201
|
Khansaheb M, Choi JY, Joo NS, Yang YM, Krouse M, Wine JJ. Properties of substance P-stimulated mucus secretion from porcine tracheal submucosal glands. Am J Physiol Lung Cell Mol Physiol 2011; 300:L370-9. [DOI: 10.1152/ajplung.00372.2010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Human and pig airway submucosal glands secrete mucus in response to substance P (SubP), but in pig tracheal glands the response to SubP is >10-fold greater than in humans and shares features with cholinergically produced secretion. CFTR-deficient pigs provide a model for human cystic fibrosis (CF), and in newborn CF pigs the response of tracheal glands to SubP is significantly reduced (Joo et al. J Clin Invest 120: 3161–3166, 2010). To further define features of SubP-mediated gland secretion, we optically measured secretion rates from individual adult porcine glands in isolated tracheal tissues in response to mucosal capsaicin and serosal SubP. Mucosal capsaicin (EC50 = 19 μM) stimulated low rates of secretion that were partially inhibited by tetrodotoxin and by inhibitors for muscarinic, VIP, and SubP receptors, suggesting reflex stimulation of secretion by multiple transmitters. Secretion in response to mucosal capsaicin was inhibited by CFTRinh-172, but not by niflumic acid. Serosal SubP (EC50 = 230 nM) stimulated 10-fold more secretion than mucosal capsaicin, with a Vmax similar to that of carbachol. Secretion rates peaked within 5 min and then declined to a lower sustained rate. SubP-stimulated secretion was inhibited 75% by bumetanide, 53% by removal of HCO3−, and 85% by bumetanide + removal of HCO3−; it was not inhibited by atropine but was inhibited by niflumic acid, clotrimazole, BAPTA-AM, nominally Ca2+-free bath solution, and the adenylate cyclase inhibitor MDL-12330A. Ratiometric measurements of fura 2 fluorescence in dissociated gland cells showed that SubP and carbachol increased intracellular Ca2+ concentration by similar amounts. SubP produced rapid volume loss by serous and mucous cells, expansion of gland lumina, mucus flow, and exocytosis but little or no contraction of myoepithelial cells. These and prior results suggest that SubP stimulates pig gland secretion via CFTR- and Ca2+-activated Cl− channels.
Collapse
Affiliation(s)
- Monal Khansaheb
- Cystic Fibrosis Research Laboratory, Stanford University, Stanford, California
| | - Jae Young Choi
- Cystic Fibrosis Research Laboratory, Stanford University, Stanford, California
- Department of Otorhinolaryngology, Yonsei University, and
| | - Nam Soo Joo
- Cystic Fibrosis Research Laboratory, Stanford University, Stanford, California
| | - Yu-Mi Yang
- Department of Oral Biology, Brain Korea 21 Project, Oral Science Research Center, Yonsei University College of Dentistry, Seoul, Korea
| | - Mauri Krouse
- Cystic Fibrosis Research Laboratory, Stanford University, Stanford, California
| | - Jeffrey J. Wine
- Cystic Fibrosis Research Laboratory, Stanford University, Stanford, California
| |
Collapse
|
202
|
Ramsingh R, Grygorczyk A, Solecki A, Cherkaoui LS, Berthiaume Y, Grygorczyk R. Cell deformation at the air-liquid interface induces Ca2+-dependent ATP release from lung epithelial cells. Am J Physiol Lung Cell Mol Physiol 2011; 300:L587-95. [PMID: 21239538 DOI: 10.1152/ajplung.00345.2010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Extracellular nucleotides regulate mucociliary clearance in the airways and surfactant secretion in alveoli. Their release is exquisitely mechanosensitive and may be induced by stretch as well as airflow shear stress acting on lung epithelia. We hypothesized that, in addition, tension forces at the air-liquid interface (ALI) may contribute to mechanosensitive ATP release in the lungs. Local depletion of airway surface liquid, mucins, and surfactants, which normally protect epithelial surfaces, facilitate such release and trigger compensatory mucin and fluid secretion processes. In this study, human bronchial epithelial 16HBE14o(-) and alveolar A549 cells were subjected to tension forces at the ALI by passing an air bubble over the cell monolayer in a flow-through chamber, or by air exposure while tilting the cell culture dish. Such stimulation induced significant ATP release not involving cell lysis, as verified by ethidium bromide staining. Confocal fluorescence microscopy disclosed reversible cell deformation in the monolayer part in contact with the ALI. Fura 2 fluorescence imaging revealed transient intracellular Ca(2+) elevation evoked by the ALI, which did not entail nonspecific Ca(2+) influx from the extracellular space. ATP release was reduced by ∼40 to ∼90% from cells loaded with the Ca(2+) chelator BAPTA-AM and was completely abolished by N-ethylmalemide (1 mM). These experiments demonstrate that in close proximity to the ALI, surface tension forces are transmitted directly on cells, causing their mechanical deformation and Ca(2+)-dependent exocytotic ATP release. Such a signaling mechanism may contribute to the detection of local deficiency of airway surface liquid and surfactants on the lung surface.
