destruction observed in chronic inflammation may be associated with an increased risk of colon cancer. Sphingosine-1-phosphate (S1P), a sphingolipid metabolite, functions as a cofactor in inflammatory signaling and becomes a target in the treatment of IBD, which might prevent its conversion to cancer. This paper summarizes new findings indicating the impact of (S1P) on IBD development and IBD-associated carcinogenesis.
Collapse
Affiliation(s)
- Tomasz Wollny
- Holy Cross Oncology Center of Kielce, Artwińskiego 3, 25-734 Kielce, Poland.
| | - Marzena Wątek
- Holy Cross Oncology Center of Kielce, Artwińskiego 3, 25-734 Kielce, Poland.
- Department of Microbiology and Immunology, The Faculty of Health Sciences of the Jan Kochanowski University in Kielce, Aleja IX Wieków Kielc, 25-317 Kielce, Poland.
| | - Bonita Durnaś
- Department of Microbiology and Immunology, The Faculty of Health Sciences of the Jan Kochanowski University in Kielce, Aleja IX Wieków Kielc, 25-317 Kielce, Poland.
| | - Katarzyna Niemirowicz
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Białystok, 15-222 Białystok, Poland.
| | - Ewelina Piktel
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Białystok, 15-222 Białystok, Poland.
| | | | - Stanisław Góźdź
- Holy Cross Oncology Center of Kielce, Artwińskiego 3, 25-734 Kielce, Poland.
- Department of Microbiology and Immunology, The Faculty of Health Sciences of the Jan Kochanowski University in Kielce, Aleja IX Wieków Kielc, 25-317 Kielce, Poland.
| | - Robert Bucki
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Białystok, 15-222 Białystok, Poland.
| |
Collapse
|
218
|
Sun X, Mathew B, Sammani S, Jacobson JR, Garcia JGN. Simvastatin-induced sphingosine 1-phosphate receptor 1 expression is KLF2-dependent in human lung endothelial cells. Pulm Circ 2017; 7:117-125. [PMID: 28680571 PMCID: PMC5448536 DOI: 10.1177/2045893217701162] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 03/03/2017] [Indexed: 11/18/2022] Open
Abstract
We have demonstrated that simvastatin and sphingosine 1−phosphate (S1P) both attenuate increased vascular permeability in preclinical models of acute respiratory distress syndrome. However, the underlying mechanisms remain unclear. As Krüppel-like factor 2 (KLF2) serves as a critical regulator for cellular stress response in endothelial cells (EC), we hypothesized that simvastatin enhances endothelial barrier function via increasing expression of the barrier-promoting S1P receptor, S1PR1, via a KLF2-dependent mechanism. S1PR1 luciferase reporter promoter activity in human lung artery EC (HPAEC) was tested after simvastatin (5 μM), and S1PR1 and KLF2 protein expression detected by immunoblotting. In vivo, transcription and expression of S1PR1 and KLF2 in mice lungs were detected by microarray profiling and immunoblotting after exposure to simvastatin (10 mg/kg). Endothelial barrier function was measured by trans-endothelial electrical resistance with the S1PR1 agonist FTY720-(S)-phosphonate. Both S1PR1 and KLF2 gene expression (mRNA, protein) were significantly increased by simvastatin in vitro and in vivo. S1PR1 promoter activity was significantly increased by simvastatin (P < 0.05), which was significantly attenuated by KLF2 silencing (siRNA). Simvastatin induced KLF2 recruitment to the S1PR1 promoter, and consequently, significantly augmented the effects of the S1PR1 agonist on EC barrier enhancement (P < 0.05), which was significantly attenuated by KLF2 silencing (P < 0.05). These results suggest that simvastatin upregulates S1PR1 transcription and expression via the transcription factor KLF2, and consequently augments the effects of S1PR1 agonists on preserving vascular barrier integrity. These results may lead to novel combinatorial therapeutic strategies for lung inflammatory syndromes.
Collapse
Affiliation(s)
- Xiaoguang Sun
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Biji Mathew
- Division of Pulmonary, Critical Care, Sleep & Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Saad Sammani
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Jeffrey R Jacobson
- Division of Pulmonary, Critical Care, Sleep & Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Joe G N Garcia
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| |
Collapse
|
219
|
Patmanathan SN, Wang W, Yap LF, Herr DR, Paterson IC. Mechanisms of sphingosine 1-phosphate receptor signalling in cancer. Cell Signal 2017; 34:66-75. [PMID: 28302566 DOI: 10.1016/j.cellsig.2017.03.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 03/11/2017] [Accepted: 03/11/2017] [Indexed: 12/12/2022]
Abstract
S1P is a small bioactive lipid which exerts its effects following binding to a family of five G protein-coupled receptors, known as S1P1-5. Following receptor activation, multiple signalling cascades are activated, allowing S1P to regulate a range of cellular processes, such as proliferation, apoptosis, migration and angiogenesis. There is strong evidence implicating the involvement of S1P receptors (S1PRs) in cancer progression and the oncogenic effects of S1P can result from alterations in the expression of one or more of the S1PRs and/or the enzymes that regulate the levels of S1P. However, cooperativity between the individual S1PRs, functional interactions with receptor tyrosine kinases and the sub-cellular localisation of the S1PRs within tumour cells also appear to play a role in mediating the effects of S1PR signalling during carcinogenesis. Here we review what is known regarding the role of individual S1PRs in cancer and discuss the recent evidence to suggest cross-talk between the S1PRs and other cellular signalling pathways in cancer. We will also discuss the therapeutic potential of targeting the S1PRs and their downstream signalling pathways for the treatment of cancer.
Collapse
Affiliation(s)
- Sathya Narayanan Patmanathan
- Department of Oral and Craniofacial Sciences, Oral Cancer Research & Coordinating Centre, Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Wei Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117456, Singapore
| | - Lee Fah Yap
- Department of Oral and Craniofacial Sciences, Oral Cancer Research & Coordinating Centre, Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Deron R Herr
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117456, Singapore
| | - Ian C Paterson
- Department of Oral and Craniofacial Sciences, Oral Cancer Research & Coordinating Centre, Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
220
|
Janecke AR, Xu R, Steichen-Gersdorf E, Waldegger S, Entenmann A, Giner T, Krainer I, Huber LA, Hess MW, Frishberg Y, Barash H, Tzur S, Schreyer-Shafir N, Sukenik-Halevy R, Zehavi T, Raas-Rothschild A, Mao C, Müller T. Deficiency of the sphingosine-1-phosphate lyase SGPL1 is associated with congenital nephrotic syndrome and congenital adrenal calcifications. Hum Mutat 2017; 38:365-372. [PMID: 28181337 DOI: 10.1002/humu.23192] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/01/2017] [Accepted: 02/03/2017] [Indexed: 01/21/2023]
Abstract
We identified two unrelated consanguineous families with three children affected by the rare association of congenital nephrotic syndrome (CNS) diagnosed in the first days of life, of hypogonadism, and of prenatally detected adrenal calcifications, associated with congenital adrenal insufficiency in one case. Using exome sequencing and targeted Sanger sequencing, two homozygous truncating mutations, c.1513C>T (p.Arg505*) and c.934delC (p.Leu312Phefs*30), were identified in SGPL1-encoding sphingosine-1-phosphate (S1P) lyase 1. SGPL1 catalyzes the irreversible degradation of endogenous and dietary S1P, the final step of sphingolipid catabolism, and of other phosphorylated long-chain bases. S1P is an intracellular and extracellular signaling molecule involved in angiogenesis, vascular maturation, and immunity. The levels of SGPL1 substrates, S1P, and sphingosine were markedly increased in the patients' blood and fibroblasts, as determined by liquid chromatography-tandem mass spectrometry. Vascular alterations were present in a patient's renal biopsy, in line with changes seen in Sgpl1 knockout mice that are compatible with a developmental defect in vascular maturation. In conclusion, loss of SGPL1 function is associated with CNS, adrenal calcifications, and hypogonadism.
Collapse
Affiliation(s)
- Andreas R Janecke
- Department of Pediatrics I, Medical University of Innsbruck, Innsbruck, Austria.,Division of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Ruijuan Xu
- Department of Medicine, State University of New York (SUNY) at Stony Brook, Stony Brook, New York.,Stony Brook Cancer Center at State University of New York (SUNY) at Stony Brook, Stony Brook, New York
| | | | - Siegfried Waldegger
- Department of Pediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| | - Andreas Entenmann
- Department of Pediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| | - Thomas Giner
- Department of Pediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| | - Iris Krainer
- Department of Pediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| | - Lukas A Huber
- Division of Cell Biology, Medical University of Innsbruck, Innsbruck, Austria
| | - Michael W Hess
- Division of Histology and Embryology, Medical University of Innsbruck, Innsbruck, Austria
| | - Yaacov Frishberg
- Division of Pediatric Nephrology, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Hila Barash
- Institute of Rare Diseases, Institute of Genetics, Sheba Medical center, Tel Hashomer, Israel
| | - Shay Tzur
- Laboratory of Molecular Medicine, Rambam Health Care Campus, Haifa, Israel.,Genomic Research Department, Emedgene Technologies, Tel Aviv, Israel
| | | | - Rivka Sukenik-Halevy
- Genetics Institute, Meir Medical Center, Kfar Saba, Israel.,Sackler school of medicine, Tel Aviv University, Ramat Aviv, Israel
| | - Tania Zehavi
- Department of Pathology, Meir Medical center, Kfar Saba, Israel
| | - Annick Raas-Rothschild
- Institute of Rare Diseases, Institute of Genetics, Sheba Medical center, Tel Hashomer, Israel.,Sackler school of medicine, Tel Aviv University, Ramat Aviv, Israel
| | - Cungui Mao
- Department of Medicine, State University of New York (SUNY) at Stony Brook, Stony Brook, New York.,Stony Brook Cancer Center at State University of New York (SUNY) at Stony Brook, Stony Brook, New York
| | - Thomas Müller
- Department of Pediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
221
|
Ren K, Lu YJ, Mo ZC, -Liu X, Tang ZL, Jiang Y, Peng XS, Li L, Zhang QH, Yi GH. ApoA-I/SR-BI modulates S1P/S1PR2-mediated inflammation through the PI3K/Akt signaling pathway in HUVECs. J Physiol Biochem 2017; 73:287-296. [DOI: 10.1007/s13105-017-0553-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 01/23/2017] [Indexed: 12/14/2022]
|
222
|
Bruno M, Rizzo IM, Romero-Guevara R, Bernacchioni C, Cencetti F, Donati C, Bruni P. Sphingosine 1-phosphate signaling axis mediates fibroblast growth factor 2-induced proliferation and survival of murine auditory neuroblasts. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:814-824. [PMID: 28188805 DOI: 10.1016/j.bbamcr.2017.02.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 01/11/2017] [Accepted: 02/06/2017] [Indexed: 01/12/2023]
Abstract
Hearing loss affects millions of people in the world. In mammals the auditory system comprises diverse cell types which are terminally differentiated and with no regenerative potential. There is a tremendous research interest aimed at identifying cell therapy based solutions or pharmacological approaches that could be applied therapeutically alongside auditory devices to prevent hair cell and neuron loss. Sphingosine 1-phosphate (S1P) is a pleiotropic bioactive sphingolipid that plays key role in the regulation of many physiological and pathological functions. S1P is intracellularly produced by sphingosine kinase (SK) 1 and SK2 and exerts many of its action consequently to its ligation to S1P specific receptors (S1PR), S1P1-5. In this study, murine auditory neuroblasts named US/VOT-N33 have been used as progenitors of neurons of the spiral ganglion. We demonstrated that the fibroblast growth factor 2 (FGF2)-induced proliferative action was dependent on SK1, SK2 as well as S1P1 and S1P2. Moreover, the pro-survival effect of FGF2 from apoptotic cell death induced by staurosporine treatment was dependent on SK but not on S1PR. Additionally, ERK1/2 and Akt signaling pathways were found to mediate the mitogenic and survival action of FGF2, respectively. Taken together, these findings demonstrate a crucial role for S1P signaling axis in the proliferation and the survival of otic vesicle neuroprogenitors, highlighting the identification of possible novel therapeutical approaches to prevent neuronal degeneration during hearing loss.
Collapse
Affiliation(s)
- Marina Bruno
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche "M. Serio", viale G B Morgagni 50, 50134 Firenze, Italy
| | - Ilaria Maria Rizzo
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche "M. Serio", viale G B Morgagni 50, 50134 Firenze, Italy
| | - Ricardo Romero-Guevara
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche "M. Serio", viale G B Morgagni 50, 50134 Firenze, Italy
| | - Caterina Bernacchioni
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche "M. Serio", viale G B Morgagni 50, 50134 Firenze, Italy
| | - Francesca Cencetti
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche "M. Serio", viale G B Morgagni 50, 50134 Firenze, Italy
| | - Chiara Donati
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche "M. Serio", viale G B Morgagni 50, 50134 Firenze, Italy.
| | - Paola Bruni
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche "M. Serio", viale G B Morgagni 50, 50134 Firenze, Italy
| |
Collapse
|
223
|
FTY720 Attenuates Angiotensin II-Induced Podocyte Damage via Inhibiting Inflammatory Cytokines. Mediators Inflamm 2017; 2017:3701385. [PMID: 28270699 PMCID: PMC5320072 DOI: 10.1155/2017/3701385] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 12/08/2016] [Accepted: 12/26/2016] [Indexed: 12/29/2022] Open
Abstract
FTY720, a new chemical substance derived from the ascomycete Isaria sinclairii, is used for treating multiple sclerosis, renal cancer, and asthma. Sphingosine 1-phosphate (S1P) is a bioactive sphingolipid metabolite and exists in red blood cells. FTY720 is a synthetic S1P analog which can block S1P evoking physiological effects. Recently studies show that S1P was participating in activated inflammation cells induced renal injury. The objective of this study was to assess the protective effect of FTY720 on kidney damage and the potential mechanism of FTY720 which alleviate podocyte injury in chronic kidney disease. In this study, we selected 40 patients with IgA nephropathy and examined their clinical characteristics. Ang II-infusion rat renal injury model was established to evaluate the glomeruli and tubulointerstitial lesion. The result showed that the concentration of S1P in serum and urine was positively correlated with IgA nephropathy patients' renal injury. FTY720 could reduce renal histological lesions induced by Ang II-infusion in rats. Moreover, FTY720 decreased S1P synthesis in Ang II-infusion rats via downregulation of inflammatory cytokines including TNF-α and IL-6. In addition, FTY720 alleviated exogenous S1P-induced podocyte damage. In conclusion, FTY720 is able to attenuate S1P-induced podocyte damage via reducing inflammatory cytokines.
