201
|
Identification and validation of reference genes for quantitative real-time PCR normalization and its applications in lycium. PLoS One 2014; 9:e97039. [PMID: 24810586 PMCID: PMC4014596 DOI: 10.1371/journal.pone.0097039] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Accepted: 04/14/2014] [Indexed: 01/03/2023] Open
Abstract
Lycium barbarum and L. ruthenicum are extensively used as traditional Chinese medicinal plants. Next generation sequencing technology provides a powerful tool for analyzing transcriptomic profiles of gene expression in non-model species. Such gene expression can then be confirmed with quantitative real-time polymerase chain reaction (qRT-PCR). Therefore, use of systematically identified suitable reference genes is a prerequisite for obtaining reliable gene expression data. Here, we calculated the expression stability of 18 candidate reference genes across samples from different tissues and grown under salt stress using geNorm and NormFinder procedures. The geNorm-determined rank of reference genes was similar to those defined by NormFinder with some differences. Both procedures confirmed that the single most stable reference gene was ACNTIN1 for L. barbarum fruits, H2B1 for L. barbarum roots, and EF1α for L. ruthenicum fruits. PGK3, H2B2, and PGK3 were identified as the best stable reference genes for salt-treated L. ruthenicum leaves, roots, and stems, respectively. H2B1 and GAPDH1+PGK1 for L. ruthenicum and SAMDC2+H2B1 for L. barbarum were the best single and/or combined reference genes across all samples. Finally, expression of salt-responsive gene NAC, fruit ripening candidate gene LrPG, and anthocyanin genes were investigated to confirm the validity of the selected reference genes. Suitable reference genes identified in this study provide a foundation for accurately assessing gene expression and further better understanding of novel gene function to elucidate molecular mechanisms behind particular biological/physiological processes in Lycium.
Collapse
|
202
|
Lin Y, Zhang C, Lan H, Gao S, Liu H, Liu J, Cao M, Pan G, Rong T, Zhang S. Validation of potential reference genes for qPCR in maize across abiotic stresses, hormone treatments, and tissue types. PLoS One 2014; 9:e95445. [PMID: 24810581 PMCID: PMC4014480 DOI: 10.1371/journal.pone.0095445] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 03/26/2014] [Indexed: 01/15/2023] Open
Abstract
The reverse transcription quantitative polymerase chain reaction (RT-qPCR) is a powerful and widely used technique for the measurement of gene expression. Reference genes, which serve as endogenous controls ensure that the results are accurate and reproducible, are vital for data normalization. To bolster the literature on reference gene selection in maize, ten candidate reference genes, including eight traditionally used internal control genes and two potential candidate genes from our microarray datasets, were evaluated for expression level in maize across abiotic stresses (cold, heat, salinity, and PEG), phytohormone treatments (abscisic acid, salicylic acid, jasmonic acid, ethylene, and gibberellins), and different tissue types. Three analytical software packages, geNorm, NormFinder, and Bestkeeper, were used to assess the stability of reference gene expression. The results revealed that elongation factor 1 alpha (EF1α), tubulin beta (β-TUB), cyclophilin (CYP), and eukaryotic initiation factor 4A (EIF4A) were the most reliable reference genes for overall gene expression normalization in maize, while GRP (Glycine-rich RNA-binding protein), GLU1(beta-glucosidase), and UBQ9 (ubiquitin 9) were the least stable and most unsuitable genes. In addition, the suitability of EF1α, β-TUB, and their combination as reference genes was confirmed by validating the expression of WRKY50 in various samples. The current study indicates the appropriate reference genes for the urgent requirement of gene expression normalization in maize across certain abiotic stresses, hormones, and tissue types.
