201
|
Ballester B, Milara J, Cortijo J. Idiopathic Pulmonary Fibrosis and Lung Cancer: Mechanisms and Molecular Targets. Int J Mol Sci 2019; 20:ijms20030593. [PMID: 30704051 PMCID: PMC6387034 DOI: 10.3390/ijms20030593] [Citation(s) in RCA: 215] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/18/2019] [Accepted: 01/28/2019] [Indexed: 12/18/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is the most common idiopathic interstitial pulmonary disease with a median survival of 2–4 years after diagnosis. A significant number of IPF patients have risk factors, such as a history of smoking or concomitant emphysema, both of which can predispose the patient to lung cancer (LC) (mostly non-small cell lung cancer (NSCLC)). In fact, IPF itself increases the risk of LC development by 7% to 20%. In this regard, there are multiple common genetic, molecular, and cellular processes that connect lung fibrosis with LC, such as myofibroblast/mesenchymal transition, myofibroblast activation and uncontrolled proliferation, endoplasmic reticulum stress, alterations of growth factors expression, oxidative stress, and large genetic and epigenetic variations that can predispose the patient to develop IPF and LC. The current approved IPF therapies, pirfenidone and nintedanib, are also active in LC. In fact, nintedanib is approved as a second line treatment in NSCLC, and pirfenidone has shown anti-neoplastic effects in preclinical studies. In this review, we focus on the current knowledge on the mechanisms implicated in the development of LC in patients with IPF as well as in current IPF and LC-IPF candidate therapies based on novel molecular advances.
Collapse
Affiliation(s)
- Beatriz Ballester
- Department of Pharmacology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain.
- CIBERES, Health Institute Carlos III, 28029 Valencia, Spain.
| | - Javier Milara
- CIBERES, Health Institute Carlos III, 28029 Valencia, Spain.
- Pharmacy Unit, University Clinic Hospital of Valencia, 46010 Valencia, Spain.
- Institute of Health Research-INCLIVA, 46010 Valencia, Spain.
| | - Julio Cortijo
- Department of Pharmacology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain.
- CIBERES, Health Institute Carlos III, 28029 Valencia, Spain.
- Research and teaching Unit, University General Hospital Consortium, 46014 Valencia, Spain.
| |
Collapse
|
202
|
Wijsenbeek MS, Kool M, Cottin V. Targeting interleukin-13 in idiopathic pulmonary fibrosis: from promising path to dead end. Eur Respir J 2018; 52:52/6/1802111. [DOI: 10.1183/13993003.02111-2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 11/06/2018] [Indexed: 12/16/2022]
|
203
|
Nagasawa M, Spits H, Ros XR. Innate Lymphoid Cells (ILCs): Cytokine Hubs Regulating Immunity and Tissue Homeostasis. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a030304. [PMID: 29229782 DOI: 10.1101/cshperspect.a030304] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Innate lymphoid cells (ILCs) have emerged as an expanding family of effector cells particularly enriched in the mucosal barriers. ILCs are promptly activated by stress signals and multiple epithelial- and myeloid-cell-derived cytokines. In response, ILCs rapidly secrete effector cytokines, which allow them to survey and maintain the mucosal integrity. Uncontrolled action of ILCs might contribute to tissue damage, chronic inflammation, metabolic diseases, autoimmunity, and cancer. Here we discuss the recent advances in our understanding of the cytokine network that modulate ILC immune responses: stimulating cytokines, signature cytokines secreted by ILC subsets, autocrine cytokines, and cytokines that induce cell plasticity.
Collapse
Affiliation(s)
- Maho Nagasawa
- Department of Experimental Immunology, Academic Medical Center at the University of Amsterdam, 1105 BA Amsterdam, Netherlands
| | - Hergen Spits
- Department of Experimental Immunology, Academic Medical Center at the University of Amsterdam, 1105 BA Amsterdam, Netherlands
| | - Xavier Romero Ros
- Department of Experimental Immunology, Academic Medical Center at the University of Amsterdam, 1105 BA Amsterdam, Netherlands
| |
Collapse
|
204
|
Yang SJ, Allahverdian S, Saunders ADR, Liu E, Dorscheid DR. IL-13 signaling through IL-13 receptor α2 mediates airway epithelial wound repair. FASEB J 2018; 33:3746-3757. [PMID: 30481486 DOI: 10.1096/fj.201801285r] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Asthma is an airway inflammatory disease characterized by epithelial barrier dysfunction and airway remodeling. Interleukin-13 (IL-13) is a pleiotropic cytokine shown to contribute to features of airway remodeling. We have previously demonstrated that IL-13 is an important mediator of normal airway epithelial repair and health. The role of IL-13 signaling via its receptor subunits (IL-13Rα1/IL-4Rα and IL-13Rα2) in airway epithelial repair and restoration of intact barrier function is not well understood and was investigated in this study using in vitro models. The blocking of IL-13 signaling via IL-13Rα2 significantly reduced airway epithelial repair by 24 h post-mechanical wounding in 1HAEo- cells. Expression and release of repair-mediating growth factor, heparin-binding epidermal growth factor (EGF)-like growth factor (HB-EGF), and subsequent activation of EGF receptor (EGFR) were also significantly reduced in response to wounding when IL-13Rα2 was blocked. Our data support that IL-13 signals via IL-13Rα2 to mediate normal airway epithelial repair via HB-EGF-dependent activation of EGFR. In human donor lung tissues, we observed that airway epithelium of asthmatics expressed significantly decreased levels of IL-13Rα2 and increased levels of IL-13Rα1 compared with nonasthmatics. Dysregulated expression of IL-13 receptor subunits in the airways of asthmatics may thus contribute to the epithelial barrier dysfunction observed in asthma.-Yang, S. J., Allahverdian, S., Saunders, A. D. R., Liu, E., Dorscheid, D. R. IL-13 signaling through IL-13 receptor α2 mediates airway epithelial wound repair.
Collapse
Affiliation(s)
- S Jasemine Yang
- Department of Medicine, Centre for Heart Lung Innovation, Providence Health Care, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sima Allahverdian
- Department of Medicine, Centre for Heart Lung Innovation, Providence Health Care, University of British Columbia, Vancouver, British Columbia, Canada
| | - Angela D R Saunders
- Department of Medicine, Centre for Heart Lung Innovation, Providence Health Care, University of British Columbia, Vancouver, British Columbia, Canada
| | - Emily Liu
- Department of Medicine, Centre for Heart Lung Innovation, Providence Health Care, University of British Columbia, Vancouver, British Columbia, Canada
| | - Delbert R Dorscheid
- Department of Medicine, Centre for Heart Lung Innovation, Providence Health Care, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
205
|
Role of microRNA in severe asthma. Respir Investig 2018; 57:9-19. [PMID: 30455067 DOI: 10.1016/j.resinv.2018.10.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 10/15/2018] [Accepted: 10/18/2018] [Indexed: 12/23/2022]
Abstract
The various roles of microRNAs (miRNAs) in the epigenetic regulation of human disease are gaining importance as areas of research, and a better understanding of these roles may identify targets for development of novel therapies for severe asthma. MiRNAs, a class of small non-coding RNAs that serve as post-transcriptional gene repressors, are recognized as critical components in regulating tissue homeostasis. Alteration in miRNA expression disrupts homeostasis and is an underlying mechanism for development of chronic respiratory diseases, including asthma. Differential profiles of miRNA expression are involved in inflammation and remodeling pathogenicity via activating airway structural cells and immune cells and inducing cytokine releases. miRNA action leads to asthma progression from mild to severe stages. Here, current knowledge of the heterogeneous roles of miRNAs in severe asthma, including biological mechanisms underlying Th2 and macrophage polarization, type 2 innate lymphoid cell (ILC2) biology regulation, steroid-resistant asthma phenotype, airway smooth muscle (ASM) dysfunction, and impaired anti-viral innate immune, are reviewed.
Collapse
|
206
|
Kariyawasam HH. Chronic rhinosinusitis with nasal polyps: insights into mechanisms of disease from emerging biological therapies. Expert Rev Clin Immunol 2018; 15:59-71. [PMID: 30370785 DOI: 10.1080/1744666x.2019.1541738] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Introduction: Chronic rhinosinusitis with nasal polyps (CRSwNP) is a complex disease of the upper airway, with long-term morbidity. With detailed mechanistic studies currently lacking, understanding of the immunopathogenesis is still limited. However, outcomes from CRSwNP clinical studies using biologics that block key mediators or cells may provide some insights into how immune signaling pathways potentially integrate and modulate each other and contribute to disease. Current treatments are often ineffective and there is an urgent unmet clinical need for effective therapeutic strategies. Emerging biologics hold promise. Areas covered: This review covers the biology of CRSwNP in terms of the clinical outcomes reported from blocking immune cascades with available biologics. Immune amplification mechanisms and how biologics can potentially modulate such 'master' cytokines and signaling proteins that drive inflammation and contribute to tissue remodeling in CRSwNP are discussed. Expert commentary: Biologics have the potential to transform CRSwNP treatment. The ability to predict clinical response in a complex disease as CRSwNP to a biologic cannot necessarily be predicted by measuring a single protein or cell as a biomarker of disease. Further studies with biologics must be carefully undertaken to fully evaluate wider biomarker associated pheno-endotype responses along with any associated asthma outcome measures.
Collapse
Affiliation(s)
- Harsha H Kariyawasam
- a Rhinology Section, Specialist Allergy and Clinical Immunology , Royal National Throat Nose and Ear Hospital London and University College London Hospital NHS Foundation Trust, University College London , London , UK
| |
Collapse
|
207
|
Clarithromycin suppresses IL-13-induced goblet cell metaplasia via the TMEM16A-dependent pathway in guinea pig airway epithelial cells. Respir Investig 2018; 57:79-88. [PMID: 30393041 DOI: 10.1016/j.resinv.2018.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 08/09/2018] [Accepted: 10/02/2018] [Indexed: 11/21/2022]
Abstract
BACKGROUND Transmembrane protein 16A (TMEM16A) is associated with mucus secretion and ion transport in asthma. Clarithromycin (CAM) is reported to inhibit IL-13-induced goblet cell metaplasia. However, the effect of CAM on TMEM16A function and expression remains unclear. METHODS Tracheal epithelial cells from guinea pigs were cultured for ~14 days at an air-liquid interface in medium containing IL-13 (10 ng/ml) in the absence or presence of CAM (20 µg/ml) or a TMEM16A inhibitor, T16Ainh-A01 (10 µg/ml). Electrophysiological studies were performed by Ussing׳s short-circuit technique. The cells were used for immunofluorescence staining with antibodies against TMEM16A, MUC5AC, and α-tubulin. The cells were also examined by transmission electron microscopy. TMEM16A protein levels in the cell lysates were determined by ELISA. For the in vivo study, guinea pigs were treated intratracheally with IL-13 in the absence or presence of CAM or T16Ainh-A01. RESULTS CAM decreased the MUC5AC-positive cells and reduced TMEM16A expression in them and increased the α-tubulin-positive cells. CAM inhibited TMEM16A protein levels in a dose-dependent manner, and decreased UTP-induced Cl ion transport. In cells treated with IL-13 for 24 h, TMEM16A appeared prior to MUC5AC protein expression, and was inhibited by CAM. In the in vivo study, CAM inhibited IL-13-induced goblet cell metaplasia and TMEM16A expression. The inhibitory effects of CAM were similar to those of T16Ainh-A01. CONCLUSIONS CAM inhibited IL-13-induced TMEM16A expression, Cl ion transport and goblet cell metaplasia both in vitro and in vivo. CAM may thus improve airway mucociliary differentiation by attenuating TMEM16A expression in IL-13-related asthma.
Collapse
|
208
|
Gu BH, Madison MC, Corry D, Kheradmand F. Matrix remodeling in chronic lung diseases. Matrix Biol 2018; 73:52-63. [PMID: 29559389 PMCID: PMC6141350 DOI: 10.1016/j.matbio.2018.03.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 02/08/2018] [Accepted: 03/15/2018] [Indexed: 12/11/2022]
Abstract
Multicellular organisms synthesize and renew components of their subcellular and scaffolding proteins, collectively known as the extracellular matrix molecules (ECMs). In the lung, ECMs maintain tensile strength, elasticity, and dictate the specialized function of multiple cell lineages. These functions are critical in lung homeostatic processes including cellular migration and proliferation during morphogenesis or in response to repair. Alterations in lung ECMs that expose cells to new cryptic fragments, generated in response to endogenous proteinases or exogenous toxins, are associated with the development of several common respiratory diseases. How lung ECMs provide or relay vital signals to epithelial and mesenchymal cells has shed new light on development and progression of several common chronic respiratory diseases. This review will consider how ECMs regulate lung homeostasis and their reorganization under pathological conditions that can modulate the inflammatory diseases asthma, chronic obstructive pulmonary disease (COPD), and idiopathic pulmonary fibrosis (IPF). Better understanding of changes in the distribution of lung ECM could provide novel therapeutic approaches to treat chronic lung diseases.
Collapse
Affiliation(s)
- Bon-Hee Gu
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Matthew C Madison
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA; Interdepartmental Program in Translational Biology and Molecular Medicine Houston, TX 77030, USA
| | - David Corry
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA; Interdepartmental Program in Translational Biology and Molecular Medicine Houston, TX 77030, USA; Center for Translational Research in Inflammatory Diseases, Michael E. DeBakey VA, Houston, TX 77030, USA; Biology of Inflammation Center, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Farrah Kheradmand
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA; Interdepartmental Program in Translational Biology and Molecular Medicine Houston, TX 77030, USA; Center for Translational Research in Inflammatory Diseases, Michael E. DeBakey VA, Houston, TX 77030, USA; Biology of Inflammation Center, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
209
|
Ferreira CM, Williams JW, Tong J, Rayon C, Blaine KM, Sperling AI. Allergen Exposure in Lymphopenic Fas-Deficient Mice Results in Persistent Eosinophilia Due to Defects in Resolution of Inflammation. Front Immunol 2018; 9:2395. [PMID: 30425708 PMCID: PMC6219400 DOI: 10.3389/fimmu.2018.02395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/27/2018] [Indexed: 12/11/2022] Open
Abstract
Asthma is characterized by chronic airway type-2 inflammation and eosinophilia, yet the mechanisms involved in chronic, non-resolving inflammation remain poorly defined. Previously, our group has found that when Rag-deficient mice were reconstituted with Fas-deficient B6 LPR T cells and sensitized and challenged, the mice developed a prolonged type-2-mediated airway inflammation that continued for more than 6 weeks after the last antigen exposure. Surprisingly, no defect in resolution was found when intact B6 LPR mice or T cell specific Fas-conditional knockout mice were sensitized and challenged. We hypothesize that the homeostatic proliferation induced by adoptive transfer of T cells into Rag-deficient mice may be an important mechanism involved in the lack of resolution. To investigate the role of homeostatic proliferation, we induced lymphopenia in the T cell-specific Fas-conditional knockout mice by non-lethal irradiation and sensitized them when T cells began to repopulate. Interestingly, we found that defective Fas signaling on T cells plus antigen exposure during homeostatic proliferation was sufficient to induce prolonged eosinophilic airway inflammation. In conclusion, our data show that the combination of transient lymphopenia, abnormal Fas-signaling, and antigen exposure leads to the development of a prolonged airway eosinophilic inflammatory phase in our mouse model of experimental asthma.
