201
|
|
202
|
Wakabayashi K, Wilson MR, Tatham KC, O'Dea KP, Takata M. Volutrauma, but not atelectrauma, induces systemic cytokine production by lung-marginated monocytes. Crit Care Med 2014; 42:e49-57. [PMID: 23963135 DOI: 10.1097/ccm.0b013e31829a822a] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVES Ventilator-induced lung injury has substantive impact on mortality of patients with acute respiratory distress syndrome. Although low tidal volume ventilation has been shown to reduce mortality, clinical benefits of open-lung strategy are controversial. In this study, we investigated the impact of two distinct forms of ventilator-induced lung injury, i.e., volutrauma and atelectrauma, on the progression of lung injury and inflammation, in particular alveolar and systemic cytokine production. DESIGN Ex vivo study. SETTING University research laboratory. SUBJECTS C57BL/6 mice. INTERVENTIONS Isolated, buffer-perfused lungs were allocated to one of three ventilatory protocols for 3 hours: control group received low tidal volume (7 mL/kg) with positive end-expiratory pressure (5 cm H2O) and regular sustained inflation; high-stretch group received high tidal volume (30-32 mL/kg) with positive end-expiratory pressure (3 cm H2O) and sustained inflation; and atelectasis group received the same tidal volume as control but neither positive end-expiratory pressure nor sustained inflation. MEASUREMENTS AND MAIN RESULTS Both injurious ventilatory protocols developed comparable levels of physiological injury and pulmonary edema, measured by respiratory system mechanics and lavage fluid protein. High-stretch induced marked increases in proinflammatory cytokines in perfusate and lung lavage fluid, compared to control. In contrast, atelectasis had no effect on perfusate cytokines compared to control but did induce some up-regulation of lavage cytokines. Depletion of monocytes marginated within the lung microvasculature, achieved by pretreating mice with i.v. liposome-encapsulated clodronate, significantly attenuated perfusate cytokine levels, especially tumor necrosis factor, in the high-stretch, but not atelectasis group. CONCLUSIONS Volutrauma (high-stretch), but not atelectrauma (atelectasis), directly activates monocytes within the pulmonary vasculature, leading to cytokine release into systemic circulation. We postulate this as a potential explanation why open-lung strategy has limited mortality benefits in ventilated critically ill patients.
Collapse
Affiliation(s)
- Kenji Wakabayashi
- All authors: Section of Anaesthetics, Pain Medicine and Intensive Care, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdom
| | | | | | | | | |
Collapse
|
203
|
Gattinoni L, Taccone P, Carlesso E, Marini JJ. Prone position in acute respiratory distress syndrome. Rationale, indications, and limits. Am J Respir Crit Care Med 2014; 188:1286-93. [PMID: 24134414 DOI: 10.1164/rccm.201308-1532ci] [Citation(s) in RCA: 283] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In the prone position, computed tomography scan densities redistribute from dorsal to ventral as the dorsal region tends to reexpand while the ventral zone tends to collapse. Although gravitational influence is similar in both positions, dorsal recruitment usually prevails over ventral derecruitment, because of the need for the lung and its confining chest wall to conform to the same volume. The final result of proning is that the overall lung inflation is more homogeneous from dorsal to ventral than in the supine position, with more homogeneously distributed stress and strain. As the distribution of perfusion remains nearly constant in both postures, proning usually improves oxygenation. Animal experiments clearly show that prone positioning delays or prevents ventilation-induced lung injury, likely due in large part to more homogeneously distributed stress and strain. Over the last 15 years, five major trials have been conducted to compare the prone and supine positions in acute respiratory distress syndrome, regarding survival advantage. The sequence of trials enrolled patients who were progressively more hypoxemic; exposure to the prone position was extended from 8 to 17 hours/day, and lung-protective ventilation was more rigorously applied. Single-patient and meta-analyses drawing from the four major trials showed significant survival benefit in patients with PaO2/FiO2 lower than 100. The latest PROSEVA (Proning Severe ARDS Patients) trial confirmed these benefits in a formal randomized study. The bulk of data indicates that in severe acute respiratory distress syndrome, carefully performed prone positioning offers an absolute survival advantage of 10-17%, making this intervention highly recommended in this specific population subset.
Collapse
Affiliation(s)
- Luciano Gattinoni
- 1 Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Università degli Studi di Milano, Milan, Italy
| | | | | | | |
Collapse
|
204
|
Manicone AM. Role of the pulmonary epithelium and inflammatory signals in acute lung injury. Expert Rev Clin Immunol 2014. [DOI: 10.1586/1744666x.5.1.63] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
205
|
Guerin C, Richard JC. Current ventilatory management of patients with acute lung injury/acute respiratory distress syndrome. Expert Rev Respir Med 2014; 2:119-33. [DOI: 10.1586/17476348.2.1.119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
206
|
Vincent JL. Dynamics of Regional Lung Inflammation: New Questions and Answers Using PET. ANNUAL UPDATE IN INTENSIVE CARE AND EMERGENCY MEDICINE 2014 2014. [PMCID: PMC7176157 DOI: 10.1007/978-3-319-03746-2_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The meaning of the term ‘inflammation’ has undergone considerable evolution. It was originally defined around the year 25 A.D. by Aulus Cornelius Celsus [1] and described the body’s acute reaction following a traumatic event, such as a microscopic tear of a ligament or muscle. His original wording: “Notae vero inflammationis sunt quatour: rubor et tumor cum calore et dolore” (true signs of inflammation are four: redness and swelling with heat and pain) still holds. Disturbance of function (functio laesa) is the legendary fifth cardinal sign of inflammation and was added by Galen in the second century A.D. [2]. Recent articles [3] highlight the complicated role that inflammation plays in chronic illnesses, including metabolic, cardiovascular and neurodegenerative diseases. In addition to these difficult-to-treat diseases, more research and research tools are needed to illuminate therapeutic strategies in another difficulty-to-treat inflammatory malady, the acute respiratory distress syndrome (ARDS).
Collapse
|
207
|
Jung HS, Kaplan LJ, Park PK. Reviewing the studies of the National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome Network: outcomes and clinical findings. Curr Probl Surg 2013; 50:451-62. [PMID: 24156843 DOI: 10.1067/j.cpsurg.2013.08.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
208
|
Abstract
This article describes the gas exchange abnormalities occurring in the acute respiratory distress syndrome seen in adults and children and in the respiratory distress syndrome that occurs in neonates. Evidence is presented indicating that the major gas exchange abnormality accounting for the hypoxemia in both conditions is shunt, and that approximately 50% of patients also have lungs regions in which low ventilation-to-perfusion ratios contribute to the venous admixture. The various mechanisms by which hypercarbia may develop and by which positive end-expiratory pressure improves gas exchange are reviewed, as are the effects of vascular tone and airway narrowing. The mechanisms by which surfactant abnormalities occur in the two conditions are described, as are the histological findings that have been associated with shunt and low ventilation-to-perfusion.
Collapse
Affiliation(s)
- Richard K Albert
- Chief of Medicine, Denver Health, Professor of Medicine, University of Colorado, Adjunct Professor of Engineering and Computer Science, University of Denver, Denver, Colorado, USA.
| | | |
Collapse
|
209
|
Sakuramoto H, Shimojo N, Jesmin S, Unoki T, Kamiyama J, Oki M, Miya K, Kawano S, Mizutani T. Repeated open endotracheal suctioning causes gradual desaturation but does not exacerbate lung injury compared to closed endotracheal suctioning in a rabbit model of ARDS. BMC Anesthesiol 2013; 13:47. [PMID: 24308643 PMCID: PMC3878988 DOI: 10.1186/1471-2253-13-47] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 11/25/2013] [Indexed: 12/01/2022] Open
Abstract
Background Although endotracheal suctioning induces alveolar derecruitment during mechanical ventilation, it is not clear whether repeated endotracheal suctioning exacerbates lung injuries. The present study aimed to determine whether repeated open endotracheal suctioning (OS) exacerbates lung injury compared to closed endotracheal suctioning (CS) during mechanical ventilation in an animal model of acute respiratory distress syndrome (ARDS). Methods Briefly, thirty six Japanese white rabbits were initially ventilated in pressure-controlled mode with a constant tidal volume (6 mL/kg). Then, lung injury was induced by repeated saline lavage. The rabbits were divided into four groups, namely: a) OS; b) CS; c) control with ARDS only; d) and healthy control (HC) without ARDS. Animals in all the groups were then ventilated with positive end expiratory pressure (PEEP) at 10 cm H2O. CS was performed using 6 French-closed suctioning catheters connected to endotracheal tube under the following conditions: a) a suctioning time and pressure of 10 sec and 140 mm Hg, respectively; and b) a suction depth of 2 cm (length of adapter) plus tracheal tube. OS was performed using the same conditions described for CS, except the ventilator was disconnected from the animals. Each endotracheal suctioning was performed at an interval of 30 min. Results PaO2/FIO2 (P/F) ratio for CS, control and HC groups remained at >400 for 6 hours, whereas that of the OS group progressively declined to 300 (p < 0.05), with each suctioning. However, no difference was observed either in lung injury score (histology) or in the expression pattern of inflammatory cytokines (tumor necrosis factor-α and interleukin-6) after 6 hours between the OS and CS groups in the circulatory as well as the pulmonary tissues. Conclusions Progressive arterial desaturation under conditions of repeated endotracheal suctioning is greater in OS than in CS time-dependently. However, OS does not exacerbate lung injury during mechanical ventilation when observed over a longer time span (6 hours) of repeated endotracheal suctioning, based on morphological and molecular analysis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Taro Mizutani
- Department of Emergency and Critical Care Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan.
| |
Collapse
|
210
|
Cereda M, Xin Y, Emami K, Huang J, Rajaei J, Profka H, Han B, Mongkolwisetwara P, Kadlecek S, Kuzma NN, Pickup S, Kavanagh BP, Deutschman CS, Rizi RR. Positive end-expiratory pressure increments during anesthesia in normal lung result in hysteresis and greater numbers of smaller aerated airspaces. Anesthesiology 2013; 119:1402-9. [PMID: 24025616 PMCID: PMC3987989 DOI: 10.1097/aln.0b013e3182a9b0c1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Although it is recognized that pulmonary hysteresis can influence the effects of positive end-expiratory pressure (PEEP), the extent to which expansion of previously opened (vs. newly opening) peripheral airspaces contribute to increased lung volume is unknown. METHODS Following a recruitment maneuver, rats were ventilated with constant tidal volumes and imaged during ascending and descending ramps of PEEP. RESULTS The authors estimated peripheral airspace dimensions by measuring the apparent diffusion coefficient of He in 10 rats. In a separate group (n = 5) undergoing a similar protocol, the authors used computerized tomography to quantify lung volume. Hysteresis was confirmed by larger end-inspiratory lung volume (mean ± SD; all PEEP levels included): 8.4 ± 2.8 versus 6.8 ± 2.0 ml (P < 0.001) and dynamic compliance: 0.52 ± 0.12 versus 0.42 ± 0.09 ml/cm H2O (P < 0.001) during descending versus ascending PEEP ramps. Apparent diffusion coefficient increased with PEEP, but it was smaller during the descending versus ascending ramps for corresponding levels of PEEP: 0.168 ± 0.019 versus 0.183 ± 0.019 cm/s (P < 0.001). Apparent diffusion coefficient was smaller in the posterior versus anterior lung regions, but the effect of PEEP and hysteresis on apparent diffusion coefficient was greater in the posterior regions. CONCLUSIONS The authors' study results suggest that in healthy lungs, larger lung volumes due to hysteresis are associated with smaller individual airspaces. This may be explained by opening of previously nonaerated peripheral airspaces rather than expansion of those already aerated. Setting PEEP on a descending ramp may minimize distension of individual airspaces.