Collapse
|
224
|
Cannavo A, Liccardo D, Komici K, Corbi G, de Lucia C, Femminella GD, Elia A, Bencivenga L, Ferrara N, Koch WJ, Paolocci N, Rengo G. Sphingosine Kinases and Sphingosine 1-Phosphate Receptors: Signaling and Actions in the Cardiovascular System. Front Pharmacol 2017. [PMID: 28878674 DOI: 10.3389/fphar.2017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023] Open
Abstract
The sphingosine kinases 1 and 2 (SphK1 and 2) catalyze the phosphorylation of the lipid, sphingosine, generating the signal transmitter, sphingosine 1-phosphate (S1P). The activation of such kinases and the subsequent S1P generation and secretion in the blood serum of mammals represent a major checkpoint in many cellular signaling cascades. In fact, activating the SphK/S1P system is critical for cell motility and proliferation, cytoskeletal organization, cell growth, survival, and response to stress. In the cardiovascular system, the physiological effects of S1P intervene through the binding and activation of a family of five highly selective G protein-coupled receptors, called S1PR1-5. Importantly, SphK/S1P signal is present on both vascular and myocardial cells. S1P is a well-recognized survival factor in many tissues. Therefore, it is not surprising that the last two decades have seen a flourishing of interest and investigative efforts directed to obtain additional mechanistic insights into the signaling, as well as the biological activity of this phospholipid, and of its receptors, especially in the cardiovascular system. Here, we will provide an up-to-date account on the structure and function of sphingosine kinases, discussing the generation, release, and function of S1P. Keeping the bull's eye on the cardiovascular system, we will review the structure and signaling cascades and biological actions emanating from the stimulation of different S1P receptors. We will end this article with a summary of the most recent, experimental and clinical observations targeting S1PRs and SphKs as possible new therapeutic avenues for cardiovascular disorders, such as heart failure.
Collapse
Affiliation(s)
- Alessandro Cannavo
- Lewis Katz School of Medicine, Center for Translational Medicine, Temple University, PhiladelphiaPA, United States
- Department of Translational Medical Sciences, University of Naples Federico IINaples, Italy
| | - Daniela Liccardo
- Lewis Katz School of Medicine, Center for Translational Medicine, Temple University, PhiladelphiaPA, United States
- Department of Translational Medical Sciences, University of Naples Federico IINaples, Italy
| | - Klara Komici
- Department of Translational Medical Sciences, University of Naples Federico IINaples, Italy
| | - Graziamaria Corbi
- Department of Medicine and Health Science, University of MoliseCampobasso, Italy
| | - Claudio de Lucia
- Lewis Katz School of Medicine, Center for Translational Medicine, Temple University, PhiladelphiaPA, United States
| | | | - Andrea Elia
- Istituti Clinici Scientifici Maugeri SpA Società Benefit, Telese Terme Institute (BN)Telese, Italy
| | - Leonardo Bencivenga
- Department of Translational Medical Sciences, University of Naples Federico IINaples, Italy
| | - Nicola Ferrara
- Department of Translational Medical Sciences, University of Naples Federico IINaples, Italy
- Istituti Clinici Scientifici Maugeri SpA Società Benefit, Telese Terme Institute (BN)Telese, Italy
| | - Walter J Koch
- Lewis Katz School of Medicine, Center for Translational Medicine, Temple University, PhiladelphiaPA, United States
| | - Nazareno Paolocci
- Division of Cardiology, Johns Hopkins University Medical Institutions, BaltimoreMD, United States
- Department of Experimental Medicine, University of PerugiaPerugia, Italy
| | - Giuseppe Rengo
- Department of Translational Medical Sciences, University of Naples Federico IINaples, Italy
- Istituti Clinici Scientifici Maugeri SpA Società Benefit, Telese Terme Institute (BN)Telese, Italy
| |
Collapse
|
225
|
Duran CL, Kaunas R, Bayless KJ. S1P Synergizes with Wall Shear Stress and Other Angiogenic Factors to Induce Endothelial Cell Sprouting Responses. Methods Mol Biol 2017; 1697:99-115. [PMID: 28456951 DOI: 10.1007/7651_2017_26] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Angiogenesis is the process of new blood vessel growth from pre-existing structures. During sprout initiation, endothelial cells (ECs) are activated by pro-angiogenic factors to degrade the basement membrane, migrate into the surrounding matrix, and form structures that anastomose to connect neighboring vessels. Sphingosine 1-phosphate (S1P) is a biologically active lysosphingolipid that is secreted by platelets and promotes angiogenesis under normal and pathological conditions by acting on ECs. In addition to biochemical factors, the endothelium is continuously subjected to mechanical forces in the form of wall shear stress (WSS) from fluid forces. Here, we describe an in vitro, three-dimensional (3D) endothelial sprouting assay that is significantly enhanced by S1P, WSS, angiogenic growth factors (GFs), and fibronectin. This assay is assembled by seeding primary human endothelial cells onto 3D collagen matrices containing S1P and other pro-angiogenic factors. Once attached, physiological levels of WSS are applied to induce robust sprouting responses. This approach promotes the initiation of angiogenic sprouts stimulated by S1P, and allows the study of 3D sprouting of primary human endothelial cells induced in response to these physiological factors.
Collapse
Affiliation(s)
- Camille L Duran
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, TX, 77843-1114, USA
| | - Roland Kaunas
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Kayla J Bayless
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, TX, 77843-1114, USA.
| |
Collapse
|
226
|
Ganesan MK, Finsterwalder R, Leb H, Resch U, Neumüller K, de Martin R, Petzelbauer P. Three-Dimensional Coculture Model to Analyze the Cross Talk Between Endothelial and Smooth Muscle Cells. Tissue Eng Part C Methods 2017; 23:38-49. [PMID: 27923320 PMCID: PMC5240006 DOI: 10.1089/ten.tec.2016.0299] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 11/28/2016] [Indexed: 12/21/2022] Open
Abstract
The response of blood vessels to physiological and pathological stimuli partly depends on the cross talk between endothelial cells (EC) lining the luminal side and smooth muscle cells (SMC) building the inner part of the vascular wall. Thus, the in vitro analysis of the pathophysiology of blood vessels requires coculture systems of EC and SMC. We have developed and validated a modified three-dimensional sandwich coculture (3D SW-CC) of EC and SMC using open μ-Slides with a thin glass bottom allowing direct imaging. The culture dish comprises an intermediate plate to minimize the meniscus resulting in homogenous cell distribution. Human umbilical artery SMC were sandwiched between coatings of rat tail collagen I. Following SMC quiescence, human umbilical vein EC were seeded on top of SMC and cultivated until confluence. By day 7, EC had formed a confluent monolayer and continuous vascular endothelial (VE)-cadherin-positive cell/cell contacts. Below, spindle-shaped SMC had formed parallel bundles and showed increased calponin expression compared to day 1. EC and SMC were interspaced by a matrix consisting of laminin, collagen IV, and perlecan. Basal messenger RNA (mRNA) expression levels of E-selectin, angiopoietin-1, calponin, and intercellular adhesion molecule 1 (ICAM-1) of the 3D SW-CC was comparable to that of a freshly isolated mouse inferior vena cava. Addition of tumor necrosis factor alpha (TNF α) to the 3D SW-CC induced E-selectin and ICAM-1 mRNA and protein induction, comparable to the EC and SMC monolayers. In contrast, the addition of activated platelets induced a significantly delayed but more pronounced activation in the 3D SW-CC compared to EC and SMC monolayers. Thus, this 3D SW-CC permits analyzing the cross talk between EC and SMC that mediate cellular quiescence as well as the response to complex activation signals.
Collapse
Affiliation(s)
- Minu Karthika Ganesan
- Skin and Endothelium Research Division (SERD), Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Richard Finsterwalder
- Skin and Endothelium Research Division (SERD), Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Heide Leb
- Skin and Endothelium Research Division (SERD), Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Ulrike Resch
- Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Karin Neumüller
- Skin and Endothelium Research Division (SERD), Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Rainer de Martin
- Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Peter Petzelbauer
- Skin and Endothelium Research Division (SERD), Department of Dermatology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
227
|
Wang T, Gross C, Desai AA, Zemskov E, Wu X, Garcia AN, Jacobson JR, Yuan JXJ, Garcia JGN, Black SM. Endothelial cell signaling and ventilator-induced lung injury: molecular mechanisms, genomic analyses, and therapeutic targets. Am J Physiol Lung Cell Mol Physiol 2016; 312:L452-L476. [PMID: 27979857 DOI: 10.1152/ajplung.00231.2016] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 12/08/2016] [Accepted: 12/11/2016] [Indexed: 12/13/2022] Open
Abstract
Mechanical ventilation is a life-saving intervention in critically ill patients with respiratory failure due to acute respiratory distress syndrome (ARDS). Paradoxically, mechanical ventilation also creates excessive mechanical stress that directly augments lung injury, a syndrome known as ventilator-induced lung injury (VILI). The pathobiology of VILI and ARDS shares many inflammatory features including increases in lung vascular permeability due to loss of endothelial cell barrier integrity resulting in alveolar flooding. While there have been advances in the understanding of certain elements of VILI and ARDS pathobiology, such as defining the importance of lung inflammatory leukocyte infiltration and highly induced cytokine expression, a deep understanding of the initiating and regulatory pathways involved in these inflammatory responses remains poorly understood. Prevailing evidence indicates that loss of endothelial barrier function plays a primary role in the development of VILI and ARDS. Thus this review will focus on the latest knowledge related to 1) the key role of the endothelium in the pathogenesis of VILI; 2) the transcription factors that relay the effects of excessive mechanical stress in the endothelium; 3) the mechanical stress-induced posttranslational modifications that influence key signaling pathways involved in VILI responses in the endothelium; 4) the genetic and epigenetic regulation of key target genes in the endothelium that are involved in VILI responses; and 5) the need for novel therapeutic strategies for VILI that can preserve endothelial barrier function.
Collapse
Affiliation(s)
- Ting Wang
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Christine Gross
- Vascular Biology Center, Augusta University, Augusta, Georgia
| | - Ankit A Desai
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Evgeny Zemskov
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Xiaomin Wu
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Alexander N Garcia
- Department of Pharmacology University of Illinois at Chicago, Chicago, Illinois; and
| | - Jeffrey R Jacobson
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Jason X-J Yuan
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Joe G N Garcia
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Stephen M Black
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona;
| |
Collapse
|
228
|
Abstract
Numerous preclinical studies indicate that sustained endothelial activation significantly contributes to tissue edema, perpetuates the inflammatory response, and exacerbates tissue injury ultimately resulting in organ failure. However, no specific therapies aimed at restoring endothelial function are available as yet. Sphingosine-1-phosphate (S1P) is emerging as a potent modulator of endothelial function and endothelial responses to injury. Recent studies indicate that S1PR are attractive targets to treat not only disorders of the arterial endothelium but also microvascular dysfunction caused by ischemic or inflammatory injury. In this article, we will review the current knowledge of the role of S1P and its receptors in endothelial function in health and disease, and we will discuss the therapeutic potential of targeting S1PR not only for disorders of the arterial endothelium but also the microvasculature. The therapeutic targeting of S1PR in the endothelium could help to bridge the gap between biomedical research in vascular biology and clinical practice.
Collapse
Affiliation(s)
- Teresa Sanchez
- Department of Pathology and Laboratory Medicine, Center for Vascular Biology, Weill Cornell Medical College, 1300 York Ave, Room A607B/Box 69, New York, NY, 10065, USA.
| |
Collapse
|
229
|
Scotti L, Di Pietro M, Pascuali N, Irusta G, I de Zúñiga, Gomez Peña M, Pomilio C, Saravia F, Tesone M, Abramovich D, Parborell F. Sphingosine-1-phosphate restores endothelial barrier integrity in ovarian hyperstimulation syndrome. Mol Hum Reprod 2016; 22:852-866. [PMID: 27645281 DOI: 10.1093/molehr/gaw065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/15/2016] [Accepted: 09/06/2016] [Indexed: 12/12/2022] Open
Abstract
STUDY QUESTION Are follicular fluid (FF) sphingosine-1-phosphate (S1P) levels in patients at risk of developing ovarian hyperstimulation syndrome (OHSS) altered and in part responsible for the high vascular permeability observed in these patients. STUDY ANSWER FF S1P levels are lower in FF from patients at risk of OHSS and treatment with S1P may reduce vascular permeability in these patients. WHAT IS KNOWN ALREADY Although advances have been made in the diagnosis, and management of OHSS and in basic knowledge of its development, complete prevention has proven difficult. STUDY DESIGN, SIZE, DURATION A total of 40 FF aspirates were collected from patients undergoing ART. The women (aged 25-39 years old) were classified into a control group (n = 20) or a group at risk of OHSS (n = 20). The EA.hy926 endothelial cell line was used to assess the efffects of FF from patients at risk of OHSS with or without the addition of S1P. An animal model that develops OHSS in immature Sprague-Dawley rats were also used. PARTICIPANTS/MATERIALS, SETTING, METHODS Migration assays, confocal microscopy analysis of actin filaments, immunoblotting and quail chorioallantoic membrane (CAM) assays of in-vivo angiogenesis were performed and statistical comparisons between groups were made. MAIN RESULTS AND THE ROLE OF CHANCE The S1P concentration was significantly lower in FF from patients at risk of OHSS (P = 0.03). The addition of S1P to this FF decreased cell migration (P < 0.05) and prevented VE-cadherin phosphorylation in endothelial cells (P < 0.05). S1P in the FF from patients at risk of OHSS increased the levels of VE-cadherin (P < 0.05), N-cadherin (P < 0.05) and β-catenin (P < 0.05), and partially reversed actin redistribution in endothelial cells. The addition of S1P in FF from patients at risk of OHSS also decreased the levels of vascular endothelial growth factor (VEGF121; P < 0.01) and S1P lyase (SPL; P < 0.05) and increased the levels of S1PR1 (P < 0.05) in endothelial cells. In CAMs incubated with FF from patients at risk of OHSS with S1P, the number of vessel branch points decreased while the periendothelial cell coverage increased. Additionally, in a rat OHSS model, we demonstrated that vascular permeability and VEGF121 and its receptor KDR expression were increased in the OHSS group compared to the control group and that S1P administration decreased these parameters. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION The results of this study were generated from an in-vitro system. This model reflects the microvasculature in vivo. Even though the ideal model would be the use of human endothelial cells from the ovary, it is obviously not possible to carry out this kind of approach in ovaries of patients from ART. More studies will be necessary to delineate the effects of S1P in the pathogenesis of OHSS. Hence, clinical studies are needed in order to choose the most appropriate method of prevention and management. WIDER IMPLICATIONS OF THE FINDINGS The use of bioactive sphingolipid metabolites may contribute to finding better and safer therapeutic strategies for the treatment of OHSS and other human diseases that display aberrant vascular leakage. STUDY FUNDING/COMPETING INTERESTS This work was supported by grants ANPCyT (PICT 2012-897), CONICET (PIP 5471), Roemmers and Baron Foundation, Argentina. The authors declare no conflict of interest.