Collapse
Affiliation(s)
- Caroline M Ferreira
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, IL, United States
| | - Jesse W Williams
- Committee on Molecular Pathology and Molecular Medicine, University of Chicago, Chicago, IL, United States.,Department of Pathology, University of Chicago, Chicago, IL, United States
| | - Jiankun Tong
- Department of Pathology, University of Chicago, Chicago, IL, United States
| | - Crystal Rayon
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, IL, United States
| | - Kelly M Blaine
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, IL, United States
| | - Anne I Sperling
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, IL, United States.,Committee on Molecular Pathology and Molecular Medicine, University of Chicago, Chicago, IL, United States.,Committee on Immunology, University of Chicago, Chicago, IL, United States
| |
Collapse
|
210
|
Rudolph AK, Walter T, Erkel G. The fungal metabolite cyclonerodiol inhibits IL-4/IL-13 induced Stat6-signaling through blocking the association of Stat6 with p38, ERK1/2 and p300. Int Immunopharmacol 2018; 65:392-401. [PMID: 30380514 DOI: 10.1016/j.intimp.2018.10.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 10/19/2018] [Accepted: 10/22/2018] [Indexed: 12/31/2022]
Abstract
The IL-4/IL-13/Stat6 pathway is the key driver of asthma pathophysiology. Therefore the development of inhibitors that specifically modulate IL-13/IL-4 or the downstream signaling molecules like Stat6 may be useful as a therapeutic strategy for the treatment of asthma and multiple allergic diseases. We have previously identified the fungal 2,6-cyclofarnesane cyclonerodiol as an inhibitor of IL-4 induced Stat6-dependent signaling in the alveolar epithelial cell line A549 using a transcriptional reporter. In this study we investigated the underlying mode of action of cyclonerodiol on the IL-4/IL-13/Stat6 pathway. Cyclonerodiol failed to interfere with activation, nuclear transport or binding of Stat6 to the corresponding consensus sequence on the DNA. Our results showed that cyclonerodiol blocked serine phosphorylation of Stat6 by affecting its association with p38 and Erk1/2. Cyclonerodiol also prevented the recruitment of the transcriptional coactivator p300 and Stat6 acetylation. These findings suggest that cyclonerodiol affects IL-4/IL-13 induced expression of asthma related marker genes by blocking transcriptional activation.
Collapse
Affiliation(s)
- Anna-Kristina Rudolph
- Department of Molecular Biotechnology and Systems Biology, University of Kaiserslautern, Erwin-Schrödinger-Str. 70, D-67663 Kaiserslautern, Germany
| | - Thorsten Walter
- Department of Molecular Biotechnology and Systems Biology, University of Kaiserslautern, Erwin-Schrödinger-Str. 70, D-67663 Kaiserslautern, Germany
| | - Gerhard Erkel
- Department of Molecular Biotechnology and Systems Biology, University of Kaiserslautern, Erwin-Schrödinger-Str. 70, D-67663 Kaiserslautern, Germany.
| |
Collapse
|
211
|
Airway Eosinophilopoietic and Autoimmune Mechanisms of Eosinophilia in Severe Asthma. Immunol Allergy Clin North Am 2018; 38:639-654. [PMID: 30342585 DOI: 10.1016/j.iac.2018.06.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Eosinophils are critical in asthma biology, contributing to symptoms, airflow obstruction, airway hyperresponsiveness, and remodeling. In severe asthma, in addition to local maturation in bone marrow, in situ eosinophilopoiesis plays a key role in the persistence of airway eosinophilia. Local milieu of structural, epithelial and inflammatory cells contribute by generating eosinophilopoietic cytokines in response to epithelial-derived alarmins. Another mechanism of persistent airway eosinophilia is glucocorticosteroid insensitivity, which is linked to recurrent airway infections and presence of local autoantibodies. Novel molecules are being developed to target specific immune pathways as potential steroid-sparing strategies.
Collapse
|
212
|
Xu C, Zou C, Hussain M, Shi W, Shao Y, Jiang Z, Wu X, Lu M, Wu J, Xie Q, Ke Y, Long F, Tang L, Wu X. High expression of Sonic hedgehog in allergic airway epithelia contributes to goblet cell metaplasia. Mucosal Immunol 2018; 11:1306-1315. [PMID: 29867080 PMCID: PMC6160330 DOI: 10.1038/s41385-018-0033-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 03/15/2018] [Accepted: 04/27/2018] [Indexed: 02/04/2023]
Abstract
Sonic hedgehog (SHH) is abundantly expressed and critical for morphogenesis in embryonic lungs; however, SHH expression drops to a much lower level in mice from E17.5 and in humans from the 21st gestational week. We find that SHH expression is robustly upregulated in the airway epithelia of children with asthma or mouse models with allergic airway disease. Specifically, airway-specific SMO loss of function significantly suppresses allergen-induced goblet cell phenotypes, whereas an airway-specific SMO gain of function markedly enhances the goblet cell phenotypes in mouse models with allergic airway disease. Notably, intratracheal administration with SHH-neutralizing antibody or cyclopamine robustly attenuates goblet cell phenotypes in mouse models with allergic airway disease. Finally, we identify that Muc5AC gene encoding MUC5AC mucin serves as a direct target of GLI transcriptional factors in response to SHH, whereas the SAM-pointed domain-containing ETS transcription factor and Forkhead box A2, critical transcriptional factors for goblet cell phenotypes, both function as the effectors of GLIs in response to SHH stimulation. Together, the upregulation of SHH expression in allergic bronchial epithelia contributes to goblet cell metaplasia; thus, blockage of SHH signaling is a rational approach in a therapeutic intervention of epithelial remodeling in chronic airway diseases.
Collapse
Affiliation(s)
- Chengyun Xu
- Department of Pharmacology, Zhejiang University School of Medicine, 310058, Hangzhou, China
- Key Laboratory of CFDA for Respiratory Drug Research, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Chaochun Zou
- Department of Respiratory Medicine of the Children's Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Musaddique Hussain
- Department of Pharmacology, Zhejiang University School of Medicine, 310058, Hangzhou, China
- Key Laboratory of CFDA for Respiratory Drug Research, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Wei Shi
- Department of Pharmacology, Zhejiang University School of Medicine, 310058, Hangzhou, China
- Key Laboratory of CFDA for Respiratory Drug Research, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Yanan Shao
- Department of Respiratory Medicine of the Children's Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Ziyan Jiang
- Department of Respiratory Medicine of the Children's Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Xiling Wu
- Department of Respiratory Medicine of the Children's Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Meiping Lu
- Department of Respiratory Medicine of the Children's Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Junsong Wu
- Department of Orthopedics of the First Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Qiangmin Xie
- Department of Pharmacology, Zhejiang University School of Medicine, 310058, Hangzhou, China
- Key Laboratory of CFDA for Respiratory Drug Research, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Yuehai Ke
- Department of Pathology, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Fanxin Long
- Departments of Orthopedics, Medicine and Developmental Biology, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Lanfang Tang
- Department of Respiratory Medicine of the Children's Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China.
| | - Ximei Wu
- Department of Pharmacology, Zhejiang University School of Medicine, 310058, Hangzhou, China.
- Key Laboratory of CFDA for Respiratory Drug Research, Zhejiang University School of Medicine, 310058, Hangzhou, China.
| |
Collapse
|
213
|
Venkataramani S, Low S, Weigle B, Dutcher D, Jerath K, Menzenski M, Frego L, Truncali K, Gupta P, Kroe-Barrett R, Ganesan R, Singh S, Erb KJ. Design and characterization of Zweimab and Doppelmab, high affinity dual antagonistic anti-TSLP/IL13 bispecific antibodies. Biochem Biophys Res Commun 2018; 504:19-24. [PMID: 30126632 DOI: 10.1016/j.bbrc.2018.08.064] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 08/07/2018] [Indexed: 12/28/2022]
Abstract
Patients with severe Th2 type asthma often have a steroid resistant phenotype and are prone to acute exacerbations. Current novel therapies have only marginal therapeutic effects. One of the hypotheses for lack of major efficacy in most patients is targeting only one redundant pathway leaving others active. Hence, we have designed and developed novel highly potent bispecific anti-TSLP/IL13 antibodies called Zweimabs (monovalent bispecific) and Doppelmabs (bivalent bispecific) that concurrently inhibits the signaling by these two cytokines.
Collapse
Affiliation(s)
| | - Sarah Low
- Boehringer Ingelheim Pharmaceuticals Inc, 900 Ridgebury Rd, Ridgefield, CT, USA
| | - Bernd Weigle
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Darrin Dutcher
- Boehringer Ingelheim Pharmaceuticals Inc, 900 Ridgebury Rd, Ridgefield, CT, USA
| | - Kavita Jerath
- Boehringer Ingelheim Pharmaceuticals Inc, 900 Ridgebury Rd, Ridgefield, CT, USA
| | - Monica Menzenski
- Boehringer Ingelheim Pharmaceuticals Inc, 900 Ridgebury Rd, Ridgefield, CT, USA
| | - Lee Frego
- Boehringer Ingelheim Pharmaceuticals Inc, 900 Ridgebury Rd, Ridgefield, CT, USA
| | - Kris Truncali
- Boehringer Ingelheim Pharmaceuticals Inc, 900 Ridgebury Rd, Ridgefield, CT, USA
| | - Pankaj Gupta
- Boehringer Ingelheim Pharmaceuticals Inc, 900 Ridgebury Rd, Ridgefield, CT, USA
| | - Rachel Kroe-Barrett
- Boehringer Ingelheim Pharmaceuticals Inc, 900 Ridgebury Rd, Ridgefield, CT, USA
| | - Rajkumar Ganesan
- Boehringer Ingelheim Pharmaceuticals Inc, 900 Ridgebury Rd, Ridgefield, CT, USA
| | - Sanjaya Singh
- Boehringer Ingelheim Pharmaceuticals Inc, 900 Ridgebury Rd, Ridgefield, CT, USA
| | - Klaus J Erb
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany.
| |
Collapse
|
214
|
Barratt SL, Creamer A, Hayton C, Chaudhuri N. Idiopathic Pulmonary Fibrosis (IPF): An Overview. J Clin Med 2018; 7:jcm7080201. [PMID: 30082599 PMCID: PMC6111543 DOI: 10.3390/jcm7080201] [Citation(s) in RCA: 238] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/23/2018] [Accepted: 07/31/2018] [Indexed: 02/07/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease characterised by chronic, progressive scarring of the lungs and the pathological hallmark of usual interstitial pneumonia. Current paradigms suggest alveolar epithelial cell damage is a key initiating factor. Globally, incidence of the disease is rising, with associated high morbidity, mortality, and economic healthcare burden. Diagnosis relies on a multidisciplinary team approach with exclusion of other causes of interstitial lung disease. Over recent years, two novel antifibrotic therapies, pirfenidone and nintedanib, have been developed, providing treatment options for many patients with IPF, with several other agents in early clinical trials. Current efforts are directed at identifying key biomarkers that may direct more customized patient-centred healthcare to improve outcomes for these patients in the future.
Collapse
Affiliation(s)
- Shaney L Barratt
- Bristol Interstitial Lung Disease Service, North Bristol NHS Trust, Bristol BS10 5NB, UK.
- Academic Respiratory Unit, University of Bristol, Bristol BS16 1QY, UK.
| | - Andrew Creamer
- Bristol Interstitial Lung Disease Service, North Bristol NHS Trust, Bristol BS10 5NB, UK.
| | - Conal Hayton
- North West Interstitial Lung Disease Unit, Manchester University NHS Foundation Trust, Wythenshawe, Manchester M23 9LT, UK.
| | - Nazia Chaudhuri
- North West Interstitial Lung Disease Unit, Manchester University NHS Foundation Trust, Wythenshawe, Manchester M23 9LT, UK.
| |
Collapse
|
215
|
Peng H, Ning H, Wang Q, Lu W, Chang Y, Wang TT, Lai J, Kolattukudy PE, Hou R, Hoft DF, Dykewicz MS, Liu J. Monocyte chemotactic protein-induced protein 1 controls allergic airway inflammation by suppressing IL-5-producing T H2 cells through the Notch/Gata3 pathway. J Allergy Clin Immunol 2018; 142:582-594.e10. [PMID: 29111212 PMCID: PMC5924426 DOI: 10.1016/j.jaci.2017.09.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 09/10/2017] [Accepted: 09/24/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND Asthmatic and allergic inflammation is mediated by TH2 cytokines (IL-4, IL-5, and IL-13). Although we have learned much about how TH2 cells are differentiated, the TH2 checkpoint mechanisms remain elusive. OBJECTIVES In this study we investigate how monocyte chemotactic protein-induced protein 1 (MCPIP1; encoded by the Zc3h12a gene) regulates IL-5-producing TH2 cell differentiation and TH2-mediated inflammation. METHODS The functions of Zc3h12a-/- CD4 T cells were evaluated by checking the expression of TH2 cytokines and transcription factors in vivo and in vitro. Allergic airway inflammation of Zc3h12a-/- mice was examined with murine asthma models. In addition, antigen-specific CD4 T cells deficient in MCPIP1 were transferred to wild-type recipient mice, challenged with ovalbumin (OVA) or house dust mite (HDM), and accessed for TH2 inflammation. RESULTS Zc3h12a-/- mice have spontaneous severe lung inflammation, with an increase in mainly IL-5- and IL-13-producing but not IL-4-producing TH2 cells in the lung. Mechanistically, differentiation of IL-5-producing Zc3h12a-/- TH2 cells is mediated through Notch signaling and Gata3 independent of IL-4. Gata3 mRNA is stabilized in Zc3h12a-/- TH2 cells. MCPIP1 promotes Gata3 mRNA decay through the RNase domain. Furthermore, deletion of MCPIP1 in OVA- or HDM-specific T cells leads to significantly increased TH2-mediated airway inflammation in OVA or HDM murine models of asthma. CONCLUSIONS Our study reveals that MCPIP1 regulates the development and function of IL-5-producing TH2 cells through the Notch/Gata3 pathway. MCPIP1 represents a new and promising target for the treatment of asthma and other TH2-mediated diseases.
