201
|
Kwon S, Iba M, Masliah E, Kim C. Targeting Microglial and Neuronal Toll-like Receptor 2 in Synucleinopathies. Exp Neurobiol 2019; 28:547-553. [PMID: 31698547 PMCID: PMC6844834 DOI: 10.5607/en.2019.28.5.547] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/19/2019] [Accepted: 10/04/2019] [Indexed: 12/12/2022] Open
Abstract
Synucleinopathies are neurodegenerative disorders characterized by the progressive accumulation of α-synuclein (α-syn) in neurons and glia and include Parkinson's disease (PD) and dementia with Lewy bodies (DLB). In this review, we consolidate our key findings and recent studies concerning the role of Toll-like receptor 2 (TLR2), a pattern recognition innate immune receptor, in the pathogenesis of synucleinopathies. First, we address the pathological interaction of α-syn with microglial TLR2 and its neurotoxic inflammatory effects. Then, we show that neuronal TLR2 activation not only induces abnormal α-syn accumulation by impairing autophagy, but also modulates α-syn transmission. Finally, we demonstrate that administration of a TLR2 functional inhibitor improves the neuropathology and behavioral deficits of a synucleinopathy mouse model. Altogether, we present TLR2 modulation as a promising immunotherapy for synucleinopathies.
Collapse
Affiliation(s)
- Somin Kwon
- Molecular Neuropathology Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892,
USA
| | - Michiyo Iba
- Molecular Neuropathology Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892,
USA
| | - Eliezer Masliah
- Molecular Neuropathology Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892,
USA
| | - Changyoun Kim
- Molecular Neuropathology Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892,
USA
| |
Collapse
|
202
|
Brettschneider J, Suh E, Robinson JL, Fang L, Lee EB, Irwin DJ, Grossman M, Van Deerlin VM, Lee VMY, Trojanowski JQ. Converging Patterns of α-Synuclein Pathology in Multiple System Atrophy. J Neuropathol Exp Neurol 2019; 77:1005-1016. [PMID: 30203094 DOI: 10.1093/jnen/nly080] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We aimed to determine patterns of α-synuclein (α-syn) pathology in multiple system atrophy (MSA) using 70-µm-thick sections of 20 regions of the central nervous system of 37 cases with striato-nigral degeneration (SND) and 10 cases with olivo-ponto-cerebellar atrophy (OPCA). In SND cases with the shortest disease duration (phase 1), α-syn pathology was observed in striatum, lentiform nucleus, substantia nigra, brainstem white matter tracts, cerebellar subcortical white matter as well as motor cortex, midfrontal cortex, and sensory cortex. SND with increasing duration of disease (phase 2) was characterized by involvement of spinal cord and thalamus, while phase 3 was characterized by involvement of hippocampus and amygdala. Cases with the longest disease duration (phase 4) showed involvement of the visual cortex. We observed an increasing overlap of α-syn pathology with increasing duration of disease between SND and OPCA, and noted increasingly similar regional distribution patterns of α-syn pathology. The GBA variant, p.Thr408Met, was found to have an allele frequency of 6.94% in SND cases which was significantly higher compared with normal (0%) and other neurodegenerative disease pathologies (0.74%), suggesting that it is associated with MSA. Our findings indicate that SND and OPCA show distinct early foci of α-syn aggregations, but increasingly converge with longer disease duration to show overlapping patterns of α-syn pathology.
Collapse
Affiliation(s)
- Johannes Brettschneider
- Center for Neurodegenerative Disease Research (CNDR), University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - EunRan Suh
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - John L Robinson
- Center for Neurodegenerative Disease Research (CNDR), University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Lubin Fang
- Clinical Neuroanatomy Section, Department of Neurology, Center for Biomedical Research, University of Ulm, Ulm, Germany
| | - Edward B Lee
- Center for Neurodegenerative Disease Research (CNDR), University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania.,Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - David J Irwin
- Center for Neurodegenerative Disease Research (CNDR), University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania.,Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Murray Grossman
- Center for Neurodegenerative Disease Research (CNDR), University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania.,Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Vivianna M Van Deerlin
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Virginia M-Y Lee
- Center for Neurodegenerative Disease Research (CNDR), University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania.,Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - John Q Trojanowski
- Center for Neurodegenerative Disease Research (CNDR), University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania.,Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
203
|
Watts JC. Calling α-synuclein a prion is scientifically justifiable. Acta Neuropathol 2019; 138:505-508. [PMID: 31407029 DOI: 10.1007/s00401-019-02058-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 08/07/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Joel C Watts
- Tanz Centre for Research in Neurodegenerative Diseases, Department of Biochemistry, University of Toronto, Krembil Discovery Tower, Rm. 4KD481, 60 Leonard Ave., Toronto, ON, M5T 0S8, Canada.
| |
Collapse
|
204
|
Af Bjerkén S, Stenmark Persson R, Barkander A, Karalija N, Pelegrina-Hidalgo N, Gerhardt GA, Virel A, Strömberg I. Noradrenaline is crucial for the substantia nigra dopaminergic cell maintenance. Neurochem Int 2019; 131:104551. [PMID: 31542295 DOI: 10.1016/j.neuint.2019.104551] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/03/2019] [Accepted: 09/19/2019] [Indexed: 12/19/2022]
Abstract
In Parkinson's disease, degeneration of substantia nigra dopaminergic neurons is accompanied by damage on other neuronal systems. A severe denervation is for example seen in the locus coerulean noradrenergic system. Little is known about the relation between noradrenergic and dopaminergic degeneration, and the effects of noradrenergic denervation on the function of the dopaminergic neurons of substantia nigra are not fully understood. In this study, N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP4) was injected in rats, whereafter behavior, striatal KCl-evoked dopamine and glutamate releases, and immunohistochemistry were monitored at 3 days, 3 months, and 6 months. Quantification of dopamine-beta-hydroxylase-immunoreactive nerve fiber density in the cortex revealed a tendency towards nerve fiber regeneration at 6 months. To sustain a stable noradrenergic denervation throughout the experimental timeline, the animals in the 6-month time point received an additional DSP4 injection (2 months after the first injection). Behavioral examinations utilizing rotarod revealed that DSP4 reduced the time spent on the rotarod at 3 but not at 6 months. KCl-evoked dopamine release was significantly increased at 3 days and 3 months, while the concentrations were normalized at 6 months. DSP4 treatment prolonged both time for onset and reuptake of dopamine release over time. The dopamine degeneration was confirmed by unbiased stereology, demonstrating significant loss of tyrosine hydroxylase-immunoreactive neurons in the substantia nigra. Furthermore, striatal glutamate release was decreased after DSP4. In regards of neuroinflammation, reactive microglia were found over the substantia nigra after DSP4 treatment. In conclusion, long-term noradrenergic denervation reduces the number of dopaminergic neurons in the substantia nigra and affects the functionality of the nigrostriatal system. Thus, locus coeruleus is important for maintenance of nigral dopaminergic neurons.
Collapse
Affiliation(s)
- Sara Af Bjerkén
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden; Department of Clinical Science, Neurosciences, Umeå University, Umeå, Sweden.
| | - Rasmus Stenmark Persson
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden; Department of Clinical Science, Neurosciences, Umeå University, Umeå, Sweden
| | - Anna Barkander
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Nina Karalija
- Department of Radiation Sciences, Umeå University, Umeå, Sweden; Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
| | | | - Greg A Gerhardt
- Department of Anatomy and Neurobiology, University of Kentucky, Center for Microelectrode Technology, Lexington, KY, USA
| | - Ana Virel
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Ingrid Strömberg
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| |
Collapse
|
205
|
Webster JM, Darling AL, Uversky VN, Blair LJ. Small Heat Shock Proteins, Big Impact on Protein Aggregation in Neurodegenerative Disease. Front Pharmacol 2019; 10:1047. [PMID: 31619995 PMCID: PMC6759932 DOI: 10.3389/fphar.2019.01047] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 08/19/2019] [Indexed: 12/15/2022] Open
Abstract
Misfolding, aggregation, and aberrant accumulation of proteins are central components in the progression of neurodegenerative disease. Cellular molecular chaperone systems modulate proteostasis, and, therefore, are primed to influence aberrant protein-induced neurotoxicity and disease progression. Molecular chaperones have a wide range of functions from facilitating proper nascent folding and refolding to degradation or sequestration of misfolded substrates. In disease states, molecular chaperones can display protective or aberrant effects, including the promotion and stabilization of toxic protein aggregates. This seems to be dependent on the aggregating protein and discrete chaperone interaction. Small heat shock proteins (sHsps) are a class of molecular chaperones that typically associate early with misfolded proteins. These interactions hold proteins in a reversible state that helps facilitate refolding or degradation by other chaperones and co-factors. These sHsp interactions require dynamic oligomerization state changes in response to diverse cellular triggers and, unlike later steps in the chaperone cascade of events, are ATP-independent. Here, we review evidence for modulation of neurodegenerative disease-relevant protein aggregation by sHsps. This includes data supporting direct physical interactions and potential roles of sHsps in the stewardship of pathological protein aggregates in brain. A greater understanding of the mechanisms of sHsp chaperone activity may help in the development of novel therapeutic strategies to modulate the aggregation of pathological, amyloidogenic proteins. sHsps-targeting strategies including modulators of expression or post-translational modification of endogenous sHsps, small molecules targeted to sHsp domains, and delivery of engineered molecular chaperones, are also discussed.
Collapse
Affiliation(s)
- Jack M Webster
- Department of Molecular Medicine, USF Byrd Institute, University of South Florida, Tampa, FL, United States
| | - April L Darling
- Department of Molecular Medicine, USF Byrd Institute, University of South Florida, Tampa, FL, United States
| | - Vladimir N Uversky
- Department of Molecular Medicine, USF Byrd Institute, University of South Florida, Tampa, FL, United States
| | - Laura J Blair
- Department of Molecular Medicine, USF Byrd Institute, University of South Florida, Tampa, FL, United States
| |
Collapse
|
206
|
Lempart J, Tse E, Lauer JA, Ivanova MI, Sutter A, Yoo N, Huettemann P, Southworth D, Jakob U. Mechanistic insights into the protective roles of polyphosphate against amyloid cytotoxicity. Life Sci Alliance 2019; 2:2/5/e201900486. [PMID: 31533964 PMCID: PMC6751573 DOI: 10.26508/lsa.201900486] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 11/24/2022] Open
Abstract
This study provides novel insights into the mechanisms by which presence of polyP alters the formation, structural properties, and cytotoxic effects of α-synuclein fibers. The universally abundant polyphosphate (polyP) accelerates fibril formation of disease-related amyloids and protects against amyloid cytotoxicity. To gain insights into the mechanism(s) by which polyP exerts these effects, we focused on α-synuclein, a well-studied amyloid protein, which constitutes the major component of Lewy bodies found in Parkinson’s disease. Here, we demonstrate that polyP is unable to accelerate the rate-limiting step of α-synuclein fibril formation but effectively nucleates fibril assembly once α-synuclein oligomers are formed. Binding of polyP to α-synuclein either during fibril formation or upon fibril maturation substantially alters fibril morphology and effectively reduces the ability of α-synuclein fibrils to interact with cell membranes. The effect of polyP appears to be α-synuclein fibril specific and successfully prevents the uptake of fibrils into neuronal cells. These results suggest that altering the polyP levels in the extracellular space might be a potential therapeutic strategy to prevent the spreading of the disease.