Collapse
Affiliation(s)
- L Scotti
- Instituto de Biología y Medicina Experimental (IByME) - CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - M Di Pietro
- Instituto de Biología y Medicina Experimental (IByME) - CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - N Pascuali
- Instituto de Biología y Medicina Experimental (IByME) - CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - G Irusta
- Instituto de Biología y Medicina Experimental (IByME) - CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - I de Zúñiga
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA, Buenos Aires , Argentina
| | - M Gomez Peña
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA, Buenos Aires , Argentina
| | - C Pomilio
- Instituto de Biología y Medicina Experimental (IByME) - CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA, Buenos Aires , Argentina
| | - F Saravia
- Instituto de Biología y Medicina Experimental (IByME) - CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA, Buenos Aires , Argentina
| | - M Tesone
- Instituto de Biología y Medicina Experimental (IByME) - CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA, Buenos Aires , Argentina
| | - D Abramovich
- Instituto de Biología y Medicina Experimental (IByME) - CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - F Parborell
- Instituto de Biología y Medicina Experimental (IByME) - CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| |
Collapse
|
230
|
Abstract
Sphingosine-1-phosphate (S1P), a simple, bioactive sphingolipid metabolite, plays a key role, both intracellularly and extracellularly, in various cellular processes such as proliferation, survival, migration, inflammation, angiogenesis, and endothelial barrier integrity. The cellular S1P level is low and is tightly regulated by its synthesis and degradation. Sphingosine Kinases (SphKs) 1 and 2, catalyze the ATP-dependent phosphorylation of sphingosine to S1P, while the degradation is mediated by the reversible dephosphorylation catalyzed by the S1P phosphatases and lipid phosphate phosphatases and the irreversible degradation to hexadecenal and ethanolamine phosphate by sphingosine-1-phosphate lyase (S1PL). As a ligand for specific G-protein-coupled receptors, S1P1-5, which are differentially expressed in different cell types, S1P generates downstream signals that play crucial role in developmental and disease related pathologies. In addition to acting extracellularly on receptors located on the plasma membrane, S1P can also act intracellularly, independently of S1P1-5, affecting calcium homeostasis and cell proliferation. The SphKs /S1P /S1PL metabolic pathway is implicated in numerous human pathologies including respiratory disorders, thereby raising the possibility that manipulating intracellular S1P levels could offer therapeutic potential in ameliorating lung diseases. This review focuses on the prospects of targeting S1P signaling and S1P metabolizing enzymes using small molecule inhibitors, receptor agonists, and antagonists in the treatment of lung diseases.
Collapse
Affiliation(s)
- David L Ebenezer
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, IL, USA
| | - Panfeng Fu
- Department of Pharmacology, University of Illinois at Chicago, IL, USA
| | - Viswanathan Natarajan
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, IL, USA; Department of Pharmacology, University of Illinois at Chicago, IL, USA; Department of Medicine, University of Illinois at Chicago, IL, USA; Department of Bioengineering, University of Illinois at Chicago, IL, USA.
| |
Collapse
|
231
|
Ruiz M, Frej C, Holmér A, Guo LJ, Tran S, Dahlbäck B. High-Density Lipoprotein-Associated Apolipoprotein M Limits Endothelial Inflammation by Delivering Sphingosine-1-Phosphate to the Sphingosine-1-Phosphate Receptor 1. Arterioscler Thromb Vasc Biol 2016; 37:118-129. [PMID: 27879252 DOI: 10.1161/atvbaha.116.308435] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 11/08/2016] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Plasma high-density lipoproteins (HDL) are potent antiatherogenic and anti-inflammatory particles. However, HDL particles are highly heterogenic in composition, and different HDL-mediated functions can be ascribed to different subclasses of HDL. Only a small HDL population contains apolipoprotein M (ApoM), which is the main plasma carrier of the bioactive lipid mediator sphingosine-1-phosphate (S1P). Vascular inflammation is modulated by S1P, but both pro- and anti-inflammatory roles have been ascribed to S1P. The goal of this study is to elucidate the role of ApoM and S1P in endothelial anti-inflammatory events related to HDL. APPROACH AND RESULTS Aortic or brain human primary endothelial cells were challenged with tumor necrosis factor-α (TNF-α) as inflammatory stimuli. The presence of recombinant ApoM-bound S1P or ApoM-containing HDL reduced the abundance of adhesion molecules in the cell surface, whereas ApoM and ApoM-lacking HDL did not. Specifically, ApoM-bound S1P decreased vascular adhesion molecule-1 (VCAM-1) and E-selectin surface abundance but not intercellular adhesion molecule-1. Albumin, which is an alternative S1P carrier, was less efficient in inhibiting VCAM-1 than ApoM-bound S1P. The activation of the S1P receptor 1 was sufficient and required to promote anti-inflammation. Moreover, ApoM-bound S1P induced the rearrangement of the expression of S1P-related genes to counteract TNF-α. Functionally, HDL/ApoM/S1P limited monocyte adhesion to the endothelium and maintained endothelial barrier integrity under inflammatory conditions. CONCLUSIONS ApoM-bound S1P is a key component of HDL and is responsible for several HDL-associated protective functions in the endothelium, including regulation of adhesion molecule abundance, leukocyte-endothelial adhesion, and endothelial barrier.
Collapse
Affiliation(s)
- Mario Ruiz
- From the Department of Translational Medicine, Skåne University Hospital, Lund University, Malmö, Sweden.
| | - Cecilia Frej
- From the Department of Translational Medicine, Skåne University Hospital, Lund University, Malmö, Sweden
| | - Andreas Holmér
- From the Department of Translational Medicine, Skåne University Hospital, Lund University, Malmö, Sweden
| | - Li J Guo
- From the Department of Translational Medicine, Skåne University Hospital, Lund University, Malmö, Sweden
| | - Sinh Tran
- From the Department of Translational Medicine, Skåne University Hospital, Lund University, Malmö, Sweden
| | - Björn Dahlbäck
- From the Department of Translational Medicine, Skåne University Hospital, Lund University, Malmö, Sweden
| |
Collapse
|
232
|
Takeda A, Hossain MS, Rantakari P, Simmons S, Sasaki N, Salmi M, Jalkanen S, Miyasaka M. Thymocytes in Lyve1-CRE/S1pr1f/f Mice Accumulate in the Thymus due to Cell-Intrinsic Loss of Sphingosine-1-Phosphate Receptor Expression. Front Immunol 2016; 7:489. [PMID: 27877175 PMCID: PMC5099144 DOI: 10.3389/fimmu.2016.00489] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 10/24/2016] [Indexed: 01/07/2023] Open
Abstract
T cell emigration from the thymus is essential for immunological homeostasis. While stromal cell-produced sphingosine-1-phosphate (S1P) has been shown to promote thymocyte egress via the S1P receptor, S1PR1, the significance of S1P/S1PR1 signaling in the thymic stromal cells that surround T cells remains unclear. To address this issue, we developed conditional knockout mice (Lyve1-CRE/S1pr1f/f mice) in which S1pr1 was selectively targeted in cells expressing the lymphatic endothelial cell marker, Lyve1. In these mice, T cells were significantly reduced in secondary lymphoid tissues, and CD62L+ mature CD4 and CD8 single-positive (SP) T cells accumulated in the medulla failed to undergo thymus egress. Using a Lyve1 reporter strain in which Lyve1 lineage cells expressed tdTomato fluorescent protein, we unexpectedly found that a considerable proportion of the thymocytes were fluorescently labeled, indicating that they belonged to the Lyve1 lineage. The CD4 and CD8 SP thymocytes in Lyve1-CRE/S1pr1f/f mice exhibited an egress-competent phenotype (HSAlow, CD62Lhigh, and Qa-2high), but were CD69high and lacked S1PR1 expression. In addition, CD4 SP thymocytes from these mice were unable to migrate to the periphery after their intrathymic injection into wild-type (WT) mice. In contrast, WT T cells could migrate to the periphery in both WT and Lyve1-CRE/S1pr1f/f thymuses. These results demonstrated that thymocyte egress is mediated by T cell-expressed, but not stromal cell-expressed, S1PR1 and caution against using the Lyve1-CRE system for selectively gene deletion in lymphatic endothelial cells.
Collapse
Affiliation(s)
- Akira Takeda
- MediCity Research Laboratory, University of Turku , Turku , Finland
| | | | - Pia Rantakari
- MediCity Research Laboratory, University of Turku , Turku , Finland
| | - Szandor Simmons
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Suita, Japan; WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Naoko Sasaki
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University , Suita , Japan
| | - Marko Salmi
- MediCity Research Laboratory, University of Turku, Turku, Finland; Department of Medical Microbiology and Immunology, University of Turku, Turku, Finland
| | - Sirpa Jalkanen
- MediCity Research Laboratory, University of Turku , Turku , Finland
| | - Masayuki Miyasaka
- MediCity Research Laboratory, University of Turku, Turku, Finland; WPI Immunology Frontier Research Center, Osaka University, Suita, Japan; Interdisciplinary Program for Biomedical Sciences, Institute for Academic Initiatives, Osaka University, Suita, Japan
| |
Collapse
|
233
|
Weth-Malsch D, Langeslag M, Beroukas D, Zangrandi L, Kastenberger I, Quarta S, Malsch P, Kalpachidou T, Schwarzer C, Proia RL, Haberberger RV, Kress M. Ablation of Sphingosine 1-Phosphate Receptor Subtype 3 Impairs Hippocampal Neuron Excitability In vitro and Spatial Working Memory In vivo. Front Cell Neurosci 2016; 10:258. [PMID: 27872583 PMCID: PMC5097928 DOI: 10.3389/fncel.2016.00258] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 10/21/2016] [Indexed: 01/01/2023] Open
Abstract
Understanding the role of the bioactive lipid mediator sphingosine 1-phosphate (S1P) within the central nervous system has recently gained more and more attention, as it has been connected to major diseases such as multiple sclerosis and Alzheimer's disease. Even though much data about the functions of the five S1P receptors has been collected for other organ systems, we still lack a complete understanding for their specific roles, in particular within the brain. Therefore, it was the aim of this study to further elucidate the role of S1P receptor subtype 3 (S1P3) in vivo and in vitro with a special focus on the hippocampus. Using an S1P3 knock-out mouse model we applied a range of behavioral tests, performed expression studies, and whole cell patch clamp recordings in acute hippocampal slices. We were able to show that S1P3 deficient mice display a significant spatial working memory deficit within the T-maze test, but not in anxiety related tests. Furthermore, S1p3 mRNA was expressed throughout the hippocampal formation. Principal neurons in area CA3 lacking S1P3 showed significantly increased interspike intervals and a significantly decreased input resistance. Upon stimulation with S1P CA3 principal neurons from both wildtype and S1P3−/− mice displayed significantly increased evoked EPSC amplitudes and decay times, whereas rise times remained unchanged. These results suggest a specific involvement of S1P3 for the establishment of spatial working memory and neuronal excitability within the hippocampus.
Collapse
Affiliation(s)
- Daniela Weth-Malsch
- Division of Physiology, Department of Physiology and Medical Physics, Medical University of Innsbruck Innsbruck, Austria
| | - Michiel Langeslag
- Division of Physiology, Department of Physiology and Medical Physics, Medical University of Innsbruck Innsbruck, Austria
| | - Dimitra Beroukas
- Anatomy and Histology and Centre for Neuroscience, Flinders University Adelaide, SA, Australia
| | - Luca Zangrandi
- Department of Pharmacology, Medical University of Innsbruck Innsbruck, Austria
| | - Iris Kastenberger
- Department of Pharmacology, Medical University of Innsbruck Innsbruck, Austria
| | - Serena Quarta
- Division of Physiology, Department of Physiology and Medical Physics, Medical University of Innsbruck Innsbruck, Austria
| | - Philipp Malsch
- Division of Physiology, Department of Physiology and Medical Physics, Medical University of Innsbruck Innsbruck, Austria
| | - Theodora Kalpachidou
- Division of Physiology, Department of Physiology and Medical Physics, Medical University of Innsbruck Innsbruck, Austria
| | - Christoph Schwarzer
- Department of Pharmacology, Medical University of Innsbruck Innsbruck, Austria
| | - Richard L Proia
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases Bethesda, MD, USA
| | - Rainer V Haberberger
- Anatomy and Histology and Centre for Neuroscience, Flinders University Adelaide, SA, Australia
| | - Michaela Kress
- Division of Physiology, Department of Physiology and Medical Physics, Medical University of Innsbruck Innsbruck, Austria
| |
Collapse
|
234
|
Chew WS, Wang W, Herr DR. To fingolimod and beyond: The rich pipeline of drug candidates that target S1P signaling. Pharmacol Res 2016; 113:521-532. [DOI: 10.1016/j.phrs.2016.09.025] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 09/20/2016] [Accepted: 09/20/2016] [Indexed: 01/28/2023]
|
235
|
Molecular genetics and bioinformatics analysis of EDG1 and AKIRIN2 genes in Iranian fat-tailed and nonfat-tailed sheep breeds. Small Rumin Res 2016. [DOI: 10.1016/j.smallrumres.2016.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
236
|
Abstract
Vertebrates are endowed with a closed circulatory system, the evolution of which required novel structural and regulatory changes. Furthermore, immune cell trafficking paradigms adapted to the barriers imposed by the closed circulatory system. How did such changes occur mechanistically? We propose that spatial compartmentalization of the lipid mediator sphingosine 1-phosphate (S1P) may be one such mechanism. In vertebrates, S1P is spatially compartmentalized in the blood and lymphatic circulation, thus comprising a sharp S1P gradient across the endothelial barrier. Circulatory S1P has critical roles in maturation and homeostasis of the vascular system as well as in immune cell trafficking. Physiological functions of S1P are tightly linked to shear stress, the key biophysical stimulus from blood flow. Thus, circulatory S1P confinement could be a primordial strategy of vertebrates in the development of a closed circulatory system. This review discusses the cellular and molecular basis of the S1P gradients and aims to interpret its physiological significance as a key feature of the closed circulatory system.