Collapse
Affiliation(s)
- Hui Peng
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal Medicine, Saint Louis University School of Medicine, St Louis, Mo
| | - Huan Ning
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal Medicine, Saint Louis University School of Medicine, St Louis, Mo
| | - Qinghong Wang
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal Medicine, Saint Louis University School of Medicine, St Louis, Mo
| | - Wenbao Lu
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal Medicine, Saint Louis University School of Medicine, St Louis, Mo
| | - Yingzi Chang
- Pharmacology Department, A.T. Still University, Kirksville, Mo
| | | | - Jinping Lai
- Department of Pathology, Saint Louis University School of Medicine, Saint Louis University School of Medicine, St Louis, Mo
| | - Pappachan E Kolattukudy
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Fla
| | - Rong Hou
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal Medicine, Saint Louis University School of Medicine, St Louis, Mo
| | - Daniel F Hoft
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal Medicine, Saint Louis University School of Medicine, St Louis, Mo
| | - Mark S Dykewicz
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal Medicine, Saint Louis University School of Medicine, St Louis, Mo
| | - Jianguo Liu
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal Medicine, Saint Louis University School of Medicine, St Louis, Mo.
| |
Collapse
|
216
|
Jing Y, Gimenes JA, Mishra R, Pham D, Comstock AT, Yu D, Sajjan U. NOTCH3 contributes to rhinovirus-induced goblet cell hyperplasia in COPD airway epithelial cells. Thorax 2018; 74:18-32. [PMID: 29991510 DOI: 10.1136/thoraxjnl-2017-210593] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 05/15/2018] [Accepted: 06/11/2018] [Indexed: 11/04/2022]
Abstract
RATIONALE Goblet cell hyperplasia (GCH) is one of the cardinal features of chronic obstructive pulmonary disease (COPD) and contributes to airways obstruction. Rhinovirus (RV), which causes acute exacerbations in patients with COPD, also causes prolonged airways obstruction. Previously, we showed that RV enhances mucin gene expression and increases goblet cell number in a COPD mouse model. This study examines whether RV causes sustained GCH in relevant models of COPD. METHODS Mucociliary-differentiated COPD and normal airway epithelial cell cultures and mice with normal or COPD phenotype were infected with RV or sham and examined for GCH by immunofluorescence and/or mucin gene expression. In some experiments, RV-infected COPD cells and mice with COPD phenotype were treated with γ-secretase inhibitor or interleukin-13 neutralising antibody and assessed for GCH. To determine the contribution of NOTCH1/3 in RV-induced GCH, COPD cells transduced with NOTCH1/3 shRNA were used. RESULTS RV-infected COPD, but not normal cell cultures, showed sustained GCH and increased mucin genes expression. Microarray analysis indicated increased expression of NOTCH1, NOTCH3 and HEY1 only in RV-infected COPD cells. Blocking NOTCH3, but not NOTCH1, attenuated RV-induced GCH in vitro. Inhibition of NOTCH signalling by γ-secretase inhibitor, but not neutralising antibody to IL-13, abrogated RV-induced GCH and mucin gene expression. CONCLUSIONS RV induces sustained GCH via NOTCH3 particularly in COPD cells or mice with COPD phenotype. This may be one of the mechanisms that may contribute to RV-induced prolonged airways obstruction in COPD.
Collapse
Affiliation(s)
- Yaxun Jing
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan, USA
| | - Joao Antonio Gimenes
- Department of Thoracic Surgery and Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Rahul Mishra
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan, USA
| | - Duc Pham
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan, USA
| | - Adam T Comstock
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan, USA
| | - Daohai Yu
- Department of Clinical Sciences, Temple University, Philadelphia, Pennsylvania, USA
| | - Umadevi Sajjan
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan, USA.,Department of Thoracic Surgery and Medicine, Temple University, Philadelphia, Pennsylvania, USA.,Department of Physiology, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
217
|
Hill MR, Philp CJ, Billington CK, Tatler AL, Johnson SR, O'Dea RD, Brook BS. A theoretical model of inflammation- and mechanotransduction-driven asthmatic airway remodelling. Biomech Model Mechanobiol 2018; 17:1451-1470. [PMID: 29968161 PMCID: PMC6154265 DOI: 10.1007/s10237-018-1037-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 05/22/2018] [Indexed: 12/28/2022]
Abstract
Inflammation, airway hyper-responsiveness and airway remodelling are well-established hallmarks of asthma, but their inter-relationships remain elusive. In order to obtain a better understanding of their inter-dependence, we develop a mechanochemical morphoelastic model of the airway wall accounting for local volume changes in airway smooth muscle (ASM) and extracellular matrix in response to transient inflammatory or contractile agonist challenges. We use constrained mixture theory, together with a multiplicative decomposition of growth from the elastic deformation, to model the airway wall as a nonlinear fibre-reinforced elastic cylinder. Local contractile agonist drives ASM cell contraction, generating mechanical stresses in the tissue that drive further release of mitogenic mediators and contractile agonists via underlying mechanotransductive signalling pathways. Our model predictions are consistent with previously described inflammation-induced remodelling within an axisymmetric airway geometry. Additionally, our simulations reveal novel mechanotransductive feedback by which hyper-responsive airways exhibit increased remodelling, for example, via stress-induced release of pro-mitogenic and pro-contractile cytokines. Simulation results also reveal emergence of a persistent contractile tone observed in asthmatics, via either a pathological mechanotransductive feedback loop, a failure to clear agonists from the tissue, or a combination of both. Furthermore, we identify various parameter combinations that may contribute to the existence of different asthma phenotypes, and we illustrate a combination of factors which may predispose severe asthmatics to fatal bronchospasms.
Collapse
Affiliation(s)
- Michael R Hill
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Room C25, Mathematical Sciences Building, University Park, Nottingham, NG7 2RD, UK.
| | - Christopher J Philp
- Division of Respiratory Medicine, Nottingham Biomedical Research Centre, University of Nottingham, D Floor, South Block, Queen's Medical Centre Campus, Nottingham, NG7 2UH, UK
| | - Charlotte K Billington
- Division of Respiratory Medicine, Nottingham Biomedical Research Centre, University of Nottingham, D Floor, South Block, Queen's Medical Centre Campus, Nottingham, NG7 2UH, UK
| | - Amanda L Tatler
- Division of Respiratory Medicine, Nottingham Biomedical Research Centre, Nottingham City Hospital, University of Nottingham, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Simon R Johnson
- Division of Respiratory Medicine, Nottingham Biomedical Research Centre, University of Nottingham, D Floor, South Block, Queen's Medical Centre Campus, Nottingham, NG7 2UH, UK
| | - Reuben D O'Dea
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Room C28, Mathematical Sciences Building, University Park, Nottingham, NG7 2RD, UK
| | - Bindi S Brook
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Room C26, Mathematical Sciences Building, University Park, Nottingham, NG7 2RD, UK
| |
Collapse
|
218
|
Caminati M, Pham DL, Bagnasco D, Canonica GW. Type 2 immunity in asthma. World Allergy Organ J 2018; 11:13. [PMID: 29988331 PMCID: PMC6020328 DOI: 10.1186/s40413-018-0192-5] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 06/04/2018] [Indexed: 12/14/2022] Open
Abstract
Type 2-immunity represents the typical adaptive response to allergen exposure in atopic individuals. It mainly involves Th2 cells and immunoglobulin E, as the main orchestrators of type 2-inflammation. Recently, it has been highlighted that allergens may be responsible for a Th2 response beside specific IgE activation and that a number of other environmental stimuli, such as viruses and pollutants, can trigger the same pattern of inflammation beyond atopy. Emerging data sustain a substantial role of the so-called epithelial dysfunction in asthma pathogenesis, both from anatomic and functional point of view. Furthermore an increasing amount of evidence demonstrates the relevance of innate immunity in polarizing a Th2 impaired response in asthmatic patients. Under this perspective, the complex cross-talking between airway epithelium, innate and adaptive immunity is emerging as a major determinant of type 2-inflammation beyond allergens. This review will include an update on the relevance of dysregulation of innate and adaptive type 2-immunity in asthma pathogenesis, particularly severe asthma, and on the role of the allergens that are associated with severe asthma. Type 2-immunity also will be reviewed in the light of the current and upcoming targeted treatments for severe asthma.
Collapse
Affiliation(s)
- Marco Caminati
- 1Asthma Center and Allergy Unit, Verona University Hospital, Piazzale Scuro10, 37134 Verona, Italy
| | - Duy Le Pham
- 2Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Viet Nam
| | - Diego Bagnasco
- University of Genoa Allergy and Respiratory Diseases, IRCCS San Martino Hospital, IST, University of Genoa, Genoa, Italy
| | - Giorgio Walter Canonica
- 4Personalized Medicine Clinic, Asthma & Allergy, Humanitas Clinical and Research Center, Humanitas University, Rozzano, Milan, Italy
| |
Collapse
|
219
|
Ilves M, Vilske S, Aimonen K, Lindberg HK, Pesonen S, Wedin I, Nuopponen M, Vanhala E, Højgaard C, Winther JR, Willemoës M, Vogel U, Wolff H, Norppa H, Savolainen K, Alenius H. Nanofibrillated cellulose causes acute pulmonary inflammation that subsides within a month. Nanotoxicology 2018; 12:729-746. [DOI: 10.1080/17435390.2018.1472312] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Marit Ilves
- Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Sara Vilske
- Finnish Institute of Occupational Health, Helsinki, Finland
| | - Kukka Aimonen
- Finnish Institute of Occupational Health, Helsinki, Finland
| | | | - Saila Pesonen
- Finnish Institute of Occupational Health, Helsinki, Finland
| | | | | | - Esa Vanhala
- Finnish Institute of Occupational Health, Helsinki, Finland
| | - Casper Højgaard
- Liderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jakob R. Winther
- Liderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Martin Willemoës
- Liderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Ulla Vogel
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Henrik Wolff
- Finnish Institute of Occupational Health, Helsinki, Finland
| | - Hannu Norppa
- Finnish Institute of Occupational Health, Helsinki, Finland
| | - Kai Savolainen
- Finnish Institute of Occupational Health, Helsinki, Finland
| | - Harri Alenius
- Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
220
|
Extrathymically Generated Regulatory T Cells Establish a Niche for Intestinal Border-Dwelling Bacteria and Affect Physiologic Metabolite Balance. Immunity 2018; 48:1245-1257.e9. [PMID: 29858010 DOI: 10.1016/j.immuni.2018.04.013] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 03/12/2018] [Accepted: 04/12/2018] [Indexed: 02/07/2023]
Abstract
The mammalian gut microbiota provides essential metabolites to the host and promotes the differentiation and accumulation of extrathymically generated regulatory T (pTreg) cells. To explore the impact of these cells on intestinal microbial communities, we assessed the composition of the microbiota in pTreg cell-deficient and -sufficient mice. pTreg cell deficiency led to heightened type 2 immune responses triggered by microbial exposure, which disrupted the niche of border-dwelling bacteria early during colonization. Moreover, impaired pTreg cell generation led to pervasive changes in metabolite profiles, altered features of the intestinal epithelium, and reduced body weight in the presence of commensal microbes. Absence of a single species of bacteria depleted in pTreg cell-deficient animals, Mucispirillum schaedleri, partially accounted for the sequelae of pTreg cell deficiency. These observations suggest that pTreg cells modulate the metabolic function of the intestinal microbiota by restraining immune defense mechanisms that may disrupt a particular bacterial niche.
Collapse
|
221
|
Keegan AD, Zamorano J, Keselman A, Heller NM. IL-4 and IL-13 Receptor Signaling From 4PS to Insulin Receptor Substrate 2: There and Back Again, a Historical View. Front Immunol 2018; 9:1037. [PMID: 29868002 PMCID: PMC5962649 DOI: 10.3389/fimmu.2018.01037] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/25/2018] [Indexed: 12/11/2022] Open
Abstract
In this historical perspective, written in honor of Dr. William E. Paul, we describe the initial discovery of one of the dominant substrates for tyrosine phosphorylation stimulated by IL-4. We further describe how this “IL-4-induced phosphorylated substrate” (4PS) was characterized as a member of the insulin receptor substrate (IRS) family of large adaptor proteins that link IL-4 and insulin receptors to activation of the phosphatidyl-inositol 3′ kinase pathway as well as other downstream signaling pathways. The relative contribution of the 4PS/IRS pathway to the early models of IL-4-induced proliferation and suppression of apoptosis are compared to our more recent understanding of the complex interplay between positive and negative regulatory pathways emanating from members of the IRS family that impact allergic responses.