Collapse
Affiliation(s)
- Yueai Lin
- Key Laboratory of Biology and Genetic Breeding of Maize in Southwest China of Agricultural Department, Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Chenlu Zhang
- Key Laboratory of Biology and Genetic Breeding of Maize in Southwest China of Agricultural Department, Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Hai Lan
- Key Laboratory of Biology and Genetic Breeding of Maize in Southwest China of Agricultural Department, Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Shibin Gao
- Key Laboratory of Biology and Genetic Breeding of Maize in Southwest China of Agricultural Department, Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Hailan Liu
- Key Laboratory of Biology and Genetic Breeding of Maize in Southwest China of Agricultural Department, Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jian Liu
- Key Laboratory of Biology and Genetic Breeding of Maize in Southwest China of Agricultural Department, Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Moju Cao
- Key Laboratory of Biology and Genetic Breeding of Maize in Southwest China of Agricultural Department, Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Guangtang Pan
- Key Laboratory of Biology and Genetic Breeding of Maize in Southwest China of Agricultural Department, Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Tingzhao Rong
- Key Laboratory of Biology and Genetic Breeding of Maize in Southwest China of Agricultural Department, Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Suzhi Zhang
- Key Laboratory of Biology and Genetic Breeding of Maize in Southwest China of Agricultural Department, Maize Research Institute, Sichuan Agricultural University, Chengdu, China
- * E-mail:
| |
Collapse
|
203
|
Wang Z, Chen Y, Fang H, Shi H, Chen K, Zhang Z, Tan X. Selection of reference genes for quantitative reverse-transcription polymerase chain reaction normalization in Brassica napus under various stress conditions. Mol Genet Genomics 2014; 289:1023-35. [PMID: 24770781 DOI: 10.1007/s00438-014-0853-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 04/07/2014] [Indexed: 12/16/2022]
Abstract
Data normalization is essential for reliable output of quantitative real-time reverse-transcription polymerase chain reaction (qRT-PCR) assays, as the unsuitable choice of reference gene(s), whose expression might be influenced by exogenous treatments in plant tissues, could cause misinterpretation of results. To date, no systematic studies on reference genes have been performed in stressed Brassica napus. In this study, we investigated the expression variations of nine candidate reference genes in 40 samples of B. napus leaves subjected to various exogenous treatments. Parallel analyses by geNorm and NormFinder revealed that optimal reference genes differed across the different sets of samples. The best-ranked reference genes were PP2A and TIP41 for salt stress, TIP41 and ACT7 for heavy metal (Cr(6+)) stress, PP2A and UBC21 for drought stress, F-box and SAND for cold stress, F-box and ZNF for salicylic acid stress, TIP41, ACT7, and PP2A for methyl jasmonate stress, TIP41 and ACT7 for abscisic acid stress, and TIP41, UBC21, and PP2A for Sclerotinia sclerotiorum stress. Two newly employed reference genes, TIP41 and PP2A, showed better performances, suggesting their suitability in multiple conditions. To further validate the suitability of the reference genes, the expression patterns of BnWRKY40 and BnMKS1 were studied in parallel. This study is the first systematic analysis of reference gene selection for qRT-PCR normalization in B. napus, an agriculturally important crop, under different stress conditions. The results will contribute toward more accurate and widespread use of qRT-PCR in gene analysis of the genus Brassica.
Collapse
Affiliation(s)
- Zheng Wang
- Institute of Life Sciences, Jiangsu University, 301# Xuefu Road, Zhenjiang, 212013, People's Republic of China,
| | | | | | | | | | | | | |
Collapse
|
204
|
Molecular characterization and expression profiling of the protein disulfide isomerase gene family in Brachypodium distachyon L. PLoS One 2014; 9:e94704. [PMID: 24747843 PMCID: PMC3991636 DOI: 10.1371/journal.pone.0094704] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 03/17/2014] [Indexed: 01/09/2023] Open
Abstract
Protein disulfide isomerases (PDI) are involved in catalyzing protein disulfide bonding and isomerization in the endoplasmic reticulum and functions as a chaperone to inhibit the aggregation of misfolded proteins. Brachypodium distachyon is a widely used model plant for temperate grass species such as wheat and barley. In this work, we report the first molecular characterization, phylogenies, and expression profiles of PDI and PDI-like (PDIL) genes in B. distachyon in different tissues under various abiotic stresses. Eleven PDI and PDIL genes in the B. distachyon genome by in silico identification were evenly distributed across all five chromosomes. The plant PDI family has three conserved motifs that are involved in catalyzing protein disulfide bonding and isomerization, but a different exon/intron structural organization showed a high degree of structural differentiation. Two pairs of genes (BdPDIL4-1 and BdPDIL4-2; BdPDIL7-1 and BdPDIL7-2) contained segmental duplications, indicating each pair originated from one progenitor. Promoter analysis showed that Brachypodium PDI family members contained important cis-acting regulatory elements involved in seed storage protein synthesis and diverse stress response. All Brachypodium PDI genes investigated were ubiquitously expressed in different organs, but differentiation in expression levels among different genes and organs was clear. BdPDIL1-1 and BdPDIL5-1 were expressed abundantly in developing grains, suggesting that they have important roles in synthesis and accumulation of seed storage proteins. Diverse treatments (drought, salt, ABA, and H2O2) induced up- and down-regulated expression of Brachypodium PDI genes in seedling leaves. Interestingly, BdPDIL1-1 displayed significantly up-regulated expression following all abiotic stress treatments, indicating that it could be involved in multiple stress responses. Our results provide new insights into the structural and functional characteristics of the plant PDI gene family.