Collapse
Affiliation(s)
- Keisuke Yanagida
- Vascular Biology Program, Department of Surgery, Harvard Medical School and Boston Children's Hospital, Boston, Massachusetts 02115; ,
| | - Timothy Hla
- Vascular Biology Program, Department of Surgery, Harvard Medical School and Boston Children's Hospital, Boston, Massachusetts 02115; ,
| |
Collapse
|
237
|
Pi J, Tao T, Zhuang T, Sun H, Chen X, Liu J, Cheng Y, Yu Z, Zhu HH, Gao WQ, Suo Y, Wei X, Chan P, Zheng X, Tian Y, Morrisey E, Zhang L, Zhang Y. A MicroRNA302-367-Erk1/2-Klf2-S1pr1 Pathway Prevents Tumor Growth via Restricting Angiogenesis and Improving Vascular Stability. Circ Res 2016; 120:85-98. [PMID: 27756792 DOI: 10.1161/circresaha.116.309757] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/02/2016] [Accepted: 10/18/2016] [Indexed: 01/08/2023]
Abstract
RATIONALE Angiogenic hypersprouting and leaky vessels are essential for tumor growth. MicroRNAs have unique therapeutic advantages by targeting multiple pathways of tumor-associated angiogenesis, but the function of individual miRNAs of miR302-367 cluster in angiogenesis and tumors has not yet been fully evaluated. OBJECTIVE To investigate the functions of miR302-367 in developmental angiogenesis and tumor angiogenesis and explore the molecular mechanisms of microRNA for the treatment of pathological neovascularization-related diseases. METHODS AND RESULTS Here, we show that miR302-367 elevation in endothelial cells reduces retinal sprouting angiogenesis and promotes vascular stability in vivo, ex vivo, and in vitro. Erk1/2 is identified as direct target of miR302-367, and downregulation of Erk1/2 on miR302-367 elevation in endothelial cells increases the expression of Klf2 and in turn S1pr1 and its downstream target VE-cadherin, suppressing angiogenesis and improving vascular stability. Conversely, both pharmacological blockade and genetic deletion of S1pr1 in endothelial cells reverse the antiangiogenic and vascular stabilizing effect of miR302-367 in mice. Tumor angiogenesis shares features of developmental angiogenesis, and endothelial specific elevation of miR302-367 reduces tumor growth by restricting sprout angiogenesis and decreasing vascular permeability via the same Erk1/2-Klf2-S1pr1 pathways. CONCLUSIONS MiR302-367 regulation of an Erk1/2-Klf2-S1pr1 pathway in the endothelium advances our understanding of angiogenesis, meanwhile also provides opportunities for therapeutic intervention of tumor growth.
Collapse
Affiliation(s)
- Jingjiang Pi
- From the Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, China (J.P., T.Z., H.S., X.C., J.L., Z.Y., L.Z., Y.Z.); Department of Geriatrics, Ruijin Hospital, School of Medicine (T.T.) and State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Biomedical Engineering, (Y.S., X.W.), Shanghai Jiao Tong University, China; Institute for Biomedical Engineering and Nano Science, Tongji University School of Medicine, Shanghai, China (Y.C.); Med-X-Renji Hospital Stem Cell Research Center, Jiao Tong University School of Medicine, Shanghai, China (H.H.Z., W.-Q.G.); Division of Cardiology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taiwan (P.C.); Laboratory of Cardiovascular Signaling, Centenary Institute, Camperdown, New South Wales, Australia (X.Z.); Department of Medicine, Sydney Medical School, University of Sydney, New South Wales, Australia (X.Z.); Department of Pharmacology, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (Y.T.); and Department of Cell and Developmental Biology, Department of Medicine, Penn Cardiovascular Institute, Penn Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia (E.M.)
| | - Ting Tao
- From the Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, China (J.P., T.Z., H.S., X.C., J.L., Z.Y., L.Z., Y.Z.); Department of Geriatrics, Ruijin Hospital, School of Medicine (T.T.) and State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Biomedical Engineering, (Y.S., X.W.), Shanghai Jiao Tong University, China; Institute for Biomedical Engineering and Nano Science, Tongji University School of Medicine, Shanghai, China (Y.C.); Med-X-Renji Hospital Stem Cell Research Center, Jiao Tong University School of Medicine, Shanghai, China (H.H.Z., W.-Q.G.); Division of Cardiology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taiwan (P.C.); Laboratory of Cardiovascular Signaling, Centenary Institute, Camperdown, New South Wales, Australia (X.Z.); Department of Medicine, Sydney Medical School, University of Sydney, New South Wales, Australia (X.Z.); Department of Pharmacology, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (Y.T.); and Department of Cell and Developmental Biology, Department of Medicine, Penn Cardiovascular Institute, Penn Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia (E.M.)
| | - Tao Zhuang
- From the Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, China (J.P., T.Z., H.S., X.C., J.L., Z.Y., L.Z., Y.Z.); Department of Geriatrics, Ruijin Hospital, School of Medicine (T.T.) and State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Biomedical Engineering, (Y.S., X.W.), Shanghai Jiao Tong University, China; Institute for Biomedical Engineering and Nano Science, Tongji University School of Medicine, Shanghai, China (Y.C.); Med-X-Renji Hospital Stem Cell Research Center, Jiao Tong University School of Medicine, Shanghai, China (H.H.Z., W.-Q.G.); Division of Cardiology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taiwan (P.C.); Laboratory of Cardiovascular Signaling, Centenary Institute, Camperdown, New South Wales, Australia (X.Z.); Department of Medicine, Sydney Medical School, University of Sydney, New South Wales, Australia (X.Z.); Department of Pharmacology, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (Y.T.); and Department of Cell and Developmental Biology, Department of Medicine, Penn Cardiovascular Institute, Penn Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia (E.M.)
| | - Huimin Sun
- From the Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, China (J.P., T.Z., H.S., X.C., J.L., Z.Y., L.Z., Y.Z.); Department of Geriatrics, Ruijin Hospital, School of Medicine (T.T.) and State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Biomedical Engineering, (Y.S., X.W.), Shanghai Jiao Tong University, China; Institute for Biomedical Engineering and Nano Science, Tongji University School of Medicine, Shanghai, China (Y.C.); Med-X-Renji Hospital Stem Cell Research Center, Jiao Tong University School of Medicine, Shanghai, China (H.H.Z., W.-Q.G.); Division of Cardiology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taiwan (P.C.); Laboratory of Cardiovascular Signaling, Centenary Institute, Camperdown, New South Wales, Australia (X.Z.); Department of Medicine, Sydney Medical School, University of Sydney, New South Wales, Australia (X.Z.); Department of Pharmacology, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (Y.T.); and Department of Cell and Developmental Biology, Department of Medicine, Penn Cardiovascular Institute, Penn Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia (E.M.)
| | - Xiaoli Chen
- From the Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, China (J.P., T.Z., H.S., X.C., J.L., Z.Y., L.Z., Y.Z.); Department of Geriatrics, Ruijin Hospital, School of Medicine (T.T.) and State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Biomedical Engineering, (Y.S., X.W.), Shanghai Jiao Tong University, China; Institute for Biomedical Engineering and Nano Science, Tongji University School of Medicine, Shanghai, China (Y.C.); Med-X-Renji Hospital Stem Cell Research Center, Jiao Tong University School of Medicine, Shanghai, China (H.H.Z., W.-Q.G.); Division of Cardiology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taiwan (P.C.); Laboratory of Cardiovascular Signaling, Centenary Institute, Camperdown, New South Wales, Australia (X.Z.); Department of Medicine, Sydney Medical School, University of Sydney, New South Wales, Australia (X.Z.); Department of Pharmacology, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (Y.T.); and Department of Cell and Developmental Biology, Department of Medicine, Penn Cardiovascular Institute, Penn Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia (E.M.)
| | - Jie Liu
- From the Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, China (J.P., T.Z., H.S., X.C., J.L., Z.Y., L.Z., Y.Z.); Department of Geriatrics, Ruijin Hospital, School of Medicine (T.T.) and State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Biomedical Engineering, (Y.S., X.W.), Shanghai Jiao Tong University, China; Institute for Biomedical Engineering and Nano Science, Tongji University School of Medicine, Shanghai, China (Y.C.); Med-X-Renji Hospital Stem Cell Research Center, Jiao Tong University School of Medicine, Shanghai, China (H.H.Z., W.-Q.G.); Division of Cardiology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taiwan (P.C.); Laboratory of Cardiovascular Signaling, Centenary Institute, Camperdown, New South Wales, Australia (X.Z.); Department of Medicine, Sydney Medical School, University of Sydney, New South Wales, Australia (X.Z.); Department of Pharmacology, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (Y.T.); and Department of Cell and Developmental Biology, Department of Medicine, Penn Cardiovascular Institute, Penn Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia (E.M.)
| | - Yu Cheng
- From the Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, China (J.P., T.Z., H.S., X.C., J.L., Z.Y., L.Z., Y.Z.); Department of Geriatrics, Ruijin Hospital, School of Medicine (T.T.) and State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Biomedical Engineering, (Y.S., X.W.), Shanghai Jiao Tong University, China; Institute for Biomedical Engineering and Nano Science, Tongji University School of Medicine, Shanghai, China (Y.C.); Med-X-Renji Hospital Stem Cell Research Center, Jiao Tong University School of Medicine, Shanghai, China (H.H.Z., W.-Q.G.); Division of Cardiology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taiwan (P.C.); Laboratory of Cardiovascular Signaling, Centenary Institute, Camperdown, New South Wales, Australia (X.Z.); Department of Medicine, Sydney Medical School, University of Sydney, New South Wales, Australia (X.Z.); Department of Pharmacology, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (Y.T.); and Department of Cell and Developmental Biology, Department of Medicine, Penn Cardiovascular Institute, Penn Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia (E.M.)
| | - Zuoren Yu
- From the Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, China (J.P., T.Z., H.S., X.C., J.L., Z.Y., L.Z., Y.Z.); Department of Geriatrics, Ruijin Hospital, School of Medicine (T.T.) and State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Biomedical Engineering, (Y.S., X.W.), Shanghai Jiao Tong University, China; Institute for Biomedical Engineering and Nano Science, Tongji University School of Medicine, Shanghai, China (Y.C.); Med-X-Renji Hospital Stem Cell Research Center, Jiao Tong University School of Medicine, Shanghai, China (H.H.Z., W.-Q.G.); Division of Cardiology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taiwan (P.C.); Laboratory of Cardiovascular Signaling, Centenary Institute, Camperdown, New South Wales, Australia (X.Z.); Department of Medicine, Sydney Medical School, University of Sydney, New South Wales, Australia (X.Z.); Department of Pharmacology, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (Y.T.); and Department of Cell and Developmental Biology, Department of Medicine, Penn Cardiovascular Institute, Penn Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia (E.M.)
| | - Helen He Zhu
- From the Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, China (J.P., T.Z., H.S., X.C., J.L., Z.Y., L.Z., Y.Z.); Department of Geriatrics, Ruijin Hospital, School of Medicine (T.T.) and State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Biomedical Engineering, (Y.S., X.W.), Shanghai Jiao Tong University, China; Institute for Biomedical Engineering and Nano Science, Tongji University School of Medicine, Shanghai, China (Y.C.); Med-X-Renji Hospital Stem Cell Research Center, Jiao Tong University School of Medicine, Shanghai, China (H.H.Z., W.-Q.G.); Division of Cardiology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taiwan (P.C.); Laboratory of Cardiovascular Signaling, Centenary Institute, Camperdown, New South Wales, Australia (X.Z.); Department of Medicine, Sydney Medical School, University of Sydney, New South Wales, Australia (X.Z.); Department of Pharmacology, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (Y.T.); and Department of Cell and Developmental Biology, Department of Medicine, Penn Cardiovascular Institute, Penn Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia (E.M.)
| | - Wei-Qiang Gao
- From the Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, China (J.P., T.Z., H.S., X.C., J.L., Z.Y., L.Z., Y.Z.); Department of Geriatrics, Ruijin Hospital, School of Medicine (T.T.) and State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Biomedical Engineering, (Y.S., X.W.), Shanghai Jiao Tong University, China; Institute for Biomedical Engineering and Nano Science, Tongji University School of Medicine, Shanghai, China (Y.C.); Med-X-Renji Hospital Stem Cell Research Center, Jiao Tong University School of Medicine, Shanghai, China (H.H.Z., W.-Q.G.); Division of Cardiology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taiwan (P.C.); Laboratory of Cardiovascular Signaling, Centenary Institute, Camperdown, New South Wales, Australia (X.Z.); Department of Medicine, Sydney Medical School, University of Sydney, New South Wales, Australia (X.Z.); Department of Pharmacology, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (Y.T.); and Department of Cell and Developmental Biology, Department of Medicine, Penn Cardiovascular Institute, Penn Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia (E.M.)
| | - Yuanzhen Suo
- From the Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, China (J.P., T.Z., H.S., X.C., J.L., Z.Y., L.Z., Y.Z.); Department of Geriatrics, Ruijin Hospital, School of Medicine (T.T.) and State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Biomedical Engineering, (Y.S., X.W.), Shanghai Jiao Tong University, China; Institute for Biomedical Engineering and Nano Science, Tongji University School of Medicine, Shanghai, China (Y.C.); Med-X-Renji Hospital Stem Cell Research Center, Jiao Tong University School of Medicine, Shanghai, China (H.H.Z., W.-Q.G.); Division of Cardiology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taiwan (P.C.); Laboratory of Cardiovascular Signaling, Centenary Institute, Camperdown, New South Wales, Australia (X.Z.); Department of Medicine, Sydney Medical School, University of Sydney, New South Wales, Australia (X.Z.); Department of Pharmacology, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (Y.T.); and Department of Cell and Developmental Biology, Department of Medicine, Penn Cardiovascular Institute, Penn Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia (E.M.)
| | - Xunbin Wei
- From the Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, China (J.P., T.Z., H.S., X.C., J.L., Z.Y., L.Z., Y.Z.); Department of Geriatrics, Ruijin Hospital, School of Medicine (T.T.) and State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Biomedical Engineering, (Y.S., X.W.), Shanghai Jiao Tong University, China; Institute for Biomedical Engineering and Nano Science, Tongji University School of Medicine, Shanghai, China (Y.C.); Med-X-Renji Hospital Stem Cell Research Center, Jiao Tong University School of Medicine, Shanghai, China (H.H.Z., W.-Q.G.); Division of Cardiology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taiwan (P.C.); Laboratory of Cardiovascular Signaling, Centenary Institute, Camperdown, New South Wales, Australia (X.Z.); Department of Medicine, Sydney Medical School, University of Sydney, New South Wales, Australia (X.Z.); Department of Pharmacology, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (Y.T.); and Department of Cell and Developmental Biology, Department of Medicine, Penn Cardiovascular Institute, Penn Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia (E.M.)
| | - Paul Chan
- From the Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, China (J.P., T.Z., H.S., X.C., J.L., Z.Y., L.Z., Y.Z.); Department of Geriatrics, Ruijin Hospital, School of Medicine (T.T.) and State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Biomedical Engineering, (Y.S., X.W.), Shanghai Jiao Tong University, China; Institute for Biomedical Engineering and Nano Science, Tongji University School of Medicine, Shanghai, China (Y.C.); Med-X-Renji Hospital Stem Cell Research Center, Jiao Tong University School of Medicine, Shanghai, China (H.H.Z., W.-Q.G.); Division of Cardiology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taiwan (P.C.); Laboratory of Cardiovascular Signaling, Centenary Institute, Camperdown, New South Wales, Australia (X.Z.); Department of Medicine, Sydney Medical School, University of Sydney, New South Wales, Australia (X.Z.); Department of Pharmacology, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (Y.T.); and Department of Cell and Developmental Biology, Department of Medicine, Penn Cardiovascular Institute, Penn Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia (E.M.)
