201
|
Weaver LK, Behrens EM. Weathering the storm: Improving therapeutic interventions for cytokine storm syndromes by targeting disease pathogenesis. CURRENT TREATMENT OPTIONS IN RHEUMATOLOGY 2017; 3:33-48. [PMID: 28944163 DOI: 10.1007/s40674-017-0059-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cytokine storm syndromes require rapid diagnosis and treatment to limit the morbidity and mortality caused by the hyperinflammatory state that characterizes these devastating conditions. Herein, we discuss the current knowledge that guides our therapeutic decision-making and personalization of treatment for patients with cytokine storm syndromes. Firstly, ICU-level supportive care is often required to stabilize patients with fulminant disease while additional diagnostic evaluations proceed to determine the underlying cause of cytokine storm. Pharmacologic interventions should be focused on removing the inciting trigger of inflammation and initiation of an individualized immunosuppressive regimen when immune activation is central to the underlying disease pathophysiology. Monitoring for a clinical response is required to ensure that changes in the therapeutic regimen can be made as clinically warranted. Escalation of immunosuppression may be required if patients respond poorly to the initial therapeutic interventions, while a slow wean of immunosuppression in patients who improve can limit medication-related toxicities. In certain scenarios, a decision must be made whether an individual patient requires hematopoietic cell transplantation to prevent recurrence of disease. Despite these interventions, significant morbidity and mortality remains for cytokine storm patients. Therefore, we use this review to propose a clinical schema to guide current and future attempts to design rational therapeutic interventions for patients suffering from these devastating conditions, which we believe speeds the diagnosis of disease, limits medication-related toxicities, and improves clinical outcomes by targeting the heterogeneous and dynamic mechanisms driving disease in each individual patient.
Collapse
Affiliation(s)
- Lehn K Weaver
- Division of Pediatric Rheumatology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Edward M Behrens
- Division of Pediatric Rheumatology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|
202
|
Buatois V, Chatel L, Cons L, Lory S, Richard F, Guilhot F, Johnson Z, Bracaglia C, De Benedetti F, de Min C, Kosco-Vilbois MH, Ferlin WG. Use of a mouse model to identify a blood biomarker for IFNγ activity in pediatric secondary hemophagocytic lymphohistiocytosis. Transl Res 2017; 180:37-52.e2. [PMID: 27559680 PMCID: PMC7185816 DOI: 10.1016/j.trsl.2016.07.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 07/27/2016] [Accepted: 07/27/2016] [Indexed: 02/01/2023]
Abstract
Life-threatening cytokine release syndromes include primary (p) and secondary (s) forms of hemophagocytic lymphohistiocytosis (HLH). Below detection in healthy individuals, interferon γ (IFNγ) levels are elevated to measurable concentrations in these afflictions suggesting a central role for this cytokine in the development and maintenance of HLH. Mimicking an infection-driven model of sHLH in mice, we observed that the tissue-derived levels of IFNγ are actually 500- to 2000-fold higher than those measured in the blood. To identify a blood biomarker, we postulated that the IFNγ gene products, CXCL9 and CXCL10 would correlate with disease parameters in the mouse model. To translate this into a disease relevant biomarker, we investigated whether CXCL9 and CXCL10 levels correlated with disease activity in pediatric sHLH patients. Our data demonstrate that disease control in mice correlates with neutralization of IFNγ activity in tissues and that the 2 chemokines serve as serum biomarkers to reflect disease status. Importantly, CXCL9 and CXCL10 levels in pediatric sHLH were shown to correlate with key disease parameters and severity in these patients. Thus, the translatability of the IFNγ-biomarker correlates from mouse to human, advocating the use of serum CXCL9 or CXCL10 as a means to monitor total IFNγ activity in patients with sHLH.
Collapse
Key Words
- hlh, hemophagocytic lymphohistiocytosis
- phlh, primary hemophagocytic lymphohistiocytosis
- shlh, secondary hemophagocytic lymphohistiocytosis
- ifnγ, interferon γ
- tlrs, toll-like receptors
- tnfα, tumor necrosis factor α
- mifnγ, mouse ifnγ
- alt, alanine transaminase
- ldh, lactate dehydrogenase
- mrna, messenger rna
- qpcr, quantitative pcr
- il-6, interleukin 6
Collapse
Affiliation(s)
| | | | - Laura Cons
- Novimmune S.A., Plan-les-Ouates, Switzerland
| | | | | | | | - Zoë Johnson
- Novimmune S.A., Plan-les-Ouates, Switzerland
| | - Claudia Bracaglia
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Fabrizio De Benedetti
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | | | | | | |
Collapse
|
203
|
Bracaglia C, Prencipe G, De Benedetti F. Macrophage Activation Syndrome: different mechanisms leading to a one clinical syndrome. Pediatr Rheumatol Online J 2017; 15:5. [PMID: 28095869 PMCID: PMC5240371 DOI: 10.1186/s12969-016-0130-4] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 12/27/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Macrophage activation syndrome (MAS) is a severe complication of rheumatic disease in childhood, particularly in systemic Juvenile Idiopathic Arthritis (sJIA). It is characterize by an uncontrolled activation and proliferation of T lymphocytes and macrophages. MAIN CONTENT MAS is currently classified among the secondary or acquired forms of haemophagocytic lymphohistiocytosis (sHLH). The reason is that MAS shares clinical and laboratory features with primary genetic HLH (pHLH). In this context is conceivable that some of the pathogenic mechanisms of pHLH may be involved in other forms of HLH. Heterozygosity for mutations of genes involved in pHLH may lead to a cytotoxic defect and to a development of clinical overt disease. But other different contributors might be involved to the development of MAS such as infections or underlying inflammation. In MAS, the inflammatory status of the patient is a major contributor of the disease. Indeed, the majority of the MAS episodes occurs during active disease phases or at disease onset. In addition, recent evidence in animals and humans suggest that genetics may also play a major role in contributing to hyperinflammation and particularly to macrophages hyper-responses. CONCLUSIONS We hypothesize that HLH may be one unique clinical syndrome, to whose generation different mechanisms may contribute, and maintained by one final effector mechanism.
Collapse
Affiliation(s)
- Claudia Bracaglia
- Division of Rheumatology, Ospedale Pediatrico Bambino Gesù IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy.
| | - Giusi Prencipe
- Division of Rheumatology, Ospedale Pediatrico Bambino Gesù IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy
| | - Fabrizio De Benedetti
- Division of Rheumatology, Ospedale Pediatrico Bambino Gesù IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy
| |
Collapse
|
204
|
Diseases Primarily Affecting the Reproductive System. Vet Med (Auckl) 2017. [PMCID: PMC7150237 DOI: 10.1016/b978-0-7020-5246-0.00018-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
205
|
Bracaglia C, de Graaf K, Pires Marafon D, Guilhot F, Ferlin W, Prencipe G, Caiello I, Davì S, Schulert G, Ravelli A, Grom AA, de Min C, De Benedetti F. Elevated circulating levels of interferon-γ and interferon-γ-induced chemokines characterise patients with macrophage activation syndrome complicating systemic juvenile idiopathic arthritis. Ann Rheum Dis 2017; 76:166-172. [PMID: 27296321 DOI: 10.1136/annrheumdis-2015-209020] [Citation(s) in RCA: 220] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 05/12/2016] [Accepted: 05/17/2016] [Indexed: 11/03/2022]
Abstract
OBJECTIVES Interferon-γ (IFNγ) is the pivotal mediator in murine models of primary haemophagocytic lymphohistiocytosis (pHLH). Given the similarities between primary and secondary HLH (sec-HLH), including macrophage activation syndrome (MAS), we investigate the involvement of the IFNγ pathway in MAS by evaluating levels of IFNγ and of the induced chemokines, and their relation with laboratory parameters of MAS in systemic juvenile idiopathic arthritis (sJIA) patients with MAS and in a murine MAS model. METHODS The Luminex multiplexing assay was used to assess serum levels of interleukin (IL)-1β, IL-6, IFNγ and of the IFNγ-induced chemokines CXCL9, CXCL10 and CXCL11 in patients with sec-HLH (n=11) and in patients with sJIA (n=54), of whom 20 had active MAS at sampling. Expression of IFNγ-induced chemokines was assessed in IL-6 transgenic mice in which MAS is induced by TLR4 stimulation with lipopolysaccharide. RESULTS Levels of IFNγ and of IFNγ-induced chemokines were markedly elevated during active MAS and sec-HLH and were significantly higher in patients with MAS compared with active sJIA without MAS. Levels in patients with active sJIA without MAS were comparable to those of patients with clinically inactive sJIA. During MAS, ferritin and alanine transferase levels and neutrophil and platelet counts were significantly correlated with serum levels of IFNγ and CXCL9. In murine MAS, serum levels of ferritin were significantly correlated with mRNA levels of Cxcl9 in liver and spleen. CONCLUSIONS The high levels of IFNγ and of IFNγ-induced chemokines and their correlation with the severity of laboratory abnormalities of MAS suggest a pivotal role of IFNγ in MAS.
Collapse
Affiliation(s)
- Claudia Bracaglia
- Division of Rheumatology, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | | | | | | | | | - Giusi Prencipe
- Division of Rheumatology, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Ivan Caiello
- Division of Rheumatology, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Sergio Davì
- University of Genoa, Istituto Giannina Gaslini, Genoa, Italy
| | - Grant Schulert
- Division of Pediatric Rheumatology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Angelo Ravelli
- University of Genoa, Istituto Giannina Gaslini, Genoa, Italy
| | - Alexei A Grom
- Division of Pediatric Rheumatology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | | | | |
Collapse
|
206
|
Infection-Related Hemophagocytic Syndromes. Infect Dis (Lond) 2017. [DOI: 10.1016/b978-0-7020-6285-8.00235-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
207
|
Rood JE, Canna SW, Weaver LK, Tobias JW, Behrens EM. IL-10 distinguishes a unique population of activated, effector-like CD8 + T cells in murine acute liver inflammation. J Leukoc Biol 2016; 101:1037-1044. [PMID: 28034913 DOI: 10.1189/jlb.3a0916-221rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 11/23/2016] [Accepted: 12/06/2016] [Indexed: 01/06/2023] Open
Abstract
Immune-mediated liver injury is a central feature of hyperinflammatory diseases, such as hemophagocytic syndromes, yet the immunologic mechanisms underlying those processes are incompletely understood. In this study, we used the toll-like receptor 9 (TLR9)-mediated model of a hemophagocytic syndrome known as macrophage activation syndrome (MAS) to dissect the predominant immune cell populations infiltrating the liver during inflammation. We identified CD8+ T cells that unexpectedly produce interleukin-10 (IL-10) in addition to interferon-γ (IFN-γ) as a major hepatic population induced by TLR9 stimulation. Despite their ability to produce this anti-inflammatory cytokine, IL-10+ hepatic CD8+ T cells in TLR9-MAS mice did not resemble CD8+ T suppressor cells. Instead, the induction of these cells occurred independently of antigen stimulation and was partially dependent on IFN-γ. IL-10+ hepatic CD8+ T cells demonstrated an activated phenotype and high turnover rate, consistent with an effector-like identity. Transcriptional analysis of this population confirmed a gene signature of effector CD8+ T cells yet suggested responsiveness to liver injury-associated growth factors. Together, these findings suggest that IL-10+ CD8+ T cells induced by systemic inflammation to infiltrate the liver have initiated an inflammatory, rather than regulatory, program and may thus have a pathogenic role in severe, acute hepatitis.