Collapse
Affiliation(s)
- Justine Lempart
- Graduate Program in Biochemistry, Department of Chemistry, Technische Universität München, München, Germany.,Department of Molecular, Cellular and Developmental Biology University of Michigan, Ann Arbor, MI, USA
| | - Eric Tse
- Institute for Neurodegenerative Diseases, Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | - James A Lauer
- Department of Molecular, Cellular and Developmental Biology University of Michigan, Ann Arbor, MI, USA
| | - Magdalena I Ivanova
- Biophysics Program, University of Michigan, Ann Arbor, MI, USA.,Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | | | - Nicholas Yoo
- Department of Molecular, Cellular and Developmental Biology University of Michigan, Ann Arbor, MI, USA
| | - Philipp Huettemann
- Department of Molecular, Cellular and Developmental Biology University of Michigan, Ann Arbor, MI, USA
| | - Daniel Southworth
- Institute for Neurodegenerative Diseases, Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | - Ursula Jakob
- Department of Molecular, Cellular and Developmental Biology University of Michigan, Ann Arbor, MI, USA .,Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
207
|
Marsh AP. Molecular mechanisms of proteinopathies across neurodegenerative disease: a review. Neurol Res Pract 2019; 1:35. [PMID: 33324900 PMCID: PMC7650105 DOI: 10.1186/s42466-019-0039-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 08/16/2019] [Indexed: 12/26/2022] Open
Abstract
Background Although there is a range of different symptoms across neurodegenerative diseases, they have been noted to have common pathogenic features. An archetypal feature shared between these diseases is protein misfolding; however, the mechanism behind the proteins abnormalities is still under investigation. There is an emerging hypothesis in the literature that the mechanisms that lead to protein misfolding may be shared across neurodegenerative processes, suggesting a common underlying pathology. Main body This review discusses the literature to date of the shared features of protein misfolding, failures in proteostasis, and potential propagation pathways across the main neurodegenerative disorders. Conclusion The current data suggests, despite overarching processes being shared, that the molecular events implicated in protein pathology are distinct across common neurodegenerative disorders.
Collapse
Affiliation(s)
- Alexander P Marsh
- School of Psychology, Cardiff University, Cardiff, UK.,School of Psychological Science, University of Bristol, Bristol, UK
| |
Collapse
|
208
|
Grudina C, Kouroupi G, Nonaka T, Hasegawa M, Matsas R, Zurzolo C. Human NPCs can degrade α-syn fibrils and transfer them preferentially in a cell contact-dependent manner possibly through TNT-like structures. Neurobiol Dis 2019; 132:104609. [PMID: 31494284 DOI: 10.1016/j.nbd.2019.104609] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/05/2019] [Accepted: 09/04/2019] [Indexed: 12/24/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder whereby loss of midbrain dopaminergic neurons results in motor dysfunction. Transplantation of human induced pluripotent stem cells (iPSCs) into the brain of patients affected by PD is one of the therapeutic approaches that has gained interest to compensate for the degeneration of neurons and improve disease symptoms. However, only a part of transplanted cells can differentiate into mature neurons while the majority remains in undifferentiated state. Here we investigated whether human neuronal precursor cells (hNPCs) derived from iPSCs have an active role in α-synuclein (α-syn) pathology. Our findings demonstrate that α-syn fibrils are taken up by hNPCs and are preferentially localized in lysosomes where they can be degraded. However, α-syn fibrils are also transferred between hNPCs in a cell-to-cell contact dependent manner, and are found in tunneling nanotube (TNT)-like structures. Thus, NPCs can have a dual role in the progression of α-syn pathology, which should be considered in human transplants.
Collapse
Affiliation(s)
- Clara Grudina
- Unité de Traffic Membranaire et Pathogénèse, Institut Pasteur, 28 Rue du Dr. Roux, Paris 75015, France
| | - Georgia Kouroupi
- Laboratory of Cell and Molecular Neurobiology - Stem Cells, Department of Neurobiology, Hellenic Pasteur Institute, 127 Vassilissis Sofias Avenue, Athens 11521, Greece
| | - Takashi Nonaka
- Dementia Research Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8585, Japan
| | - Masato Hasegawa
- Dementia Research Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8585, Japan
| | - Rebecca Matsas
- Laboratory of Cell and Molecular Neurobiology - Stem Cells, Department of Neurobiology, Hellenic Pasteur Institute, 127 Vassilissis Sofias Avenue, Athens 11521, Greece
| | - Chiara Zurzolo
- Unité de Traffic Membranaire et Pathogénèse, Institut Pasteur, 28 Rue du Dr. Roux, Paris 75015, France.
| |
Collapse
|
209
|
Sundaram S, Hughes RL, Peterson E, Müller-Oehring EM, Brontë-Stewart HM, Poston KL, Faerman A, Bhowmick C, Schulte T. Establishing a framework for neuropathological correlates and glymphatic system functioning in Parkinson's disease. Neurosci Biobehav Rev 2019; 103:305-315. [PMID: 31132378 PMCID: PMC6692229 DOI: 10.1016/j.neubiorev.2019.05.016] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 05/01/2019] [Accepted: 05/17/2019] [Indexed: 12/25/2022]
Abstract
Recent evidence has advanced our understanding of the function of sleep to include removal of neurotoxic protein aggregates via the glymphatic system. However, most research on the glymphatic system utilizes animal models, and the function of waste clearance processes in humans remains unclear. Understanding glymphatic function offers new insight into the development of neurodegenerative diseases that result from toxic protein inclusions, particularly those characterized by neuropathological sleep dysfunction, like Parkinson's disease (PD). In PD, we propose that glymphatic flow may be compromised due to the combined neurotoxic effects of alpha-synuclein protein aggregates and deteriorated dopaminergic neurons that are linked to altered REM sleep, circadian rhythms, and clock gene dysfunction. This review highlights the importance of understanding the functional role of glymphatic system disturbance in neurodegenerative disorders and the subsequent clinical and neuropathological effects on disease progression. Future research initiatives utilizing noninvasive brain imaging methods in human subjects with PD are warranted, as in vivo identification of functional biomarkers in glymphatic system functioning may improve clinical diagnosis and treatment of PD.
Collapse
Affiliation(s)
- Saranya Sundaram
- Department of Psychology, Palo Alto University, 1791 Arastradero Rd, Palo Alto, CA, 94304, USA; Neuroscience Program, Center for Health Sciences, Bioscience Division, SRI International, 333 Ravenswood Ave, Menlo Park, CA, 94025, USA.
| | - Rachel L Hughes
- Department of Psychology, Palo Alto University, 1791 Arastradero Rd, Palo Alto, CA, 94304, USA.
| | - Eric Peterson
- Neuroscience Program, Center for Health Sciences, Bioscience Division, SRI International, 333 Ravenswood Ave, Menlo Park, CA, 94025, USA.
| | - Eva M Müller-Oehring
- Neuroscience Program, Center for Health Sciences, Bioscience Division, SRI International, 333 Ravenswood Ave, Menlo Park, CA, 94025, USA; Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Rd, Stanford, CA, 94305, USA.
| | - Helen M Brontë-Stewart
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, 401 Quarry Rd, Stanford, CA, 94305, USA; Department of Neurosurgery, Stanford University School of Medicine, 401 Quarry Rd, Stanford, CA, 94305, USA.
| | - Kathleen L Poston
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, 401 Quarry Rd, Stanford, CA, 94305, USA; Department of Neurosurgery, Stanford University School of Medicine, 401 Quarry Rd, Stanford, CA, 94305, USA.
| | - Afik Faerman
- Department of Psychology, Palo Alto University, 1791 Arastradero Rd, Palo Alto, CA, 94304, USA.
| | - Chloe Bhowmick
- Department of Psychology, Palo Alto University, 1791 Arastradero Rd, Palo Alto, CA, 94304, USA.
| | - Tilman Schulte
- Department of Psychology, Palo Alto University, 1791 Arastradero Rd, Palo Alto, CA, 94304, USA; Neuroscience Program, Center for Health Sciences, Bioscience Division, SRI International, 333 Ravenswood Ave, Menlo Park, CA, 94025, USA.
| |
Collapse
|
210
|
Monzio Compagnoni G, Di Fonzo A. Understanding the pathogenesis of multiple system atrophy: state of the art and future perspectives. Acta Neuropathol Commun 2019; 7:113. [PMID: 31300049 PMCID: PMC6624923 DOI: 10.1186/s40478-019-0730-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 04/27/2019] [Indexed: 12/21/2022] Open
Abstract
Multiple System Atrophy (MSA) is a severe neurodegenerative disease clinically characterized by parkinsonism, cerebellar ataxia, dysautonomia and other motor and non-motor symptoms. Although several efforts have been dedicated to understanding the causative mechanisms of the disease, MSA pathogenesis remains widely unknown. The aim of the present review is to describe the state of the art about MSA pathogenesis, with a particular focus on alpha-synuclein accumulation and mitochondrial dysfunction, and to highlight future possible perspectives in this field. In particular, this review describes the most widely investigated hypotheses explaining alpha-synuclein accumulation in oligodendrocytes, including SNCA expression, neuron-oligodendrocyte protein transfer, impaired protein degradation and alpha-synuclein spread mechanisms. Afterwards, several recent achievements in MSA research involving mitochondrial biology are described, including the role of COQ2 mutations, Coenzyme Q10 reduction, respiratory chain dysfunction and altered mitochondrial mass. Some hints are provided about alternative pathogenic mechanisms, including inflammation and impaired autophagy. Finally, all these findings are discussed from a comprehensive point of view, putative explanations are provided and new research perspectives are suggested. Overall, the present review provides a comprehensive and up-to-date overview of the mechanisms underlying MSA pathogenesis.
Collapse
|
211
|
Cheng J, Lu Q, Song L, Ho MS. α-Synuclein Trafficking in Parkinson's Disease: Insights From Fly and Mouse Models. ASN Neuro 2019; 10:1759091418812587. [PMID: 30482039 PMCID: PMC6259071 DOI: 10.1177/1759091418812587] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Protein aggregation and accumulation are common pathological hallmarks in neurodegenerative diseases. To efficiently clear and eliminate such aggregation becomes an important cellular strategy for cell survival. Lewy bodies inclusion and aggregation of α-Synuclein (α-Syn) during the pathogenesis of Parkinson's disease (PD) serve as a good example and are potentially linked to other pathological PD features such as progressive dopaminergic neuron cell death, behavioral defects, and nonmotor symptoms like anosmia, cognitive impairment, and depression. Years of research have revealed a variety of mechanisms underlying α-Syn aggregation, clearance, and spread. Particularly, vesicular routes associated with the trafficking of α-Syn, leading to its aggregation and accumulation, have been shown to play vital roles in PD pathogenesis. How α-Syn proteins propagate among cells in a prion-like manner, either from or to neurons and glia, via means of uptake or secretion, are questions under active investigation and have been of central interest in the field of PD study. This review covers components and pathways of possible vesicular routes involved in α-Syn trafficking. Events including but not limited to exocytosis and endocytosis will be discussed within the context of an overall cellular trafficking theme. Recent advances on α-Syn trafficking mechanisms and their significance in mediating PD pathogenesis will be thoroughly reviewed, ending with a discussion on the advantages and limitations of different animal PD models.