| | - Xiangjian Zheng
- From the Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, China (J.P., T.Z., H.S., X.C., J.L., Z.Y., L.Z., Y.Z.); Department of Geriatrics, Ruijin Hospital, School of Medicine (T.T.) and State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Biomedical Engineering, (Y.S., X.W.), Shanghai Jiao Tong University, China; Institute for Biomedical Engineering and Nano Science, Tongji University School of Medicine, Shanghai, China (Y.C.); Med-X-Renji Hospital Stem Cell Research Center, Jiao Tong University School of Medicine, Shanghai, China (H.H.Z., W.-Q.G.); Division of Cardiology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taiwan (P.C.); Laboratory of Cardiovascular Signaling, Centenary Institute, Camperdown, New South Wales, Australia (X.Z.); Department of Medicine, Sydney Medical School, University of Sydney, New South Wales, Australia (X.Z.); Department of Pharmacology, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (Y.T.); and Department of Cell and Developmental Biology, Department of Medicine, Penn Cardiovascular Institute, Penn Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia (E.M.)
| | - Ying Tian
- From the Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, China (J.P., T.Z., H.S., X.C., J.L., Z.Y., L.Z., Y.Z.); Department of Geriatrics, Ruijin Hospital, School of Medicine (T.T.) and State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Biomedical Engineering, (Y.S., X.W.), Shanghai Jiao Tong University, China; Institute for Biomedical Engineering and Nano Science, Tongji University School of Medicine, Shanghai, China (Y.C.); Med-X-Renji Hospital Stem Cell Research Center, Jiao Tong University School of Medicine, Shanghai, China (H.H.Z., W.-Q.G.); Division of Cardiology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taiwan (P.C.); Laboratory of Cardiovascular Signaling, Centenary Institute, Camperdown, New South Wales, Australia (X.Z.); Department of Medicine, Sydney Medical School, University of Sydney, New South Wales, Australia (X.Z.); Department of Pharmacology, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (Y.T.); and Department of Cell and Developmental Biology, Department of Medicine, Penn Cardiovascular Institute, Penn Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia (E.M.)
| | - Edward Morrisey
- From the Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, China (J.P., T.Z., H.S., X.C., J.L., Z.Y., L.Z., Y.Z.); Department of Geriatrics, Ruijin Hospital, School of Medicine (T.T.) and State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Biomedical Engineering, (Y.S., X.W.), Shanghai Jiao Tong University, China; Institute for Biomedical Engineering and Nano Science, Tongji University School of Medicine, Shanghai, China (Y.C.); Med-X-Renji Hospital Stem Cell Research Center, Jiao Tong University School of Medicine, Shanghai, China (H.H.Z., W.-Q.G.); Division of Cardiology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taiwan (P.C.); Laboratory of Cardiovascular Signaling, Centenary Institute, Camperdown, New South Wales, Australia (X.Z.); Department of Medicine, Sydney Medical School, University of Sydney, New South Wales, Australia (X.Z.); Department of Pharmacology, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (Y.T.); and Department of Cell and Developmental Biology, Department of Medicine, Penn Cardiovascular Institute, Penn Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia (E.M.)
| | - Lin Zhang
- From the Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, China (J.P., T.Z., H.S., X.C., J.L., Z.Y., L.Z., Y.Z.); Department of Geriatrics, Ruijin Hospital, School of Medicine (T.T.) and State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Biomedical Engineering, (Y.S., X.W.), Shanghai Jiao Tong University, China; Institute for Biomedical Engineering and Nano Science, Tongji University School of Medicine, Shanghai, China (Y.C.); Med-X-Renji Hospital Stem Cell Research Center, Jiao Tong University School of Medicine, Shanghai, China (H.H.Z., W.-Q.G.); Division of Cardiology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taiwan (P.C.); Laboratory of Cardiovascular Signaling, Centenary Institute, Camperdown, New South Wales, Australia (X.Z.); Department of Medicine, Sydney Medical School, University of Sydney, New South Wales, Australia (X.Z.); Department of Pharmacology, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (Y.T.); and Department of Cell and Developmental Biology, Department of Medicine, Penn Cardiovascular Institute, Penn Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia (E.M.)
| | - YuZhen Zhang
- From the Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, China (J.P., T.Z., H.S., X.C., J.L., Z.Y., L.Z., Y.Z.); Department of Geriatrics, Ruijin Hospital, School of Medicine (T.T.) and State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Biomedical Engineering, (Y.S., X.W.), Shanghai Jiao Tong University, China; Institute for Biomedical Engineering and Nano Science, Tongji University School of Medicine, Shanghai, China (Y.C.); Med-X-Renji Hospital Stem Cell Research Center, Jiao Tong University School of Medicine, Shanghai, China (H.H.Z., W.-Q.G.); Division of Cardiology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taiwan (P.C.); Laboratory of Cardiovascular Signaling, Centenary Institute, Camperdown, New South Wales, Australia (X.Z.); Department of Medicine, Sydney Medical School, University of Sydney, New South Wales, Australia (X.Z.); Department of Pharmacology, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (Y.T.); and Department of Cell and Developmental Biology, Department of Medicine, Penn Cardiovascular Institute, Penn Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia (E.M.).
| |
Collapse
|
238
|
Caporali A, Martello A, Miscianinov V, Maselli D, Vono R, Spinetti G. Contribution of pericyte paracrine regulation of the endothelium to angiogenesis. Pharmacol Ther 2016; 171:56-64. [PMID: 27742570 DOI: 10.1016/j.pharmthera.2016.10.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
During physiological development and after a stressor event, vascular cells communicate with each other to evoke new vessel formation-a process known as angiogenesis. This communication occurs via direct contact and via paracrine release of proteins and nucleic acids, both in a free form or encapsulated into micro-vesicles. In diseases with an altered angiogenic response, such as cancer and diabetic vascular complications, it becomes of paramount importance to tune the cell communication process. Endothelial cell growth and migration are essential processes for new vessel formation, and pericytes, together with some classes of circulating monocytes, are important endothelial regulators. The interaction between pericytes and the endothelium is facilitated by their anatomical apposition, which involves endothelial cells and pericytes sharing the same basement membrane. However, the role of pericytes is not fully understood. The characteristics and the function of tissue-specific pericytesis are the focus of this review. Factors involved in the cross-talk between these cell types and the opportunities afforded by micro-RNA and micro-vesicle techniques are discussed. Targeting these mechanisms in pathological conditions, in which the vessel response is altered, is considered in relation to identification of new therapies for restoring the blood flow.
Collapse
Affiliation(s)
- A Caporali
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - A Martello
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - V Miscianinov
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - D Maselli
- IRCCS MultiMedica, Milan, Italy; Dipartimento di Scienze Biomediche, Università di Sassari, Sassari, Italy
| | - R Vono
- IRCCS MultiMedica, Milan, Italy
| | | |
Collapse
|
239
|
Sphingosine 1-Phosphate Activation of EGFR As a Novel Target for Meningitic Escherichia coli Penetration of the Blood-Brain Barrier. PLoS Pathog 2016; 12:e1005926. [PMID: 27711202 PMCID: PMC5053521 DOI: 10.1371/journal.ppat.1005926] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 09/11/2016] [Indexed: 12/24/2022] Open
Abstract
Central nervous system (CNS) infection continues to be an important cause of mortality and morbidity, necessitating new approaches for investigating its pathogenesis, prevention and therapy. Escherichia coli is the most common Gram-negative bacillary organism causing meningitis, which develops following penetration of the blood-brain barrier (BBB). By chemical library screening, we identified epidermal growth factor receptor (EGFR) as a contributor to E. coli invasion of the BBB in vitro. Here, we obtained the direct evidence that CNS-infecting E. coli exploited sphingosine 1-phosphate (S1P) for EGFR activation in penetration of the BBB in vitro and in vivo. We found that S1P was upstream of EGFR and participated in EGFR activation through S1P receptor as well as through S1P-mediated up-regulation of EGFR-related ligand HB-EGF, and blockade of S1P function through targeting sphingosine kinase and S1P receptor inhibited EGFR activation, and also E. coli invasion of the BBB. We further found that both S1P and EGFR activations occurred in response to the same E. coli proteins (OmpA, FimH, NlpI), and that S1P and EGFR promoted E. coli invasion of the BBB by activating the downstream c-Src. These findings indicate that S1P and EGFR represent the novel host targets for meningitic E. coli penetration of the BBB, and counteracting such targets provide a novel approach for controlling E. coli meningitis in the era of increasing resistance to conventional antibiotics.
Collapse
|
240
|
Touat-Hamici Z, Weidmann H, Blum Y, Proust C, Durand H, Iannacci F, Codoni V, Gaignard P, Thérond P, Civelek M, Karabina SA, Lusis AJ, Cambien F, Ninio E. Role of lipid phosphate phosphatase 3 in human aortic endothelial cell function. Cardiovasc Res 2016; 112:702-713. [PMID: 27694435 DOI: 10.1093/cvr/cvw217] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 09/08/2016] [Accepted: 09/21/2016] [Indexed: 12/11/2022] Open
Abstract
AIMS Lipid phosphate phosphatase 3; type 2 phosphatidic acid phosphatase β (LPP3; PPAP2B) is a transmembrane protein dephosphorylating and thereby terminating signalling of lipid substrates including lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P). Human LPP3 possesses a cell adhesion motif that allows interaction with integrins. A polymorphism (rs17114036) in PPAP2B is associated with coronary artery disease, which prompted us to investigate the possible role of LPP3 in human endothelial dysfunction, a condition promoting atherosclerosis. METHODS AND RESULTS To study the role of LPP3 in endothelial cells we used human primary aortic endothelial cells (HAECs) in which LPP3 was silenced or overexpressed using either wild type or mutated cDNA constructs. LPP3 silencing in HAECs enhanced secretion of inflammatory cytokines, leucocyte adhesion, cell survival, and migration and impaired angiogenesis, whereas wild-type LPP3 overexpression reversed these effects and induced apoptosis. We also demonstrated that LPP3 expression was negatively correlated with vascular endothelial growth factor expression. Mutations in either the catalytic or the arginine-glycine-aspartate (RGD) domains impaired endothelial cell function and pharmacological inhibition of S1P or LPA restored it. LPA was not secreted in HAECs under silencing or overexpressing LPP3. However, the intra- and extra-cellular levels of S1P tended to be correlated with LPP3 expression, indicating that S1P is probably degraded by LPP3. CONCLUSIONS We demonstrated that LPP3 is a negative regulator of inflammatory cytokines, leucocyte adhesion, cell survival, and migration in HAECs, suggesting a protective role of LPP3 against endothelial dysfunction in humans. Both the catalytic and the RGD functional domains were involved and S1P, but not LPA, might be the endogenous substrate of LPP3.
Collapse
Affiliation(s)
- Zahia Touat-Hamici
- Sorbonne Universités, UPMC, INSERM UMR_S 1166, ICAN, Genomics and Pathophysiology of Cardiovascular Diseases Team, 91 Bd de l'Hôpital, 75013 Paris, France
| | - Henri Weidmann
- Sorbonne Universités, UPMC, INSERM UMR_S 1166, ICAN, Genomics and Pathophysiology of Cardiovascular Diseases Team, 91 Bd de l'Hôpital, 75013 Paris, France
| | - Yuna Blum
- Department of Medicine/Division of Cardiology, University of California, Los Angeles, David Geffen School of Medicine, A2-237 Center for the Health Sciences, 650 Charles E. Young Drive South, Los Angeles, CA 90095-1679, USA
| | - Carole Proust
- Sorbonne Universités, UPMC, INSERM UMR_S 1166, ICAN, Genomics and Pathophysiology of Cardiovascular Diseases Team, 91 Bd de l'Hôpital, 75013 Paris, France
| | - Hervé Durand
- Sorbonne Universités, UPMC, INSERM UMR_S 1166, ICAN, Genomics and Pathophysiology of Cardiovascular Diseases Team, 91 Bd de l'Hôpital, 75013 Paris, France
| | - Francesca Iannacci
- Sorbonne Universités, UPMC, INSERM UMR_S 1166, ICAN, Genomics and Pathophysiology of Cardiovascular Diseases Team, 91 Bd de l'Hôpital, 75013 Paris, France
| | - Veronica Codoni
- Sorbonne Universités, UPMC, INSERM UMR_S 1166, ICAN, Genomics and Pathophysiology of Cardiovascular Diseases Team, 91 Bd de l'Hôpital, 75013 Paris, France
| | - Pauline Gaignard
- APHP, Hôpital de Bicêtre, Service de Biochimie, 78 rue du Général Leclerc, 94275 Le Kremlin Bicêtre, France.,Université Paris Sud, UR Lip(Sys), UFR de Pharmacie, 5 rue Jean-Baptiste Clément, Châtenay-Malabry 92296, France
| | - Patrice Thérond
- APHP, Hôpital de Bicêtre, Service de Biochimie, 78 rue du Général Leclerc, 94275 Le Kremlin Bicêtre, France.,Université Paris Sud, UR Lip(Sys), UFR de Pharmacie, 5 rue Jean-Baptiste Clément, Châtenay-Malabry 92296, France
| | - Mete Civelek
- Department of Medicine/Division of Cardiology, University of California, Los Angeles, David Geffen School of Medicine, A2-237 Center for the Health Sciences, 650 Charles E. Young Drive South, Los Angeles, CA 90095-1679, USA
| | - Sonia A Karabina
- Sorbonne Universités, UPMC, INSERM UMR_S 933, Hôpital Armand-Trousseau, 4 rue de la Chine, 75020 Paris, France
| | - Aldons J Lusis
- Department of Medicine/Division of Cardiology, University of California, Los Angeles, David Geffen School of Medicine, A2-237 Center for the Health Sciences, 650 Charles E. Young Drive South, Los Angeles, CA 90095-1679, USA
| | - François Cambien
- Sorbonne Universités, UPMC, INSERM UMR_S 1166, ICAN, Genomics and Pathophysiology of Cardiovascular Diseases Team, 91 Bd de l'Hôpital, 75013 Paris, France
| | - Ewa Ninio
- Sorbonne Universités, UPMC, INSERM UMR_S 1166, ICAN, Genomics and Pathophysiology of Cardiovascular Diseases Team, 91 Bd de l'Hôpital, 75013 Paris, France
| |
Collapse
|
241
|
Gazit SL, Mariko B, Thérond P, Decouture B, Xiong Y, Couty L, Bonnin P, Baudrie V, Le Gall SM, Dizier B, Zoghdani N, Ransinan J, Hamilton JR, Gaussem P, Tharaux PL, Chun J, Coughlin SR, Bachelot-Loza C, Hla T, Ho-Tin-Noé B, Camerer E. Platelet and Erythrocyte Sources of S1P Are Redundant for Vascular Development and Homeostasis, but Both Rendered Essential After Plasma S1P Depletion in Anaphylactic Shock. Circ Res 2016; 119:e110-26. [PMID: 27582371 DOI: 10.1161/circresaha.116.308929] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 08/30/2016] [Indexed: 11/16/2022]
Abstract
RATIONALE Sphingosine-1-phosphate (S1P) signaling is essential for vascular development and postnatal vascular homeostasis. The relative importance of S1P sources sustaining these processes remains unclear. OBJECTIVE To address the level of redundancy in bioactive S1P provision to the developing and mature vasculature. METHODS AND RESULTS S1P production was selectively impaired in mouse platelets, erythrocytes, endothelium, or smooth muscle cells by targeted deletion of genes encoding sphingosine kinases -1 and -2. S1P deficiency impaired aggregation and spreading of washed platelets and profoundly reduced their capacity to promote endothelial barrier function ex vivo. However, and in contrast to recent reports, neither platelets nor any other source of S1P was essential for vascular development, vascular integrity, or hemostasis/thrombosis. Yet rapid and profound depletion of plasma S1P during systemic anaphylaxis rendered both platelet- and erythrocyte-derived S1P essential for survival, with a contribution from blood endothelium observed only in the absence of circulating sources. Recovery was sensitive to aspirin in mice with but not without platelet S1P, suggesting that platelet activation and stimulus-response coupling is needed. S1P deficiency aggravated vasoplegia in this model, arguing a vital role for S1P in maintaining vascular resistance during recovery from circulatory shock. Accordingly, the S1P2 receptor mediated most of the survival benefit of S1P, whereas the endothelial S1P1 receptor was dispensable for survival despite its importance for maintaining vascular integrity. CONCLUSIONS Although source redundancy normally secures essential S1P signaling in developing and mature blood vessels, profound depletion of plasma S1P renders both erythrocyte and platelet S1P pools necessary for recovery and high basal plasma S1P levels protective during anaphylactic shock.