Collapse
Affiliation(s)
- Julia E Rood
- Division of Rheumatology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Scott W Canna
- Molecular Immunology and Inflammation Branch, National Institute for Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA; and
| | - Lehn K Weaver
- Division of Rheumatology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - John W Tobias
- Molecular Profiling Core, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Edward M Behrens
- Division of Rheumatology, Children's Hospital of Philadelphia, Philadelphia, PA, USA; .,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
208
|
Chen J, Tian X, Mei Z, Wang Y, Yao Y, Zhang S, Li X, Wang H, Zhang J, Xie C. The effect of the TLR9 ligand CpG-oligodeoxynucleotide on the protective immune response to radiation-induced lung fibrosis in mice. Mol Immunol 2016; 80:33-40. [PMID: 27825048 DOI: 10.1016/j.molimm.2016.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 10/26/2016] [Accepted: 11/01/2016] [Indexed: 12/18/2022]
Abstract
CpG-oligodeoxynucleotide (CpG-ODN) is not only reported to protect against airway hyper responsiveness but is also known as a potent vaccine adjuvant for anti-tumor therapy. Little is known about the effect of CpG-ODN in mice with radiation-induced lung fibrosis (RILF), a common late stage form of tissue damage that occurs after thorax radiotherapy (RT). Here, we evaluated the immunomodulatory effects of CpG-ODN on the development of RILF. Mice were divided into four groups: (1) RT, single dose of 12Gy to the whole thorax; (2) CpG, only intraperitoneal injection of CpG-ODN for total 5 weeks; (3) RT+CpG, irradiation plus CpG-ODN treatment before and after irradiation for total 5 weeks; and (4) control (CTL): No RT or CpG-ODN treatment. In this study, we found that CpG-ODN treatment attenuated lung fibrosis and collagen deposition by increasing the number of M1 macrophagocytes, levels of Type-2 cytokines and TGF-β. CpG-ODN administration up-regulated the expression of TLR9 and STAT1 phosphorylation and reversed the expression of Type-2 immune response key transcription factor GATA-3. Activation of the JAK-STAT1 signaling pathway further enhanced M1 macrophage differentiation and Type-1 cytokine production. This study reveals the mitigating effect of early exposure to CpG-ODN on lung injury caused by irradiation in mice. The potential mechanism of action may be related to enhancement of Type-1 immunity. In conclusion, CpG-ODN may be a potential therapeutic target to treat RILF.
Collapse
Affiliation(s)
- Jing Chen
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, PR China; Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, PR China
| | - Xiaoli Tian
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, PR China; Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, PR China
| | - Zijie Mei
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, PR China; Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, PR China
| | - Yacheng Wang
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, PR China; Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, PR China
| | - Ye Yao
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, PR China; Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, PR China
| | - Shimin Zhang
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, PR China; Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, PR China
| | - Xin Li
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, PR China; Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, PR China
| | - Hui Wang
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, PR China; Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, PR China
| | - Junhong Zhang
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, PR China; Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, PR China
| | - Conghua Xie
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, PR China; Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, PR China.
| |
Collapse
|
209
|
Kaga A, Watanabe H, Miyabayashi H, Metoki T, Kitaoka S, Kumaki S. A Term Infant of Neonatal Toxic Shock Syndrome-Like Exanthematous Disease Complicated with Hemophagocytic Syndrome. TOHOKU J EXP MED 2016; 240:167-170. [PMID: 27760897 DOI: 10.1620/tjem.240.167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Neonatal toxic shock syndrome-like exanthematous disease (NTED) is a newly recognized neonatal infectious disease, caused by the superantigen toxic shock syndrome toxin-1 (TSST-1). TSST-1 is mainly produced by methicillin-resistant Staphylococcus aureus, and the immune responses to TSST-1 are known to cause toxic shock syndrome, a life-threatening infectious disease. The clinical symptoms of NTED are skin rash, fever, and thrombocytopenia, but severe thrombocytopenia is rare in term infants with NTED. Although the cause of NTED is the same as that of toxic shock syndrome, the clinical symptoms of NTED are milder than toxic shock syndrome. The mild phenotype of NTED has been explained by selectively elevated serum levels of anti-inflammatory cytokine interleukin (IL)-10, which suppress immune responses to TSST-1. In the present study, we report a term female infant of NTED complicated with hemophagocytic syndrome (HPS). HPS is characterized by systemic inflammation and hemophagocytosis, caused by uncontrolled activation of T cells and macrophages. The serum IL-10 level of the patient at 4 days of age was relatively low (67 pg/mL) for NTED but still higher than normal controls (< 2.0 pg/mL). The patient also showed severe thrombocytopenia. We speculate that the serum IL-10 level of the patient was enough to supress immune responses to TSST-1, thereby resulting in NTED, but not enough to suppress the onset of HPS. This is the first reported case of NTED complicated with HPS. If a physician encounters an NTED patient with severe cytopenia, microscopic examination of peripheral blood smear should be carried out to exclude HPS.
Collapse
Affiliation(s)
- Akimune Kaga
- Department of Pediatrics, National Hospital Organization Sendai Medical Center
| | | | | | | | | | | |
Collapse
|
210
|
Kapp K, Schneider J, Schneider L, Gollinge N, Jänsch S, Schroff M, Wittig B, Kleuss C. Distinct immunological activation profiles of dSLIM® and ProMune® depend on their different structural context. IMMUNITY INFLAMMATION AND DISEASE 2016; 4:446-462. [PMID: 27980779 PMCID: PMC5134728 DOI: 10.1002/iid3.126] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 08/10/2016] [Accepted: 08/13/2016] [Indexed: 12/28/2022]
Abstract
INTRODUCTION DNA-based TLR9 agonists are potent activators of the immune system. ProMune® and dSLIM® belong to different families of TLR9 agonists and both have been established as cancer immunotherapeutics in clinical proof-of-concept studies. Unfortunately, ProMune® failed in pivotal oncological trials. dSLIM®, the active ingredient of Lefitolimod (MGN1703), successfully finished a double-blinded, placebo-controlled phase II study in patients with advanced colorectal cancer, exhibiting improved progression-free survival and durable disease control. METHODS To explain the different systemic efficacies of dSLIM® and ProMune®, both TLR9 agonists and chimeric molecules thereof are analyzed side-by-side in a panel of in vitro assays for immune activation. RESULTS AND CONCLUSIONS Indeed, dSLIM® exposure results in an IFN-α dependent broad activation of immune cells whereas ProMune® strongly stimulates B cells. Moreover, all functional effects of dSLIM® strictly depend on the presence of CG-motifs within its dumbbell-shaped, covalently closed structural context. Conversely, several immunological effects of ProMune® like IL-8 secretion are independent of CG-motifs and could be ascribed to the phosphorothioate-modifications of its DNA backbone, which may have caused the side effects of ProMune® in clinical trials. Finally, we showed that the implementation of ProMune® (ODN2006) base sequence into the characteristic dSLIM® dumbbell form resulted in dSLIM2006 with all beneficial effects for immunostimulation combined from both TLR9 classes without any CG-independent effects.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Burghardt Wittig
- Foundation Institute Molecular Biology and Bioinformatics Freie Universitaet Berlin Berlin Germany
| | | |
Collapse
|
211
|
Yasutomi M, Okazaki S, Hata I, Tanizawa A, Tamamura S, Kawakita M, Ohshima Y. Cytokine profiles in Mycoplasma pneumoniae infection-associated hemophagocytic lymphohistiocytosis. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2016; 49:813-816. [DOI: 10.1016/j.jmii.2014.11.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Revised: 11/13/2014] [Accepted: 11/29/2014] [Indexed: 11/17/2022]
|
212
|
Wunderlich M, Stockman C, Devarajan M, Ravishankar N, Sexton C, Kumar AR, Mizukawa B, Mulloy JC. A xenograft model of macrophage activation syndrome amenable to anti-CD33 and anti-IL-6R treatment. JCI Insight 2016; 1:e88181. [PMID: 27699249 DOI: 10.1172/jci.insight.88181] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Transgenic expression of key myelosupportive human cytokines in immune-deficient mice corrects for the lack of cross-species activities of stem cell factor (SCF), IL-3, and GM-CSF. When engrafted with human umbilical cord blood (UCB), these triple-transgenic mice produce BM and spleen grafts with much higher myeloid composition, relative to nontransgenic controls. Shortly after engraftment with UCB, these mice develop a severe, fatal macrophage activation syndrome (MAS) characterized by a progressive drop in rbc numbers, increased reticulocyte counts, decreased rbc half-life, progressive cytopenias, and evidence of chronic inflammation, including elevated human IL-6. The BM becomes strikingly hypocellular, and spleens are significantly enlarged with evidence of extramedullary hematopoiesis and activated macrophages engaged in hemophagocytosis. This manifestation of MAS does not respond to lymphocyte-suppressive therapies such as steroids, i.v. immunoglobulin, or antibody-mediated ablation of human B and T cells, demonstrating a lymphocyte-independent mechanism of action. In contrast, elimination of human myeloid cells using gemtuzumab ozogamicin (anti-CD33) completely reversed the disease. Additionally, the IL-6R antibody tocilizumab delayed progression and prolonged lifespan. This new model of MAS provides an opportunity for investigation of the mechanisms driving this disease and for the testing of directed therapies in a humanized mouse.
Collapse
Affiliation(s)
| | | | | | | | | | - Ashish R Kumar
- Division of Bone Marrow Transplantation and Immune Deficiency, Cancer and Blood Disease Institute, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, Ohio, USA
| | | | - James C Mulloy
- Division of Experimental Hematology and Cancer Biology and
| |
Collapse
|
213
|
Ruscitti P, Cipriani P, Ciccia F, Masedu F, Liakouli V, Carubbi F, Berardicurti O, Guggino G, Di Benedetto P, Di Bartolomeo S, Valenti M, Triolo G, Giacomelli R. Prognostic factors of macrophage activation syndrome, at the time of diagnosis, in adult patients affected by autoimmune disease: Analysis of 41 cases collected in 2 rheumatologic centers. Autoimmun Rev 2016; 16:16-21. [PMID: 27664384 DOI: 10.1016/j.autrev.2016.09.016] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 07/29/2016] [Indexed: 12/21/2022]
Abstract
Macrophage activation syndrome (MAS) is a rare, life-threatening disease in which early diagnosis and aggressive therapeutic strategy may improve the outcome. Due to its rarity, epidemiologic data are still lacking. Hyperferritinemia is frequently associated with MAS and might modulate the cytokine storm, which is involved in the development of multiple organ failure. In this paper, we investigated clinical data, treatments, and outcome of a homogeneous cohort of 41 adult MAS patients, complicating autoimmune rheumatic diseases. MAS-related death occurred in 17 patients (42.5%) during the follow-up, and older age and increased serum ferritin levels, at the time of diagnosis, were significantly associated with mortality. In conclusion, adult MAS is associated with high mortality rate. Some clinical features at diagnosis may be predictive of MAS-associated death.
Collapse
Affiliation(s)
- Piero Ruscitti
- Division of Rheumatology, University of L'Aquila, L'Aquila, Italy
| | - Paola Cipriani
- Division of Rheumatology, University of L'Aquila, L'Aquila, Italy
| | | | - Francesco Masedu
- Division of Medical Statistic Unit, University of L'Aquila, L'Aquila, Italy
| | | | | | | | | | | | | | - Marco Valenti
- Division of Medical Statistic Unit, University of L'Aquila, L'Aquila, Italy
| | - Giovanni Triolo
- Division of Rheumatology, University of Palermo, Palermo, Italy
| | | |
Collapse
|
214
|
Salmonella Infection Enhances Erythropoietin Production by the Kidney and Liver, Which Correlates with Elevated Bacterial Burdens. Infect Immun 2016; 84:2833-41. [PMID: 27456828 PMCID: PMC5038055 DOI: 10.1128/iai.00337-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 07/18/2016] [Indexed: 02/06/2023] Open
Abstract
Salmonella infection profoundly affects host erythroid development, but the mechanisms responsible for this effect remain poorly understood. We monitored the impact of Salmonella infection on erythroid development and found that systemic infection induced anemia, splenomegaly, elevated erythropoietin (EPO) levels, and extramedullary erythropoiesis in a process independent of Salmonella pathogenicity island 2 (SPI2) or flagellin. The circulating EPO level was also constitutively higher in mice lacking the expression of signal-regulatory protein α (SIRPα). The expression level of EPO mRNA was elevated in the kidney and liver but not increased in the spleens of infected mice despite the presence of extramedullary erythropoiesis in this tissue. In contrast to data from a previous report, mice lacking EPO receptor (EPOR) expression on nonerythroid cells (EPOR rescued) had bacterial loads similar to those of wild-type mice following Salmonella infection. Indeed, treatment to reduce splenic erythroblasts and mature red blood cells correlated with elevated bacterial burdens, implying that extramedullary erythropoiesis benefits the host. Together, these findings emphasize the profound effect of Salmonella infection on erythroid development and suggest that the modulation of erythroid development has both positive and negative consequences for host immunity.