Collapse
Affiliation(s)
- Maurizio Cereda
- Assistant Professor, Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Yi Xin
- Research Specialist, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kiarash Emami
- Project Manager, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jessie Huang
- Student, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jennia Rajaei
- Student, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Harrilla Profka
- Research Specialist, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Biao Han
- Research Specialist, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Stephen Kadlecek
- Research Assistant Professor, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Nicholas N. Kuzma
- Research Assistant Professor, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Stephen Pickup
- Technical Director, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Brian P. Kavanagh
- Professor, Departments of Critical Care Medicine and Anesthesia, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Clifford S. Deutschman
- Professor, Department of Anesthesiology and Critical Care and Stavropoulos Sepsis Research Program, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Rahim R. Rizi
- Professor, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
211
|
Affiliation(s)
- Arthur S Slutsky
- From the Keenan Research Center, Li Ka Shing Knowledge Institute, St. Michael's Hospital, and the Department of Medicine and Interdepartmental Division of Critical Care Medicine, University of Toronto - both in Toronto (A.S.S.); and Dipartimento di Anestesia e Medicina degli Stati Critici, Ospedale S. Giovanni Battista Molinette, Università di Torino, Turin, Italy (V.M.R.)
| | | |
Collapse
|
212
|
Goligher EC, Fan E, Slutsky AS. Year in review 2012: Critical Care--Respirology. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2013; 17:249. [PMID: 24267541 PMCID: PMC4056602 DOI: 10.1186/cc13129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Acute respiratory failure is a dominant feature of critical illness. In this review, we discuss 17 studies published last year in Critical Care. The discussion focuses on articles on several topics: respiratory monitoring, acute respiratory distress syndrome, noninvasive ventilation, airway management, secretion management and weaning.
Collapse
|
213
|
Shiga Y, Sugamata R, Iwamura C, Nagao T, Zao J, Kawakami K, Kawachi S, Nakayama T, Suzuki K. Effect of invariant natural killer T cells with IL-5 and activated IL-6 receptor in ventilator-associated lung injury in mice. Exp Lung Res 2013; 40:1-11. [PMID: 24246030 DOI: 10.3109/01902148.2013.854518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mechanical ventilation (MV) is well known to potentially cause ventilator-associated lung injury (VALI). It has also been reported recently that activation of invariant natural killer T (iNKT) cells is involved in the onset/progression of airway inflammation. We analyzed the roles of inflammatory cells, including iNKT cells, and cytokines/chemokines in a mouse model of VALI. C57BL/6 and Vα14(+)NKT cell-deficient (Jα18KO) female mice were subjected to MV for 5 hours. The MV induced lung injury in the mice, with severe histological abnormalities, elevation in the percentages of neutrophils in the bronchoalveolar lavage fluid (BALF), and increase in the number of iNKT cells in the lung. Jα18KO mice subjected to MV for 5 hours also showed lung injury, with decrease of the PaO2/FiO2 ratio (P/F ratio) and elevation of the levels of total protein, IL-5, IL-6, IL-12p40, and keratinocyte-derived cytokine (KC) in the BALF. Intranasal administration of anti-IL-5 monoclonal antibody (mAb) or anti-IL-6 receptor (IL-6R) mAb into the Jα18KO mice prior to the start of MV resulted in significant improvement in the blood oxygenation. In addition, the anti-IL-5 mAb administration was associated with a decrease in the levels of IL-5, IL-9, and IL-6R in the BALF, and anti-IL-6R mAb administration suppressed the mRNA expressions of IL-5, IL-6, IL-6R, and KC. These results suggest that iNKT cells may play a role in attenuating the inflammatory caused by ventilation through IL-5 and IL-6R.
Collapse
Affiliation(s)
- Yuka Shiga
- 1Inflammation Program, Department of Immunology, Graduate School of Medicine, Chiba University , Chiba , Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
214
|
Derosa S, Borges JB, Segelsjö M, Tannoia A, Pellegrini M, Larsson A, Perchiazzi G, Hedenstierna G. Reabsorption atelectasis in a porcine model of ARDS: regional and temporal effects of airway closure, oxygen, and distending pressure. J Appl Physiol (1985) 2013; 115:1464-73. [DOI: 10.1152/japplphysiol.00763.2013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Little is known about the small airways dysfunction in acute respiratory distress syndrome (ARDS). By computed tomography (CT) imaging in a porcine experimental model of early ARDS, we aimed at studying the location and magnitude of peripheral airway closure and alveolar collapse under high and low distending pressures and high and low inspiratory oxygen fraction (FIO2). Six piglets were mechanically ventilated under anesthesia and muscle relaxation. Four animals underwent saline-washout lung injury, and two served as healthy controls. Beyond the site of assumed airway closure, gas was expected to be trapped in the injured lungs, promoting alveolar collapse. This was tested by ventilation with an FIO2 of 0.25 and 1 in sequence during low and high distending pressures. In the most dependent regions, the gas/tissue ratio of end-expiratory CT, after previous ventilation with FIO2 0.25 low-driving pressure, was significantly higher than after ventilation with FIO2 1; with high-driving pressure, this difference disappeared. Also, significant reduction in poorly aerated tissue and a correlated increase in nonaerated tissue in end-expiratory CT with FIO2 1 low-driving pressure were seen. When high-driving pressure was applied or after previous ventilation with FIO2 0.25 and low-driving pressure, this pattern disappeared. The findings suggest that low distending pressures produce widespread dependent airway closure and with high FIO2, subsequent absorption atelectasis. Low FIO2 prevented alveolar collapse during the study period because of slow absorption of gas behind closed airways.
Collapse
Affiliation(s)
- Savino Derosa
- Department of Emergency and Organ Transplant, Bari University, Bari, Italy
- Hedenstierna Laboratory, Department of Surgical Sciences, Section of Anaesthesiology and Critical Care, Uppsala University, Uppsala, Sweden
| | - João Batista Borges
- Hedenstierna Laboratory, Department of Surgical Sciences, Section of Anaesthesiology and Critical Care, Uppsala University, Uppsala, Sweden
- Pulmonary Divison, Heart Institute (Incor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Monica Segelsjö
- Department of Radiology, Oncology and Radiation Science, Section of Radiology, Uppsala University, Uppsala, Sweden; and
| | - Angela Tannoia
- Department of Emergency and Organ Transplant, Bari University, Bari, Italy
| | | | - Anders Larsson
- Hedenstierna Laboratory, Department of Surgical Sciences, Section of Anaesthesiology and Critical Care, Uppsala University, Uppsala, Sweden
| | - Gaetano Perchiazzi
- Department of Emergency and Organ Transplant, Bari University, Bari, Italy
| | - Göran Hedenstierna
- Hedenstierna Laboratory, Department of Medical Sciences, Clinical Physiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
215
|
Abstract
Mechanical ventilation (MV) is, by definition, the application of external forces to the lungs. Depending on their magnitude, these forces can cause a continuum of pathophysiological alterations ranging from the stimulation of inflammation to the disruption of cell-cell contacts and cell membranes. These side effects of MV are particularly relevant for patients with inhomogeneously injured lungs such as in acute lung injury (ALI). These patients require supraphysiological ventilation pressures to guarantee even the most modest gas exchange. In this situation, ventilation causes additional strain by overdistension of the yet non-injured region, and additional stress that forms because of the interdependence between intact and atelectatic areas. Cells are equipped with elaborate mechanotransduction machineries that respond to strain and stress by the activation of inflammation and repair mechanisms. Inflammation is the fundamental response of the host to external assaults, be they of mechanical or of microbial origin and can, if excessive, injure the parenchymal tissue leading to ALI. Here, we will discuss the forces generated by MV and how they may injure the lungs mechanically and through inflammation. We will give an overview of the mechanotransduction and how it leads to inflammation and review studies demonstrating that ventilator-induced lung injury can be prevented by blocking pathways of mechanotransduction or inflammation.
Collapse
Affiliation(s)
- Ulrike Uhlig
- Department of Pharmacology & Toxicology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | | |
Collapse
|
216
|
Unilateral acid aspiration augments the effects of ventilator lung injury in the contralateral lung. Anesthesiology 2013; 119:642-51. [PMID: 23681142 DOI: 10.1097/aln.0b013e318297d487] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Mechanical ventilation is necessary during acute respiratory distress syndrome, but it promotes lung injury because of the excessive stretch applied to the aerated parenchyma. The authors' hypothesis was that after a regional lung injury, the noxious effect of mechanical ventilation on the remaining aerated parenchyma would be more pronounced. METHODS Mice, instilled with hydrochloric acid (HCl) in the right lung, was assigned to one of the following groups: mechanical ventilation with tidal volumes (VT) 25 ml/kg (HCl-VILI25, n = 12), or VT 15 ml/kg (HCl-VILI15, n = 9), or spontaneous breathing (HCl-SB, n = 14). Healthy mice were ventilated with VT 25 ml/kg (VILI25, n = 11). Arterial oxygenation, lung compliance, bronchoalveolar lavage inflammatory cells, albumin, and cytokines concentration were measured. RESULTS After 7 h, oxygenation and lung compliance resulted lower in HCl-VILI25 than in VILI25 (P < 0.05, 210 ± 54 vs. 479 ± 83 mmHg, and 32 ± 3.5 vs. 45 ± 4.1 µl/cm H2O, mean ± SD, respectively). After right lung injury, the left lung of HCl-VILI25 group received a greater fraction of the VT than the VILI25 group, despite an identical global VT. The number of total and polymorphonuclear cells in bronchoalveolar lavage resulted significantly higher in HCl-VILI25, compared with the other groups, in not only the right lung, but also in the left lung. The albumin content in the left lung resulted higher in HCl-VILI25 than in VILI25 (224 ± 85 vs. 33 ± 6 µg/ml; P < 0.05). Cytokines levels did not differ between groups. CONCLUSION Aggressive mechanical ventilation aggravates the preexisting lung injury, which is noxious for the contralateral, not previously injured lung, possibly because of a regional redistribution of VT.