Collapse
Affiliation(s)
- Salomé L Gazit
- From the INSERM U970, Paris Cardiovascular Research Centre, 75015 Paris, France (S.L.G., B.M., L.C., V.B., S.M.L.G., N.Z., J.R., P.-L.T., E.C.); Université Sorbonne Paris Cité, Paris, France (S.L.G., B.M., B. Decouture, L.C., P.B., V.B., S.M.L.G., B. Dizier, N.Z., J.R., P.G., P.-L.T., C.B.-L., B.H.-T.-N., E.C.); AP-HP, Hôpital Bicêtre, Service de Biochimie, 94275 Le Kremlin Bicêtre, France (P.T.); Lip(Sys)2-Biochimie appliquée, Université Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry, France (P.T.); INSERM U1140, Faculté de Pharmacie, 75006 Paris, France (B. Decouture, B. Dizier, P.G., C.B.-L.); Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York (Y.X., T.H.); AP-HP, Hôpital Lariboisière, Physiologie Clinique-Explorations-Fonctionnelles, INSERM U965, 75010, Paris, France (P.B.); Australian Centre for Blood Diseases & Department of Clinical Haematology, Monash University, Melbourne, Australia (J.R.H.); AP-HP, Hôpital Européen Georges Pompidou, Service d'Hématologie Biologique, Paris, France (P.G.); Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA (J.C.); Cardiovascular Research Institute, University of California, San Francisco (S.R.C.); and INSERM U698, 75018 Paris, France (B.H.-T.-N.)
| | - Boubacar Mariko
- From the INSERM U970, Paris Cardiovascular Research Centre, 75015 Paris, France (S.L.G., B.M., L.C., V.B., S.M.L.G., N.Z., J.R., P.-L.T., E.C.); Université Sorbonne Paris Cité, Paris, France (S.L.G., B.M., B. Decouture, L.C., P.B., V.B., S.M.L.G., B. Dizier, N.Z., J.R., P.G., P.-L.T., C.B.-L., B.H.-T.-N., E.C.); AP-HP, Hôpital Bicêtre, Service de Biochimie, 94275 Le Kremlin Bicêtre, France (P.T.); Lip(Sys)2-Biochimie appliquée, Université Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry, France (P.T.); INSERM U1140, Faculté de Pharmacie, 75006 Paris, France (B. Decouture, B. Dizier, P.G., C.B.-L.); Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York (Y.X., T.H.); AP-HP, Hôpital Lariboisière, Physiologie Clinique-Explorations-Fonctionnelles, INSERM U965, 75010, Paris, France (P.B.); Australian Centre for Blood Diseases & Department of Clinical Haematology, Monash University, Melbourne, Australia (J.R.H.); AP-HP, Hôpital Européen Georges Pompidou, Service d'Hématologie Biologique, Paris, France (P.G.); Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA (J.C.); Cardiovascular Research Institute, University of California, San Francisco (S.R.C.); and INSERM U698, 75018 Paris, France (B.H.-T.-N.)
| | - Patrice Thérond
- From the INSERM U970, Paris Cardiovascular Research Centre, 75015 Paris, France (S.L.G., B.M., L.C., V.B., S.M.L.G., N.Z., J.R., P.-L.T., E.C.); Université Sorbonne Paris Cité, Paris, France (S.L.G., B.M., B. Decouture, L.C., P.B., V.B., S.M.L.G., B. Dizier, N.Z., J.R., P.G., P.-L.T., C.B.-L., B.H.-T.-N., E.C.); AP-HP, Hôpital Bicêtre, Service de Biochimie, 94275 Le Kremlin Bicêtre, France (P.T.); Lip(Sys)2-Biochimie appliquée, Université Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry, France (P.T.); INSERM U1140, Faculté de Pharmacie, 75006 Paris, France (B. Decouture, B. Dizier, P.G., C.B.-L.); Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York (Y.X., T.H.); AP-HP, Hôpital Lariboisière, Physiologie Clinique-Explorations-Fonctionnelles, INSERM U965, 75010, Paris, France (P.B.); Australian Centre for Blood Diseases & Department of Clinical Haematology, Monash University, Melbourne, Australia (J.R.H.); AP-HP, Hôpital Européen Georges Pompidou, Service d'Hématologie Biologique, Paris, France (P.G.); Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA (J.C.); Cardiovascular Research Institute, University of California, San Francisco (S.R.C.); and INSERM U698, 75018 Paris, France (B.H.-T.-N.)
| | - Benoit Decouture
- From the INSERM U970, Paris Cardiovascular Research Centre, 75015 Paris, France (S.L.G., B.M., L.C., V.B., S.M.L.G., N.Z., J.R., P.-L.T., E.C.); Université Sorbonne Paris Cité, Paris, France (S.L.G., B.M., B. Decouture, L.C., P.B., V.B., S.M.L.G., B. Dizier, N.Z., J.R., P.G., P.-L.T., C.B.-L., B.H.-T.-N., E.C.); AP-HP, Hôpital Bicêtre, Service de Biochimie, 94275 Le Kremlin Bicêtre, France (P.T.); Lip(Sys)2-Biochimie appliquée, Université Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry, France (P.T.); INSERM U1140, Faculté de Pharmacie, 75006 Paris, France (B. Decouture, B. Dizier, P.G., C.B.-L.); Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York (Y.X., T.H.); AP-HP, Hôpital Lariboisière, Physiologie Clinique-Explorations-Fonctionnelles, INSERM U965, 75010, Paris, France (P.B.); Australian Centre for Blood Diseases & Department of Clinical Haematology, Monash University, Melbourne, Australia (J.R.H.); AP-HP, Hôpital Européen Georges Pompidou, Service d'Hématologie Biologique, Paris, France (P.G.); Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA (J.C.); Cardiovascular Research Institute, University of California, San Francisco (S.R.C.); and INSERM U698, 75018 Paris, France (B.H.-T.-N.)
| | - Yuquan Xiong
- From the INSERM U970, Paris Cardiovascular Research Centre, 75015 Paris, France (S.L.G., B.M., L.C., V.B., S.M.L.G., N.Z., J.R., P.-L.T., E.C.); Université Sorbonne Paris Cité, Paris, France (S.L.G., B.M., B. Decouture, L.C., P.B., V.B., S.M.L.G., B. Dizier, N.Z., J.R., P.G., P.-L.T., C.B.-L., B.H.-T.-N., E.C.); AP-HP, Hôpital Bicêtre, Service de Biochimie, 94275 Le Kremlin Bicêtre, France (P.T.); Lip(Sys)2-Biochimie appliquée, Université Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry, France (P.T.); INSERM U1140, Faculté de Pharmacie, 75006 Paris, France (B. Decouture, B. Dizier, P.G., C.B.-L.); Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York (Y.X., T.H.); AP-HP, Hôpital Lariboisière, Physiologie Clinique-Explorations-Fonctionnelles, INSERM U965, 75010, Paris, France (P.B.); Australian Centre for Blood Diseases & Department of Clinical Haematology, Monash University, Melbourne, Australia (J.R.H.); AP-HP, Hôpital Européen Georges Pompidou, Service d'Hématologie Biologique, Paris, France (P.G.); Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA (J.C.); Cardiovascular Research Institute, University of California, San Francisco (S.R.C.); and INSERM U698, 75018 Paris, France (B.H.-T.-N.)
| | - Ludovic Couty
- From the INSERM U970, Paris Cardiovascular Research Centre, 75015 Paris, France (S.L.G., B.M., L.C., V.B., S.M.L.G., N.Z., J.R., P.-L.T., E.C.); Université Sorbonne Paris Cité, Paris, France (S.L.G., B.M., B. Decouture, L.C., P.B., V.B., S.M.L.G., B. Dizier, N.Z., J.R., P.G., P.-L.T., C.B.-L., B.H.-T.-N., E.C.); AP-HP, Hôpital Bicêtre, Service de Biochimie, 94275 Le Kremlin Bicêtre, France (P.T.); Lip(Sys)2-Biochimie appliquée, Université Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry, France (P.T.); INSERM U1140, Faculté de Pharmacie, 75006 Paris, France (B. Decouture, B. Dizier, P.G., C.B.-L.); Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York (Y.X., T.H.); AP-HP, Hôpital Lariboisière, Physiologie Clinique-Explorations-Fonctionnelles, INSERM U965, 75010, Paris, France (P.B.); Australian Centre for Blood Diseases & Department of Clinical Haematology, Monash University, Melbourne, Australia (J.R.H.); AP-HP, Hôpital Européen Georges Pompidou, Service d'Hématologie Biologique, Paris, France (P.G.); Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA (J.C.); Cardiovascular Research Institute, University of California, San Francisco (S.R.C.); and INSERM U698, 75018 Paris, France (B.H.-T.-N.)
| | - Philippe Bonnin
- From the INSERM U970, Paris Cardiovascular Research Centre, 75015 Paris, France (S.L.G., B.M., L.C., V.B., S.M.L.G., N.Z., J.R., P.-L.T., E.C.); Université Sorbonne Paris Cité, Paris, France (S.L.G., B.M., B. Decouture, L.C., P.B., V.B., S.M.L.G., B. Dizier, N.Z., J.R., P.G., P.-L.T., C.B.-L., B.H.-T.-N., E.C.); AP-HP, Hôpital Bicêtre, Service de Biochimie, 94275 Le Kremlin Bicêtre, France (P.T.); Lip(Sys)2-Biochimie appliquée, Université Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry, France (P.T.); INSERM U1140, Faculté de Pharmacie, 75006 Paris, France (B. Decouture, B. Dizier, P.G., C.B.-L.); Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York (Y.X., T.H.); AP-HP, Hôpital Lariboisière, Physiologie Clinique-Explorations-Fonctionnelles, INSERM U965, 75010, Paris, France (P.B.); Australian Centre for Blood Diseases & Department of Clinical Haematology, Monash University, Melbourne, Australia (J.R.H.); AP-HP, Hôpital Européen Georges Pompidou, Service d'Hématologie Biologique, Paris, France (P.G.); Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA (J.C.); Cardiovascular Research Institute, University of California, San Francisco (S.R.C.); and INSERM U698, 75018 Paris, France (B.H.-T.-N.)
| | - Véronique Baudrie
- From the INSERM U970, Paris Cardiovascular Research Centre, 75015 Paris, France (S.L.G., B.M., L.C., V.B., S.M.L.G., N.Z., J.R., P.-L.T., E.C.); Université Sorbonne Paris Cité, Paris, France (S.L.G., B.M., B. Decouture, L.C., P.B., V.B., S.M.L.G., B. Dizier, N.Z., J.R., P.G., P.-L.T., C.B.-L., B.H.-T.-N., E.C.); AP-HP, Hôpital Bicêtre, Service de Biochimie, 94275 Le Kremlin Bicêtre, France (P.T.); Lip(Sys)2-Biochimie appliquée, Université Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry, France (P.T.); INSERM U1140, Faculté de Pharmacie, 75006 Paris, France (B. Decouture, B. Dizier, P.G., C.B.-L.); Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York (Y.X., T.H.); AP-HP, Hôpital Lariboisière, Physiologie Clinique-Explorations-Fonctionnelles, INSERM U965, 75010, Paris, France (P.B.); Australian Centre for Blood Diseases & Department of Clinical Haematology, Monash University, Melbourne, Australia (J.R.H.); AP-HP, Hôpital Européen Georges Pompidou, Service d'Hématologie Biologique, Paris, France (P.G.); Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA (J.C.); Cardiovascular Research Institute, University of California, San Francisco (S.R.C.); and INSERM U698, 75018 Paris, France (B.H.-T.-N.)
| | - Sylvain M Le Gall
- From the INSERM U970, Paris Cardiovascular Research Centre, 75015 Paris, France (S.L.G., B.M., L.C., V.B., S.M.L.G., N.Z., J.R., P.-L.T., E.C.); Université Sorbonne Paris Cité, Paris, France (S.L.G., B.M., B. Decouture, L.C., P.B., V.B., S.M.L.G., B. Dizier, N.Z., J.R., P.G., P.-L.T., C.B.-L., B.H.-T.-N., E.C.); AP-HP, Hôpital Bicêtre, Service de Biochimie, 94275 Le Kremlin Bicêtre, France (P.T.); Lip(Sys)2-Biochimie appliquée, Université Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry, France (P.T.); INSERM U1140, Faculté de Pharmacie, 75006 Paris, France (B. Decouture, B. Dizier, P.G., C.B.-L.); Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York (Y.X., T.H.); AP-HP, Hôpital Lariboisière, Physiologie Clinique-Explorations-Fonctionnelles, INSERM U965, 75010, Paris, France (P.B.); Australian Centre for Blood Diseases & Department of Clinical Haematology, Monash University, Melbourne, Australia (J.R.H.); AP-HP, Hôpital Européen Georges Pompidou, Service d'Hématologie Biologique, Paris, France (P.G.); Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA (J.C.); Cardiovascular Research Institute, University of California, San Francisco (S.R.C.); and INSERM U698, 75018 Paris, France (B.H.-T.-N.)
| | - Blandine Dizier
- From the INSERM U970, Paris Cardiovascular Research Centre, 75015 Paris, France (S.L.G., B.M., L.C., V.B., S.M.L.G., N.Z., J.R., P.-L.T., E.C.); Université Sorbonne Paris Cité, Paris, France (S.L.G., B.M., B. Decouture, L.C., P.B., V.B., S.M.L.G., B. Dizier, N.Z., J.R., P.G., P.-L.T., C.B.-L., B.H.-T.-N., E.C.); AP-HP, Hôpital Bicêtre, Service de Biochimie, 94275 Le Kremlin Bicêtre, France (P.T.); Lip(Sys)2-Biochimie appliquée, Université Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry, France (P.T.); INSERM U1140, Faculté de Pharmacie, 75006 Paris, France (B. Decouture, B. Dizier, P.G., C.B.-L.); Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York (Y.X., T.H.); AP-HP, Hôpital Lariboisière, Physiologie Clinique-Explorations-Fonctionnelles, INSERM U965, 75010, Paris, France (P.B.); Australian Centre for Blood Diseases & Department of Clinical Haematology, Monash University, Melbourne, Australia (J.R.H.); AP-HP, Hôpital Européen Georges Pompidou, Service d'Hématologie Biologique, Paris, France (P.G.); Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA (J.C.); Cardiovascular Research Institute, University of California, San Francisco (S.R.C.); and INSERM U698, 75018 Paris, France (B.H.-T.-N.)