Collapse
|
215
|
TLR9-mediated inflammation drives a Ccr2-independent peripheral monocytosis through enhanced extramedullary monocytopoiesis. Proc Natl Acad Sci U S A 2016; 113:10944-9. [PMID: 27621476 DOI: 10.1073/pnas.1524487113] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Monocytes are innate immune cells that interact with their environment through the expression of pattern recognition receptors, including Toll-like receptors (TLRs). Both monocytes and TLRs are implicated in driving persistent inflammation in autoimmune diseases. However, cell-intrinsic mechanisms to control inflammation, including TLR tolerance, are thought to limit inflammatory responses in the face of repeated TLR activation, leaving it unclear how chronic TLR-mediated inflammation is maintained in vivo. Herein, we used a well-characterized model of systemic inflammation to determine the mechanisms allowing sustained TLR9 responses to develop in vivo. Monocytes were identified as the main TLR9-responsive cell and accumulated in peripherally inflamed tissues during TLR9-driven inflammation. Intriguingly, canonical mechanisms controlling monocyte production and localization were altered during the systemic inflammatory response, as accumulation of monocytes in the liver and spleen developed in the absence of dramatic increases in bone marrow monocyte progenitors and was independent of chemokine (C-C motif) receptor 2 (Ccr2). Instead, TLR9-driven inflammation induced a Ccr2-independent expansion of functionally enhanced extramedullary myeloid progenitors that correlated with the peripheral accumulation of monocytes in both wild-type and Ccr2(-/-) mice. Our data implicate inflammation-induced extramedullary monocytopoiesis as a peripheral source of newly produced TLR9 responsive monocytes capable of sustaining chronic TLR9 responses in vivo. These findings help to explain how chronic TLR-mediated inflammation may be perpetuated in autoimmune diseases and increase our understanding of how monocytes are produced and positioned during systemic inflammatory responses.
Collapse
|
216
|
Aytaç S, Batu ED, Ünal Ş, Bilginer Y, Çetin M, Tuncer M, Gümrük F, Özen S. Macrophage activation syndrome in children with systemic juvenile idiopathic arthritis and systemic lupus erythematosus. Rheumatol Int 2016; 36:1421-9. [DOI: 10.1007/s00296-016-3545-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 08/02/2016] [Indexed: 01/07/2023]
|
217
|
Brisse E, Wouters CH, Matthys P. Advances in the pathogenesis of primary and secondary haemophagocytic lymphohistiocytosis: differences and similarities. Br J Haematol 2016; 174:203-17. [PMID: 27264204 DOI: 10.1111/bjh.14147] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Haemophagocytic lymphohistiocytosis (HLH) comprises a heterogeneous spectrum of hyperinflammatory conditions that are inherited (primary HLH) or acquired in a context of infections, malignancies or autoimmune/autoinflammatory disorders (secondary HLH). Genetic defects in the cytotoxic machinery of natural killer and CD8(+) T cells underlie primary HLH, with residual cytotoxicity determining disease severity. Improved sequencing techniques have expanded the range of causal mutations and have redefined many cases of secondary HLH as primary HLH and vice versa, blurring the distinction between both subtypes. These insights allow HLH to be conceptualized as a threshold disease, in which interplay between various genetic and environmental factors causes progressive inflammation into a critical point, beyond which uncontrolled activation of immune cells and excessive cytokine production give rise to the cardinal symptoms of HLH. Various pathogenic pathways may thus converge to a common end stage of fulminant HLH.
Collapse
Affiliation(s)
- Ellen Brisse
- Laboratory of Immunobiology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Carine H Wouters
- Laboratory of Paediatric Immunology, KU Leuven, University Hospital Gasthuisberg, Leuven, Belgium
| | - Patrick Matthys
- Laboratory of Immunobiology, Rega Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
218
|
Demetris AJ, Bellamy COC, Gandhi CR, Prost S, Nakanuma Y, Stolz DB. Functional Immune Anatomy of the Liver-As an Allograft. Am J Transplant 2016; 16:1653-80. [PMID: 26848550 DOI: 10.1111/ajt.13749] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/26/2016] [Accepted: 01/28/2016] [Indexed: 01/25/2023]
Abstract
The liver is an immunoregulatory organ in which a tolerogenic microenvironment mitigates the relative "strength" of local immune responses. Paradoxically, necro-inflammatory diseases create the need for most liver transplants. Treatment of hepatitis B virus, hepatitis C virus, and acute T cell-mediated rejection have redirected focus on long-term allograft structural integrity. Understanding of insults should enable decades of morbidity-free survival after liver replacement because of these tolerogenic properties. Studies of long-term survivors show low-grade chronic inflammatory, fibrotic, and microvascular lesions, likely related to some combination of environment insults (i.e. abnormal physiology), donor-specific antibodies, and T cell-mediated immunity. The resultant conundrum is familiar in transplantation: adequate immunosuppression produces chronic toxicities, while lightened immunosuppression leads to sensitization, immunological injury, and structural deterioration. The "balance" is more favorable for liver than other solid organ allografts. This occurs because of unique hepatic immune physiology and provides unintended benefits for allografts by modulating various afferent and efferent limbs of allogenic immune responses. This review is intended to provide a better understanding of liver immune microanatomy and physiology and thereby (a) the potential structural consequences of low-level, including allo-antibody-mediated injury; and (b) how liver allografts modulate immune reactions. Special attention is given to the microvasculature and hepatic mononuclear phagocytic system.
Collapse
Affiliation(s)
- A J Demetris
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - C O C Bellamy
- Department of Pathology, University of Edinburgh, Edinburgh, Scotland, UK
| | - C R Gandhi
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center and Department of Surgery, University of Cincinnati, Cincinnati, OH
| | - S Prost
- Department of Pathology, University of Edinburgh, Edinburgh, Scotland, UK
| | - Y Nakanuma
- Department of Diagnostic Pathology, Shizuoka Cancer Center, Shizuoka, Japan
| | - D B Stolz
- Center for Biologic Imaging, Cell Biology, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
219
|
Abstract
Macrophage activation syndrome (MAS) refers to acute overwhelming inflammation caused by a 'cytokine storm'. Although increasingly recognized as a life-threatening complication of various rheumatic diseases, clinically, MAS is strikingly similar to primary and secondary forms of haemophagocytic lymphohistiocytosis (HLH). Not surprisingly, many rheumatologists prefer the term secondary HLH rather than MAS to describe this condition, and efforts to change the nomenclature are in progress. The pathophysiology of MAS remains elusive, but observations in animal models, as well as data on the effects of new anticytokine therapies on rates and clinical presentations of MAS in patients with systemic juvenile idiopathic arthritis (sJIA), provide clues to the understanding of this perplexing clinical phenomenon. In this Review, we explore the latest available evidence and discuss potential diagnostic challenges in the era of increasing use of biologic therapies.
Collapse
Affiliation(s)
- Alexei A Grom
- Division of Rheumatology, ML 4010, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio 45229, USA
| | - AnnaCarin Horne
- Department of Women's and Children's Health, Karolinska University Hospital, Karolinska vägen, 171 76 Solna, Stockholm, Sweden
| | - Fabrizio De Benedetti
- Division of Rheumatology, Ospedale Pediatrico Bambino Gesù, Piazza Sant'Onofrio, 4, Rome, Italy
| |
Collapse
|
220
|
Filippone EJ, Farber JL. Hemophagocytic lymphohistiocytosis: an update for nephrologists. Int Urol Nephrol 2016; 48:1291-1304. [DOI: 10.1007/s11255-016-1294-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 04/11/2016] [Indexed: 12/11/2022]
|
221
|
Cron RQ, Behrens EM, Shakoory B, Ramanan AV, Chatham WW. Does Viral Hemorrhagic Fever Represent Reactive Hemophagocytic Syndrome? J Rheumatol 2016; 42:1078-80. [PMID: 26136549 DOI: 10.3899/jrheum.150108] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Randy Q Cron
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama;
| | | | - Bita Shakoory
- Department of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | | | - Walter W Chatham
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
222
|
Put K, Brisse E, Avau A, Imbrechts M, Mitera T, Janssens R, Proost P, Fallarino F, Wouters CH, Matthys P. IDO1 Deficiency Does Not Affect Disease in Mouse Models of Systemic Juvenile Idiopathic Arthritis and Secondary Hemophagocytic Lymphohistiocytosis. PLoS One 2016; 11:e0150075. [PMID: 26914138 PMCID: PMC4767214 DOI: 10.1371/journal.pone.0150075] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 02/04/2016] [Indexed: 01/16/2023] Open
Abstract
OBJECTIVES Indoleamine 2,3-dioxygenase-1 (IDO1) is an immune-modulatory enzyme that catalyzes the degradation of tryptophan (Trp) to kynurenine (Kyn) and is strongly induced by interferon (IFN)-γ. We previously reported highly increased levels of IFN-γ and corresponding IDO activity in patients with hemophagocytic lymphohistiocytosis (HLH), a hyper-inflammatory syndrome. On the other hand, IFN-γ and IDO were low in patients with systemic juvenile idiopathic arthritis (sJIA), an autoinflammatory syndrome. As HLH can occur as a complication of sJIA, the opposing levels of both IFN-γ and IDO are remarkable. In animal models for sJIA and HLH, the role of IFN-γ differs from being protective to pathogenic. In this study, we aimed to unravel the role of IDO1 in the pathogenesis of sJIA and HLH. METHODS Wild-type and IDO1-knockout (IDO1-KO) mice were used in 3 models of sJIA or HLH: complete Freund's adjuvant (CFA)-injected mice developed an sJIA-like syndrome and secondary HLH (sHLH) was evoked by either repeated injection of unmethylated CpG oligonucleotide or by primary infection with mouse cytomegalovirus (MCMV). An anti-CD3-induced cytokine release syndrome was used as a non-sJIA/HLH control model. RESULTS No differences were found in clinical, laboratory and hematological features of sJIA/HLH between wild-type and IDO1-KO mice. As IDO modulates the immune response via induction of regulatory T cells and inhibition of T cell proliferation, we investigated both features in a T cell-triggered cytokine release syndrome. Again, no differences were observed in serum cytokine levels, percentages of regulatory T cells, nor of proliferating or apoptotic thymocytes and lymph node cells. CONCLUSIONS Our data demonstrate that IDO1 deficiency does not affect inflammation in sJIA, sHLH and a T cell-triggered cytokine release model. We hypothesize that other tryptophan-catabolizing enzymes like IDO2 and tryptophan 2,3-dioxygenase (TDO) might compensate for the lack of IDO1.