Collapse
|
205
|
Huang L, Yan H, Jiang X, Yin G, Zhang X, Qi X, Zhang Y, Yan Y, Ma X, Peng Y. Identification of candidate reference genes in perennial ryegrass for quantitative RT-PCR under various abiotic stress conditions. PLoS One 2014; 9:e93724. [PMID: 24699822 PMCID: PMC3974806 DOI: 10.1371/journal.pone.0093724] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 03/06/2014] [Indexed: 12/23/2022] Open
Abstract
Background Quantitative real-time reverse-transcriptase PCR (qRT-PCR) is an important technique for analyzing differences in gene expression due to its sensitivity, accuracy and specificity. However, the stability of the expression of reference genes is necessary to ensure accurate qRT-PCR assessment of expression in genes of interest. Perennial ryegrass (Lolium perenne L.) is important forage and turf grass species in temperate regions, but the expression stability of its reference genes under various stresses has not been well-studied. Methodology/Principal Findings In this study, 11 candidate reference genes were evaluated for use as controls in qRT-PCR to quantify gene expression in perennial ryegrass under drought, high salinity, heat, waterlogging, and ABA (abscisic acid) treatments. Four approaches – Delta CT, geNorm, BestKeeper and Normfinder were used to determine the stability of expression in these reference genes. The results are consistent with the idea that the best reference genes depend on the stress treatment under investigation. Eukaryotic initiation factor 4 alpha (eIF4A), Transcription elongation factor 1 (TEF1) and Tat binding protein-1 (TBP-1) were the three most stably expressed genes under drought stress and were also the three best genes for studying salt stress. eIF4A, TBP-1, and Ubiquitin-conjugating enzyme (E2) were the most suitable reference genes to study heat stress, while eIF4A, TEF1, and E2 were the three best reference genes for studying the effects of ABA. Finally, Ubiquitin (UBQ), TEF1, and eIF4A were the three best reference genes for waterlogging treatments. Conclusions/Significance These results will be helpful in choosing the best reference genes for use in studies related to various abiotic stresses in perennial ryegrass. The stability of expression in these reference genes will enable better normalization and quantification of the transcript levels for studies of gene expression in such studies.
