201
|
Mukherjee S, Venugopal JR, Ravichandran R, Ramakrishna S, Raghunath M. Multimodal biomaterial strategies for regeneration of infarcted myocardium. ACTA ACUST UNITED AC 2010. [DOI: 10.1039/c0jm00805b] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
202
|
Abstract
Peptide nanostructures containing bioactive signals offer exciting novel therapies of broad potential impact in regenerative medicine. These nanostructures can be designed through self-assembly strategies and supramolecular chemistry, and have the potential to combine bioactivity for multiple targets with biocompatibility. It is also possible to multiplex their functions by using them to deliver proteins, nucleic acids, drugs and cells. In this review, we illustrate progress made in this new field by our group and others using peptide-based nanotechnology. Specifically, we highlight the use of self-assembling peptide amphiphiles towards applications in the regeneration of the central nervous system, vasculature and hard tissue along with the transplant of islets and the controlled release of nitric oxide to prevent neointimal hyperplasia. Also, we discuss other self-assembling oligopeptide technology and the progress made with these materials towards the development of potential therapies.
Collapse
Affiliation(s)
- M J Webber
- Northwestern University Department of Biomedical Engineering, Evanston, IL, USA
| | | | | |
Collapse
|
203
|
Abstract
The development of vaccines and other immunotherapies has been complicated by heterogeneous antigen display and the use of incompletely defined immune adjuvants with complex mechanisms of action. We have observed strong antibody responses in mice without the coadministration of any additional adjuvant by noncovalently assembling a T and B cell epitope peptide into nanofibers using a short C-terminal peptide extension. Self-assembling peptides have been explored recently as scaffolds for tissue engineering and regenerative medicine, but our results indicate that these materials may also be useful as chemically defined adjuvants. In physiological conditions, these peptides self-assembled into long, unbranched fibrils that displayed the epitope on their surfaces. IgG1, IgG2a, and IgG3 were raised against epitope-bearing fibrils in levels similar to the epitope peptide delivered in complete Freund's adjuvant (CFA), and IgM production was even greater for the self-assembled epitope. This response was dependent on self-assembly, and the self-assembling sequence was not immunogenic by itself, even when delivered in CFA. Undetectable levels of interferon-gamma, IL-2, and IL-4 in cultures of peptide-challenged splenocytes from immunized mice suggested that the antibody responses did not involve significant T cell help.
Collapse
|
204
|
Seki K, Sanada S, Kudinova AY, Steinhauser ML, Handa V, Gannon J, Lee RT. Interleukin-33 prevents apoptosis and improves survival after experimental myocardial infarction through ST2 signaling. Circ Heart Fail 2009; 2:684-91. [PMID: 19919994 DOI: 10.1161/circheartfailure.109.873240] [Citation(s) in RCA: 273] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND ST2 is an interleukin (IL)-1 receptor family member with membrane-bound (ST2L) and soluble (sST2) isoforms, and sST2 is a biomarker for poor outcome in patients with myocardial infarction (MI). IL-33, the recently discovered ligand for ST2, activates nuclear factor kappaB and thus may regulate apoptotic cell death. We tested the hypothesis that IL-33 is cardioprotective after MI through ST2 signaling. METHODS AND RESULTS IL-33 protected cultured cardiomyocytes from hypoxia-induced apoptosis, and this cardioprotection was partially inhibited by sST2. IL-33 induced expression of the antiapoptotic factors XIAP, cIAP1, and survivin. To define the cardioprotective role of IL-33 in vivo, we performed a blinded and randomized study of ischemia/reperfusion in rats. IL-33 reduced cardiomyocyte apoptosis, suppressed caspase-3 activity, and increased expression of IAP family member proteins. IL-33 decreased both infarct and fibrosis volumes at 15 days; furthermore, both echocardiographic and hemodynamic studies revealed that IL-33 improved ventricular function. To determine whether cardioprotection by IL-33 is mediated through ST2 signaling, a randomized and blinded study of ST2(-/-) versus wild-type littermate mice was performed in 98 mice subjected to MI. At 4 weeks after MI, IL-33 reduced ventricular dilation and improved contractile function in wild-type mice but not in ST2(-/-) mice. Finally, IL-33 improved survival after MI in wild-type but not in ST2(-/-) mice. CONCLUSIONS IL-33 prevents cardiomyocyte apoptosis and improves cardiac function and survival after MI through ST2 signaling.
Collapse
Affiliation(s)
- Kenjiro Seki
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass, USA
| | | | | | | | | | | | | |
Collapse
|
205
|
Interrogating functional integration between injected pluripotent stem cell-derived cells and surrogate cardiac tissue. Proc Natl Acad Sci U S A 2009; 107:3329-34. [PMID: 19846783 DOI: 10.1073/pnas.0905729106] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Myocardial infarction resulting in irreversible loss of cardiomyocytes (CMs) remains a leading cause of heart failure. Although cell transplantation has modestly improved cardiac function, major challenges including increasing cell survival, engraftment, and functional integration with host tissue, remain. Embryonic stem cells (ESCs), which can be differentiated into cardiac progenitors (CPs) and CMs, represent a candidate cell source for cardiac cell therapy. However, it is not known what specific cell type or condition is the most appropriate for transplantation. This problem is exasperated by the lack of efficient and predictive strategies to screen the large numbers of parameters that may impact cell transplantation. We used a cardiac tissue model, engineered heart tissue (EHT), and quantitative molecular and electrophysiological analyses, to test transplantation conditions and specific cell populations for their potential to functionally integrate with the host tissue. In this study, we validated our analytical platform using contractile mouse neonatal CMs (nCMs) and noncontractile cardiac fibroblasts (cFBs), and screened for the integration potential of ESC-derived CMs and CPs (ESC-CMs and -CPs). Consistent with previous in vivo studies, cFB injection interfered with electrical signal propagation, whereas injected nCMs improved tissue function. Purified bioreactor-generated ESC-CMs exhibited a diminished capacity for electrophysiological integration; a result correlated with lower (compared with nCMs) connexin 43 expression. ESC-CPs, however, appeared able to appropriately mature and integrate into EHT, enhancing the amplitude of tissue contraction. Our results support the use of EHT as a model system to accelerate development of cardiac cell therapy strategies.
Collapse
|
206
|
Leor J, Tuvia S, Guetta V, Manczur F, Castel D, Willenz U, Petneházy O, Landa N, Feinberg MS, Konen E, Goitein O, Tsur-Gang O, Shaul M, Klapper L, Cohen S. Intracoronary injection of in situ forming alginate hydrogel reverses left ventricular remodeling after myocardial infarction in Swine. J Am Coll Cardiol 2009; 54:1014-23. [PMID: 19729119 DOI: 10.1016/j.jacc.2009.06.010] [Citation(s) in RCA: 226] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Revised: 04/17/2009] [Accepted: 06/02/2009] [Indexed: 12/25/2022]
Abstract
OBJECTIVES This study sought to determine whether alginate biomaterial can be delivered effectively into the infarcted myocardium by intracoronary injection to prevent left ventricular (LV) remodeling early after myocardial infarction (MI). BACKGROUND Although injectable biomaterials can improve infarct healing and repair, the feasibility and effectiveness of intracoronary injection have not been studied. METHODS We prepared a calcium cross-linked alginate solution that undergoes liquid to gel phase transition after deposition in infarcted myocardium. Anterior MI was induced in swine by transient balloon occlusion of left anterior descending coronary artery. At 4 days after MI, either alginate solution (2 or 4 ml) or saline was injected selectively into the infarct-related coronary artery. An additional group (n = 19) was treated with incremental volumes of biomaterial (1, 2, and 4 ml) or 2 ml saline and underwent serial echocardiography studies. RESULTS Examination of hearts harvested after injection showed that the alginate crossed the infarcted leaky vessels and was deposited as hydrogel in the infarcted tissue. At 60 days, control swine experienced an increase in left ventricular (LV) diastolic area by 44%, LV systolic area by 45%, and LV mass by 35%. In contrast, intracoronary injection of alginate (2 and 4 ml) prevented and even reversed LV enlargement (p < 0.01). Post-mortem analysis showed that the biomaterial (2 ml) increased scar thickness by 53% compared with control (2.9 +/- 0.1 mm vs. 1.9 +/- 0.3 mm; p < 0.01) and was replaced by myofibroblasts and collagen. CONCLUSIONS Intracoronary injection of alginate biomaterial is feasible, safe, and effective. Our findings suggest a new percutaneous intervention to improve infarct repair and prevent adverse remodeling after reperfused MI.
Collapse
Affiliation(s)
- Jonathan Leor
- Neufeld Cardiac Research Institute, Sheba Medical Center, Tel-Aviv University, Tel-Hashomer 52621, Israel.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
207
|
Padin-Iruegas ME, Misao Y, Davis ME, Segers VFM, Esposito G, Tokunou T, Urbanek K, Hosoda T, Rota M, Anversa P, Leri A, Lee RT, Kajstura J. Cardiac progenitor cells and biotinylated insulin-like growth factor-1 nanofibers improve endogenous and exogenous myocardial regeneration after infarction. Circulation 2009; 120:876-87. [PMID: 19704095 DOI: 10.1161/circulationaha.109.852285] [Citation(s) in RCA: 172] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Cardiac progenitor cells (CPCs) possess the insulin-like growth factor-1 (IGF-1)-IGF-1 receptor system, and IGF-1 can be tethered to self-assembling peptide nanofibers (NF-IGF-1), leading to prolonged release of this growth factor to the myocardium. Therefore, we tested whether local injection of clonogenic CPCs and NF-IGF-1 potentiates the activation and differentiation of delivered and resident CPCs enhancing cardiac repair after infarction. METHODS AND RESULTS Myocardial infarction was induced in rats, and untreated infarcts and infarcts treated with CPCs or NF-IGF-1 only and CPCs and NF-IGF-1 together were analyzed. With respect to infarcts exposed to CPCs or NF-IGF-1 alone, combination therapy resulted in a greater increase in the ratio of left ventricular mass to chamber volume and a better preservation of +dP/dt, -dP/dt, ejection fraction, and diastolic wall stress. Myocardial regeneration was detected in all treated infarcts, but the number of newly formed myocytes with combination therapy was 32% and 230% higher than with CPCs and NF-IGF-1, respectively. Corresponding differences in the volume of regenerated myocytes were 48% and 115%. Similarly, the length density of newly formed coronary arterioles with both CPCs and NF-IGF-1 was 73% and 83% greater than with CPCs and NF-IGF-1 alone, respectively. Importantly, activation of resident CPCs by paracrine effects contributed to cardiomyogenesis and vasculogenesis. Collectively, CPCs and NF-IGF-1 therapy reduced infarct size more than CPCs and NF-IGF-1 alone. CONCLUSIONS The addition of nanofiber-mediated IGF-1 delivery to CPC therapy improved in part the recovery of myocardial structure and function after infarction.
