201
|
Jagadeeswaran P, Cooley BC, Gross PL, Mackman N. Animal Models of Thrombosis From Zebrafish to Nonhuman Primates: Use in the Elucidation of New Pathologic Pathways and the Development of Antithrombotic Drugs. Circ Res 2017; 118:1363-79. [PMID: 27126647 DOI: 10.1161/circresaha.115.306823] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 11/30/2015] [Indexed: 12/23/2022]
Abstract
Thrombosis is a leading cause of morbidity and mortality worldwide. Animal models are used to understand the pathological pathways involved in thrombosis and to test the efficacy and safety of new antithrombotic drugs. In this review, we will first describe the central role a variety of animal models of thrombosis and hemostasis has played in the development of new antiplatelet and anticoagulant drugs. These include the widely used P2Y12 antagonists and the recently developed orally available anticoagulants that directly target factor Xa or thrombin. Next, we will describe the new players, such as polyphosphate, neutrophil extracellular traps, and microparticles, which have been shown to contribute to thrombosis in mouse models, particularly venous thrombosis models. Other mouse studies have demonstrated roles for the factor XIIa and factor XIa in thrombosis. This has spurred the development of strategies to reduce their levels or activities as a new approach for preventing thrombosis. Finally, we will discuss the emergence of zebrafish as a model to study thrombosis and its potential use in the discovery of novel factors involved in thrombosis and hemostasis. Animal models of thrombosis from zebrafish to nonhuman primates are vital in identifying pathological pathways of thrombosis that can be safely targeted with a minimal effect on hemostasis. Future studies should focus on understanding the different triggers of thrombosis and the best drugs to prevent each type of thrombotic event.
Collapse
Affiliation(s)
- Pudur Jagadeeswaran
- From the Department of Biological Sciences, University of North Texas, Denton (P.J.); Department of Pathology and Laboratory Medicine (B.C.C.), and Department of Medicine (N.M.), University of North Carolina, Chapel Hill; and Department of Medicine, McMaster University, Hamilton, Ontario, Canada (P.L.G.).
| | - Brian C Cooley
- From the Department of Biological Sciences, University of North Texas, Denton (P.J.); Department of Pathology and Laboratory Medicine (B.C.C.), and Department of Medicine (N.M.), University of North Carolina, Chapel Hill; and Department of Medicine, McMaster University, Hamilton, Ontario, Canada (P.L.G.)
| | - Peter L Gross
- From the Department of Biological Sciences, University of North Texas, Denton (P.J.); Department of Pathology and Laboratory Medicine (B.C.C.), and Department of Medicine (N.M.), University of North Carolina, Chapel Hill; and Department of Medicine, McMaster University, Hamilton, Ontario, Canada (P.L.G.)
| | - Nigel Mackman
- From the Department of Biological Sciences, University of North Texas, Denton (P.J.); Department of Pathology and Laboratory Medicine (B.C.C.), and Department of Medicine (N.M.), University of North Carolina, Chapel Hill; and Department of Medicine, McMaster University, Hamilton, Ontario, Canada (P.L.G.)
| |
Collapse
|
202
|
Welsh JD, Poventud-Fuentes I, Sampietro S, Diamond SL, Stalker TJ, Brass LF. Hierarchical organization of the hemostatic response to penetrating injuries in the mouse macrovasculature. J Thromb Haemost 2017; 15:526-537. [PMID: 27992950 PMCID: PMC5334252 DOI: 10.1111/jth.13600] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 11/14/2016] [Indexed: 12/27/2022]
Abstract
Essentials Methods were developed to image the hemostatic response in mouse femoral arteries in real time. Penetrating injuries produced thrombi consisting primarily of platelets. Similar to arterioles, a core-shell architecture of platelet activation occurs in the femoral artery. Differences from arterioles included slower platelet activation and reduced thrombin dependence. SUMMARY Background Intravital studies performed in the mouse microcirculation show that hemostatic thrombi formed after penetrating injuries develop a characteristic architecture in which a core of fully activated, densely packed platelets is overlaid with a shell of less activated platelets. Objective Large differences in hemodynamics and vessel wall biology distinguish arteries from arterioles. Here we asked whether these differences affect the hemostatic response and alter the impact of anticoagulants and antiplatelet agents. Methods Approaches previously developed for intravital imaging in the mouse microcirculation were adapted to the femoral artery, enabling real-time fluorescence imaging despite the markedly thicker vessel wall. Results Arterial thrombi initiated by penetrating injuries developed the core-and-shell architecture previously observed in the microcirculation. However, although platelet accumulation was greater in arterial thrombi, the kinetics of platelet activation were slower. Inhibiting platelet ADP P2Y12 receptors destabilized the shell and reduced thrombus size without affecting the core. Inhibiting thrombin with hirudin suppressed fibrin accumulation, but had little impact on thrombus size. Removing the platelet collagen receptor, glycoprotein VI, had no effect. Conclusions These results (i) demonstrate the feasibility of performing high-speed fluorescence imaging in larger vessels and (ii) highlight differences as well as similarities in the hemostatic response in the macro- and microcirculation. Similarities include the overall core-and-shell architecture. Differences include the slower kinetics of platelet activation and a smaller contribution from thrombin, which may be due in part to the greater thickness of the arterial wall and the correspondingly greater separation of tissue factor from the vessel lumen.
Collapse
Affiliation(s)
- John D. Welsh
- Departments of Medicine and Pharmacology, University of Pennsylvania, Philadelphia, PA
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA
| | | | - Sara Sampietro
- Departments of Medicine and Pharmacology, University of Pennsylvania, Philadelphia, PA
| | - Scott L. Diamond
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA
| | - Timothy J. Stalker
- Departments of Medicine and Pharmacology, University of Pennsylvania, Philadelphia, PA
| | - Lawrence F. Brass
- Departments of Medicine and Pharmacology, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
203
|
A Two-phase mixture model of platelet aggregation. MATHEMATICAL MEDICINE AND BIOLOGY-A JOURNAL OF THE IMA 2017; 35:225-256. [DOI: 10.1093/imammb/dqx001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 01/04/2017] [Indexed: 01/07/2023]
|
204
|
Hayes V, Johnston I, Arepally GM, McKenzie SE, Cines DB, Rauova L, Poncz M. Endothelial antigen assembly leads to thrombotic complications in heparin-induced thrombocytopenia. J Clin Invest 2017; 127:1090-1098. [PMID: 28218620 DOI: 10.1172/jci90958] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 12/06/2016] [Indexed: 01/27/2023] Open
Abstract
Heparin-induced thrombocytopenia (HIT) is a prothrombotic disorder initiated by antibodies against complexes between human platelet factor 4 (hPF4) and heparin. A better understanding of the events that initiate the prothrombotic state may improve approaches to antithrombotic management. Here, we visualized thrombus formation in an in vivo murine model and an endothelialized microfluidic system that simulate the pathogenesis of HIT. hPF4 released from platelets predominantly bound to peri-injury endothelium and formed HIT antigenic complexes that were dissociated by heparin. In mice expressing both hPF4+ and human platelet IgG Fc receptor IIA (FcγRIIA), infusion of the HIT-like monoclonal antibody KKO increased fibrin and platelet deposition at sites of injury, followed immediately by antigen formation on proximate endothelial cells. After a few minutes, HIT antigen was detected within the thrombus itself at the interface between the platelet core and the surrounding shell. We observed similar results in the humanized, endothelialized microfluidic system. hPF4 and KKO selectively bound to photochemically injured endothelium at sites where surface glycocalyx was reduced. These studies support the concept that the perithrombus endothelium is the predominant site of HIT antigen assembly. This suggests that disrupting antigen formation along the endothelium or protecting the endothelium may provide a therapeutic opportunity to prevent thrombotic complications of HIT, while sparing systemic hemostatic pathways.
Collapse
|
205
|
Six KR, Devloo R, Van Aelst B, Vandekerckhove P, Feys HB, Compernolle V. A Microfluidic Flow Chamber Model for Platelet Transfusion and Hemostasis Measures Platelet Deposition and Fibrin Formation in Real-time. J Vis Exp 2017. [PMID: 28287584 PMCID: PMC5409263 DOI: 10.3791/55351] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Microfluidic models of hemostasis assess platelet function under conditions of hydrodynamic shear, but in the presence of anticoagulants, this analysis is restricted to platelet deposition only. The intricate relationship between Ca2+-dependent coagulation and platelet function requires careful and controlled recalcification of blood prior to analysis. Our setup uses a Y-shaped mixing channel, which supplies concentrated Ca2+/Mg2+ buffer to flowing blood just prior to perfusion, enabling rapid recalcification without sample stasis. A ten-fold difference in flow velocity between both reservoirs minimizes dilution. The recalcified blood is then perfused in a collagen-coated analysis chamber, and differential labeling permits real-time imaging of both platelet and fibrin deposition using fluorescence video microscopy. The system uses only commercially available tools, increasing the chances of standardization. Reconstitution of thrombocytopenic blood with platelets from banked concentrates furthermore models platelet transfusion, proving its use in this research domain. Exemplary data demonstrated that coagulation onset and fibrin deposition were linearly dependent on the platelet concentration, confirming the relationship between primary and secondary hemostasis in our model. In a timeframe of 16 perfusion min, contact activation did not take place, despite recalcification to normal Ca2+ and Mg2+ levels. When coagulation factor XIIa was inhibited by corn trypsin inhibitor, this time frame was even longer, indicating a considerable dynamic range in which the changes in the procoagulant nature of the platelets can be assessed. Co-immobilization of tissue factor with collagen significantly reduced the time to onset of coagulation, but not its rate. The option to study the tissue factor and/or the contact pathway increases the versatility and utility of the assay.
Collapse
Affiliation(s)
- Katrijn R Six
- Transfusion Research Center, Belgian Red Cross-Flanders; Faculty of Medicine and Health Sciences, Ghent University
| | | | | | - Philippe Vandekerckhove
- Faculty of Medicine and Health Sciences, Ghent University; Blood Service, Belgian Red Cross-Flanders; Department of Public Health and Primary Care, KULeuven - University of Leuven
| | - Hendrik B Feys
- Transfusion Research Center, Belgian Red Cross-Flanders;
| | - Veerle Compernolle
- Transfusion Research Center, Belgian Red Cross-Flanders; Faculty of Medicine and Health Sciences, Ghent University; Blood Service, Belgian Red Cross-Flanders
| |
Collapse
|
206
|
Pujadas-Mestres L, Lopez-Vilchez I, Arellano-Rodrigo E, Reverter JC, Lopez-Farre A, Diaz-Ricart M, Badimon JJ, Escolar G. Differential inhibitory action of apixaban on platelet and fibrin components of forming thrombi: Studies with circulating blood and in a platelet-based model of thrombin generation. PLoS One 2017; 12:e0171486. [PMID: 28192448 PMCID: PMC5305231 DOI: 10.1371/journal.pone.0171486] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 01/20/2017] [Indexed: 12/20/2022] Open
Abstract
Introduction Mechanisms of action of direct oral anticoagulants (DOAC) suggest a potential therapeutic use in the prevention of thrombotic complications in arterial territories. However, effects of DOACs on platelet activation and aggregation have not been explored in detail. We have investigated the effects of apixaban on platelet and fibrin components of thrombus formation under static and flow conditions. Methods We assessed the effects of apixaban (10, 40 and 160 ng/mL) on: 1) platelet deposition and fibrin formation onto a thrombogenic surface, with blood circulating at arterial shear-rates; 2) viscoelastic properties of forming clots, and 3) thrombin generation in a cell-model of coagulation primed by platelets. Results In studies with flowing blood, only the highest concentration of apixaban, equivalent to the therapeutic Cmax, was capable to significantly reduce thrombus formation, fibrin association and platelet-aggregate formation. Apixaban significantly prolonged thromboelastometry parameters, but did not affect clot firmness. Interestingly, results in a platelet-based model of thrombin generation under more static conditions, revealed a dose dependent persistent inhibitory action by apixaban, with concentrations 4 to 16 times below the therapeutic Cmax significantly prolonging kinetic parameters and reducing the total amount of thrombin generated. Conclusions Our studies demonstrate the critical impact of rheological conditions on the antithrombotic effects of apixaban. Studies under flow conditions combined with modified thrombin generation assays could help discriminating concentrations of apixaban that prevent excessive platelet accumulation, from those that deeply impair fibrin formation and may unnecessarily compromise hemostasis.