Collapse
Affiliation(s)
- Ronaldo Ramsingh
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM) — Hôtel-Dieu, and Department of Medicine, Université de Montréal, Montréal, Québec, Canada
| | | | | | | | | | | |
Collapse
|
203
|
Affiliation(s)
- Gunnar C Hansson
- Department of Medical Biochemistry, University of Gothenburg, Sweden.
| |
Collapse
|
204
|
Kim YS, Ho SB. Intestinal goblet cells and mucins in health and disease: recent insights and progress. Curr Gastroenterol Rep 2011; 12:319-30. [PMID: 20703838 PMCID: PMC2933006 DOI: 10.1007/s11894-010-0131-2] [Citation(s) in RCA: 929] [Impact Index Per Article: 66.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The mucus layer coating the gastrointestinal tract is the front line of innate host defense, largely because of the secretory products of intestinal goblet cells. Goblet cells synthesize secretory mucin glycoproteins (MUC2) and bioactive molecules such as epithelial membrane-bound mucins (MUC1, MUC3, MUC17), trefoil factor peptides (TFF), resistin-like molecule beta (RELMbeta), and Fc-gamma binding protein (Fcgbp). The MUC2 mucin protein forms trimers by disulfide bonding in cysteine-rich amino terminal von Willebrand factor (vWF) domains, coupled with crosslinking provided by TFF and Fcgbp proteins with MUC2 vWF domains, resulting in a highly viscous extracellular layer. Colonization by commensal intestinal microbiota is limited to an outer "loose" mucus layer, and interacts with the diverse oligosaccharides of mucin glycoproteins, whereas an "inner" adherent mucus layer is largely devoid of bacteria. Defective mucus layers resulting from lack of MUC2 mucin, mutated Muc2 mucin vWF domains, or from deletion of core mucin glycosyltransferase enzymes in mice result in increased bacterial adhesion to the surface epithelium, increased intestinal permeability, and enhanced susceptibility to colitis caused by dextran sodium sulfate. Changes in mucin gene expression and mucin glycan structures occur in cancers of the intestine, contributing to diverse biologic properties involved in the development and progression of cancer. Further research is needed on identification and functional significance of various components of mucus layers and the complex interactions among mucus layers, microbiota, epithelial cells, and the underlying innate and adaptive immunity. Further elucidation of the regulatory mechanisms involved in mucin changes in cancer and inflammation may lead to the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Young S Kim
- Genemed Biotechnologies, 458 Carlton Court, South San Francisco, CA 94080, USA.
| | | |
Collapse
|
205
|
Abstract
The major phenotype of CF is the accumulation of mucus, a phenomenon whose relation to the dysfunctional CFTR is still not fully understood. This means that studies of mucus and its main component, the mucins, are important. Due to the large size and high glycosylation level, such questions need special considerations and methodology. We describe methods for the general quantification of heavily glycosylated proteins as the mucins using dot/slot blot. We also describe the separation of the mucins by gel electrophoresis and the identification with specific antibodies on Western blot and by proteomics.
Collapse
Affiliation(s)
- Kristina A Thomsson
- Department of Medical Biochemistry, University of Gothenburg, 413 90 Gothenburg, Sweden.