Collapse
Affiliation(s)
- M Elena Padin-Iruegas
- Department of Anesthesia and Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
208
|
Transcriptional and posttranscriptional regulators of biglycan in cardiac fibroblasts. Basic Res Cardiol 2009; 105:99-108. [PMID: 19701788 DOI: 10.1007/s00395-009-0049-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Revised: 07/15/2009] [Accepted: 07/22/2009] [Indexed: 12/13/2022]
Abstract
Biglycan, a small leucine-rich proteoglycan, is essential for scar formation and preservation of hemodynamic function after myocardial infarction, as shown in biglycan-knockout mice. Because of this important role in cardiac pathophysiology, we aimed to identify regulators of biglycan expression and posttranslational modifications in cardiac fibroblasts. Cardiac fibroblasts were isolated from neonatal Wistar-Kyoto rats and used in the first passage. Expression of biglycan was analyzed after metabolic labeling with [(35)S]-sulfate by SDS-polyacrylamide gel electrophoresis and molecular sieve chromatography; mRNA expression was examined by Northern analysis and real-time RT-PCR. Serum, thrombin, transforming growth factor beta1 (TGFbeta 1) and platelet-derived growth factor BB (PDGF-BB) strongly increased [(35)S]-labeled proteoglycan levels. Tumor necrosis factor alpha further increased the stimulatory effect of PDGF-BB. PDGF-BB increased glycosaminoglycan (GAG) chain length as shown by molecular sieve chromatography after beta-elimination to release GAG chains. Nitric oxide was the only negative regulator of biglycan as evidenced by marked downregulation in response to DETA-NO ((Z)-1-[2-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate), a long acting nitric oxide donor and SNAP (S-nitroso-N-acetyl-l,l-penicillamine), which completely inhibited PDGF-BB-induced secretion of total [(35)S]-labeled proteoglycans and biglycan mRNA expression. Of note, the molecular weight of biglycan GAG chains was even further increased by NO donors compared to control and PDGF-BB stimulation. The current results suggest that in cardiac fibroblasts, biglycan is induced by a variety of stimuli including serum, thrombin and growth factors such as PDGF-BB and TGFbeta1. This response is counteracted by NO and enhanced by TNFalpha. Interestingly, both up- and downregulation were associated with posttranslational increase of GAG chain length.
Collapse
|
209
|
Baroli B. From natural bone grafts to tissue engineering therapeutics: Brainstorming on pharmaceutical formulative requirements and challenges. J Pharm Sci 2009; 98:1317-75. [PMID: 18729202 DOI: 10.1002/jps.21528] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Tissue engineering is an emerging multidisciplinary field of investigation focused on the regeneration of diseased or injured tissues through the delivery of appropriate molecular and mechanical signals. Therefore, bone tissue engineering covers all the attempts to reestablish a normal physiology or to speed up healing of bone in all musculoskeletal disorders and injuries that are lashing modern societies. This article attempts to give a pharmaceutical perspective on the production of engineered man-made bone grafts that are described as implantable tissue engineering therapeutics, and to highlight the importance of understanding bone composition and structure, as well as osteogenesis and bone healing processes, to improve the design and development of such implants. In addition, special emphasis is given to pharmaceutical aspects that are frequently minimized, but that, instead, may be useful for formulation developments and in vitro/in vivo correlations.
Collapse
Affiliation(s)
- Biancamaria Baroli
- Dip. Farmaco Chimico Tecnologico, Università di Cagliari, Via Ospedale, 72, 09124 Cagliari, Italy
| |
Collapse
|
210
|
Spadaccio C, Chello M, Trombetta M, Rainer A, Toyoda Y, Genovese JA. Drug releasing systems in cardiovascular tissue engineering. J Cell Mol Med 2009; 13:422-39. [PMID: 19379142 PMCID: PMC3822506 DOI: 10.1111/j.1582-4934.2008.00532.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Heart disease and atherosclerosis are the leading causes of morbidity and mortality worldwide. The lack of suitable autologous grafts has produced a need for artificial grafts; however, current artificial grafts carry significant limitations, including thrombosis, infection, limited durability and the inability to grow. Tissue engineering of blood vessels, cardiovascular structures and whole organs is a promising approach for creating replacement tissues to repair congenital defects and/or diseased tissues. In an attempt to surmount the shortcomings of artificial grafts, tissue-engineered cardiovascular graft (TECVG), constructs obtained using cultured autologous vascular cells seeded onto a synthetic biodegradable polymer scaffold, have been developed. Autologous TECVGs have the potential advantages of growth, durability, resistance to infection, and freedom from problems of rejection, thrombogenicity and donor scarcity. Moreover polymers engrafted with growth factors, cytokines, drugs have been developed allowing drug-releasing systems capable of focused and localized delivery of molecules depending on the environmental requirements and the milieu in which the scaffold is placed. A broad range of applications for compound-releasing, tissue-engineered grafts have been suggested ranging from drug delivery to gene therapy. This review will describe advances in the development of drug-delivery systems for cardiovascular applications focusing on the manufacturing techniques and on the compounds delivered by these systems to date.
Collapse
Affiliation(s)
- Cristiano Spadaccio
- Cardiac and Molecular Biology Laboratory, Heart, Lung & Esophageal Surgery Institute University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | | | | | | | | | | |
Collapse
|
211
|
Krausgrill B, Vantler M, Burst V, Raths M, Halbach M, Frank K, Schynkowski S, Schenk K, Hescheler J, Rosenkranz S, Müller-Ehmsen J. Influence of Cell Treatment with PDGF-BB and Reperfusion on Cardiac Persistence of Mononuclear and Mesenchymal Bone Marrow Cells after Transplantation into Acute Myocardial Infarction in Rats. Cell Transplant 2009; 18:847-53. [DOI: 10.3727/096368909x471134] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Bone marrow cells are used for cell therapy after myocardial infarction (MI) with promising results. However, cardiac persistence of transplanted cells is rather low. Here, we investigated strategies to increase the survival and cardiac persistence of mononuclear (MNC) and mesenchymal (MSC) bone marrow cells transplanted into infarcted rat hearts. MNC and MSC (male Fischer 344 rats) were treated with different doses of PDGF-BB prior to intramyocardial injection into border zone of MI (syngeneic females, permanent LAD ligation) and hearts were harvested after 5 days and 3 weeks. In additional experiments, untreated MNC and MSC were injected immediately after permanent or temporary LAD ligation and hearts were harvested after 48 h, 5 days, 3 weeks, and 6 weeks. DNA of the hearts was isolated and the number of donor cells was determined by quantitative real-time PCR with Y chromosome-specific primers. There was a remarkable though not statistically significant ( p = 0.08) cell loss of ~46% between 5 days and 3 weeks in the control group, which was completely inhibited by treatment with high dose of PDGF-BB. Forty-eight hours after reperfusion only 10% of injected MSC or 1% for MNC were found in the heart, decreasing to 1% for MSC and 0.5% for MNC after 6 weeks. These numbers were lower than after permanent LAD ligation for both MNC and MSC at all time points studied. Treatment with PDGF-BB seems to prevent loss of transplanted bone marrow cells at later times presumably by inhibition of apoptosis, while reperfusion of the occluded artery enhances cell loss at early times putatively due to enhanced early wash-out. Further investigations are needed to substantially improve the persistence and survival of grafted bone marrow cells in infarcted rat hearts, in order to fully explore the therapeutic potential of this novel treatment modality for myocardial repair.
Collapse
Affiliation(s)
- Benjamin Krausgrill
- Department III of Internal Medicine, University Hospital of Cologne, Köln, Germany
- Institute of Neurophysiology, University Hospital of Cologne, Köln, Germany
| | - Marius Vantler
- Department III of Internal Medicine, University Hospital of Cologne, Köln, Germany
| | - Volker Burst
- Department IV of Internal Medicine, University Hospital of Cologne, Köln, Germany
| | - Martin Raths
- Department III of Internal Medicine, University Hospital of Cologne, Köln, Germany
| | - Marcel Halbach
- Department III of Internal Medicine, University Hospital of Cologne, Köln, Germany
- Institute of Neurophysiology, University Hospital of Cologne, Köln, Germany
| | - Konrad Frank
- Department III of Internal Medicine, University Hospital of Cologne, Köln, Germany
| | - Silke Schynkowski
- Department III of Internal Medicine, University Hospital of Cologne, Köln, Germany
| | - Kerstin Schenk
- Department III of Internal Medicine, University Hospital of Cologne, Köln, Germany
| | - Jürgen Hescheler
- Institute of Neurophysiology, University Hospital of Cologne, Köln, Germany
| | - Stephan Rosenkranz
- Department III of Internal Medicine, University Hospital of Cologne, Köln, Germany
| | - Jochen Müller-Ehmsen
- Department III of Internal Medicine, University Hospital of Cologne, Köln, Germany
| |
Collapse
|
212
|
Chan SSK, Chen JH, Hwang SM, Wang IJ, Li HJ, Lee RT, Hsieh PCH. Salvianolic acid B-vitamin C synergy in cardiac differentiation from embryonic stem cells. Biochem Biophys Res Commun 2009; 387:723-8. [PMID: 19643081 DOI: 10.1016/j.bbrc.2009.07.122] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Accepted: 07/21/2009] [Indexed: 12/23/2022]
Abstract
Inefficient cardiomyocyte differentiation limits the therapeutic use of embryonic stem (ES) cell-derived cardiomyocytes. While large collections of proprietary chemicals had been screened to improve ES cell differentiation into cardiomyocytes, the natural product library remained unexplored. Using a mouse ES cell line transfected with a cardiomyocyte-specific alpha-myosin heavy chain promoter-driven enhanced green fluorescent protein (EGFP) reporter, we screened 24 natural products with known cardioprotective actions. Salvianolic acid B (saB), while produced minimal effect on its own, concentration-dependently synergized with vitamin C in inducing cardiomyocyte differentiation, as demonstrated by an increase in EGFP(+) cells, beating area in embryoid bodies, and expression of cardiomyocyte maturity markers. This synergy is specific to cardiomyocyte differentiation, and is involved with collagen synthesis. The present study demonstrates the saB-vitamin C synergy in inducing ES cell differentiation into matured and functional cardiomyocytes, and this may lead to a practicable cocktail approach to generate ES cell-derived cardiomyocytes for cardiac stem cell therapy.