Collapse
Affiliation(s)
- Lluis Pujadas-Mestres
- Department of Hemotherapy and Hemostasis, Hospital Clinic of Barcelona, Centre of Biomedical Diagnosis (CDB), Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Irene Lopez-Vilchez
- Department of Hemotherapy and Hemostasis, Hospital Clinic of Barcelona, Centre of Biomedical Diagnosis (CDB), Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Eduardo Arellano-Rodrigo
- Department of Hemotherapy and Hemostasis, Hospital Clinic of Barcelona, Centre of Biomedical Diagnosis (CDB), Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Joan Carles Reverter
- Department of Hemotherapy and Hemostasis, Hospital Clinic of Barcelona, Centre of Biomedical Diagnosis (CDB), Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Antonio Lopez-Farre
- Department of Medicine, School of Medicine, Complutense University, Madrid, Spain
| | - Maribel Diaz-Ricart
- Department of Hemotherapy and Hemostasis, Hospital Clinic of Barcelona, Centre of Biomedical Diagnosis (CDB), Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Juan Jose Badimon
- Atherothrombosis Research Unit, Cardiovascular Institute, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Gines Escolar
- Department of Hemotherapy and Hemostasis, Hospital Clinic of Barcelona, Centre of Biomedical Diagnosis (CDB), Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- * E-mail:
| |
Collapse
|
207
|
Ngo ATP, Thierheimer MLD, Babur Ö, Rocheleau AD, Huang T, Pang J, Rigg RA, Mitrugno A, Theodorescu D, Burchard J, Nan X, Demir E, McCarty OJT, Aslan JE. Assessment of roles for the Rho-specific guanine nucleotide dissociation inhibitor Ly-GDI in platelet function: a spatial systems approach. Am J Physiol Cell Physiol 2017; 312:C527-C536. [PMID: 28148498 PMCID: PMC5407014 DOI: 10.1152/ajpcell.00274.2016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 01/25/2017] [Accepted: 01/25/2017] [Indexed: 12/29/2022]
Abstract
On activation at sites of vascular injury, platelets undergo morphological alterations essential to hemostasis via cytoskeletal reorganizations driven by the Rho GTPases Rac1, Cdc42, and RhoA. Here we investigate roles for Rho-specific guanine nucleotide dissociation inhibitor proteins (RhoGDIs) in platelet function. We find that platelets express two RhoGDI family members, RhoGDI and Ly-GDI. Whereas RhoGDI localizes throughout platelets in a granule-like manner, Ly-GDI shows an asymmetric, polarized localization that largely overlaps with Rac1 and Cdc42 as well as microtubules and protein kinase C (PKC) in platelets adherent to fibrinogen. Antibody interference and platelet spreading experiments suggest a specific role for Ly-GDI in platelet function. Intracellular signaling studies based on interactome and pathways analyses also support a regulatory role for Ly-GDI, which is phosphorylated at PKC substrate motifs in a PKC-dependent manner in response to the platelet collagen receptor glycoprotein (GP) VI-specific agonist collagen-related peptide. Additionally, PKC inhibition diffuses the polarized organization of Ly-GDI in spread platelets relative to its colocalization with Rac1 and Cdc42. Together, our results suggest a role for Ly-GDI in the localized regulation of Rho GTPases in platelets and hypothesize a link between the PKC and Rho GTPase signaling systems in platelet function.
Collapse
Affiliation(s)
- Anh T P Ngo
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon
| | - Marisa L D Thierheimer
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon.,School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, Oregon; and
| | - Özgün Babur
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon.,Computational Biology Program, Oregon Health & Science University, Portland, Oregon
| | - Anne D Rocheleau
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon
| | - Tao Huang
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon
| | - Jiaqing Pang
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon
| | - Rachel A Rigg
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon
| | - Annachiara Mitrugno
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon
| | - Dan Theodorescu
- Department of Surgery, Department of Pharmacology, and Comprehensive Cancer Center University of Colorado, Aurora, Colorado
| | - Julja Burchard
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon
| | - Xiaolin Nan
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon
| | - Emek Demir
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon.,Computational Biology Program, Oregon Health & Science University, Portland, Oregon
| | - Owen J T McCarty
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon.,Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, Oregon.,Division of Hematology & Medical Oncology, Oregon Health & Science University, Portland, Oregon
| | - Joseph E Aslan
- Knight Cardiovascular Institute, School of Medicine, Oregon Health & Science University, Portland, Oregon;
| |
Collapse
|
208
|
Myers DR, Qiu Y, Fay ME, Tennenbaum M, Chester D, Cuadrado J, Sakurai Y, Baek J, Tran R, Ciciliano J, Ahn B, Mannino R, Bunting S, Bennett C, Briones M, Fernandez-Nieves A, Smith ML, Brown AC, Sulchek T, Lam WA. Single-platelet nanomechanics measured by high-throughput cytometry. NATURE MATERIALS 2017; 16:230-235. [PMID: 27723740 PMCID: PMC5266633 DOI: 10.1038/nmat4772] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 09/12/2016] [Indexed: 05/20/2023]
Abstract
Haemostasis occurs at sites of vascular injury, where flowing blood forms a clot, a dynamic and heterogeneous fibrin-based biomaterial. Paramount in the clot's capability to stem haemorrhage are its changing mechanical properties, the major drivers of which are the contractile forces exerted by platelets against the fibrin scaffold. However, how platelets transduce microenvironmental cues to mediate contraction and alter clot mechanics is unknown. This is clinically relevant, as overly softened and stiffened clots are associated with bleeding and thrombotic disorders. Here, we report a high-throughput hydrogel-based platelet-contraction cytometer that quantifies single-platelet contraction forces in different clot microenvironments. We also show that platelets, via the Rho/ROCK pathway, synergistically couple mechanical and biochemical inputs to mediate contraction. Moreover, highly contractile platelet subpopulations present in healthy controls are conspicuously absent in a subset of patients with undiagnosed bleeding disorders, and therefore may function as a clinical diagnostic biophysical biomarker.
Collapse
Affiliation(s)
- David R. Myers
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Aflac Cancer Center and Blood Disorders Service of Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA 30322
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, 30332
- Winship Cancer Institute of Emory University, Atlanta, GA, 30322
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332
- Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332
| | - Yongzhi Qiu
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Aflac Cancer Center and Blood Disorders Service of Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA 30322
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, 30332
- Winship Cancer Institute of Emory University, Atlanta, GA, 30322
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332
- Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332
| | - Meredith E. Fay
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Aflac Cancer Center and Blood Disorders Service of Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA 30322
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, 30332
- Winship Cancer Institute of Emory University, Atlanta, GA, 30322
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332
- Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332
| | | | - Daniel Chester
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, NC 27695
- Comparative Medicine Institute at North Carolina State University, Raleigh, NC 27695
| | - Jonas Cuadrado
- School of Physics, Georgia Institute of Technology, Atlanta, GA, 30332
| | - Yumiko Sakurai
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Aflac Cancer Center and Blood Disorders Service of Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA 30322
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, 30332
- Winship Cancer Institute of Emory University, Atlanta, GA, 30322
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332
- Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332
| | - Jong Baek
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Aflac Cancer Center and Blood Disorders Service of Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA 30322
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, 30332
- Winship Cancer Institute of Emory University, Atlanta, GA, 30322
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332
- Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332
| | - Reginald Tran
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Aflac Cancer Center and Blood Disorders Service of Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA 30322
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, 30332
- Winship Cancer Institute of Emory University, Atlanta, GA, 30322
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332
- Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332
| | - Jordan Ciciliano
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Aflac Cancer Center and Blood Disorders Service of Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA 30322
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, 30332
- Winship Cancer Institute of Emory University, Atlanta, GA, 30322
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332
- Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332
| | - Byungwook Ahn
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Aflac Cancer Center and Blood Disorders Service of Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA 30322
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, 30332
- Winship Cancer Institute of Emory University, Atlanta, GA, 30322
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332
- Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332
| | - Robert Mannino
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Aflac Cancer Center and Blood Disorders Service of Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA 30322
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, 30332
- Winship Cancer Institute of Emory University, Atlanta, GA, 30322
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332
- Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332
| | - Silvia Bunting
- Department of Pathology, Emory University School of Medicine, Atlanta, GA 30322
| | - Carolyn Bennett
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Aflac Cancer Center and Blood Disorders Service of Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA 30322
| | - Michael Briones
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Aflac Cancer Center and Blood Disorders Service of Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA 30322
| | - Alberto Fernandez-Nieves
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332
- School of Physics, Georgia Institute of Technology, Atlanta, GA, 30332
| | - Michael L. Smith
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215
| | - Ashley C. Brown
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, NC 27695
- Comparative Medicine Institute at North Carolina State University, Raleigh, NC 27695
| | - Todd Sulchek
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332
| | - Wilbur A. Lam
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Aflac Cancer Center and Blood Disorders Service of Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA 30322
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, 30332
- Winship Cancer Institute of Emory University, Atlanta, GA, 30322
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332
- Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332
| |
Collapse
|
209
|
Li R, Grosser T, Diamond SL. Microfluidic whole blood testing of platelet response to pharmacological agents. Platelets 2017; 28:457-462. [PMID: 28102731 DOI: 10.1080/09537104.2016.1268254] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Platelets present a number of intracellular and transmembrane targets subject to pharmacological modulation, either for cardiovascular disease reduction or as an unintended drug response. Microfluidic devices allow human blood to clot on a defined surface under controlled hemodynamic and pharmacological conditions. The potencies of a number of antiplatelet and anticancer drugs have been tested with respect to platelet deposition on collagen under flow. Inhibitors of cyclooxygenase-1 (COX-1) reduce platelet deposition, either when added ex vivo to blood or ingested orally by patients prior to testing. Some individuals display a functional "aspirin-insensitivity" in microfluidic assay. When certain nonsteroidal anti-inflammatory drugs (NSAIDs) are taken orally, they block COX-1 acetylation by aspirin with concomitant reduction of aspirin efficacy against platelets in microfluidic assay. Both P2Y1 and P2Y12 inhibitors reduce platelet deposition under flow, as do NO donors and iloprost that target the guanylate cyclase and the prostacyclin receptor, respectively. In a microfluidic assay of 37 kinase inhibitors, dasatinib had potent antiplatelet activity, while bosutinib was less potent. Dasatinib and bosutinib have known profiles against numerous kinases, revealing overlapping and nonoverlapping activities relevant to their unique actions against platelets. Also, dasatinib caused a marked and specific inhibition of GPVI signaling induced by convulxin, consistent with a dasatinib-associated bleeding risk. Microfluidic devices facilitate drug library screening, dose-response testing, and drug-drug interaction studies. Kinase inhibitors developed as anticancer agents may present antiplatelet activities that are detectable by microfluidic assay and potentially linked to bleeding risks.
Collapse
Affiliation(s)
- Ruizhi Li
- a Institute for Medicine and Engineering, University of Pennsylvania , Philadelphia , PA , USA
| | - Tilo Grosser
- b Institute for Translational Medicine and Therapeutics, University of Pennsylvania , Philadelphia , PA , USA
| | - Scott L Diamond
- a Institute for Medicine and Engineering, University of Pennsylvania , Philadelphia , PA , USA.,b Institute for Translational Medicine and Therapeutics, University of Pennsylvania , Philadelphia , PA , USA
| |
Collapse
|
210
|
Brass LF, Diamond SL, Stalker TJ. Platelets and hemostasis: a new perspective on an old subject. Blood Adv 2016; 1:5-9. [PMID: 29296690 PMCID: PMC5744048 DOI: 10.1182/bloodadvances.2016000059] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 10/03/2016] [Indexed: 01/20/2023] Open
Abstract
Publisher's Note: This article has a companion Counterpoint by Kapur and Semple. Publisher's Note: Join in the discussion of these articles at Blood Advances Community Conversations.
Collapse
Affiliation(s)
- Lawrence F Brass
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, and
| | - Scott L Diamond
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA
| | - Timothy J Stalker
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, and
| |
Collapse
|
211
|
Leunissen TC, Wisman PP, van Holten TC, de Groot PG, Korporaal SJ, Koekman AC, Moll FL, Teraa M, Verhaar MC, de Borst GJ, Urbanus RT, Roest M. The effect of P2Y12 inhibition on platelet activation assessed with aggregation- and flow cytometry-based assays. Platelets 2016; 28:567-575. [PMID: 27885904 DOI: 10.1080/09537104.2016.1246713] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Patients on P2Y12 inhibitors may still develop thrombosis or bleeding complications. Tailored antiplatelet therapy, based on platelet reactivity testing, might reduce these complications. Several tests have been used, but failed to show a benefit of tailored antiplatelet therapy. This could be due to the narrowness of current platelet reactivity tests, which are limited to analysis of platelet aggregation after stimulation of the adenosine diphosphate (ADP)-pathway. However, the response to ADP does not necessarily reflect the effect of P2Y12 inhibition on platelet function in vivo. Therefore, we investigated whether measuring platelet reactivity toward other physiologically relevant agonists could provide more insight in the efficacy of P2Y12 inhibitors. The effect of in vitro and in vivo P2Y12 inhibition on αIIbβ3-activation, P-selectin and CD63-expression, aggregate formation, release of alpha, and dense granules content was assessed after stimulation of different platelet activation pathways. Platelet reactivity measured with flow cytometry in 72 patients on P2Y12 inhibitors was compared to VerifyNow results. P2Y12 inhibitors caused strongly attenuated platelet fibrinogen binding after stimulation with peptide agonists for protease activated receptor (PAR)-1 and -4, or glycoprotein VI ligand crosslinked collagen-related peptide (CRP-xl), while aggregation was normal at high agonist concentration. P2Y12 inhibitors decreased PAR-agonist and CRP-induced dense granule secretion, but not alpha granule secretion. A proportion of P2Y12-inhibitor responsive patients according to VerifyNow, displayed normal fibrinogen binding assessed with flow cytometry after stimulation with PAR-agonists or CRP despite full inhibition of the response to ADP, indicating suboptimal platelet inhibition. Concluding, measurement of platelet fibrinogen binding with flow cytometry after stimulation of thrombin- or collagen receptors in addition to ADP response identifies different patients as nonresponders to P2Y12 inhibitors, compared to only ADP-induced aggregation-based assays. Future studies should investigate the value of both assays for monitoring on-treatment platelet reactivity.