Collapse
Affiliation(s)
- Linkai Huang
- Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Haidong Yan
- Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Xiaomei Jiang
- Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Guohua Yin
- College of Agriculture and Life Sciences, The University of Arizona, Tucson, Arizona, United States of America
| | - Xinquan Zhang
- Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural University, Ya’an, Sichuan, China
- * E-mail:
| | - Xiao Qi
- National Animal Husbandry Service, Ministry of Agriculture, Beijing, Beijing, China
| | - Yu Zhang
- Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Yanhong Yan
- Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Xiao Ma
- Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Yan Peng
- Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural University, Ya’an, Sichuan, China
| |
Collapse
|
206
|
Gimeno J, Eattock N, Van Deynze A, Blumwald E. Selection and validation of reference genes for gene expression analysis in switchgrass (Panicum virgatum) using quantitative real-time RT-PCR. PLoS One 2014; 9:e91474. [PMID: 24621568 PMCID: PMC3951385 DOI: 10.1371/journal.pone.0091474] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 02/12/2014] [Indexed: 01/21/2023] Open
Abstract
Switchgrass (Panicum virgatum) has received a lot of attention as a forage and bioenergy crop during the past few years. Gene expression studies are in progress to improve new traits and develop new cultivars. Quantitative real time PCR (qRT-PCR) has emerged as an important technique to study gene expression analysis. For accurate and reliable results, normalization of data with reference genes is essential. In this work, we evaluate the stability of expression of genes to use as reference for qRT-PCR in the grass P. virgatum. Eleven candidate reference genes, including eEF-1α, UBQ6, ACT12, TUB6, eIF-4a, GAPDH, SAMDC, TUA6, CYP5, U2AF, and FTSH4, were validated for qRT-PCR normalization in different plant tissues and under different stress conditions. The expression stability of these genes was verified by the use of two distinct algorithms, geNorm and NormFinder. Differences were observed after comparison of the ranking of the candidate reference genes identified by both programs but eEF-1α, eIF-4a, CYP5 and U2AF are ranked as the most stable genes in the samples sets under study. Both programs discard the use of SAMDC and TUA6 for normalization. Validation of the reference genes proposed by geNorm and NormFinder were performed by normalization of transcript abundance of a group of target genes in different samples. Results show similar expression patterns when the best reference genes selected by both programs were used but differences were detected in the transcript abundance of the target genes. Based on the above research, we recommend the use of different statistical algorithms to identify the best reference genes for expression data normalization. The best genes selected in this study will help to improve the quality of gene expression data in a wide variety of samples in switchgrass.
Collapse
Affiliation(s)
- Jacinta Gimeno
- Department of Plant Sciences, University of California Davis, Davis, California, United States of America
| | - Nicholas Eattock
- Department of Plant Sciences, University of California Davis, Davis, California, United States of America
| | - Allen Van Deynze
- Department of Plant Sciences, University of California Davis, Davis, California, United States of America
| | - Eduardo Blumwald
- Department of Plant Sciences, University of California Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
207
|
Liu M, Jiang J, Han X, Qiao G, Zhuo R. Validation of reference genes aiming accurate normalization of qRT-PCR data in Dendrocalamus latiflorus Munro. PLoS One 2014; 9:e87417. [PMID: 24498321 PMCID: PMC3911976 DOI: 10.1371/journal.pone.0087417] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 12/21/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Dendrocalamus latiflorus Munro distributes widely in subtropical areas and plays vital roles as valuable natural resources. The transcriptome sequencing for D. latiflorus Munro has been performed and numerous genes especially those predicted to be unique to D. latiflorus Munro were revealed. qRT-PCR has become a feasible approach to uncover gene expression profiling, and the accuracy and reliability of the results obtained depends upon the proper selection of stable reference genes for accurate normalization. Therefore, a set of suitable internal controls should be validated for D. latiflorus Munro. RESULTS In this report, twelve candidate reference genes were selected and the assessment of gene expression stability was performed in ten tissue samples and four leaf samples from seedlings and anther-regenerated plants of different ploidy. The PCR amplification efficiency was estimated, and the candidate genes were ranked according to their expression stability using three software packages: geNorm, NormFinder and Bestkeeper. GAPDH and EF1α were characterized to be the most stable genes among different tissues or in all the sample pools, while CYP showed low expression stability. RPL3 had the optimal performance among four leaf samples. The application of verified reference genes was illustrated by analyzing ferritin and laccase expression profiles among different experimental sets. The analysis revealed the biological variation in ferritin and laccase transcript expression among the tissues studied and the individual plants. CONCLUSIONS geNorm, NormFinder, and BestKeeper analyses recommended different suitable reference gene(s) for normalization according to the experimental sets. GAPDH and EF1α had the highest expression stability across different tissues and RPL3 for the other sample set. This study emphasizes the importance of validating superior reference genes for qRT-PCR analysis to accurately normalize gene expression of D. latiflorus Munro.