Collapse
Affiliation(s)
- Achsah D Keegan
- Department of Microbiology and Immunology, Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, United States.,Baltimore VA Medical Center, Baltimore, MD, United States
| | - Jose Zamorano
- Unidad Investigacion, Complejo Hospitalario Universitario, Caceres, Spain
| | - Aleksander Keselman
- Department of Anesthesiology and Critical Care Medicine, Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Nicola M Heller
- Department of Anesthesiology and Critical Care Medicine, Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
222
|
March1 E3 Ubiquitin Ligase Modulates Features of Allergic Asthma in an Ovalbumin-Induced Mouse Model of Lung Inflammation. J Immunol Res 2018; 2018:3823910. [PMID: 29854835 PMCID: PMC5960577 DOI: 10.1155/2018/3823910] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/08/2018] [Indexed: 01/13/2023] Open
Abstract
Membrane-associated RING-CH-1 (March1) is a member of the March family of E3 ubiquitin ligases. March1 downregulates cell surface expression of MHC II and CD86 by targeting them to lysosomal degradation. Given the key roles of MHC class II and CD86 in T cell activation and to get further insights into the development of allergic inflammation, we asked whether March1 deficiency exacerbates or attenuates features of allergic asthma in mice. Herein, we used an acute model of allergy to compare the asthmatic phenotype of March1-deficient and -sufficient mice immunized with ovalbumin (OVA) and later challenged by intranasal instillation of OVA in the lungs. We found that eosinophilic inflammation in airways and lung tissue was similar between WT and March1-/- allergic mice, whereas neutrophilic inflammation was significant only in March1-/- mice. Airway hyperresponsiveness as well as levels of IFN-γ, IL-13, IL-6, and IL-10 was lower in the lungs of asthmatic March1-/- mice compared to WT, whereas lung levels of TNF-α, IL-4, and IL-5 were not significantly different. Interestingly, in the serum, levels of total and ova-specific IgE were reduced in March1-deficient mice as compared to WT mice. Taken together, our results demonstrate a role of March1 E3 ubiquitin ligase in modulating allergic responses.
Collapse
|
223
|
Samitas K, Carter A, Kariyawasam HH, Xanthou G. Upper and lower airway remodelling mechanisms in asthma, allergic rhinitis and chronic rhinosinusitis: The one airway concept revisited. Allergy 2018; 73:993-1002. [PMID: 29197105 DOI: 10.1111/all.13373] [Citation(s) in RCA: 181] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2017] [Indexed: 12/12/2022]
Abstract
Allergic rhinitis (AR), chronic rhinosinusitis (CRS) and asthma often co-exist. The one airway model proposes that disease mechanisms occurring in the upper airway may mirror lower airway events. Airway remodelling is the term used to describe tissue structural changes that occur in a disease setting and reflect the dynamic process of tissue restructuring during wound repair. Remodelling has been long identified in the lower airways in asthma and is characterized by epithelial shedding, goblet cell hyperplasia, basement membrane thickening, subepithelial fibrosis, airway smooth muscle hyperplasia and increased angiogenesis. The concept of upper airway remodelling has only recently been introduced, and data so far are limited and often conflicting, an indication that more detailed studies are needed. Whilst remodelling changes in AR are limited, CRS phenotypes demonstrate epithelial hyperplasia, increased matrix deposition and degradation along with accumulation of plasma proteins. Despite extensive research over the past years, the precise cellular and molecular mechanisms involved in airway remodelling remain incompletely defined. This review describes our current rather limited understanding of airway remodelling processes in AR, CRS and asthma and presents mechanisms both shared and distinct between the upper and lower airways. Delineation of shared and disease-specific pathogenic mechanisms of remodelling between the sinonasal system and the lung may guide the rational design of more effective therapeutic strategies targeting upper and lower airways concomitantly and improving the health of individuals with inflammatory airway diseases.
Collapse
Affiliation(s)
- K. Samitas
- Cellular Immunology Laboratory; Division of Cell Biology; Centre for Basic Research; Biomedical Research Foundation of the Academy of Athens (BRFAA); Athens Greece
| | - A. Carter
- Department of Allergy, Clinical Immunology and Medical Rhinology; Royal National Throat Nose Ear Hospital; London UK
| | - H. H. Kariyawasam
- Department of Allergy, Clinical Immunology and Medical Rhinology; Royal National Throat Nose Ear Hospital; London UK
- Department of Respiratory Medicine; University College London Hospital and University College London; London UK
| | - G. Xanthou
- Cellular Immunology Laboratory; Division of Cell Biology; Centre for Basic Research; Biomedical Research Foundation of the Academy of Athens (BRFAA); Athens Greece
| |
Collapse
|
224
|
Mindt BC, Fritz JH, Duerr CU. Group 2 Innate Lymphoid Cells in Pulmonary Immunity and Tissue Homeostasis. Front Immunol 2018; 9:840. [PMID: 29760695 PMCID: PMC5937028 DOI: 10.3389/fimmu.2018.00840] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/05/2018] [Indexed: 12/21/2022] Open
Abstract
Group 2 innate lymphoid cells (ILC2) represent an evolutionary rather old but only recently identified member of the family of innate lymphoid cells and have received much attention since their detailed description in 2010. They can orchestrate innate as well as adaptive immune responses as they interact with and influence several immune and non-immune cell populations. Moreover, ILC2 are able to rapidly secrete large amounts of type 2 cytokines that can contribute to protective but also detrimental host immune responses depending on timing, location, and physiological context. Interestingly, ILC2, despite their scarcity, are the dominant innate lymphoid cell population in the lung, indicating a key role as first responders and amplifiers upon immune challenge at this site. In addition, the recently described tissue residency of ILC2 further underlines the importance of their respective microenvironment. In this review, we provide an overview of lung physiology including a description of the most prominent pulmonary resident cells together with a review of known and potential ILC2 interactions within this unique environment. We will further outline recent observations regarding pulmonary ILC2 during immune challenge including respiratory infections and discuss different models and approaches to study ILC2 biology in the lung.
Collapse
Affiliation(s)
- Barbara C Mindt
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada.,McGill University Research Centre on Complex Traits (MRCCT), McGill University, Montreal, QC, Canada.,FOCiS Centre of Excellence in Translational Immunology (CETI), McGill University, Montreal, QC, Canada
| | - Jörg H Fritz
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada.,McGill University Research Centre on Complex Traits (MRCCT), McGill University, Montreal, QC, Canada.,FOCiS Centre of Excellence in Translational Immunology (CETI), McGill University, Montreal, QC, Canada.,Department of Physiology, McGill University, Montreal, QC, Canada
| | - Claudia U Duerr
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada.,McGill University Research Centre on Complex Traits (MRCCT), McGill University, Montreal, QC, Canada.,FOCiS Centre of Excellence in Translational Immunology (CETI), McGill University, Montreal, QC, Canada.,Institute of Microbiology and Infection Immunology, Charité - University Medical Centre Berlin, Berlin, Germany
| |
Collapse
|
225
|
Takahashi K, Meguro K, Kawashima H, Kashiwakuma D, Kagami SI, Ohta S, Ono J, Izuhara K, Iwamoto I. Serum periostin levels serve as a biomarker for both eosinophilic airway inflammation and fixed airflow limitation in well-controlled asthmatics. J Asthma 2018; 56:236-243. [PMID: 29648484 DOI: 10.1080/02770903.2018.1455855] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Periostin, a matricellular protein, is produced from airway epithelial cells and lung fibroblasts by IL-13. It has been suggested that periostin is involved in allergic inflammation and fibrosis. However, the usefulness of serum periostin measurement in the assessment of airway inflammation and remodeling and management of asthmatic patients is still debated. We aimed to determine whether serum periostin levels reflect eosinophilic airway inflammation and airway remodeling in asthma. METHODS We examined the relationship of serum periostin levels with clinical features, biomarkers for eosinophilic airway inflammation, fraction of exhaled nitric oxide (FeNO) levels and blood eosinophil counts, and pulmonary functions in 235 well-controlled asthmatic patients on inhaled corticosteroids (ICS) treatment. RESULTS Serum periostin levels were positively correlated with blood eosinophil counts (%) and age (r = 0.36 and 0.23, respectively), and were negatively correlated with body weight and FEV1/FVC (%) (r = -0.24 and - 0.23, respectively) in well-controlled asthmatic patients on ICS treatment (daily dose of 453 µg equivalent to fluticasone propionate). Blood eosinophil counts and serum periostin levels were similarly associated with increased FeNO levels (≥40 ppb) in the asthmatics. Serum periostin levels were better associated with fixed airflow limitation (FEV1/FVC ratio <70%) than FeNO levels, blood eosinophil counts or total IgE levels in the asthmatics. Multivariate analysis showed that fixed airflow limitation was significantly associated with high serum periostin levels (≥97 ng/ml) (Odds ratio 3.2). CONCLUSIONS Serum periostin levels serve as a biomarker for both eosinophilic airway inflammation and fixed airflow limitation in well-controlled asthmatics on ICS treatment.
Collapse
Affiliation(s)
- Kentaro Takahashi
- a Research Center for Allergy and Clinical Immunology , Asahi General Hospital , Chiba , Japan
| | - Kazuyuki Meguro
- a Research Center for Allergy and Clinical Immunology , Asahi General Hospital , Chiba , Japan
| | - Hirotoshi Kawashima
- a Research Center for Allergy and Clinical Immunology , Asahi General Hospital , Chiba , Japan
| | - Daisuke Kashiwakuma
- a Research Center for Allergy and Clinical Immunology , Asahi General Hospital , Chiba , Japan
| | - Shin-Ichiro Kagami
- a Research Center for Allergy and Clinical Immunology , Asahi General Hospital , Chiba , Japan
| | - Shoichiro Ohta
- b Division of Medical Biochemistry, Department of Biomolecular Sciences , Saga Medical School , Saga , Japan
| | - Junya Ono
- c Shino-Test Corporation , Kanagawa , Japan
| | - Kenji Izuhara
- b Division of Medical Biochemistry, Department of Biomolecular Sciences , Saga Medical School , Saga , Japan
| | - Itsuo Iwamoto
- a Research Center for Allergy and Clinical Immunology , Asahi General Hospital , Chiba , Japan
| |
Collapse
|
226
|
Izuhara K, Yamaguchi Y, Ohta S, Nunomura S, Nanri Y, Azuma Y, Nomura N, Noguchi Y, Aihara M. Squamous Cell Carcinoma Antigen 2 (SCCA2, SERPINB4): An Emerging Biomarker for Skin Inflammatory Diseases. Int J Mol Sci 2018; 19:E1102. [PMID: 29642409 PMCID: PMC5979376 DOI: 10.3390/ijms19041102] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 04/04/2018] [Accepted: 04/05/2018] [Indexed: 12/19/2022] Open
Abstract
Squamous cell carcinoma antigens 1 and 2 (SCCA1 and 2, SERPIN B3 and B4), members of the ovalbumin serpin (ov-serpin)/clade B serpin family, were originally discovered as tumor-specific antigens and are used as tumor markers for various kinds of squamous cell carcinomas. Recently, our understanding of the underlying mechanisms of how SCCA1/2 enhance tumor growth has greatly increased. Moreover, it has been shown that SCCA1/2 are involved in the pathogenesis of several inflammatory diseases: asthma, psoriasis, and atopic dermatitis (AD). IL-22 and IL-17, signature cytokines of type 17 inflammation, as well as IL-4 and IL-13, signature cytokines of type 2 inflammation, both of which are positively correlated with the pathogenesis of psoriasis and allergic diseases, respectively, can induce expression of SCCA1/2 in airway epithelial cells and/or keratinocytes, leading to high expression of SCCA1/2 in these diseases. Based on these findings, several trials have been performed to examine the potential of applying SCCA1/2 to biomarkers for these diseases. The findings show that SCCA2 is useful to aid diagnosis, estimate clinical severity and disease type, and assess responses to treatment in psoriasis and AD. These results suggest that SCCA2 has emerged as a novel biomarker for skin inflammatory diseases.
Collapse
Affiliation(s)
- Kenji Izuhara
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga 849-8501, Japan.
| | - Yukie Yamaguchi
- Department of Environmental Immuno-Dermatology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan.
| | - Shoichiro Ohta
- Department of Medical Technology and Sciences, School of Health Sciences at Fukuoka, International University of Health and Welfare, Okawa 831-8501, Japan.
| | - Satoshi Nunomura
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga 849-8501, Japan.
| | - Yasuhiro Nanri
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga 849-8501, Japan.
| | | | | | | | - Michiko Aihara
- Department of Environmental Immuno-Dermatology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan.
| |
Collapse
|
227
|
Zhang Y, He S, Mei R, Kang Y, Duan J, Wei R, Xiang C, Wu Y, Lu X, Cai Z, Xiong L. miR‑29a suppresses IL‑13‑induced cell invasion by inhibiting YY1 in the AKT pathway in lung adenocarcinoma A549 cells. Oncol Rep 2018; 39:2613-2623. [PMID: 29620222 PMCID: PMC5983933 DOI: 10.3892/or.2018.6352] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 03/29/2018] [Indexed: 12/15/2022] Open
Abstract
IL‑13 is a proinflammatory cytokine associated with multiple pathological conditions and the promotion of metastasis in lung cancer. Previous studies have demonstrated that IL‑13 and YY1 are associated with PI3K/AKT signaling. In addition, miR‑29a has been found to play a critical role in cell invasion in lung cancer. However, the molecular mechanism of miR‑29a underlying its involvement in IL‑13‑induced lung cancer cell invasion remains largely unknown. In the present study, we aimed to investigate the role of miR‑29a in cell invasion mediated by IL‑13 in lung cancer. By using MTT and wound‑scratch assays, we assessed cell proliferation and migration induced by IL‑13, and identified activation of the PI3K/AKT/YY1 pathway. Inhibition of PI3K/AKT by LY294002 downregulated IL‑13‑induced YY1 expression. Furthermore, we found that miR‑29a directly targets YY1 and suppressed its expression in lung cancer. By using MTT, flow cytometry and Transwell assays, overexpression of miR‑29a restricted both YY1 and N‑cadherin expression, and inhibited IL‑13‑induced invasion of lung cancer A549 cells. Taken together, these findings demonstrate that PI3K/AKT/YY1 is involved in the regulation of lung cancer cell behavior induced by IL‑13, and miR‑29a represents a promising therapeutic target.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Pathophysiology, Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Shujin He
- Department of Pathophysiology, Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Renmei Mei
- Department of Pathophysiology, Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yurong Kang
- Department of Pathophysiology, Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jing Duan
- Department of Pathophysiology, Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Ran Wei
- Department of Pathophysiology, Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Chuqi Xiang
- Department of Pathophysiology, Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yemeng Wu
- Department of Pathophysiology, Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xiangtong Lu
- Department of Pathophysiology, Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhenyu Cai
- Department of Pathophysiology, Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Lixia Xiong
- Department of Pathophysiology, Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
228
|
Habiel DM, Espindola MS, Coelho AL, Hogaboam CM. Modeling Idiopathic Pulmonary Fibrosis in Humanized Severe Combined Immunodeficient Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:891-903. [PMID: 29378172 PMCID: PMC5954978 DOI: 10.1016/j.ajpath.2017.12.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 12/11/2017] [Accepted: 12/28/2017] [Indexed: 12/17/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fibrotic lung disease of unknown etiopathogenesis with limited therapeutic options. IPF is characterized by an abundance of fibroblasts and loss of epithelial progenitors, which cumulates in unrelenting fibrotic lung remodeling and loss of normal oxygenation. IPF has been challenging to model in rodents; nonetheless, mouse models of lung fibrosis provide clues as to the natural progression of lung injury and remodeling, but many have not been useful in predicting efficacy of therapeutics in clinical IPF. We provide a detailed methodologic description of various iterations of humanized mouse models, initiated by the i.v. injection of cells from IPF lung biopsy or explants specimens into severe combined immunodeficiency (SCID)/beige or nonobese diabetic SCID γ mice. Unlike cells from normal lung samples, IPF cells promote persistent, nonresolving lung remodeling in SCID mice. Finally, we provide examples and discuss potential advantages and pitfalls of human-specific targeting approaches in a humanized SCID model of pulmonary fibrosis.