Collapse
Affiliation(s)
- Tesse C Leunissen
- a Department of Clinical Chemistry and Hematology , University Medical Center Utrecht , The Netherlands.,b Department of Vascular Surgery , University Medical Center Utrecht , The Netherlands
| | - Peter Paul Wisman
- a Department of Clinical Chemistry and Hematology , University Medical Center Utrecht , The Netherlands.,b Department of Vascular Surgery , University Medical Center Utrecht , The Netherlands
| | - Thijs C van Holten
- a Department of Clinical Chemistry and Hematology , University Medical Center Utrecht , The Netherlands
| | - Philip G de Groot
- a Department of Clinical Chemistry and Hematology , University Medical Center Utrecht , The Netherlands
| | - Suzanne J Korporaal
- a Department of Clinical Chemistry and Hematology , University Medical Center Utrecht , The Netherlands
| | - Arnold C Koekman
- a Department of Clinical Chemistry and Hematology , University Medical Center Utrecht , The Netherlands
| | - Frans L Moll
- b Department of Vascular Surgery , University Medical Center Utrecht , The Netherlands
| | - Martin Teraa
- b Department of Vascular Surgery , University Medical Center Utrecht , The Netherlands.,c Department of Nephrology and Hypertension , University Medical Center Utrecht , The Netherlands
| | - Marianne C Verhaar
- c Department of Nephrology and Hypertension , University Medical Center Utrecht , The Netherlands
| | - Gert Jan de Borst
- b Department of Vascular Surgery , University Medical Center Utrecht , The Netherlands
| | - Rolf T Urbanus
- a Department of Clinical Chemistry and Hematology , University Medical Center Utrecht , The Netherlands
| | - Mark Roest
- a Department of Clinical Chemistry and Hematology , University Medical Center Utrecht , The Netherlands
| |
Collapse
|
212
|
Zhu S, Herbig BA, Li R, Colace TV, Muthard RW, Neeves KB, Diamond SL. In microfluidico: Recreating in vivo hemodynamics using miniaturized devices. Biorheology 2016; 52:303-18. [PMID: 26600269 DOI: 10.3233/bir-15065] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Microfluidic devices create precisely controlled reactive blood flows and typically involve: (i) validated anticoagulation/pharmacology protocols, (ii) defined reactive surfaces, (iii) defined flow-transport regimes, and (iv) optical imaging. An 8-channel device can be run at constant flow rate or constant pressure drop for blood perfusion over a patterned collagen, collagen/kaolin, or collagen/tissue factor (TF) to measure platelet, thrombin, and fibrin dynamics during clot growth. A membrane-flow device delivers a constant flux of platelet agonists or coagulation enzymes into flowing blood. A trifurcated device sheaths a central blood flow on both sides with buffer, an ideal approach for on-chip recalcification of citrated blood or drug delivery. A side-view device allows clotting on a porous collagen/TF plug at constant pressure differential across the developing clot. The core-shell architecture of clots made in mouse models can be replicated in this device using human blood. For pathological flows, a stenosis device achieves shear rates of >100,000 s(-1) to drive plasma von Willebrand factor (VWF) to form thick long fibers on collagen. Similarly, a micropost-impingement device creates extreme elongational and shear flows for VWF fiber formation without collagen. Overall, microfluidics are ideal for studies of clotting, bleeding, fibrin polymerization/fibrinolysis, cell/clot mechanics, adhesion, mechanobiology, and reaction-transport dynamics.
Collapse
Affiliation(s)
- Shu Zhu
- Institute for Medicine and Engineering, Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Bradley A Herbig
- Institute for Medicine and Engineering, Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Ruizhi Li
- Institute for Medicine and Engineering, Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Thomas V Colace
- Institute for Medicine and Engineering, Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Ryan W Muthard
- Institute for Medicine and Engineering, Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Keith B Neeves
- Department of Chemical and Biomolecular Engineering, Colorado School of Mines, Golden, CO, USA
| | - Scott L Diamond
- Institute for Medicine and Engineering, Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
213
|
Elevated d-Dimer Is Not Predictive of Symptomatic Deep Venous Thrombosis After Total Joint Arthroplasty. J Arthroplasty 2016; 31:2269-72. [PMID: 27062350 DOI: 10.1016/j.arth.2016.02.059] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 02/25/2016] [Accepted: 02/26/2016] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Serum d-dimer is a common screening test for symptomatic deep venous thrombosis (DVT) after total joint arthroplasty. This study characterized the longitudinal resolution of d-dimer measurements after total hip and knee arthroplasty (THA/TKA) over a 6-week period. The authors hypothesized that serum d-dimer would not return to baseline or be below the institutional threshold for a positive test at 6 weeks after uncomplicated total joint arthroplasty, suggesting that quantitative d-dimer has limited clinical utility for postoperative DVT screening. METHODS An institutional review board-approved retrospective cohort study was conducted with consecutive patients between January 2013 and June 2015. A total of 177 adult patients aged 40-88 years who underwent a primary hip or knee arthroplasty with a Charlson Comorbidity Index <3 were included in the study. Serum d-dimer was measured at preoperative, perioperative, and postoperative 2- and 6-week time points. RESULTS d-dimer measurements peaked 2 weeks postoperatively for both TKA and THA. At the 6-week time point, the peak serum d-dimer measurement resolved by 54.3% and 76.6% for TKA and THA, respectively. At 6 weeks after operation, 92% of THA patient and 100% of TKA patients had serum d-dimer measurements higher than the institutional threshold (0.40 μg/mL) for a "positive" quantitative test. No symptomatic DVTs were reported for the THA and TKA cohorts during the study period. CONCLUSION The results suggest that serum d-dimer is an ineffective screening test for the diagnosis of symptomatic DVT in the acute postoperative period. The authors propose that extravascular fibrinolysis, a process essential for wound healing, has a crucial role in the prolonged elevation of serum d-dimer in the postoperative period.
Collapse
|
214
|
Polyphosphate colocalizes with factor XII on platelet-bound fibrin and augments its plasminogen activator activity. Blood 2016; 128:2834-2845. [PMID: 27694320 DOI: 10.1182/blood-2015-10-673285] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 09/25/2016] [Indexed: 12/21/2022] Open
Abstract
Activated factor XII (FXIIa) has plasminogen activator capacity but its relative contribution to fibrinolysis is considered marginal compared with urokinase and tissue plasminogen activator. Polyphosphate (polyP) is released from activated platelets and mediates FXII activation. Here, we investigate the contribution of polyP to the plasminogen activator function of αFXIIa. We show that both polyP70, of the chain length found in platelets (60-100 mer), and platelet-derived polyP significantly augment the plasminogen activation capacity of αFXIIa. PolyP70 stimulated the autoactivation of FXII and subsequent plasminogen activation, indicating that once activated, αFXIIa remains bound to polyP70 Indeed, complex formation between polyP70 and αFXIIa provides protection against autodegradation. Plasminogen activation by βFXIIa was minimal and not enhanced by polyP70, highlighting the importance of the anion binding site. PolyP70 did not modulate plasmin activity but stimulated activation of Glu and Lys forms of plasminogen by αFXIIa. Accordingly, polyP70 was found to bind to FXII, αFXIIa, and plasminogen, but not βFXIIa. Fibrin and polyP70 acted synergistically to enhance αFXIIa-mediated plasminogen activation. The plasminogen activator activity of the αFXIIa-polyP70 complex was modulated by C1 inhibitor and histidine-rich glycoprotein, but not plasminogen activator inhibitors 1 and 2. Platelet polyP and FXII were found to colocalize on the activated platelet membrane in a fibrin-dependent manner and decorated fibrin strands extending from platelet aggregates. We show that in the presence of platelet polyP and the downstream substrate fibrin, αFXIIa is a highly efficient and favorable plasminogen activator. Our data are the first to document a profibrinolytic function of platelet polyP.
Collapse
|
215
|
Zhu S, Lu Y, Sinno T, Diamond SL. Dynamics of Thrombin Generation and Flux from Clots during Whole Human Blood Flow over Collagen/Tissue Factor Surfaces. J Biol Chem 2016; 291:23027-23035. [PMID: 27605669 DOI: 10.1074/jbc.m116.754671] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Indexed: 12/20/2022] Open
Abstract
Coagulation kinetics are well established for purified blood proteases or human plasma clotting isotropically. However, less is known about thrombin generation kinetics and transport within blood clots formed under hemodynamic flow. Using microfluidic perfusion (wall shear rate, 200 s-1) of corn trypsin inhibitor-treated whole blood over a 250-μm long patch of type I fibrillar collagen/lipidated tissue factor (TF; ∼1 TF molecule/μm2), we measured thrombin released from clots using thrombin-antithrombin immunoassay. The majority (>85%) of generated thrombin was captured by intrathrombus fibrin as thrombin-antithrombin was largely undetectable in the effluent unless Gly-Pro-Arg-Pro (GPRP) was added to block fibrin polymerization. With GPRP present, the flux of thrombin increased to ∼0.5 × 10-12 nmol/μm2-s over the first 500 s of perfusion and then further increased by ∼2-3-fold over the next 300 s. The increased thrombin flux after 500 s was blocked by anti-FXIa antibody (O1A6), consistent with thrombin-feedback activation of FXI. Over the first 500 s, ∼92,000 molecules of thrombin were generated per surface TF molecule for the 250-μm-long coating. A single layer of platelets (obtained with αIIbβ3 antagonism preventing continued platelet deposition) was largely sufficient for thrombin production. Also, the overall thrombin-generating potential of a 1000-μm-long coating became less efficient on a per μm2 basis, likely due to distal boundary layer depletion of platelets. Overall, thrombin is robustly generated within clots by the extrinsic pathway followed by late-stage FXIa contributions, with fibrin localizing thrombin via its antithrombin-I activity as a potentially self-limiting hemostatic mechanism.
Collapse
Affiliation(s)
- Shu Zhu
- From the Department of Chemical and Biomolecular Engineering, Institute of Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Yichen Lu
- From the Department of Chemical and Biomolecular Engineering, Institute of Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Talid Sinno
- From the Department of Chemical and Biomolecular Engineering, Institute of Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Scott L Diamond
- From the Department of Chemical and Biomolecular Engineering, Institute of Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
216
|
Wang Y, Ni H. Fibronectin maintains the balance between hemostasis and thrombosis. Cell Mol Life Sci 2016; 73:3265-77. [PMID: 27098513 PMCID: PMC11108312 DOI: 10.1007/s00018-016-2225-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 03/27/2016] [Accepted: 04/12/2016] [Indexed: 11/29/2022]
Abstract
Fibronectin is a dimeric protein widely distributed in solid tissues and blood. This major extracellular matrix protein is indispensable for embryogenesis and plays crucial roles in many physiological and pathological processes. Fibronectin pre-mRNA undergoes alternative splicing to generate over 20 splicing variants, which are categorized as either plasma fibronectin (pFn) or cellular fibronectin (cFn). All fibronectin variants contain integrin binding motifs, as well as N-terminus collagen and fibrin binding motifs. With motifs that can be recognized by platelet integrins and coagulation factors, fibronectin, especially pFn, has long been suspected to be involved in hemostasis and thrombosis, but the exact function of fibronectin in these processes is controversial. The advances made using intravital microscopy models and fibronectin deficient and mutant mice have greatly facilitated the direct investigation of fibronectin function in vivo. Recent studies revealed that pFn is a vital hemostatic factor that is especially crucial for hemostasis in both genetic and anticoagulant-induced deficiencies of fibrin formation. pFn may also be an important self-limiting regulator to prevent hemorrhage as well as excessive thrombus formation and vessel occlusion. In addition to pFn, cFn is found to be prothrombotic and may contribute to thrombotic complications in various diseases. Further investigations of the role of pFn and cFn in thrombotic and hemorrhagic diseases may provide insights into development of novel therapeutic strategies (e.g., pFn transfusion) for the maintenance of the fine balance between hemostasis and thrombosis.
Collapse
Affiliation(s)
- Yiming Wang
- Room 420, LKSKI-Keenan Research Centre for Biomedical Science, Department of Laboratory Medicine, St. Michael's Hospital, 209 Victoria Street, Toronto, ON, M5B 1W8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Canadian Blood Services, Toronto, ON, Canada
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada
| | - Heyu Ni
- Room 420, LKSKI-Keenan Research Centre for Biomedical Science, Department of Laboratory Medicine, St. Michael's Hospital, 209 Victoria Street, Toronto, ON, M5B 1W8, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
- Canadian Blood Services, Toronto, ON, Canada.