| | | |
Collapse
|
206
|
Jakab RL, Collaco AM, Ameen NA. Physiological relevance of cell-specific distribution patterns of CFTR, NKCC1, NBCe1, and NHE3 along the crypt-villus axis in the intestine. Am J Physiol Gastrointest Liver Physiol 2011; 300:G82-98. [PMID: 21030607 PMCID: PMC3025502 DOI: 10.1152/ajpgi.00245.2010] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Accepted: 10/27/2010] [Indexed: 01/31/2023]
Abstract
We examined the cell-specific subcellular expression patterns for sodium- and potassium-coupled chloride (NaK2Cl) cotransporter 1 (NKCC1), Na(+) bicarbonate cotransporter (NBCe1), cystic fibrosis transmembrane conductance regulator (CFTR), and Na(+)/H(+) exchanger 3 (NHE3) to understand the functional plasticity and synchronization of ion transport functions along the crypt-villus axis and its relevance to intestinal disease. In the unstimulated intestine, all small intestinal villus enterocytes coexpressed apical CFTR and NHE3, basolateral NBCe1, and mostly intracellular NKCC1. All (crypt and villus) goblet cells strongly expressed basolateral NKCC1 (at approximately three-fold higher levels than villus enterocytes), but no CFTR, NBCe1, or NHE3. Lower crypt cells coexpressed apical CFTR and basolateral NKCC1, but no NHE3 or NBCe1 (except NBCe1-expressing proximal colonic crypts). CFTR, NBCe1, and NKCC1 colocalized with markers of early and recycling endosomes, implicating endocytic recycling in cell-specific anion transport. Brunner's glands of the proximal duodenum coexpressed high levels of apical/subapical CFTR and basolateral NKCC1, but very low levels of NBCe1, consistent with secretion of Cl(-)-enriched fluid into the crypt. The cholinergic agonist carbachol rapidly (within 10 min) reduced cell volume along the entire crypt/villus axis and promoted NHE3 internalization into early endosomes. In contrast, carbachol induced membrane recruitment of NKCC1 and CFTR in all crypt and villus enterocytes, NKCC1 in all goblet cells, and NBCe1 in all villus enterocytes. These observations support regulated vesicle traffic in Cl(-) secretion by goblet cells and Cl(-) and HCO(3)(-) secretion by villus enterocytes during the transient phase of cholinergic stimulation. Overall, the carbachol-induced membrane trafficking profile of the four ion transporters supports functional plasticity of the small intestinal villus epithelium that enables it to conduct both absorptive and secretory functions.
Collapse
Affiliation(s)
- Robert L Jakab
- Department of Pediatrics/Gastroenterology and Hepatology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | |
Collapse
|
207
|
Haynes CJE, Gale PA. Transmembrane anion transport by synthetic systems. Chem Commun (Camb) 2011; 47:8203-9. [DOI: 10.1039/c1cc12061a] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
208
|
Dubaissi E, Papalopulu N. Embryonic frog epidermis: a model for the study of cell-cell interactions in the development of mucociliary disease. Dis Model Mech 2010; 4:179-92. [PMID: 21183475 PMCID: PMC3046089 DOI: 10.1242/dmm.006494] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Specialised epithelia such as mucociliary, secretory and transporting epithelia line all major organs, including the lung, gut and kidney. Malfunction of these epithelia is associated with many human diseases. The frog embryonic epidermis possesses mucus-secreting and multiciliated cells, and has served as an excellent model system for the biogenesis of cilia. However, ionic regulation is important for the function of all specialised epithelia and it is not clear how this is achieved in the embryonic frog epidermis. Here, we show that a third cell type develops alongside ciliated and mucus-secreting cells in the tadpole skin. These cells express high levels of ion channels and transporters; therefore, we suggest that they are analogous to ionocytes found in transporting epithelia such as the mammalian kidney. We show that frog ionocytes express the transcription factor foxi1e, which is required for the development of these cells. Depletion of ionocytes by foxi1e knockdown has detrimental effects on the development of multiciliated cells, which show fewer and aberrantly beating cilia. These results reveal a newly identified role for ionocytes and suggest that the frog embryonic skin is a model system that is particularly suited to studying the interactions of different cell types in mucociliary, as well as in secretory and transporting, epithelia.
Collapse
Affiliation(s)
- Eamon Dubaissi
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | | |
Collapse
|
209
|
Quinton PM. Role of epithelial HCO3⁻ transport in mucin secretion: lessons from cystic fibrosis. Am J Physiol Cell Physiol 2010; 299:C1222-33. [PMID: 20926781 DOI: 10.1152/ajpcell.00362.2010] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The invitation to present the 2010 Hans Ussing lecture for the Epithelial Transport Group of the American Physiological Society offered me a unique, special, and very surprising opportunity to join in saluting a man whom I met only once, but whose work was the basis, not only for my career, but also for finding the molecular defect in the inherited disease cystic fibrosis (CF). In this context, I will venture to make the tribute with a new explanation of why a mutation in a single gene that codes for an anion channel can cause devastation of multiple epithelial systems with pathogenic mucus. In so doing, I hope to raise awareness of a new role for that peculiar anion around which so much physiology revolves, HCO(3)(-). I begin by introducing CF pathology as I question the name of the disease as well as the prevalent view of the basis of its pathology by considering: 1) mucus, 2) salt, and 3) HCO(3)(-). I then present recent data showing that HCO(3)(-) is required for normal mucus discharge, and I will close with conjecture as to how HCO(3)(-) may support mucus discharge and why the failure to transport this electrolyte is pathogenic in CF.