Collapse
Affiliation(s)
- David M Habiel
- Women's Guild Lung Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California.
| | - Milena S Espindola
- Women's Guild Lung Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Ana L Coelho
- Women's Guild Lung Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Cory M Hogaboam
- Women's Guild Lung Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California.
| |
Collapse
|
229
|
ILC2s in infectious diseases and organ-specific fibrosis. Semin Immunopathol 2018; 40:379-392. [PMID: 29623414 DOI: 10.1007/s00281-018-0677-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 03/12/2018] [Indexed: 12/13/2022]
Abstract
Type 2 immune responses evolved to provide host protection against parasitic infections and to support the repair of infection-induced tissue injury. However, persistent chronic organ damage can result in dysregulated production of critical type 2 cytokines supporting tissue remodeling and fibrosis development. Recently, group 2 innate lymphoid cells (ILC2s) were newly described as central innate mediators of type 2 responses. In particular, by secretion of the cytokines IL-5, IL-9, and IL-13 and the growth factor amphiregulin in response to the release of tissue-derived alarmins, ILC2s have been shown to substantially contribute to both the dismissal of metazoan parasites and the repair of infection-dependent or sterile tissue damage. Conversely, cytokine production by ILC2s emerged as a driving force for tissue remodeling and excessive fibrosis in several organ systems including the lung, liver, and skin. In this review, we discuss how ILC2s are specifically implicated in the body's immune response to different pathogenic infections and how dysregulated ILC2s may promote organ-specific fibrosis.
Collapse
|
230
|
Hirose K, Iwata A, Tamachi T, Nakajima H. Allergic airway inflammation: key players beyond the Th2 cell pathway. Immunol Rev 2018; 278:145-161. [PMID: 28658544 DOI: 10.1111/imr.12540] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Allergic asthma is characterized by eosinophilic airway inflammation, mucus hyperproduction, and airway hyperreactivity, causing reversible airway obstruction. Accumulating evidence indicates that antigen-specific Th2 cells and their cytokines such as IL-4, IL-5, and IL-13 orchestrate these pathognomonic features of asthma. However, over the past decade, the understanding of asthma pathogenesis has made a significant shift from a Th2 cell-dependent, IgE-mediated disease to a more complicated heterogeneous disease. Recent studies clearly show that not only Th2 cytokines but also other T cell-related cytokines such as IL-17A and IL-22 as well as epithelial cell cytokines such as IL-25, IL-33, and thymic stromal lymphopoietin (TSLP) are involved in the pathogenesis of asthma. In this review, we focus on the roles of these players beyond Th2 pathways in the pathogenesis of asthma.
Collapse
Affiliation(s)
- Koichi Hirose
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Arifumi Iwata
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tomohiro Tamachi
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hiroshi Nakajima
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
231
|
Foster PS, Maltby S, Rosenberg HF, Tay HL, Hogan SP, Collison AM, Yang M, Kaiko GE, Hansbro PM, Kumar RK, Mattes J. Modeling T H 2 responses and airway inflammation to understand fundamental mechanisms regulating the pathogenesis of asthma. Immunol Rev 2018; 278:20-40. [PMID: 28658543 DOI: 10.1111/imr.12549] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 02/25/2017] [Indexed: 12/12/2022]
Abstract
In this review, we highlight experiments conducted in our laboratories that have elucidated functional roles for CD4+ T-helper type-2 lymphocytes (TH 2 cells), their associated cytokines, and eosinophils in the regulation of hallmark features of allergic asthma. Notably, we consider the complexity of type-2 responses and studies that have explored integrated signaling among classical TH 2 cytokines (IL-4, IL-5, and IL-13), which together with CCL11 (eotaxin-1) regulate critical aspects of eosinophil recruitment, allergic inflammation, and airway hyper-responsiveness (AHR). Among our most important findings, we have provided evidence that the initiation of TH 2 responses is regulated by airway epithelial cell-derived factors, including TRAIL and MID1, which promote TH 2 cell development via STAT6-dependent pathways. Further, we highlight studies demonstrating that microRNAs are key regulators of allergic inflammation and potential targets for anti-inflammatory therapy. On the background of TH 2 inflammation, we have demonstrated that innate immune cells (notably, airway macrophages) play essential roles in the generation of steroid-resistant inflammation and AHR secondary to allergen- and pathogen-induced exacerbations. Our work clearly indicates that understanding the diversity and spatiotemporal role of the inflammatory response and its interactions with resident airway cells is critical to advancing knowledge on asthma pathogenesis and the development of new therapeutic approaches.
Collapse
Affiliation(s)
- Paul S Foster
- Priority Research Centre for Healthy Lungs, Department of Microbiology and Immunology, School of Biomedical Sciences & Pharmacy, Faculty of Health and Hunter Medical Research Institute, The University of Newcastle, Callaghan, NSW, Australia
| | - Steven Maltby
- Priority Research Centre for Healthy Lungs, Department of Microbiology and Immunology, School of Biomedical Sciences & Pharmacy, Faculty of Health and Hunter Medical Research Institute, The University of Newcastle, Callaghan, NSW, Australia
| | - Helene F Rosenberg
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Bethesda, MD, USA
| | - Hock L Tay
- Priority Research Centre for Healthy Lungs, Department of Microbiology and Immunology, School of Biomedical Sciences & Pharmacy, Faculty of Health and Hunter Medical Research Institute, The University of Newcastle, Callaghan, NSW, Australia
| | - Simon P Hogan
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Adam M Collison
- Paediatric Respiratory and Sleep Medicine Unit, Priority Research Centre for Healthy Lungs and GrowUpWell, University of Newcastle and Hunter Medical Research Institute, John Hunter Children's Hospital, Newcastle, NSW, Australia
| | - Ming Yang
- Priority Research Centre for Healthy Lungs, Department of Microbiology and Immunology, School of Biomedical Sciences & Pharmacy, Faculty of Health and Hunter Medical Research Institute, The University of Newcastle, Callaghan, NSW, Australia
| | - Gerard E Kaiko
- Priority Research Centre for Healthy Lungs, Department of Microbiology and Immunology, School of Biomedical Sciences & Pharmacy, Faculty of Health and Hunter Medical Research Institute, The University of Newcastle, Callaghan, NSW, Australia
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs, Department of Microbiology and Immunology, School of Biomedical Sciences & Pharmacy, Faculty of Health and Hunter Medical Research Institute, The University of Newcastle, Callaghan, NSW, Australia
| | - Rakesh K Kumar
- Pathology, UNSW Sydney, School of Medical Sciences, Sydney, NSW, Australia
| | - Joerg Mattes
- Paediatric Respiratory and Sleep Medicine Unit, Priority Research Centre for Healthy Lungs and GrowUpWell, University of Newcastle and Hunter Medical Research Institute, John Hunter Children's Hospital, Newcastle, NSW, Australia
| |
Collapse
|
232
|
Hosseinzadeh A, Javad-Moosavi SA, Reiter RJ, Hemati K, Ghaznavi H, Mehrzadi S. Idiopathic pulmonary fibrosis (IPF) signaling pathways and protective roles of melatonin. Life Sci 2018; 201:17-29. [PMID: 29567077 DOI: 10.1016/j.lfs.2018.03.032] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/13/2018] [Accepted: 03/15/2018] [Indexed: 12/19/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is characterized by the progressive loss of lung function due to tissue scarring. A variety of pro-inflammatory and pro-fibrogenic factors including interleukin‑17A, transforming growth factor β, Wnt/β‑catenin, vascular endothelial growth factor, platelet-derived growth factor, fibroblast growth factors, endotelin‑1, renin angiotensin system and impaired caveolin‑1 function are involved in the IPF pathogenesis. Current therapies for IPF have some limitations and this highlights the need for effective therapeutic agents to treat this fatal disease. Melatonin and its metabolites are broad-spectrum antioxidants that not only remove reactive oxygen and nitrogen species by radical scavenging but also up-regulate the expression and activity of endogenous antioxidants. Via these actions, melatonin and its metabolites modulate a variety of molecular pathways in different pathophysiological conditions. Herein, we review the signaling pathways involved in the pathophysiology of IPF and the potentially protective effects of melatonin on these pathways.
Collapse
Affiliation(s)
- Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health, San Antonio, TX, USA
| | - Karim Hemati
- Department of Anesthesiology, Iran University of Medical Sciences, Tehran, Iran; Department of Anesthesiology, Ilam University of Medical Sciences, Ilam, Iran
| | - Habib Ghaznavi
- Department of Pharmacology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
233
|
Qu Y, Zhang C, Hu Z, Li S, Kong C, Ning Y, Shang Y, Bai C. The 100 most influential publications in asthma from 1960 to 2017: A bibliometric analysis. Respir Med 2018; 137:206-212. [PMID: 29605206 DOI: 10.1016/j.rmed.2018.03.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 02/28/2018] [Accepted: 03/12/2018] [Indexed: 01/01/2023]
Abstract
BACKGROUND The area of asthma medicine has produced a large volume of important clinical and scientific papers that can be found in those most influential journals. The purpose of our study was to identify the 100 most cited papers in asthma research and to analyze their characteristics. METHODS We used the Institute for Scientific Information Web of Knowledge Database to identify the most frequently cited articles published from 1960 to December 2017. Original articles and reviews were included in the study. The 100 top-cited articles were then analyzed with regard to number of citations, publication year, journals, institution, research type and field, authors and countries of authors of publications. RESULTS The 100 top-cited articles in asthma were published between 1960 and 2011 with a median of 933 citations per article (range, 701-2947). The number of citations per article was greatest for articles published in the 1990s. The United States of America contributed most of the classic articles, followed by England. The leading institutions were Imperial College London, McMaster University, Erasmus University Rotterdam. The 100 top-cited articles were published in twenty-five journals, led by The New England Journal of Medicine (21 articles), followed by American Journal of Respiratory and Critical Care Medicine (19 articles), Lancet (11 articles), respectively. Among the 100 classics, 50% articles were clinical research articles. CONCLUSIONS Our study provides a historical perspective on the progress of research on asthma. Studies conducted in well-developed European countries and North America, published in high-impact journals had the highest citations.
Collapse
Affiliation(s)
- Yulan Qu
- Department of Respiratory and Critical Care Medicine, Changhai Hospital, Second Military Medical University, Shanghai 200433, PR China
| | - Chen Zhang
- Department of Orthopedics, Changhai Hospital, Second Military Medical University, Shanghai 200433, PR China
| | - Zhenli Hu
- Department of Respiratory and Critical Care Medicine, Changhai Hospital, Second Military Medical University, Shanghai 200433, PR China
| | - Sha Li
- Department of Respiratory and Critical Care Medicine, Changhai Hospital, Second Military Medical University, Shanghai 200433, PR China
| | - Chen Kong
- Department of Respiratory and Critical Care Medicine, Changhai Hospital, Second Military Medical University, Shanghai 200433, PR China
| | - Yunye Ning
- Department of Respiratory and Critical Care Medicine, Changhai Hospital, Second Military Medical University, Shanghai 200433, PR China
| | - Yan Shang
- Department of Respiratory and Critical Care Medicine, Changhai Hospital, Second Military Medical University, Shanghai 200433, PR China.
| | - Chong Bai
- Department of Respiratory and Critical Care Medicine, Changhai Hospital, Second Military Medical University, Shanghai 200433, PR China.
| |
Collapse
|
234
|
Effects of ozone repeated short exposures on the airway/lung inflammation, airway hyperresponsiveness and mucus production in a mouse model of ovalbumin-induced asthma. Biomed Pharmacother 2018; 101:293-303. [PMID: 29499403 DOI: 10.1016/j.biopha.2018.02.079] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 02/14/2018] [Accepted: 02/19/2018] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE The purpose of this study is to explore the influence of ozone repeated short exposures on airway/lung inflammation, airway hyperresponsiveness (AHR) and airway hypersecretion in ovalbumin (OVA) sensitized/challenged asthmatic mouse model. METHODS OVA sensitization was performing by intraperitoneal injection. Ozone exposures (3ppm for 3hours) were given one hour after aerosolized OVA challenges (once every other day, 4 times totally). Methacholine (MCH) bronchial provocation tests, Liu's staining of BALF cell smears, hematoxylin-eosin (HE) staining and Periodic Acid-Schiff (PAS) staining of lung tissue were performed. Interleukins (ILs; IL-4, IL-13, IL-1β, and IL-18) protein (ELISA) and mRNA expression levels (RT-qPCR) in murine lung, 8-hydroxy-2'-deoxyguanosine (8-OHdG, ELISA), malondialdehyde (MDA, thiobarbituric acid assay), reduced glutathione (GSH, spectrophotometric method) in bronchoalveolar lavage fluid (BALF), and GSH1 mRNA relative expression levels (RT-qPCR) in lung tissue were analyzed. RESULT Repeated ozone exposures down-regulated the AHR to MCH in mice undergoing OVA sensitization and challenge, however not all parameters associated with asthma were decreased since obvious mucus hypersecretion was induced and airway inflammation increased slightly, especially around small airways. Following ozone co-exposure, the increase of IL-4 and IL-13 levels in murine lung caused by OVA sensitization/challenge were reversed. Instead, levels of IL-1β in BALF remained, higher than negative control group. Ozone repeated short exposures also induced significant increase of 8-OHdG in BALF in OVA sensitized and challenged mice. CONCLUSION For asthmatic mice undergoing ozone exposures, AHR is not an accurate indicator of the severity of asthma. Repeated short ozone exposures increase mucus hypersecretion, possibly via an increase in oxidative stress and immune dysregulation.