Collapse
|
217
|
Hedenstierna G, Rothen HU. Respiratory function during anesthesia: effects on gas exchange. Compr Physiol 2013; 2:69-96. [PMID: 23728971 DOI: 10.1002/cphy.c080111] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Anaesthesia causes a respiratory impairment, whether the patient is breathing spontaneously or is ventilated mechanically. This impairment impedes the matching of alveolar ventilation and perfusion and thus the oxygenation of arterial blood. A triggering factor is loss of muscle tone that causes a fall in the resting lung volume, functional residual capacity. This fall promotes airway closure and gas adsorption, leading eventually to alveolar collapse, that is, atelectasis. The higher the oxygen concentration, the faster will the gas be adsorbed and the aleveoli collapse. Preoxygenation is a major cause of atelectasis and continuing use of high oxygen concentration maintains or increases the lung collapse, that typically is 10% or more of the lung tissue. It can exceed 25% to 40%. Perfusion of the atelectasis causes shunt and cyclic airway closure causes regions with low ventilation/perfusion ratios, that add to impaired oxygenation. Ventilation with positive end-expiratory pressure reduces the atelectasis but oxygenation need not improve, because of shift of blood flow down the lung to any remaining atelectatic tissue. Inflation of the lung to an airway pressure of 40 cmH2O recruits almost all collapsed lung and the lung remains open if ventilation is with moderate oxygen concentration (< 40%) but recollapses within a few minutes if ventilation is with 100% oxygen. Severe obesity increases the lung collapse and obstructive lung disease and one-lung anesthesia increase the mismatch of ventilation and perfusion. CO2 pneumoperitoneum increases atelectasis formation but not shunt, likely explained by enhanced hypoxic pulmonary vasoconstriction by CO2. Atelectasis may persist in the postoperative period and contribute to pneumonia.
Collapse
Affiliation(s)
- Göran Hedenstierna
- Department of Medical Sciences, Clinical Physiology, Uppsala University Hospital, Uppsala, Sweden.
| | | |
Collapse
|
218
|
Smith MA, Hibino M, Falcione BA, Eichinger KM, Patel R, Empey KM. Immunosuppressive aspects of analgesics and sedatives used in mechanically ventilated patients: an underappreciated risk factor for the development of ventilator-associated pneumonia in critically ill patients. Ann Pharmacother 2013; 48:77-85. [PMID: 24259637 DOI: 10.1177/1060028013510698] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE To evaluate the evidence describing the immunosuppressive and pharmacokinetic properties of commonly used analgesic and sedation agents in critically ill patients. DATA SOURCES MEDLINE (January 1980-September 2013) was searched. STUDY SELECTION AND DATA EXTRACTION All in vitro and in vivo studies that evaluated the immune-modulating properties of analgesic and sedation agents commonly used in the critically ill were included. Full-text and abstract-only articles (noted) were included in this review. Inclusion criteria were met by 46 studies and were evaluated. DATA SYNTHESIS Analgesic and sedation agents have been shown to be immunosuppressive in a variety of models. In vitro models use a variety of immune cells to demonstrate the immunosuppressive properties of opioids, benzodiazepines, and to a lesser extent, propofol. In each case, animal studies provide more robust data supporting the concept that opioids, benzodiazepines, and propofol exhibit immunosuppressive activities ranging from innate to adaptive immune alterations. Human studies, though more limited, provide further support that these agents inhibit the immune response. In contrast, data have shown that dexmedetomidine may attenuate the immune system. Clinical trial data evaluating the immunosuppressive properties of these agents is limited. CONCLUSIONS Analgesic and sedation agents have clearly been shown to alter cellular function and other mediators of the immune system; yet the clinical impact remains to be fully elucidated. The mechanism by which sedation interruption reduces ventilator-associated pneumonia may in fact be a reduction in immunosuppressive effects. Studies linking the immune-modulating effects of analgesic and sedation agents in critically ill patients are needed.
Collapse
|
219
|
Cruces P, Erranz B, Donoso A, Carvajal C, Salomón T, Torres MF, Díaz F. Mild hypothermia increases pulmonary anti-inflammatory response during protective mechanical ventilation in a piglet model of acute lung injury. Paediatr Anaesth 2013; 23:1069-77. [PMID: 23731357 DOI: 10.1111/pan.12209] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/08/2013] [Indexed: 12/15/2022]
Abstract
BACKGROUND The effects of mild hypothermia (HT) on acute lung injury (ALI) are unknown in species with metabolic rate similar to that of humans, receiving protective mechanical ventilation (MV). We hypothesized that mild hypothermia would attenuate pulmonary and systemic inflammatory responses in piglets with ALI managed with a protective MV. METHODS Acute lung injury (ALI) was induced with surfactant deactivation in 38 piglets. The animals were then ventilated with low tidal volume, moderate positive end-expiratory pressure (PEEP), and permissive hypercapnia throughout the experiment. Subjects were randomized to HT (33.5°C) or normothermia (37°C) groups over 4 h. Plasma and tissue cytokines, tissue apoptosis, lung mechanics, pulmonary vascular permeability, hemodynamic, and coagulation were evaluated. RESULTS Lung interleukin-10 concentrations were higher in subjects that underwent HT after ALI induction than in those that maintained normothermia. No difference was found in other systemic and tissue cytokines. HT did not induce lung or kidney tissue apoptosis or influence lung mechanics or markers of pulmonary vascular permeability. Heart rate, cardiac output, oxygen uptake, and delivery were significantly lower in subjects that underwent HT, but no difference in arterial lactate, central venous oxygen saturation, and coagulation test was observed. CONCLUSIONS Mild hypothermia induced a local anti-inflammatory response in the lungs, without affecting lung function or coagulation, in this piglet model of ALI. The HT group had lower cardiac output without signs of global dysoxia, suggesting an adaptation to the decrease in oxygen uptake and delivery. Studies are needed to determine the therapeutic role of HT in ALI.
Collapse
Affiliation(s)
- Pablo Cruces
- Área de Cuidados Críticos, Hospital Padre Hurtado, Santiago, Chile; Centro de Investigación de Medicina Veterinaria, Escuela de Medicina Veterinaria, Facultad de Ecología y Recursos Naturales, Universidad Andres Bello, Santiago, Chile
| | | | | | | | | | | | | |
Collapse
|
220
|
Spieth PM, Güldner A, Huhle R, Beda A, Bluth T, Schreiter D, Ragaller M, Gottschlich B, Kiss T, Jaber S, Pelosi P, Koch T, Gama de Abreu M. Short-term effects of noisy pressure support ventilation in patients with acute hypoxemic respiratory failure. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2013; 17:R261. [PMID: 24172538 PMCID: PMC4056040 DOI: 10.1186/cc13091] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 10/11/2013] [Indexed: 01/12/2023]
Abstract
Introduction This study aims at comparing the very short-term effects of conventional and noisy (variable) pressure support ventilation (PSV) in mechanically ventilated patients with acute hypoxemic respiratory failure. Methods Thirteen mechanically ventilated patients with acute hypoxemic respiratory failure were enrolled in this monocentric, randomized crossover study. Patients were mechanically ventilated with conventional and noisy PSV, for one hour each, in random sequence. Pressure support was titrated to reach tidal volumes approximately 8 mL/kg in both modes. The level of positive end-expiratory pressure and fraction of inspired oxygen were kept unchanged in both modes. The coefficient of variation of pressure support during noisy PSV was set at 30%. Gas exchange, hemodynamics, lung functional parameters, distribution of ventilation by electrical impedance tomography, breathing patterns and patient-ventilator synchrony were analyzed. Results Noisy PSV was not associated with any adverse event, and was well tolerated by all patients. Gas exchange, hemodynamics, respiratory mechanics and spatial distribution of ventilation did not differ significantly between conventional and noisy PSV. Noisy PSV increased the variability of tidal volume (24.4 ± 7.8% vs. 13.7 ± 9.1%, P <0.05) and was associated with a reduced number of asynchrony events compared to conventional PSV (5 (0 to 15)/30 min vs. 10 (1 to 37)/30 min, P <0.05). Conclusions In the very short term, noisy PSV proved safe and feasible in patients with acute hypoxemic respiratory failure. Compared to conventional PSV, noisy PSV increased the variability of tidal volumes, and was associated with improved patient-ventilator synchrony, at comparable levels of gas exchange. Trial registration ClinicialTrials.gov, NCT00786292
Collapse
|
221
|
Rose L, Kenny L, Tait G, Mehta S. Ventilator settings and monitoring parameter targets for initiation of continuous mandatory ventilation: a questionnaire study. J Crit Care 2013; 29:123-7. [PMID: 24331947 DOI: 10.1016/j.jcrc.2013.10.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 09/27/2013] [Accepted: 10/22/2013] [Indexed: 10/26/2022]
Abstract
PURPOSE To inform development of educational tools, we sought to identify initial ventilator settings and monitoring targets for 3 scenarios. METHOD A survey was e-mailed to Canadian Society of Respiratory Therapists members with 2 reminders in March/April 2011. RESULTS Total evaluable surveys were 363. More participants selected pressure as opposed to volume ventilation for acute respiratory distress syndrome (ARDS; 77%) than for chronic obstructive pulmonary disease (COPD; 50%) and postoperative ventilation (32%; P < .001). Mean tidal volume was lower for ARDS than for COPD and postoperative ventilation (5.7, 6.9, and 7.2 mL/kg, respectively; P < .001). Maximum acceptable plateau pressures were highest for ARDS (30 cm H2O vs 29 cm H2O [COPD] and 27 cm H2O [postoperative], P < .001). Initial positive expiratory end pressure (12 cm H2O vs 7 cm H2O vs 5 cm H2O) and fraction of inspired oxygen (Fio2; 1.0 vs 0.5 vs 0.3) were also higher for ARDS (both P < .001); however, only 8% selected a positive expiratory end pressure/Fio2 combination as recommended by ARDSnet. Values of oxygen saturation as measured by pulse oximetry of 97% (ARDS) and 94% (COPD and postoperative) were considered appropriate for Fio2 reduction. The lowest pH was 7.28 vs 7.23 vs 7.26; the highest pH was 7.46 vs 7.44 vs 7.46 (P < .001). Partial pressure of carbon dioxide (arterial) of 51 mm Hg (postoperative) to 65 mm Hg (ARDS) was considered acceptable. CONCLUSION Lung protective ventilation was favored, yet distinct differences in ventilator settings were evident. Monitoring targets suggested relatively conservative practices for Fio2 reduction but an understanding of permissive hypercapnia.