Collapse
Affiliation(s)
- Mingying Liu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, People’s Republic of China
- The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, People’s Republic of China
| | - Jing Jiang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, People’s Republic of China
- The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, People’s Republic of China
| | - Xiaojiao Han
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, People’s Republic of China
- The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, People’s Republic of China
| | - Guirong Qiao
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, People’s Republic of China
- The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, People’s Republic of China
| | - Renying Zhuo
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, People’s Republic of China
- The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, People’s Republic of China
- * E-mail:
| |
Collapse
|
208
|
Ream TS, Woods DP, Schwartz CJ, Sanabria CP, Mahoy JA, Walters EM, Kaeppler HF, Amasino RM. Interaction of photoperiod and vernalization determines flowering time of Brachypodium distachyon. PLANT PHYSIOLOGY 2014; 164:694-709. [PMID: 24357601 PMCID: PMC3912099 DOI: 10.1104/pp.113.232678] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Accepted: 12/09/2013] [Indexed: 05/20/2023]
Abstract
Timing of flowering is key to the reproductive success of many plants. In temperate climates, flowering is often coordinated with seasonal environmental cues such as temperature and photoperiod. Vernalization is an example of temperature influencing the timing of flowering and is defined as the process by which a prolonged exposure to the cold of winter results in competence to flower during the following spring. In cereals, three genes (VERNALIZATION1 [VRN1], VRN2, and FLOWERING LOCUS T [FT]) have been identified that influence the vernalization requirement and are thought to form a regulatory loop to control the timing of flowering. Here, we characterize natural variation in the vernalization and photoperiod responses in Brachypodium distachyon, a small temperate grass related to wheat (Triticum aestivum) and barley (Hordeum vulgare). Brachypodium spp. accessions display a wide range of flowering responses to different photoperiods and lengths of vernalization. In addition, we characterize the expression patterns of the closest homologs of VRN1, VRN2 (VRN2-like [BdVRN2L]), and FT before, during, and after cold exposure as well as in different photoperiods. FT messenger RNA levels generally correlate with flowering time among accessions grown in different photoperiods, and FT is more highly expressed in vernalized plants after cold. VRN1 is induced by cold in leaves and remains high following vernalization. Plants overexpressing VRN1 or FT flower rapidly in the absence of vernalization, and plants overexpressing VRN1 exhibit lower BdVRN2L levels. Interestingly, BdVRN2L is induced during cold, which is a difference in the behavior of BdVRN2L compared with wheat VRN2 during cold.
Collapse
|
209
|
Lv DW, Subburaj S, Cao M, Yan X, Li X, Appels R, Sun DF, Ma W, Yan YM. Proteome and phosphoproteome characterization reveals new response and defense mechanisms of Brachypodium distachyon leaves under salt stress. Mol Cell Proteomics 2014; 13:632-52. [PMID: 24335353 PMCID: PMC3916659 DOI: 10.1074/mcp.m113.030171] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 11/22/2013] [Indexed: 11/27/2022] Open
Abstract
Salinity is a major abiotic stress affecting plant growth and development. Understanding the molecular mechanisms of salt response and defense in plants will help in efforts to improve the salt tolerance of crops. Brachypodium distachyon is a new model plant for wheat, barley, and several potential biofuel grasses. In the current study, proteome and phosphoproteome changes induced by salt stress were the focus. The Bd21 leaves were initially treated with salt in concentrations ranging from 80 to 320 mm and then underwent a recovery process prior to proteome analysis. A total of 80 differentially expressed protein spots corresponding to 60 unique proteins were identified. The sample treated with a median salt level of 240 mm and the control were selected for phosphopeptide purification using TiO2 microcolumns and LC-MS/MS for phosphoproteome analysis to identify the phosphorylation sites and phosphoproteins. A total of 1509 phosphoproteins and 2839 phosphorylation sites were identified. Among them, 468 phosphoproteins containing 496 phosphorylation sites demonstrated significant changes at the phosphorylation level. Nine phosphorylation motifs were extracted from the 496 phosphorylation sites. Of the 60 unique differentially expressed proteins, 14 were also identified as phosphoproteins. Many proteins and phosphoproteins, as well as potential signal pathways associated with salt response and defense, were found, including three 14-3-3s (GF14A, GF14B, and 14-3-3A) for signal transduction and several ABA signal-associated proteins such as ABF2, TRAB1, and SAPK8. Finally, a schematic salt response and defense mechanism in B. distachyon was proposed.