Collapse
|
235
|
Sakai H, Suto W, Kai Y, Chiba Y. Mechanisms underlying the pathogenesis of hyper-contractility of bronchial smooth muscle in allergic asthma. J Smooth Muscle Res 2018; 53:37-47. [PMID: 28484126 PMCID: PMC5411784 DOI: 10.1540/jsmr.53.37] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Airway hyperresponsiveness (AHR) and inflammation are key pathophysiological
features of asthma. Enhanced contraction of bronchial smooth muscle (BSM) is one
of the causes of the AHR. It is thus important for development of asthma therapy
to understand the change in the contractile signaling of airway smooth muscle
cells associated with the AHR. In addition to the Ca2+-mediated
phosphorylation of myosin light chain (MLC), contractile agonists also enhance
MLC phosphorylation level, Ca2+-independently, by inactivating MLC
phosphatase (MLCP), called Ca2+ sensitization of contraction, in
smooth muscle cells including airways. To date, involvements of RhoA/ROCKs and
PKC/Ppp1r14a (also called as CPI-17) pathways in the Ca2+
sensitization have been identified. Our previous studies revealed that the
agonist-induced Ca2+ sensitization of contraction is markedly
augmented in BSMs of animal models of allergen-induced AHR. In BSMs of these
animal models, the expression of RhoA and CPI-17 proteins were significantly
increased, indicating that both the Ca2+ sensitizing pathways are
augmented. Interestingly, incubation of BSM cells with asthma-associated
cytokines, such as interleukin-13 (IL-13), IL-17, and tumor necrosis factor-α
(TNF-α), caused up-regulations of RhoA and CPI-17 in BSM cells of naive animals
and cultured human BSM cells. In addition to the transcription factors such as
STAT6 and NF-κB activated by these inflammatory cytokines, an involvement of
down-regulation of miR-133a, a microRNA that negatively regulates RhoA
translation, has also been suggested in the IL-13- and IL-17-induced
up-regulation of RhoA. Thus, the Ca2+ sensitizing pathways and the
cytokine-mediated signaling including microRNAs in BSMs might be potential
targets for treatment of allergic asthma, especially the AHR.
Collapse
Affiliation(s)
- Hiroyasu Sakai
- Department of Analytical Pathophysiology, Hoshi University
| | - Wataru Suto
- Department of Physiology and Molecular Sciences, Hoshi University
| | - Yuki Kai
- Department of Analytical Pathophysiology, Hoshi University
| | - Yoshihiko Chiba
- Department of Physiology and Molecular Sciences, Hoshi University
| |
Collapse
|
236
|
Ntontsi P, Papathanassiou E, Loukides S, Bakakos P, Hillas G. Targeted anti-IL-13 therapies in asthma: current data and future perspectives. Expert Opin Investig Drugs 2018; 27:179-186. [PMID: 29334288 DOI: 10.1080/13543784.2018.1427729] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
INTRODUCTION The identification of patients with severe asthma who will benefit from a personalized management approach remains an unmet need. Interleukin-13 (IL-13) is a cytokine possessing a significant role in asthma pathogenesis and progression of disease. Humanised monoclonal antibodies against IL-13 and IL-13 and IL-4 receptors are mainly proposed as add-on therapy in patients with TH2-high inflammation with uncontrolled asthma despite maximum therapy. AREAS COVERED The role of IL-13 in airway inflammation in severe asthma, the targeted anti-IL-13 therapies and biomarkers that predict response to anti-IL-13 treatment are discussed. EXPERT OPINION New effective individualized therapies in severe asthma are urgently needed to block specific inflammatory pathways using monoclonal antibodies. Studies on anti-IL-13 therapies showed that asthmatic patients could benefit from this novel targeted therapy as far as lung function and exacerbation rate are concerned. TH2-high and especially periostin-high groups of asthmatics with moderate-to-severe uncontrolled asthma seem to compose the group that could benefit from anti-IL-13 therapy. Targeting IL-13 alone may not be sufficient to achieve asthma control. Inhibition of IL-13 and IL-4 with mabs may be more encouraging and patients will probably have additional benefits from these therapeutic interventions because of IL-13/IL-4 overlapping actions in asthma pathophysiology.
Collapse
Affiliation(s)
- Polyxeni Ntontsi
- a 2nd Respiratory Medicine Department , National and Kapodistrian University of Athens, Medical School, Attikon Hospital , Athens , Greece
| | - Evgenia Papathanassiou
- a 2nd Respiratory Medicine Department , National and Kapodistrian University of Athens, Medical School, Attikon Hospital , Athens , Greece
| | - Stelios Loukides
- a 2nd Respiratory Medicine Department , National and Kapodistrian University of Athens, Medical School, Attikon Hospital , Athens , Greece
| | - Petros Bakakos
- b 1st Respiratory Medicine Department , National and Kapodistrian University of Athens, Medical School, Sotiria Chest Hospital , Athens , Greece
| | - Georgios Hillas
- c Department of Critical Care and Pulmonary Services , National and Kapodistrian University of Athens, Medical School, Evangelismos Hospital , Athens , Greece
| |
Collapse
|
237
|
Toki S, Goleniewska K, Reiss S, Zhang J, Bloodworth MH, Stier MT, Zhou W, Newcomb DC, Ware LB, Stanwood GD, Galli A, Boyd KL, Niswender KD, Peebles RS. Glucagon-like peptide 1 signaling inhibits allergen-induced lung IL-33 release and reduces group 2 innate lymphoid cell cytokine production in vivo. J Allergy Clin Immunol 2018; 142:1515-1528.e8. [PMID: 29331643 DOI: 10.1016/j.jaci.2017.11.043] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 10/19/2017] [Accepted: 11/01/2017] [Indexed: 01/26/2023]
Abstract
BACKGROUND IL-33 is one of the most consistently associated gene candidates for asthma identified by using a genome-wide association study. Studies in mice and in human cells have confirmed the importance of IL-33 in inducing type 2 cytokine production from both group 2 innate lymphoid cells (ILC2s) and TH2 cells. However, there are no pharmacologic agents known to inhibit IL-33 release from airway cells. OBJECTIVE We sought to determine the effect of glucagon-like peptide 1 receptor (GLP-1R) signaling on aeroallergen-induced airway IL-33 production and release and on innate type 2 airway inflammation. METHODS BALB/c mice were challenged intranasally with Alternaria extract for 4 consecutive days. GLP-1R agonist or vehicle was administered starting either 2 days before the first Alternaria extract challenge or 1 day after the first Alternaria extract challenge. RESULTS GLP-1R agonist treatment starting 2 days before the first Alternaria extract challenge decreased IL-33 release in the bronchoalveolar lavage fluid and dual oxidase 1 (Duox1) mRNA expression 1 hour after the first Alternaria extract challenge and IL-33 expression in lung epithelial cells 24 hours after the last Alternaria extract challenge. Furthermore, GLP-1R agonist significantly decreased the number of ILC2s expressing IL-5 and IL-13, lung protein expression of type 2 cytokines and chemokines, the number of perivascular eosinophils, mucus production, and airway responsiveness compared with vehicle treatment. GLP-1R agonist treatment starting 1 day after the first Alternaria extract challenge also significantly decreased eosinophilia and type 2 cytokine and chemokine expression in the airway after 4 days of Alternaria extract challenge. CONCLUSION These results reveal that GLP-1R signaling might be a therapy to reduce IL-33 release and inhibit the ILC2 response to protease-containing aeroallergens, such as Alternaria.
Collapse
Affiliation(s)
- Shinji Toki
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tenn
| | - Kasia Goleniewska
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tenn
| | - Sara Reiss
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tenn
| | - Jian Zhang
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tenn
| | - Melissa H Bloodworth
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tenn
| | - Matthew T Stier
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tenn
| | - Weisong Zhou
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tenn
| | - Dawn C Newcomb
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tenn; Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tenn
| | - Lorraine B Ware
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tenn; Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tenn
| | - Gregg D Stanwood
- Department of Biomedical Sciences and Center for Brain Repair, Florida State University, Tallahassee, Fla
| | - Aurelio Galli
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tenn; Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, Tenn
| | - Kelli L Boyd
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tenn
| | - Kevin D Niswender
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tenn; Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tenn; Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University School of Medicine, Nashville, Tenn; Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, Tenn.
| | - R Stokes Peebles
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tenn; Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tenn; Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tenn.
| |
Collapse
|
238
|
Role of Polyamines in Asthma Pathophysiology. Med Sci (Basel) 2018; 6:medsci6010004. [PMID: 29316647 PMCID: PMC5872161 DOI: 10.3390/medsci6010004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 12/31/2017] [Accepted: 01/02/2018] [Indexed: 12/14/2022] Open
Abstract
Asthma is a complex disease of airways, where the interactions of immune and structural cells result in disease outcomes with airway remodeling and airway hyper-responsiveness. Polyamines, which are small-sized, natural super-cations, interact with negatively charged intracellular macromolecules, and altered levels of polyamines and their interactions have been associated with different pathological conditions including asthma. Elevated levels of polyamines have been reported in the circulation of asthmatic patients as well as in the lungs of a murine model of asthma. In various studies, polyamines were found to potentiate the pathogenic potential of inflammatory cells, such as mast cells and granulocytes (eosinophils and neutrophils), by either inducing the release of their pro-inflammatory mediators or prolonging their life span. Additionally, polyamines were crucial in the differentiation and alternative activation of macrophages, which play an important role in asthma pathology. Importantly, polyamines cause airway smooth muscle contraction and thus airway hyper-responsiveness, which is the key feature in asthma pathophysiology. High levels of polyamines in asthma and their active cellular and macromolecular interactions indicate the importance of the polyamine pathway in asthma pathogenesis; therefore, modulation of polyamine levels could be a suitable approach in acute and severe asthma management. This review summarizes the possible roles of polyamines in different pathophysiological features of asthma.
Collapse
|
239
|
Licari A, Castagnoli R, Brambilla I, Marseglia A, Tosca MA, Marseglia GL, Ciprandi G. New approaches for identifying and testing potential new anti-asthma agents. Expert Opin Drug Discov 2018; 13:51-63. [PMID: 29077521 DOI: 10.1080/17460441.2018.1396315] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Asthma is a chronic disease with significant heterogeneity in clinical features, disease severity, pattern of underlying disease mechanisms, and responsiveness to specific treatments. While the majority of asthmatic patients are controlled by standard pharmacological strategies, a significant subgroup has limited therapeutic options representing a major unmet need. Ongoing asthma research aims to better characterize distinct clinical phenotypes, molecular endotypes, associated reliable biomarkers, and also to develop a series of new effective targeted treatment modalities. Areas covered: The expanding knowledge on the pathogenetic mechanisms of asthma has allowed researchers to investigate a range of new treatment options matched to patient profiles. The aim of this review is to provide a comprehensive and updated overview of the currently available, new and developing approaches for identifying and testing potential treatment options for asthma management. Expert opinion: Future therapeutic strategies for asthma require the identification of reliable biomarkers that can help with diagnosis and endotyping, in order to determine the most effective drug for the right patient phenotype. Furthermore, in addition to the identification of clinical and inflammatory phenotypes, it is expected that a better understanding of the mechanisms of airway remodeling will likely optimize asthma targeted treatment.
Collapse
Affiliation(s)
- Amelia Licari
- a Pediatric Clinic , Fondazione IRCCS San Matteo , Pavia , Italy
| | | | - Ilaria Brambilla
- a Pediatric Clinic , Fondazione IRCCS San Matteo , Pavia , Italy
| | | | - Maria Angela Tosca
- b Pediatric Pulmonology and Allergy , IRCCS Istituto Giannina Gaslini , Genoa , Italy
| | | | - Giorgio Ciprandi
- b Pediatric Pulmonology and Allergy , IRCCS Istituto Giannina Gaslini , Genoa , Italy
- c Internal Medicine , Ospedale Policlinico San Martino , Genoa , Italy
| |
Collapse
|
240
|
Reid AT, Veerati PC, Gosens R, Bartlett NW, Wark PA, Grainge CL, Stick SM, Kicic A, Moheimani F, Hansbro PM, Knight DA. Persistent induction of goblet cell differentiation in the airways: Therapeutic approaches. Pharmacol Ther 2017; 185:155-169. [PMID: 29287707 DOI: 10.1016/j.pharmthera.2017.12.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Dysregulated induction of goblet cell differentiation results in excessive production and retention of mucus and is a common feature of several chronic airways diseases. To date, therapeutic strategies to reduce mucus accumulation have focused primarily on altering the properties of the mucus itself, or have aimed to limit the production of mucus-stimulating cytokines. Here we review the current knowledge of key molecular pathways that are dysregulated during persistent goblet cell differentiation and highlights both pre-existing and novel therapeutic strategies to combat this pathology.