Collapse
Affiliation(s)
- Sunny Sun-Kin Chan
- Institute of Clinical Medicine and Research Center for Clinical Medicine, National Cheng Kung University & Hospital, Tainan, Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
213
|
Cai L, Johnstone BH, Cook TG, Tan J, Fishbein MC, Chen PS, March KL. IFATS collection: Human adipose tissue-derived stem cells induce angiogenesis and nerve sprouting following myocardial infarction, in conjunction with potent preservation of cardiac function. Stem Cells 2009; 27:230-7. [PMID: 18772313 DOI: 10.1634/stemcells.2008-0273] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The administration of therapeutic cell types, such as stem and progenitor cells, has gained much interest for the limitation or repair of tissue damage caused by a variety of insults. However, it is still uncertain whether the morphological and functional benefits are mediated predominantly via cell differentiation or paracrine mechanisms. Here, we assessed the extent and mechanisms of adipose-derived stromal/stem cells (ASC)-dependent tissue repair in the context of acute myocardial infarction. Human ASCs in saline or saline alone was injected into the peri-infarct region in athymic rats following left anterior descending (LAD) coronary artery ligation. Cardiac function and structure were evaluated by serial echocardiography and histology. ASC-treated rats consistently exhibited better cardiac function, by all measures, than control rats 1 month following LAD occlusion. Left ventricular (LV) ejection fraction and fractional shortening were improved in the ASC group, whereas LV remodeling and dilation were limited in the ASC group compared with the saline control group. Anterior wall thinning was also attenuated by ASC treatment, and post-mortem histological analysis demonstrated reduced fibrosis in ASC-treated hearts, as well as increased peri-infarct density of both arterioles and nerve sprouts. Human ASCs were persistent at 1 month in the peri-infarct region, but they were not observed to exhibit significant cardiomyocyte differentiation. Human ASCs preserve heart function and augment local angiogenesis and cardiac nerve sprouting following myocardial infarction predominantly by the provision of beneficial trophic factors.
Collapse
Affiliation(s)
- Liying Cai
- Indiana Center for Vascular Biology and Medicine, Indiana University School of Medicine, Indianapolis, USA
| | | | | | | | | | | | | |
Collapse
|
214
|
Wang T, Jiang XJ, Lin T, Ren S, Li XY, Zhang XZ, Tang QZ. The inhibition of postinfarct ventricle remodeling without polycythaemia following local sustained intramyocardial delivery of erythropoietin within a supramolecular hydrogel. Biomaterials 2009; 30:4161-7. [PMID: 19539990 DOI: 10.1016/j.biomaterials.2009.04.033] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Accepted: 04/13/2009] [Indexed: 02/01/2023]
Abstract
Erythropoietin (EPO) can protect myocardium from ischemic injury, but it also plays an important role in promoting polycythaemia, the potential for thrombo-embolic complications. Local sustained delivery of bioactive agents directly to impaired tissues using biomaterials is an approach to limit systemic toxicity and improve the efficacy of therapies. The present study was performed to investigate whether local intramyocardial injection of EPO with hydrogel could enhance cardioprotective effect without causing polycythaemia after myocardial infarction (MI). To test the hypothesis, phosphate buffered solution (PBS), alpha-cyclodextrin/MPEG-PCL-MPEG hydrogel, recombined human erythropoietin (rhEPO) in PBS, or rhEPO in hydrogel were injected into the infarcted area immediately after MI in rats. The hydrogel allowed a sustained release of EPO, which inhibited cell apoptosis and increased neovasculature formation, and subsequently reduced infarct size and improved cardiac function compared with other groups. Notably, there was no evidence of polycythaemia from this therapy, with no differences in erythrocyte count and hematocrit compared with the animals received PBS or hydrogel blank injection. In conclusion, intramyocardial delivery of rhEPO with alpha-cyclodextrin/MPEG-PCL-MPEG hydrogel may lead to cardiac performance improvement after MI without apparent adverse effect.
Collapse
Affiliation(s)
- Tao Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China
| | | | | | | | | | | | | |
Collapse
|
215
|
Wong MKK, Jarkowski A. Response to sorafenib after sunitinib-induced acute heart failure in a patient with metastatic renal cell carcinoma: case report and review of the literature. Pharmacotherapy 2009; 29:473-8. [PMID: 19323623 DOI: 10.1592/phco.29.4.473] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Cardiotoxicity is an emerging concern with a new class of drugs known as targeted agents, which include trastuzumab and sunitinib. Sunitinib is a small molecule that inhibits multiple tyrosine kinase receptors. This drug was approved by the United States Food and Drug Administration in 2006 for the treatment of clear cell metastatic renal cell carcinoma and advanced gastrointestinal stromal tumors. We describe a 65-year-old woman who was treated with sunitinib for metastatic clear cell renal cell carcinoma. After 5 months of therapy, she developed acute heart failure requiring hospitalization; sunitinib was immediately discontinued. The patient had classic symptoms of heart failure, including pleural effusion. An echocardiogram revealed a left ventricular ejection fraction of 30%. She received standard treatment for heart failure, including a beta-blocker, an angiotensin-converting enzyme inhibitor, and diuretics. Within 1 month, the patient's symptoms resolved, and subsequent cardiac evaluation showed that her left ventricular ejection fraction returned to normal. According to the Common Terminology Criteria for Adverse Events developed by the National Cancer Institute, her cardiac event associated with sunitinib was defined as grade III toxicity. One month later, sorafenib, another tyrosine kinase inhibitor, was started with the aim of continuing her previous response to sunitinib. After 7 months of sorafenib therapy, the patient had no evidence of heart failure, and her condition was responding to treatment. Clinicians should be aware that sunitinib-induced heart failure occurs occultly and that many--but not all--cases resolve with discontinuation of the drug. Use of sorafenib after sunitinib-induced heart failure appears to be safe and effective, which suggests that cardiotoxicity is not a general class effect of the tyrosine kinase inhibitors.
Collapse
Affiliation(s)
- Michael K K Wong
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, New York 14263, USA
| | | |
Collapse
|
216
|
Fujimoto KL, Ma Z, Nelson DM, Hashizume R, Guan J, Tobita K, Wagner WR. Synthesis, characterization and therapeutic efficacy of a biodegradable, thermoresponsive hydrogel designed for application in chronic infarcted myocardium. Biomaterials 2009; 30:4357-68. [PMID: 19487021 DOI: 10.1016/j.biomaterials.2009.04.055] [Citation(s) in RCA: 172] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Accepted: 04/29/2009] [Indexed: 01/21/2023]
Abstract
Injection of a bulking material into the ventricular wall has been proposed as a therapy to prevent progressive adverse remodeling due to high wall stresses that develop after myocardial infarction. Our objective was to design, synthesize and characterize a biodegradable, thermoresponsive hydrogel for this application based on copolymerization of N-isopropylacrylamide (NIPAAm), acrylic acid (AAc) and hydroxyethyl methacrylate-poly(trimethylene carbonate) (HEMAPTMC). By evaluating a range of monomer ratios, poly(NIPAAm-co-AAc-co-HEMAPTMC) at a feed ratio of 86/4/10 was shown to be ideal since it formed a hydrogel at 37 degrees C, and gradually became soluble over a 5 month period in vitro through hydrolytic cleavage of the PTMC residues. HEMAPTMC, copolymer and degradation product chemical structures were verified by NMR. No degradation product cytotoxicity was observed in vitro. In a rat chronic infarction model, the infarcted left ventricular (LV) wall was injected with the hydrogel or phosphate buffered saline (PBS). In the PBS group, LV cavity area increased and contractility decreased at 8 wk (p<0.05 versus pre-injection), while in the hydrogel group both parameters were preserved during this period. Tissue ingrowth was observed in the hydrogel injected area and a thicker LV wall and higher capillary density were found for the hydrogel versus PBS group. Smooth muscle cells with contractile phenotype were also identified in the hydrogel injected LV wall. The designed poly(NIPAAm-co-AAc-co-HEMAPTMC) hydrogel of this report may thus offer an attractive biomaterial-centered treatment option for ischemic cardiomyopathy.
Collapse
Affiliation(s)
- Kazuro L Fujimoto
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | | | | | | | | | | | | |
Collapse
|
217
|
Cardiovascular toxicities: clues to optimal administration of vascular endothelial growth factor signaling pathway inhibitors. Target Oncol 2009; 4:67-76. [PMID: 19373440 DOI: 10.1007/s11523-009-0106-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Accepted: 03/25/2009] [Indexed: 01/07/2023]
Abstract
Several angiogenesis inhibitors have been approved for commercial use and many additional agents are under development for the treatment of various malignancies. Cardiovascular toxicities have been increasingly recognized as effects of this entire class of new anticancer therapeutics. There is a limited but growing understanding of the mechanism of action of these drugs in the human cancer patient and the factors affecting the therapeutic index. In addition to reviewing current concepts for the cardiovascular toxicities of angiogenesis inhibitors, we discuss how better understanding the pharmacologic basis for these effects could optimize their use for individual patients.
Collapse
|
218
|
Branco MC, Schneider JP. Self-assembling materials for therapeutic delivery. Acta Biomater 2009; 5:817-31. [PMID: 19010748 PMCID: PMC2729065 DOI: 10.1016/j.actbio.2008.09.018] [Citation(s) in RCA: 326] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Revised: 09/06/2008] [Accepted: 09/23/2008] [Indexed: 01/18/2023]
Abstract
A growing number of medications must be administered through parenteral delivery, i.e., intravenous, intramuscular, or subcutaneous injection, to ensure effectiveness of the therapeutic. For some therapeutics, the use of delivery vehicles in conjunction with this delivery mechanism can improve drug efficacy and patient compliance. Macromolecular self-assembly has been exploited recently to engineer materials for the encapsulation and controlled delivery of therapeutics. Self-assembled materials offer the advantages of conventional crosslinked materials normally used for release, but also provide the ability to tailor specific bulk material properties, such as release profiles, at the molecular level via monomer design. As a result, the design of materials from the "bottom up" approach has generated a variety of supramolecular devices for biomedical applications. This review provides an overview of self-assembling molecules, their resultant structures, and their use in therapeutic delivery. It highlights the current progress in the design of polymer- and peptide-based self-assembled materials.