Collapse
Affiliation(s)
- Louise Rose
- Lawrence S. Bloomberg Faculty of Nursing, University of Toronto, Toronto, Ontario, Canada; Provincial Centre of Weaning Excellence/Prolonged Ventilation Weaning Centre, Toronto East General Hospital, Toronto, Ontario, Canada; Mount Sinai Hospital and the Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Ontario, Canada.
| | - Lisa Kenny
- Memorial University of Newfoundland, St John's, Newfoundland and Labrador, Canada
| | - Gordon Tait
- Department of Anesthesia and Pain Management at the Toronto General Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Sangeeta Mehta
- Department of Critical Care, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
222
|
|
223
|
de Prost N, Costa EL, Wellman T, Musch G, Tucci MR, Winkler T, Harris R, Venegas JG, Kavanagh BP, Vidal Melo MF. Effects of ventilation strategy on distribution of lung inflammatory cell activity. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2013; 17:R175. [PMID: 23947920 PMCID: PMC4056777 DOI: 10.1186/cc12854] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 08/15/2013] [Indexed: 01/22/2023]
Abstract
Introduction Leukocyte infiltration is central to the development of acute lung injury, but it is not known how mechanical ventilation strategy alters the distribution or activation of inflammatory cells. We explored how protective (vs. injurious) ventilation alters the magnitude and distribution of lung leukocyte activation following systemic endotoxin administration. Methods Anesthetized sheep received intravenous endotoxin (10 ng/kg/min) followed by 2 h of either injurious or protective mechanical ventilation (n = 6 per group). We used positron emission tomography to obtain images of regional perfusion and shunting with infused 13N[nitrogen]-saline and images of neutrophilic inflammation with 18F-fluorodeoxyglucose (18F-FDG). The Sokoloff model was used to quantify 18F-FDG uptake (Ki), as well as its components: the phosphorylation rate (k3, a surrogate of hexokinase activity) and the distribution volume of 18F-FDG (Fe) as a fraction of lung volume (Ki = Fe × k3). Regional gas fractions (fgas) were assessed by examining transmission scans. Results Before endotoxin administration, protective (vs. injurious) ventilation was associated with a higher ratio of partial pressure of oxygen in arterial blood to fraction of inspired oxygen (PaO2/FiO2) (351 ± 117 vs. 255 ± 74 mmHg; P < 0.01) and higher whole-lung fgas (0.71 ± 0.12 vs. 0.48 ± 0.08; P = 0.004), as well as, in dependent regions, lower shunt fractions. Following 2 h of endotoxemia, PaO2/FiO2 ratios decreased in both groups, but more so with injurious ventilation, which also increased the shunt fraction in dependent lung. Protective ventilation resulted in less nonaerated lung (20-fold; P < 0.01) and more normally aerated lung (14-fold; P < 0.01). Ki was lower during protective (vs. injurious) ventilation, especially in dependent lung regions (0.0075 ± 0.0043/min vs. 0.0157 ± 0.0072/min; P < 0.01). 18F-FDG phosphorylation rate (k3) was twofold higher with injurious ventilation and accounted for most of the between-group difference in Ki. Dependent regions of the protective ventilation group exhibited lower k3 values per neutrophil than those in the injurious ventilation group (P = 0.01). In contrast, Fe was not affected by ventilation strategy (P = 0.52). Lung neutrophil counts were not different between groups, even when regional inflation was accounted for. Conclusions During systemic endotoxemia, protective ventilation may reduce the magnitude and heterogeneity of pulmonary inflammatory cell metabolic activity in early lung injury and may improve gas exchange through its effects predominantly in dependent lung regions. Such effects are likely related to a reduction in the metabolic activity, but not in the number, of lung-infiltrating neutrophils.
Collapse
|
224
|
Cyclic recruitment of atelectasis – Are there implications for our clinical practice? TRENDS IN ANAESTHESIA AND CRITICAL CARE 2013. [DOI: 10.1016/j.tacc.2013.02.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
225
|
Kuipers MT, Vogl T, Aslami H, Jongsma G, van den Berg E, Vlaar APJ, Roelofs JJTH, Juffermans NP, Schultz MJ, van der Poll T, Roth J, Wieland CW. High levels of S100A8/A9 proteins aggravate ventilator-induced lung injury via TLR4 signaling. PLoS One 2013; 8:e68694. [PMID: 23874727 PMCID: PMC3715539 DOI: 10.1371/journal.pone.0068694] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 06/02/2013] [Indexed: 11/18/2022] Open
Abstract
Background Bacterial products add to mechanical ventilation in enhancing lung injury. The role of endogenous triggers of innate immunity herein is less well understood. S100A8/A9 proteins are released by phagocytes during inflammation. The present study investigates the role of S100A8/A9 proteins in ventilator-induced lung injury. Methods Pulmonary S100A8/A9 levels were measured in samples obtained from patients with and without lung injury. Furthermore, wild-type and S100A9 knock-out mice, naive and with lipopolysaccharide-induced injured lungs, were randomized to 5 hours of spontaneously breathing or mechanical ventilation with low or high tidal volume (VT). In addition, healthy spontaneously breathing and high VT ventilated mice received S100A8/A9, S100A8 or vehicle intratracheal. Furthermore, the role of Toll-like receptor 4 herein was investigated. Results S100A8/A9 protein levels were elevated in patients and mice with lung injury. S100A8/A9 levels synergistically increased upon the lipopolysaccharide/high VT MV double hit. Markers of alveolar barrier dysfunction, cytokine and chemokine levels, and histology scores were attenuated in S100A9 knockout mice undergoing the double-hit. Exogenous S100A8/A9 and S100A8 induced neutrophil influx in spontaneously breathing mice. In ventilated mice, these proteins clearly amplified inflammation: neutrophil influx, cytokine, and chemokine levels were increased compared to ventilated vehicle-treated mice. In contrast, administration of S100A8/A9 to ventilated Toll-like receptor 4 mutant mice did not augment inflammation. Conclusion S100A8/A9 proteins increase during lung injury and contribute to inflammation induced by HVT MV combined with lipopolysaccharide. In the absence of lipopolysaccharide, high levels of extracellular S100A8/A9 still amplify ventilator-induced lung injury via Toll-like receptor 4.
Collapse
Affiliation(s)
- Maria T Kuipers
- Laboratory of Experimental Intensive Care and Anesthesiology, Academic Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
226
|
Fuller BM, Mohr NM, Dettmer M, Kennedy S, Cullison K, Bavolek R, Rathert N, McCammon C. Mechanical ventilation and acute lung injury in emergency department patients with severe sepsis and septic shock: an observational study. Acad Emerg Med 2013; 20:659-69. [PMID: 23859579 PMCID: PMC3718493 DOI: 10.1111/acem.12167] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 02/05/2013] [Accepted: 02/07/2013] [Indexed: 01/19/2023]
Abstract
OBJECTIVES The objectives were to characterize the use of mechanical ventilation in the emergency department (ED), with respect to ventilator settings, monitoring, and titration and to determine the incidence of progression to acute lung injury (ALI) after admission, examining the influence of factors present in the ED on ALI progression. METHODS This was a retrospective, observational cohort study of mechanically ventilated patients with severe sepsis and septic shock (June 2005 to May 2010), presenting to an academic ED with an annual census of >95,000 patients. All patients in the study (n = 251) were analyzed for characterization of mechanical ventilation use in the ED. The primary outcome variable of interest was the incidence of ALI progression after intensive care unit (ICU) admission from the ED and risk factors present in the ED associated with this outcome. Secondary analyses included ALI present in the ED and clinical outcomes comparing all patients progressing to ALI versus no ALI. To assess predictors of progression to ALI, significant variables in univariable analyses at a p ≤ 0.10 level were candidates for inclusion in a bidirectional, stepwise, multivariable logistic regression analysis. RESULTS Lung-protective ventilation was used in 68 patients (27.1%) and did not differ based on ALI status. Delivered tidal volume was highly variable, with a median tidal volume delivered of 8.8 mL/kg ideal body weight (IBW; interquartile range [IQR] = 7.8 to 10.0) and a range of 5.2 to 14.6 mL/kg IBW. Sixty-nine patients (27.5%) in the entire cohort progressed to ALI after admission to the hospital, with a mean (±SD) onset of 2.1 (±1) days. Multivariable logistic regression analysis demonstrated that a higher body mass index (BMI), higher Sequential Organ Failure Assessment (SOFA) score, and ED vasopressor use were associated with progression to ALI. There was no association between ED ventilator settings and progression to ALI. Compared to patients who did not progress to ALI, patients progressing to ALI after admission from the ED had an increase in mechanical ventilator duration, vasopressor dependence, and hospital length of stay (LOS). CONCLUSIONS Lung-protective ventilation is uncommon in the ED, regardless of ALI status. Given the frequency of ALI in the ED, the progression shortly after ICU admission, and the clinical consequences of this syndrome, the effect of ED-based interventions aimed at reducing the sequelae of ALI should be investigated further.
Collapse
Affiliation(s)
- Brian M Fuller
- Division of Emergency Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO, USA.
| | | | | | | | | | | | | | | |
Collapse
|
227
|
Mechanisms of acute respiratory distress syndrome in children and adults: a review and suggestions for future research. Pediatr Crit Care Med 2013; 14:631-43. [PMID: 23823199 DOI: 10.1097/pcc.0b013e318291753f] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVES To provide a current overview of the epidemiology and pathophysiology of acute respiratory distress syndrome in adults and children, and to identify research questions that will address the differences between adults and children with acute respiratory distress syndrome. DATA SOURCES Narrative literature review and author-generated data. DATA SELECTION The epidemiology of acute respiratory distress syndrome in adults and children, lung morphogenesis, and postnatal lung growth and development are reviewed. The pathophysiology of acute respiratory distress syndrome is divided into eight categories: alveolar fluid transport, surfactant, innate immunity, apoptosis, coagulation, direct alveolar epithelial injury by bacterial products, ventilator-associated lung injury, and repair. DATA EXTRACTION AND SYNTHESIS Epidemiologic data suggest significant differences in the prevalence and mortality of acute respiratory distress syndrome between children and adults. Postnatal lung development continues through attainment of adult height, and there is overlap between the regulation of postnatal lung development and inflammatory, apoptotic, alveolar fluid clearance, and repair mechanisms. Therefore, there is a different biological baseline network of gene and protein expression in children as compared with adults. CONCLUSIONS There are significant obstacles to performing research on children with acute respiratory distress syndrome. However, epidemiologic, clinical, and animal studies suggest age-dependent differences in the pathophysiology of acute respiratory distress syndrome. In order to reduce the prevalence and improve the outcome of patients with acute respiratory distress syndrome, translational studies of inflammatory, apoptotic, alveolar fluid clearance, and repair mechanisms are needed. Understanding the differences in pathophysiologic mechanisms in acute respiratory distress syndrome between children and adults should facilitate identification of novel therapeutic interventions to prevent or modulate lung injury and improve lung repair.