Collapse
Affiliation(s)
- Jingjing Cheng
- 1 School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,*These authors contributed equally to this work
| | - Qingqing Lu
- 2 Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, China.,*These authors contributed equally to this work
| | - Li Song
- 2 Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, China
| | - Margaret S Ho
- 1 School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
212
|
Jellinger KA. Animal models of synucleinopathies and how they could impact future drug discovery and delivery efforts. Expert Opin Drug Discov 2019; 14:969-982. [DOI: 10.1080/17460441.2019.1638908] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
213
|
Tulisiak CT, Mercado G, Peelaerts W, Brundin L, Brundin P. Can infections trigger alpha-synucleinopathies? PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 168:299-322. [PMID: 31699323 PMCID: PMC6857718 DOI: 10.1016/bs.pmbts.2019.06.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
As synucleinopathies, Parkinson's disease (PD) and multiple system atrophy (MSA) are neurodegenerative diseases that involve the spread of pathogenic alpha-synuclein (αSyn) throughout the brain. Recent studies have suggested a role for αSyn as an antimicrobial peptide in response to PD- and MSA-related infections of peripheral tissues, including those in the respiratory, gastrointestinal, and urogenital systems. In this chapter, we examine epidemiological and experimental evidence for a role of peripheral microbial infections in triggering alpha-synucleinopathies. We propose a model of how infectious triggers, in conjunction with inflammatory, environmental, and genetic facilitators, may result in transfer of pathogenic αSyn strains from the periphery to the brain, where they propagate and spread. Finally, we discuss future research challenges and programs necessary to clarify the role of infections as triggers of PD and MSA and, ultimately, to prevent the onset of these diseases by infectious triggers.
Collapse
Affiliation(s)
- Christopher T Tulisiak
- Center for Neurodegenerative Sciences, Van Andel Research Institute, Grand Rapids, MI, United States
| | - Gabriela Mercado
- Center for Neurodegenerative Sciences, Van Andel Research Institute, Grand Rapids, MI, United States
| | - Wouter Peelaerts
- Center for Neurodegenerative Sciences, Van Andel Research Institute, Grand Rapids, MI, United States; Laboratory for Neurobiology and Gene Therapy, KU Leuven, Leuven, Belgium
| | - Lena Brundin
- Center for Neurodegenerative Sciences, Van Andel Research Institute, Grand Rapids, MI, United States
| | - Patrik Brundin
- Center for Neurodegenerative Sciences, Van Andel Research Institute, Grand Rapids, MI, United States.
| |
Collapse
|
214
|
Ma J, Gao J, Wang J, Xie A. Prion-Like Mechanisms in Parkinson's Disease. Front Neurosci 2019; 13:552. [PMID: 31275093 PMCID: PMC6591488 DOI: 10.3389/fnins.2019.00552] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 05/13/2019] [Indexed: 12/11/2022] Open
Abstract
Formation and aggregation of misfolded proteins in the central nervous system (CNS) is a key hallmark of several age-related neurodegenerative diseases, including Parkinson’s disease (PD), Alzheimer’s disease (AD), and amyotrophic lateral sclerosis (ALS). These diseases share key biophysical and biochemical characteristics with prion diseases. It is believed that PD is characterized by abnormal protein aggregation, mainly that of α-synuclein (α-syn). Of particular importance, there is growing evidence indicating that abnormal α-syn can spread to neighboring brain regions and cause aggregation of endogenous α-syn in these regions as seeds, in a “prion-like” manner. Abundant studies in vitro and in vivo have shown that α-syn goes through a templated conformational change, propagates from the original region to neighboring regions, and eventually cause neuron degeneration in the substantia nigra and striatum. The objective of this review is to summarize the mechanisms involved in the aggregation of abnormal intracellular α-syn and its subsequent cell-to-cell transmission. According to these findings, we look forward to effective therapeutic perspectives that can block the progression of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jiangnan Ma
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jing Gao
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jing Wang
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Anmu Xie
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
215
|
Youssef K, Tandon A, Rezai P. Studying Parkinson’s disease using Caenorhabditis elegans models in microfluidic devices. Integr Biol (Camb) 2019; 11:186-207. [DOI: 10.1093/intbio/zyz017] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 04/30/2019] [Accepted: 05/16/2019] [Indexed: 12/21/2022]
Abstract
Abstract
Parkinson’s disease (PD) is a progressive neurological disorder associated with the loss of dopaminergic neurons (DNs) in the substantia nigra and the widespread accumulation of α-synuclein (α-syn) protein, leading to motor impairments and eventual cognitive dysfunction. In-vitro cell cultures and in-vivo animal models have provided the opportunity to investigate the PD pathological hallmarks and identify different therapeutic compounds. However, PD pathogenesis and causes are still not well understood, and effective inhibitory drugs for PD are yet to be discovered. Biologically simple but pathologically relevant disease models and advanced screening technologies are needed to reveal the mechanisms underpinning protein aggregation and PD progression. For instance, Caenorhabditis elegans (C. elegans) offers many advantages for fundamental PD neurobehavioral studies including a simple, well-mapped, and accessible neuronal system, genetic homology to humans, body transparency and amenability to genetic manipulation. Several transgenic worm strains that exhibit multiple PD-related phenotypes have been developed to perform neuronal and behavioral assays and drug screening. However, in conventional worm-based assays, the commonly used techniques are equipment-intensive, slow and low in throughput. Over the past two decades, microfluidics technology has contributed significantly to automation and control of C. elegans assays. In this review, we focus on C. elegans PD models and the recent advancements in microfluidic platforms used for manipulation, handling and neurobehavioral screening of these models. Moreover, we highlight the potential of C. elegans to elucidate the in-vivo mechanisms of neuron-to-neuron protein transfer that may underlie spreading Lewy pathology in PD, and its suitability for in-vitro studies. Given the advantages of C. elegans and microfluidics technology, their integration has the potential to facilitate the investigation of disease pathology and discovery of potential chemical leads for PD.
Collapse
Affiliation(s)
- Khaled Youssef
- Department of Mechanical Engineering, York University, Toronto, ON, Canada
| | - Anurag Tandon
- Tanz Centre for Research in Neurodegenerative Diseases, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Pouya Rezai
- Department of Mechanical Engineering, York University, Toronto, ON, Canada
| |
Collapse
|
216
|
α-Synuclein pathology in Parkinson's disease and related α-synucleinopathies. Neurosci Lett 2019; 709:134316. [PMID: 31170426 DOI: 10.1016/j.neulet.2019.134316] [Citation(s) in RCA: 184] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 04/01/2019] [Accepted: 06/01/2019] [Indexed: 12/15/2022]
Abstract
Over 20 years ago, the synaptic protein α-synuclein was identified as the primary component of the Lewy bodies (LBs) that are a sine qua non of Parkinson's disease (PD). Since that time, extensive research has demonstrated that α-synuclein pathology is not only a hallmark of PD, but can also cause neuronal dysfunction and death. Detailed staging of α-synuclein pathology in the brains of patients has revealed a progressive pattern of pathology that correlates with the symptoms of disease. Early in the disease course, PD patients exhibit motor dysfunction, and α-synuclein pathology at this stage is primarily found in regions controlling motor function. At later stages of disease as patients' cognitive function deteriorates, α-synuclein pathology can be found in cortical structures responsible for higher cognitive processing. The stereotypical progression of α-synuclein pathology through the brain over time suggests that there may be a physical transmission of pathological α-synuclein from one area of the brain to another. The transmission hypothesis posits that an initial seed of pathological α-synuclein in one neuron may be released and taken up by another vulnerable neuron and thereby initiate pathological misfolding of α-synuclein in the recipient neuron. In recent years, convergent evidence from various studies has indicated that pathological protein transmission can occur in the human brain. Cell and animal models based on the transmission hypothesis have shown not only that pathological α-synuclein can be transmitted from cell-to-cell, but that this pathology can lead to neuronal dysfunction and degeneration. The α-synuclein transmission hypothesis has profound implications for treatment of what is currently an intractable neurodegenerative disease. In this review, we explore the evidence for cell-to-cell transmission of pathological α-synuclein, the current understanding of how pathological α-synuclein can move to a new cell and template misfolding, and the therapeutic implications of α-synuclein transmission.
Collapse
|
217
|
Meng L, Yuan X, Cao X, Zhang Z. The gut-brain axis in the pathogenesis of Parkinson’s disease. BRAIN SCIENCE ADVANCES 2019. [DOI: 10.26599/bsa.2019.9050009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
218
|
Demonstration of prion-like properties of mutant huntingtin fibrils in both in vitro and in vivo paradigms. Acta Neuropathol 2019; 137:981-1001. [PMID: 30788585 PMCID: PMC6531424 DOI: 10.1007/s00401-019-01973-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/07/2019] [Accepted: 02/07/2019] [Indexed: 12/02/2022]
Abstract
In recent years, evidence has accumulated to suggest that mutant huntingtin protein (mHTT) can spread into healthy tissue in a prion-like fashion. This theory, however, remains controversial. To fully address this concept and to understand the possible consequences of mHTT spreading to Huntington’s disease pathology, we investigated the effects of exogenous human fibrillar mHTT (Q48) and huntingtin (HTT) (Q25) N-terminal fragments in three cellular models and three distinct animal paradigms. For in vitro experiments, human neuronal cells [induced pluripotent stem cell-derived GABA neurons (iGABA) and (SH-SY5Y)] as well as human THP1-derived macrophages, were incubated with recombinant mHTT fibrils. Recombinant mHTT and HTT fibrils were taken up by all cell types, inducing cell morphology changes and death. Variations in HTT aggregation were further observed following incubation with fibrils in both THP1 and SH-SY5Y cells. For in vivo experiments, adult wild-type (WT) mice received a unilateral intracerebral cortical injection and R6/2 and WT pups were administered fibrils via bilateral intraventricular injections. In both protocols, the injection of Q48 fibrils resulted in cognitive deficits and increased anxiety-like behavior. Post-mortem analysis of adult WT mice indicated that most fibrils had been degraded/cleared from the brain by 14 months post-surgery. Despite the absence of fibrils at these later time points, a change in the staining pattern of endogenous HTT was detected. A similar change was revealed in post-mortem analysis of the R6/2 mice. These effects were specific to central administration of fibrils, as mice receiving intravenous injections were not characterized by behavioral changes. In fact, peripheral administration resulted in an immune response mounting against the fibrils. Together, the in vitro and in vivo data indicate that exogenously administered mHTT is capable of both causing and exacerbating disease pathology.