Collapse
Affiliation(s)
- Monica C. Branco
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
- Department of Chemical Engineering, University of Delaware, Newark, DE 19716, USA
| | - Joel P. Schneider
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
219
|
Retrospective Analysis of the Safety and Efficacy of Interleukin-2 After Prior VEGF-targeted Therapy in Patients With Advanced Renal Cell Carcinoma. J Immunother 2009; 32:181-5. [DOI: 10.1097/cji.0b013e3181952b1d] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
220
|
Dubois G, Segers VFM, Bellamy V, Sabbah L, Peyrard S, Bruneval P, Hagège AA, Lee RT, Menasché P. Self-assembling peptide nanofibers and skeletal myoblast transplantation in infarcted myocardium. J Biomed Mater Res B Appl Biomater 2008; 87:222-8. [PMID: 18386833 DOI: 10.1002/jbm.b.31099] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Cell transplantation is currently limited by poor graft retention and survival in the postinfarction scar. Because this issue could potentially be addressed by embedding cells in bioinjectable scaffolds and boosting cell survival pathways, we induced a myocardial infarction in 72 rats to assess the effects of different self-assembling peptides with or without platelet-derived growth factor (PDGF-BB) on survival of transplanted skeletal myoblasts. Two weeks after coronary artery ligation, rats were randomized to receive in-scar injections of culture medium (controls, n = 11), self-assembling peptide (RAD16-I) nanofibers (NF, n = 9), skeletal myoblasts (n = 12), or skeletal myoblasts in combination with NF (n = 8). In separate experiments with different self-assembling peptides (RAD16-II), rats received in-scar injections of culture medium (controls, n = 6), skeletal myoblasts (n = 10), PDGF-loaded peptides (n = 7), or skeletal myoblasts (5 x 10(6)) in combination with PDGF-loaded peptides (n = 9). After 1 month, left ventricular function, as assessed by echocardiography, was not improved in either of the experimental groups compared with controls. This correlated with the failure of RAD16-I peptides or PDGF-loaded RAD16-II peptides to improve myoblast survival despite a greater angiogenesis. In vitro experiments confirmed that the number of myoblasts decreased over time when seeded on nanofiber gels. These data suggest that the optimal use of biomaterial scaffolds for survival of transplanted cells will require specific tailoring of the biomaterial to the cell type.
Collapse
Affiliation(s)
- Gilbert Dubois
- Assistance Publique-Hôpitaux de Paris, Ecole de Chirurgie, Paris 75005, France
| | | | | | | | | | | | | | | | | |
Collapse
|
221
|
Tsoporis JN, Izhar S, Parker TG. Expression of S100A6 in cardiac myocytes limits apoptosis induced by tumor necrosis factor-alpha. J Biol Chem 2008; 283:30174-83. [PMID: 18753141 PMCID: PMC2662078 DOI: 10.1074/jbc.m805318200] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Indexed: 01/15/2023] Open
Abstract
S100A6 is induced in myocardium post-infarction in vivo and in response to growth factors and inflammatory cytokines in vitro. Forced expression of S100A6 in cardiomyocytes inhibits regulation of cardiac specific gene expression in response to trophic stimulation. To define regulation and function of S100A6, we characterized the human S100A6 promoter and mapped upstream regulatory elements in rat neonatal cardiac myocytes, fibroblasts, and vascular smooth muscle cells and defined a functional role for S100A6 in tumor necrosis factor-alpha-induced myocyte apoptosis. The functional S100A6 promoter was localized to region -167/+134 containing 167 upstream base pairs. The S100A6 promoter is regulated by positive (-361/-167 and -588/-361) and negative (-1371/-1194) elements. Tumor necrosis factor-alpha induced the maximal S100A6 promoter and transcription factor NF-kappaB (p65 subunit). Electrophoretic mobility shift showed that tumor necrosis factor-alpha induced p65 binding to a potential NF-kappaB-binding site at -460/-451. Chromatin immunoprecipitation analysis revealed p65 is recruited to the S100A6 promoter upon tumor necrosis factor-alpha stimulation. The NF-kappaB inhibitor caffeic acid phenethyl ester and mutation of the NF-kappaB-binding site inhibited S100A6 promoter activation by tumor necrosis factor-alpha. Tumor necrosis factor-alpha induced cardiac myocyte apoptosis. Specific inhibition of S100A6 using a small interfering RNA directed against S100A6 potentiated tumor necrosis factor-alpha-induced myocyte apoptosis, whereas overexpression of S100A6 by gene transfer prevented tumor necrosis factor-alpha-induced myocyte apoptosis by interfering with p53 phosphorylation. These results demonstrate that S100A6 is induced by tumor necrosis factor-alpha via an NF-kappaB-dependent mechanism, serving a role in homeostasis to limit tumor necrosis factor-alpha-induced apoptosis by regulating p53 phosphorylation.
Collapse
Affiliation(s)
- James N Tsoporis
- Division of Cardiology, Department of Medicine, Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, University of Toronto, Toronto, Ontario M5B 1W8, Canada
| | | | | |
Collapse
|
222
|
Khakoo AY, Kassiotis CM, Tannir N, Plana JC, Halushka M, Bickford C, Trent J, Champion JC, Durand JB, Lenihan DJ. Heart failure associated with sunitinib malate: a multitargeted receptor tyrosine kinase inhibitor. Cancer 2008; 112:2500-8. [PMID: 18386829 DOI: 10.1002/cncr.23460] [Citation(s) in RCA: 196] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Sunitinib malate is a novel multitargeted receptor tyrosine kinase inhibitor with established efficacy in the treatment of metastatic renal cell carcinoma and imatinib-resistant gastrointestinal stromal tumor. This report describes the development of heart failure in cancer patients who received this novel agent. METHODS A retrospective study was conducted at M. D. Anderson Cancer Center during a 1-year period on patients who received sunitinib and developed heart failure. RESULTS During 2006, 6 of 224 (2.7%) patients who received sunitinib developed heart failure (HF) that resulted in substantial morbidity and, in some cases, mortality. Symptomatic heart failure occurred soon after initiation of sunitinib (mean onset 22 days after initiation), was associated with decline in cardiac function and elevations in blood pressure, and was not completely reversible in most patients, even after termination of sunitinib therapy. CONCLUSIONS These observations suggested that sunitinib-associated heart failure may represent a potentially serious toxicity and underscore the need for careful monitoring of cardiac function and aggressive control of hypertension in these patients. Studies to elucidate potential mechanisms of heart failure and left ventricular dysfunction resulting from treatment with sunitinib are necessary to develop strategies for prevention and treatment of this complication.
Collapse
Affiliation(s)
- Aarif Y Khakoo
- Department of Cardiology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
223
|
Chen MH, Kerkelä R, Force T. Mechanisms of cardiac dysfunction associated with tyrosine kinase inhibitor cancer therapeutics. Circulation 2008; 118:84-95. [PMID: 18591451 DOI: 10.1161/circulationaha.108.776831] [Citation(s) in RCA: 259] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Ming Hui Chen
- Cardiology Department, Children's Hospital Boston, Boston, Mass., USA
| | | | | |
Collapse
|
224
|
Force T, Kerkelä R. Cardiotoxicity of the new cancer therapeutics--mechanisms of, and approaches to, the problem. Drug Discov Today 2008; 13:778-84. [PMID: 18617014 PMCID: PMC2735339 DOI: 10.1016/j.drudis.2008.05.011] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 05/20/2008] [Accepted: 05/28/2008] [Indexed: 01/28/2023]
Abstract
Cardiotoxicity of some targeted therapeutics, including monoclonal antibodies and small-molecule inhibitors, is a reality. Herein we will examine why it occurs, focusing on molecular mechanisms to better understand the issue. We will also examine how big the problem is and, more importantly, how big it may become in the future. We will review models for detecting cardiotoxicity in the preclinical phase. We will also focus on two key areas that drive cardiotoxicity: multitargeting and the inherent lack of selectivity of ATP-competitive antagonists. Finally, we will examine the issue of reversibility and discuss possible approaches to keeping patients on therapy.
Collapse
Affiliation(s)
- Thomas Force
- Center for Translational Medicine, Jefferson Medical College, 1025 Walnut Street, Philadelphia, PA 19107, USA.
| | | |
Collapse
|
225
|
Yao YY, Yin H, Shen B, Smith RS, Liu Y, Gao L, Chao L, Chao J. Tissue kallikrein promotes neovascularization and improves cardiac function by the Akt-glycogen synthase kinase-3beta pathway. Cardiovasc Res 2008; 80:354-64. [PMID: 18689794 DOI: 10.1093/cvr/cvn223] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
AIMS We investigated the role of the Akt-glycogen synthase kinase (GSK)-3beta signalling pathway in mediating the protective effects of tissue kallikrein on myocardial injury by promoting angiogenesis and blood flow in rats after myocardial infarction (MI). METHODS AND RESULTS Human tissue kallikrein gene in an adenoviral vector, with or without co-administration of dominant-negative Akt (Ad.DN-Akt) or constitutively active GSK-3beta (Ad.GSK-3betaS9A), was injected into rat myocardium after MI. The expression of recombinant human kallikrein in rat heart significantly improved cardiac function and reduced infarct size 10 days after gene delivery. Kallikrein administration significantly increased myocardial blood flow as well as capillary and arteriole densities in the infarcted myocardium. Kallikrein increased cardiac Akt and GSK-3beta phosphorylation in conjunction with decreased GSK-3beta activity and the upregulation of vascular endothelial growth factor (VEGF) and VEGF receptor-2 (VEGFR-2). All of kallikrein's effects on the myocardium were abrogated by Ad.DN-Akt and Ad.GSK-3betaS9A. Moreover, in cultured human aortic endothelial cells, tissue kallikrein stimulated capillary tube formation and promoted cell migration; however, these effects were blocked by Ad.DN-Akt, Ad.GSK-3betaS9A, icatibant (a kinin B2 receptor antagonist), Tki (a VEGF receptor tyrosine kinase inhibitor), and a neutralizing VEGF antibody. In addition, tissue kallikrein decreased GSK-3beta activity via the phosphatidylinositol 3-kinase-Akt pathway and enhanced VEGF and VEGFR-2 expression in endothelial cells. CONCLUSION These data provide the first direct evidence that tissue kallikrein protects against acute-phase MI by promoting neovascularization, restoring regional blood flow and improving cardiac function through the kinin B2 receptor-Akt-GSK-3beta and VEGF signalling pathways.