Collapse
|
228
|
Acute respiratory distress syndrome after pulmonary resection. Gen Thorac Cardiovasc Surg 2013; 61:504-12. [PMID: 23775234 DOI: 10.1007/s11748-013-0276-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Indexed: 10/26/2022]
Abstract
Postoperative acute respiratory distress syndrome (ARDS) is a recognized complication of pulmonary resection. It is characterized by the acute onset of hypoxemia with radiographic infiltrates consistent with pulmonary edema, without elevations in the pulmonary capillary wedge pressure. Many studies suggest that around 2-5 % of patients develop some degree of lung injury, and the mortality from ARDS following pulmonary resection remains high. ARDS following thoracotomy and lung resection has a miserable prognosis, with overall hospital mortality rates over 25 %. The present review evaluates the evidence available in the literature tracking perioperative mortality and morbidity as well as the pathogenesis and management of ARDS in patients undergoing pulmonary resection.
Collapse
|
229
|
Akıncı IÖ, Atalan K, Tuğrul S, Ozcan PE, Yılmazbayhan D, Kıran B, Basel A, Telci L, Cakar N. Recruitment Maneuver Does not Increase the Risk of Ventilator Induced Lung Injury. Balkan Med J 2013; 30:229-34. [PMID: 25207105 DOI: 10.5152/balkanmedj.2013.7375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 11/15/2012] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Mechanical ventilation (MV) may induce lung injury. AIMS To assess and evaluate the role of different mechanical ventilation strategies on ventilator-induced lung injury (VILI) in comparison to a strategy which includes recruitment manoeuvre (RM). STUDY DESIGN Randomized animal experiment. METHODS Thirty male Sprague-Dawley rats were anaesthetised, tracheostomised and divided into 5 groups randomly according to driving pressures; these were mechanically ventilated with following peak alveolar opening (Pao) and positive end-expiratory pressures (PEEP) for 1 hour: Group 15-0: 15 cmH2O Pao and 0 cmH2O PEEP; Group 30-10: 30 cmH2O Pao and 10 cmH2O PEEP; Group 30-5: 30 cmH2O Pao and 5 cmH2O PEEP; Group 30-5&RM: 30 cmH2O Pao and 5 cmH2O PEEP with additional 45 cmH2O CPAP for 30 seconds in every 15 minutes; Group 45-0: 45 cmH2O Pao and 0 cmH2O PEEP Before rats were sacrificed, blood samples were obtained for the evaluation of cytokine and chemokine levels; then, the lungs were subsequently processed for morphologic evaluation. RESULTS Oxygenation results were similar in all groups; however, the groups were lined as follows according to the increasing severity of morphometric evaluation parameters: Group 15-0: (0±0.009) < Group 30-10: (0±0.14) < Group 30-5&RM: (1±0.12) < Group 30-5: (1±0.16) < Group 45-0: (2±0.16). Besides, inflammatory responses were the lowest in 30-5&RM group compared to all other groups. TNF-α, IL-1β, IL-6, MCP-1 levels were significantly different between group 30-5&RM and group 15-0 vs. group 45-0 in each group. CONCLUSION RM with low PEEP reduces the risk of ventilator-induced lung injury with a lower release of systemic inflammatory mediators in response to mechanical ventilation.
Collapse
Affiliation(s)
- Ibrahim Özkan Akıncı
- Department of Anaesthesiology and Intensive care, İstanbul University İstanbul Medical Faculty, İstanbul, Turkey
| | - Korkut Atalan
- Department of Anaesthesiology and Intensive care, İstanbul University İstanbul Medical Faculty, İstanbul, Turkey
| | - Simru Tuğrul
- Department of Anaesthesiology and Intensive care, İstanbul University İstanbul Medical Faculty, İstanbul, Turkey
| | - Perihan Ergin Ozcan
- Department of Anaesthesiology and Intensive care, İstanbul University İstanbul Medical Faculty, İstanbul, Turkey
| | - Dilek Yılmazbayhan
- Department of Pathology, İstanbul University İstanbul Medical Faculty, İstanbul, Turkey
| | - Bayram Kıran
- Department of Immunology, Experimental Medicine Research Institute, İstanbul University İstanbul Medical Faculty, İstanbul, Turkey
| | - Ahmet Basel
- Department of Anaesthesiology and Intensive care, İstanbul University İstanbul Medical Faculty, İstanbul, Turkey
| | - Lutfi Telci
- Department of Anaesthesiology and Intensive care, İstanbul University İstanbul Medical Faculty, İstanbul, Turkey
| | - Nahit Cakar
- Department of Anaesthesiology and Intensive care, İstanbul University İstanbul Medical Faculty, İstanbul, Turkey
| |
Collapse
|
230
|
Abstract
This article focuses on the respiratory management and monitoring of pediatric acute lung injury (ALI) as a specific cause for respiratory failure. Definitive, randomized, controlled trials in pediatrics to guide optimal ventilatory management are few. The only adjunct therapy that has been proved to improve clinical outcome is low tidal volume ventilation, but only in adult patients. Careful monitoring of the patient's respiratory status with airway graphic analysis and capnography can be helpful. Definitive data are needed in the pediatric population to assist in the care of infants, children, and adolescents with ALI to improve survival and functional outcome.
Collapse
|
231
|
Abstract
PURPOSE OF REVIEW The present review seeks to review the pathophysiologic processes that underlie the development of acute respiratory distress syndrome (ARDS) in children. The review intends to provide the physiologic foundation for the treatment strategies that are associated with the most optimal outcome. RECENT FINDINGS In infants and children, ARDS remains a significant cause of morbidity and mortality. Although any infant or child can develop ARDS, children who have experienced trauma, pneumonia, aspiration, or immune compromise are at increased risk. Data indicate that adoption of an open-lung ventilation strategy, characterized by sufficient positive end-expiratory pressure to avoid atelectasis, a tidal volume that is limited to less than 5-7 cc/kg per breath and a plateau pressure of 30 cm of water or less provides the greatest likelihood of survival and minimizes lung injury. The relative benefits of strategies such as high frequency oscillatory ventilation, surfactant replacement therapy and inhaled nitric oxide are considered. SUMMARY ARDS remains a cause of significant mortality and morbidity in children. By employing sound physiologic principles, clinical outcomes can be optimized.
Collapse
|
232
|
Mechanical ventilation injury and repair in extremely and very preterm lungs. PLoS One 2013; 8:e63905. [PMID: 23704953 PMCID: PMC3660361 DOI: 10.1371/journal.pone.0063905] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 04/08/2013] [Indexed: 11/25/2022] Open
Abstract
Background Extremely preterm infants often receive mechanical ventilation (MV), which can contribute to bronchopulmonary dysplasia (BPD). However, the effects of MV alone on the extremely preterm lung and the lung’s capacity for repair are poorly understood. Aim To characterise lung injury induced by MV alone, and mechanisms of injury and repair, in extremely preterm lungs and to compare them with very preterm lungs. Methods Extremely preterm lambs (0.75 of term) were transiently exposed by hysterotomy and underwent 2 h of injurious MV. Lungs were collected 24 h and at 15 d after MV. Immunohistochemistry and morphometry were used to characterise injury and repair processes. qRT-PCR was performed on extremely and very preterm (0.85 of term) lungs 24 h after MV to assess molecular injury and repair responses. Results 24 h after MV at 0.75 of term, lung parenchyma and bronchioles were severely injured; tissue space and myofibroblast density were increased, collagen and elastin fibres were deformed and secondary crest density was reduced. Bronchioles contained debris and their epithelium was injured and thickened. 24 h after MV at 0.75 and 0.85 of term, mRNA expression of potential mediators of lung repair were significantly increased. By 15 days after MV, most lung injury had resolved without treatment. Conclusions Extremely immature lungs, particularly bronchioles, are severely injured by 2 h of MV. In the absence of continued ventilation these injured lungs are capable of repair. At 24 h after MV, genes associated with injurious MV are unaltered, while potential repair genes are activated in both extremely and very preterm lungs.
Collapse
|
233
|
Iliodromiti Z, Zygouris D, Sifakis S, Pappa KI, Tsikouras P, Salakos N, Daniilidis A, Siristatidis C, Vrachnis N. Acute lung injury in preterm fetuses and neonates: mechanisms and molecular pathways. J Matern Fetal Neonatal Med 2013; 26:1696-704. [PMID: 23611524 DOI: 10.3109/14767058.2013.798284] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Acute lung injury (ALI) results in high morbidity and mortality among preterm neonates and efforts have therefore been devoted to both antenatal and postnatal prevention of the disease. ALI is the result of an inflammatory response which is triggered by a variety of different mechanisms. It mostly affects the fetal lung and, in particular, causes damage to the integrity of the lung's alveolar-capillary unit while weakening its cellular linings. Chemotactic activity and inflammatory products, such as proinflammatory cytokines TNF-α, IL-1, IL-6, IL-11, VEGF,TGF-α and TGF-β, provoke serious damage to the capillary endothelium and the alveolar epithelium, resulting in hyaline membrane formation and leakage of protein-rich edema fluid into the alveoli. Chorioamnionitis plays a major part in triggering fetal lung inflammation, while mechanical ventilation, the application of which is frequently necessary in preterm neonates, also causes ALI by inducing proinflammatory cytokines. Many different ventilation-strategies have been developed in order to reduce potential lung injury. Furthermore, tissue injury may occur as a result of injurious oxygen by-products (Reactive Oxygen Species, ROS), secondary to hyperoxia. Knowledge of the inflammatory pathways that connect intra-amniotic inflammation and ALI can lead to the formulation of novel interventional procedures. Future research should concentrate on the pathophysiology of ALI in preterm neonates and οn possible pharmaceutical interventions targeting prevention and/or resolution of ALI.