Collapse
MESH Headings
- Animals
- Apoptosis/immunology
- Arthritis, Experimental/genetics
- Arthritis, Experimental/immunology
- Arthritis, Juvenile/genetics
- Arthritis, Juvenile/pathology
- Cell Proliferation
- Cytokines/blood
- Cytomegalovirus/immunology
- Cytomegalovirus Infections/immunology
- Cytomegalovirus Infections/pathology
- Freund's Adjuvant/immunology
- Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics
- Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism
- Inflammation/immunology
- Interferon-gamma/genetics
- Interferon-gamma/immunology
- Interferon-gamma/metabolism
- Lymphohistiocytosis, Hemophagocytic/genetics
- Lymphohistiocytosis, Hemophagocytic/pathology
- Macrophage Activation Syndrome/genetics
- Macrophage Activation Syndrome/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- T-Lymphocytes/immunology
- Tryptophan Oxygenase/metabolism
Collapse
Affiliation(s)
- Karen Put
- Laboratory of Immunobiology, Rega-Institute for Medical Research, Department of Immunology and Microbiology, KU Leuven – University of Leuven, Leuven, Belgium
| | - Ellen Brisse
- Laboratory of Immunobiology, Rega-Institute for Medical Research, Department of Immunology and Microbiology, KU Leuven – University of Leuven, Leuven, Belgium
| | - Anneleen Avau
- Laboratory of Immunobiology, Rega-Institute for Medical Research, Department of Immunology and Microbiology, KU Leuven – University of Leuven, Leuven, Belgium
| | - Maya Imbrechts
- Laboratory of Immunobiology, Rega-Institute for Medical Research, Department of Immunology and Microbiology, KU Leuven – University of Leuven, Leuven, Belgium
| | - Tania Mitera
- Laboratory of Immunobiology, Rega-Institute for Medical Research, Department of Immunology and Microbiology, KU Leuven – University of Leuven, Leuven, Belgium
| | - Rik Janssens
- Laboratory of Molecular Immunology, Rega-Institute for Medical Research, Department of Immunology and Microbiology, KU Leuven – University of Leuven, Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Rega-Institute for Medical Research, Department of Immunology and Microbiology, KU Leuven – University of Leuven, Leuven, Belgium
| | - Francesca Fallarino
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
| | - Carine H. Wouters
- Laboratory of Pediatric Immunology, University Hospitals Leuven, KU Leuven – University of Leuven, Leuven, Belgium
| | - Patrick Matthys
- Laboratory of Immunobiology, Rega-Institute for Medical Research, Department of Immunology and Microbiology, KU Leuven – University of Leuven, Leuven, Belgium
- * E-mail:
| |
Collapse
|
223
|
Brisse E, Imbrechts M, Put K, Avau A, Mitera T, Berghmans N, Rutgeerts O, Waer M, Ninivaggi M, Kelchtermans H, Boon L, Snoeck R, Wouters CH, Andrei G, Matthys P. Mouse Cytomegalovirus Infection in BALB/c Mice Resembles Virus-Associated Secondary Hemophagocytic Lymphohistiocytosis and Shows a Pathogenesis Distinct from Primary Hemophagocytic Lymphohistiocytosis. THE JOURNAL OF IMMUNOLOGY 2016; 196:3124-34. [PMID: 26903481 DOI: 10.4049/jimmunol.1501035] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 01/22/2016] [Indexed: 01/04/2023]
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is a life-threatening immunological disorder that is characterized by systemic inflammation, widespread organ damage, and hypercytokinemia. Primary HLH is caused by mutations in granule-mediated cytotoxicity, whereas secondary HLH occurs, without a known genetic background, in a context of infections, malignancies, or autoimmune and autoinflammatory disorders. Clinical manifestations of both HLH subtypes are often precipitated by a viral infection, predominantly with Herpesviridae. Exploiting this knowledge, we established an animal model of virus-associated secondary HLH by infecting immunocompetent wild-type mice with the β-herpesvirus murine CMV. C57BL/6 mice developed a mild inflammatory phenotype, whereas BALB/c mice displayed the clinicopathologic features of HLH, as set forth in the Histiocyte Society diagnostic guidelines: fever, cytopenia, hemophagocytosis, hyperferritinemia, and elevated serum levels of soluble CD25. BALB/c mice also developed lymphadenopathy, liver dysfunction, and decreased NK cell numbers. Lymphoid and myeloid cells were in a hyperactivated state. Nonetheless, depletion of CD8(+) T cells could not inhibit or cure the HLH-like syndrome, highlighting a first dissimilarity from mouse models of primary HLH. Immune cell hyperactivation in BALB/c mice was accompanied by a cytokine storm. Notably, plasma levels of IFN-γ, a key pathogenic cytokine in models of primary HLH, were the highest. Nevertheless, murine CMV-infected IFN-γ-deficient mice still developed the aforementioned HLH-like symptoms. In fact, IFN-γ-deficient mice displayed a more complete spectrum of HLH, including splenomegaly, coagulopathy, and decreased NK cell cytotoxicity, indicating a regulatory role for IFN-γ in the pathogenesis of virus-associated secondary HLH as opposed to its central pathogenic role in primary HLH.
Collapse
Affiliation(s)
- Ellen Brisse
- Laboratory of Immunobiology, Rega Institute, University of Leuven, 3000 Leuven, Belgium
| | - Maya Imbrechts
- Laboratory of Immunobiology, Rega Institute, University of Leuven, 3000 Leuven, Belgium
| | - Karen Put
- Laboratory of Immunobiology, Rega Institute, University of Leuven, 3000 Leuven, Belgium
| | - Anneleen Avau
- Laboratory of Immunobiology, Rega Institute, University of Leuven, 3000 Leuven, Belgium
| | - Tania Mitera
- Laboratory of Immunobiology, Rega Institute, University of Leuven, 3000 Leuven, Belgium
| | - Nele Berghmans
- Laboratory of Molecular Immunology, Rega Institute, University of Leuven, 3000 Leuven, Belgium
| | - Omer Rutgeerts
- Laboratory of Experimental Transplantation, University of Leuven, 3000 Leuven, Belgium
| | - Mark Waer
- Laboratory of Experimental Transplantation, University of Leuven, 3000 Leuven, Belgium
| | - Marisa Ninivaggi
- Synapse BV, Cardiovascular Research Institute Maastricht School for Cardiovascular Diseases, Maastricht University, 6229 Maastricht, the Netherlands
| | - Hilde Kelchtermans
- Synapse BV, Cardiovascular Research Institute Maastricht School for Cardiovascular Diseases, Maastricht University, 6229 Maastricht, the Netherlands
| | - Louis Boon
- Epirus Biopharmaceuticals Netherlands, 3584 Utrecht, the Netherlands
| | - Robert Snoeck
- Laboratory of Virology and Chemotherapy, Rega Institute, University of Leuven, 3000 Leuven, Belgium; and
| | - Carine H Wouters
- Laboratory of Pediatric Immunology, University Hospital Gasthuisberg, University of Leuven, 3000 Leuven, Belgium
| | - Graciela Andrei
- Laboratory of Virology and Chemotherapy, Rega Institute, University of Leuven, 3000 Leuven, Belgium; and
| | - Patrick Matthys
- Laboratory of Immunobiology, Rega Institute, University of Leuven, 3000 Leuven, Belgium;
| |
Collapse
|
224
|
Polygenic mutations in the cytotoxicity pathway increase susceptibility to develop HLH immunopathology in mice. Blood 2016; 127:2113-21. [PMID: 26864340 DOI: 10.1182/blood-2015-12-688960] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 02/06/2016] [Indexed: 02/06/2023] Open
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is a life-threatening hyperinflammatory disease. Inherited forms of HLH are caused by biallelic mutations in several effectors of granule-dependent lymphocyte-mediated cytotoxicity. A small proportion of patients with a so-called "secondary" form of HLH, which develops in the aftermath of infection, autoimmunity, or cancer, carry a monoallelic mutation in one or more HLH-associated genes. Although this observation suggests that HLH may have a polygenic mode of inheritance, the latter is very difficult to prove in humans. In order to determine whether the accumulation of partial genetic defects in lymphocyte-mediated cytotoxicity can contribute to the development of HLH, we generated mice that were doubly or triply heterozygous for mutations in HLH-associated genes, those coding for perforin, Rab27a, and syntaxin-11. We found that the accumulation of monoallelic mutations did indeed increase the risk of developing HLH immunopathology after lymphocytic choriomeningitis virus infection. In mechanistic terms, the accumulation of heterozygous mutations in the two degranulation genes Rab27a and syntaxin-11, impaired the dynamics and secretion of cytotoxic granules at the immune synapse of T lymphocytes. In addition, the accumulation of heterozygous mutations within the three genes impaired natural killer lymphocyte cytotoxicity in vivo. The genetic defects can be ranked in terms of the severity of the resulting HLH manifestations. Our results form the basis of a polygenic model of the occurrence of secondary HLH.
Collapse
|
225
|
Cifaldi L, Prencipe G, Caiello I, Bracaglia C, Locatelli F, De Benedetti F, Strippoli R. Inhibition of natural killer cell cytotoxicity by interleukin-6: implications for the pathogenesis of macrophage activation syndrome. Arthritis Rheumatol 2016; 67:3037-46. [PMID: 26251193 DOI: 10.1002/art.39295] [Citation(s) in RCA: 206] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 07/16/2015] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Systemic juvenile idiopathic arthritis (JIA) is associated with high levels of interleukin-6 (IL-6) in the serum and synovial fluid, and impairment of natural killer (NK) cell function is often observed. This study was undertaken to evaluate a possible link between these 2 biologic findings and whether they may be associated with the development of macrophage activation syndrome, a condition frequently observed in systemic JIA. METHODS Splenocytes from wild-type (WT) or IL-6-transgenic (Tg) mice were evaluated for NK cell cytotoxicity using a (51) Cr-release assay. Numbers of NK cells and expression of perforin, granzyme B, CD69, and CD107a were evaluated by flow cytometry. Human peripheral blood mononuclear cells (PBMCs) isolated from healthy donors were treated with IL-6 and cultured in the presence or absence of tocilizumab (TCZ), an IL-6 receptor blocker. Human polyclonal NK cells from healthy donor PBMCs were evaluated for cell cytotoxicity and expression of perforin, granzyme B, and CD107a. PBMCs harvested from patients with systemic JIA during periods of active or inactive disease were left untreated or treated with IL-6 in combination with soluble IL-6 receptor and analyzed for the expression of perforin and granzyme B. RESULTS Splenic NK cell cytotoxicity was reduced in IL-6-Tg mice compared to WT mice. Levels of CD69 and CD107a showed no significant differences, whereas expression of perforin and granzyme B was impaired in NK cells from IL-6-Tg mice. Exposure of human peripheral blood NK cells to IL-6 led to reduced expression of perforin and granzyme B. Culturing human polyclonal NK cells in the presence of TCZ significantly increased cell cytotoxicity, and also increased expression of perforin and granzyme B. In patients with systemic JIA, a reduction in IL-6 plasma levels during disease remission correlated with the rescue of perforin and granzyme B expression in NK cells from these patients. CONCLUSION In both mice and humans, IL-6 down-modulated the cytotoxic activity of NK cells. This decrease was associated with reduced perforin and granzyme B levels in the absence of altered granule exocytosis.