Collapse
|
219
|
Chen S, Cai F, Wang J, Yang Z, Gu C, Wang G, Mao G, Yan J. Salidroside protects SH‑SY5Y from pathogenic α‑synuclein by promoting cell autophagy via mediation of mTOR/p70S6K signaling. Mol Med Rep 2019; 20:529-538. [PMID: 31180515 PMCID: PMC6580031 DOI: 10.3892/mmr.2019.10285] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 04/11/2019] [Indexed: 12/20/2022] Open
Abstract
The abnormal aggregation of α‑synuclein (α‑syn), which is an important pathological feature of Parkinson's disease (PD), is cytotoxic to dopaminergic neurons and causes cellular damage and apoptosis. Salidroside (SAL) is the main active component of the traditional Chinese medicine Rhodiola rosea. Previous research has demonstrated that SAL exerts cellular protection against cell senescence and neurodegeneration. However, the role and mechanism of action of SAL in PD remain unclear. The present study used overexpression of the wild‑type and the A53T mutation of α‑syn to induce a neuronal model of PD in SH‑SY5Y cells, which led to neuronal toxicity and a reduced cell proliferation index. SAL increased the cell proliferation index of both PD model groups in a dose‑dependent manner. Additionally, SAL alleviated pathogenic phosphorylated (Ser129) α‑syn expression as well as the ratio of microtubule‑associated proteins 1A/1B light chain 3 (LC3)‑I to LC3‑II expression, which is related to autophagic function. Furthermore, the results suggested that the underlying mechanism for the SAL‑induced protection of PD model neurons may involve the preservation of autophagy, which attenuates the phosphorylation of α‑syn in neurons predominantly via mTOR/p70S6K, and is independent of the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Shasha Chen
- Zhejiang Provincial Key Laboratory of Geriatrics, Department of Geriatrics, Zhejiang Hospital, Hangzhou, Zhejiang 310013, P.R. China
| | - Feng Cai
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Jirong Wang
- Zhejiang Provincial Key Laboratory of Geriatrics, Department of Geriatrics, Zhejiang Hospital, Hangzhou, Zhejiang 310013, P.R. China
| | - Zhouxin Yang
- Zhejiang Provincial Key Laboratory of Geriatrics, Department of Geriatrics, Zhejiang Hospital, Hangzhou, Zhejiang 310013, P.R. China
| | - Chi Gu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Guofu Wang
- Zhejiang Provincial Key Laboratory of Geriatrics, Department of Geriatrics, Zhejiang Hospital, Hangzhou, Zhejiang 310013, P.R. China
| | - Genxiang Mao
- Zhejiang Provincial Key Laboratory of Geriatrics, Department of Geriatrics, Zhejiang Hospital, Hangzhou, Zhejiang 310013, P.R. China
| | - Jing Yan
- Zhejiang Provincial Key Laboratory of Geriatrics, Department of Geriatrics, Zhejiang Hospital, Hangzhou, Zhejiang 310013, P.R. China
| |
Collapse
|
220
|
Vasili E, Dominguez-Meijide A, Outeiro TF. Spreading of α-Synuclein and Tau: A Systematic Comparison of the Mechanisms Involved. Front Mol Neurosci 2019; 12:107. [PMID: 31105524 PMCID: PMC6494944 DOI: 10.3389/fnmol.2019.00107] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 04/09/2019] [Indexed: 01/01/2023] Open
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) are age-associated neurodegenerative disorders characterized by the misfolding and aggregation of alpha-synuclein (aSyn) and tau, respectively. The coexistence of aSyn and tau aggregates suggests a strong overlap between tauopathies and synucleinopathies. Interestingly, misfolded forms of aSyn and tau can propagate from cell to cell, and throughout the brain, thereby templating the misfolding of native forms of the proteins. The exact mechanisms involved in the propagation of the two proteins show similarities, and are reminiscent of the spreading characteristic of prion diseases. Recently, several models were developed to study the spreading of aSyn and tau. Here, we discuss the mechanisms involved, the similarities and differences between the spreading of the two proteins and that of the prion protein, and the different cell and animal models used for studying these processes. Ultimately, a deeper understanding of the molecular mechanisms involved may lead to the identification of novel targets for therapeutic intervention in a variety of devastating neurodegenerative diseases.
Collapse
Affiliation(s)
- Eftychia Vasili
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, Goettingen, Germany
| | - Antonio Dominguez-Meijide
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, Goettingen, Germany
| | - Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, Goettingen, Germany.,Max Planck Institute for Experimental Medicine, Goettingen, Germany.,The Medical School, Institute of Neuroscience, Newcastle University, Newcastle Upon Tyne, United Kingdom
| |
Collapse
|
221
|
Zhang J, Li X, Li JD. The Roles of Post-translational Modifications on α-Synuclein in the Pathogenesis of Parkinson's Diseases. Front Neurosci 2019; 13:381. [PMID: 31057362 PMCID: PMC6482271 DOI: 10.3389/fnins.2019.00381] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/02/2019] [Indexed: 12/15/2022] Open
Abstract
Parkinson’s disease is the second most common neurodegenerative disorder. Although the pathogenesis of Parkinson’s disease is not entirely clear, the aberrant aggregation of α-synuclein has long been considered as an important risk factor. Elucidating the mechanisms that influence the aggregation of α-synuclein is essential for developing an effective diagnostic, preventative and therapeutic strategy to treat this devastating disease. The aggregation of α-synuclein is influenced by several post-translational modifications. Here, we summarized the major post-translational modifications (phosphorylation, ubiquitination, truncation, nitration, O-GlcNAcylation) of α-synuclein and the effect of these modifications on α-synuclein aggregation, which may provide potential targets for future therapeutics.
Collapse
Affiliation(s)
- Jiaming Zhang
- Center for Reproductive Medicine, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Xiaoping Li
- Center for Reproductive Medicine, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Jia-Da Li
- Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, China.,Hunan Key Laboratory of Medical Genetics, Center for Medical Genetics, Central South University, Changsha, China
| |
Collapse
|
222
|
Grassi D, Diaz-Perez N, Volpicelli-Daley LA, Lasmézas CI. Pα-syn* mitotoxicity is linked to MAPK activation and involves tau phosphorylation and aggregation at the mitochondria. Neurobiol Dis 2019; 124:248-262. [DOI: 10.1016/j.nbd.2018.11.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 11/19/2018] [Indexed: 01/12/2023] Open
|
223
|
Found in Translation: The Utility of C. elegans Alpha-Synuclein Models of Parkinson's Disease. Brain Sci 2019; 9:brainsci9040073. [PMID: 30925741 PMCID: PMC6523935 DOI: 10.3390/brainsci9040073] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 03/21/2019] [Accepted: 03/24/2019] [Indexed: 01/18/2023] Open
Abstract
Parkinson's Disease (PD) is the second-most common neurodegenerative disease in the world, yet the fundamental and underlying causes of the disease are largely unknown, and treatments remain sparse and impotent. Several biological systems have been employed to model the disease but the nematode roundworm Caenorhabditis elegans (C. elegans) shows unique promise among these to disinter the elusive factors that may prevent, halt, and/or reverse PD phenotypes. Some of the most salient of these C. elegans models of PD are those that position the misfolding-prone protein alpha-synuclein (α-syn), a hallmark pathological component of PD, as the primary target for scientific interrogation. By transgenic expression of human α-syn in different tissues, including dopamine neurons and muscle cells, the primary cellular phenotypes of PD in humans have been recapitulated in these C. elegans models and have already uncovered multifarious genetic factors and chemical compounds that attenuate dopaminergic neurodegeneration. This review describes the paramount discoveries obtained through the application of different α-syn models of PD in C. elegans and highlights their established utility and respective promise to successfully uncover new conserved genetic modifiers, functional mechanisms, therapeutic targets and molecular leads for PD with the potential to translate to humans.
Collapse
|
224
|
Abstract
Most common neurodegenerative diseases feature deposition of protein amyloids and degeneration of brain networks. Amyloids are ordered protein assemblies that can act as templates for their own replication through monomer addition. Evidence suggests that this characteristic may underlie the progression of pathology in neurodegenerative diseases. Many different amyloid proteins, including Aβ, tau, and α-synuclein, exhibit properties similar to those of infectious prion protein in experimental systems: discrete and self-replicating amyloid structures, transcellular propagation of aggregation, and transmissible neuropathology. This review discusses the contribution of prion phenomena and transcellular propagation to the progression of pathology in common neurodegenerative diseases such as Alzheimer's and Parkinson's. It reviews fundamental events such as cell entry, amplification, and transcellular movement. It also discusses amyloid strains, which produce distinct patterns of neuropathology and spread through the nervous system. These concepts may impact the development of new diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Jaime Vaquer-Alicea
- Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA;
| | - Marc I Diamond
- Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA;
| |
Collapse
|
225
|
Khalifeh M, Barreto GE, Sahebkar A. Trehalose as a promising therapeutic candidate for the treatment of Parkinson's disease. Br J Pharmacol 2019; 176:1173-1189. [PMID: 30767205 DOI: 10.1111/bph.14623] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/13/2018] [Accepted: 01/29/2019] [Indexed: 12/13/2022] Open
Abstract
Parkinson's disease (PD) is a progressive movement disorder resulting primarily from loss of nigrostriatal dopaminergic neurons. PD is characterized by the accumulation of protein aggregates, and evidence suggests that aberrant protein deposition in dopaminergic neurons could be related to the dysregulation of the lysosomal autophagy pathway. The therapeutic potential of autophagy modulators has been reported in experimental models of PD. Trehalose is a natural disaccharide that has been considered as a new candidate for the treatment of neurodegenerative diseases. It has a chaperone-like activity, prevents protein misfolding or aggregation, and by promoting autophagy, contributes to the removal of accumulated proteins. In this review, we briefly summarize the role of aberrant autophagy in PD and the underlying mechanisms that lead to the development of this disease. We also discuss reports that used trehalose to counteract the neurotoxicity in PD, focusing particularly on the autophagy promoting, protein stabilization, and anti-neuroinflammatory effects of trehalose.
Collapse
Affiliation(s)
- Masoomeh Khalifeh
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia.,Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
226
|
Matias I, Morgado J, Gomes FCA. Astrocyte Heterogeneity: Impact to Brain Aging and Disease. Front Aging Neurosci 2019; 11:59. [PMID: 30941031 PMCID: PMC6433753 DOI: 10.3389/fnagi.2019.00059] [Citation(s) in RCA: 223] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/01/2019] [Indexed: 12/13/2022] Open
Abstract
Astrocytes, one of the largest glial cell population in the central nervous system (CNS), play a key function in several events of brain development and function, such as synapse formation and function, control of neurotransmitters release and uptake, production of trophic factors and control of neuronal survival. Initially described as a homogenous population, several evidences have pointed that astrocytes are highly heterogeneous, both morphologically and functionally, within the same region, and across different brain regions. Recent findings suggest that the heterogeneity in the expression profile of proteins involved in astrocyte function may predict the selective vulnerability of brain regions to specific diseases, as well as to the age-related cognitive decline. However, the molecular mechanisms underlying these changes, either in aging as well as in brain disease are scarce. Neuroinflammation, a hallmark of several neurodegenerative diseases and aging, is reported to have a dubious impact on glial activation, as these cells release pro- and anti-inflammatory cytokines and chemokines, anti-oxidants, free radicals, and neurotrophic factors. Despite the emerging evidences supporting that reactive astrocytes have a duality in their phenotype, neurotoxic or neuroprotective properties, depending on the age and stimuli, the underlying mechanisms of their activation, cellular interplays and the impact of regional astrocyte heterogeneity are still a matter of discussion. In this review article, we will summarize recent findings on astrocyte heterogeneity and phenotypes, as well as their likely impact for the brain function during aging and neural diseases. We will focus on the molecules and mechanisms triggered by astrocyte to control synapse formation in different brain regions. Finally, we will discuss new evidences on how the modulation of astrocyte phenotype and function could impact the synaptic deficits and glial dysfunction present in aging and pathological states.
Collapse
Affiliation(s)
- Isadora Matias
- Laboratory of Cellular Neurobiology, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Juliana Morgado
- Laboratory of Cellular Neurobiology, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Flávia Carvalho Alcantara Gomes
- Laboratory of Cellular Neurobiology, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
227
|
Harischandra DS, Rokad D, Neal ML, Ghaisas S, Manne S, Sarkar S, Panicker N, Zenitsky G, Jin H, Lewis M, Huang X, Anantharam V, Kanthasamy A, Kanthasamy AG. Manganese promotes the aggregation and prion-like cell-to-cell exosomal transmission of α-synuclein. Sci Signal 2019; 12:eaau4543. [PMID: 30862700 PMCID: PMC6435331 DOI: 10.1126/scisignal.aau4543] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The aggregation of α-synuclein (αSyn) is considered a key pathophysiological feature of certain neurodegenerative disorders, collectively termed synucleinopathies. Given that a prion-like, cell-to-cell transfer of misfolded αSyn has been recognized in the spreading of αSyn pathology in synucleinopathies, we investigated the biological mechanisms underlying the propagation of the disease with respect to environmental neurotoxic stress. Considering the potential role of the divalent metal manganese (Mn2+) in protein aggregation, we characterized its effect on αSyn misfolding and transmission in experimental models of Parkinson's disease. In cultured dopaminergic neuronal cells stably expressing wild-type human αSyn, misfolded αSyn was secreted through exosomes into the extracellular medium upon Mn2+ exposure. These exosomes were endocytosed through caveolae into primary microglial cells, thereby mounting neuroinflammatory responses. Furthermore, Mn2+-elicited exosomes exerted a neurotoxic effect in a human dopaminergic neuronal model (LUHMES cells). Moreover, bimolecular fluorescence complementation (BiFC) analysis revealed that Mn2+ accelerated the cell-to-cell transmission of αSyn, resulting in dopaminergic neurotoxicity in a mouse model of Mn2+ exposure. Welders exposed to Mn2+ had increased misfolded αSyn content in their serum exosomes. Stereotaxically delivering αSyn-containing exosomes, isolated from Mn2+-treated αSyn-expressing cells, into the striatum initiated Parkinsonian-like pathological features in mice. Together, these results indicate that Mn2+ exposure promotes αSyn secretion in exosomal vesicles, which subsequently evokes proinflammatory and neurodegenerative responses in both cell culture and animal models.