Collapse
Affiliation(s)
- Zoe Iliodromiti
- 2nd Department of Obstetrics and Gynecology, University of Athens Medical School, Aretaieio Hospital , Athens , Greece
| | | | | | | | | | | | | | | | | |
Collapse
|
234
|
Peñuelas O, Melo E, Sánchez C, Sánchez I, Quinn K, Ferruelo A, Pérez-Vizcaíno F, Esteban A, Navajas D, Nin N, Lorente JA, Farré R. Antioxidant effect of human adult adipose-derived stromal stem cells in alveolar epithelial cells undergoing stretch. Respir Physiol Neurobiol 2013; 188:1-8. [PMID: 23643709 DOI: 10.1016/j.resp.2013.04.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Revised: 04/07/2013] [Accepted: 04/08/2013] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Alveolar epithelial cells undergo stretching during mechanical ventilation. Stretch can modify the oxidative balance in the alveolar epithelium. The aim of the present study was to evaluate the antioxidant role of human adult adipose tissue-derived stromal cells (hADSCs) when human alveolar epithelial cells were subjected to injurious cyclic overstretching. METHODS A549 cells were subjected to biaxial stretch (0-15% change in surface area for 24h, 0.2Hz) with and without hADSCs. At the end of the experiments, oxidative stress was measured as superoxide generation using positive nuclear dihydroethidium (DHE) staining, superoxide dismutase (SOD) activity in cell lysates, 8-isoprostane concentrations in supernatant, and 3-nitrotyrosine by indirect immunofluorescence in fixed cells. RESULTS Cyclically stretching of AECs induced a significant decrease in SOD activity, and an increase in 8-isoprostane concentrations, DHE staining and 3-nitrotyrosine staining compared with non-stretched cells. Treatment with hADSCs significantly attenuated stretch-induced changes in SOD activity, 8-isoprostane concentrations, DHE and 3-nitrotyrosine staining. CONCLUSION These data suggest that hADSCs have an anti-oxidative effect in human alveolar epithelial cells undergoing cyclic stretch.
Collapse
Affiliation(s)
- Oscar Peñuelas
- Critical Care Department, Hospital Universitario de Getafe, Madrid, Spain.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
235
|
de Haro C, Martin-Loeches I, Torrents E, Artigas A. Acute respiratory distress syndrome: prevention and early recognition. Ann Intensive Care 2013; 3:11. [PMID: 23617961 PMCID: PMC3639084 DOI: 10.1186/2110-5820-3-11] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 03/31/2013] [Indexed: 11/17/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is common in critically ill patients admitted to intensive care units (ICU). ARDS results in increased use of critical care resources and healthcare costs, yet the overall mortality associated with these conditions remains high. Research focusing on preventing ARDS and identifying patients at risk of developing ARDS is necessary to develop strategies to alter the clinical course and progression of the disease. To date, few strategies have shown clear benefits. One of the most important obstacles to preventive interventions is the difficulty of identifying patients likely to develop ARDS. Identifying patients at risk and implementing prevention strategies in this group are key factors in preventing ARDS. This review will discuss early identification of at-risk patients and the current prevention strategies.
Collapse
Affiliation(s)
- Candelaria de Haro
- Critical Care Centre, Hospital de Sabadell, Corporació Sanitària i Universitària Parc Taulí, Universitat Autònoma de Barcelona, CIBER Enfermedades Respiratorias, Sabadell, Spain.
| | | | | | | |
Collapse
|
236
|
Jin LD, Wang LR, Wu LQ, Shan YL, Zhao XY, Xiong XQ, Zhou JH, Lin LN, Jin LL. Effects of COX-2 inhibitor on ventilator-induced lung injury in rats. Int Immunopharmacol 2013; 16:288-95. [PMID: 23587488 DOI: 10.1016/j.intimp.2013.03.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 02/22/2013] [Accepted: 03/26/2013] [Indexed: 11/27/2022]
Abstract
BACKGROUND Mechanical ventilation especially with large tidal volume has been demonstrated to activate inflammatory response inducing lung injury, which could be attenuated by cyclooxygenase (COX)-2 inhibitors. As the main small integral membrane proteins that selectively conduct water molecules' transportation, aquaporin (AQP)-1 downregulation significantly related to lung edema and inflammation. This study aims to investigate the role of AQP1 in ventilator-induced lung injury in rats and evaluates the effects of COX-2 inhibition. METHODS Forty rats were allocated into four groups, where rats in Groups LD (low volume+DMSO) and LN (low volume+NS-398) were given intravenously 2ml DMSO and 8mg/kg NS-398 (a specific COX-2 inhibitor, dissolved in 2ml DMSO) before 4-hour lower tidal volume ventilation (8ml/kg), respectively, while DMSO and NS-398 were administrated in the same manner before 4-hour injurious ventilation (40ml/kg) in Groups HD (high volume+DMSO) and HN (high volume+NS-398). The arachidonic acid metabolites (6-keto prostaglandin F1α, thromboxane B2), inflammatory cytokines (tumor necrosis factor-α, interleukin-1β, 6, 8) and total protein levels in bronchoalveolar lavage (BAL) fluid and COX-2 mRNA and AQP1 protein expression in lung tissue were detected; water content and lung morphology were also evaluated. RESULTS Compared to Groups LD and LN, the rats in Groups HD and HN suffered obvious lung morphological changes with higher wet-to-dry weight ratio and lung injury score, and the levels of arachidonic acid metabolites, inflammatory cytokines and total protein in BAL fluid were increased, the expression of COX-2 mRNA was significantly upregulated and AQP1 protein was downregulated in lung tissue (p<0.05). The changes in BAL fluid and the severity of lung injury were attenuated, and AQP1 expression was upregulated in Group HN as compared to HD (p<0.05). CONCLUSIONS Ventilation with large tidal volume causes inflammatory mediator production and AQP1 downregulation, which could be attenuated by COX-2 inhibition.
Collapse
Affiliation(s)
- Li-da Jin
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical College, Wenzhou City, China
| | | | | | | | | | | | | | | | | |
Collapse
|
237
|
Fan E, Villar J, Slutsky AS. Novel approaches to minimize ventilator-induced lung injury. BMC Med 2013; 11:85. [PMID: 23536968 PMCID: PMC3621434 DOI: 10.1186/1741-7015-11-85] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 02/07/2013] [Indexed: 02/06/2023] Open
Abstract
Despite over 40 years of research, there is no specific lung-directed therapy for the acute respiratory distress syndrome (ARDS). Although much has evolved in our understanding of its pathogenesis and factors affecting patient outcome, supportive care with mechanical ventilation remains the cornerstone of treatment. Perhaps the most important advance in ARDS research has been the recognition that mechanical ventilation, although necessary to preserve life, can itself aggravate or cause lung damage through a variety of mechanisms collectively referred to as ventilator-induced lung injury (VILI). This improved understanding of ARDS and VILI has been important in designing lung-protective ventilatory strategies aimed at attenuating VILI and improving outcomes. Considerable effort has been made to enhance our mechanistic understanding of VILI and to develop new ventilatory strategies and therapeutic interventions to prevent and ameliorate VILI with the goal of improving outcomes in patients with ARDS. In this review, we will review the pathophysiology of VILI, discuss a number of novel physiological approaches for minimizing VILI, therapies to counteract biotrauma, and highlight a number of experimental studies to support these concepts.
Collapse
Affiliation(s)
- Eddy Fan
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada.
| | | | | |
Collapse
|
238
|
Dexamethasone attenuates VEGF expression and inflammation but not barrier dysfunction in a murine model of ventilator-induced lung injury. PLoS One 2013; 8:e57374. [PMID: 23451215 PMCID: PMC3581459 DOI: 10.1371/journal.pone.0057374] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 01/21/2013] [Indexed: 12/15/2022] Open
Abstract
Background Ventilator–induced lung injury (VILI) is characterized by vascular leakage and inflammatory responses eventually leading to pulmonary dysfunction. Vascular endothelial growth factor (VEGF) has been proposed to be involved in the pathogenesis of VILI. This study examines the inhibitory effect of dexamethasone on VEGF expression, inflammation and alveolar–capillary barrier dysfunction in an established murine model of VILI. Methods Healthy male C57Bl/6 mice were anesthetized, tracheotomized and mechanically ventilated for 5 hours with an inspiratory pressure of 10 cmH2O (“lower” tidal volumes of ∼7.5 ml/kg; LVT) or 18 cmH2O (“higher” tidal volumes of ∼15 ml/kg; HVT). Dexamethasone was intravenously administered at the initiation of HVT–ventilation. Non–ventilated mice served as controls. Study endpoints included VEGF and inflammatory mediator expression in lung tissue, neutrophil and protein levels in bronchoalveolar lavage fluid, PaO2 to FiO2 ratios and lung wet to dry ratios. Results Particularly HVT–ventilation led to alveolar–capillary barrier dysfunction as reflected by reduced PaO2 to FiO2 ratios, elevated alveolar protein levels and increased lung wet to dry ratios. Moreover, VILI was associated with enhanced VEGF production, inflammatory mediator expression and neutrophil infiltration. Dexamethasone treatment inhibited VEGF and pro–inflammatory response in lungs of HVT–ventilated mice, without improving alveolar–capillary permeability, gas exchange and pulmonary edema formation. Conclusions Dexamethasone treatment completely abolishes ventilator–induced VEGF expression and inflammation. However, dexamethasone does not protect against alveolar–capillary barrier dysfunction in an established murine model of VILI.
Collapse
|
239
|
Sgarbi MWM, Silva BA, Peres CM, Alba TC, Curi R, Soriano FG, Ribeiro DA, Velasco IT. Leukocyte infiltration in lung, muscle, and liver after limb compression in rats. ACTA ACUST UNITED AC 2013; 20:111-6. [PMID: 23415541 DOI: 10.1016/j.pathophys.2012.12.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Revised: 10/19/2012] [Accepted: 12/13/2012] [Indexed: 10/27/2022]
Abstract
Muscle crush injury is associated with systemic manifestations known as crush syndrome. A systemic inflammatory response syndrome may be triggered by isolated crush injury. Using myeloperoxidase (MPO) activity and plasma fatty acid composition, we investigated the inflammatory response in distant organs after isolated limb compression in rats. Male Wistar rats were submitted to 1h of hind limb compression by a latex ribbon. Myeloperoxidase activity was measured in muscle, liver, and lung at progressive times (1, 2 or 4h) after bandage release. Plasma fatty acid composition was evaluated as an indirect measure of oxidative stress. The liver and hind limb muscles showed a transient increase in MPO activity. Pulmonary MPO activity, otherwise, increased progressively throughout the study and reached statistically significant values at 4h when compared to all other groups (p<0.05). Plasma levels of unsaturated fatty acids decreased gradually after decompression (p<0.05 compared to controls after 4h). Blunt traumatic muscle compression was associated with rapid and transient muscle and liver inflammatory cell infiltration but otherwise, polymorphonuclear cells showed progressive aggregation in lungs. The plasmatic unsaturated index decreased throughout the 4h after muscle release. We demonstrated that limb compression was associated with oxidative stress and distant inflammatory responses. Progressive inflammatory cell infiltration in lungs could be related with the delayed systemic adverse responses found after crush injury.