Collapse
Affiliation(s)
- Dong-Wen Lv
- From the ‡College of Life Science, Capital Normal University, 100048 Beijing, China
| | - Saminathan Subburaj
- From the ‡College of Life Science, Capital Normal University, 100048 Beijing, China
| | - Min Cao
- From the ‡College of Life Science, Capital Normal University, 100048 Beijing, China
| | - Xing Yan
- From the ‡College of Life Science, Capital Normal University, 100048 Beijing, China
| | - Xiaohui Li
- From the ‡College of Life Science, Capital Normal University, 100048 Beijing, China
| | - Rudi Appels
- §State Agriculture Biotechnology Centre, Murdoch University and Western Australian Department of Agriculture and Food, Perth, WA 6150, Australia
| | - Dong-Fa Sun
- ¶College of Plant Science and Technology, Huazhong Agricultural University, 430070 Wuhan, China
| | - Wujun Ma
- §State Agriculture Biotechnology Centre, Murdoch University and Western Australian Department of Agriculture and Food, Perth, WA 6150, Australia
| | - Yue-Ming Yan
- From the ‡College of Life Science, Capital Normal University, 100048 Beijing, China
| |
Collapse
|
210
|
Genome-wide analysis of the MADS-box gene family in Brachypodium distachyon. PLoS One 2014; 9:e84781. [PMID: 24454749 PMCID: PMC3890268 DOI: 10.1371/journal.pone.0084781] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 11/18/2013] [Indexed: 01/16/2023] Open
Abstract
MADS-box genes are important transcription factors for plant development, especially floral organogenesis. Brachypodium distachyon is a model for biofuel plants and temperate grasses such as wheat and barley, but a comprehensive analysis of MADS-box family proteins in Brachypodium is still missing. We report here a genome-wide analysis of the MADS-box gene family in Brachypodium distachyon. We identified 57 MADS-box genes and classified them into 32 MIKCc-type, 7 MIKC*-type, 9 Mα, 7 Mβ and 2 Mγ MADS-box genes according to their phylogenetic relationships to the Arabidopsis and rice MADS-box genes. Detailed gene structure and motif distribution were then studied. Investigation of their chromosomal localizations revealed that Brachypodium MADS-box genes distributed evenly across five chromosomes. In addition, five pairs of type II MADS-box genes were found on synteny blocks derived from whole genome duplication blocks. We then performed a systematic expression analysis of Brachypodium MADS-box genes in various tissues, particular floral organs. Further detection under salt, drought, and low-temperature conditions showed that some MADS-box genes may also be involved in abiotic stress responses, including type I genes. Comparative studies of MADS-box genes among Brachypodium, rice and Arabidopsis showed that Brachypodium had fewer gene duplication events. Taken together, this work provides useful data for further functional studies of MADS-box genes in Brachypodium distachyon.
Collapse
|
211
|
Nopo-Olazabal C, Condori J, Nopo-Olazabal L, Medina-Bolivar F. Differential induction of antioxidant stilbenoids in hairy roots of Vitis rotundifolia treated with methyl jasmonate and hydrogen peroxide. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 74:50-69. [PMID: 24269870 DOI: 10.1016/j.plaphy.2013.10.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 10/29/2013] [Indexed: 06/02/2023]
Abstract
Stilbenoids are polyphenolic phytoalexins that exhibit potential health applications in humans. Hairy root cultures of muscadine grape (Vitis rotundifolia Michx.) were used to study the biochemical and molecular regulation of stilbenoid biosynthesis upon treatment with 100 μM methyl jasmonate (MeJA) or 10 mM hydrogen peroxide (H2O2) over a 96-h period. Resveratrol, piceid, and ε-viniferin were identified in higher concentrations in the tissue whereas resveratrol was the most abundant stilbenoid in the medium under either treatment. An earlier increase in resveratrol accumulation was observed for the MeJA-treated group showing a maximum at 12 h in the tissue and 18 h in the medium. Furthermore, the antioxidant capacity of extracts from the tissue and medium was determined by the 2,2'-azinobis[3-ethylbenzthiazoline sulfonic acid] (ABTS) and the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assays showing correlation with the stilbenoid content. Fourteen candidate reference genes for qPCR were tested under the described experimental conditions and resulted in the selection of 5 reference genes. Quantitative analyses of transcripts for phenylalanine ammonia-lyase (PAL), resveratrol synthase (RS), and two stilbene synthases (STS and STS2) showed the highest RNA level induction at 3 h for both treatments with a higher induction for the MeJA treatment. In contrast, the flavonoid-related chalcone synthase (CHS) transcripts showed induction and a decrease in expression for MeJA and H2O2 treatments, respectively. The observed responses could be related to an oxidative burst triggered by the exposure to abiotic stressor compounds with signaling function such as MeJA and H2O2 which have been previously related to the synthesis of secondary metabolites.