Collapse
Affiliation(s)
- Yu-Yu Yao
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210029, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
226
|
Ruvinov E, Dvir T, Leor J, Cohen S. Myocardial repair: from salvage to tissue reconstruction. Expert Rev Cardiovasc Ther 2008; 6:669-86. [PMID: 18510484 DOI: 10.1586/14779072.6.5.669] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cardiac tissue reconstruction following myocardial infarction represents a major challenge in cardiovascular therapy, as current clinical approaches are limited in their ability to regenerate or replace damaged myocardium. Thus, different novel treatments have been introduced aimed at myocardial salvage and repair. Here, we present a review of recent advancements in cardiac cell, gene-based and tissue engineering therapies. Selected strategies in cell therapy and new tools for myocardial gene transfer are summarized. Finally, we consider novel approaches to myocardial tissue engineering as a platform for the integration of various modalities in an attempt to rejuvenate infarcted tissue in vivo.
Collapse
Affiliation(s)
- Emil Ruvinov
- Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
| | | | | | | |
Collapse
|
227
|
Fung SY, Yang H, Chen P. Sequence effect of self-assembling peptides on the complexation and in vitro delivery of the hydrophobic anticancer drug ellipticine. PLoS One 2008; 3:e1956. [PMID: 18398476 PMCID: PMC2276859 DOI: 10.1371/journal.pone.0001956] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2007] [Accepted: 02/27/2008] [Indexed: 11/29/2022] Open
Abstract
A special class of self-assembling peptides has been found to be capable of stabilizing the hydrophobic anticancer agent ellipticine in aqueous solution. Here we study the effect of peptide sequence on the complex formation and its anticancer activity in vitro. Three peptides, EAK16-II, EAK16-IV and EFK16-II, were selected to have either a different charge distribution (EAK16-II vs. EAK16-IV) or a varying hydrophobicity (EAK16-II vs. EFK16-II). Results on their complexation with ellipticine revealed that EAK16-II and EAK16-IV were able to stabilize protonated ellipticine or ellipticine microcrystals depending on the peptide concentration; EFK16-II could stabilize neutral ellipticine molecules and ellipticine microcrystals. These different molecular states of ellipticine were expected to affect ellipticine delivery. The anticancer activity of these complexes was tested against two cancer cell lines: A549 and MCF-7, and related to the cell viability. The viability results showed that the complexes with protonated ellipticine were effective in eradicating both cancer cells (viability <0.05), but their dilutions in water were not stable, leading to a fast decrease in their toxicity. In contrast, the complexes formulated with EFK16-II were relatively stable upon dilution, but their original toxicity was relatively low compared to that with protonated ellipticine. Overall, the charge distribution of the peptides seemed not to affect the complex formation and its therapeutic efficacy in vitro; however, the increase in hydrophobicity of the peptides significantly altered the state of stabilized ellipticine and increased the stability of the complexes. This work provides essential information for peptide sequence design in the development of self-assembling peptide-based delivery of hydrophobic anticancer drugs.
Collapse
Affiliation(s)
- Shan Yu Fung
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Hong Yang
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - P. Chen
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
228
|
Levkau B, Schäfers M, Wohlschlaeger J, von Wnuck Lipinski K, Keul P, Hermann S, Kawaguchi N, Kirchhof P, Fabritz L, Stypmann J, Stegger L, Flögel U, Schrader J, Fischer JW, Fischer J, Hsieh P, Ou YL, Mehrhof F, Tiemann K, Ghanem A, Matus M, Neumann J, Heusch G, Schmid KW, Conway EM, Baba HA. Survivin determines cardiac function by controlling total cardiomyocyte number. Circulation 2008; 117:1583-93. [PMID: 18332262 DOI: 10.1161/circulationaha.107.734160] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Survivin inhibits apoptosis and regulates cell division in many organs, but its function in the heart is unknown. METHODS AND RESULTS We show that cardiac-specific deletion of survivin resulted in premature cardiac death. The underlying cause was a dramatic reduction in total cardiomyocyte numbers as determined by a stereological method for quantification of cells per organ. The resulting increased hemodynamic load per cell led to progressive heart failure as assessed by echocardiography, magnetic resonance imaging, positron emission tomography, and invasive catheterization. The reduction in total cardiomyocyte number in alpha-myosin heavy chain (MHC)-survivin(-/-) mice was due to an approximately 50% lower mitotic rate without increased apoptosis. This occurred at the expense of DNA accumulation because survivin-deficient cardiomyocytes displayed marked DNA polyploidy indicative of consecutive rounds of DNA replication without cell division. Survivin small interfering RNA knockdown in neonatal rat cardiomyocytes also led to polyploidization and cell cycle arrest without apoptosis. Adenoviral overexpression of survivin in cardiomyocytes inhibited doxorubicin-induced apoptosis, induced DNA synthesis, and promoted cell cycle progression. The phenotype of the alphaMHC-survivin(-/-) mice also allowed us to determine the minimum cardiomyocyte number sufficient for normal cardiac function. In human cardiomyopathy, survivin was potently induced in the failing heart and downregulated again after hemodynamic support by a left ventricular assist device. Its expression positively correlated with the mean cardiomyocyte DNA content. CONCLUSIONS We suggest that the ontogenetically determined cardiomyocyte number may be an independent factor in the susceptibility to cardiac diseases. Through its profound impact on both cardiomyocyte replication and apoptosis, survivin may emerge as a promising new target for myocardial regeneration.
Collapse
Affiliation(s)
- Bodo Levkau
- Institut für Pathophysiologie, Universitätsklinikum Essen, Essen Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
229
|
Jin Q, Wei G, Lin Z, Sugai JV, Lynch SE, Ma PX, Giannobile WV. Nanofibrous scaffolds incorporating PDGF-BB microspheres induce chemokine expression and tissue neogenesis in vivo. PLoS One 2008; 3:e1729. [PMID: 18320048 PMCID: PMC2248711 DOI: 10.1371/journal.pone.0001729] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Accepted: 01/24/2008] [Indexed: 11/19/2022] Open
Abstract
Platelet-derived growth factor (PDGF) exerts multiple cellular effects that stimulate wound repair in multiple tissues. However, a major obstacle for its successful clinical application is the delivery system, which ultimately controls the in vivo release rate of PDGF. Polylactic-co-glycolic acid (PLGA) microspheres (MS) in nanofibrous scaffolds (NFS) have been shown to control the release of rhPDGF-BB in vitro. In order to investigate the effects of rhPDGF-BB release from MS in NFS on gene expression and enhancement of soft tissue engineering, rhPDGF-BB was incorporated into differing molecular weight (MW) polymeric MS. By controlling the MW of the MS over a range of 6.5 KDa–64 KDa, release rates of PDGF can be regulated over periods of weeks to months in vitro. The NFS-MS scaffolds were divided into multiple groups based on MS release characteristics and PDGF concentration ranging from 2.5–25.0 µg and evaluated in vivo in a soft tissue wound repair model in the dorsa of rats. At 3, 7, 14 and 21 days post-implantation, the scaffold implants were harvested followed by assessments of cell penetration, vasculogenesis and tissue neogenesis. Gene expression profiles using cDNA microarrays were performed on the PDGF-releasing NFS. The percentage of tissue invasion into MS-containing NFS at 7 days was higher in the PDGF groups when compared to controls. Blood vessel number in the HMW groups containing either 2.5 or 25 µg PDGF was increased above those of other groups at 7d (p<0.01). Results from cDNA array showed that PDGF strongly enhanced in vivo gene expression of the CXC chemokine family members such as CXCL1, CXCL2 and CXCL5. Thus, sustained release of rhPDGF-BB, controlled by slow-releasing MS associated with the NFS delivery system, enhanced cell migration and angiogenesis in vivo, and may be related to an induced expression of chemokine-related genes. This approach offers a technology to accurately control growth factor release to promote soft tissue engineering in vivo.
Collapse
Affiliation(s)
- Qiming Jin
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Guobao Wei
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Zhao Lin
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan, United States of America
| | - James V. Sugai
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Samuel E. Lynch
- Biomimetic Therapeutics, Inc., Franklin, Tennessee, United States of America
| | - Peter X. Ma
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Biologic and Material Sciences, School of Dentistry, University of Michigan, Ann Arbor, Michigan, United States of America
| | - William V. Giannobile
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan, United States of America
- Michigan Center for Oral Health Research, School of Dentistry, University of Michigan, Ann Arbor, Michigan, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
230
|
Landa N, Miller L, Feinberg MS, Holbova R, Shachar M, Freeman I, Cohen S, Leor J. Effect of injectable alginate implant on cardiac remodeling and function after recent and old infarcts in rat. Circulation 2008; 117:1388-96. [PMID: 18316487 DOI: 10.1161/circulationaha.107.727420] [Citation(s) in RCA: 295] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Adverse cardiac remodeling and progression of heart failure after myocardial infarction are associated with excessive and continuous damage to the extracellular matrix. We hypothesized that injection of in situ-forming alginate hydrogel into recent and old infarcts would provide a temporary scaffold and attenuate adverse cardiac remodeling and dysfunction. METHODS AND RESULTS We developed a novel absorbable biomaterial composed of calcium-crosslinked alginate solution, which displays low viscosity and, after injection into the infarct, undergoes phase transition into hydrogel. To determine the outcome of the biomaterial after injection, calcium-crosslinked biotin-labeled alginate was injected into the infarct 7 days after anterior myocardial infarction in rat. Serial histology studies showed in situ formation of alginate hydrogel implant, which occupied up to 50% of the scar area. The biomaterial was replaced by connective tissue within 6 weeks. Serial echocardiography studies before and 60 days after injection showed that injection of alginate biomaterial into recent (7 days) infarct increased scar thickness and attenuated left ventricular systolic and diastolic dilatation and dysfunction. These beneficial effects were comparable and sometimes superior to those achieved by neonatal cardiomyocyte transplantation. Moreover, injection of alginate biomaterial into old myocardial infarction (60 days) increased scar thickness and improved systolic and diastolic dysfunction. CONCLUSIONS We show for the first time that injection of in situ-forming, bioabsorbable alginate hydrogel is an effective acellular strategy that prevents adverse cardiac remodeling and dysfunction in recent and old myocardial infarctions in rat.