Collapse
Affiliation(s)
- Mauricio Wanderley Moral Sgarbi
- School of Medicine, University of São Paulo (USP), SP, Brazil; Department of Biosciences, Federal University of São Paulo, UNIFESP, SP, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
240
|
Cereda M, Emami K, Xin Y, Kadlecek S, Kuzma NN, Mongkolwisetwara P, Profka H, Pickup S, Ishii M, Kavanagh BP, Deutschman CS, Rizi RR. Imaging the interaction of atelectasis and overdistension in surfactant-depleted lungs. Crit Care Med 2013; 41:527-35. [PMID: 23263577 PMCID: PMC3557664 DOI: 10.1097/ccm.0b013e31826ab1f2] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Atelectasis and surfactant depletion may contribute to greater distension-and thereby injury-of aerated lung regions; recruitment of atelectatic lung may protect these regions by attenuating such overdistension. However, the effects of atelectasis (and recruitment) on aerated airspaces remain elusive. We tested the hypothesis that during mechanical ventilation, surfactant depletion increases the dimensions of aerated airspaces and that lung recruitment reverses these changes. DESIGN Prospective imaging study in an animal model. SETTING Research imaging facility. SUBJECTS Twenty-seven healthy Sprague Dawley rats. INTERVENTIONS Surfactant depletion was obtained by saline lavage in anesthetized, ventilated rats. Alveolar recruitment was accomplished using positive end-expiratory pressure and exogenous surfactant administration. MEASUREMENTS AND MAIN RESULTS Airspace dimensions were estimated by measuring the apparent diffusion coefficient of He, using diffusion-weighted hyperpolarized gas magnetic resonance imaging. Atelectasis was demonstrated using computerized tomography and by measuring oxygenation. Saline lavage increased atelectasis (increase in nonaerated tissue from 1.2% to 13.8% of imaged area, p < 0.001), and produced a concomitant increase in mean apparent diffusion coefficient (~33%, p < 0.001) vs. baseline; the heterogeneity of the computerized tomography signal and the variance of apparent diffusion coefficient were also increased. Application of positive end-expiratory pressure and surfactant reduced the mean apparent diffusion coefficient (~23%, p < 0.001), and its variance, in parallel to alveolar recruitment (i.e., less computerized tomography densities and heterogeneity, increased oxygenation). CONCLUSIONS Overdistension of aerated lung occurs during atelectasis is detectable using clinically relevant magnetic resonance imaging technology, and could be a key factor in the generation of lung injury during mechanical ventilation. Lung recruitment by higher positive end-expiratory pressure and surfactant administration reduces airspace distension.
Collapse
Affiliation(s)
- Maurizio Cereda
- Department of Anesthesiology and Critical Care and Stavropoulos Sepsis Research Program, University of Pennsylvania, Philadelphia, PA, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
241
|
Dechert RE, Haas CF, Ostwani W. Current knowledge of acute lung injury and acute respiratory distress syndrome. Crit Care Nurs Clin North Am 2013; 24:377-401. [PMID: 22920464 DOI: 10.1016/j.ccell.2012.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) continues to be a major cause of mortality in adult and pediatric critical care medicine. This article discusses the pulmonary sequelae associated with ALI and ARDS, the support of ARDS with mechanical ventilation, available adjunctive therapies, and experimental therapies currently being tested. It is hoped that further understanding of the fundamental biology, improved identification of the patient's inflammatory state, and application of therapies directed at multiple sites of action may ultimately prove beneficial for patients suffering from ALI/ARDS.
Collapse
Affiliation(s)
- Ronald E Dechert
- Department of Respiratory Care, University of Michigan Health System, 8-720 Mott Hospital, 1540 East Hospital Drive, SPC 4208, Ann Arbor, MI 48109, USA.
| | | | | |
Collapse
|
242
|
Souza MC, Silva JD, Pádua TA, Capelozzi VL, Rocco PRM, Henriques MDG. Early and late acute lung injury and their association with distal organ damage in murine malaria. Respir Physiol Neurobiol 2013; 186:65-72. [PMID: 23328346 DOI: 10.1016/j.resp.2012.12.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 11/18/2012] [Accepted: 12/12/2012] [Indexed: 02/03/2023]
Abstract
Severe malaria is characterised by cerebral oedema, acute lung injury (ALI) and multiple organ dysfunctions, however, the mechanisms of lung and distal organ damage need to be better clarified. Ninety-six C57BL/6 mice were injected intraperitoneally with 5×10(6)Plasmodium berghei ANKA-infected erythrocytes or saline. At day 1, Plasmodium berghei infected mice presented greater number of areas with alveolar collapse, neutrophil infiltration and interstitial oedema associated with lung mechanics impairment, which was more severe at day 1 than day 5. Lung tumour necrosis factor-α and chemokine (C-X-C motif) ligand 1 levels were higher at day 5 compared to day 1. Lung damage occurred in parallel with distal organ injury at day 1; nevertheless, lung inflammation and the presence of malarial pigment in distal organs were more evident at day 5. In conclusion, ALI develops prior to the onset of cerebral malaria symptoms. Later during the course of infection, the established systemic inflammatory response increases distal organ damage.
Collapse
Affiliation(s)
- Mariana C Souza
- Laboratory of Applied Pharmacology, Farmanguinhos, Oswaldo Cruz Foundation, RJ, Brazil
| | | | | | | | | | | |
Collapse
|
243
|
Thammanomai A, Hamakawa H, Bartolák-Suki E, Suki B. Combined effects of ventilation mode and positive end-expiratory pressure on mechanics, gas exchange and the epithelium in mice with acute lung injury. PLoS One 2013; 8:e53934. [PMID: 23326543 PMCID: PMC3541132 DOI: 10.1371/journal.pone.0053934] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 12/07/2012] [Indexed: 11/23/2022] Open
Abstract
The accepted protocol to ventilate patients with acute lung injury is to use low tidal volume (V(T)) in combination with recruitment maneuvers or positive end-expiratory pressure (PEEP). However, an important aspect of mechanical ventilation has not been considered: the combined effects of PEEP and ventilation modes on the integrity of the epithelium. Additionally, it is implicitly assumed that the best PEEP-V(T) combination also protects the epithelium. We aimed to investigate the effects of ventilation mode and PEEP on respiratory mechanics, peak airway pressures and gas exchange as well as on lung surfactant and epithelial cell integrity in mice with acute lung injury. HCl-injured mice were ventilated at PEEPs of 3 and 6 cmH(2)O with conventional ventilation (CV), CV with intermittent large breaths (CV(LB)) to promote recruitment, and a new mode, variable ventilation, optimized for mice (VV(N)). Mechanics and gas exchange were measured during ventilation and surfactant protein (SP)-B, proSP-B and E-cadherin levels were determined from lavage and lung homogenate. PEEP had a significant effect on mechanics, gas exchange and the epithelium. The higher PEEP reduced lung collapse and improved mechanics and gas exchange but it also down regulated surfactant release and production and increased epithelial cell injury. While CV(LB) was better than CV, VV(N) outperformed CV(LB) in recruitment, reduced epithelial injury and, via a dynamic mechanotransduction, it also triggered increased release and production of surfactant. For long-term outcome, selection of optimal PEEP and ventilation mode may be based on balancing lung physiology with epithelial injury.
Collapse
Affiliation(s)
- Apiradee Thammanomai
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
| | - Hiroshi Hamakawa
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
| | - Erzsébet Bartolák-Suki
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
| | - Béla Suki
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
| |
Collapse
|
244
|
Abstract
Optimal management of the acute respiratory distress syndrome (ARDS) requires prompt recognition, treatment of the underlying cause and the prevention of secondary injury. Ventilator-associated lung injury (VALI) is one of the several iatrogenic factors that can exacerbate lung injury and ARDS. Reduction of VALI by protective low tidal volume ventilation is one of the only interventions with a proven survival benefit in ARDS. There are, however, several factors inhibiting the widespread use of this technique in patients with established lung injury. Prevention of ARDS and VALI by detecting at-risk patients and implementing protective ventilation early is a feasible strategy. Detection of injurious ventilation itself is possible, and potential biological markers of VALI have been investigated. Finally, facilitation of protective ventilation, including techniques such as extracorporeal support, can mitigate VALI.
Collapse
Affiliation(s)
- David Salman
- Adult Intensive Care Unit, Royal Brompton Hospital, Sydney Street, London SW3 6NP, United Kingdom
| | | | | |
Collapse
|
245
|
Cabrera-Benitez NE, Pérez-Roth E, Casula M, Ramos-Nuez Á, Ríos-Luci C, Rodríguez-Gallego C, Sologuren I, Jakubkiene V, Slutsky AS, Padrón JM, Villar J. Anti-inflammatory activity of a novel family of aryl ureas compounds in an endotoxin-induced airway epithelial cell injury model. PLoS One 2012; 7:e48468. [PMID: 23144889 PMCID: PMC3493555 DOI: 10.1371/journal.pone.0048468] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 09/25/2012] [Indexed: 01/11/2023] Open
Abstract
Background Despite our increased understanding of the mechanisms involved in acute lung injury (ALI) and the acute respiratory distress syndrome (ARDS), there is no specific pharmacological treatment of proven benefit. We used a novel screening methodology to examine potential anti-inflammatory effects of a small structure-focused library of synthetic carbamate and urea derivatives in a well established cell model of lipopolysaccharide (LPS)-induced ALI/ARDS. Methodology/Principal Findings After a pilot study to develop an in vitro LPS-induced airway epithelial cell injury model, a library of synthetic carbamate and urea derivates was screened against representative panels of human solid tumor cell lines and bacterial and fungal strains. Molecules that were non-cytotoxic and were inactive in terms of antiproliferative and antimicrobial activities were selected to study the effects on LPS-induced inflammatory response in an in vitro cell culture model using A549 human alveolar and BEAS-2B human bronchial cells. These cells were exposed for 18 h to LPS obtained from Escherichia coli, either alone or in combination with the test compounds. The LPS antagonists rhein and emodin were used as reference compounds. The most active compound (CKT0103) was selected as the lead compound and the impact of CKT0103 on pro-inflammatory IL-6 and IL-8 cytokine levels, expression of toll-like receptor-4 (TLR4) and nuclear factor kappa B inhibitor alpha (IκBα) was measured. CKT0103 significantly inhibited the synthesis and release of IL-6 and IL-8 induced by LPS. This suppression was associated with inhibition of TLR4 up-regulation and IκBα down-regulation. Immunocytochemical staining for TLR4 and IκBα supported these findings. Conclusions/Significance Using a novel screening methodology, we identified a compound – CKT0103 – with potent anti-inflammatory effects. These findings suggest that CKT0103 is a potential target for the treatment of the acute phase of sepsis and sepsis-induced ALI/ARDS.