Collapse
Affiliation(s)
- Andrew T Reid
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia.
| | - Punnam Chander Veerati
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia
| | - Reinoud Gosens
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands; Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Nathan W Bartlett
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia
| | - Peter A Wark
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia; Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, New South Wales, Australia
| | - Chris L Grainge
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia; Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, New South Wales, Australia
| | - Stephen M Stick
- School of Paediatrics and Child Health, University of Western Australia, Nedlands 6009, Western Australia, Australia; Telethon Kids Institute, University of Western Australia, Nedlands 6009, Western Australia, Australia; Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth 6001, Western Australia, Australia; Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, University of Western Australia, Nedlands 6009, Western Australia, Australia
| | - Anthony Kicic
- School of Paediatrics and Child Health, University of Western Australia, Nedlands 6009, Western Australia, Australia; Telethon Kids Institute, University of Western Australia, Nedlands 6009, Western Australia, Australia; Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth 6001, Western Australia, Australia; Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, University of Western Australia, Nedlands 6009, Western Australia, Australia; Occupation and Environment, School of Public Health, Curtin University, Bentley 6102, Western Australia, Australia
| | - Fatemeh Moheimani
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia
| | - Philip M Hansbro
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia
| | - Darryl A Knight
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia; Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, Canada
| |
Collapse
|
241
|
Yanamala N, Kisin ER, Gutkin DW, Shurin MR, Harper M, Shvedova AA. Characterization of pulmonary responses in mice to asbestos/asbestiform fibers using gene expression profiles. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2017; 81:60-79. [PMID: 29279043 DOI: 10.1080/15287394.2017.1408201] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Humans exposed to asbestos and/or asbestiform fibers are at high risk of developing many lung diseases including asbestosis, lung cancer, and malignant mesothelioma. However, the disease-causing potential and specific metabolic mechanisms and pathways associated with various asbestos/asbestiform fiber exposures triggering different carcinogenic and non-carcinogenic outcomes are still largely unknown. The aim of this this study was to investigate gene expression profiles and inflammatory responses to different asbestos/asbestiform fibers at the acute/sub-acute phase that may be related to delayed pathological outcomes observed at later time points. Mice were exposed to asbestos (crocidolite, tremolite asbestos), asbestiform fibers (erionite), and a low pathogenicity mineral fiber (wollastonite) using oropharyngeal aspiration. Similarities in inflammatory and tissue damage responses, albeit with quantitative differences, were observed at day 1 and 7 post treatment. Exposure to different fibers induced significant changes in regulation and release of a number of inflammatory cytokines/chemokines. Comparative analysis of changes in gene regulation in the lung on day 7 post exposure were interpretable in the context of differential biological responses that were consistent with histopathological findings at days 7 and 56 post treatment. Our results noted differences in the magnitudes of pulmonary responses and gene regulation consistent with pathological alterations induced by exposures to four asbestos/asbestiform fibers examined. Further comparative mechanistic studies linking early responses with the long-term endpoints may be instrumental to understanding triggering mechanisms underlying pulmonary carcinogenesis, that is lung cancer versus mesothelioma.
Collapse
Affiliation(s)
| | - Elena R Kisin
- a Exposure Assessment Branch , NIOSH/CDC, Morgantown , WV , USA
| | - Dmitriy W Gutkin
- b Department of Pathology, University of Pittsburgh Medical Center , Pittsburgh , PA , USA
| | - Michael R Shurin
- b Department of Pathology, University of Pittsburgh Medical Center , Pittsburgh , PA , USA
| | - Martin Harper
- a Exposure Assessment Branch , NIOSH/CDC, Morgantown , WV , USA
- c Zefon International, Inc. , Ocala , FL , USA
| | - Anna A Shvedova
- a Exposure Assessment Branch , NIOSH/CDC, Morgantown , WV , USA
- d Department Physiology, Pharmacology & Neuroscience , School of Medicine, West Virginia University , Morgantown , WV , USA
- e Department of Pharmaceutical Sciences , School of Pharmacy, West Virginia University , Morgantown , WV , USA
| |
Collapse
|
242
|
Dhanisha SS, Guruvayoorappan C, Drishya S, Abeesh P. Mucins: Structural diversity, biosynthesis, its role in pathogenesis and as possible therapeutic targets. Crit Rev Oncol Hematol 2017; 122:98-122. [PMID: 29458795 DOI: 10.1016/j.critrevonc.2017.12.006] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 10/28/2017] [Accepted: 12/12/2017] [Indexed: 12/25/2022] Open
Abstract
Mucins are the main structural components of mucus that create a selective protective barrier for epithelial surface and also execute wide range of other physiological functions. Mucins can be classified into two types, namely secreted mucins and membrane bounded mucins. Alterations in mucin expression or glycosylation and mislocalization have been seen in various types of pathological conditions such as cancers, inflammatory bowel disease and ocular disease, which highlight the importance of mucin in maintaining homeostasis. Hence mucins can be used as attractive target for therapeutic intervention. In this review, we discuss in detail about the structural diversity of mucins; their biosynthesis; its role in pathogenesis; regulation and as possible therapeutic targets.
Collapse
Affiliation(s)
- Suresh Sulekha Dhanisha
- Laboratory of Immunopharmacology and Experimental Therapeutics, Division of Cancer Research, Regional Cancer Centre, Medical College Campus, Thiruvananthapuram 695011, Kerala, India
| | - Chandrasekharan Guruvayoorappan
- Laboratory of Immunopharmacology and Experimental Therapeutics, Division of Cancer Research, Regional Cancer Centre, Medical College Campus, Thiruvananthapuram 695011, Kerala, India.
| | - Sudarsanan Drishya
- Laboratory of Immunopharmacology and Experimental Therapeutics, Division of Cancer Research, Regional Cancer Centre, Medical College Campus, Thiruvananthapuram 695011, Kerala, India
| | - Prathapan Abeesh
- Laboratory of Immunopharmacology and Experimental Therapeutics, Division of Cancer Research, Regional Cancer Centre, Medical College Campus, Thiruvananthapuram 695011, Kerala, India
| |
Collapse
|
243
|
Robinson D, Humbert M, Buhl R, Cruz AA, Inoue H, Korom S, Hanania NA, Nair P. Revisiting Type 2-high and Type 2-low airway inflammation in asthma: current knowledge and therapeutic implications. Clin Exp Allergy 2017; 47:161-175. [PMID: 28036144 DOI: 10.1111/cea.12880] [Citation(s) in RCA: 278] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Asthma is a complex respiratory disorder characterized by marked heterogeneity in individual patient disease triggers and response to therapy. Several asthma phenotypes have now been identified, each defined by a unique interaction between genetic and environmental factors, including inflammatory, clinical and trigger-related phenotypes. Endotypes further describe the functional or pathophysiologic mechanisms underlying the patient's disease. type 2-driven asthma is an emerging nomenclature for a common subtype of asthma and is characterized by the release of signature cytokines IL-4, IL-5 and IL-13 from cells of both the innate and adaptive immune systems. A number of well-recognized biomarkers have been linked to mechanisms involved in type 2 airway inflammation, including fractional exhaled nitric oxide, serum IgE, periostin, and blood and sputum eosinophils. These type 2 cytokines are targets for pharmaceutical intervention, and a number of therapeutic options are under clinical investigation for the management of patients with uncontrolled severe asthma. Anticipating and understanding the heterogeneity of asthma and subsequent improved characterization of different phenotypes and endotypes must guide the selection of treatment to meet individual patients' needs.
Collapse
Affiliation(s)
- D Robinson
- Department of Respiratory Medicine, Severe Asthma Service, UCLH NHS Trust, London, UK
| | - M Humbert
- Service de Pneumologie, Hôpital Bicêtre, Assistance Publique Hôpitaux de Paris, University Paris-Sud, Université Paris-Saclay, INSERM U999, Le Kremlin-Bicêtre, France
| | - R Buhl
- Pulmonary Department, Mainz University Hospital, Mainz, Germany
| | - A A Cruz
- ProAR-Center of Excellence in Asthma, Federal University of Bahia School of Medicine, Salvador, Brazil
| | - H Inoue
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - S Korom
- F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - N A Hanania
- Section of Pulmonary and Critical Care Medicine, Baylor College of Medicine, Houston, TX, USA
| | - P Nair
- Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
244
|
Mishra A, Yao X, Saxena A, Gordon EM, Kaler M, Cuento RA, Barochia AV, Dagur PK, McCoy JP, Keeran KJ, Jeffries KR, Qu X, Yu ZX, Levine SJ. Low-density lipoprotein receptor-related protein 1 attenuates house dust mite-induced eosinophilic airway inflammation by suppressing dendritic cell-mediated adaptive immune responses. J Allergy Clin Immunol 2017; 142:1066-1079.e6. [PMID: 29274414 DOI: 10.1016/j.jaci.2017.10.044] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 09/20/2017] [Accepted: 10/19/2017] [Indexed: 01/08/2023]
Abstract
BACKGROUND Low-density lipoprotein receptor-related protein 1 (LRP-1) is a scavenger receptor that regulates adaptive immunity and inflammation. LRP-1 is not known to modulate the pathogenesis of allergic asthma. OBJECTIVE We sought to assess whether LRP-1 expression by dendritic cells (DCs) modulates adaptive immune responses in patients with house dust mite (HDM)-induced airways disease. METHODS LRP-1 expression on peripheral blood DCs was quantified by using flow cytometry. The role of LRP-1 in modulating HDM-induced airways disease was assessed in mice with deletion of LRP-1 in CD11c+ cells (Lrp1fl/fl; CD11c-Cre) and by adoptive transfer of HDM-pulsed CD11b+ DCs from Lrp1fl/fl; CD11c-Cre mice to wild-type (WT) mice. RESULTS Human peripheral blood myeloid DC subsets from patients with eosinophilic asthma have lower LRP-1 expression than cells from healthy nonasthmatic subjects. Similarly, LRP-1 expression by CD11b+ lung DCs was significantly reduced in HDM-challenged WT mice. HDM-challenged Lrp1fl/fl; CD11c-Cre mice have a phenotype of increased eosinophilic airway inflammation, allergic sensitization, TH2 cytokine production, and mucous cell metaplasia. The adoptive transfer of HDM-pulsed LRP-1-deficient CD11b+ DCs into WT mice generated a similar phenotype of enhanced eosinophilic inflammation and allergic sensitization. Furthermore, CD11b+ DCs in the lungs of Lrp1fl/fl; CD11c-Cre mice have an increased ability to take up HDM antigen, whereas bone marrow-derived DCs display enhanced antigen presentation capabilities. CONCLUSION This identifies a novel role for LRP-1 as a negative regulator of DC-mediated adaptive immune responses in the setting of HDM-induced eosinophilic airway inflammation. Furthermore, the reduced LRP-1 expression by circulating myeloid DCs in patients with eosinophilic asthma suggests a possible role for LRP-1 in modulating type 2-high asthma.
Collapse
Affiliation(s)
- Amarjit Mishra
- Laboratory of Asthma and Lung Inflammation, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Md
| | - Xianglan Yao
- Laboratory of Asthma and Lung Inflammation, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Md
| | - Ankit Saxena
- Flow Cytometry Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Md
| | - Elizabeth M Gordon
- Laboratory of Asthma and Lung Inflammation, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Md
| | - Maryann Kaler
- Laboratory of Asthma and Lung Inflammation, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Md
| | - Rosemarie A Cuento
- Laboratory of Asthma and Lung Inflammation, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Md
| | - Amisha V Barochia
- Laboratory of Asthma and Lung Inflammation, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Md
| | - Pradeep K Dagur
- Flow Cytometry Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Md
| | - J Philip McCoy
- Flow Cytometry Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Md
| | - Karen J Keeran
- Animal Surgery and Resources Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Md
| | - Kenneth R Jeffries
- Animal Surgery and Resources Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Md
| | - Xuan Qu
- Pathology Core Facility, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Md
| | - Zu-Xi Yu
- Pathology Core Facility, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Md
| | - Stewart J Levine
- Laboratory of Asthma and Lung Inflammation, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Md.
| |
Collapse
|
245
|
Zhao J, Minami Y, Etling E, Coleman JM, Lauder SN, Tyrrell V, Aldrovandi M, O'Donnell V, Claesson HE, Kagan V, Wenzel S. Preferential Generation of 15-HETE-PE Induced by IL-13 Regulates Goblet Cell Differentiation in Human Airway Epithelial Cells. Am J Respir Cell Mol Biol 2017; 57:692-701. [PMID: 28723225 DOI: 10.1165/rcmb.2017-0031oc] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Type 2-associated goblet cell hyperplasia and mucus hypersecretion are well known features of asthma. 15-Lipoxygenase-1 (15LO1) is induced by the type 2 cytokine IL-13 in human airway epithelial cells (HAECs) in vitro and is increased in fresh asthmatic HAECs ex vivo. 15LO1 generates a variety of products, including 15-hydroxyeicosatetraenoic acid (15-HETE), 15-HETE-phosphatidylethanolamine (15-HETE-PE), and 13-hydroxyoctadecadienoic acid (13-HODE). In this study, we investigated the 15LO1 metabolite profile at baseline and after IL-13 treatment, as well as its influence on goblet cell differentiation in HAECs. Primary HAECs obtained from bronchial brushings of asthmatic and healthy subjects were cultured under air-liquid interface culture supplemented with arachidonic acid and linoleic acid (10 μM each) and exposed to IL-13 for 7 days. Short interfering RNA transfection and 15LO1 inhibition were applied to suppress 15LO1 expression and activity. IL-13 stimulation induced expression of 15LO1 and preferentially generated 15-HETE-PE in vitro, both of which persisted after removal of IL-13. 15LO1 inhibition (by short interfering RNA and chemical inhibitor) decreased IL-13-induced forkhead box protein A3 (FOXA3) expression and enhanced FOXA2 expression. These changes were associated with reductions in both mucin 5AC and periostin. Exogenous 15-HETE-PE stimulation (alone) recapitulated IL-13-induced FOXA3, mucin 5AC, and periostin expression. The results of this study confirm the central importance of 15LO1 and its primary product, 15-HETE-PE, for epithelial cell remodeling in HAECs.
Collapse
Affiliation(s)
- Jinming Zhao
- 1 University of Pittsburgh Asthma Institute at UPMC, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yoshinori Minami
- 1 University of Pittsburgh Asthma Institute at UPMC, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Emily Etling
- 1 University of Pittsburgh Asthma Institute at UPMC, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - John M Coleman
- 2 Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Sarah N Lauder
- 3 Systems Immunity Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Victoria Tyrrell
- 3 Systems Immunity Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Maceler Aldrovandi
- 3 Systems Immunity Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Valerie O'Donnell
- 3 Systems Immunity Research Institute, Cardiff University, Cardiff, United Kingdom
| | | | - Valerian Kagan
- 5 Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Sally Wenzel
- 1 University of Pittsburgh Asthma Institute at UPMC, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
246
|
McKnight CG, Morris SC, Perkins C, Zhu Z, Hildeman DA, Bendelac A, Finkelman FD. NKT cells contribute to basal IL-4 production but are not required to induce experimental asthma. PLoS One 2017; 12:e0188221. [PMID: 29182669 PMCID: PMC5705134 DOI: 10.1371/journal.pone.0188221] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 11/02/2017] [Indexed: 12/27/2022] Open
Abstract
CD1d-deficiency results in a selective deletion of NKT cells in mice that is reported to prevent murine allergic airway disease (AAD). Because we find 2–3 fold lower basal IL-4 production in CD1d- mice than in wild-type (WT) mice, we hypothesized that the contribution made by NKT cells to AAD would depend on the strength of the stimulus used to induce the disease. Consequently, we compared CD1d-deficient mice to WT mice in the development of AAD, using several models of disease induction that differed in the type and dose of allergen, the site of sensitization and the duration of immunization. Surprisingly we found equivalent allergic inflammation and airway disease in WT and CD1d- mice in all models investigated. Consistent with this, NKT cells constituted only ~2% of CD4+ T cells in the lungs of mice with AAD, and IL-4-transcribing NKT cells did not expand with disease induction. Concerned that the congenital absence of NKT cells might have caused a compensatory shift within the immune response, we administered an anti-CD1d monoclonal Ab (mAb) to block NKT function before airway treatments, before or after systemic sensitization to antigen. Such Ab treatment did not affect disease severity. We suggest that the differences reported in the literature regarding the significance of NKT cells in the induction of allergic airway disease may have less to do with the methods used to study the disease and more to do with the animals themselves and/or the facilities used to house them.