Collapse
Affiliation(s)
- Paul M Quinton
- Department of Pediatrics, Rady Children’s Hospital, University of California San Diego School of Medicine, La Jolla, California 92093-0830, USA.
| |
Collapse
|
210
|
Pearson JP, Brownlee IA. The interaction of large bowel microflora with the colonic mucus barrier. Int J Inflam 2010; 2010:321426. [PMID: 21152122 PMCID: PMC2989700 DOI: 10.4061/2010/321426] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 07/14/2010] [Accepted: 08/04/2010] [Indexed: 12/20/2022] Open
Abstract
The colonic mucus barrier is the first line of defence that the underlying mucosa has against the wide range of potentially damaging agents of microbial, endogenous, and dietary origin that occur within the colonic lumen. The functional component of mucus is the secreted, polymeric glycoprotein mucin. The mucus barrier can either act as an energy source or a support medium for growth to the intestinal microflora. The mucus barrier appears to effectively partition the vast number of microbial cells from the underlying epithelium. The normal functionality and biochemistry of this mucus barrier appears to be lost in diseases of the colorectal mucosa. Germ-free animal studies have highlighted the necessity of the presence of the colonic microflora to drive the maturation of the colonic mucosa and normal mucus production. A number of by-products of the microflora have been suggested to be key luminal drivers of colonic mucus secretion.
Collapse
Affiliation(s)
- Jeffrey P Pearson
- Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | | |
Collapse
|
211
|
De Lisle RC, Mueller R, Roach E. Lubiprostone ameliorates the cystic fibrosis mouse intestinal phenotype. BMC Gastroenterol 2010; 10:107. [PMID: 20843337 PMCID: PMC2945989 DOI: 10.1186/1471-230x-10-107] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Accepted: 09/15/2010] [Indexed: 12/16/2022] Open
Abstract
Background Cystic fibrosis (CF) is caused by mutations in the CFTR gene that impair the function of CFTR, a cAMP-regulated anion channel. In the small intestine loss of CFTR function creates a dehydrated, acidic luminal environment which is believed to cause an accumulation of mucus, a phenotype characteristic of CF. CF mice have small intestinal bacterial overgrowth, an altered innate immune response, and impaired intestinal transit. We investigated whether lubiprostone, which can activate the CLC2 Cl- channel, would improve the intestinal phenotype in CF mice. Methods Cftrtm1UNC (CF) and wildtype (WT) littermate mice on the C57BL/6J background were used. Lubiprostone (10 μg/kg-day) was administered by gavage for two weeks. Mucus accumulation was estimated from crypt lumen widths in periodic acid-Schiff base, Alcian blue stained sections. Luminal bacterial load was measured by qPCR for the bacterial 16S gene. Gastric emptying and small intestinal transit in fasted mice were assessed using gavaged rhodamine dextran. Gene expression was evaluated by Affymetrix Mouse430 2.0 microarray and qRT-PCR. Results Crypt width in control CF mice was 700% that of WT mice (P < 0.001). Lubiprostone did not affect WT crypt width but, unexpectedly, increased CF crypt width 22% (P = 0.001). Lubiprostone increased bacterial load in WT mice to 490% of WT control levels (P = 0.008). Conversely, lubiprostone decreased bacterial overgrowth in CF mice by 60% (P = 0.005). Lubiprostone increased gastric emptying at 20 min postgavage in both WT (P < 0.001) and CF mice (P < 0.001). Lubiprostone enhanced small intestinal transit in WT mice (P = 0.024) but not in CF mice (P = 0.377). Among other innate immune markers, expression of mast cell genes was elevated 4-to 40-fold in the CF intestine as compared to WT, and lubiprostone treatment of CF mice decreased expression to WT control levels. Conclusions These results indicate that lubiprostone has some benefits for the CF intestinal phenotype, especially on bacterial overgrowth and the innate immune response. The unexpected observation of increased mucus accumulation in the crypts of lubiprostone-treated CF mice suggests the possibility that lubiprostone increases mucus secretion.