Collapse
Affiliation(s)
- Dilshan S Harischandra
- Parkinson's Disorder Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Dharmin Rokad
- Parkinson's Disorder Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Matthew L Neal
- Parkinson's Disorder Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Shivani Ghaisas
- Parkinson's Disorder Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Sireesha Manne
- Parkinson's Disorder Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Souvarish Sarkar
- Parkinson's Disorder Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Nikhil Panicker
- Parkinson's Disorder Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Gary Zenitsky
- Parkinson's Disorder Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Huajun Jin
- Parkinson's Disorder Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Mechelle Lewis
- Departments of Neurology and Pharmacology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Xuemei Huang
- Departments of Neurology and Pharmacology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Vellareddy Anantharam
- Parkinson's Disorder Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Arthi Kanthasamy
- Parkinson's Disorder Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Anumantha G Kanthasamy
- Parkinson's Disorder Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
228
|
α-Synuclein misfolding and aggregation: Implications in Parkinson's disease pathogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:890-908. [PMID: 30853581 DOI: 10.1016/j.bbapap.2019.03.001] [Citation(s) in RCA: 258] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 03/03/2019] [Accepted: 03/05/2019] [Indexed: 12/21/2022]
Abstract
α-Synuclein (α-Syn) has been extensively studied for its structural and biophysical properties owing to its pathophysiological role in Parkinson's disease (PD). Lewy bodies and Lewy neurites are the pathological hallmarks of PD and contain α-Syn aggregates as their major component. It was therefore hypothesized that α-Syn aggregation is actively associated with PD pathogenesis. The central role of α-Syn aggregation in PD is further supported by the identification of point mutations in α-Syn protein associated with rare familial forms of PD. However, the correlation between aggregation propensities of α-Syn mutants and their association with PD phenotype is not straightforward. Recent evidence suggested that oligomers, formed during the initial stages of aggregation, are the potent neurotoxic species causing cell death in PD. However, the heterogeneous and unstable nature of these oligomers limit their detailed characterization. α-Syn fibrils, on the contrary, are shown to be the infectious agents and propagate in a prion-like manner. Although α-Syn is an intrinsically disordered protein, it exhibits remarkable conformational plasticity by adopting a range of structural conformations under different environmental conditions. In this review, we focus on the structural and functional aspects of α-Syn and role of potential factors that may contribute to the underlying mechanism of synucleinopathies. This information will help to identify novel targets and develop specific therapeutic strategies to combat Parkinson's and other protein aggregation related neurodegenerative diseases.
Collapse
|
229
|
Vargas JY, Grudina C, Zurzolo C. The prion-like spreading of α-synuclein: From in vitro to in vivo models of Parkinson's disease. Ageing Res Rev 2019; 50:89-101. [PMID: 30690184 DOI: 10.1016/j.arr.2019.01.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 01/06/2019] [Accepted: 01/24/2019] [Indexed: 02/07/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder after Alzheimer's disease. PD is characterized by the loss of dopaminergic neurons, primarily in brain regions that control motor functions, thereby leading to motor impairments in the patients. Pathological aggregated forms of the synaptic protein, α-synuclein (α-syn), are involved in the generation and progression of PD. In PD brains, α-syn accumulates inside neurons and propagates from cell-to-cell in a prion-like manner. In this review, we discuss the in vitro and in vivo models used to study the prion-like properties of α-syn and related findings. In particular, we focus on the different mechanisms of α-syn spreading, which could be relevant for the development of alternative therapeutic approaches for PD treatment.
Collapse
|
230
|
Xia Y, Zhang G, Han C, Ma K, Guo X, Wan F, Kou L, Yin S, Liu L, Huang J, Xiong N, Wang T. Microglia as modulators of exosomal alpha-synuclein transmission. Cell Death Dis 2019; 10:174. [PMID: 30787269 PMCID: PMC6382842 DOI: 10.1038/s41419-019-1404-9] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 12/26/2018] [Accepted: 01/22/2019] [Indexed: 01/08/2023]
Abstract
Recent researches regarding to exosomal involvement in alpha-synuclein (α-syn) transmission relating to the pathological process of Parkinson's disease (PD) have attracted considerable attention. It is highly desirable to make clear the diffusion process and cellular uptake of α-syn-associated exosomes and the underlying mechanism of exosomes-involved communication in the synucleinopathy pathogenesis. To determine the contribution of α-syn-associated exosomes to the initiation and progression of PD, plasma exosomes derived from PD patients were stereotaxically injected into the striatum of mice brains. Exosomes extracted from plasma diagnosed with PD contained monomeric and oligomeric α-syn. Here, we found that microglia display a high potency for uptake of plasma exosomes derived from PD patients, and therefore could be activated by exogenous exosomes in vitro and in vivo. In addition, immunofluorescent double staining verified the transfer of exogenous human exosomal α-syn to neurons. The release of human exosomal α-syn from microglia may facilitate this propagation. Finally, we described a mechanism underlying this potential role of microglia in the transmission of exosomal α-syn. Specifically, exogenous exosomes were found to dysregulate autophagy of the BV2 mouse microglia cell line with presentation of increased accumulation of intracellular α-syn and accelerated secretion of α-syn into extracellular space. These results suggest that microglia play a crucial role in the transmission of α-syn via exosomal pathways, in additional to idea that the progression of PD may be altered by the modulation of exosome secretion and/or microglial states.
Collapse
Affiliation(s)
- Yun Xia
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guoxin Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chao Han
- Department of Neurology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Kai Ma
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingfang Guo
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Wan
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Kou
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sijia Yin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Liu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinsha Huang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Nian Xiong
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
231
|
Heravi M, Dargahi L, Parsafar S, Tayaranian Marvian A, Aliakbari F, Morshedi D. The primary neuronal cells are more resistant than PC12 cells to α-synuclein toxic aggregates. Neurosci Lett 2019; 701:38-47. [PMID: 30776494 DOI: 10.1016/j.neulet.2019.01.055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 01/29/2019] [Accepted: 01/30/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Alpha-synuclein (αSN) is an abundant presynaptic brain protein that its aggregated species believed to play pivotal roles in the development of neurodegenerative diseases, especially Parkinson's disease (PD). In this study, we compared the response of primary neuronal cells with a well-known cell line model, PC12, against the toxic aggregates of αSN. METHODS Primary hippocampal neurons (PHNs) were isolated from 17 to 18 days old rat embryos. Fibrillization was induced in recombinant αSN and monitored by standard methods. The toxicity of different aggregates of αSN on the treated cells was then studied. Furthermore, changes in the intracellular reactive oxygen species (ROS) and Ca2+ levels were also compared in two kinds of treated cells. We also studied the gene expression profile of certain Ca2+ channels and carriers using the GEO2 database. RESULTS The viability rate was significantly lower in PC12 versus PHNs, in response to αSN. This is while the intracellular ROS and Ca2+ levels were significantly increased in both cell types. Analysis of microarray data indicated that some factors involved in Ca2+ hemostasis may face significant changes in the PD condition. CONCLUSION By putting these data together, it is clear that PHN is more resistant than PC12 toward αSN cytotoxicity even in the presence of rising cytoplasmic ROS and Ca2+ levels. Exploring the supporting mechanisms which PHN uses to be more resistant to αSN cytotoxicity can help to open a roadmap toward therapeutic plans in PD and other synucleinopathy disorders.
Collapse
Affiliation(s)
- Mansooreh Heravi
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran; Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Dargahi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soha Parsafar
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Amir Tayaranian Marvian
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran; Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), D-81377, Munich, Germany
| | - Farhang Aliakbari
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Dina Morshedi
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran.
| |
Collapse
|
232
|
Identification of Differentially Expressed Genes and Long Noncoding RNAs Associated with Parkinson's Disease. PARKINSONS DISEASE 2019; 2019:6078251. [PMID: 30867898 PMCID: PMC6379850 DOI: 10.1155/2019/6078251] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 12/06/2018] [Indexed: 12/28/2022]
Abstract
Objectives This study aims to determine differentially expressed genes (DEGs) and long noncoding RNAs (lncRNAs) associated with Parkinson's disease (PD) using a microarray. Methods We downloaded the microarray data GSE6613 from the Gene Expression Omnibus, which included 105 samples. We selected 72 samples comprising 22 healthy control blood samples and 50 PD blood samples for further analysis. Later, we used Limma to screen DEGs and differentially expressed lncRNAs (DElncRNAs) and estimated their functions by the Gene Ontology (GO). Besides, the competing endogenous RNA (ceRNA) network, including microRNAs, lncRNAs, and mRNAs, was constructed to elucidate the regulatory mechanism. Furthermore, we performed the KEGG pathway enrichment with mRNAs in the ceRNA regulatory network and constructed a final network, including pathways, mRNAs, microRNAs, and lncRNAs. Results Overall, we obtained 394 DEGs, including 207 upregulated DEGs and 187 downregulated DEGs, and 7 DElncRNAs, including 2 upregulated DElncRNAs and 5 downregulated DElncRNAs. Insulin-like growth factor-1 receptor (IGF1R) was considerably enriched in the endocytosis pathway. In the ceRNA regulation network, IGF1R was the target of hsa-miR-133b and lncRNAs of XIST, and PART1 could also be the target of hsa-miR-133b. While the upregulated DEGs were enriched in the GO terms of the cytoskeleton, cytoskeletal part, and microtubule cytoskeleton, the downregulated DEGs were enriched in the immune response. PRKACA was markedly enriched in numerous pathways, including the MAPK and insulin signaling pathways. Conclusions IGF1R, PRKACA, and lncRNA-XIST could be potentially involved in PD, and these diverse molecular mechanisms could support the development of the similar treatment for PD.
Collapse
|
233
|
Chen Y, Dolt KS, Kriek M, Baker T, Downey P, Drummond NJ, Canham MA, Natalwala A, Rosser S, Kunath T. Engineering synucleinopathy-resistant human dopaminergic neurons by CRISPR-mediated deletion of the SNCA gene. Eur J Neurosci 2019; 49:510-524. [PMID: 30472757 PMCID: PMC6492083 DOI: 10.1111/ejn.14286] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 11/12/2018] [Accepted: 11/16/2018] [Indexed: 01/09/2023]
Abstract
An emerging treatment for Parkinson's disease (PD) is cell replacement therapy. Authentic midbrain dopaminergic (mDA) neuronal precursors can be differentiated from human embryonic stem cells (hESCs) and human induced pluripotent stem cells (iPSCs). These laboratory-generated mDA cells have been demonstrated to mature into functional dopaminergic neurons upon transplantation into preclinical models of PD. However, clinical trials with human fetal mesenchephalic cells have shown that cell replacement grafts in PD are susceptible to Lewy body formation suggesting host-to-graft transfer of α-synuclein pathology. Here, we have used CRISPR/Cas9n technology to delete the endogenous SNCA gene, encoding for α-synuclein, in a clinical-grade hESC line to generate SNCA+/- and SNCA-/- cell lines. These hESC lines were first differentiated into mDA neurons, and then challenged with recombinant α-synuclein preformed fibrils (PFFs) to seed the formation for Lewy-like pathology as measured by phosphorylation of serine-129 of α-synuclein (pS129-αSyn). Wild-type neurons were fully susceptible to the formation of protein aggregates positive for pS129-αSyn, while SNCA+/- and SNCA-/- neurons exhibited significant resistance to the formation of this pathological mark. This work demonstrates that reducing or completely removing SNCA alleles by CRISPR/Cas9n-mediated gene editing confers a measure of resistance to Lewy pathology.