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada.
- Department of Physiology, University of Toronto, Toronto, ON, Canada.
- Department of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
217
|
Platelets stop us leaking. Blood 2016; 127:1528-9. [PMID: 27013214 DOI: 10.1182/blood-2016-01-692186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this issue of Blood, Welsh and colleagues determine how platelet thrombi limit the loss of plasma-borne proteins from the microvasculature.
Collapse
|
218
|
Zhu S, Tomaiuolo M, Diamond SL. Minimum wound size for clotting: flowing blood coagulates on a single collagen fiber presenting tissue factor and von Willebrand factor. Integr Biol (Camb) 2016; 8:813-20. [PMID: 27339024 PMCID: PMC4980166 DOI: 10.1039/c6ib00077k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
It is unknown if a lower size limit exists for human blood coagulation under flow over physiological vessel wall triggers as small as a single collagen fiber. Prior determinations of the smallest sized surface stimuli necessary for clotting of human blood, defined as the patch size threshold, have not deployed whole blood, hemodynamic flow, and platelet adhesive stimuli. For whole blood perfused in microfluidic devices, we report that steady venous flow (wall shear rate, 100 s(-1)) was sufficient to drive platelet deposition on 20 micron long zones of collagen fibers or on a single fiber. With tissue factor (TF)-coated collagen, flowing blood generated robust platelet deposits, platelet-localized thrombin, and fibrin on a single collagen fiber, thus demonstrating the absence of a physiological patch size threshold under venous flow. In contrast, at arterial wall shear rate (1000 s(-1)) with TF present, essentially no platelet or fibrin deposition occurred on 20 micron collagen zones or on a single collagen fiber, demonstrating a patch threshold, which was overcome by pre-coating the collagen with von Willebrand factor (vWF). For venous flows, human blood can clot on one of the smallest biological units of a single collagen fiber presenting TF. For arterial flows, vWF together with TF allows human blood to generate thrombin and fibrin on a patch stimulus as limited as a single collagen fiber. vWF-dependent platelet adhesion represents a particle-based sensing mechanism of micron-scale stimuli that then allows amplification of the molecular components of TF-driven thrombin and fibrin production under arterial flow.
Collapse
Affiliation(s)
- Shu Zhu
- Institute for Medicine and Engineering, University of Pennsylvania, 1024 Vagelos Research Laboratories, Philadelphia, PA 19104, USA.
| | | | | |
Collapse
|
219
|
Eneman B, Levtchenko E, van den Heuvel B, Van Geet C, Freson K. Platelet abnormalities in nephrotic syndrome. Pediatr Nephrol 2016; 31:1267-79. [PMID: 26267676 DOI: 10.1007/s00467-015-3173-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 07/03/2015] [Accepted: 07/03/2015] [Indexed: 01/08/2023]
Abstract
Nephrotic syndrome (NS) is a common kidney disease associated with a significantly increased risk of thrombotic events. Alterations in plasma levels of pro- and anti-coagulant factors are involved in the pathophysiology of venous thrombosis in NS. However, the fact that the risk of both venous and arterial thrombosis is elevated in NS points to an additional role for blood platelets. Increased platelet counts and platelet hyperactivity have been observed in nephrotic children. Platelet hyperaggregability, increased release of active substances, and elevated surface expression of activation-dependent platelet markers have been documented. The mechanisms underlying those platelet alterations are multifactorial and are probably due to changes in plasma levels of platelet-interfering proteins and lipid changes, as a consequence of nephrosis. The causal relationship between platelet alterations seen in NS and the occurrence of thromboembolic phenomena remains unclear. Moreover, the efficiency of prophylactic treatment using antiplatelet agents for the prevention of thrombotic complications in nephrotic patients is also unknown. Thus, antiplatelet medication is currently not generally recommended for routine prophylactic therapy.
Collapse
Affiliation(s)
- Benedicte Eneman
- Pediatric Nephrology, Department of Pediatrics, University hospital of Leuven, Leuven, Belgium.
- Laboratory of Pediatric Nephrology, Department of Development & Regeneration, KU Leuven, Leuven, Belgium.
| | - Elena Levtchenko
- Pediatric Nephrology, Department of Pediatrics, University hospital of Leuven, Leuven, Belgium
- Laboratory of Pediatric Nephrology, Department of Development & Regeneration, KU Leuven, Leuven, Belgium
| | - Bert van den Heuvel
- Laboratory of Pediatric Nephrology, Department of Development & Regeneration, KU Leuven, Leuven, Belgium
| | - Chris Van Geet
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium
| | - Kathleen Freson
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium
| |
Collapse
|
220
|
Coagulation factors bound to procoagulant platelets concentrate in cap structures to promote clotting. Blood 2016; 128:1745-55. [PMID: 27432876 DOI: 10.1182/blood-2016-02-696898] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 07/07/2016] [Indexed: 12/14/2022] Open
Abstract
Binding of coagulation factors to phosphatidylserine (PS)-exposing procoagulant-activated platelets followed by formation of the membrane-dependent enzyme complexes is critical for blood coagulation. Procoagulant platelets formed upon strong platelet stimulation, usually with thrombin plus collagen, are large "balloons" with a small (∼1 μm radius) "cap"-like convex region that is enriched with adhesive proteins. Spatial distribution of blood coagulation factors on the surface of procoagulant platelets was investigated using confocal microscopy. All of them, including factors IXa (FIXa), FXa/FX, FVa, FVIII, prothrombin, and PS-sensitive marker Annexin V were distributed nonhomogeneously: they were primarily localized in the "cap," where their mean concentration was by at least an order of magnitude, higher than on the "balloon." Assembly of intrinsic tenase on liposomes with various PS densities while keeping the PS content constant demonstrated that such enrichment can accelerate this reaction by 2 orders of magnitude. The mechanisms of such acceleration were investigated using a 3-dimensional computer simulation model of intrinsic tenase based on these data. Transmission electron microscopy and focal ion beam-scanning electron microscopy with Annexin V immunogold-labeling revealed a complex organization of the "caps." In platelet thrombi formed in whole blood on collagen under arterial shear conditions, ubiquitous "caps" with increased Annexin V, FX, and FXa binding were observed, indicating relevance of this mechanism for surface-attached platelets under physiological flow. These results reveal an essential heterogeneity in the surface distribution of major coagulation factors on the surface of procoagulant platelets and suggest its importance in promoting membrane-dependent coagulation reactions.
Collapse
|
221
|
Piatt R, Paul DS, Lee RH, McKenzie SE, Parise LV, Cowley DO, Cooley BC, Bergmeier W. Mice Expressing Low Levels of CalDAG-GEFI Exhibit Markedly Impaired Platelet Activation With Minor Impact on Hemostasis. Arterioscler Thromb Vasc Biol 2016; 36:1838-46. [PMID: 27417588 DOI: 10.1161/atvbaha.116.307874] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 07/05/2016] [Indexed: 12/27/2022]
Abstract
OBJECTIVE The tight regulation of platelet adhesiveness, mediated by the αIIbβ3 integrin, is critical for hemostasis and prevention of thrombosis. We recently demonstrated that integrin affinity in platelets is controlled by the guanine nucleotide exchange factor, CalDAG-GEFI (CD-GEFI), and its target, RAP1. In this study, we investigated whether low-level expression of CD-GEFI leads to protection from thrombosis without pathological bleeding in mice. APPROACH AND RESULTS Cdg1(low) mice were generated by knockin of human CD-GEFI cDNA into the mouse Cdg1 locus. CD-GEFI expression in platelets from Cdg1(low) mice was reduced by ≈90% when compared with controls. Activation of RAP1 and αIIbβ3 was abolished at low agonist concentrations and partially inhibited at high agonist concentrations in Cdg1(low) platelets. Consistently, the aggregation response of Cdg1(low) platelets was weaker than that of wild-type platelets, but more efficient than that observed in Cdg1(-/-) platelets. Importantly, Cdg1(low) mice were strongly protected from arterial and immune complex-mediated thrombosis, with only minimal impact on primary hemostasis. CONCLUSIONS Together, our studies suggest the partial inhibition of CD-GEFI function as a powerful new approach to safely prevent thrombotic complications.
Collapse
Affiliation(s)
- Raymond Piatt
- From the McAllister Heart Institute, University of North Carolina, Chapel Hill (R.P., D.S.P., R.H.L., W.B.); Cardeza Foundation for Hematological Research, Department of Medicine, Thomas Jefferson University, Philadelphia, PA (S.E.M.); Department of Biochemistry and Biophysics (L.V.P., W.B.), Animal Models Core (D.O.C.), and Rodent Advanced Surgical Core (B.C.C.), University of North Carolina at Chapel Hill
| | - David S Paul
- From the McAllister Heart Institute, University of North Carolina, Chapel Hill (R.P., D.S.P., R.H.L., W.B.); Cardeza Foundation for Hematological Research, Department of Medicine, Thomas Jefferson University, Philadelphia, PA (S.E.M.); Department of Biochemistry and Biophysics (L.V.P., W.B.), Animal Models Core (D.O.C.), and Rodent Advanced Surgical Core (B.C.C.), University of North Carolina at Chapel Hill
| | - Robert H Lee
- From the McAllister Heart Institute, University of North Carolina, Chapel Hill (R.P., D.S.P., R.H.L., W.B.); Cardeza Foundation for Hematological Research, Department of Medicine, Thomas Jefferson University, Philadelphia, PA (S.E.M.); Department of Biochemistry and Biophysics (L.V.P., W.B.), Animal Models Core (D.O.C.), and Rodent Advanced Surgical Core (B.C.C.), University of North Carolina at Chapel Hill
| | - Steven E McKenzie
- From the McAllister Heart Institute, University of North Carolina, Chapel Hill (R.P., D.S.P., R.H.L., W.B.); Cardeza Foundation for Hematological Research, Department of Medicine, Thomas Jefferson University, Philadelphia, PA (S.E.M.); Department of Biochemistry and Biophysics (L.V.P., W.B.), Animal Models Core (D.O.C.), and Rodent Advanced Surgical Core (B.C.C.), University of North Carolina at Chapel Hill
| | - Leslie V Parise
- From the McAllister Heart Institute, University of North Carolina, Chapel Hill (R.P., D.S.P., R.H.L., W.B.); Cardeza Foundation for Hematological Research, Department of Medicine, Thomas Jefferson University, Philadelphia, PA (S.E.M.); Department of Biochemistry and Biophysics (L.V.P., W.B.), Animal Models Core (D.O.C.), and Rodent Advanced Surgical Core (B.C.C.), University of North Carolina at Chapel Hill
| | - Dale O Cowley
- From the McAllister Heart Institute, University of North Carolina, Chapel Hill (R.P., D.S.P., R.H.L., W.B.); Cardeza Foundation for Hematological Research, Department of Medicine, Thomas Jefferson University, Philadelphia, PA (S.E.M.); Department of Biochemistry and Biophysics (L.V.P., W.B.), Animal Models Core (D.O.C.), and Rodent Advanced Surgical Core (B.C.C.), University of North Carolina at Chapel Hill
| | - Brian C Cooley
- From the McAllister Heart Institute, University of North Carolina, Chapel Hill (R.P., D.S.P., R.H.L., W.B.); Cardeza Foundation for Hematological Research, Department of Medicine, Thomas Jefferson University, Philadelphia, PA (S.E.M.); Department of Biochemistry and Biophysics (L.V.P., W.B.), Animal Models Core (D.O.C.), and Rodent Advanced Surgical Core (B.C.C.), University of North Carolina at Chapel Hill
| | - Wolfgang Bergmeier
- From the McAllister Heart Institute, University of North Carolina, Chapel Hill (R.P., D.S.P., R.H.L., W.B.); Cardeza Foundation for Hematological Research, Department of Medicine, Thomas Jefferson University, Philadelphia, PA (S.E.M.); Department of Biochemistry and Biophysics (L.V.P., W.B.), Animal Models Core (D.O.C.), and Rodent Advanced Surgical Core (B.C.C.), University of North Carolina at Chapel Hill.
| |
Collapse
|
222
|
Abstract
INTRODUCTION Despite advances in antiplatelet therapy, the optimum antithrombotic regimen during percutaneous coronary intervention (PCI) remains to be determined. Cangrelor is an intravenous, reversibly-binding platelet P2Y12 receptor antagonist with ultra-rapid onset and offset of action that is approved in Europe and United States for use in patients undergoing PCI. This article describes the background for the development of cangrelor, the biology, pharmacology and clinical evidence supporting its use, and its likely position in the future. AREAS COVERED The role of the platelet P2Y12 receptor in platelet biology and the implications of this for atherothrombotic disease are described. Currently unmet needs in antithrombotic management during and after PCI are discussed followed by a description of the chemistry, pharmacokinetics and pharmacodynamics of cangrelor, including its interactions with oral thienopyridines. Subsequently, the clinical trial evidence supporting its adoption into clinical practice is reviewed, including the evidence indicating its superiority over a strategy based on clopidogrel treatment alone. Expert commentary: The current status and future potential of cangrelor is discussed, including a view of its place in current clinical practice.