Collapse
Affiliation(s)
- Robert C De Lisle
- Anatomy & Cell Biology, University of Kansas School of Medicine, Kansas City, KS 66160, USA.
| | | | | |
Collapse
|
212
|
Menon MB, Schwermann J, Singh AK, Franz-Wachtel M, Pabst O, Seidler U, Omary MB, Kotlyarov A, Gaestel M. p38 MAP kinase and MAPKAP kinases MK2/3 cooperatively phosphorylate epithelial keratins. J Biol Chem 2010; 285:33242-33251. [PMID: 20724476 DOI: 10.1074/jbc.m110.132357] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The MAPK-activated protein kinases (MAPKAP kinases) MK2 and MK3 are directly activated via p38 MAPK phosphorylation, stabilize p38 by complex formation, and contribute to the stress response. The list of substrates of MK2/3 is increasing steadily. We applied a phosphoproteomics approach to compare protein phosphorylation in MK2/3-deficient cells rescued or not by ectopic expression of MK2. In addition to differences in phosphorylation of the known substrates of MK2, HSPB1 and Bag-2, we identified strong differences in phosphorylation of keratin 8 (K8). The phosphorylation of K8-Ser(73) is catalyzed directly by p38, which in turn shows MK2-dependent expression. Notably, analysis of small molecule p38 inhibitors on K8-Ser(73) phosphorylation also demonstrated reduced phosphorylations of keratins K18-Ser(52) and K20-Ser(13) but not of K8-Ser(431) or K18-Ser(33). Interestingly, K18-Ser(52) and K20-Ser(13) are not directly phosphorylated by p38 in vitro, but by MK2. Furthermore, anisomycin-stimulated phosphorylations of K20-Ser(13) and K18-Ser(52) are inhibited by small molecule inhibitors of both p38 and MK2. MK2 knockdown in HT29 cells leads to reduced K20-Ser(13) phosphorylation, which further supports the notion that MK2 is responsible for K20 phosphorylation in vivo. Physiologic relevance of these findings was confirmed by differences of K20-Ser(13) phosphorylation between the ileum of wild-type and MK2/3-deficient mice and by demonstrating p38- and MK2-dependent mucin secretion of HT29 cells. Therefore, MK2 and p38 MAPK function in concert to phosphorylate K8, K18, and K20 in intestinal epithelia.
Collapse
Affiliation(s)
- Manoj B Menon
- From the Institute of Biochemistry, Hannover 30625, Germany
| | | | - Anurag Kumar Singh
- Department of Gastroenterology, Hepatology, and Endocrinology, Hannover 30625, Germany
| | - Mirita Franz-Wachtel
- Proteome Center Tübingen, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen 72076, Germany
| | - Oliver Pabst
- Institute of Immunology, Medical School Hannover, Hannover 30625, Germany
| | - Ursula Seidler
- Department of Gastroenterology, Hepatology, and Endocrinology, Hannover 30625, Germany
| | - M Bishr Omary
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109
| | | | | |
Collapse
|
213
|
Thiagarajah JR, Song Y, Derichs N, Verkman AS. Airway surface liquid depth imaged by surface laser reflectance microscopy. ACTA ACUST UNITED AC 2010; 136:353-62. [PMID: 20713545 PMCID: PMC2931148 DOI: 10.1085/jgp.201010490] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The thin layer of liquid at the surface of airway epithelium, the airway surface liquid (ASL), is important in normal airway physiology and in the pathophysiology of cystic fibrosis. At present, the best method to measure ASL depth involves scanning confocal microscopy after staining with an aqueous-phase fluorescent dye. We describe here a simple, noninvasive imaging method to measure ASL depth by reflectance imaging of an epithelial mucosa in which the surface is illuminated at a 45-degree angle by an elongated 13-µm wide rectangular beam produced by a 670-nm micro-focus laser. The principle of the method is that air–liquid, liquid–liquid, and liquid–cell interfaces produce distinct specular or diffuse reflections that can be imaged to give a micron-resolution replica of the mucosal surface. The method was validated using fluid layers of specified thicknesses and applied to measure ASL depth in cell cultures and ex vivo fragments of pig trachea. In addition, the method was adapted to measure transepithelial fluid transport from the dynamics of fluid layer depth. Compared with confocal imaging, ASL depth measurement by surface laser reflectance microscopy does not require dye staining or costly instrumentation, and can potentially be adapted for in vivo measurements using fiberoptics.