Collapse
Affiliation(s)
- Yixi Chen
- MRC Centre for Regenerative MedicineInstitute for Stem Cell ResearchSchool of Biological SciencesThe University of EdinburghEdinburghUK
- UK Centre for Mammalian Synthetic BiologyThe University of EdinburghEdinburghUK
| | - Karamjit Singh Dolt
- MRC Centre for Regenerative MedicineInstitute for Stem Cell ResearchSchool of Biological SciencesThe University of EdinburghEdinburghUK
| | | | | | | | - Nicola J. Drummond
- MRC Centre for Regenerative MedicineInstitute for Stem Cell ResearchSchool of Biological SciencesThe University of EdinburghEdinburghUK
| | - Maurice A. Canham
- MRC Centre for Regenerative MedicineInstitute for Stem Cell ResearchSchool of Biological SciencesThe University of EdinburghEdinburghUK
| | - Ammar Natalwala
- MRC Centre for Regenerative MedicineInstitute for Stem Cell ResearchSchool of Biological SciencesThe University of EdinburghEdinburghUK
| | - Susan Rosser
- UK Centre for Mammalian Synthetic BiologyThe University of EdinburghEdinburghUK
| | - Tilo Kunath
- MRC Centre for Regenerative MedicineInstitute for Stem Cell ResearchSchool of Biological SciencesThe University of EdinburghEdinburghUK
- UK Centre for Mammalian Synthetic BiologyThe University of EdinburghEdinburghUK
| |
Collapse
|
234
|
Patterson L, Rushton SP, Attems J, Thomas AJ, Morris CM. Degeneration of dopaminergic circuitry influences depressive symptoms in Lewy body disorders. Brain Pathol 2019; 29:544-557. [PMID: 30582885 PMCID: PMC6767514 DOI: 10.1111/bpa.12697] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 12/06/2018] [Indexed: 12/14/2022] Open
Abstract
Aims Depression is commonly observed even in prodromal stages of Lewy body disorders (LBD), and is associated with cognitive impairment and a faster rate of cognitive decline. Given the role of dopamine in the development of movement disorders, but also in motivation and reward, we investigated neurodegenerative pathology in dopaminergic circuitry in Parkinson's disease (PD), PD with dementia (PDD) and dementia with Lewy bodies (DLB) patients in relation to depressive symptoms. Methods α‐synuclein, hyperphosphorylated tau and amyloid‐beta pathology was assessed in 17 DLB, 14 PDD and 8 PD cases within striatal and midbrain subregions, with neuronal cell density assessed in substantia nigra and ventral tegmental area. Additionally, we used a structural equation modeling (SEM) approach to investigate the extent to which brain connectivity might influence the deposition of pathological proteins within dopaminergic pathways. Results A significantly higher α‐synuclein burden was observed in the substantia nigra (P = 0.006), ventral tegmental area (P = 0.011) and nucleus accumbens (P = 0.031) in LBD patients with depression. Significant negative correlations were observed between cell density in substantia nigra with Lewy body (LB) Braak stage (P = 0.013), whereas cell density in ventral tegmental area showed negative correlations with LB Braak stage (P = 0.026) and neurofibrillary tangle Braak stage (P = 0.007). Conclusions Dopaminergic α‐synuclein pathology appears to drive depression. Selective targeting of dopaminergic pathways may therefore provide symptomatic relief for depressive symptoms in LBD patients.
Collapse
Affiliation(s)
- Lina Patterson
- Alzheimer's Society Doctoral Training Centre, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, UK
| | - Steven P Rushton
- School of Biology, Newcastle University, Ridley Building, Newcastle upon Tyne, UK
| | - Johannes Attems
- Alzheimer's Society Doctoral Training Centre, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, UK.,Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle-upon-Tyne, UK
| | - Alan J Thomas
- Alzheimer's Society Doctoral Training Centre, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, UK.,Gateshead Health NHS Foundation Trust, Queen Elizabeth Hospital, Gateshead, UK
| | - Christopher M Morris
- NIHR Biomedical Research Centre Newcastle, Biomedical Research Building, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, UK
| |
Collapse
|
235
|
Brundin P, Coetzee GA. Genetically engineered stem cell-derived neurons can be rendered resistant to alpha-synuclein aggregate pathology. Eur J Neurosci 2019; 49:316-319. [PMID: 30614081 DOI: 10.1111/ejn.14333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 01/03/2019] [Indexed: 11/28/2022]
Affiliation(s)
- Patrik Brundin
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, Michigan
| | - Gerhard A Coetzee
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, Michigan
| |
Collapse
|
236
|
Gribaudo S, Tixador P, Bousset L, Fenyi A, Lino P, Melki R, Peyrin JM, Perrier AL. Propagation of α-Synuclein Strains within Human Reconstructed Neuronal Network. Stem Cell Reports 2019; 12:230-244. [PMID: 30639210 PMCID: PMC6372945 DOI: 10.1016/j.stemcr.2018.12.007] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 12/11/2018] [Accepted: 12/11/2018] [Indexed: 01/01/2023] Open
Abstract
Reappraisal of neuropathological studies suggests that pathological hallmarks of Alzheimer’s disease and Parkinson’s disease (PD) spread progressively along predictable neuronal pathways in the human brain through unknown mechanisms. Although there is much evidence supporting the prion-like propagation and amplification of α-synuclein (α-Syn) in vitro and in rodent models, whether this scenario occurs in the human brain remains to be substantiated. Here we reconstructed in microfluidic devices corticocortical neuronal networks using human induced pluripotent stem cells derived from a healthy donor. We provide unique experimental evidence that different strains of human α-Syn disseminate in “wild-type” human neuronal networks in a prion-like manner. We show that two distinct α-Syn strains we named fibrils and ribbons are transported, traffic between neurons, and trigger to different extents, in a dose- and structure-dependent manner, the progressive accumulation of PD-like pathological hallmarks. We further demonstrate that seeded aggregation of endogenous soluble α-Syn affects synaptic integrity and mitochondria morphology. Different α-Syn strains propagate within WT human iPSC-derived cortical neuronal networks α-Syn strains differentially seed endogenous WT α-Syn forming LB/LN-like structures Phospho-α-Syn endogenous aggregates resist degradation and accumulate in cytoplasm Accumulation of phospho-α-Syn induces early neuronal dysfunctions
Collapse
Affiliation(s)
- Simona Gribaudo
- INSERM U861, I-STEM, AFM, Corbeil-Essonnes 91100, France; UEVE U861, I-STEM, AFM, Corbeil-Essonnes 91100, France
| | - Philippe Tixador
- Sorbonne Universités, Faculté des Sciences et Ingénierie, CNRS/UMR 8256, B2A, Biological Adaptation and Ageing, Institut de Biologie Paris Seine, Paris 75005, France
| | - Luc Bousset
- Laboratory of Neurodegenerative Disease, Institut François Jacob, MIRCen, CEA-CNRS, Fontenay aux Roses 92265, France
| | - Alexis Fenyi
- Laboratory of Neurodegenerative Disease, Institut François Jacob, MIRCen, CEA-CNRS, Fontenay aux Roses 92265, France
| | - Patricia Lino
- INSERM U861, I-STEM, AFM, Corbeil-Essonnes 91100, France; UEVE U861, I-STEM, AFM, Corbeil-Essonnes 91100, France
| | - Ronald Melki
- Laboratory of Neurodegenerative Disease, Institut François Jacob, MIRCen, CEA-CNRS, Fontenay aux Roses 92265, France.
| | - Jean-Michel Peyrin
- Sorbonne Universités, Faculté des Sciences et Ingénierie, CNRS/UMR 8256, B2A, Biological Adaptation and Ageing, Institut de Biologie Paris Seine, Paris 75005, France.
| | - Anselme L Perrier
- INSERM U861, I-STEM, AFM, Corbeil-Essonnes 91100, France; UEVE U861, I-STEM, AFM, Corbeil-Essonnes 91100, France.
| |
Collapse
|
237
|
Abstract
The most common neurodegenerative diseases are Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease, frontotemporal lobar degeneration, and the motor neuron diseases, with AD affecting approximately 6% of people aged 65 years and older, and PD affecting approximately 1% of people aged over 60 years. Specific proteins are associated with these neurodegenerative diseases, as determined by both immunohistochemical studies on post-mortem tissue and genetic screening, where protein misfolding and aggregation are key hallmarks. Many of these proteins are shown to misfold and aggregate into soluble non-native oligomers and large insoluble protein deposits (fibrils and plaques), both of which may exert a toxic gain of function. Proteotoxicity has been examined intensively in cell culture and in in vivo models, and clinical trials of methods to attenuate proteotoxicity are relatively new. Therapies to enhance cellular protein quality control mechanisms such as upregulation of chaperones and clearance/degradation pathways, as well as immunotherapies against toxic protein conformations, are being actively pursued. In this article, we summarize the common pathophysiology of neurodegenerative disease, and review therapies in early-phase clinical trials that target the proteotoxic component of several neurodegenerative diseases.
Collapse
Affiliation(s)
- Luke McAlary
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada.
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, V6T 2B5, Canada.
| | - Steven S Plotkin
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada.
- Genome Sciences and Technology Program, University of British Columbia, Vancouver, BC, V6T 1Z2, Canada.
| | - Neil R Cashman
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, V6T 2B5, Canada.
| |
Collapse
|
238
|
Wu ZC, Gao JH, Du TF, Tang DH, Chen NH, Yuan YH, Ma KL. Alpha-synuclein is highly prone to distribution in the hippocampus and midbrain in tree shrews, and its fibrils seed Lewy body-like pathology in primary neurons. Exp Gerontol 2018; 116:37-45. [PMID: 30553024 DOI: 10.1016/j.exger.2018.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 12/09/2018] [Accepted: 12/10/2018] [Indexed: 11/30/2022]
Abstract
The Chinese tree shrew (TS) has many unique advantages that make it suitable for use as an experimental animal model for human disease including moderate body size, low cost of feeding, short reproductive cycle and lifespan, and close phylogenetic relationship to primates. Our previous studies have shown that TS treated with the mitochondrial inhibitor MPTP displayed classic Parkinsonian symptoms. Additionally, the structure of TS alpha-synuclein (α-syn) is highly homologous to that found in humans. Previous studies have concluded that misfolded, fibrillar α-syn is a hallmark of α-synucleinopathies. In this study, we examined the distribution and expression levels of α-syn in different TS brain regions. We also obtained recombinant TS α-syn protein to study its aggregation and cytotoxic properties in primary neurons. Our results showed that α-syn was expressed in numerous different brain regions in TS but was most abundant in the hippocampus and midbrain. The recombinant α-syn of TS displayed straight fibrils when incubated for 72 h in vitro, which is very similar to human α-syn. When exposed to primary neurons, the TS and human α-syn fibrils led to cytotoxicity and Lewy-like pathology. Our findings indicated that TS could be a potential animal model to study the pathology of α-synucleinopathies.