Collapse
Affiliation(s)
- Robert F Storey
- a Department of Infection, Immunity and Cardiovascular Disease , University of Sheffield , Sheffield , UK
| | - Akanksha Sinha
- a Department of Infection, Immunity and Cardiovascular Disease , University of Sheffield , Sheffield , UK
| |
Collapse
|
223
|
Advances in the understanding of trauma-induced coagulopathy. Blood 2016; 128:1043-9. [PMID: 27381903 DOI: 10.1182/blood-2016-01-636423] [Citation(s) in RCA: 184] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 06/27/2016] [Indexed: 01/10/2023] Open
Abstract
Ten percent of deaths worldwide are due to trauma, and it is the third most common cause of death in the United States. Despite a profound upregulation in procoagulant mechanisms, one-quarter of trauma patients present with laboratory-based evidence of trauma-induced coagulopathy (TIC), which is associated with poorer outcomes including increased mortality. The most common causes of death after trauma are hemorrhage and traumatic brain injury (TBI). The management of TIC has significant implications in both because many hemorrhagic deaths could be preventable, and TIC is associated with progression of intracranial injury after TBI. This review covers the most recent evidence and advances in our understanding of TIC, including the role of platelet dysfunction, endothelial activation, and fibrinolysis. Trauma induces a plethora of biochemical and physiologic changes, and despite numerous studies reporting differences in coagulation parameters between trauma patients and uninjured controls, it is unclear whether some of these differences may be "normal" after trauma. Comparisons between trauma patients with differing outcomes and use of animal studies have shed some light on this issue, but much of the data continue to be correlative with causative links lacking. In particular, there are little data linking the laboratory-based abnormalities with true clinically evident coagulopathic bleeding. For these reasons, TIC continues to be a significant diagnostic and therapeutic challenge.
Collapse
|
224
|
Abstract
Understanding how platelet activation is regulated is important in the context of cardiovascular disorders and their management with antiplatelet therapy. Recent evidence points to different platelet subpopulations performing different functions. In particular, procoagulant and aggregating subpopulations have been reported in the literature in platelets treated with the GPVI agonists. How the formation of platelet subpopulations upon activation is regulated remains unclear. Here, it is shown that procoagulant and aggregating platelet subpopulations arise spontaneously upon adhesion of purified platelets on clean glass surfaces. Calcium ionophore treatment of the adhering platelets resulted in one platelet population expressing both the procoagulant and the adherent population markers phosphatidylserine and the activated form of GPIIb/IIIa, while all of the platelets expressed CD62P independently of the ionophore treatment. Therefore, all platelets have the capacity to express all three activation markers. It is concluded that platelet subpopulations observed in various studies reflect the dynamics of the platelet activation process.
Collapse
|
225
|
Flaumenhaft R. Probing for thiol isomerase activity in thrombi. J Thromb Haemost 2016; 14:1067-9. [PMID: 26854753 PMCID: PMC5540659 DOI: 10.1111/jth.13282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 01/18/2016] [Indexed: 11/30/2022]
Affiliation(s)
- R Flaumenhaft
- Division of Hemostasis and Thrombosis, Department of Medicine, BIDMC, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
226
|
|
227
|
Brass LF, Diamond SL. Transport physics and biorheology in the setting of hemostasis and thrombosis. J Thromb Haemost 2016; 14:906-17. [PMID: 26848552 PMCID: PMC4870125 DOI: 10.1111/jth.13280] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/20/2016] [Accepted: 01/26/2016] [Indexed: 02/02/2023]
Abstract
The biophysics of blood flow can dictate the function of molecules and cells in the vasculature with consequent effects on hemostasis, thrombosis, embolism, and fibrinolysis. Flow and transport dynamics are distinct for (i) hemostasis vs. thrombosis and (ii) venous vs. arterial episodes. Intraclot transport changes dramatically the moment hemostasis is achieved or the moment a thrombus becomes fully occlusive. With platelet concentrations that are 50- to 200-fold greater than platelet-rich plasma, clots formed under flow have a different composition and structure compared with blood clotted statically in a tube. The platelet-rich, core/shell architecture is a prominent feature of self-limiting hemostatic clots formed under flow. Importantly, a critical threshold concentration of surface tissue factor is required for fibrin generation under flow. Once initiated by wall-derived tissue factor, thrombin generation and its spatial propagation within a clot can be modulated by γ'-fibrinogen incorporated into fibrin, engageability of activated factor (FIXa)/activated FVIIIa tenase within the clot, platelet-derived polyphosphate, transclot permeation, and reduction of porosity via platelet retraction. Fibrin imparts tremendous strength to a thrombus to resist embolism up to wall shear stresses of 2400 dyne cm(-2) . Extreme flows, as found in severe vessel stenosis or in mechanical assist devices, can cause von Willebrand factor self-association into massive fibers along with shear-induced platelet activation. Pathological von Willebrand factor fibers are A Disintegrin And Metalloprotease with ThromboSpondin-1 domain 13 resistant but are a substrate for fibrin generation due to FXIIa capture. Recently, microfluidic technologies have enhanced the ability to interrogate blood in the context of stenotic flows, acquired von Willebrand disease, hemophilia, traumatic bleeding, and drug action.
Collapse
Affiliation(s)
- Lawrence F. Brass
- Departments of Medicine and Systems Pharmacology, University of Pennsylvania, Philadelphia, PA, USA
| | - Scott L. Diamond
- Departments of Medicine and Systems Pharmacology, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Medicine and Engineering, Department of Chemical Engineering, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
228
|
van Geffen JP, Swieringa F, Heemskerk JW. Platelets and coagulation in thrombus formation: aberrations in the Scott syndrome. Thromb Res 2016; 141 Suppl 2:S12-6. [DOI: 10.1016/s0049-3848(16)30355-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
229
|
Zhu S, Welsh JD, Brass LF, Diamond SL. Platelet-targeting thiol reduction sensor detects thiol isomerase activity on activated platelets in mouse and human blood under flow. J Thromb Haemost 2016; 14:1070-81. [PMID: 26725377 PMCID: PMC4870098 DOI: 10.1111/jth.13245] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 12/20/2015] [Indexed: 11/28/2022]
Abstract
UNLABELLED Essentials Protein disulfide isomerases may have an essential role in thrombus formation. A platelet-binding sensor (PDI-sAb) was developed to detect thiol reductase activity under flow. Primary human platelet adhesion to collagen at 200 s(-1) was correlated with the PDI-sAb signal. Detected thiol reductase activity was localized in the core of growing thrombi at the site of injury in mice. SUMMARY Background Protein disulfide isomerases (PDIs) may regulate thrombus formation in vivo, although the sources and targets of PDIs are not fully understood. Methods and results Using click chemistry to link anti-CD61 and a C-terminal azido disulfide-linked peptide construct with a quenched reporter, we developed a fluorogenic platelet-targeting antibody (PDI-sAb) for thiol reductase activity detection in whole blood under flow conditions. PDI-sAb was highly responsive to various exogenous reducing agents (dithiothreitol, glutathione and recombinant PDI) and detected thiol reductase activity on P-selectin/phosphatidylserine-positive platelets activated with convulxin/PAR1 agonist peptide, a signal partially blocked by PDI inhibitors and antibody. In a microfluidic thrombosis model using 4 μg mL(-1) corn trypsin inhibitor-treated human blood perfused over collagen (wall shear rate = 100 s(-1) ), the PDI-sAb signal increased mostly over the first 200 s, whereas platelets continually accumulated for over 500 s, indicating that primary adhesion to collagen, but not secondary aggregation, was correlated with the PDI-sAb signal. Rutin and the PDI blocking antibody RL90 reduced platelet adhesion and the PDI-sAb signal only when thrombin production was inhibited with PPACK, suggesting limited effects of platelet thiol isomerase activity on platelet aggregation on collagen in the presence of thrombin. With anti-mouse CD41 PDI-sAb used in an arteriolar laser injury model, thiol reductase activity was localized in the core of growing thrombi where platelets displayed P-selectin and were in close proximity to disrupted endothelium. Conclusion PDI-sAb is a sensitive and real-time reporter of platelet- and vascular-derived disulfide reduction that targets clots as they form under flow to reveal spatial gradients.
Collapse
Affiliation(s)
- S Zhu
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - J D Welsh
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - L F Brass
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - S L Diamond
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
230
|
Rana K, Neeves KB. Blood flow and mass transfer regulation of coagulation. Blood Rev 2016; 30:357-68. [PMID: 27133256 DOI: 10.1016/j.blre.2016.04.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 02/17/2016] [Accepted: 04/12/2016] [Indexed: 12/12/2022]
Abstract
Blood flow regulates coagulation and fibrin formation by controlling the transport, or mass transfer, of zymogens, co-factors, enzymes, and inhibitors to, from, and within a growing thrombus. The rate of mass transfer of these solutes relative to their consumption or production by coagulation reactions determines, in part, the rate of thrombin generation, fibrin deposition, and thrombi growth. Experimental studies on the influence of blood flow on specific coagulation reactions are reviewed here, along with a theoretical framework that predicts how flow influences surface-bound coagulation binding and enzymatic reactions. These flow-mediated transport mechanisms are also used to interpret the role of binding site densities and injury size on initiating coagulation and fibrin deposition. The importance of transport of coagulation proteins within the interstitial spaces of thrombi is shown to influence thrombi architecture, growth, and arrest.
Collapse
Affiliation(s)
- Kuldeepsinh Rana
- Chemical and Biological Engineering, Colorado School of Mines, Golden, CO, USA
| | - Keith B Neeves
- Chemical and Biological Engineering, Colorado School of Mines, Golden, CO, USA; Pediatrics, University of Colorado-Denver, Aurora, CO, USA.
| |
Collapse
|
231
|
Belyaev AV, Panteleev MA, Ataullakhanov FI. Threshold of microvascular occlusion: injury size defines the thrombosis scenario. Biophys J 2016. [PMID: 26200881 DOI: 10.1016/j.bpj.2015.06.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Damage to the blood vessel triggers formation of a hemostatic plug, which is meant to prevent bleeding, yet the same phenomenon may result in a total blockade of a blood vessel by a thrombus, causing severe medical conditions. Here, we show that the physical interplay between platelet adhesion and hemodynamics in a microchannel manifests in a critical threshold behavior of a growing thrombus. Depending on the size of injury, two distinct dynamic pathways of thrombosis were found: the formation of a nonocclusive plug, if injury length does not exceed the critical value, and the total occlusion of the vessel by the thrombus otherwise. We develop a mathematical model that demonstrates that switching between these regimes occurs as a result of a saddle-node bifurcation. Our study reveals the mechanism of self-regulation of thrombosis in blood microvessels and explains experimentally observed distinctions between thrombi of different physical etiology. This also can be useful for the design of platelet-aggregation-inspired engineering solutions.
Collapse
Affiliation(s)
- Aleksey V Belyaev
- Center for Theoretical Problems of Physicochemical Pharmacology RAS, Moscow, Russia; Federal Research and Clinical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia.
| | - Mikhail A Panteleev
- Center for Theoretical Problems of Physicochemical Pharmacology RAS, Moscow, Russia; Federal Research and Clinical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia; Department of Physics, M. V. Lomonosov Moscow State University, Moscow, Russia; HemaCore LLC, Moscow, Russia
| | - Fazly I Ataullakhanov
- Center for Theoretical Problems of Physicochemical Pharmacology RAS, Moscow, Russia; Federal Research and Clinical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia; Department of Physics, M. V. Lomonosov Moscow State University, Moscow, Russia; HemaCore LLC, Moscow, Russia
| |
Collapse
|
232
|
Chen T, Xu DZ, Li Q, Mou P, Zeng Z, Brass LF, Zhu L. The regulation of Sema4D exodomain shedding by protein kinase A in platelets. Platelets 2016; 27:673-679. [PMID: 27809714 DOI: 10.3109/09537104.2016.1154141] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We have previously shown that Sema4D expressed on the platelet plasma membrane can be cleaved by the metalloprotease ADAM17, producing a 120-kDa exodomain fragment that retains biological activity and remnant fragments of 24-28 kDa that remain associated with the platelet membrane. This process is modulated by calmodulin. Here we investigated the potential role of protein kinase A (PKA) in these events. Using a pharmacological approach, we now show that inhibition of PKA by H89 is sufficient to induce Sema4D exodomain shedding, while activation of PKA inhibits agonist-initiated shedding. Studies on the regulatory mechanism show that the shedding induced by PKA inhibition is mediated by ADAM17, but, unlike agonist-induced shedding, does not involve the dissociation of calmodulin from the Sema4D cytoplasmic domain. In attempt to identify the cleavage sites for shedding, we found that ADAM17 mediates variable cleavages in the juxtamembrane region. Therefore, our data reveal a potential regulatory mechanism for the shedding of Sema4D in platelets.