| | - Nesrine Zoghdani
- From the INSERM U970, Paris Cardiovascular Research Centre, 75015 Paris, France (S.L.G., B.M., L.C., V.B., S.M.L.G., N.Z., J.R., P.-L.T., E.C.); Université Sorbonne Paris Cité, Paris, France (S.L.G., B.M., B. Decouture, L.C., P.B., V.B., S.M.L.G., B. Dizier, N.Z., J.R., P.G., P.-L.T., C.B.-L., B.H.-T.-N., E.C.); AP-HP, Hôpital Bicêtre, Service de Biochimie, 94275 Le Kremlin Bicêtre, France (P.T.); Lip(Sys)2-Biochimie appliquée, Université Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry, France (P.T.); INSERM U1140, Faculté de Pharmacie, 75006 Paris, France (B. Decouture, B. Dizier, P.G., C.B.-L.); Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York (Y.X., T.H.); AP-HP, Hôpital Lariboisière, Physiologie Clinique-Explorations-Fonctionnelles, INSERM U965, 75010, Paris, France (P.B.); Australian Centre for Blood Diseases & Department of Clinical Haematology, Monash University, Melbourne, Australia (J.R.H.); AP-HP, Hôpital Européen Georges Pompidou, Service d'Hématologie Biologique, Paris, France (P.G.); Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA (J.C.); Cardiovascular Research Institute, University of California, San Francisco (S.R.C.); and INSERM U698, 75018 Paris, France (B.H.-T.-N.)
| | - Jessica Ransinan
- From the INSERM U970, Paris Cardiovascular Research Centre, 75015 Paris, France (S.L.G., B.M., L.C., V.B., S.M.L.G., N.Z., J.R., P.-L.T., E.C.); Université Sorbonne Paris Cité, Paris, France (S.L.G., B.M., B. Decouture, L.C., P.B., V.B., S.M.L.G., B. Dizier, N.Z., J.R., P.G., P.-L.T., C.B.-L., B.H.-T.-N., E.C.); AP-HP, Hôpital Bicêtre, Service de Biochimie, 94275 Le Kremlin Bicêtre, France (P.T.); Lip(Sys)2-Biochimie appliquée, Université Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry, France (P.T.); INSERM U1140, Faculté de Pharmacie, 75006 Paris, France (B. Decouture, B. Dizier, P.G., C.B.-L.); Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York (Y.X., T.H.); AP-HP, Hôpital Lariboisière, Physiologie Clinique-Explorations-Fonctionnelles, INSERM U965, 75010, Paris, France (P.B.); Australian Centre for Blood Diseases & Department of Clinical Haematology, Monash University, Melbourne, Australia (J.R.H.); AP-HP, Hôpital Européen Georges Pompidou, Service d'Hématologie Biologique, Paris, France (P.G.); Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA (J.C.); Cardiovascular Research Institute, University of California, San Francisco (S.R.C.); and INSERM U698, 75018 Paris, France (B.H.-T.-N.)
| | - Justin R Hamilton
- From the INSERM U970, Paris Cardiovascular Research Centre, 75015 Paris, France (S.L.G., B.M., L.C., V.B., S.M.L.G., N.Z., J.R., P.-L.T., E.C.); Université Sorbonne Paris Cité, Paris, France (S.L.G., B.M., B. Decouture, L.C., P.B., V.B., S.M.L.G., B. Dizier, N.Z., J.R., P.G., P.-L.T., C.B.-L., B.H.-T.-N., E.C.); AP-HP, Hôpital Bicêtre, Service de Biochimie, 94275 Le Kremlin Bicêtre, France (P.T.); Lip(Sys)2-Biochimie appliquée, Université Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry, France (P.T.); INSERM U1140, Faculté de Pharmacie, 75006 Paris, France (B. Decouture, B. Dizier, P.G., C.B.-L.); Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York (Y.X., T.H.); AP-HP, Hôpital Lariboisière, Physiologie Clinique-Explorations-Fonctionnelles, INSERM U965, 75010, Paris, France (P.B.); Australian Centre for Blood Diseases & Department of Clinical Haematology, Monash University, Melbourne, Australia (J.R.H.); AP-HP, Hôpital Européen Georges Pompidou, Service d'Hématologie Biologique, Paris, France (P.G.); Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA (J.C.); Cardiovascular Research Institute, University of California, San Francisco (S.R.C.); and INSERM U698, 75018 Paris, France (B.H.-T.-N.)
| | - Pascale Gaussem
- From the INSERM U970, Paris Cardiovascular Research Centre, 75015 Paris, France (S.L.G., B.M., L.C., V.B., S.M.L.G., N.Z., J.R., P.-L.T., E.C.); Université Sorbonne Paris Cité, Paris, France (S.L.G., B.M., B. Decouture, L.C., P.B., V.B., S.M.L.G., B. Dizier, N.Z., J.R., P.G., P.-L.T., C.B.-L., B.H.-T.-N., E.C.); AP-HP, Hôpital Bicêtre, Service de Biochimie, 94275 Le Kremlin Bicêtre, France (P.T.); Lip(Sys)2-Biochimie appliquée, Université Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry, France (P.T.); INSERM U1140, Faculté de Pharmacie, 75006 Paris, France (B. Decouture, B. Dizier, P.G., C.B.-L.); Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York (Y.X., T.H.); AP-HP, Hôpital Lariboisière, Physiologie Clinique-Explorations-Fonctionnelles, INSERM U965, 75010, Paris, France (P.B.); Australian Centre for Blood Diseases & Department of Clinical Haematology, Monash University, Melbourne, Australia (J.R.H.); AP-HP, Hôpital Européen Georges Pompidou, Service d'Hématologie Biologique, Paris, France (P.G.); Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA (J.C.); Cardiovascular Research Institute, University of California, San Francisco (S.R.C.); and INSERM U698, 75018 Paris, France (B.H.-T.-N.)
| | - Pierre-Louis Tharaux
- From the INSERM U970, Paris Cardiovascular Research Centre, 75015 Paris, France (S.L.G., B.M., L.C., V.B., S.M.L.G., N.Z., J.R., P.-L.T., E.C.); Université Sorbonne Paris Cité, Paris, France (S.L.G., B.M., B. Decouture, L.C., P.B., V.B., S.M.L.G., B. Dizier, N.Z., J.R., P.G., P.-L.T., C.B.-L., B.H.-T.-N., E.C.); AP-HP, Hôpital Bicêtre, Service de Biochimie, 94275 Le Kremlin Bicêtre, France (P.T.); Lip(Sys)2-Biochimie appliquée, Université Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry, France (P.T.); INSERM U1140, Faculté de Pharmacie, 75006 Paris, France (B. Decouture, B. Dizier, P.G., C.B.-L.); Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York (Y.X., T.H.); AP-HP, Hôpital Lariboisière, Physiologie Clinique-Explorations-Fonctionnelles, INSERM U965, 75010, Paris, France (P.B.); Australian Centre for Blood Diseases & Department of Clinical Haematology, Monash University, Melbourne, Australia (J.R.H.); AP-HP, Hôpital Européen Georges Pompidou, Service d'Hématologie Biologique, Paris, France (P.G.); Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA (J.C.); Cardiovascular Research Institute, University of California, San Francisco (S.R.C.); and INSERM U698, 75018 Paris, France (B.H.-T.-N.)
| | - Jerold Chun
- From the INSERM U970, Paris Cardiovascular Research Centre, 75015 Paris, France (S.L.G., B.M., L.C., V.B., S.M.L.G., N.Z., J.R., P.-L.T., E.C.); Université Sorbonne Paris Cité, Paris, France (S.L.G., B.M., B. Decouture, L.C., P.B., V.B., S.M.L.G., B. Dizier, N.Z., J.R., P.G., P.-L.T., C.B.-L., B.H.-T.-N., E.C.); AP-HP, Hôpital Bicêtre, Service de Biochimie, 94275 Le Kremlin Bicêtre, France (P.T.); Lip(Sys)2-Biochimie appliquée, Université Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry, France (P.T.); INSERM U1140, Faculté de Pharmacie, 75006 Paris, France (B. Decouture, B. Dizier, P.G., C.B.-L.); Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York (Y.X., T.H.); AP-HP, Hôpital Lariboisière, Physiologie Clinique-Explorations-Fonctionnelles, INSERM U965, 75010, Paris, France (P.B.); Australian Centre for Blood Diseases & Department of Clinical Haematology, Monash University, Melbourne, Australia (J.R.H.); AP-HP, Hôpital Européen Georges Pompidou, Service d'Hématologie Biologique, Paris, France (P.G.); Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA (J.C.); Cardiovascular Research Institute, University of California, San Francisco (S.R.C.); and INSERM U698, 75018 Paris, France (B.H.-T.-N.)
| | - Shaun R Coughlin
- From the INSERM U970, Paris Cardiovascular Research Centre, 75015 Paris, France (S.L.G., B.M., L.C., V.B., S.M.L.G., N.Z., J.R., P.-L.T., E.C.); Université Sorbonne Paris Cité, Paris, France (S.L.G., B.M., B. Decouture, L.C., P.B., V.B., S.M.L.G., B. Dizier, N.Z., J.R., P.G., P.-L.T., C.B.-L., B.H.-T.-N., E.C.); AP-HP, Hôpital Bicêtre, Service de Biochimie, 94275 Le Kremlin Bicêtre, France (P.T.); Lip(Sys)2-Biochimie appliquée, Université Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry, France (P.T.); INSERM U1140, Faculté de Pharmacie, 75006 Paris, France (B. Decouture, B. Dizier, P.G., C.B.-L.); Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York (Y.X., T.H.); AP-HP, Hôpital Lariboisière, Physiologie Clinique-Explorations-Fonctionnelles, INSERM U965, 75010, Paris, France (P.B.); Australian Centre for Blood Diseases & Department of Clinical Haematology, Monash University, Melbourne, Australia (J.R.H.); AP-HP, Hôpital Européen Georges Pompidou, Service d'Hématologie Biologique, Paris, France (P.G.); Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA (J.C.); Cardiovascular Research Institute, University of California, San Francisco (S.R.C.); and INSERM U698, 75018 Paris, France (B.H.-T.-N.)
| | - Christilla Bachelot-Loza
- From the INSERM U970, Paris Cardiovascular Research Centre, 75015 Paris, France (S.L.G., B.M., L.C., V.B., S.M.L.G., N.Z., J.R., P.-L.T., E.C.); Université Sorbonne Paris Cité, Paris, France (S.L.G., B.M., B. Decouture, L.C., P.B., V.B., S.M.L.G., B. Dizier, N.Z., J.R., P.G., P.-L.T., C.B.-L., B.H.-T.-N., E.C.); AP-HP, Hôpital Bicêtre, Service de Biochimie, 94275 Le Kremlin Bicêtre, France (P.T.); Lip(Sys)2-Biochimie appliquée, Université Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry, France (P.T.); INSERM U1140, Faculté de Pharmacie, 75006 Paris, France (B. Decouture, B. Dizier, P.G., C.B.-L.); Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York (Y.X., T.H.); AP-HP, Hôpital Lariboisière, Physiologie Clinique-Explorations-Fonctionnelles, INSERM U965, 75010, Paris, France (P.B.); Australian Centre for Blood Diseases & Department of Clinical Haematology, Monash University, Melbourne, Australia (J.R.H.); AP-HP, Hôpital Européen Georges Pompidou, Service d'Hématologie Biologique, Paris, France (P.G.); Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA (J.C.); Cardiovascular Research Institute, University of California, San Francisco (S.R.C.); and INSERM U698, 75018 Paris, France (B.H.-T.-N.)
| | - Timothy Hla
- From the INSERM U970, Paris Cardiovascular Research Centre, 75015 Paris, France (S.L.G., B.M., L.C., V.B., S.M.L.G., N.Z., J.R., P.-L.T., E.C.); Université Sorbonne Paris Cité, Paris, France (S.L.G., B.M., B. Decouture, L.C., P.B., V.B., S.M.L.G., B. Dizier, N.Z., J.R., P.G., P.-L.T., C.B.-L., B.H.-T.-N., E.C.); AP-HP, Hôpital Bicêtre, Service de Biochimie, 94275 Le Kremlin Bicêtre, France (P.T.); Lip(Sys)2-Biochimie appliquée, Université Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry, France (P.T.); INSERM U1140, Faculté de Pharmacie, 75006 Paris, France (B. Decouture, B. Dizier, P.G., C.B.-L.); Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York (Y.X., T.H.); AP-HP, Hôpital Lariboisière, Physiologie Clinique-Explorations-Fonctionnelles, INSERM U965, 75010, Paris, France (P.B.); Australian Centre for Blood Diseases & Department of Clinical Haematology, Monash University, Melbourne, Australia (J.R.H.); AP-HP, Hôpital Européen Georges Pompidou, Service d'Hématologie Biologique, Paris, France (P.G.); Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA (J.C.); Cardiovascular Research Institute, University of California, San Francisco (S.R.C.); and INSERM U698, 75018 Paris, France (B.H.-T.-N.)
| | - Benoit Ho-Tin-Noé
- From the INSERM U970, Paris Cardiovascular Research Centre, 75015 Paris, France (S.L.G., B.M., L.C., V.B., S.M.L.G., N.Z., J.R., P.-L.T., E.C.); Université Sorbonne Paris Cité, Paris, France (S.L.G., B.M., B. Decouture, L.C., P.B., V.B., S.M.L.G., B. Dizier, N.Z., J.R., P.G., P.-L.T., C.B.-L., B.H.-T.-N., E.C.); AP-HP, Hôpital Bicêtre, Service de Biochimie, 94275 Le Kremlin Bicêtre, France (P.T.); Lip(Sys)2-Biochimie appliquée, Université Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry, France (P.T.); INSERM U1140, Faculté de Pharmacie, 75006 Paris, France (B. Decouture, B. Dizier, P.G., C.B.-L.); Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York (Y.X., T.H.); AP-HP, Hôpital Lariboisière, Physiologie Clinique-Explorations-Fonctionnelles, INSERM U965, 75010, Paris, France (P.B.); Australian Centre for Blood Diseases & Department of Clinical Haematology, Monash University, Melbourne, Australia (J.R.H.); AP-HP, Hôpital Européen Georges Pompidou, Service d'Hématologie Biologique, Paris, France (P.G.); Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA (J.C.); Cardiovascular Research Institute, University of California, San Francisco (S.R.C.); and INSERM U698, 75018 Paris, France (B.H.-T.-N.)