Collapse
Affiliation(s)
| | | | - Ivan Caiello
- IRCCS Bambino Gesú Children's Hospital, Rome, Italy
| | | | - Franco Locatelli
- IRCCS Bambino Gesú Children's Hospital, Rome, Italy, and University of Pavia, Pavia, Italy
| | | | - Raffaele Strippoli
- IRCCS Bambino Gesú Children's Hospital and Sapienza University of Rome, Rome, Italy
| |
Collapse
|
226
|
Janus kinase inhibition lessens inflammation and ameliorates disease in murine models of hemophagocytic lymphohistiocytosis. Blood 2016; 127:1666-75. [PMID: 26825707 DOI: 10.1182/blood-2015-12-684399] [Citation(s) in RCA: 203] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 01/13/2016] [Indexed: 02/06/2023] Open
Abstract
Hemophagocytic lymphohistiocytosis (HLH) comprises an emerging spectrum of inherited and noninherited disorders of the immune system characterized by the excessive production of cytokines, including interferon-γ and interleukins 2, 6, and 10 (IL-2, IL-6, and IL-10). The Janus kinases (JAKs) transduce signals initiated following engagement of specific receptors that bind a broad array of cytokines, including those overproduced in HLH. Based on the central role for cytokines in the pathogenesis of HLH, we sought to examine whether the inhibition of JAK function might lessen inflammation in murine models of the disease. Toward this end, we examined the effects of JAK inhibition using a model of primary (inherited) HLH in which perforin-deficient (Prf1(-∕-)) mice are infected with lymphocytic choriomeningitis virus (LCMV) and secondary (noninherited) HLH in which C57BL/6 mice receive repeated injections of CpG DNA. In both models, treatment with the JAK1/2 inhibitor ruxolitinib significantly lessened the clinical and laboratory manifestations of HLH, including weight loss, organomegaly, anemia, thrombocytopenia, hypercytokinemia, and tissue inflammation. Importantly, ruxolitinib treatment also significantly improved the survival of LCMV-infectedPrf1(-∕-)mice. Mechanistic studies revealed that in vivo exposure to ruxolitinib inhibited signal transducer and activation of transcription 1-dependent gene expression, limited CD8(+)T-cell expansion, and greatly reduced proinflammatory cytokine production, without effecting degranulation and cytotoxic function. Collectively, these findings highlight the JAKs as novel, druggable targets for mitigating the cytokine-driven hyperinflammation that occurs in HLH. These observations also support the incorporation of JAK inhibitors such as ruxolitinib into future clinical trials for patients with these life-threatening disorders.
Collapse
|
227
|
Krogmann AO, Lüsebrink E, Steinmetz M, Asdonk T, Lahrmann C, Lütjohann D, Nickenig G, Zimmer S. Proinflammatory Stimulation of Toll-Like Receptor 9 with High Dose CpG ODN 1826 Impairs Endothelial Regeneration and Promotes Atherosclerosis in Mice. PLoS One 2016; 11:e0146326. [PMID: 26751387 PMCID: PMC4709087 DOI: 10.1371/journal.pone.0146326] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 12/16/2015] [Indexed: 12/11/2022] Open
Abstract
Background Toll-like receptors (TLR) of the innate immune system have been closely linked with the development of atherosclerotic lesions. TLR9 is activated by unmethylated CpG motifs within ssDNA, but also by CpG motifs in nucleic acids released during vascular apoptosis and necrosis. The role of TLR9 in vascular disease remains controversial and we sought to investigate the effects of a proinflammatory TLR9 stimulation in mice. Methods and Findings TLR9-stimulation with high dose CpG ODN at concentrations between 6.25nM to 30nM induced a significant proinflammatory cytokine response in mice. This was associated with impaired reendothelialization upon acute denudation of the carotid and increased numbers of circulating endothelial microparticles, as a marker for amplified endothelial damage. Chronic TLR9 agonism in apolipoprotein E-deficient (ApoE-/-) mice fed a cholesterol-rich diet increased aortic production of reactive oxygen species, the number of circulating endothelial microparticles, circulating sca-1/flk-1 positive cells, and most importantly augmented atherosclerotic plaque formation when compared to vehicle treated animals. Importantly, high concentrations of CpG ODN are required for these proatherogenic effects. Conclusions Systemic stimulation of TLR9 with high dose CpG ODN impaired reendothelialization upon acute vascular injury and increased atherosclerotic plaque development in ApoE-/- mice. Further studies are necessary to fully decipher the contradictory finding of TLR9 agonism in vascular biology.
Collapse
Affiliation(s)
- Alexander O. Krogmann
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Bonn, 53105, Bonn, Germany
- * E-mail:
| | - Enzo Lüsebrink
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Bonn, 53105, Bonn, Germany
| | - Martin Steinmetz
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Bonn, 53105, Bonn, Germany
| | - Tobias Asdonk
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Bonn, 53105, Bonn, Germany
| | - Catharina Lahrmann
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Bonn, 53105, Bonn, Germany
| | - Dieter Lütjohann
- Institut für klinische Chemie und klinische Pharmakologie, Universität Bonn, 53125, Bonn, Germany
| | - Georg Nickenig
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Bonn, 53105, Bonn, Germany
| | - Sebastian Zimmer
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Bonn, 53105, Bonn, Germany
| |
Collapse
|
228
|
WAKIGUCHI H, OHGA S. Clinical utility of the liposteroid therapy: Potential effects on the macrophage activation. ACTA ACUST UNITED AC 2016; 39:190-6. [DOI: 10.2177/jsci.39.190] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Hiroyuki WAKIGUCHI
- Department of Pediatrics, Yamaguchi University Graduate School of Medicine
| | - Shouichi OHGA
- Department of Pediatrics, Yamaguchi University Graduate School of Medicine
| |
Collapse
|
229
|
Esmaili H, Mostafidi E, Mehramuz B, Ardalan M, Mohajel-Shoja M. An update on renal involvement in hemophagocytic syndrome (macrophage activation syndrome). J Nephropathol 2016; 5:8-14. [PMID: 27047804 PMCID: PMC4790190 DOI: 10.15171/jnp.2016.02] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 07/03/2015] [Indexed: 12/16/2022] Open
Abstract
CONTEXT Hemophagocytic syndrome (HPS) is mainly characterized by massive infiltration of bone marrow by activated macrophages and often presents with pancytopenia. Thrombotic microangiopathy (TMA) is also present with thrombocytopenia and renal involvement. Both conditions could coexist with each other and complicate the condition. EVIDENCE ACQUISITION Directory of Open Access Journals (DOAJ), EMBASE, Google Scholar, PubMed, EBSCO, and Web of Science with keywords relevant to; Hemophagocytic syndrome, macrophage activation syndrome, interferon-gamma and thrombotic microangiopathy, have been searched. RESULTS Viral infection, rheumatologic disease and malignancies are the main underlying causes for secondary HPS. calcineurin inhibitors and viral infections are also the main underlying causes of TMA in transplant recipients. In this review, we discussed a 39-year-old male who presented with pancytopenia and renal allograft dysfunction. With the diagnosis of HPS induced TMA his renal condition and pancytopenia improved after receiving intravenous immunoglobulin (IVIG) and plasmapheresis therapy. CONCLUSIONS HPS is an increasingly recognized disorder in the realm of different medical specialties. Renal involvement complicates the clinical picture of the disease, and this condition even is more complex in renal transplant recipients. We should consider the possibility of HPS in any renal transplant recipient with pancytopenia and allograft dysfunction. The combination of HPS with TMA future increases the complexity of the situation.
Collapse
Affiliation(s)
- Haydarali Esmaili
- Department of Pathology, Al-Zahra Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elmira Mostafidi
- Department of Pathology, Al-Zahra Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahareh Mehramuz
- Department of Pathology, Al-Zahra Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | |
Collapse
|
230
|
Liu J, Guo YM, Onai N, Ohyagi H, Hirokawa M, Takahashi N, Tagawa H, Ubukawa K, Kobayashi I, Tezuka H, Minamiya Y, Ohteki T, Sawada K. Cytosine-Phosphorothionate-Guanine Oligodeoxynucleotides Exacerbates Hemophagocytosis by Inducing Tumor Necrosis Factor-Alpha Production in Mice after Bone Marrow Transplantation. Biol Blood Marrow Transplant 2015; 22:627-636. [PMID: 26740374 DOI: 10.1016/j.bbmt.2015.12.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 12/21/2015] [Indexed: 10/22/2022]
Abstract
Hemophagocytic syndrome (HPS) is frequently associated with hematopoietic stem cell transplantation and is treated with some benefit derived from TNF-α inhibitors. However, the mechanisms of how HPS occurs and how a TNF-α inhibitor exerts some benefit to HPS management have remained unclear. We evaluated the effect of toll-like receptor (TLR) ligands, especially focusing on cytosine-phosphorothionate-guanine oligodeoxynucleotide (CpG), a TLR9 ligand, on HPS in mice that underwent transplantation with syngeneic or allogeneic bone marrow (BM) cells (Syn-BMT, Allo-BMT), or with allogeneic BM cells plus splenocytes to promote graft-versus-host disease (GVHD mice). Hemophagocytosis was a common feature early after all BMT, but it subsided in Syn-BMT and Allo-BMT mice. In GVHD mice, however, hemophagocytosis persisted and was accompanied by upregulated production of IFN-γ but not TNF-α, and it was suppressed by blockade of IFN-γ but not TNF-α. A single injection of the TLR9 ligand CpG promoted HPS in all BMT mice and was lethal in GVHD mice, accompanied by greatly upregulated production of TNF-α, IL-6, and IFN-γ. Blocking of TNF-α, but not IL-6 or IFN-γ, suppressed CpG-induced HPS in all BMT mice and rescued GVHD mice from CpG-induced mortality. Thus, TLR9 signaling mediates TNF-α-driven HPS in BMT mice and is effectively treated through TNF-α inhibition.
Collapse
Affiliation(s)
- Jiajia Liu
- Department of Hematology, Nephrology, and Rheumatology, Akita University Graduate School of Medicine, Akita, Japan; Department of Chest Surgery, Akita University Graduate School of Medicine, Akita, Japan
| | - Yong-Mei Guo
- Department of Hematology, Nephrology, and Rheumatology, Akita University Graduate School of Medicine, Akita, Japan
| | - Nobuyuki Onai
- Department of Biodefense Research, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan; Japan Science and Technology Agency, Core Research for Evolutional Science and Technology, Tokyo, Japan
| | - Hideaki Ohyagi
- Department of Hematology, Nephrology, and Rheumatology, Akita University Graduate School of Medicine, Akita, Japan
| | - Makoto Hirokawa
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, Akita, Japan
| | - Naoto Takahashi
- Department of Hematology, Nephrology, and Rheumatology, Akita University Graduate School of Medicine, Akita, Japan
| | - Hiroyuki Tagawa
- Department of Hematology, Nephrology, and Rheumatology, Akita University Graduate School of Medicine, Akita, Japan
| | - Kumi Ubukawa
- Department of Hematology, Nephrology, and Rheumatology, Akita University Graduate School of Medicine, Akita, Japan
| | - Isuzu Kobayashi
- Department of Hematology, Nephrology, and Rheumatology, Akita University Graduate School of Medicine, Akita, Japan
| | - Hiroyuki Tezuka
- Life Science Tokyo Advanced Research Center, Hoshi University, Tokyo, Japan
| | - Yoshihiro Minamiya
- Department of Chest Surgery, Akita University Graduate School of Medicine, Akita, Japan
| | - Toshiaki Ohteki
- Department of Biodefense Research, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan; Japan Science and Technology Agency, Core Research for Evolutional Science and Technology, Tokyo, Japan
| | | |
Collapse
|
231
|
Le Joncour A, Bidegain F, Ziol M, Galicier L, Oksenhendler E, Mechai F, Boutboul D, Bouchaud O. Hemophagocytic Lymphohistiocytosis Associated With Bartonella henselae Infection in an HIV-Infected Patient. Clin Infect Dis 2015; 62:804-6. [PMID: 26646679 DOI: 10.1093/cid/civ999] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 11/24/2015] [Indexed: 12/20/2022] Open
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is a life-threatening syndrome that often occurs in immunocompromised patients. We report the first case of HLH due to Bartonella henselae infection in a patient with human immunodeficiency virus infection. Early recognition of HLH and B. henselae through liver biopsy and serological tests led to the patient's recovery.