Collapse
Affiliation(s)
- Natali Landa
- Neufeld Cardiac Research Institute, Sheba Medical Center, Tel-Aviv University, Tel-Hashomer 52621, Israel
| | | | | | | | | | | | | | | |
Collapse
|
231
|
Jawad H, Ali NN, Lyon AR, Chen QZ, Harding SE, Boccaccini AR. Myocardial tissue engineering: a review. J Tissue Eng Regen Med 2008; 1:327-42. [PMID: 18038427 DOI: 10.1002/term.46] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Myocardial tissue engineering, a concept that intends to overcome the obstacles to prolonging patients' life after myocardial infarction, is continuously improving. It comprises a biomaterial based 'vehicle', either a porous scaffold or dense patch, made of either natural or synthetic polymeric materials, to aid transportation of cells into the diseased region in the heart. Many different cell types have been suggested for cell therapy and myocardial tissue engineering. These include both autologous and embryonic stem cells, both having their advantages and disadvantages. Biomaterials suggested for this specific tissue-engineering application need to be biocompatible with the cardiac cells and have particular mechanical properties matching those of native myocardium, so that the delivered donor cells integrate and remain intact in vivo. Although much research is being carried out, many questions still remain unanswered requiring further research efforts. In this review, we discuss the various approaches reported in the field of myocardial tissue engineering, focusing on the achievements of combining biomaterials and cells by various techniques to repair the infarcted region, also providing an insight on clinical trials and possible cell sources in cell therapy. Alternative suggestions to myocardial tissue engineering, in situ engineering and left ventricular devices are also discussed.
Collapse
Affiliation(s)
- H Jawad
- Department of Materials, Imperial College London, Prince Consort Road, London SW7 2BP, UK
| | | | | | | | | | | |
Collapse
|
232
|
Cheng M, Park H, Engelmayr GC, Moretti M, Freed LE. Effects of regulatory factors on engineered cardiac tissue in vitro. ACTA ACUST UNITED AC 2008; 13:2709-19. [PMID: 17708718 DOI: 10.1089/ten.2006.0414] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We tested the hypothesis that supplemental regulatory factors can improve the contractile properties and viability of cardiac tissue constructs cultured in vitro. Neonatal rat heart cells were cultured on porous collagen sponges for up to 8 days in basal medium or medium supplemented with insulin-like growth factor-I (IGF), insulin-transferrin-selenium (ITS), platelet-derived growth factor-BB (PDGF), or angiopoietin-1 (ANG). IGF and ITS enhanced contractile properties of the 8-day constructs significantly more than with unsupplemented controls according to contractile amplitude and excitation threshold, and IGF also significantly increased the amount of cardiac troponin-I and enhanced cell viability according to different assays (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), lactate dehydrogenase (LDH), and terminal deoxynucleotidyl transferase biotin-2'-deoxyuridine 5'-triphosphate nick end labeling (TUNEL)). PDGF significantly increased the contractile amplitude of 4-day constructs and enhanced cell viability according to MTT, LDH, and TUNEL; ANG enhanced cell viability according to the LDH assay. Our results demonstrate that supplemental regulatory molecules can differentially enhance properties of cardiac tissue constructs and imply that these constructs can provide a platform for systematic in vitro studies of the effects of complex stimuli that occur in vivo to improve our basic understanding of cardiogenesis and identify underlying mechanisms that can potentially be exploited to enhance myocardial regeneration.
Collapse
Affiliation(s)
- Mingyu Cheng
- Harvard-MIT Division of Health Sciences & Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | |
Collapse
|
233
|
Law B, Tung CH. Structural Modification of Protease Inducible Preprogrammed Nanofiber Precursor. Biomacromolecules 2008; 9:421-5. [DOI: 10.1021/bm7012026] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Benedict Law
- Center for Molecular Imaging Research, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129
| | - Ching-Hsuan Tung
- Center for Molecular Imaging Research, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129
| |
Collapse
|
234
|
Jain KK. Nanomedicine: application of nanobiotechnology in medical practice. Med Princ Pract 2008; 17:89-101. [PMID: 18287791 DOI: 10.1159/000112961] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Accepted: 09/16/2007] [Indexed: 01/06/2023] Open
Abstract
Nanomedicine is the application of nanobiotechnologies to medicine. This article starts with the basics of nanobiotechnology, followed by its applications in molecular diagnostics, nanodiagnostics, and improvements in the discovery, design and delivery of drugs, including nanopharmaceuticals. It will improve biological therapies such as vaccination, cell therapy and gene therapy. Nanobiotechnology forms the basis of many new devices being developed for medicine and surgery such as nanorobots. It has applications in practically every branch of medicine and examples are presented of those concerning cancer (nanooncology), neurological disorders (nanoneurology), cardiovascular disorders (nanocardiology), diseases of bones and joints (nanoorthopedics), diseases of the eye (nanoophthalmology), and infectious diseases. Safety issues of in vivo use of nanomaterials are also discussed. Nanobiotechnology will facilitate the integration of diagnostics with therapeutics and facilitate the development of personalized medicine, i.e. prescription of specific therapeutics best suited for an individual. Many of the developments have already started and within a decade a definite impact will be felt in the practice of medicine.
Collapse
Affiliation(s)
- K K Jain
- PharmaBiotech, Basel, Switzerland.
| |
Collapse
|
235
|
Collier JH. Modular self-assembling biomaterials for directing cellular responses. SOFT MATTER 2008; 4:2310-2315. [PMID: 20198120 PMCID: PMC2829887 DOI: 10.1039/b805563g] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Self-assembling biomaterials are promising as cell-interactive matrices because they can be constructed in a modular fashion, which enables the independent and simultaneous tuning of several of their physicochemical and biological properties. Such modularity facilitates the optimization of multi-component matrices for use in complex biological environments such as 3-D cell culture or scaffolds for regenerative medicine. This Highlight will discuss recent strategies for producing modular self-assembling biomaterials, with a particular focus on how ligand presentation and matrix mechanics can be controlled in modular ways. In addition, it will discuss key hurdles that remain for employing these materials as cell-interactive scaffolds in biomedical applications, particularly those that relate to how they may interface with the immune system.
Collapse
Affiliation(s)
- Joel H Collier
- Joel H. Collier, Ph.D., Assistant Professor, Department of Surgery and Committee on Molecular Medicine, University of Chicago, 5841 S. Maryland Ave, Abbott Hall AB522, Chicago, IL 60637 USA,
| |
Collapse
|
236
|
Abstracts of the 5th International Meeting on Intensive Cardiac Care, October 14-16, 2007, Tel Aviv, Israel. ACTA ACUST UNITED AC 2007; 9:134-74. [PMID: 17917844 DOI: 10.1080/17482940701649731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
237
|
Wang CC, Chen CH, Lin WW, Hwang SM, Hsieh PC, Lai PH, Yeh YC, Chang Y, Sung HW. Direct intramyocardial injection of mesenchymal stem cell sheet fragments improves cardiac functions after infarction. Cardiovasc Res 2007; 77:515-24. [DOI: 10.1093/cvr/cvm046] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
238
|
Buxton DB. Nanotechnology in the diagnosis and management of heart, lung and blood diseases. Expert Rev Mol Diagn 2007; 7:149-60. [PMID: 17331063 DOI: 10.1586/14737159.7.2.149] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Heart, lung and blood diseases exert an enormous toll, accounting for almost half of the deaths in the USA each year. In addition to the morbidity and mortality resulting from these diseases, there is also a high economic burden, estimated at 560 billion US dollars for 2006. Nanotechnology offers a broad range of opportunities to improve diagnosis and therapy for cardiovascular, pulmonary and hematopoietic diseases, thereby decreasing these burdens. This review will focus on four areas of particular promise for the application of nanotechnology: imaging, diagnostics and biosensors, drug delivery and therapy, and tissue engineering and repair. The goal is to summarize the current state of science and technology in these areas and to look at future directions that the field is likely to move in to enhance the diagnosis and treatment of heart, lung and blood diseases.
Collapse
Affiliation(s)
- Denis B Buxton
- National Heart, Lung, & Blood Institute, Advanced Technologies & Surgery Branch, Division of Cardiovascular Diseases, Bethesda, MD 20892, USA.
| |
Collapse
|
239
|
Hsieh PCH, Segers VFM, Davis ME, MacGillivray C, Gannon J, Molkentin JD, Robbins J, Lee RT. Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury. Nat Med 2007; 13:970-4. [PMID: 17660827 PMCID: PMC2754571 DOI: 10.1038/nm1618] [Citation(s) in RCA: 628] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2007] [Accepted: 06/11/2007] [Indexed: 11/09/2022]
Abstract
An emerging concept is that the mammalian myocardium has the potential to regenerate, but that regeneration might be too inefficient to repair the extensive myocardial injury that is typical of human disease. However, the degree to which stem cells or precursor cells contribute to the renewal of adult mammalian cardiomyocytes remains controversial. Here we report evidence that stem cells or precursor cells contribute to the replacement of adult mammalian cardiomyocytes after injury but do not contribute significantly to cardiomyocyte renewal during normal aging. We generated double-transgenic mice to track the fate of adult cardiomyocytes in a 'pulse-chase' fashion: after a 4-OH-tamoxifen pulse, green fluorescent protein (GFP) expression was induced only in cardiomyocytes, with 82.7% of cardiomyocytes expressing GFP. During normal aging up to one year, the percentage of GFP+ cardiomyocytes remained unchanged, indicating that stem or precursor cells did not refresh uninjured cardiomyocytes at a significant rate during this period of time. By contrast, after myocardial infarction or pressure overload, the percentage of GFP+ cardiomyocytes decreased from 82.8% in heart tissue from sham-treated mice to 67.5% in areas bordering a myocardial infarction, 76.6% in areas away from a myocardial infarction, and 75.7% in hearts subjected to pressure overload, indicating that stem cells or precursor cells had refreshed the cardiomyocytes.