Collapse
Affiliation(s)
- T Chen
- a Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, MOH Key Lab of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, Jiangsu Key Lab of Preventive and Translational Medicine for Geriatric Diseases, Soochow University , Suzhou , China
| | - D Z Xu
- a Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, MOH Key Lab of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, Jiangsu Key Lab of Preventive and Translational Medicine for Geriatric Diseases, Soochow University , Suzhou , China
| | - Q Li
- a Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, MOH Key Lab of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, Jiangsu Key Lab of Preventive and Translational Medicine for Geriatric Diseases, Soochow University , Suzhou , China
| | - P Mou
- a Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, MOH Key Lab of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, Jiangsu Key Lab of Preventive and Translational Medicine for Geriatric Diseases, Soochow University , Suzhou , China
| | - Z Zeng
- a Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, MOH Key Lab of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, Jiangsu Key Lab of Preventive and Translational Medicine for Geriatric Diseases, Soochow University , Suzhou , China
| | - L F Brass
- b Department of Medicine , University of Pennsylvania , Philadelphia , PA , USA.,c Department of Pharmacology , University of Pennsylvania , Philadelphia , PA , USA
| | - L Zhu
- a Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, MOH Key Lab of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, Jiangsu Key Lab of Preventive and Translational Medicine for Geriatric Diseases, Soochow University , Suzhou , China
| |
Collapse
|
233
|
Litvinov RI, Weisel JW. What Is the Biological and Clinical Relevance of Fibrin? Semin Thromb Hemost 2016; 42:333-43. [PMID: 27056152 DOI: 10.1055/s-0036-1571342] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
As our knowledge of the structure and functions of fibrinogen and fibrin has increased tremendously, several key findings have given some people a superficial impression that the biological and clinical significance of these clotting proteins may be less than earlier thought. Most strikingly, studies of fibrinogen knockout mice demonstrated that many of these mice survive to weaning and beyond, suggesting that fibrin(ogen) may not be entirely necessary. Humans with afibrinogenemia also survive. Furthermore, in recent years, the major emphasis in the treatment of arterial thrombosis has been on inhibition of platelets, rather than fibrin. In contrast to the initially apparent conclusions from these results, it has become increasingly clear that fibrin is essential for hemostasis; is a key factor in thrombosis; and plays an important biological role in infection, inflammation, immunology, and wound healing. In addition, fibrinogen replacement therapy has become a preferred, major treatment for severe bleeding in trauma and surgery. Finally, fibrin is a unique biomaterial and is used as a sealant or glue, a matrix for cells, a scaffold for tissue engineering, and a carrier and/or a vector for targeted drug delivery.
Collapse
Affiliation(s)
- Rustem I Litvinov
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - John W Weisel
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
234
|
Lee RH, Bergmeier W. Platelet immunoreceptor tyrosine-based activation motif (ITAM) and hemITAM signaling and vascular integrity in inflammation and development. J Thromb Haemost 2016; 14:645-54. [PMID: 26749528 DOI: 10.1111/jth.13250] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 12/24/2015] [Indexed: 01/13/2023]
Abstract
Platelets are essential for maintaining hemostasis following mechanical injury to the vasculature. Besides this established function, novel roles of platelets are becoming increasingly recognized, which are critical in non-injury settings to maintain vascular barrier integrity. For example, during embryogenesis platelets act to support the proper separation of blood and lymphatic vessels. This role continues beyond birth, where platelets prevent leakage of blood into the lymphatic vessel network. During the course of inflammation, platelets are necessary to prevent local hemorrhage due to neutrophil diapedesis and disruption of endothelial cell-cell junctions. Surprisingly, platelets also work to secure tumor-associated blood vessels, inhibiting excessive vessel permeability and intra-tumor hemorrhaging. Interestingly, many of these novel platelet functions depend on immunoreceptor tyrosine-based activation motif (ITAM) signaling but not on signaling via G protein-coupled receptors, which plays a crucial role in platelet plug formation at sites of mechanical injury. Murine platelets express two ITAM-containing receptors: the Fc receptor γ-chain (FcRγ), which functionally associates with the collagen receptor GPVI, and the C-type lectin-like 2 (CLEC-2) receptor, a hemITAM receptor for the mucin-type glycoprotein podoplanin. Human platelets express an additional ITAM receptor, FcγRIIA. These receptors share common downstream effectors, including Syk, SLP-76 and PLCγ2. Here we will review the recent literature that highlights a critical role for platelet GPVI/FcRγ and CLEC-2 in vascular integrity during development and inflammation in mice and discuss the relevance to human disease.
Collapse
Affiliation(s)
- R H Lee
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
| | - W Bergmeier
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
235
|
Van Aelst B, Feys HB, Devloo R, Vandekerckhove P, Compernolle V. Microfluidic Flow Chambers Using Reconstituted Blood to Model Hemostasis and Platelet Transfusion In Vitro. J Vis Exp 2016. [PMID: 27023054 DOI: 10.3791/53823] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Blood platelets prepared for transfusion gradually lose hemostatic function during storage. Platelet function can be investigated using a variety of (indirect) in vitro experiments, but none of these is as comprehensive as microfluidic flow chambers. In this protocol, the reconstitution of thrombocytopenic fresh blood with stored blood bank platelets is used to simulate platelet transfusion. Next, the reconstituted sample is perfused in microfluidic flow chambers which mimic hemostasis on exposed subendothelial matrix proteins. Effects of blood donation, transport, component separation, storage and pathogen inactivation can be measured in paired experimental designs. This allows reliable comparison of the impact every manipulation in blood component preparation has on hemostasis. Our results demonstrate the impact of temperature cycling, shear rates, platelet concentration and storage duration on platelet function. In conclusion, this protocol analyzes the function of blood bank platelets and this ultimately aids in optimization of the processing chain including phlebotomy, transport, component preparation, storage and transfusion.
Collapse
Affiliation(s)
| | - Hendrik B Feys
- Transfusion Research Center, Belgium Red Cross-Flanders;
| | | | - Philippe Vandekerckhove
- Blood Service, Belgium Red Cross-Flanders; Department of Public Health and Primary Care, Catholic University of Leuven; Faculty of Medicine and Health Sciences, University of Ghent
| | - Veerle Compernolle
- Transfusion Research Center, Belgium Red Cross-Flanders; Blood Service, Belgium Red Cross-Flanders; Faculty of Medicine and Health Sciences, University of Ghent
| |
Collapse
|
236
|
Getz TM, Montgomery RK, Bynum JA, Aden JK, Pidcoke HF, Cap AP. Storage of platelets at 4°C in platelet additive solutions prevents aggregate formation and preserves platelet functional responses. Transfusion 2016; 56:1320-8. [DOI: 10.1111/trf.13511] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 12/02/2015] [Accepted: 12/28/2015] [Indexed: 02/03/2023]
Affiliation(s)
- Todd M. Getz
- US Army Institute of Surgical Research; Fort Sam Houston, San Antonio Texas
| | | | - James A. Bynum
- US Army Institute of Surgical Research; Fort Sam Houston, San Antonio Texas
| | - James K. Aden
- US Army Institute of Surgical Research; Fort Sam Houston, San Antonio Texas
| | - Heather F. Pidcoke
- US Army Institute of Surgical Research; Fort Sam Houston, San Antonio Texas
| | - Andrew P. Cap
- US Army Institute of Surgical Research; Fort Sam Houston, San Antonio Texas
| |
Collapse
|
237
|
Swieringa F, Baaten CCFMJ, Verdoold R, Mastenbroek TG, Rijnveld N, van der Laan KO, Breel EJ, Collins PW, Lancé MD, Henskens YMC, Cosemans JMEM, Heemskerk JWM, van der Meijden PEJ. Platelet Control of Fibrin Distribution and Microelasticity in Thrombus Formation Under Flow. Arterioscler Thromb Vasc Biol 2016; 36:692-9. [PMID: 26848157 DOI: 10.1161/atvbaha.115.306537] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 01/15/2016] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Platelet- and fibrin-dependent thrombus formation is regulated by blood flow and exposure of collagen and tissue factor. However, interactions between these blood-borne and vascular components are not well understood. APPROACH AND RESULTS Here, we developed a method to assess whole-blood thrombus formation on microspots with defined amounts of collagen and tissue factor, allowing determination of the mechanical properties and intrathrombus composition. Confining the collagen content resulted in diminished platelet deposition and fibrin formation at high shear flow conditions, but this effect was compensated by a larger thrombus size and increased accumulation of fibrin in the luminal regions of the thrombi at the expense of the base regions. These thrombi were more dependent on tissue factor-triggered thrombin generation. Microforce nanoindentation analysis revealed a significantly increased microelasticity of thrombi with luminal-oriented fibrin. At a low shear rate, fibrin fibers tended to luminally cover the thrombi, again resulting in a higher microelasticity. Studies with blood from patients with distinct hemostatic insufficiencies indicated an impairment in the formation of a platelet-fibrin thrombus in the cases of dilutional coagulopathy, thrombocytopenia, Scott syndrome, and hemophilia B. CONCLUSIONS Taken together, our data indicate that (1) thrombin increases the platelet thrombus volume; (2) tissue factor drives the formation of fibrin outside of the platelet thrombus; (3) limitation of platelet adhesion redirects fibrin from bottom to top of the thrombus; (4) a lower shear rate promotes thrombus coverage with fibrin; (5) the fibrin distribution pattern determines thrombus microelasticity; and (6) the thrombus-forming process is reduced in patients with diverse hemostatic defects.