Collapse
Affiliation(s)
- Alexandre Le Joncour
- Department of Clinical Immunology, Hôpital Saint Louis, AP-HP, and EA3518, Université Paris Diderot
| | | | - Marianne Ziol
- Department of Pathology, Hôpital Jean Verdier, AP-HP, Bondy, France
| | - Lionel Galicier
- Department of Clinical Immunology, Hôpital Saint Louis, AP-HP, and EA3518, Université Paris Diderot
| | - Eric Oksenhendler
- Department of Clinical Immunology, Hôpital Saint Louis, AP-HP, and EA3518, Université Paris Diderot
| | - Frederic Mechai
- Department of Infectious Diseases, Hôpital Avicenne, AP-HP, Bobigny
| | - David Boutboul
- Department of Clinical Immunology, Hôpital Saint Louis, AP-HP, and EA3518, Université Paris Diderot
| | - Olivier Bouchaud
- Department of Infectious Diseases, Hôpital Avicenne, AP-HP, Bobigny
| |
Collapse
|
232
|
Avau A, Matthys P. Therapeutic Potential of Interferon-γ and Its Antagonists in Autoinflammation: Lessons from Murine Models of Systemic Juvenile Idiopathic Arthritis and Macrophage Activation Syndrome. Pharmaceuticals (Basel) 2015; 8:793-815. [PMID: 26610523 PMCID: PMC4695810 DOI: 10.3390/ph8040793] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 11/09/2015] [Accepted: 11/18/2015] [Indexed: 01/05/2023] Open
Abstract
Interferon-γ (IFN-γ) affects immune responses in a complex fashion. Its immunostimulatory actions, such as macrophage activation and induction of T helper 1-type responsiveness, are widely acknowledged, however, as documented by a large body of literature, IFN-γ has also the potential to temper inflammatory processes via other pathways. In autoimmune and autoinflammatory disorders, IFN-γ can either play a disease-enforcing role or act as protective agent, depending on the nature of the disease. In animal models of any particular autoimmune disease, certain changes in the induction procedure can reverse the net outcome of introduction or ablation of IFN-γ. Here, we review the role of endogenous IFN-γ in inflammatory disorders and related murine models, with a focus on systemic juvenile idiopathic arthritis (sJIA) and macrophage activation syndrome (MAS). In particular, we discuss our recent findings in a mouse model of sJIA, in which endogenous IFN-γ acts as a regulatory agent, and compare with results from mouse models of MAS. Also, we elaborate on the complexity in the activity of IFN-γ and the resulting difficulty of predicting its value or that of its antagonists as treatment option.
Collapse
Affiliation(s)
- Anneleen Avau
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute, KU Leuven - University of Leuven, Leuven B-3000, Belgium.
| | - Patrick Matthys
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute, KU Leuven - University of Leuven, Leuven B-3000, Belgium.
| |
Collapse
|
233
|
Hemophagocytic lymphohistiocytosis with a leukemoid reaction in an infant with scrub typhus. J Infect Public Health 2015; 8:626-9. [DOI: 10.1016/j.jiph.2015.05.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 04/28/2015] [Accepted: 05/01/2015] [Indexed: 11/23/2022] Open
|
234
|
Dhondup Y, Sjaastad I, Scott H, Sandanger Ø, Zhang L, Haugstad SB, Aronsen JM, Ranheim T, Holmen SD, Alfsnes K, Ahmed MS, Attramadal H, Gullestad L, Aukrust P, Christensen G, Yndestad A, Vinge LE. Sustained Toll-Like Receptor 9 Activation Promotes Systemic and Cardiac Inflammation, and Aggravates Diastolic Heart Failure in SERCA2a KO Mice. PLoS One 2015; 10:e0139715. [PMID: 26461521 PMCID: PMC4604200 DOI: 10.1371/journal.pone.0139715] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 09/15/2015] [Indexed: 12/18/2022] Open
Abstract
AIM Cardiac inflammation is important in the pathogenesis of heart failure. However, the consequence of systemic inflammation on concomitant established heart failure, and in particular diastolic heart failure, is less explored. Here we investigated the impact of systemic inflammation, caused by sustained Toll-like receptor 9 activation, on established diastolic heart failure. METHODS AND RESULTS Diastolic heart failure was established in 8-10 week old cardiomyocyte specific, inducible SERCA2a knock out (i.e., SERCA2a KO) C57Bl/6J mice. Four weeks after conditional KO, mice were randomized to receive Toll-like receptor 9 agonist (CpG B; 2μg/g body weight) or PBS every third day. After additional four weeks, echocardiography, phase contrast magnetic resonance imaging, histology, flow cytometry, and cardiac RNA analyses were performed. A subgroup was followed, registering morbidity and death. Non-heart failure control groups treated with CpG B or PBS served as controls. Our main findings were: (i) Toll-like receptor 9 activation (CpG B) reduced life expectancy in SERCA2a KO mice compared to PBS treated SERCA2a KO mice. (ii) Diastolic function was lower in SERCA2a KO mice with Toll-like receptor 9 activation. (iii) Toll-like receptor 9 stimulated SERCA2a KO mice also had increased cardiac and systemic inflammation. CONCLUSION Sustained activation of Toll-like receptor 9 causes cardiac and systemic inflammation, and deterioration of SERCA2a depletion-mediated diastolic heart failure.
Collapse
MESH Headings
- Animals
- Chromatography, High Pressure Liquid
- Collagen Type I/genetics
- Collagen Type I/metabolism
- Collagen Type III/genetics
- Collagen Type III/metabolism
- Diastole
- Fibrosis
- Gene Expression Regulation
- Heart Failure, Diastolic/diagnostic imaging
- Heart Failure, Diastolic/metabolism
- Heart Failure, Diastolic/pathology
- Heart Failure, Diastolic/physiopathology
- Hydroxyproline/metabolism
- Inflammation/complications
- Inflammation/pathology
- Magnetic Resonance Imaging
- Mice, Inbred C57BL
- Mice, Knockout
- Mortality, Premature
- Myocardium/enzymology
- Myocardium/pathology
- Organ Size
- Polymerase Chain Reaction
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sarcoplasmic Reticulum Calcium-Transporting ATPases/deficiency
- Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism
- Toll-Like Receptor 9/metabolism
- Ultrasonography
Collapse
Affiliation(s)
- Yangchen Dhondup
- Research Institute of Internal medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Center for Heart failure Research, University of Oslo, Oslo, Norway
- K.G. Jebsen Inflammation Research Center, University of Oslo, Oslo, Norway
- * E-mail:
| | - Ivar Sjaastad
- Center for Heart failure Research, University of Oslo, Oslo, Norway
- Institute for Experimental Medical Research, Oslo University Hospital, Ullevaal, Oslo, Norway
| | - Helge Scott
- K.G. Jebsen Inflammation Research Center, University of Oslo, Oslo, Norway
- Department of Pathology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Øystein Sandanger
- Research Institute of Internal medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Center for Heart failure Research, University of Oslo, Oslo, Norway
- K.G. Jebsen Inflammation Research Center, University of Oslo, Oslo, Norway
| | - Lili Zhang
- Center for Heart failure Research, University of Oslo, Oslo, Norway
- Institute for Experimental Medical Research, Oslo University Hospital, Ullevaal, Oslo, Norway
| | - Solveig Bjærum Haugstad
- Center for Heart failure Research, University of Oslo, Oslo, Norway
- Institute for Experimental Medical Research, Oslo University Hospital, Ullevaal, Oslo, Norway
| | - Jan Magnus Aronsen
- Institute for Experimental Medical Research, Oslo University Hospital, Ullevaal, Oslo, Norway
- Bjørknes college, Oslo, Norway
| | - Trine Ranheim
- Research Institute of Internal medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- K.G. Jebsen Inflammation Research Center, University of Oslo, Oslo, Norway
| | - Sigve Dhondup Holmen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Centre for Imported and Tropical Diseases, Department of Infectious Diseases, Oslo University Hospital, Ulleval, Oslo, Norway
| | - Katrine Alfsnes
- Research Institute of Internal medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- K.G. Jebsen Inflammation Research Center, University of Oslo, Oslo, Norway
| | - Muhammad Shakil Ahmed
- K.G. Jebsen Inflammation Research Center, University of Oslo, Oslo, Norway
- Institute for Surgical Research, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Håvard Attramadal
- K.G. Jebsen Inflammation Research Center, University of Oslo, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Institute for Surgical Research, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Lars Gullestad
- Center for Heart failure Research, University of Oslo, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Cardiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Pål Aukrust
- Research Institute of Internal medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- K.G. Jebsen Inflammation Research Center, University of Oslo, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Geir Christensen
- Center for Heart failure Research, University of Oslo, Oslo, Norway
- Institute for Experimental Medical Research, Oslo University Hospital, Ullevaal, Oslo, Norway
| | - Arne Yndestad
- Research Institute of Internal medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Center for Heart failure Research, University of Oslo, Oslo, Norway
- K.G. Jebsen Inflammation Research Center, University of Oslo, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Leif Erik Vinge
- Research Institute of Internal medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Center for Heart failure Research, University of Oslo, Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Department of Internal Medicine, Diakonhjemmet Hospital, Oslo, Norway
| |
Collapse
|
235
|
de Saint Basile G, Sepulveda FE, Maschalidi S, Fischer A. Cytotoxic granule secretion by lymphocytes and its link to immune homeostasis. F1000Res 2015; 4:930. [PMID: 26594351 PMCID: PMC4648190 DOI: 10.12688/f1000research.6754.1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/28/2015] [Indexed: 12/21/2022] Open
Abstract
The granule-dependent cytotoxic activity of T and natural killer lymphocytes has progressively emerged as an important effector pathway not only for host defence but also for immune regulation. The analysis of an early-onset, severe, primary immune dysregulatory syndrome known as hemophagocytic lymphohistiocytosis (HLH) has been decisive in highlighting this latter role and identifying key effectors on the basis of gene mutation analyses and mediators in the maturation and secretion of cytotoxic granules. Studies of cytotoxicity-deficient murine counterparts have helped to define primary HLH as a syndrome in which uncontrolled T-cell activation in response to lymphocytic choriomeningitis virus infection results in excessive macrophage activation and inflammation-associated cytopenia. Recent recognition of late-onset HLH, which occurs in a variety of settings, in association with hypomorphic, monoallelic mutations in genes encoding components of the granule-dependent cytotoxic pathway or even in the absence of such mutations has broadened our view about the mechanisms that underlie the perturbation of immune homeostasis. These findings have led to the development of a model in which disease occurs when a threshold is reached through the accumulation of genetic and environmental risk factors. Nevertheless, validation of this model will require further investigations.
Collapse
Affiliation(s)
- Geneviève de Saint Basile
- INSERM UMR1163, Laboratory of Normal and Pathological Homeostasis of the Immune System, Paris, F-75015, France ; Paris Descartes University-Sorbonne Paris Cité, Imagine Institute, Paris, F-75015, France ; Centre d'Etudes des Déficits Immunitaires, Assistance Publique-Hôpitaux de Paris, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Fernando E Sepulveda
- INSERM UMR1163, Laboratory of Normal and Pathological Homeostasis of the Immune System, Paris, F-75015, France ; Paris Descartes University-Sorbonne Paris Cité, Imagine Institute, Paris, F-75015, France
| | - Sophia Maschalidi
- INSERM UMR1163, Laboratory of Normal and Pathological Homeostasis of the Immune System, Paris, F-75015, France ; Paris Descartes University-Sorbonne Paris Cité, Imagine Institute, Paris, F-75015, France
| | - Alain Fischer
- INSERM UMR1163, Laboratory of Normal and Pathological Homeostasis of the Immune System, Paris, F-75015, France ; Paris Descartes University-Sorbonne Paris Cité, Imagine Institute, Paris, F-75015, France ; Immunology and Pediatric Hematology Department, Necker Children's Hospital, AP-HP, Paris, France ; Collège de France, Paris, F-75005, France
| |
Collapse
|
236
|
Lacroix M, Rousseau F, Guilhot F, Malinge P, Magistrelli G, Herren S, Jones SA, Jones GW, Scheller J, Lissilaa R, Kosco-Vilbois M, Johnson Z, Buatois V, Ferlin W. Novel Insights into Interleukin 6 (IL-6) Cis- and Trans-signaling Pathways by Differentially Manipulating the Assembly of the IL-6 Signaling Complex. J Biol Chem 2015; 290:26943-26953. [PMID: 26363066 DOI: 10.1074/jbc.m115.682138] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Indexed: 01/21/2023] Open
Abstract
The IL-6 signaling complex is described as a hexamer, formed by the association of two IL-6·IL-6 receptor (IL-6R)·gp130 trimers, with gp130 being the signal transducer inducing cis- and trans-mediated signaling via a membrane-bound or soluble form of the IL-6R, respectively. 25F10 is an anti-mouse IL-6R mAb that binds to both membrane-bound IL-6R and soluble IL-6R with the unique property of specifically inhibiting trans-mediated signaling events. In this study, epitope mapping revealed that 25F10 interacts at site IIb of IL-6R but allows the binding of IL-6 to the IL-6R and the recruitment of gp130, forming a trimer complex. Binding of 25F10 to IL-6R prevented the formation of the hexameric complex obligate for trans-mediated signaling, suggesting that the cis- and trans-modes of IL-6 signaling adopt different mechanisms for receptor complex assembly. To study this phenomenon also in the human system, we developed NI-1201, a mAb that targets, in the human IL-6R sequence, the epitope recognized by 25F10 for mice. Interestingly, NI-1201, however, did not selectively inhibit human IL-6 trans-signaling, although both mAbs produced beneficial outcomes in conditions of exacerbated IL-6 as compared with a site I-directed mAb. These findings shed light on the complexity of IL-6 signaling. First, triggering cis- versus trans-mediated IL-6 signaling occurs via distinctive mechanisms for receptor complex assembly in mice. Second, the formation of the receptor complex leading to cis- and trans-signaling biology in mice and humans is different, and this should be taken into account when developing strategies to inhibit IL-6 clinically.