Collapse
Affiliation(s)
- Patrick C H Hsieh
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | | | | | |
Collapse
|
240
|
Menasché P. [Cellular therapy in cardiology]. C R Biol 2007; 330:550-6. [PMID: 17631452 DOI: 10.1016/j.crvi.2007.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Revised: 05/03/2007] [Accepted: 05/04/2007] [Indexed: 01/16/2023]
Abstract
Cardiac cell therapy has been initially designed to regenerate the infarcted myocardium through its repopulation by new cells able to restore function of scar areas. Six years after the first human application of this novel approach, it is timely appropriate to review the results of the first randomised trials in the three major indications, i.e., acute myocardial infarction, heart failure, and refractory angina. It should be recognized that the results are mixed, with benefits ranging from absent to transient and, at most, marginal. However, lessons drawn from this first wave of clinical series and the experimental data that have been concomitantly collected are multiple and highly informative. They indicate that adult stem cells, whether muscular or bone marrow-derived, fail to generate new cardiomyocytes. They suggest that the potential benefits of cardiac cell therapy are thus mediated by alternate mechanisms such as limitation of left ventricular remodelling or paracrine activation of signalling pathways involved in angiogenesis. They highlight the fact that the therapeutic benefits of grafted cells will not be fully exploited until issues of cell transfer and postengraftment survival have not been adequately addressed. These observations thus allow us to better fine-tune upcoming research, which should specifically concentrate on the development of cells featuring a true regeneration potential. In this setting, the greatest promises are currently held by embryonic stem cells.
Collapse
Affiliation(s)
- Philippe Menasché
- Département de chirurgie cardiovasculaire, hôpital européen Georges-Pompidou, Assistance publique-Hôpitaux de Paris, université Paris-5, Inserm U633, 20, rue Leblanc, 75908 Paris cedex 15, France.
| |
Collapse
|
241
|
Moioli EK, Clark PA, Xin X, Lal S, Mao JJ. Matrices and scaffolds for drug delivery in dental, oral and craniofacial tissue engineering. Adv Drug Deliv Rev 2007; 59:308-24. [PMID: 17499385 PMCID: PMC4035021 DOI: 10.1016/j.addr.2007.03.019] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Accepted: 03/28/2007] [Indexed: 12/13/2022]
Abstract
Current treatments for diseases and trauma of dental, oral and craniofacial (DOC) structures rely on durable materials such as amalgam and synthetic materials, or autologous tissue grafts. A paradigm shift has taken place to utilize tissue engineering and drug delivery approaches towards the regeneration of these structures. Several prototypes of DOC structures have been regenerated such as temporomandibular joint (TMJ) condyle, cranial sutures, tooth structures and periodontium components. However, many challenges remain when taking in consideration the high demand for esthetics of DOC structures, the complex environment and yet minimal scar formation in the oral cavity, and the need for accommodating multiple tissue phenotypes. This review highlights recent advances in the regeneration of DOC structures, including the tooth, periodontium, TMJ, cranial sutures and implant dentistry, with specific emphasis on controlled release of signaling cues for stem cells, biomaterial matrices and scaffolds, and integrated tissue engineering approaches.
Collapse
Affiliation(s)
- Eduardo K. Moioli
- Columbia University, Tissue Engineering and Regenerative Medicine Laboratory (TERML), College of Dental Medicine, Fu Foundation School of Engineering and Applied Sciences, Department of Biomedical Engineering, 630 W. 168 St. — PH7 East, New York, NY 10032, USA
| | - Paul A. Clark
- University of Wisconsin — Madison, UW-Hospitals and Clinics, Department of Neurological Surgery, CSC K4/879, 600 Highland Ave., Madison, WI 53792, USA
| | - Xuejun Xin
- Columbia University, Tissue Engineering and Regenerative Medicine Laboratory (TERML), College of Dental Medicine, Fu Foundation School of Engineering and Applied Sciences, Department of Biomedical Engineering, 630 W. 168 St. — PH7 East, New York, NY 10032, USA
| | - Shan Lal
- Columbia University, Tissue Engineering and Regenerative Medicine Laboratory (TERML), College of Dental Medicine, Fu Foundation School of Engineering and Applied Sciences, Department of Biomedical Engineering, 630 W. 168 St. — PH7 East, New York, NY 10032, USA
| | - Jeremy J. Mao
- Columbia University, Tissue Engineering and Regenerative Medicine Laboratory (TERML), College of Dental Medicine, Fu Foundation School of Engineering and Applied Sciences, Department of Biomedical Engineering, 630 W. 168 St. — PH7 East, New York, NY 10032, USA
| |
Collapse
|
242
|
Sanada S, Hakuno D, Higgins LJ, Schreiter ER, McKenzie AN, Lee RT. IL-33 and ST2 comprise a critical biomechanically induced and cardioprotective signaling system. J Clin Invest 2007; 117:1538-49. [PMID: 17492053 PMCID: PMC1865027 DOI: 10.1172/jci30634] [Citation(s) in RCA: 783] [Impact Index Per Article: 46.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2006] [Accepted: 02/27/2007] [Indexed: 12/12/2022] Open
Abstract
ST2 is an IL-1 receptor family member with transmembrane (ST2L) and soluble (sST2) isoforms. sST2 is a mechanically induced cardiomyocyte protein, and serum sST2 levels predict outcome in patients with acute myocardial infarction or chronic heart failure. Recently, IL-33 was identified as a functional ligand of ST2L, allowing exploration of the role of ST2 in myocardium. We found that IL-33 was a biomechanically induced protein predominantly synthesized by cardiac fibroblasts. IL-33 markedly antagonized angiotensin II- and phenylephrine-induced cardiomyocyte hypertrophy. Although IL-33 activated NF-kappaB, it inhibited angiotensin II- and phenylephrine-induced phosphorylation of inhibitor of NF-kappa B alpha (I kappa B alpha) and NF-kappaB nuclear binding activity. sST2 blocked antihypertrophic effects of IL-33, indicating that sST2 functions in myocardium as a soluble decoy receptor. Following pressure overload by transverse aortic constriction (TAC), ST2(-/-) mice had more left ventricular hypertrophy, more chamber dilation, reduced fractional shortening, more fibrosis, and impaired survival compared with WT littermates. Furthermore, recombinant IL-33 treatment reduced hypertrophy and fibrosis and improved survival after TAC in WT mice, but not in ST2(-/-) littermates. Thus, IL-33/ST2 signaling is a mechanically activated, cardioprotective fibroblast-cardiomyocyte paracrine system, which we believe to be novel. IL-33 may have therapeutic potential for beneficially regulating the myocardial response to overload.
Collapse
Affiliation(s)
- Shoji Sanada
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.
Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Daihiko Hakuno
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.
Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Luke J. Higgins
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.
Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Eric R. Schreiter
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.
Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Andrew N.J. McKenzie
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.
Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Richard T. Lee
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.
Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| |
Collapse
|
243
|
Fung SY, Yang H, Chen P. Formation of colloidal suspension of hydrophobic compounds with an amphiphilic self-assembling peptide. Colloids Surf B Biointerfaces 2006; 55:200-11. [PMID: 17234393 DOI: 10.1016/j.colsurfb.2006.12.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Revised: 11/29/2006] [Accepted: 12/01/2006] [Indexed: 11/23/2022]
Abstract
The amphiphilic self-assembling peptide EAK16-II was found to be able to stabilize hydrophobic compounds in aqueous solution. Micro/nanocrystals of a hydrophobic compound, pyrene, and a hydrophobic anticancer agent, ellipticine, were stabilized by EAK16-II to form colloidal suspensions in water. Initial evidence of the association between EAK16-II and hydrophobic compounds was the observation of a clouding phenomenon and a difference in fluorescence spectra of the solution. A further investigation on the interaction between EAK16-II and pyrene was carried out using fluorescence spectroscopy and scanning electron microscopy (SEM). It was found that the pyrene-peptide complex formation required mechanical stirring, and the freshly prepared peptide solution (containing peptide monomers and/or peptide protofibrils) was more effective at stabilizing pyrene than the mature fibrils in aged peptide solutions. The time duration over which the complex formed was about 22 h. The data on the complexation of pyrene and EAK16-II at various concentrations suggested that the maximum amount of stabilized pyrene was concentration dependent. SEM images showed that peptide concentration did not significantly affect the size of the complexes/suspensions but altered the structures of the peptide coating on the surface of the complex. Atomic force microscopy (AFM) was conducted to study the interaction of EAK16-II with a model hydrophobic surface, which provided some detailed information of how peptide adsorbed onto the hydrophobic compounds and stabilize them. This study shows the potential of self-assembling peptides for encapsulation of hydrophobic compounds.
Collapse
Affiliation(s)
- S Y Fung
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | | | | |
Collapse
|
244
|
Lien CL, Schebesta M, Makino S, Weber GJ, Keating MT. Gene expression analysis of zebrafish heart regeneration. PLoS Biol 2006; 4:e260. [PMID: 16869712 PMCID: PMC1523227 DOI: 10.1371/journal.pbio.0040260] [Citation(s) in RCA: 229] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2005] [Accepted: 06/06/2006] [Indexed: 02/04/2023] Open
Abstract
Mammalian hearts cannot regenerate. In contrast, zebrafish hearts regenerate even when up to 20% of the ventricle is amputated. The mechanism of zebrafish heart regeneration is not understood. To systematically characterize this process at the molecular level, we generated transcriptional profiles of zebrafish cardiac regeneration by microarray analyses. Distinct gene clusters were identified based on temporal expression patterns. Genes coding for wound response/inflammatory factors, secreted molecules, and matrix metalloproteinases are expressed in regenerating heart in sequential patterns. Comparisons of gene expression profiles between heart and fin regeneration revealed a set of regeneration core molecules as well as tissue-specific factors. The expression patterns of several secreted molecules around the wound suggest that they play important roles in heart regeneration. We found that both
platelet-derived growth factor-a and
-b (pdgf-a and
pdgf-b) are upregulated in regenerating zebrafish hearts. PDGF-B homodimers induce DNA synthesis in adult zebrafish cardiomyocytes. In addition, we demonstrate that a chemical inhibitor of PDGF receptor decreases DNA synthesis of cardiomyocytes both in vitro and in vivo during regeneration. Our data indicate that zebrafish heart regeneration is associated with sequentially upregulated wound healing genes and growth factors and suggest that PDGF signaling is required.
Comparison of gene expression in regenerating heart and fin points to common as well as tissue-specific mechanisms. PDGFs expressed in the heart induce DNA synthesis in cardiac myocytes.