Collapse
Affiliation(s)
- Frauke Swieringa
- From the Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands (F.S., C.C.F.M.J.B., R.V., T.G.M., J.M.E.M.C., J.W.M.H., P.E.J.v.d.M.); Research and Development, Optics11, Amsterdam, The Netherlands (N.R., K.O.v.d.L., E.J.B.); Arthur Bloom Haemophilia Centre, Cardiff Institute of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom (P.W.C.); and Central Diagnostic Laboratory (Y.M.C.H.), Departments of Anaesthesiology (M.D.L.) and Internal Medicine (Y.M.C.H.), Maastricht University Medical Center, Maastricht, The Netherlands
| | - Constance C F M J Baaten
- From the Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands (F.S., C.C.F.M.J.B., R.V., T.G.M., J.M.E.M.C., J.W.M.H., P.E.J.v.d.M.); Research and Development, Optics11, Amsterdam, The Netherlands (N.R., K.O.v.d.L., E.J.B.); Arthur Bloom Haemophilia Centre, Cardiff Institute of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom (P.W.C.); and Central Diagnostic Laboratory (Y.M.C.H.), Departments of Anaesthesiology (M.D.L.) and Internal Medicine (Y.M.C.H.), Maastricht University Medical Center, Maastricht, The Netherlands
| | - Remco Verdoold
- From the Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands (F.S., C.C.F.M.J.B., R.V., T.G.M., J.M.E.M.C., J.W.M.H., P.E.J.v.d.M.); Research and Development, Optics11, Amsterdam, The Netherlands (N.R., K.O.v.d.L., E.J.B.); Arthur Bloom Haemophilia Centre, Cardiff Institute of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom (P.W.C.); and Central Diagnostic Laboratory (Y.M.C.H.), Departments of Anaesthesiology (M.D.L.) and Internal Medicine (Y.M.C.H.), Maastricht University Medical Center, Maastricht, The Netherlands
| | - Tom G Mastenbroek
- From the Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands (F.S., C.C.F.M.J.B., R.V., T.G.M., J.M.E.M.C., J.W.M.H., P.E.J.v.d.M.); Research and Development, Optics11, Amsterdam, The Netherlands (N.R., K.O.v.d.L., E.J.B.); Arthur Bloom Haemophilia Centre, Cardiff Institute of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom (P.W.C.); and Central Diagnostic Laboratory (Y.M.C.H.), Departments of Anaesthesiology (M.D.L.) and Internal Medicine (Y.M.C.H.), Maastricht University Medical Center, Maastricht, The Netherlands
| | - Niek Rijnveld
- From the Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands (F.S., C.C.F.M.J.B., R.V., T.G.M., J.M.E.M.C., J.W.M.H., P.E.J.v.d.M.); Research and Development, Optics11, Amsterdam, The Netherlands (N.R., K.O.v.d.L., E.J.B.); Arthur Bloom Haemophilia Centre, Cardiff Institute of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom (P.W.C.); and Central Diagnostic Laboratory (Y.M.C.H.), Departments of Anaesthesiology (M.D.L.) and Internal Medicine (Y.M.C.H.), Maastricht University Medical Center, Maastricht, The Netherlands
| | - Koen O van der Laan
- From the Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands (F.S., C.C.F.M.J.B., R.V., T.G.M., J.M.E.M.C., J.W.M.H., P.E.J.v.d.M.); Research and Development, Optics11, Amsterdam, The Netherlands (N.R., K.O.v.d.L., E.J.B.); Arthur Bloom Haemophilia Centre, Cardiff Institute of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom (P.W.C.); and Central Diagnostic Laboratory (Y.M.C.H.), Departments of Anaesthesiology (M.D.L.) and Internal Medicine (Y.M.C.H.), Maastricht University Medical Center, Maastricht, The Netherlands
| | - Ernst J Breel
- From the Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands (F.S., C.C.F.M.J.B., R.V., T.G.M., J.M.E.M.C., J.W.M.H., P.E.J.v.d.M.); Research and Development, Optics11, Amsterdam, The Netherlands (N.R., K.O.v.d.L., E.J.B.); Arthur Bloom Haemophilia Centre, Cardiff Institute of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom (P.W.C.); and Central Diagnostic Laboratory (Y.M.C.H.), Departments of Anaesthesiology (M.D.L.) and Internal Medicine (Y.M.C.H.), Maastricht University Medical Center, Maastricht, The Netherlands
| | - Peter W Collins
- From the Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands (F.S., C.C.F.M.J.B., R.V., T.G.M., J.M.E.M.C., J.W.M.H., P.E.J.v.d.M.); Research and Development, Optics11, Amsterdam, The Netherlands (N.R., K.O.v.d.L., E.J.B.); Arthur Bloom Haemophilia Centre, Cardiff Institute of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom (P.W.C.); and Central Diagnostic Laboratory (Y.M.C.H.), Departments of Anaesthesiology (M.D.L.) and Internal Medicine (Y.M.C.H.), Maastricht University Medical Center, Maastricht, The Netherlands
| | - Marcus D Lancé
- From the Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands (F.S., C.C.F.M.J.B., R.V., T.G.M., J.M.E.M.C., J.W.M.H., P.E.J.v.d.M.); Research and Development, Optics11, Amsterdam, The Netherlands (N.R., K.O.v.d.L., E.J.B.); Arthur Bloom Haemophilia Centre, Cardiff Institute of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom (P.W.C.); and Central Diagnostic Laboratory (Y.M.C.H.), Departments of Anaesthesiology (M.D.L.) and Internal Medicine (Y.M.C.H.), Maastricht University Medical Center, Maastricht, The Netherlands
| | - Yvonne M C Henskens
- From the Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands (F.S., C.C.F.M.J.B., R.V., T.G.M., J.M.E.M.C., J.W.M.H., P.E.J.v.d.M.); Research and Development, Optics11, Amsterdam, The Netherlands (N.R., K.O.v.d.L., E.J.B.); Arthur Bloom Haemophilia Centre, Cardiff Institute of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom (P.W.C.); and Central Diagnostic Laboratory (Y.M.C.H.), Departments of Anaesthesiology (M.D.L.) and Internal Medicine (Y.M.C.H.), Maastricht University Medical Center, Maastricht, The Netherlands
| | - Judith M E M Cosemans
- From the Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands (F.S., C.C.F.M.J.B., R.V., T.G.M., J.M.E.M.C., J.W.M.H., P.E.J.v.d.M.); Research and Development, Optics11, Amsterdam, The Netherlands (N.R., K.O.v.d.L., E.J.B.); Arthur Bloom Haemophilia Centre, Cardiff Institute of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom (P.W.C.); and Central Diagnostic Laboratory (Y.M.C.H.), Departments of Anaesthesiology (M.D.L.) and Internal Medicine (Y.M.C.H.), Maastricht University Medical Center, Maastricht, The Netherlands
| | - Johan W M Heemskerk
- From the Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands (F.S., C.C.F.M.J.B., R.V., T.G.M., J.M.E.M.C., J.W.M.H., P.E.J.v.d.M.); Research and Development, Optics11, Amsterdam, The Netherlands (N.R., K.O.v.d.L., E.J.B.); Arthur Bloom Haemophilia Centre, Cardiff Institute of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom (P.W.C.); and Central Diagnostic Laboratory (Y.M.C.H.), Departments of Anaesthesiology (M.D.L.) and Internal Medicine (Y.M.C.H.), Maastricht University Medical Center, Maastricht, The Netherlands
| | - Paola E J van der Meijden
- From the Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands (F.S., C.C.F.M.J.B., R.V., T.G.M., J.M.E.M.C., J.W.M.H., P.E.J.v.d.M.); Research and Development, Optics11, Amsterdam, The Netherlands (N.R., K.O.v.d.L., E.J.B.); Arthur Bloom Haemophilia Centre, Cardiff Institute of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom (P.W.C.); and Central Diagnostic Laboratory (Y.M.C.H.), Departments of Anaesthesiology (M.D.L.) and Internal Medicine (Y.M.C.H.), Maastricht University Medical Center, Maastricht, The Netherlands.
| |
Collapse
|
238
|
Shi X, Yang J, Huang J, Long Z, Ruan Z, Xiao B, Xi X. Effects of different shear rates on the attachment and detachment of platelet thrombi. Mol Med Rep 2016; 13:2447-56. [PMID: 26847168 PMCID: PMC4768970 DOI: 10.3892/mmr.2016.4825] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 01/15/2016] [Indexed: 11/06/2022] Open
Abstract
Thrombosis and hemostasis take place in flowing blood, which generates shear forces. The effect of different shear rates, particularly pathological forces, on platelet thrombus formation remains to be fully elucidated. The present study observed the morphological characteristics and hierarchical structure of thrombi on the collagen surface at a wide range of wall shear rates (WSRs) and examined the underlying mechanisms. Calcein AM‑labeled whole blood was perfused over a collagen‑coated surface at different shear rates set by a Bioflux 200 microfluidic device and the thrombi formed were assessed for area coverage, the height and the hierarchical structure defined by the extent of platelet activation and packing density. The factors that affect thrombus formation were also investigated. Platelet thrombus formation varied under different WSRs, for example, dispersed platelet adhesion mixed with erythrocytes was observed at 125‑250 s(‑1), extensive and thin platelet thrombi were observed at 500‑1,500 s(‑1), and sporadic, thick thrombi were observed at pathological WSRs of 2,500‑5,000 s(‑1), which showed a tendency to be shed. With increasing WSRs, the height of the thrombi showed an increasing linear trend, whereas the total fluorescence intensity and area of the thrombi exhibited a parabolic curve‑like change, with a turning point at a WSR of 2,500 s(‑1). The number of thrombi, the average fluorescence intensity and the area per thrombus showed similar trends, with an initial upwards incline followed by a decline. The thrombi formed at higher WSRs had a thicker shell, which led to a more densely packed core. Platelet thrombus formation under shear‑flow was regulated by the adhesive strength, which was mediated by receptor‑ligand interaction, the platelet deposition induced by shear rates and the detachment by the dynamic force of flow. This resulted in a balance between thrombus attachment, including adhesion and aggregation, and detachment. Collectively, compared with physiological low WSRs, pathological high WSRs caused thicker and more easily shed thrombi with more condensed cores, which was regulated by an attachment‑detachment balance. These results provide novel insights into the properties of thrombus formation on collagen at different WSRs, and offers possible explanations for certain clinical physiopathological phenomena, including physical hemostasis and pathological thrombosis.
Collapse
Affiliation(s)
- Xiaofeng Shi
- Department of Hematology, Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, Collaborative Innovation Center of Hematology, Sino‑French Research Center for Life Sciences and Genomics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, P.R. China
| | - Jichun Yang
- Department of Hematology, Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, Collaborative Innovation Center of Hematology, Sino‑French Research Center for Life Sciences and Genomics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, P.R. China
| | - Jiansong Huang
- Department of Hematology, Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, Collaborative Innovation Center of Hematology, Sino‑French Research Center for Life Sciences and Genomics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, P.R. China
| | - Zhangbiao Long
- Department of Hematology, Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, Collaborative Innovation Center of Hematology, Sino‑French Research Center for Life Sciences and Genomics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, P.R. China
| | - Zheng Ruan
- Department of Hematology, Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, Collaborative Innovation Center of Hematology, Sino‑French Research Center for Life Sciences and Genomics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, P.R. China
| | - Bing Xiao
- Department of Hematology, Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, Collaborative Innovation Center of Hematology, Sino‑French Research Center for Life Sciences and Genomics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, P.R. China
| | - Xiaodong Xi
- Department of Hematology, Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, Collaborative Innovation Center of Hematology, Sino‑French Research Center for Life Sciences and Genomics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, P.R. China
| |
Collapse
|
239
|
A systems approach to hemostasis: 4. How hemostatic thrombi limit the loss of plasma-borne molecules from the microvasculature. Blood 2016; 127:1598-605. [PMID: 26738537 DOI: 10.1182/blood-2015-09-672188] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 12/15/2015] [Indexed: 11/20/2022] Open
Abstract
Previous studies have shown that hemostatic thrombi formed in response to penetrating injuries have a core of densely packed, fibrin-associated platelets overlaid by a shell of less-activated, loosely packed platelets. Here we asked, first, how the diverse elements of this structure combine to stem the loss of plasma-borne molecules and, second, whether antiplatelet agents and anticoagulants that perturb thrombus structure affect the re-establishment of a tight vascular seal. The studies combined high-resolution intravital microscopy with a photo-activatable fluorescent albumin marker to simultaneously track thrombus formation and protein transport following injuries to mouse cremaster muscle venules. The results show that protein loss persists after red cell loss has ceased. Blocking platelet deposition with an αIIbβ3antagonist delays vessel sealing and increases extravascular protein accumulation, as does either inhibiting adenosine 5'-diphosphate (ADP) P2Y12receptors or reducing integrin-dependent signaling and retraction. In contrast, sealing was unaffected by introducing hirudin to block fibrin accumulation or a Gi2α gain-of-function mutation to expand the thrombus shell. Collectively, these observations describe a novel approach for studying vessel sealing after injury in real time in vivo and show that (1) the core/shell architecture previously observed in arterioles also occurs in venules, (2) plasma leakage persists well beyond red cell escape and mature thrombus formation, (3) the most critical events for limiting plasma extravasation are the stable accumulation of platelets, ADP-dependent signaling, and the emergence of a densely packed core, not the accumulation of fibrin, and (4) drugs that affect platelet accumulation and packing can delay vessel sealing, permitting protein escape to continue.
Collapse
|
240
|
Ju L, Qian J, Zhu C. Transport regulation of two-dimensional receptor-ligand association. Biophys J 2016; 108:1773-1784. [PMID: 25863068 DOI: 10.1016/j.bpj.2015.02.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 02/15/2015] [Accepted: 02/24/2015] [Indexed: 01/12/2023] Open
Abstract
The impact of flow disturbances on platelet adhesion is complex and incompletely understood. At the molecular scale, platelet glycoprotein Ibα (GPIbα) must associate with the von Willebrand factor A1 domain (VWF-A1) with a rapid on-rate under high hemodynamic forces, as occurs in arterial thrombosis, where various transport mechanisms are at work. Here, we theoretically modeled the coupled transport-reaction process of the two-dimensional (2D) receptor-ligand association kinetics in a biomembrane force probe to explicitly account for the effects of molecular length, confinement stiffness, medium viscosity, surface curvature, and separation distance. We experimentally verified the theoretical approach by visualizing association and dissociation of individual VWF-A1-GPIbα bonds in a real-time thermal fluctuation assay. The apparent on-rate, reciprocal of the average time intervals between sequential bonds, decreased with the increasing gap distance between A1- and GPIbα-bearing surfaces with an 80-nm threshold (beyond which bond formation became prohibitive) identified as the combined contour length of the receptor and ligand molecules. The biomembrane force probe spring constant and diffusivity of the protein-bearing beads also significantly influenced the apparent on-rate, in accordance with the proposed transport mechanisms. The global agreement between the experimental data and the model predictions supports the hypothesis that receptor-ligand association behaves distinctly in the transport- and reaction-limited scenarios. To our knowledge, our results represent the first detailed quantification of physical regulation of the 2D on-rate that allows platelets to sense and respond to local changes in their hemodynamic environment. In addition, they provide an approach for determining the intrinsic kinetic parameters that employs simultaneous experimental measurements and theoretical modeling of bond association in a single assay. The 2D intrinsic forward rate for VWF-A1-GPIbα association was determined from the measurements to be (3.5 ± 0.67) × 10(-4)μm(2) s(-1).
Collapse
Affiliation(s)
- Lining Ju
- Coulter School of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia; Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| | - Jin Qian
- Department of Engineering Mechanics, Zhejiang University, Hangzhou, China
| | - Cheng Zhu
- Coulter School of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia; Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia; Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia.
| |
Collapse
|
241
|
Fröhlich E. Action of Nanoparticles on Platelet Activation and Plasmatic Coagulation. Curr Med Chem 2016; 23:408-30. [PMID: 26063498 PMCID: PMC5403968 DOI: 10.2174/0929867323666160106151428] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 12/01/2015] [Accepted: 01/05/2016] [Indexed: 12/14/2022]
Abstract
Nanomaterials can get into the blood circulation after injection or by release from implants but also by permeation of the epithelium after oral, respiratory or dermal exposure. Once in the blood, they can affect hemostasis, which is usually not intended. This review addresses effects of biological particles and engineered nanomaterials on hemostasis. The role of platelets and coagulation in normal clotting and the interaction with the immune system are described. Methods to identify effects of nanomaterials on clotting and results from in vitro and in vivo studies are summarized and the role of particle size and surface properties discussed. The literature overview showed that mainly pro-coagulative effects of nanomaterials have been described. In vitro studies suggested stronger effects of smaller than of larger NPs on coagulation and a greater importance of material than of surface charge. For instance, carbon nanotubes, polystyrene particles, and dendrimers inferred with clotting independent from their surface charge. Coating of particles with polyethylene glycol was able to prevent interaction with clotting by some particles, while it had no effect on others and the more recently developed bio-inspired surfaces might help to design coatings for more biocompatible particles. The mainly pro-coagulative action of nanoparticles could present a particular risk for individuals affected by common diseases such as diabetes, cancer, and cardiovascular diseases. Under standardized conditions, in vitro assays using human blood appear to be a suitable tool to study mechanisms of interference with hemostasis and to optimize hemocompatibility of nanomaterials.