Collapse
Affiliation(s)
- Marine Lacroix
- Novimmune SA Novimmune SA, 1228 Plan-les-Ouates, Switzerland
| | | | | | - Pauline Malinge
- Novimmune SA Novimmune SA, 1228 Plan-les-Ouates, Switzerland
| | | | - Suzanne Herren
- Novimmune SA Novimmune SA, 1228 Plan-les-Ouates, Switzerland
| | - Simon A Jones
- Cardiff Institute of Infection and Immunity, The School of Medicine, Cardiff University, Heath Campus, Cardiff CF14 4XN, United Kingdom
| | - Gareth W Jones
- Cardiff Institute of Infection and Immunity, The School of Medicine, Cardiff University, Heath Campus, Cardiff CF14 4XN, United Kingdom
| | - Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Rami Lissilaa
- Glenmark Pharmaceuticals SA, 2300 La Chaux-De-Fonds, Switzerland
| | | | - Zoë Johnson
- Novimmune SA Novimmune SA, 1228 Plan-les-Ouates, Switzerland
| | - Vanessa Buatois
- Novimmune SA Novimmune SA, 1228 Plan-les-Ouates, Switzerland
| | - Walter Ferlin
- Novimmune SA Novimmune SA, 1228 Plan-les-Ouates, Switzerland.
| |
Collapse
|
237
|
Abstract
Macrophage activation syndrome (MAS) is a potentially life-threatening complication of rheumatic disorders that occurs most commonly in systemic juvenile idiopathic arthritis. In recent years, there have been several advances in the understanding of the pathophysiology of MAS. Furthermore, new classification criteria have been developed. Although the place of cytokine blockers in the management of MAS is still unclear, interleukin-1 inhibitors represent a promising adjunctive therapy, particularly in refractory cases.
Collapse
Affiliation(s)
- Angelo Ravelli
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Head, Center of Rheumatology, University of Genoa and G. Gaslini Institute, via G. Gaslini 5, Genoa 16147, Italy.
| | - Sergio Davì
- Second Pediatric Division and Rheumatology, G. Gaslini Institute, via G. Gaslini 5, Genoa 16147, Italy
| | - Francesca Minoia
- Second Pediatric Division and Rheumatology, G. Gaslini Institute, via G. Gaslini 5, Genoa 16147, Italy
| | - Alberto Martini
- Department of Pediatrics and Second Pediatric Division and Rheumatology, University of Genoa and G. Gaslini Institute, via G. Gaslini 5, Genoa 16147, Italy
| | - Randy Q Cron
- Director, Division of Pediatric Rheumatology, Children's Hospital of Alabama and University of Alabama at Birmingham, Children's Park Place, Ste. 210 1601 4th Avenue South Birmingham, AL 35233, USA
| |
Collapse
|
238
|
Affiliation(s)
- Edward M Behrens
- Division of Rheumatology, Department of Pediatrics, University of Pennsylvania, Philadelphia, PA 19104; and
| | - Randy Q Cron
- Division of Rheumatology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35233
| |
Collapse
|
239
|
How We Manage Hyperferritinemic Sepsis-Related Multiple Organ Dysfunction Syndrome/Macrophage Activation Syndrome/Secondary Hemophagocytic Lymphohistiocytosis Histiocytosis. Pediatr Crit Care Med 2015; 16:598-600. [PMID: 26154908 PMCID: PMC5091295 DOI: 10.1097/pcc.0000000000000460] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
240
|
Cron RQ, Davi S, Minoia F, Ravelli A. Clinical features and correct diagnosis of macrophage activation syndrome. Expert Rev Clin Immunol 2015; 11:1043-53. [PMID: 26082353 DOI: 10.1586/1744666x.2015.1058159] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Macrophage activation syndrome (MAS) is increasingly recognized among febrile hospitalized patients. Clinically, MAS resembles multiorgan dysfunction and shock. Laboratory features include hepatobiliary dysfunction, coagulopathy, pancytopenia, hyperferritinemia and markers of immune activation. Pathologically, hemophagocytosis is commonly seen but is only present in 60% of MAS patients. MAS, or secondary hemophagocytic lymphohistiocytosis (HLH), is triggered by infectious (e.g., herpes family viruses), rheumatologic (e.g., systemic lupus erythematosus [SLE]) and oncologic (e.g., T-cell leukemia) conditions. Formal HLH criteria, while specific, are frequently insensitive for MAS diagnosis. Thus, disease-specific (e.g., SLE) and generic MAS criteria have been published. Recently, novel criteria for MAS in children with systemic juvenile idiopathic arthritis (sJIA) were developed and are a key focus of this review.
Collapse
Affiliation(s)
- Randy Q Cron
- Children's of Alabama, 1600 7th Ave. S., CPP #M210, Birmingham, AL 35233-1711, USA
| | | | | | | |
Collapse
|
241
|
From bench to bedside and back again: translational research in autoinflammation. Nat Rev Rheumatol 2015; 11:573-85. [PMID: 26077920 DOI: 10.1038/nrrheum.2015.79] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Translational research approaches brought major changes to the understanding and treatment options of autoinflammatory diseases. Patients with common complex multifactorial diseases such as systemic-onset juvenile idiopathic arthritis (sJIA), and particularly those with rare monogenic autoinflammatory diseases such as cryopyrin-associated periodic syndromes (CAPS) or TNF receptor-associated periodic syndrome (TRAPS), benefited from a deeper understanding of the pathophysiological mechanisms and new treatment options emerging from preclinical studies. The study of IL-1 and IL-6 in this context led to novel therapies by forward translation. Conversely, effective treatment of sJIA and TRAPS with IL-1 blockade stimulated reverse translational efforts to study the pathophysiology of these cytokines in autoinflammatory diseases. These translational efforts led to the discovery of biomarkers such as S100 proteins, IL-18 or serum amyloid A, which are components of the inflammatory process, support diagnosis and allow for monitoring of disease activity, helping to predict patient outcomes. The ongoing characterization of autoinflammatory diseases in individual patients has led to classification into heterogeneous subgroups. Further characterization of relevant subgroups and the design of tailored treatment regimens, as well as the identification of new therapeutic targets and treatment options, are the major future challenges in the field of autoinflammatory diseases, particularly for paediatric rheumatologists.
Collapse
|
242
|
Zhang L, Zhou J, Sokol L. Hereditary and acquired hemophagocytic lymphohistiocytosis. Cancer Control 2015; 21:301-12. [PMID: 25310211 DOI: 10.1177/107327481402100406] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Hemophagocytic lymphohistiocytosis (HLH) is a rare but life-threatening hyperinflammatory/hypercytokinemia syndrome clinicopathologically manifested by fever, hepatosplenomegaly, cytopenias, liver dysfunction, and hemophagocytosis. METHODS We searched the medical literature for English-written articles and analyzed data regarding the diagnosis, pathoetiology, prognosis, and management of HLH. RESULTS HLH can be subcategorized into primary/genetic (PHLH) or secondary/acquired (SHLH) according to etiology. PHLH, including familial HLH and inherited immune deficiency syndromes, typically occurs in children harboring underlying genetic defects, whereas SHLH frequently manifests in adults and is associated with infection, autoimmunity, immune suppression, or malignancy. The pathogenesis of HLH is still elusive. Its known mechanisms include somatic mutations in gene coding for proteins implicated in the cytotoxic pathways of cytotoxic T or natural killer cells. The impaired ability of these cells to kill target cells leads to an uncontrolled hypercytokinemia and hyperinflammatory process, triggering hemophagocytosis and multiorgan failure. Corticosteroids, chemotherapy, and immunotherapy are the mainstay therapeutic strategies. The consolidation with allogeneic hematopoietic stem cell transplantation is a potentially curative option for PHLH and refractory or relapsed SHLH. CONCLUSIONS Understanding of the pathophysiology of HLH has improved in the last decade. The establishment of diagnostic and treatment guidelines for PHLH and SHLH has resulted in earlier diagnoses and the rapid initiation of therapy, both of which are associated with favorable outcomes.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Hematopathology and Laboratory Medicine, Moffitt Cancer Center, Tampa, FL 33612, USA.
| | | | | |
Collapse
|
243
|
Hyperinflammation, rather than hemophagocytosis, is the common link between macrophage activation syndrome and hemophagocytic lymphohistiocytosis. Curr Opin Rheumatol 2015; 26:562-9. [PMID: 25022357 DOI: 10.1097/bor.0000000000000093] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
PURPOSE OF REVIEW Macrophage activation syndrome is the rheumatic disease-associated member of a group of hyperinflammatory syndromes characterized by uncontrolled cytokine storm. In this review, we highlight recent publications related to the pathoetiology of hyperinflammatory syndromes with an emphasis on how this new knowledge will guide our diagnosis, treatment, and future research efforts to better understand these deadly conditions. RECENT FINDINGS The heterogeneity of clinical manifestations seen in patients with hyperinflammatory syndromes continues to grow as novel genetic and immunotherapeutic triggers of cytokine storm have been identified. Recent studies characterize unique cytokine and gene expression profiles from patients with different hyperinflammatory syndromes, whereas novel murine models begin to define networks of immune dysregulation thought to drive excessive inflammation in cytokine storm. SUMMARY Emerging evidence suggests hypercytokinemia is the driving cause of immunopathology and morbidity/mortality in hyperinflammatory syndromes. Therefore, approaches to block cytokine function may be fruitful in treating hyperinflammatory syndromes with less toxicity than current therapies. However, not all hyperinflammatory syndromes result in the same pathogenic cytokine profile, implying that a personalized approach will be required for effective use of anticytokine therapies in the treatment of hyperinflammatory syndromes.