Collapse
Affiliation(s)
- Zheng-Cun Wu
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming 650118, China; Medical Primate Research Center & Neuroscience Center, Chinese Academy of Medical Sciences, Beijing 100005, China; Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Diseases, Kunming 650118, China
| | - Jia-Hong Gao
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming 650118, China; Medical Primate Research Center & Neuroscience Center, Chinese Academy of Medical Sciences, Beijing 100005, China; Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Diseases, Kunming 650118, China
| | - Ting-Fu Du
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming 650118, China; Medical Primate Research Center & Neuroscience Center, Chinese Academy of Medical Sciences, Beijing 100005, China; Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Diseases, Kunming 650118, China
| | - Dong-Hong Tang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming 650118, China; Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Diseases, Kunming 650118, China
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of Materia Medic, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yu-He Yuan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of Materia Medic, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Kai-Li Ma
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming 650118, China; Medical Primate Research Center & Neuroscience Center, Chinese Academy of Medical Sciences, Beijing 100005, China; Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Diseases, Kunming 650118, China.
| |
Collapse
|
239
|
Yamasaki TR, Holmes BB, Furman JL, Dhavale DD, Su BW, Song ES, Cairns NJ, Kotzbauer PT, Diamond MI. Parkinson's disease and multiple system atrophy have distinct α-synuclein seed characteristics. J Biol Chem 2018; 294:1045-1058. [PMID: 30478174 PMCID: PMC6341389 DOI: 10.1074/jbc.ra118.004471] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 11/20/2018] [Indexed: 11/06/2022] Open
Abstract
Parkinson's disease (PD) and multiple system atrophy (MSA) are distinct clinical syndromes characterized by the pathological accumulation of α-synuclein (α-syn) protein fibrils in neurons and glial cells. These disorders and other neurodegenerative diseases may progress via prion-like mechanisms. The prion model of propagation predicts the existence of "strains" that link pathological aggregate structure and neuropathology. Prion strains are aggregated conformers that stably propagate in vivo and cause disease with defined incubation times and patterns of neuropathology. Indeed, tau prions have been well defined, and research suggests that both α-syn and β-amyloid may also form strains. However, there is a lack of studies characterizing PD- versus MSA-derived α-syn strains or demonstrating stable propagation of these unique conformers between cells or animals. To fill this gap, we used an assay based on FRET that exploits a HEK293T "biosensor" cell line stably expressing α-syn (A53T)-CFP/YFP fusion proteins to detect α-syn seeds in brain extracts from PD and MSA patients. Both soluble and insoluble fractions of MSA extracts had robust seeding activity, whereas only the insoluble fractions of PD extracts displayed seeding activity. The morphology of MSA-seeded inclusions differed from PD-seeded inclusions. These differences persisted upon propagation of aggregation to second-generation biosensor cells. We conclude that PD and MSA feature α-syn conformers with very distinct biochemical properties that can be transmitted to α-syn monomers in a cell system. These findings are consistent with the idea that distinct α-syn strains underlie PD and MSA and offer possible directions for synucleinopathy diagnosis.
Collapse
Affiliation(s)
- Tritia R Yamasaki
- From the Department of Neurology, University of Kentucky, Lexington, Kentucky 40536,
| | | | | | | | - Bryant W Su
- From the Department of Neurology, University of Kentucky, Lexington, Kentucky 40536
| | - Eun-Suk Song
- From the Department of Neurology, University of Kentucky, Lexington, Kentucky 40536
| | - Nigel J Cairns
- the Departments of Neurology and.,Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri 63110, and
| | | | - Marc I Diamond
- the Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| |
Collapse
|
240
|
Zhang G, Xia Y, Wan F, Ma K, Guo X, Kou L, Yin S, Han C, Liu L, Huang J, Xiong N, Wang T. New Perspectives on Roles of Alpha-Synuclein in Parkinson's Disease. Front Aging Neurosci 2018; 10:370. [PMID: 30524265 PMCID: PMC6261981 DOI: 10.3389/fnagi.2018.00370] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 10/25/2018] [Indexed: 01/07/2023] Open
Abstract
Parkinson’s disease (PD) is one of the synucleinopathies spectrum of disorders typified by the presence of intraneuronal protein inclusions. It is primarily composed of misfolded and aggregated forms of alpha-synuclein (α-syn), the toxicity of which has been attributed to the transition from an α-helical conformation to a β-sheetrich structure that polymerizes to form toxic oligomers. This could spread and initiate the formation of “LB-like aggregates,” by transcellular mechanisms with seeding and subsequent permissive templating. This hypothesis postulates that α-syn is a prion-like pathological agent and responsible for the progression of Parkinson’s pathology. Moreover, the involvement of the inflammatory response in PD pathogenesis has been reported on the excessive microglial activation and production of pro-inflammatory cytokines. At last, we describe several treatment approaches that target the pathogenic α-syn protein, especially the oligomers, which are currently being tested in advanced animal experiments or are already in clinical trials. However, there are current challenges with therapies that target α-syn, for example, difficulties in identifying varying α-syn conformations within different individuals as well as both the cost and need of long-duration large trials.
Collapse
Affiliation(s)
- Guoxin Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yun Xia
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Wan
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Ma
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingfang Guo
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Kou
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sijia Yin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chao Han
- Department of Neurology, Anhui Provincial Hospital, The First Affiliated Hospital of Science and Technology of China, Hefei, China
| | - Ling Liu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinsha Huang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Nian Xiong
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
241
|
Brás IC, Lopes LV, Outeiro TF. Sensing α-Synuclein From the Outside via the Prion Protein: Implications for Neurodegeneration. Mov Disord 2018; 33:1675-1684. [DOI: 10.1002/mds.27478] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/24/2018] [Accepted: 07/26/2018] [Indexed: 12/30/2022] Open
Affiliation(s)
- Inês Caldeira Brás
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration; University Medical Center Göttingen; Göttingen Germany
| | - Luísa V. Lopes
- Instituto de Medicina Molecular, Faculdade de Medicina; Universidade de Lisboa; Lisboa Portugal
| | - Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration; University Medical Center Göttingen; Göttingen Germany
- CEDOC, Chronic Diseases Research Center, NOVA Medical School
- Faculdade de Ciências Médicas; Universidade Nova de Lisboa, Campo dos Mártires da Pátria; Lisboa Portugal
- Max Planck Institute for Experimental Medicine; Göttingen Germany
- Institute of Neuroscience, The Medical School; Newcastle University; Newcastle Upon Tyne UK
| |
Collapse
|
242
|
Koh YH, Tan LY, Ng SY. Patient-Derived Induced Pluripotent Stem Cells and Organoids for Modeling Alpha Synuclein Propagation in Parkinson's Disease. Front Cell Neurosci 2018; 12:413. [PMID: 30483063 PMCID: PMC6240766 DOI: 10.3389/fncel.2018.00413] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 10/23/2018] [Indexed: 01/14/2023] Open
Abstract
Parkinson's disease (PD) is an age-associated, progressive neurodegenerative disorder characterized by motor impairment and in some cases cognitive decline. Central to the disease pathogenesis of PD is a small, presynaptic neuronal protein known as alpha synuclein (a-syn), which tends to accumulate and aggregate in PD brains as Lewy bodies or Lewy neurites. Numerous in vitro and in vivo studies confirm that a-syn aggregates can be propagated from diseased to healthy cells, and it has been suggested that preventing the spread of pathogenic a-syn species can slow PD progression. In this review, we summarize the works of recent literature elucidating mechanisms of a-syn propagation, and discussed the advantages in using patient-derived induced pluripotent stem cells (iPSCs) and/or induced neurons to study a-syn transmission.
Collapse
Affiliation(s)
- Yong Hui Koh
- Institute of Molecular and Cell Biology, Singapore, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Li Yi Tan
- Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Shi-Yan Ng
- Institute of Molecular and Cell Biology, Singapore, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,National Neuroscience Institute, Singapore, Singapore.,The Third Affliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
243
|
Melki R. Alpha-synuclein and the prion hypothesis in Parkinson's disease. Rev Neurol (Paris) 2018; 174:644-652. [DOI: 10.1016/j.neurol.2018.08.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/02/2018] [Accepted: 08/21/2018] [Indexed: 10/28/2022]
|
244
|
Brettschneider J, Suh E, Robinson JL, Fang L, Lee EB, Irwin DJ, Grossman M, Van Deerlin VM, Lee VMY, Trojanowski JQ. Converging Patterns of α-Synuclein Pathology in Multiple System Atrophy. J Neuropathol Exp Neurol 2018; 77. [PMID: 30203094 PMCID: PMC6181179 DOI: 10.1093/jnen/nly080#supplementary-data] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
Abstract
We aimed to determine patterns of α-synuclein (α-syn) pathology in multiple system atrophy (MSA) using 70-µm-thick sections of 20 regions of the central nervous system of 37 cases with striato-nigral degeneration (SND) and 10 cases with olivo-ponto-cerebellar atrophy (OPCA). In SND cases with the shortest disease duration (phase 1), α-syn pathology was observed in striatum, lentiform nucleus, substantia nigra, brainstem white matter tracts, cerebellar subcortical white matter as well as motor cortex, midfrontal cortex, and sensory cortex. SND with increasing duration of disease (phase 2) was characterized by involvement of spinal cord and thalamus, while phase 3 was characterized by involvement of hippocampus and amygdala. Cases with the longest disease duration (phase 4) showed involvement of the visual cortex. We observed an increasing overlap of α-syn pathology with increasing duration of disease between SND and OPCA, and noted increasingly similar regional distribution patterns of α-syn pathology. The GBA variant, p.Thr408Met, was found to have an allele frequency of 6.94% in SND cases which was significantly higher compared with normal (0%) and other neurodegenerative disease pathologies (0.74%), suggesting that it is associated with MSA. Our findings indicate that SND and OPCA show distinct early foci of α-syn aggregations, but increasingly converge with longer disease duration to show overlapping patterns of α-syn pathology.
Collapse
Affiliation(s)
- Johannes Brettschneider
- Center for Neurodegenerative Disease Research (CNDR), University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - EunRan Suh
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - John L Robinson
- Center for Neurodegenerative Disease Research (CNDR), University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Lubin Fang
- Clinical Neuroanatomy Section, Department of Neurology, Center for Biomedical Research, University of Ulm, Ulm, Germany
| | - Edward B Lee
- Center for Neurodegenerative Disease Research (CNDR), University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - David J Irwin
- Center for Neurodegenerative Disease Research (CNDR), University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Murray Grossman
- Center for Neurodegenerative Disease Research (CNDR), University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Vivianna M Van Deerlin
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Virginia M -Y Lee
- Center for Neurodegenerative Disease Research (CNDR), University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - John Q Trojanowski
- Center for Neurodegenerative Disease Research (CNDR), University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
- Send correspondence to: John Q. Trojanowski, MD, PhD, CNDR, University of Pennsylvania School of Medicine, 3rd Floor Maloney Building, 3600 Spruce Street, Philadelphia, PA 19104; E-mail:
| |
Collapse
|
245
|
Maxan A, Mason S, Saint-Pierre M, Smith E, Ho A, Harrower T, Watts C, Tai Y, Pavese N, Savage JC, Tremblay MÈ, Gould P, Rosser AE, Dunnett SB, Piccini P, Barker RA, Cicchetti F. Outcome of cell suspension allografts in a patient with Huntington's disease. Ann Neurol 2018; 84:950-956. [PMID: 30286516 PMCID: PMC6587549 DOI: 10.1002/ana.25354] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 09/27/2018] [Accepted: 09/27/2018] [Indexed: 12/22/2022]
Abstract
For patients with incurable neurodegenerative disorders such as Huntington's (HD) and Parkinson's disease, cell transplantation has been explored as a potential treatment option. Here, we present the first clinicopathological study of a patient with HD in receipt of cell-suspension striatal allografts who took part in the NEST-UK multicenter clinical transplantation trial. Using various immunohistochemical techniques, we found a discrepancy in the survival of grafted projection neurons with respect to grafted interneurons as well as major ongoing inflammatory and immune responses to the grafted tissue with evidence of mutant huntingtin aggregates within the transplant area. Our results indicate that grafts can survive more than a decade post-transplantation, but show compromised survival with inflammation and mutant protein being observed within the transplant site. Ann Neurol 2018;84:950-956.