Collapse
Affiliation(s)
- Eleonore Fröhlich
- Center for Medical Research, Medical University Graz, Stiftingtalstr 24, 8010 Graz, Austria.
| |
Collapse
|
242
|
Klapproth S, Moretti FA, Zeiler M, Ruppert R, Breithaupt U, Mueller S, Haas R, Mann M, Sperandio M, Fässler R, Moser M. Minimal amounts of kindlin-3 suffice for basal platelet and leukocyte functions in mice. Blood 2015; 126:2592-600. [PMID: 26438512 DOI: 10.1182/blood-2015-04-639310] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 09/25/2015] [Indexed: 12/22/2022] Open
Abstract
Hematopoietic cells depend on integrin-mediated adhesion and signaling, which is induced by kindlin-3 and talin-1. To determine whether platelet and polymorphonuclear neutrophil (PMN) functions require specific thresholds of kindlin-3, we generated mouse strains expressing 50%, 10%, or 5% of normal kindlin-3 levels. We report that in contrast to kindlin-3-null mice, which die perinatally of severe bleeding and leukocyte adhesion deficiency, mice expressing as little as 5% of kindlin-3 were viable and protected from spontaneous bleeding and infections. However, platelet adhesion and aggregation were reduced in vitro and bleeding times extended. Similarly, leukocyte adhesion, extravasation, and bacterial clearance were diminished. Quantification of protein copy numbers revealed stoichiometric quantities of kindlin-3 and talin-1 in platelets and neutrophils, indicating that reduction of kindlin-3 in our mouse strains progressively impairs the cooperation with talin-1. Our findings show that very low levels of kindlin-3 enable basal platelet and neutrophil functions, whereas in stress situations such as injury and infection, platelets and neutrophils require a maximum of functional integrins that is achieved with high and stoichiometric quantities of kindlin-3 and talin-1.
Collapse
Affiliation(s)
- Sarah Klapproth
- Max-Planck-Institute of Biochemistry, Department of Molecular Medicine, Martinsried, Germany; Walter Brendel Center for Experimental Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Federico A Moretti
- Max-Planck-Institute of Biochemistry, Department of Molecular Medicine, Martinsried, Germany
| | - Marlis Zeiler
- Max-Planck-Institute of Biochemistry, Department of Proteomics and Signal Transduction, Martinsried, Germany; and
| | - Raphael Ruppert
- Max-Planck-Institute of Biochemistry, Department of Molecular Medicine, Martinsried, Germany
| | - Ute Breithaupt
- Max von Pettenkofer-Institute for Hygiene and Medical Microbiology, and
| | - Susanna Mueller
- Institute for Pathology, Ludwig-Maximilians-University, Munich, Germany
| | - Rainer Haas
- Max von Pettenkofer-Institute for Hygiene and Medical Microbiology, and
| | - Matthias Mann
- Max-Planck-Institute of Biochemistry, Department of Proteomics and Signal Transduction, Martinsried, Germany; and
| | - Markus Sperandio
- Walter Brendel Center for Experimental Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Reinhard Fässler
- Max-Planck-Institute of Biochemistry, Department of Molecular Medicine, Martinsried, Germany
| | - Markus Moser
- Max-Planck-Institute of Biochemistry, Department of Molecular Medicine, Martinsried, Germany
| |
Collapse
|
243
|
Apelin: an antithrombotic factor that inhibits platelet function. Blood 2015; 127:908-20. [PMID: 26634301 DOI: 10.1182/blood-2014-05-578781] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 11/19/2015] [Indexed: 12/31/2022] Open
Abstract
Apelin peptide and its receptor APJ are directly implicated in various physiological processes ranging from cardiovascular homeostasis to immune signaling. Here, we show that apelin is a key player in hemostasis with an ability to inhibit thrombin- and collagen-mediated platelet activation. Mice lacking apelin displayed a shorter bleeding time and a prothrombotic profile. Their platelets exhibited increased adhesion and a reduced occlusion time in venules, and displayed a higher aggregation rate after their activation by thrombin compared with wild-type platelets. Consequently, human and mouse platelets express apelin and its receptor APJ. Apelin directly interferes with thrombin-mediated signaling pathways and platelet activation, secretion, and aggregation, but not with ADP and thromboxane A2-mediated pathways. IV apelin administration induced excessive bleeding and prevented thrombosis in mice. Taken together, these findings suggest that apelin and/or APJ agonists could potentially be useful adducts in antiplatelet therapies and may provide a promising perspective for patients who continue to display adverse thrombotic events with current antiplatelet therapies.
Collapse
|
244
|
Is platelet transfusion the solution to reverse platelet inhibition in patients on triple antiplatelet therapy? Thromb Res 2015; 136:1057-8. [PMID: 26548621 DOI: 10.1016/j.thromres.2015.10.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 10/28/2015] [Indexed: 11/20/2022]
|
245
|
Zhou J, Wu Y, Wang L, Rauova L, Hayes VM, Poncz M, Essex DW. The C-terminal CGHC motif of protein disulfide isomerase supports thrombosis. J Clin Invest 2015; 125:4391-406. [PMID: 26529254 DOI: 10.1172/jci80319] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 09/28/2015] [Indexed: 11/17/2022] Open
Abstract
Protein disulfide isomerase (PDI) has two distinct CGHC redox-active sites; however, the contribution of these sites during different physiologic reactions, including thrombosis, is unknown. Here, we evaluated the role of PDI and redox-active sites of PDI in thrombosis by generating mice with blood cells and vessel wall cells lacking PDI (Mx1-Cre Pdifl/fl mice) and transgenic mice harboring PDI that lacks a functional C-terminal CGHC motif [PDI(ss-oo) mice]. Both mouse models showed decreased fibrin deposition and platelet accumulation in laser-induced cremaster arteriole injury, and PDI(ss-oo) mice had attenuated platelet accumulation in FeCl3-induced mesenteric arterial injury. These defects were rescued by infusion of recombinant PDI containing only a functional C-terminal CGHC motif [PDI(oo-ss)]. PDI infusion restored fibrin formation, but not platelet accumulation, in eptifibatide-treated wild-type mice, suggesting a direct role of PDI in coagulation. In vitro aggregation of platelets from PDI(ss-oo) mice and PDI-null platelets was reduced; however, this defect was rescued by recombinant PDI(oo-ss). In human platelets, recombinant PDI(ss-oo) inhibited aggregation, while recombinant PDI(oo-ss) potentiated aggregation. Platelet secretion assays demonstrated that the C-terminal CGHC motif of PDI is important for P-selectin expression and ATP secretion through a non-αIIbβ3 substrate. In summary, our results indicate that the C-terminal CGHC motif of PDI is important for platelet function and coagulation.
Collapse
|
246
|
Ivanciu L, Stalker TJ. Spatiotemporal regulation of coagulation and platelet activation during the hemostatic response in vivo. J Thromb Haemost 2015; 13:1949-59. [PMID: 26386264 PMCID: PMC5847271 DOI: 10.1111/jth.13145] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 08/29/2015] [Indexed: 12/17/2022]
Abstract
The hemostatic response requires the tightly regulated interaction of the coagulation system, platelets, other blood cells and components of the vessel wall at a site of vascular injury. The dysregulation of this response may result in excessive bleeding if the response is impaired, and pathologic thrombosis with vessel occlusion and tissue ischemia if the response is overly robust. Extensive studies over the past decade have sought to unravel the regulatory mechanisms that coordinate the multiple biochemical and cellular responses in time and space to ensure that an optimal response to vascular damage is achieved. These studies have relied in part on advances in in vivo imaging techniques in animal models, allowing for the direct visualization of various molecular and cellular events in real time during the hemostatic response. This review summarizes knowledge gained with these in vivo imaging and other approaches that provides new insights into the spatiotemporal regulation of coagulation and platelet activation at a site of vascular injury.
Collapse
Affiliation(s)
- L Ivanciu
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - T J Stalker
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
247
|
Platelets and physics: How platelets “feel” and respond to their mechanical microenvironment. Blood Rev 2015; 29:377-86. [DOI: 10.1016/j.blre.2015.05.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 05/04/2015] [Accepted: 05/04/2015] [Indexed: 01/08/2023]
|
248
|
Continuous Modeling of Arterial Platelet Thrombus Formation Using a Spatial Adsorption Equation. PLoS One 2015; 10:e0141068. [PMID: 26517377 PMCID: PMC4627739 DOI: 10.1371/journal.pone.0141068] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 10/05/2015] [Indexed: 02/03/2023] Open
Abstract
In this study, we considered a continuous model of platelet thrombus growth in an arteriole. A special model describing the adhesion of platelets in terms of their concentration was derived. The applications of the derived model are not restricted to only describing arterial platelet thrombus formation; the model can also be applied to other similar adhesion processes. The model reproduces an auto-wave solution in the one-dimensional case; in the two-dimensional case, in which the surrounding flow is taken into account, the typical torch-like thrombus is reproduced. The thrombus shape and the growth velocity are determined by the model parameters. We demonstrate that the model captures the main properties of the thrombus growth behavior and provides us a better understanding of which mechanisms are important in the mechanical nature of the arterial thrombus growth.
Collapse
|
249
|
Necrotic platelets provide a procoagulant surface during thrombosis. Blood 2015; 126:2852-62. [PMID: 26474813 DOI: 10.1182/blood-2015-08-663005] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 10/09/2015] [Indexed: 12/22/2022] Open
Abstract
A subpopulation of platelets fulfills a procoagulant role in hemostasis and thrombosis by enabling the thrombin burst required for fibrin formation and clot stability at the site of vascular injury. Excess procoagulant activity is linked with pathological thrombosis. The identity of the procoagulant platelet has been elusive. The cell death marker 4-[N-(S-glutathionylacetyl)amino]phenylarsonous acid (GSAO) rapidly enters a subpopulation of agonist-stimulated platelets via an organic anion-transporting polypeptide and is retained in the cytosol through covalent reaction with protein dithiols. Labeling with GSAO, together with exposure of P-selectin, distinguishes necrotic from apoptotic platelets and correlates with procoagulant potential. GSAO(+) platelets form in occluding murine thrombi after ferric chloride injury and are attenuated with megakaryocyte-directed deletion of the cyclophilin D gene. These platelets form a procoagulant surface, supporting fibrin formation, and reduction in GSAO(+) platelets is associated with reduction in platelet thrombus size and fibrin formation. Analysis of platelets from human subjects receiving aspirin therapy indicates that these procoagulant platelets form despite aspirin therapy, but are attenuated by inhibition of the necrosis pathway. These findings indicate that the major subpopulation of platelets involved in fibrin formation are formed via regulated necrosis involving cyclophilin D, and that they may be targeted independent of platelet activation.
Collapse
|
250
|
Deposition of fibrinogen on the surface of in vitro thrombi prevents platelet adhesion. Thromb Res 2015; 136:1231-9. [PMID: 26482763 DOI: 10.1016/j.thromres.2015.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 09/01/2015] [Accepted: 10/02/2015] [Indexed: 11/21/2022]
Abstract
The initial accumulation of platelets after vessel injury is followed by thrombin-mediated generation of fibrin which is deposited around the plug. While numerous in vitro studies have shown that fibrin is highly adhesive for platelets, the surface of experimental thrombi in vivo contains very few platelets suggesting the existence of natural anti-adhesive mechanisms protecting stabilized thrombi from platelet accumulation and continuous thrombus propagation. We previously showed that adsorption of fibrinogen on pure fibrin clots results in the formation of a nonadhesive matrix, highlighting a possible role of this process in surface-mediated control of thrombus growth. However, the deposition of fibrinogen on the surface of blood clots has not been examined. In this study, we investigated the presence of intact fibrinogen on the surface of fibrin-rich thrombi generated from flowing blood and determined whether deposited fibrinogen is nonadhesive for platelets. Stabilized fibrin-rich thrombi were generated using a flow chamber and the time that platelets spend on the surface of thrombi was determined by video recording. The presence of fibrinogen and fibrin on the surface of thrombi was analyzed by confocal microscopy using specific antibodies. Examination of the spatial distribution of two proteins revealed the presence of intact fibrinogen on the surface of stabilized thrombi. By manipulating the surface of thrombi to display either fibrin or intact fibrinogen, we found that platelets adhere to fibrin- but not to fibrinogen-coated thrombi. These results indicate that the fibrinogen matrix assembled on the outer layer of stabilized in vitro thrombi protects them from platelet adhesion.
Collapse
|