Collapse
|
244
|
Minoia F, Davì S, Horne A, Bovis F, Demirkaya E, Akikusa J, Ayaz NA, Al-Mayouf SM, Barone P, Bica B, Bolt I, Breda L, De Cunto C, Enciso S, Gallizzi R, Griffin T, Hennon T, Horneff G, Jeng M, Kapovic AM, Lipton JM, Magni Manzoni S, Rumba-Rozenfelde I, Magalhaes CS, Sewairi WM, Stine KC, Vougiouka O, Weaver LK, Davidsone Z, De Inocencio J, Ioseliani M, Lattanzi B, Tezer H, Buoncompagni A, Picco P, Ruperto N, Martini A, Cron RQ, Ravelli A. Dissecting the Heterogeneity of Macrophage Activation Syndrome Complicating Systemic Juvenile Idiopathic Arthritis. J Rheumatol 2015; 42:994-1001. [DOI: 10.3899/jrheum.141261] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2015] [Indexed: 10/23/2022]
Abstract
Objective.To seek insights into the heterogeneity of macrophage activation syndrome (MAS) complicating systemic juvenile idiopathic arthritis (sJIA) through the analysis of a large patient sample collected in a multinational survey.Methods.International pediatric rheumatologists and hemato-oncologists entered their patient data, collected retrospectively, in a Web-based database. The demographic, clinical, laboratory, histopathologic, therapeutic, and outcome data were analyzed in relation to (1) geographic location of caring hospital, (2) subspecialty of attending physician, (3) demonstration of hemophagocytosis, and (4) severity of clinical course.Results.A total of 362 patients were included by 95 investigators from 33 countries. Demographic, clinical, laboratory, and histopathologic features were comparable among patients seen in diverse geographic areas or by different pediatric specialists. Patients seen in North America were given biologics more frequently. Patients entered by pediatric hemato-oncologists were treated more commonly with biologics and etoposide, whereas patients seen by pediatric rheumatologists more frequently received cyclosporine. Patients with demonstration of hemophagocytosis had shorter duration of sJIA at MAS onset, higher prevalence of hepatosplenomegaly, lower levels of platelets and fibrinogen, and were more frequently administered cyclosporine, intravenous immunoglobulin (IVIG), and etoposide. Patients with severe course were older, had longer duration of sJIA at MAS onset, had more full-blown clinical picture, and were more commonly given cyclosporine, IVIG, and etoposide.Conclusion.The clinical spectrum of MAS is comparable across patients seen in different geographic settings or by diverse pediatric subspecialists. There was a disparity in the therapeutic choices among physicians that underscores the need to establish uniform therapeutic protocols.
Collapse
|
245
|
Increased ferroportin-1 expression and rapid splenic iron loss occur with anemia caused by Salmonella enterica Serovar Typhimurium infection in mice. Infect Immun 2015; 83:2290-9. [PMID: 25824831 DOI: 10.1128/iai.02863-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 03/06/2015] [Indexed: 01/24/2023] Open
Abstract
The Gram-negative intracellular bacterium Salmonella enterica serovar Typhimurium causes persistent systemic inflammatory disease in immunocompetent mice. Following oral inoculation with S. Typhimurium, mice develop a hematopathological syndrome akin to typhoid fever with splenomegaly, microcytic anemia, extramedullary erythropoiesis, and increased hemophagocytic macrophages in the bone marrow, liver, and spleen. Additionally, there is marked loss of iron from the spleen, an unanticipated result, given the iron sequestration reported in anemia of inflammatory disease. To establish why tissue iron does not accumulate, we evaluated multiple measures of pathology for 4 weeks following oral infection in mice. We demonstrate a quantitative decrease in splenic iron following infection despite increased numbers of splenic phagocytes. Infected mice have increased duodenal expression of the iron exporter ferroportin-1, consistent with increased uptake of dietary iron. Liver and splenic macrophages also express high levels of ferroportin-1. These observations indicate that splenic and hepatic macrophages export iron during S. Typhimurium infection, in contrast to macrophage iron sequestration observed in anemia of inflammatory disease. Tissue macrophage export of iron occurs concurrent with high serum concentrations of interferon gamma (IFN-γ) and interleukin 12 (IL-12). In individual mice, high concentrations of both proinflammatory (tumor necrosis factor alpha [TNF-α]) and anti-inflammatory (IL-10) cytokines in serum correlate with increased tissue bacterial loads throughout 4 weeks of infection. These in vivo observations are consistent with previous cell culture studies and suggest that the relocation of iron from tissue macrophages during infection may contribute to anemia and also to host survival of acute S. Typhimurium infection.
Collapse
|
246
|
Baratono SR, Chu N, Richman LP, Behrens EM. Toll-like receptor 9 and interferon-γ receptor signaling suppress the B-cell fate of uncommitted progenitors in mice. Eur J Immunol 2015; 45:1313-25. [PMID: 25639361 DOI: 10.1002/eji.201445319] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 12/26/2014] [Accepted: 01/29/2015] [Indexed: 01/12/2023]
Abstract
Systemic inflammatory response syndrome describes a heterogeneous group of cytokine storm disorders, with different immunogens and cytokines leading to variations in organ pathology. The severe inflammation generated by the cytokine storm results in widespread organ pathology including alterations in T- and B-lymphocyte counts. This study explores the roles of TLR9 and IFN-γR stimulation in decreasing T- and B-cell lymphopoiesis in a mouse model of hyperinflammation. We demonstrate that early B-cell lymphopoiesis is severely compromised during TLR9- and IFN-γ-driven hyperinflammation from the Ly-6D(+) common lymphoid progenitor stage onwards with different effects inhibiting development at multiple stages. We show that TLR9 signaling directly decreases in vitro B-cell yields while increasing T-cell yields. IFN-γ also directly inhibits B-cell and T-cell differentiation in vitro as well as when induced by TLR9 in vivo. Microarray and RT-PCR analysis of Ly-6D(-) common lymphoid progenitors point to HOXa9 and EBF-1 as transcription factors altered by TLR9-induced inflammation. Our work demonstrates both cellular and molecular targets that lead to diminished B-cell lymphopoiesis in sustained TLR9- and IFN-γ-driven inflammation that may be relevant in a number of infectious and autoimmune/inflammatory settings.
Collapse
Affiliation(s)
- Sheena R Baratono
- Division of Rheumatology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Niansheng Chu
- Division of Rheumatology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lee P Richman
- Division of Rheumatology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Edward M Behrens
- Division of Rheumatology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
247
|
de Jesus AA, Canna SW, Liu Y, Goldbach-Mansky R. Molecular mechanisms in genetically defined autoinflammatory diseases: disorders of amplified danger signaling. Annu Rev Immunol 2015; 33:823-74. [PMID: 25706096 DOI: 10.1146/annurev-immunol-032414-112227] [Citation(s) in RCA: 192] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Patients with autoinflammatory diseases present with noninfectious fever flares and systemic and/or disease-specific organ inflammation. Their excessive proinflammatory cytokine and chemokine responses can be life threatening and lead to organ damage over time. Studying such patients has revealed genetic defects that have helped unravel key innate immune pathways, including excessive IL-1 signaling, constitutive NF-κB activation, and, more recently, chronic type I IFN signaling. Discoveries of monogenic defects that lead to activation of proinflammatory cytokines have inspired the use of anticytokine-directed treatment approaches that have been life changing for many patients and have led to the approval of IL-1-blocking agents for a number of autoinflammatory conditions. In this review, we describe the genetically characterized autoinflammatory diseases, we summarize our understanding of the molecular pathways that drive clinical phenotypes and that continue to inspire the search for novel treatment targets, and we provide a conceptual framework for classification.
Collapse
Affiliation(s)
- Adriana Almeida de Jesus
- Translational Autoinflammatory Diseases Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, Maryland 20892;
| | | | | | | |
Collapse
|
248
|
Neeland MR, Elhay MJ, Powell DR, Rossello FJ, Meeusen ENT, de Veer MJ. Transcriptional profile in afferent lymph cells following vaccination with liposomes incorporating CpG. Immunology 2015; 144:518-529. [PMID: 25308816 DOI: 10.1111/imm.12401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 09/14/2014] [Accepted: 10/02/2014] [Indexed: 12/17/2022] Open
Abstract
Vaccine formulations incorporating innate immune stimulants are highly immunogenic; however, the biological signals that originate in the peripheral tissues at the site of injection and are transmitted to the local lymph node to induce immunity remain unclear. By directly cannulating the ovine afferent lymphatic vessels, we have previously shown that it takes 72 hr for mature antigen-loaded dendritic cells and monocytes to appear within afferent lymph following injection of a liposomal formulation containing the Toll-like receptor ligand CpG. In this present study, we characterize the global transcriptional signatures at this time-point in ovine afferent lymph cells as they migrate from the injection site into the lymphatics following vaccination with a liposome antigen formulation incorporating CpG. We show that at 72 hr post vaccination, liposomes alone induce no changes in gene expression and inflammatory profiles within afferent lymph; however, the incorporation of CpG drives interferon, antiviral and cytotoxic gene programmes. This study also measures the expression of key genes within individual cell types in afferent lymph. Antiviral gene signatures are most prominent in lymphocytes, which may play a significant and unexpected role in sustaining the immune response to vaccination at the site of injection. These findings provide a comprehensive analysis of the in vivo immunological pathways that connect the injection site with the local draining lymph node following vaccination.
Collapse
Affiliation(s)
- Melanie R Neeland
- Biotechnology Research Laboratories, Department of Physiology, Monash University, Clayton, Vic., Australia
| | - Martin J Elhay
- Zoetis Research and Manufacturing Australia P/L, Parkville, Vic., Australia
| | - David R Powell
- Victorian Bioinformatics Consortium, Monash University, Clayton, Vic., Australia.,Victorian Life Sciences Computation Initiative, Life Sciences Computation Centre, Carlton, Vic., Australia
| | - Fernando J Rossello
- Victorian Bioinformatics Consortium, Monash University, Clayton, Vic., Australia.,Victorian Life Sciences Computation Initiative, Life Sciences Computation Centre, Carlton, Vic., Australia
| | - Els N T Meeusen
- Biotechnology Research Laboratories, Department of Physiology, Monash University, Clayton, Vic., Australia.,Department of Microbiology, Monash University, Clayton, Vic., Australia
| | - Michael J de Veer
- Biotechnology Research Laboratories, Department of Physiology, Monash University, Clayton, Vic., Australia
| |
Collapse
|
249
|
Cytokine balance and cytokine-driven natural killer cell dysfunction in systemic juvenile idiopathic arthritis. Cytokine Growth Factor Rev 2015; 26:35-45. [DOI: 10.1016/j.cytogfr.2014.05.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 05/13/2014] [Accepted: 05/15/2014] [Indexed: 01/14/2023]
|
250
|
Reinhardt RL, Liang HE, Bao K, Price AE, Mohrs M, Kelly BL, Locksley RM. A novel model for IFN-γ-mediated autoinflammatory syndromes. THE JOURNAL OF IMMUNOLOGY 2015; 194:2358-68. [PMID: 25637019 DOI: 10.4049/jimmunol.1401992] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Autoinflammatory disease and hyperinflammatory syndromes represent a growing number of diseases associated with inappropriately controlled inflammation in multiple organs. Systemic inflammation commonly results from dysregulated activation of innate immune cells, and therapeutic targeting of the IL-1β pathway has been used to ameliorate some of these diseases. Some hyperinflammatory syndromes, however, such as hemophagocytic lymphohistiocytosis and the newly classified proteasome disability syndromes, are refractory to such treatments, suggesting that other factors or environmental stressors may be contributing. In comparing two cytokine reporter mouse strains, we identify IFN-γ as a mediator of systemic autoinflammatory disease. Chronically elevated levels of IFN-γ resulted in progressive multiorgan inflammation and two copies of the mutant allele resulted in increased mortality accompanied by myeloproliferative disease. Disease was alleviated by genetic deletion of T-bet. These studies raise the possibility that therapeutics targeting the IFN-γ pathway might be effective in hyperinflammatory conditions refractory to IL-1β-targeted therapies.
Collapse
Affiliation(s)
- R Lee Reinhardt
- Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA 94143; Department of Medicine, University of California San Francisco, San Francisco, CA 94143; Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143; Department of Immunology, Duke University Medical Center, Durham, NC 27710
| | - Hong-Erh Liang
- Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA 94143; Department of Medicine, University of California San Francisco, San Francisco, CA 94143; Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143
| | - Katherine Bao
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| | - April E Price
- Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA 94143; Department of Medicine, University of California San Francisco, San Francisco, CA 94143; Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143
| | | | - Ben L Kelly
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112
| | - Richard M Locksley
- Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA 94143; Department of Medicine, University of California San Francisco, San Francisco, CA 94143; Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143;
| |
Collapse
|