Collapse
Affiliation(s)
- Jay R Thiagarajah
- Department of Medicine, University of California, San Francisco, CA 94143, USA
| | | | | | | |
Collapse
|
214
|
Chen EYT, Yang N, Quinton PM, Chin WC. A new role for bicarbonate in mucus formation. Am J Physiol Lung Cell Mol Physiol 2010; 299:L542-9. [PMID: 20693315 DOI: 10.1152/ajplung.00180.2010] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The impact of small anions on the physical properties of gel-forming mucin has been almost overlooked relative to that of cations. Recently, based on the coincident abnormalities in HCO(3)(-) secretion and abnormal mucus formed in the hereditary disease cystic fibrosis (CF), HCO(3)(-) was hypothesized to be critical in the formation of normal mucus by virtue of its ability to sequester Ca(2+) from condensed mucins being discharged from cells. However, direct evidence of the impact of HCO(3)(-) on mucus properties is lacking. Herein, we demonstrate for the first time that mucin diffusivity (∼1/viscosity) increases as a function of [HCO(3)(-)]. Direct measurements of exocytosed mucin-swelling kinetics from airway cells showed that mucin diffusivity increases by ∼300% with 20 mM extracellular HCO(3)(-) concentration. Supporting data indicate that HCO(3)(-) reduces free Ca(2+) concentration and decreases the amount of Ca(2+) that remains associated with mucins. The results demonstrate that HCO(3)(-) enhances mucin swelling and hydration by reducing Ca(2+) cross-linking in mucins, thereby decreasing its viscosity and likely increasing its transportability. In addition, HCO(3)(-) can function as a Ca(2+) chelator like EGTA to disperse mucin aggregates. This study indicates that poor HCO(3)(-) availability in CF may explain why secreted mucus remains aggregated and more viscous in affected organs. These insights bear on not only the fundamental pathogenesis in CF, but also on the process of gel mucus formation and release in general.
Collapse
Affiliation(s)
- Eric Y T Chen
- Bioengineering, Univ. of California at Merced, 95343, USA
| | | | | | | |
Collapse
|
215
|
Muchekehu RW, Quinton PM. A new role for bicarbonate secretion in cervico-uterine mucus release. J Physiol 2010; 588:2329-42. [PMID: 20478977 DOI: 10.1113/jphysiol.2010.187237] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Cervical mucus thinning and release during the female reproductive cycle is thought to rely mainly on fluid secretion. However, we now find that mucus released from the murine reproductive tract critically depends upon concurrent bicarbonate (HCO(3)(-)) secretion. Prostaglandin E(2) (PGE(2))- and carbachol-stimulated mucus release was severely inhibited in the absence of serosal HCO(3)(-), HCO(3)(-) transport, or functional cystic fibrosis transmembrane conductance regulator (CFTR). In contrast to mucus release, PGE(2)- and carbachol-stimulated fluid secretion was not dependent on bicarbonate or on CFTR, but was completely blocked by niflumic acid. We found stimulated mucus release was severely impaired in the cystic fibrosis F508 reproductive tract, even though stimulated fluid secretion was preserved. Thus, CFTR mutations and/or poor bicarbonate secretion may be associated with reduced female fertility associated with abnormal mucus and specifically, may account for the increased viscosity and lack of cyclical changes in cervical mucus long noted in women with cystic fibrosis.
Collapse
Affiliation(s)
- Ruth W Muchekehu
- Department of Pediatrics-0830, School of Medicine, University of California-San Diego, La Jolla, CA 92093-0830, USA
| | | |
Collapse
|
216
|
|
217
|
Yu K, Lujan R, Marmorstein A, Gabriel S, Hartzell HC. Bestrophin-2 mediates bicarbonate transport by goblet cells in mouse colon. J Clin Invest 2010; 120:1722-35. [PMID: 20407206 DOI: 10.1172/jci41129] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Accepted: 02/17/2010] [Indexed: 01/17/2023] Open
Abstract
Anion transport by the colonic mucosa maintains the hydration and pH of the colonic lumen, and its disruption causes a variety of diarrheal diseases. Cholinergic agonists raise cytosolic Ca2+ levels and stimulate anion secretion, but the mechanisms underlying this effect remain unclear. Cholinergic stimulation of anion secretion may occur via activation of Ca2+-activated Cl- channels (CaCCs) or an increase in the Cl- driving force through CFTR after activation of Ca2+-dependent K+ channels. Here we investigated the role of a candidate CaCC protein, bestrophin-2 (Best2), using Best2-/- mice. Cholinergic stimulation of anion current was greatly reduced in Best2-/- mice, consistent with our proposed role for Best2 as a CaCC. However, immunostaining revealed Best2 localized to the basolateral membrane of mucin-secreting colonic goblet cells, not the apical membrane of Cl--secreting enterocytes. In addition, in the absence of HCO3-, cholinergic-activated current was identical in control and Best2-/- tissue preparations, which suggests that most of the Best2 current was carried by HCO3-. These data delineate an alternative model of cholinergic regulation of colonic anion secretion in which goblet cells play a critical role in HCO3- homeostasis. We therefore propose that Best2 is a HCO3- channel that works in concert with a Cl:HCO3- exchanger in the apical membrane to affect transcellular HCO3- transport. Furthermore, previous models implicating CFTR in cholinergic Cl- secretion may be explained by substantial downregulation of Best2 in Cftr-/- mice.