Collapse
Affiliation(s)
- Nuria E. Cabrera-Benitez
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Multidisciplinary Organ Dysfunction Evaluation Research Network, Research Unit, Hospital Universitario Dr. Negrin, Las Palmas de Gran Canaria, Spain
| | - Eduardo Pérez-Roth
- BioLab, Instituto Universitario de Bio-Orgánica “Antonio González” (IUBO-AG), Universidad de La Laguna, La Laguna, Spain
| | - Milena Casula
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Multidisciplinary Organ Dysfunction Evaluation Research Network, Research Unit, Hospital Universitario Dr. Negrin, Las Palmas de Gran Canaria, Spain
| | - Ángela Ramos-Nuez
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Multidisciplinary Organ Dysfunction Evaluation Research Network, Research Unit, Hospital Universitario Dr. Negrin, Las Palmas de Gran Canaria, Spain
| | - Carla Ríos-Luci
- BioLab, Instituto Universitario de Bio-Orgánica “Antonio González” (IUBO-AG), Universidad de La Laguna, La Laguna, Spain
| | | | - Ithaisa Sologuren
- Department of Immunology, Hospital Universitario Dr. Negrin, Las Palmas de Gran Canaria, Spain
| | - Virginija Jakubkiene
- Department of Organic Chemistry, Faculty of Chemistry, Vilnius University, Vilnius, Lithuania
| | - Arthur S. Slutsky
- Keenan Research Center at the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada
| | - José M. Padrón
- BioLab, Instituto Universitario de Bio-Orgánica “Antonio González” (IUBO-AG), Universidad de La Laguna, La Laguna, Spain
| | - Jesús Villar
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Multidisciplinary Organ Dysfunction Evaluation Research Network, Research Unit, Hospital Universitario Dr. Negrin, Las Palmas de Gran Canaria, Spain
- Keenan Research Center at the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Canada
- * E-mail:
| |
Collapse
|
246
|
Price D, Kenyon NJ, Stollenwerk N. A fresh look at paralytics in the critically ill: real promise and real concern. Ann Intensive Care 2012; 2:43. [PMID: 23062076 PMCID: PMC3519794 DOI: 10.1186/2110-5820-2-43] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Accepted: 09/17/2012] [Indexed: 01/20/2023] Open
Abstract
Neuromuscular blocking agents (NMBAs), or “paralytics,” often are deployed in the sickest patients in the intensive care unit (ICU) when usual care fails. Despite the publication of guidelines on the use of NMBAs in the ICU in 2002, clinicians have needed more direction to determine which patients would benefit from NMBAs and which patients would be harmed. Recently, new evidence has shown that paralytics hold more promise when used in carefully selected lung injury patients for brief periods of time. When used in early acute respiratory distress syndrome (ARDS), NMBAs assist to establish a lung protective strategy, which leads to improved oxygenation, decreased pulmonary and systemic inflammation, and potentially improved mortality. It also is increasingly recognized that NMBAs can cause harm, particularly critical illness polyneuromyopathy (CIPM), when used for prolonged periods or in septic shock. In this review, we address several practical considerations for clinicians who use NMBAs in their practice. Ultimately, we conclude that NMBAs should be considered a lung protective adjuvant in early ARDS and that clinicians should consider using an alternative NMBA to the aminosteroids in septic shock with less severe lung injury pending further studies.
Collapse
Affiliation(s)
- David Price
- Division of Pulmonary, Critical Care and Sleep Medicine, Univ, of California, Davis, 4150V, Street, Suite 3400, Sacramento, CA 95817, USA.
| | | | | |
Collapse
|
247
|
Wilson MR, Patel BV, Takata M. Ventilation with "clinically relevant" high tidal volumes does not promote stretch-induced injury in the lungs of healthy mice. Crit Care Med 2012; 40:2850-7. [PMID: 22890257 PMCID: PMC3698535 DOI: 10.1097/ccm.0b013e31825b91ef] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Ventilator-induced lung injury is a crucial determinant of the outcome of mechanically ventilated patients. Increasing numbers of mouse studies have identified numerous pathways and mediators that are modulated by ventilation, but it is conceptually difficult to reconcile these into a single paradigm. There is substantial variability in tidal volumes used in these studies and no certainty about the pathophysiology that such varied models actually represent. This study was designed to investigate whether ventilation strategies ranging from "very high" to more "clinically relevant" tidal volumes induce similar pathophysiologies in healthy mice or represent distinct entities. DESIGN In vivo study. SETTING University research laboratory. SUBJECTS C57/Bl6 mice. INTERVENTIONS Anesthetized mice were ventilated with various tidal volumes up to 40 mL/kg. MEASUREMENTS AND MAIN RESULTS Respiratory system compliance and arterial blood gases were used to evaluate physiological variables of injury. Lung wet:dry weight ratio, lavage fluid protein, and cytokines were used to assess pulmonary edema and inflammation. All ventilation strategies induced changes in respiratory system compliance, although the pattern of change was unique for each strategy. Ventilation with 10 mL/kg and 40 mL/kg also induced decreases in arterial PO2 and blood pressure. Any physiological changes induced during the 10, 20, and 30 mL/kg strategies were largely reversed by recruitment maneuvers at the end of the protocol. Markers of pulmonary edema and inflammation indicated that only 40 mL/kg induced substantial increases in both, consistent with development of lung injury. CONCLUSIONS Tidal volumes up to 20 mL/kg are unlikely to induce substantial lung overstretch in models using healthy, young mice. Signs of injury/inflammation using such models are likely to result from other factors, particularly alveolar derecruitment and atelectasis. The results of such studies may need to be reevaluated before clinical relevance can be accurately determined.
Collapse
Affiliation(s)
- Michael R Wilson
- Section of Anaesthetics, Pain Medicine and Intensive Care, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdom.
| | | | | |
Collapse
|
248
|
Schmidt GA. Counterpoint: should positive end-expiratory pressure in patients with ARDS be set based on oxygenation? No. Chest 2012; 141:1382-1384. [PMID: 22670018 DOI: 10.1378/chest.12-0157] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Gregory A Schmidt
- Division of Pulmonary Diseases, Critical Care, and Occupational Medicine, Department of Internal Medicine, University of Iowa, Iowa City, IA.
| |
Collapse
|
249
|
The ART Investigators. Rationale, study design, and analysis plan of the Alveolar Recruitment for ARDS Trial (ART): study protocol for a randomized controlled trial. Trials 2012; 13:153. [PMID: 22929542 PMCID: PMC3543273 DOI: 10.1186/1745-6215-13-153] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 07/05/2012] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Acute respiratory distress syndrome (ARDS) is associated with high in-hospital mortality. Alveolar recruitment followed by ventilation at optimal titrated PEEP may reduce ventilator-induced lung injury and improve oxygenation in patients with ARDS, but the effects on mortality and other clinical outcomes remain unknown. This article reports the rationale, study design, and analysis plan of the Alveolar Recruitment for ARDS Trial (ART). METHODS/DESIGN ART is a pragmatic, multicenter, randomized (concealed), controlled trial, which aims to determine if maximum stepwise alveolar recruitment associated with PEEP titration is able to increase 28-day survival in patients with ARDS compared to conventional treatment (ARDSNet strategy). We will enroll adult patients with ARDS of less than 72 h duration. The intervention group will receive an alveolar recruitment maneuver, with stepwise increases of PEEP achieving 45 cmH2O and peak pressure of 60 cmH2O, followed by ventilation with optimal PEEP titrated according to the static compliance of the respiratory system. In the control group, mechanical ventilation will follow a conventional protocol (ARDSNet). In both groups, we will use controlled volume mode with low tidal volumes (4 to 6 mL/kg of predicted body weight) and targeting plateau pressure ≤30 cmH2O. The primary outcome is 28-day survival, and the secondary outcomes are: length of ICU stay; length of hospital stay; pneumothorax requiring chest tube during first 7 days; barotrauma during first 7 days; mechanical ventilation-free days from days 1 to 28; ICU, in-hospital, and 6-month survival. ART is an event-guided trial planned to last until 520 events (deaths within 28 days) are observed. These events allow detection of a hazard ratio of 0.75, with 90% power and two-tailed type I error of 5%. All analysis will follow the intention-to-treat principle. DISCUSSION If the ART strategy with maximum recruitment and PEEP titration improves 28-day survival, this will represent a notable advance to the care of ARDS patients. Conversely, if the ART strategy is similar or inferior to the current evidence-based strategy (ARDSNet), this should also change current practice as many institutions routinely employ recruitment maneuvers and set PEEP levels according to some titration method. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT01374022.
Collapse
Affiliation(s)
- The ART Investigators
- Research Institute – Hospital do Coração (IEP– HCor), Rua Abílio Soares 250, 12th floor, CEP: 04005-000, São Paulo, SP, Brazil
| |
Collapse
|
250
|
Bruells CS, Dembinski R. [Positive end-expiratory pressure : adjustment in acute lung injury]. Anaesthesist 2012; 61:336-43. [PMID: 22526744 DOI: 10.1007/s00101-012-2003-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Treatment of patients suffering from acute lung injury is a challenge for the treating physician. In recent years ventilation of patients with acute hypoxic lung injury has changed fundamentally. Besides the use of low tidal volumes, the most beneficial setting of positive end-expiratory pressure (PEEP) has been in the focus of researchers. The findings allow adaption of treatment to milder forms of acute lung injury and severe forms. Additionally computed tomography techniques to assess the pulmonary situation and recruitment potential as well as bed-side techniques to adjust PEEP on the ward have been modified and improved. This review gives an outline of recent developments in PEEP adjustment for patients suffering from acute hypoxic and hypercapnic lung injury and explains the fundamental pathophysiology necessary as a basis for correct treatment.
Collapse
Affiliation(s)
- C S Bruells
- Klinik für Anästhesiologie, Universitätsklinikum Aachen, Aachen, Deutschland.
| | | |
Collapse
|