Collapse
Affiliation(s)
- Christopher G. McKnight
- Division of Immunology, Allergy and Rheumatology, Department of Medicine, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
- Department of Medicine, Cincinnati Veterans Affairs Medical Center, Cincinnati, Ohio, United States of America
- * E-mail:
| | - Suzanne C. Morris
- Division of Immunology, Allergy and Rheumatology, Department of Medicine, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
- Department of Medicine, Cincinnati Veterans Affairs Medical Center, Cincinnati, Ohio, United States of America
| | - Charles Perkins
- Department of Medicine, Cincinnati Veterans Affairs Medical Center, Cincinnati, Ohio, United States of America
- Division of Immunobiology, Cincinnati Children’s Hospital and Medical Center, Cincinnati, Ohio, United States of America
| | - Zhenqi Zhu
- Division of Immunology, Allergy and Rheumatology, Department of Medicine, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - David A. Hildeman
- Division of Immunobiology, Cincinnati Children’s Hospital and Medical Center, Cincinnati, Ohio, United States of America
| | - Albert Bendelac
- Committee on Immunology, The University of Chicago, Chicago, Illinois, United States of America
- Department of Pathology, The University of Chicago, Chicago, Illinois, United States of America
| | - Fred D. Finkelman
- Division of Immunology, Allergy and Rheumatology, Department of Medicine, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
- Division of Immunobiology, Cincinnati Children’s Hospital and Medical Center, Cincinnati, Ohio, United States of America
| |
Collapse
|
247
|
The Significance of Hypothiocyanite Production via the Pendrin/DUOX/Peroxidase Pathway in the Pathogenesis of Asthma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:1054801. [PMID: 29359006 PMCID: PMC5735670 DOI: 10.1155/2017/1054801] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/28/2017] [Accepted: 10/17/2017] [Indexed: 01/06/2023]
Abstract
Inhaled corticosteroids (ICSs) are used as first-line drugs for asthma, and various novel antiasthma drugs targeting type 2 immune mediators are now under development. However, molecularly targeted drugs are expensive, creating an economic burden on patients. We and others previously found pendrin/SLC26A4 as a downstream molecule of IL-13, a signature type 2 cytokine critical for asthma, and showed its significance in the pathogenesis of asthma using model mice. However, the molecular mechanism of how pendrin causes airway inflammation remained elusive. We have recently demonstrated that hypothiocyanite (OSCN−) produced by the pendrin/DUOX/peroxidase pathway has the potential to cause airway inflammation. Pendrin transports thiocyanate (SCN−) into pulmonary lumens at the apical side. Peroxidases catalyze SCN− and H2O2 generated by DUOX into OSCN−. Low doses of OSCN− activate NF-κB in airway epithelial cells, whereas OSCN− in high doses causes necrosis of the cells, inducing the release of IL-33 and accelerating inflammation. OSCN− production is augmented in asthma model mice and possibly in some asthma patients. Heme peroxidase inhibitors, widely used as antithyroid agents, diminish asthma-like phenotypes in mice, indicating the significance of this pathway. These findings suggest the possibility of repositioning antithyroid agents as antiasthma drugs.
Collapse
|
248
|
Tanino T, Bando T, Komada A, Nojiri Y, Okada Y, Ueda Y, Sakurai E. Hepatic Flavin-Containing Monooxygenase 3 Enzyme Suppressed by Type 1 Allergy-Produced Nitric Oxide. Drug Metab Dispos 2017; 45:1189-1196. [PMID: 28760731 DOI: 10.1124/dmd.117.076570] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 07/21/2017] [Indexed: 02/13/2025] Open
Abstract
Flavin-containing monooxygenases (FMOs) are major mammalian non-cytochrome P450 oxidative enzymes. T helper 2 cell-activated allergic diseases produce excess levels of nitric oxide (NO) that modify the functions of proteins. However, it remains unclear whether allergy-induced NO affects the pharmacokinetics of drugs metabolized by FMOs. This study investigated alterations of hepatic microsomal FMO1 and FMO3 activities in type 1 allergic mice and further examined the interaction of FMO1 and FMO3 with allergy-induced NO. Imipramine (IMP; FMO1 substrate) N-oxidation activity was not altered in allergic mice with high serum NO and immunoglobulin E levels. At 7 days after primary sensitization (PS7) or secondary sensitization (SS7), benzydamine (BDZ; FMO1 and FMO3 substrate) N-oxygenation was significantly decreased to 70% of individual controls. The expression levels of FMO1 and FMO3 proteins were not significantly changed in the sensitized mice. Hepatic inducible NO synthase (iNOS) mRNA level increased 5-fold and 15-fold in PS7 and SS7 mice, respectively, and hepatic tumor necrosis factor-α levels were greatly enhanced. When a selective iNOS inhibitor was injected into allergic mice, serum NO levels and BDZ N-oxygenation activity returned to control levels. NO directly suppressed BDZ N-oxygenation, which was probably related to FMO3-dependent metabolism in comparison with IMP N-oxidation. In hepatic microsomes from PS7 and SS7 mice, the suppression of BDZ N-oxygenation was restored by ascorbate. Therefore, type 1 allergic mice had differentially suppressed FMO3-dependent BDZ N-oxygenation. The suppression of FMO3 metabolism related to reversible S-nitrosyl modifications of iNOS-derived NO. NO is expected to alter FMO3-metabolic capacity-limited drug pharmacokinetics in humans.
Collapse
Affiliation(s)
- Tadatoshi Tanino
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Toru Bando
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Akira Komada
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Yukie Nojiri
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Yuna Okada
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Yukari Ueda
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Eiichi Sakurai
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| |
Collapse
|
249
|
Lee SY, Bae CS, Choi YH, Seo NS, Na CS, Yoo JC, Cho SS, Park DH. Opuntia humifusa modulates morphological changes characteristic of asthma via IL-4 and IL-13 in an asthma murine model. Food Nutr Res 2017; 61:1393307. [PMID: 29151835 PMCID: PMC5678225 DOI: 10.1080/16546628.2017.1393307] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 10/11/2017] [Indexed: 12/02/2022] Open
Abstract
Asthma is a chronic pulmonary disease that affects an estimated 235 million people worldwide, but asthma drugs have many adverse effects. Opuntia humifusa (eastern prickly pear) has been used as a food and traditional medicine worldwide; however, its anti-asthmatic effects have not been reported. We evaluated O. humifusa as a potential therapeutic or preventive component of anti-asthmatic drugs. We divided ovalbumin-sensitized mice into the following groups: normal control, asthma-induced control, dexamethasone-treated group (positive control), 50 mg/kg O. humifusa-treated group, 100 mg/kg O. humifusa-treated group, and 500 mg/kg O. humifusa-treated group. Levels of Th1/Th2/Th17-related cytokines were evaluated using RT-PCR, ELISA, and immunohistochemistry. O. humifusa dose-dependently suppressed the morphological changes typically observed in asthma, such as goblet cell hyperplasia, inflammatory cell infiltration, mucous hypersecretion, and relative basement membrane thickening in the respiratory system. These results may be attributable to regulation of Th1-/Th2-/Th17-related factors, especially interleukin (IL)-4 and IL-13. We conclude that O. humifusa is a potential anti-asthmatic functional food. Abbreviations: O. humifusa: Opuntia humifusa; Th: helper T; RT-PCR: real-time polymerase chain reaction; ELISA: enzyme-linked immunosorbent assay; IL: interleukin; WHO: World Health Organization; IFN-γ: interferon gamma; TNF-α: tumor necrosis factor-alpha; IgE: immunoglobulin E; CD: cluster of differentiation; OVA: ovalbumin; DEX: dexamethasone; BALF: bronchoalveolar fluid; H&E: hematoxylin and eosin; PAS: periodic acid-schiff; PBS: phosphate-buffered saline; BM: basement membrane; cDNA: complementary deoxyribonucleic acid; RNA: ribo nucleic acid; RIPA: radioimmunoprecipitation assay; IHC: immunohistochemistry; HPLC: high-performance liquid chromatography; SD: standard deviation; WBC: white blood cells; APCs: antigen-presenting cells
Collapse
Affiliation(s)
- Soon-Young Lee
- College of Oriental Medicine, Dongshin University, Naju, Jeonnam, Korea
| | - Chun-Sik Bae
- College of Veterinary Medicine, Chonnam National University, GwangjuKorea
| | - Young-Hoon Choi
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan, Jeonnam, Korea
| | - Nam-Sook Seo
- College of Oriental Medicine, Dongshin University, Naju, Jeonnam, Korea
| | - Chang-Su Na
- College of Oriental Medicine, Dongshin University, Naju, Jeonnam, Korea
| | - Jin-Cheol Yoo
- Department of Pharmacy, College of Pharmacy, Chosun University, Gwangju, Korea
| | - Seung Sik Cho
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan, Jeonnam, Korea
| | - Dae-Hun Park
- College of Oriental Medicine, Dongshin University, Naju, Jeonnam, Korea
| |
Collapse
|
250
|
Hemken PM, Jeanblanc NM, Rae T, Brophy SE, Datwyler MJ, Xu Y, Manetz TS, Vainshtein I, Liang M, Xiao X, Chowdhury PS, Chang CY, Streicher K, Greenlees L, Ranade K, Davis GJ. Development and analytical performance of a new ARCHITECT automated dipeptidyl peptidase-4 immunoassay. Pract Lab Med 2017; 9:58-68. [PMID: 29159257 PMCID: PMC5683673 DOI: 10.1016/j.plabm.2017.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 10/10/2017] [Accepted: 10/18/2017] [Indexed: 12/18/2022] Open
Abstract
Background Dipeptidyl peptidase-4 (DPP-4) may be a suitable biomarker to identify people with severe asthma who have greater activation of the interleukin-13 (IL-13) pathway and may therefore benefit from IL-13-targeted treatments. We report the analytical performance of an Investigational Use Only immunoassay and provide data on the biological range of DPP-4 concentrations. Methods We assessed assay performance, utilising analyses of precision, linearity and sensitivity; interference from common endogenous assay interferents, and from asthma and anti-diabetic medications, were also assessed. The assay was used to measure the range of serum DPP-4 concentrations in healthy volunteers and subjects with diabetes and severe, uncontrolled asthma. Results The total precision of DPP-4 concentration measurement (determined using percentage coefficient of variation) was ≤5% over 20 days. Dilution analysis yielded linear results from 30 to 1305 ng/mL; the limit of quantitation was 19.2 ng/mL. No notable endogenous or drug interferences were observed at the expected therapeutic concentration. Median DPP-4 concentrations in healthy volunteers and subjects with asthma or Type 1 diabetes were assessed, with concentrations remaining similar in subjects with diabetes and asthma across different demographics. Conclusion These analyses indicate that the ARCHITECT DPP-4 Immunoassay is a reliable and robust method for measuring serum DPP-4 concentration.
Collapse
Key Words
- Asthma
- Automated immunoassay
- BGG, bovine gamma globulin
- BMI, body mass index
- Biomarker
- CI, confidence interval
- CLSI, Clinical Laboratory Standards Institute
- CV, coefficient of variation
- DPP-4, dipeptidyl peptidase-4
- Dipeptidyl peptidase-4
- HAMA, human anti-mouse antibodies
- IL-13
- IL-13, interleukin-13
- IUO, Investigational Use Only
- Ig, immunoglobulin
- LoB, Limit of Blank
- LoD, Limit of Detection
- LoQ, Limit of Quantitation
- PI, prediction interval
- RF, rheumatoid factor
- RLU, relative light units
- SRT, serum tube-red top
- SST, serum separator tube
- Th2, T-helper-2
- mAb, monoclonal antibody
Collapse
Affiliation(s)
- Philip M Hemken
- Diagnostics Division, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, IL 60064, USA
| | - Nicolette M Jeanblanc
- Diagnostics Division, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, IL 60064, USA
| | - Tracey Rae
- Diagnostics Division, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, IL 60064, USA
| | - Susan E Brophy
- Diagnostics Division, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, IL 60064, USA
| | - Maria J Datwyler
- Diagnostics Division, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, IL 60064, USA
| | - Ying Xu
- Diagnostics Division, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, IL 60064, USA
| | - T Scott Manetz
- Translational Sciences, MedImmune, One MedImmune Way, Gaithersburg, MD 20878, USA
| | - Inna Vainshtein
- Clinical Pharmacology and DMPK, MedImmune, 319 N Bernardo Ave, Mountain View, CA 94043, USA
| | - Meina Liang
- Clinical Pharmacology and DMPK, MedImmune, 319 N Bernardo Ave, Mountain View, CA 94043, USA
| | - Xiaodong Xiao
- Antibody Discovery and Protein Engineering, MedImmune, One MedImmune Way, Gaithersburg, MD 20878, USA
| | - Partha S Chowdhury
- Antibody Discovery and Protein Engineering, MedImmune, One MedImmune Way, Gaithersburg, MD 20878, USA
| | - Chien-Ying Chang
- Antibody Discovery and Protein Engineering, MedImmune, One MedImmune Way, Gaithersburg, MD 20878, USA
| | - Katie Streicher
- Translational Medicine, MedImmune, One MedImmune Way, Gaithersburg, MD 20878, USA
| | - Lydia Greenlees
- Translational Medicine, MedImmune, One MedImmune Way, Gaithersburg, MD 20878, USA
| | - Koustubh Ranade
- Translational Medicine, MedImmune, One MedImmune Way, Gaithersburg, MD 20878, USA
| | - Gerard J Davis
- Diagnostics Division, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, IL 60064, USA
| |
Collapse
|