Collapse
Affiliation(s)
- Alexander Maxan
- Centre de Recherche du CHU de Québec (CHUQ), Axe Neurosciences, Québec, QC, Canada
| | - Sarah Mason
- John van Geest Centre for Brain Repair and Department of Clinical Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Martine Saint-Pierre
- Centre de Recherche du CHU de Québec (CHUQ), Axe Neurosciences, Québec, QC, Canada
| | - Emma Smith
- John van Geest Centre for Brain Repair and Department of Clinical Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Aileen Ho
- John van Geest Centre for Brain Repair and Department of Clinical Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Timothy Harrower
- Royal Devon and Exeter Hospital, Barrack Road, Exeter, Devon, United Kingdom
| | - Colin Watts
- John van Geest Centre for Brain Repair and Department of Clinical Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Yen Tai
- John van Geest Centre for Brain Repair and Department of Clinical Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Nicola Pavese
- Department of Medicine, Neurology Imaging Unit, Imperial College London, London, United Kingdom
| | - Julie C Savage
- Centre de Recherche du CHU de Québec (CHUQ), Axe Neurosciences, Québec, QC, Canada.,Département de médecine moléculaire, Université Laval, Québec, QC, Canada
| | - Marie-Ève Tremblay
- Centre de Recherche du CHU de Québec (CHUQ), Axe Neurosciences, Québec, QC, Canada.,Département de médecine moléculaire, Université Laval, Québec, QC, Canada
| | - Peter Gould
- Laboratoire de neuropathology, Hôpital de l'Enfant-Jésus-CHU de Québec, Québec, QC, United Kingdom
| | - Anne E Rosser
- Brain Repair Group and BRAIN unit, Neuroscience and Mental Health Research Institute and School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Stephen B Dunnett
- Brain Repair Group and BRAIN unit, Neuroscience and Mental Health Research Institute and School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Paola Piccini
- Department of Medicine, Neurology Imaging Unit, Imperial College London, London, United Kingdom
| | - Roger A Barker
- John van Geest Centre for Brain Repair and Department of Clinical Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Francesca Cicchetti
- Centre de Recherche du CHU de Québec (CHUQ), Axe Neurosciences, Québec, QC, Canada.,Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC, Canada
| |
Collapse
|
246
|
Secretion and Uptake of α-Synuclein Via Extracellular Vesicles in Cultured Cells. Cell Mol Neurobiol 2018; 38:1539-1550. [PMID: 30288631 PMCID: PMC6223723 DOI: 10.1007/s10571-018-0622-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 06/27/2018] [Indexed: 12/20/2022]
Abstract
In Parkinson’s disease and other Lewy body disorders, the propagation of pathology has been accredited to the spreading of extracellular α-synuclein (α-syn). Although the pathogenic mechanisms are not fully understood, cell-to-cell transfer of α-syn via exosomes and other extracellular vesicles (EVs) has been reported. Here, we investigated whether altered molecular properties of α-syn can influence the distribution and secretion of α-syn in human neuroblastoma cells. Different α-syn variants, including α-syn:hemi-Venus and disease-causing mutants, were overexpressed and EVs were isolated from the conditioned medium. Of the secreted α-syn, 0.1–2% was associated with vesicles. The major part of EV α-syn was attached to the outer membrane of vesicles, whereas a smaller fraction was found in their lumen. For α-syn expressed with N-terminal hemi-Venus, the relative levels associated with EVs were higher than for WT α-syn. Moreover, such EV-associated α-syn:hemi-Venus species were internalized in recipient cells to a higher degree than the corresponding free-floating forms. Among the disease-causing mutants, A53T α-syn displayed an increased association with EVs. Taken together, our data suggest that α-syn species with presumably lost physiological functions or altered aggregation properties may shift the cellular processing towards vesicular secretion. Our findings thus lend further support to the tenet that EVs can mediate spreading of harmful α-syn species and thereby contribute to the pathology in α-synucleinopathies.
Collapse
|
247
|
Non-cell-autonomous actions of α-synuclein: Implications in glial synucleinopathies. Prog Neurobiol 2018; 169:158-171. [DOI: 10.1016/j.pneurobio.2018.06.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 07/24/2017] [Accepted: 06/30/2018] [Indexed: 01/11/2023]
|
248
|
Xhima K, Nabbouh F, Hynynen K, Aubert I, Tandon A. Noninvasive delivery of an α-synuclein gene silencing vector with magnetic resonance-guided focused ultrasound. Mov Disord 2018; 33:1567-1579. [PMID: 30264465 DOI: 10.1002/mds.101] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/20/2018] [Accepted: 06/25/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The characteristic progression of Lewy pathology in Parkinson's disease likely involves intercellular exchange and the accumulation of misfolded α-synuclein amplified by a prion-like self-templating mechanism. Silencing of the α-synuclein gene could provide long-lasting disease-modifying benefits by reducing the requisite substrate for the spreading aggregation. OBJECTIVES As a result of the poor penetration of viral vectors across the blood-brain barrier, gene therapy for central nervous system disorders requires direct injections into the affected brain regions, and invasiveness is further increased by the need for bilateral delivery to multiple brain regions. Here we test a noninvasive approach by combining low-intensity magnetic resonance-guided focused ultrasound and intravenous microbubbles that can transiently increase the access of brain impermeant therapeutic macromolecules to targeted brain regions. METHODS Transgenic mice expressing human α-synuclein were subjected to magnetic resonance-guided focused ultrasound targeted to 4 brain regions (hippocampus, substantia nigra, olfactory bulb, and dorsal motor nucleus) in tandem with intravenous microbubbles and an adeno-associated virus serotype 9 vector bearing a short hairpin RNA sequence targeting the α-synuclein gene. RESULTS One month following treatment, α-synuclein immunoreactivity was decreased in targeted brain regions, whereas other neuronal markers such as synaptophysin or tyrosine hydroxylase were unchanged, and cell death and glial activation remained at basal levels. CONCLUSIONS These results demonstrate that magnetic resonance-guided focused ultrasound can effectively, noninvasively, and simultaneously deliver viral vectors targeting α-synuclein to multiple brain areas. Importantly, this approach may be useful to alter the progression of Lewy pathology along selected neuronal pathways, particularly as prodromal PD markers improve early diagnoses. © 2018 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Kristiana Xhima
- Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Fadl Nabbouh
- Tanz Centre for Research in Neurodegenerative Diseases, Toronto, Ontario, Canada
| | - Kullervo Hynynen
- Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Isabelle Aubert
- Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Anurag Tandon
- Tanz Centre for Research in Neurodegenerative Diseases, Toronto, Ontario, Canada.,Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
249
|
Chung CG, Lee H, Lee SB. Mechanisms of protein toxicity in neurodegenerative diseases. Cell Mol Life Sci 2018; 75:3159-3180. [PMID: 29947927 PMCID: PMC6063327 DOI: 10.1007/s00018-018-2854-4] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 12/12/2022]
Abstract
Protein toxicity can be defined as all the pathological changes that ensue from accumulation, mis-localization, and/or multimerization of disease-specific proteins. Most neurodegenerative diseases manifest protein toxicity as one of their key pathogenic mechanisms, the details of which remain unclear. By systematically deconstructing the nature of toxic proteins, we aim to elucidate and illuminate some of the key mechanisms of protein toxicity from which therapeutic insights may be drawn. In this review, we focus specifically on protein toxicity from the point of view of various cellular compartments such as the nucleus and the mitochondria. We also discuss the cell-to-cell propagation of toxic disease proteins that complicates the mechanistic understanding of the disease progression as well as the spatiotemporal point at which to therapeutically intervene. Finally, we discuss selective neuronal vulnerability, which still remains largely enigmatic.
Collapse
Affiliation(s)
- Chang Geon Chung
- Department of Brain and Cognitive Sciences, DGIST, Daegu, 42988, Republic of Korea
| | - Hyosang Lee
- Department of Brain and Cognitive Sciences, DGIST, Daegu, 42988, Republic of Korea.
| | - Sung Bae Lee
- Department of Brain and Cognitive Sciences, DGIST, Daegu, 42988, Republic of Korea.
| |
Collapse
|
250
|
Dauvilliers Y, Schenck CH, Postuma RB, Iranzo A, Luppi PH, Plazzi G, Montplaisir J, Boeve B. REM sleep behaviour disorder. Nat Rev Dis Primers 2018; 4:19. [PMID: 30166532 DOI: 10.1038/s41572-018-0016-5] [Citation(s) in RCA: 275] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Rapid eye movement (REM) sleep behaviour disorder (RBD) is a parasomnia that is characterized by loss of muscle atonia during REM sleep (known as REM sleep without atonia, or RSWA) and abnormal behaviours occurring during REM sleep, often as dream enactments that can cause injury. RBD is categorized as either idiopathic RBD or symptomatic (also known as secondary) RBD; the latter is associated with antidepressant use or with neurological diseases, especially α-synucleinopathies (such as Parkinson disease, dementia with Lewy bodies and multiple system atrophy) but also narcolepsy type 1. A clinical history of dream enactment or complex motor behaviours together with the presence of muscle activity during REM sleep confirmed by video polysomnography are mandatory for a definite RBD diagnosis. Management involves clonazepam and/or melatonin and counselling and aims to suppress unpleasant dreams and behaviours and improve bedpartner quality of life. RSWA and RBD are now recognized as manifestations of an α-synucleinopathy; most older adults with idiopathic RBD will eventually develop an overt neurodegenerative syndrome. In the future, studies will likely evaluate neuroprotective therapies in patients with idiopathic RBD to prevent or delay α-synucleinopathy-related motor and cognitive decline.
Collapse
Affiliation(s)
- Yves Dauvilliers
- Centre National de Référence Narcolepsie Hypersomnies, Unité des Troubles du Sommeil, Service de Neurologie, Hôpital Gui-de-Chauliac Montpellier, Montpellier, France. .,INSERM, U1061, Montpellier, France, Université Montpellier, Montpellier, France.
| | - Carlos H Schenck
- Minnesota Regional Sleep Disorders Center, and Departments of Psychiatry, Hennepin County Medical Center and University of Minnesota Medical School, Minneapolis, MN, USA
| | - Ronald B Postuma
- Department of Neurology, Montreal General Hospital, Montreal, Quebec, Canada
| | - Alex Iranzo
- Neurology Service, Multidisciplinary Sleep Unit, Hospital Clinic de Barcelona, IDIBAPS, CIBERNED, Barcelona, Spain
| | - Pierre-Herve Luppi
- UMR 5292 CNRS/U1028 INSERM, Center of Research in Neuroscience of Lyon (CRNL), SLEEP Team, Université Claude Bernard Lyon I, Faculté de Médecine RTH Laennec, Lyon, France
| | - Giuseppe Plazzi
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy.,IRCCS, Istituto delle Scienze Neurologiche, Bologna, Italy
| | - Jacques Montplaisir
- Department of Psychiatry, Université de Montréal, Québec, Canada and Center for Advanced Research in Sleep Medicine (CARSM), Hôpital du Sacré-Coeur de Montréal, Quebec, Canada
| | - Bradley Boeve
- Department of Neurology and Center for Sleep Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|