| | - Eric Camerer
- From the INSERM U970, Paris Cardiovascular Research Centre, 75015 Paris, France (S.L.G., B.M., L.C., V.B., S.M.L.G., N.Z., J.R., P.-L.T., E.C.); Université Sorbonne Paris Cité, Paris, France (S.L.G., B.M., B. Decouture, L.C., P.B., V.B., S.M.L.G., B. Dizier, N.Z., J.R., P.G., P.-L.T., C.B.-L., B.H.-T.-N., E.C.); AP-HP, Hôpital Bicêtre, Service de Biochimie, 94275 Le Kremlin Bicêtre, France (P.T.); Lip(Sys)2-Biochimie appliquée, Université Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry, France (P.T.); INSERM U1140, Faculté de Pharmacie, 75006 Paris, France (B. Decouture, B. Dizier, P.G., C.B.-L.); Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York (Y.X., T.H.); AP-HP, Hôpital Lariboisière, Physiologie Clinique-Explorations-Fonctionnelles, INSERM U965, 75010, Paris, France (P.B.); Australian Centre for Blood Diseases & Department of Clinical Haematology, Monash University, Melbourne, Australia (J.R.H.); AP-HP, Hôpital Européen Georges Pompidou, Service d'Hématologie Biologique, Paris, France (P.G.); Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA (J.C.); Cardiovascular Research Institute, University of California, San Francisco (S.R.C.); and INSERM U698, 75018 Paris, France (B.H.-T.-N.).
| |
Collapse
|
242
|
Gstalder C, Ader I, Cuvillier O. FTY720 (Fingolimod) Inhibits HIF1 and HIF2 Signaling, Promotes Vascular Remodeling, and Chemosensitizes in Renal Cell Carcinoma Animal Model. Mol Cancer Ther 2016; 15:2465-2474. [PMID: 27507852 DOI: 10.1158/1535-7163.mct-16-0167] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 07/07/2016] [Indexed: 11/16/2022]
Abstract
Clear cell renal cell carcinoma (ccRCC) is characterized by intratumoral hypoxia and chemoresistance. The hypoxia-inducible factors HIF1α and HIF2α play a crucial role in ccRCC initiation and progression. We previously identified the sphingosine kinase 1/sphingosine 1-phosphate (SphK1/S1P) pathway as a new modulator of HIF1α and HIF2α under hypoxia in various cancer cell models. Here, we report that FTY720, an inhibitor of the S1P signaling pathway, inhibits both HIF1α and HIF2α accumulation in several human cancer cell lines. In a ccRCC heterotopic xenograft model, we show that FTY720 transiently decreases HIF1α and HIF2α intratumoral level and modifies tumor vessel architecture within 5 days of treatment, suggesting a vascular normalization. In mice bearing subcutaneous ccRCC tumor, FTY720 and a gemcitabine-based chemotherapy alone display a limited effect, whereas, in combination, there is a significant effect on tumor size without toxicity. Noteworthy, administration of FTY720 for 5 days before chemotherapy is not associated with a more effective tumor control, suggesting a mode of action mainly independent of the vascular remodeling. In conclusion, these findings demonstrate that FTY720 could successfully sensitize ccRCC to chemotherapy and establish this molecule as a potent therapeutic agent for ccRCC treatment, independently of drug scheduling. Mol Cancer Ther; 15(10); 2465-74. ©2016 AACR.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Basic Helix-Loop-Helix Transcription Factors/genetics
- Basic Helix-Loop-Helix Transcription Factors/metabolism
- Carcinoma, Renal Cell/drug therapy
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/metabolism
- Carcinoma, Renal Cell/pathology
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Disease Models, Animal
- Drug Resistance, Neoplasm
- Female
- Fingolimod Hydrochloride/pharmacology
- Gene Expression
- Humans
- Hypoxia/genetics
- Hypoxia/metabolism
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Lysophospholipids
- Mice
- Neovascularization, Pathologic/drug therapy
- Neovascularization, Pathologic/metabolism
- Oxygen Consumption
- Phosphotransferases (Alcohol Group Acceptor)/metabolism
- Receptors, Lysosphingolipid/metabolism
- Signal Transduction/drug effects
- Sphingosine/analogs & derivatives
- Vascular Endothelial Growth Factor A/biosynthesis
- Vascular Remodeling/drug effects
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Cécile Gstalder
- CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France. Université de Toulouse, UPS, Toulouse, France. Equipe Labellisée Ligue contre le Cancer, Paris, France
| | - Isabelle Ader
- CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France. Université de Toulouse, UPS, Toulouse, France. Equipe Labellisée Ligue contre le Cancer, Paris, France
| | - Olivier Cuvillier
- CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France. Université de Toulouse, UPS, Toulouse, France. Equipe Labellisée Ligue contre le Cancer, Paris, France.
| |
Collapse
|
243
|
Riascos-Bernal DF, Chinnasamy P, Cao LL, Dunaway CM, Valenta T, Basler K, Sibinga NES. β-Catenin C-terminal signals suppress p53 and are essential for artery formation. Nat Commun 2016; 7:12389. [PMID: 27499244 PMCID: PMC4979065 DOI: 10.1038/ncomms12389] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 06/28/2016] [Indexed: 12/19/2022] Open
Abstract
Increased activity of the tumour suppressor p53 is incompatible with embryogenesis, but how p53 is controlled is not fully understood. Differential requirements for p53 inhibitors Mdm2 and Mdm4 during development suggest that these control mechanisms are context-dependent. Artery formation requires investment of nascent endothelial tubes by smooth muscle cells (SMCs). Here, we find that embryos lacking SMC β-catenin suffer impaired arterial maturation and die by E12.5, with increased vascular wall p53 activity. β-Catenin-deficient SMCs show no change in p53 levels, but greater p53 acetylation and activity, plus impaired growth and survival. In vivo, SMC p53 inactivation suppresses phenotypes caused by loss of β-catenin. Mechanistically, β-catenin C-terminal interactions inhibit Creb-binding protein-dependent p53 acetylation and p53 transcriptional activity, and are required for artery formation. Thus in SMCs, the β-catenin C-terminus indirectly represses p53, and this function is essential for embryogenesis. These findings have implications for angiogenesis, tissue engineering and vascular disease. How p53 is restrained in arterial maturation during embryonic development is unclear. Here, the authors show that β-catenin C-terminal interactions inhibit CREB binding protein-mediated acetylation and activation of p53 in smooth muscle cells, and that this function is essential for artery formation.
Collapse
Affiliation(s)
- Dario F Riascos-Bernal
- Department of Medicine (Cardiology Division), Department of Developmental and Molecular Biology, and Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA
| | - Prameladevi Chinnasamy
- Department of Medicine (Cardiology Division), Department of Developmental and Molecular Biology, and Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA
| | - Longyue Lily Cao
- Department of Medicine (Cardiology Division), Department of Developmental and Molecular Biology, and Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA
| | - Charlene M Dunaway
- Department of Medicine (Cardiology Division), Department of Developmental and Molecular Biology, and Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA
| | - Tomas Valenta
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, Zurich, CH-8057, Switzerland
| | - Konrad Basler
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, Zurich, CH-8057, Switzerland
| | - Nicholas E S Sibinga
- Department of Medicine (Cardiology Division), Department of Developmental and Molecular Biology, and Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA
| |
Collapse
|
244
|
Zhang H, Pluhackova K, Jiang Z, Böckmann RA. Binding Characteristics of Sphingosine-1-Phosphate to ApoM hints to Assisted Release Mechanism via the ApoM Calyx-Opening. Sci Rep 2016; 6:30655. [PMID: 27476912 PMCID: PMC4967915 DOI: 10.1038/srep30655] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 07/07/2016] [Indexed: 11/09/2022] Open
Abstract
Sphingosine-1-phosphate (S1P) is a lysophospholipid mediator carried by the HDL-associated apoM protein in blood, regulating many physiological processes by activating the G protein-coupled S1P receptor in mammals. Despite the solved crystal structure of the apoM-S1P complex, the mechanism of S1P release from apoM as a part of the S1P pathway is unknown. Here, the dynamics of the wild type apoM-S1P complex as well as of mutants were investigated by means of atomistic molecular dynamics simulations. The potential of mean force for S1P unbinding from apoM reflected a large binding strength of more than 60 kJ/mol. This high unbinding free energy for S1P underlines the observed specificity of the physiological effects of S1P as it suggests that the spontaneous release of S1P from apoM is unlikely. Instead, S1P release and thus the control of this bioactive lipid probably requires the tight interaction with other molecules, e.g. with the S1P receptor. Mutations of specific S1P anchoring residues of apoM decreased the energetic barrier by up to 20 kJ/mol. Moreover, the ligand-free apoM protein is shown to adopt a more open upper hydrophilic binding pocket and to result in complete closure of the lower hydrophobic cavity, suggesting a mechanism for adjusting the gate for ligand access.
Collapse
Affiliation(s)
- Hansi Zhang
- Computational Biology, Department of Biology, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, 91058, Germany
| | - Kristyna Pluhackova
- Computational Biology, Department of Biology, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, 91058, Germany
| | - Zhenyan Jiang
- Computational Biology, Department of Biology, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, 91058, Germany
| | - Rainer A Böckmann
- Computational Biology, Department of Biology, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, 91058, Germany
| |
Collapse
|
245
|
Cantalupo A, Di Lorenzo A. S1P Signaling and De Novo Biosynthesis in Blood Pressure Homeostasis. J Pharmacol Exp Ther 2016; 358:359-70. [PMID: 27317800 PMCID: PMC4959106 DOI: 10.1124/jpet.116.233205] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 06/13/2016] [Indexed: 01/12/2023] Open
Abstract
Initially discovered as abundant components of eukaryotic cell membranes, sphingolipids are now recognized as important bioactive signaling molecules that modulate a variety of cellular functions, including those relevant to cancer and immunologic, inflammatory, and cardiovascular disorders. In this review, we discuss recent advances in our understanding of the role of sphingosine-1-phosphate (S1P) receptors in the regulation of vascular function, and focus on how de novo biosynthesized sphingolipids play a role in blood pressure homeostasis. The therapeutic potential of new drugs that target S1P signaling is also discussed.
Collapse
Affiliation(s)
- Anna Cantalupo
- Department of Pathology and Laboratory Medicine, Center for Vascular Biology, Weill Cornell Medicine, Cornell University, New York, New York
| | - Annarita Di Lorenzo
- Department of Pathology and Laboratory Medicine, Center for Vascular Biology, Weill Cornell Medicine, Cornell University, New York, New York
| |
Collapse
|
246
|
Tölle M, Klöckl L, Wiedon A, Zidek W, van der Giet M, Schuchardt M. Regulation of endothelial nitric oxide synthase activation in endothelial cells by S1P1 and S1P3. Biochem Biophys Res Commun 2016; 476:627-634. [DOI: 10.1016/j.bbrc.2016.06.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 06/01/2016] [Indexed: 12/16/2022]
|
247
|
Egom EEA, Bae JS, Capel R, Richards M, Ke Y, Pharithi RB, Maher V, Kruzliak P, Lei M. Effect of sphingosine-1-phosphate on L-type calcium current and Ca2+ transient in rat ventricular myocytes. Mol Cell Biochem 2016; 419:83-92. [DOI: 10.1007/s11010-016-2752-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 06/21/2016] [Indexed: 01/05/2023]
|
248
|
Hall AP. Review of the Pericyte during Angiogenesis and its Role in Cancer and Diabetic Retinopathy. Toxicol Pathol 2016; 34:763-75. [PMID: 17162534 DOI: 10.1080/01926230600936290] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Anthony P Hall
- AstraZeneca R&D Alderley Park, Safety Assessment UK, Mereside, Alderley Park, Macclesfield, SK10 4TG Cheshire, England.
| |
Collapse
|
249
|
Sun N, Keep RF, Hua Y, Xi G. Critical Role of the Sphingolipid Pathway in Stroke: a Review of Current Utility and Potential Therapeutic Targets. Transl Stroke Res 2016; 7:420-38. [PMID: 27339463 DOI: 10.1007/s12975-016-0477-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 06/12/2016] [Accepted: 06/15/2016] [Indexed: 12/16/2022]
Abstract
Sphingolipids are a series of cell membrane-derived lipids which act as signaling molecules and play a critical role in cell death and survival, proliferation, recognition, and migration. Sphingosine-1-phosphate acts as a key signaling molecule and regulates lymphocyte trafficking, glial cell activation, vasoconstriction, endothelial barrier function, and neuronal death pathways which plays a critical role in numerous neurological conditions. Stroke is a second leading cause of death all over the world and effective therapies are still in great demand, including ischemic stroke and hemorrhagic stroke as well as poststroke repair. Significantly, sphingolipid activities change after stroke and correlate with stroke outcome, which has promoted efforts to testify whether the sphingolipid pathway could be a novel therapeutic target in stroke. The sphingolipid metabolic pathway, the connection between the pathway and stroke, as well as therapeutic interventions to manipulate the pathway to reduce stroke-induced brain injury are discussed in this review.
Collapse
Affiliation(s)
- Na Sun
- Department of Neurosurgery, University of Michigan, 5018 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Richard F Keep
- Department of Neurosurgery, University of Michigan, 5018 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | - Ya Hua
- Department of Neurosurgery, University of Michigan, 5018 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | - Guohua Xi
- Department of Neurosurgery, University of Michigan, 5018 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA.
| |
Collapse
|
250
|
Sphingosine 1-phosphate receptor-1 in cardiomyocytes is required for normal cardiac development. Dev Biol 2016; 418:157-165. [PMID: 27333774 DOI: 10.1016/j.ydbio.2016.06.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 06/14/2016] [Accepted: 06/16/2016] [Indexed: 01/27/2023]
Abstract
Sphingosine 1-phosphate (S1P) is a bioactive lipid that acts via G protein-coupled receptors. The S1P receptor S1P1, encoded by S1pr1, is expressed in developing heart but its roles there remain largely unexplored. Analysis of S1pr1 LacZ knockin embryos revealed β-galactosidase staining in cardiomyocytes in the septum and in the trabecular layer of hearts collected at 12.5 days post coitus (dpc) and weak staining in the inner aspect of the compact layer at 15.5 dpc and later. Nkx2-5-Cre- and Mlc2a-Cre-mediated conditional knockout of S1pr1 led to ventricular noncompaction and ventricular septal defects at 18.5 dpc and to perinatal lethality in the majority of mutants. Further analysis of Mlc2a-Cre conditional mutants revealed no gross phenotype at 12.5 dpc but absence of the normal increase in the number of cardiomyocytes and the thickness of the compact layer at 13.5 dpc and after. Consistent with relative lack of a compact layer, in situ hybridization at 13.5 dpc revealed expression of trabecular markers extending almost to the epicardium in mutants. Mutant hearts also showed decreased myofibril organization in the compact but not trabecular myocardium at 12.5 dpc. These results suggest that S1P signaling via S1P1 in cardiomyocytes plays a previously unknown and necessary role in heart development in mice.
Collapse
|