Collapse
Affiliation(s)
- Ching-Ling Lien
- 1Department of Cardiology, Children's Hospital, Boston, Massachusetts, United States of America
- 2Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Michael Schebesta
- 1Department of Cardiology, Children's Hospital, Boston, Massachusetts, United States of America
- 2Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Shinji Makino
- 1Department of Cardiology, Children's Hospital, Boston, Massachusetts, United States of America
- 2Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Gerhard J Weber
- 3Children's Hospital Stem Cell Program, Department of Hematology/Oncology, Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Mark T Keating
- 1Department of Cardiology, Children's Hospital, Boston, Massachusetts, United States of America
- 2Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
245
|
Engel FB, Hsieh PCH, Lee RT, Keating MT. FGF1/p38 MAP kinase inhibitor therapy induces cardiomyocyte mitosis, reduces scarring, and rescues function after myocardial infarction. Proc Natl Acad Sci U S A 2006; 103:15546-51. [PMID: 17032753 PMCID: PMC1622860 DOI: 10.1073/pnas.0607382103] [Citation(s) in RCA: 295] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mammalian cardiomyocytes have limited proliferation potential, and acutely injured mammalian hearts do not regenerate adequately. Instead, injured myocardium develops fibrosis and scarring. Here we show that FGF1/p38 MAP kinase inhibitor treatment after acute myocardial injury in 8- to 10-week-old rats increases cardiomyocyte mitosis. At 3 months after injury, 4 weeks of FGF1/p38 MAP kinase inhibitor therapy results in reduced scarring and wall thinning, with markedly improved cardiac function. In contrast, p38 MAP kinase inhibition alone fails to rescue heart function despite increased cardiomyocyte mitosis. FGF1 improves angiogenesis, possibly contributing to the survival of newly generated cardiomyocytes. Our data indicate that FGF1 and p38 MAP kinase, proteins involved in cardiomyocyte proliferation and angiogenesis during development, may be delivered therapeutically to enhance cardiac regeneration.
Collapse
Affiliation(s)
- Felix B. Engel
- *Department of Pediatrics, Harvard Medical School, and Department of Cardiology, Children's Hospital, 320 Longwood Avenue, Boston, MA 02115
| | - Patrick C. H. Hsieh
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115; and
| | - Richard T. Lee
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115; and
| | - Mark T. Keating
- Novartis Institutes for BioMedical Research, Cambridge, MA 02139
| |
Collapse
|
246
|
Christman KL, Lee RJ. Biomaterials for the treatment of myocardial infarction. J Am Coll Cardiol 2006; 48:907-13. [PMID: 16949479 DOI: 10.1016/j.jacc.2006.06.005] [Citation(s) in RCA: 272] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2005] [Revised: 04/24/2006] [Accepted: 05/02/2006] [Indexed: 11/16/2022]
Abstract
For nearly a decade, researchers have investigated the possibility of cell transplantation for cardiac repair. More recently, the emerging fields of tissue engineering and biomaterials have begun to provide potential treatments. Tissue engineering approaches are designed to repair lost or damaged tissue through the use of growth factors, cellular transplantation, and biomaterial scaffolds. There are currently 3 biomaterial approaches for the treatment of myocardial infarction (MI). The first involves polymeric left ventricular restraints in the prevention of heart failure. The second utilizes in vitro engineered cardiac tissue, which is subsequently implanted in vivo. The final approach entails injecting cells and/or a scaffold into the myocardium to create in situ engineered cardiac tissue. This review gives an overview of the current progress in the growing field of biomaterials for the treatment of MI.
Collapse
|
247
|
Hsieh PCH, MacGillivray C, Gannon J, Cruz FU, Lee RT. Local Controlled Intramyocardial Delivery of Platelet-Derived Growth Factor Improves Postinfarction Ventricular Function Without Pulmonary Toxicity. Circulation 2006; 114:637-44. [PMID: 16894033 DOI: 10.1161/circulationaha.106.639831] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background—
Local delivery methods can target therapies to specific tissues and potentially avoid toxicity to other organs. Platelet-derived growth factor can protect the myocardium, but it also plays an important role in promoting pulmonary hypertension. It is not known whether local myocardial delivery of platelet-derived growth factor during myocardial infarction (MI) can lead to sustained cardiac benefit without causing pulmonary hypertension.
Methods and Results—
We performed a randomized and blinded experiment of 127 rats that survived experimental MI or sham surgery. We delivered platelet-derived growth factor (PDGF)-BB with self-assembling peptide nanofibers (NFs) to provide controlled release within the myocardium. There were 6 groups with n≥20 in each group: sham, sham+NF, sham+NF/PDGF, MI, MI+NF, and MI+NF/PDGF. Serial echocardiography from 1 day to 3 months showed significant improvement of ventricular fractional shortening, end-systolic dimension, and end-diastolic dimension with local PDGF delivery (
P
<0.05 for MI+NF/PDGF versus MI or MI+NF). Catheterization at 4 months revealed improved ventricular function in the controlled delivery group (left ventricular end-diastolic pressure, cardiac index, +dP/dt, −dP/dt, and time constant of exponential decay all
P
<0.05 for MI+NF/P versus MI or MI+NF). Infarcted myocardial volume was reduced by NF/PDGF therapy (34.0±13.3% in MI, 28.9±12.9% in MI+NF, and 12.0±5.8% in MI+NF/PDGF;
P
<0.001). There was no evidence of pulmonary toxicity from the therapy, with no differences in right ventricular end-systolic pressure, right ventricular dP/dt, bromodeoxyuridine staining, or pulmonary artery medial wall thickness.
Conclusions—
Intramyocardial delivery of PDGF by self-assembling peptide NFs leads to long-term improvement in cardiac performance after experimental infarction without apparent pulmonary toxicity. Local myocardial protection may allow prevention of heart failure without systemic toxicity.
Collapse
Affiliation(s)
- Patrick C H Hsieh
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Mass., USA
| | | | | | | | | |
Collapse
|
248
|
Wei HJ, Chen SC, Chang Y, Hwang SM, Lin WW, Lai PH, Chiang HK, Hsu LF, Yang HH, Sung HW. Porous acellular bovine pericardia seeded with mesenchymal stem cells as a patch to repair a myocardial defect in a syngeneic rat model. Biomaterials 2006; 27:5409-19. [PMID: 16844214 DOI: 10.1016/j.biomaterials.2006.06.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Accepted: 06/29/2006] [Indexed: 10/24/2022]
Abstract
A patch is often mandatory to repair myocardial defects; however, currently available patches lack the possibility of regeneration. To overcome this limitation, a porous acellular bovine pericardium seeded with BrdU-labeled mesenchymal stem cells (MSCs) was prepared (the MSC patch) to repair a surgically created myocardial defect in the right ventricle of a syngeneic rat model. The bovine pericardium before cell extraction was used as a control (the Control patch). The implanted samples were retrieved at 4- and 12-week postoperatively (n=5 per group at each time point). At retrieval, no aneurysmal dilation of the implanted patches was seen for both studied groups. No apparent tissue adhesion was observed for the MSC patch throughout the entire course of the study, while for the Control patch, two out of the five studied animals at 12-week postoperatively had a filmy adhesion to the chest wall. On the inner (endocardial) surface, intimal thickening was observed for both studied groups; however, no thrombus formation was found. Intact layers of endothelial and mesothelial cells were identified on the inner and outer (epicardial) surfaces of the MSC patch. Smooth muscle cells together with neo-muscle fibers, neo-glycosaminoglycans and neo-capillaries were observed within the pores of the MSC patch. Some cardiomyocytes, which stained positively for BrdU and alpha-sacromeric actin, were observed in the MSC patch, indicating that the implanted MSCs can engraft and differentiate into cardiomyocytes. Additionally, a normality of the local electrograms on the epicardial surface of the MSC patch was observed. In contrast, no apparent tissue regeneration was observed for the Control patch throughout the entire course of the study, while only abnormal electrogram signals were seen on its epicardial surface. In conclusion, the MSC patch may preserve the structure of the ventricular wall while providing the potential for myocardial tissue regeneration.
Collapse
Affiliation(s)
- Hao-Ji Wei
- Division of Cardiovascular Surgery, Veterans General Hospital-Taichung, and College of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
| | | | | | | | | | | | | | | | | | | |
Collapse
|
249
|
Davis ME, Hsieh PCH, Takahashi T, Song Q, Zhang S, Kamm RD, Grodzinsky AJ, Anversa P, Lee RT. Local myocardial insulin-like growth factor 1 (IGF-1) delivery with biotinylated peptide nanofibers improves cell therapy for myocardial infarction. Proc Natl Acad Sci U S A 2006; 103:8155-60. [PMID: 16698918 PMCID: PMC1472445 DOI: 10.1073/pnas.0602877103] [Citation(s) in RCA: 422] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Strategies for cardiac repair include injection of cells, but these approaches have been hampered by poor cell engraftment, survival, and differentiation. To address these shortcomings for the purpose of improving cardiac function after injury, we designed self-assembling peptide nanofibers for prolonged delivery of insulin-like growth factor 1 (IGF-1), a cardiomyocyte growth and differentiation factor, to the myocardium, using a "biotin sandwich" approach. Biotinylated IGF-1 was complexed with tetravalent streptavidin and then bound to biotinylated self-assembling peptides. This biotin sandwich strategy allowed binding of IGF-1 but did not prevent self-assembly of the peptides into nanofibers within the myocardium. IGF-1 that was bound to peptide nanofibers activated Akt, decreased activation of caspase-3, and increased expression of cardiac troponin I in cardiomyocytes. After injection into rat myocardium, biotinylated nanofibers provided sustained IGF-1 delivery for 28 days, and targeted delivery of IGF-1 in vivo increased activation of Akt in the myocardium. When combined with transplanted cardiomyocytes, IGF-1 delivery by biotinylated nanofibers decreased caspase-3 cleavage by 28% and increased the myocyte cross-sectional area by 25% compared with cells embedded within nanofibers alone or with untethered IGF-1. Finally, cell therapy with IGF-1 delivery by biotinylated nanofibers improved systolic function after experimental myocardial infarction, demonstrating how engineering the local cellular microenvironment can improve cell therapy.
Collapse
Affiliation(s)
- Michael E. Davis
- *Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139
| | - Patrick C. H. Hsieh
- *Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139
| | - Tomosaburo Takahashi
- *Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139
| | - Qing Song
- Division of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139; and
| | - Shuguang Zhang
- Division of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139; and
| | - Roger D. Kamm
- Division of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139; and
| | - Alan J. Grodzinsky
- Division of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139; and
| | - Piero Anversa
- Cardiovascular Research Institute, Department of Medicine, New York Medical College, Valhalla, NY 10595
| | - Richard T. Lee
- *Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139
- Division of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139; and
- To whom correspondence should be addressed at:
Partners Research Facility, Room 280, 65 Landsdowne St., Cambridge, MA 02139. E-mail:
| |
Collapse
|