Collapse
Affiliation(s)
- Kuai Yu
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | |
Collapse
|
218
|
Regulation of the epithelial Na+ channel and airway surface liquid volume by serine proteases. Pflugers Arch 2010; 460:1-17. [PMID: 20401730 DOI: 10.1007/s00424-010-0827-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 03/10/2010] [Accepted: 03/12/2010] [Indexed: 01/11/2023]
Abstract
Mammalian airways are protected from infection by a thin film of airway surface liquid (ASL) which covers airway epithelial surfaces and acts as a lubricant to keep mucus from adhering to the epithelial surface. Precise regulation of ASL volume is essential for efficient mucus clearance and too great a reduction in ASL volume causes mucus dehydration and mucus stasis which contributes to chronic airway infection. The epithelial Na(+) channel (ENaC) is the rate-limiting step that governs Na(+) absorption in the airways. Recent in vitro and in vivo data have demonstrated that ENaC is a critical determinant of ASL volume and hence mucus clearance. ENaC must be cleaved by either intracellular furin-type proteases or extracellular serine proteases to be active and conduct Na(+), and this process can be inhibited by protease inhibitors. ENaC can be regulated by multiple pathways, and once proteolytically cleaved ENaC may then be inhibited by intracellular second messengers such as cAMP and PIP(2). In the airways, however, regulation of ENaC by proteases seems to be the predominant mode of regulation since knockdown of either endogenous serine proteases such as prostasin, or inhibitors of ENaC proteolysis such as SPLUNC1, has large effects on ENaC activity in airway epithelia. In this review, we shall discuss how ENaC is proteolytically cleaved, how this process can regulate ASL volume, and how its failure to operate correctly may contribute to chronic airway disease.
Collapse
|
219
|
Harmon GS, Dumlao DS, Ng DT, Barrett KE, Dennis EA, Dong H, Glass CK. Pharmacological correction of a defect in PPAR-gamma signaling ameliorates disease severity in Cftr-deficient mice. Nat Med 2010; 16:313-8. [PMID: 20154695 PMCID: PMC2834836 DOI: 10.1038/nm.2101] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Accepted: 01/15/2010] [Indexed: 12/31/2022]
Abstract
Cystic fibrosis is caused by mutations in the cystic fibrosis transmembrane conductance regulator (encoded by Cftr) that impair its role as an apical chloride channel that supports bicarbonate transport. Individuals with cystic fibrosis show retained, thickened mucus that plugs airways and obstructs luminal organs as well as numerous other abnormalities that include inflammation of affected organs, alterations in lipid metabolism and insulin resistance. Here we show that colonic epithelial cells and whole lung tissue from Cftr-deficient mice show a defect in peroxisome proliferator-activated receptor-gamma (PPAR-gamma, encoded by Pparg) function that contributes to a pathological program of gene expression. Lipidomic analysis of colonic epithelial cells suggests that this defect results in part from reduced amounts of the endogenous PPAR-gamma ligand 15-keto-prostaglandin E(2) (15-keto-PGE(2)). Treatment of Cftr-deficient mice with the synthetic PPAR-gamma ligand rosiglitazone partially normalizes the altered gene expression pattern associated with Cftr deficiency and reduces disease severity. Rosiglitazone has no effect on chloride secretion in the colon, but it increases expression of the genes encoding carbonic anhydrases 4 and 2 (Car4 and Car2), increases bicarbonate secretion and reduces mucus retention. These studies reveal a reversible defect in PPAR-gamma signaling in Cftr-deficient cells that can be pharmacologically corrected to ameliorate the severity of the cystic fibrosis phenotype in mice.
Collapse
Affiliation(s)
- Gregory S. Harmon
- Department of Medicine University of California, San Diego 9500 Gilman Drive La Jolla CA 92093-0651 Office: 858 534 6011 Fax: 858 822 2127
| | - Darren S. Dumlao
- Department of Chemistry and Biochemistry University of California, San Diego 9500 Gilman Drive La Jolla CA 92093-0651 Office: 858 534 6011 Fax: 858 822 2127
| | - Damian T. Ng
- Department of Cellular and Molecular Medicine University of California, San Diego 9500 Gilman Drive La Jolla CA 92093-0651 Office: 858 534 6011 Fax: 858 822 2127
| | - Kim E. Barrett
- Department of Medicine University of California, San Diego 9500 Gilman Drive La Jolla CA 92093-0651 Office: 858 534 6011 Fax: 858 822 2127
| | - Edward A. Dennis
- Department of Chemistry and Biochemistry University of California, San Diego 9500 Gilman Drive La Jolla CA 92093-0651 Office: 858 534 6011 Fax: 858 822 2127
| | - Hui Dong
- Department of Medicine University of California, San Diego 9500 Gilman Drive La Jolla CA 92093-0651 Office: 858 534 6011 Fax: 858 822 2127
| | - Christopher K. Glass
- Department of Medicine University of California, San Diego 9500 Gilman Drive La Jolla CA 92093-0651 Office: 858 534 6011 Fax: 858 822 2127
- Department of Cellular and Molecular Medicine University of California, San Diego 9500 Gilman Drive La Jolla CA 92093-0651 Office: 858 534 6011 Fax: 858 822 2127
| |
Collapse
|
220
|
Singh AK, Riederer B, Chen M, Xiao F, Krabbenhöft A, Engelhardt R, Nylander O, Soleimani M, Seidler U. The switch of intestinal Slc26 exchangers from anion absorptive to HCOFormula secretory mode is dependent on CFTR anion channel function. Am J Physiol Cell Physiol 2010; 298:C1057-65. [PMID: 20164375 DOI: 10.1152/ajpcell.00454.2009] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
CFTR has been recognized to function as both an anion channel and a key regulator of Slc26 anion transporters in heterologous expression systems. Whether this regulatory relationship between CFTR and Slc26 transporters is seen in native intestine, and whether this effect is coupled to CFTR transport function or other features of this protein, has not been studied. The duodena of anesthetized CFTR-, NHE3-, Slc26a6-, and Scl26a3-deficient mice and wild-type (WT) littermates were perfused, and duodenal bicarbonate (HCO(3)(-)) secretion (DBS) and fluid absorptive or secretory rates were measured. The selective NHE3 inhibitor S1611 or genetic ablation of NHE3 significantly reduced fluid absorptive rates and increased DBS. Slc26a6 (PAT1) or Slc26a3 (DRA) ablation reduced the S1611-induced DBS increase and reduced fluid absorptive rates, suggesting that the effect of S1611 or NHE3 ablation on HCO(3)(-) secretion may be an unmasking of Slc26a6- and Slc26a3-mediated Cl(-)/HCO(3)(-) exchange activity. In the absence of CFTR expression or after application of the CFTR(inh)-172, fluid absorptive rates were similar to those of WT, but S1611 induced virtually no increase in DBS, demonstrating that CFTR transport activity, and not just its presence, is required for Slc26-mediated duodenal HCO(3)(-) secretion. A functionally active CFTR is an absolute requirement for Slc26-mediated duodenal HCO(3)(-) secretion, but not for Slc26-mediated fluid absorption, in which these transporters operate in conjunction with the Na(+)/H(+) exchanger NHE3. This suggests that Slc26a6 and Slc26a3 need proton recycling via NHE3 to operate in the Cl(-) absorptive mode and Cl(-) exit via CFTR to operate in the HCO(3)(-) secretory mode.
Collapse
Affiliation(s)
- Anurag Kumar Singh
- Dept. of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
221
|
Hansson GC, Johansson MEV. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Gut Microbes 2010; 1:51-54. [PMID: 21327117 PMCID: PMC3035142 DOI: 10.4161/gmic.1.1.10470] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 10/23/2009] [Accepted: 10/29/2009] [Indexed: 02/03/2023] Open
Abstract
We have recently shown that the colon is protected by an inner mucus layer that efficiently separates the bacteria in the outer mucus from the epithelial cells. The inner mucus is impervious for bacteria and built by a network formed by the MUC2 mucin. Lack or defects in this inner mucus layer allow bacteria to reach the epithelia, something that triggers colon inflammation.
Collapse
|
222
|
|
223
|
De Lisle RC. Pass the bicarb: the importance of HCO3- for mucin release. J Clin Invest 2009; 119:2535-7. [PMID: 19726878 DOI: 10.1172/jci40598] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Accumulation of thick, sticky mucus is a hallmark of the genetic disease cystic fibrosis (CF) and has a central role in CF pathophysiology. Mutations in the CF transmembrane regulator (CFTR) ion channel are known to result in abnormally thick and sticky mucus; however, why mucus accumulates in CF is still not completely understood. In this issue of the JCI, Garcia and colleagues show that mucin--the heavily glycosylated protein contained within mucus--requires CFTR and bicarbonate in order to be released from mouse intestine (see the related article beginning on page 2613). The authors propose a model whereby CFTR-mediated bicarbonate secretion must be concurrent with mucin exocytosis for proper mucin release.
Collapse
Affiliation(s)
- Robert C De Lisle
- Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, Kansas 66160, USA.
| |
Collapse
|