Collapse
Affiliation(s)
- Cesar Nopo-Olazabal
- Arkansas Biosciences Institute, Arkansas State University, P.O. Box 639, State University, AR 72467, USA
| | - Jose Condori
- Arkansas Biosciences Institute, Arkansas State University, P.O. Box 639, State University, AR 72467, USA
| | - Luis Nopo-Olazabal
- Arkansas Biosciences Institute, Arkansas State University, P.O. Box 639, State University, AR 72467, USA; Department of Biological Sciences, Arkansas State University, State University, AR 72467, USA
| | - Fabricio Medina-Bolivar
- Arkansas Biosciences Institute, Arkansas State University, P.O. Box 639, State University, AR 72467, USA; Department of Biological Sciences, Arkansas State University, State University, AR 72467, USA.
| |
Collapse
|
212
|
Exploring the interaction between small RNAs and R genes during Brachypodium response to Fusarium culmorum infection. Gene 2013; 536:254-64. [PMID: 24368332 DOI: 10.1016/j.gene.2013.12.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 11/22/2013] [Accepted: 12/10/2013] [Indexed: 01/15/2023]
Abstract
The present study aims to investigate small RNA interactions with putative disease response genes in the model grass species Brachypodium distachyon. The fungal pathogen Fusarium culmorum (Fusarium herein) and phytohormone salicylic acid treatment were used to induce the disease response in Brachypodium. Initially, 121 different putative disease response genes were identified using bioinformatic and homology based approaches. Computational prediction was used to identify 33 candidate new miRNA coding sequences, of which 9 were verified by analysis of small RNA sequence libraries. Putative Brachypodium miRNA target sites were identified in the disease response genes, and a subset of which were screened for expression and possible miRNA interactions in 5 different Brachypodium lines infected with Fusarium. An NBS-LRR family gene, 1g34430, was polymorphic among the lines, forming two major genotypes, one of which has its miRNA target sites deleted, resulting in altered gene expression during infection. There were siRNAs putatively involved in regulation of this gene, indicating a role of small RNAs in the B. distachyon disease response.
Collapse
|
213
|
González-Agüero M, García-Rojas M, Di Genova A, Correa J, Maass A, Orellana A, Hinrichsen P. Identification of two putative reference genes from grapevine suitable for gene expression analysis in berry and related tissues derived from RNA-Seq data. BMC Genomics 2013; 14:878. [PMID: 24330674 PMCID: PMC3878734 DOI: 10.1186/1471-2164-14-878] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 12/02/2013] [Indexed: 11/10/2022] Open
Abstract
Background Data normalization is a key step in gene expression analysis by qPCR. Endogenous control genes are used to estimate variations and experimental errors occurring during sample preparation and expression measurements. However, the transcription level of the most commonly used reference genes can vary considerably in samples obtained from different individuals, tissues, developmental stages and under variable physiological conditions, resulting in a misinterpretation of the performance of the target gene(s). This issue has been scarcely approached in woody species such as grapevine. Results A statistical criterion was applied to select a sub-set of 19 candidate reference genes from a total of 242 non-differentially expressed (NDE) genes derived from a RNA-Seq experiment comprising ca. 500 million reads obtained from 14 table-grape genotypes sampled at four phenological stages. From the 19 candidate reference genes, VvAIG1 (AvrRpt2-induced gene) and VvTCPB (T-complex 1 beta-like protein) were found to be the most stable ones after comparing the complete set of genotypes and phenological stages studied. This result was further validated by qPCR and geNorm analyses. Conclusions Based on the evidence presented in this work, we propose to use the grapevine genes VvAIG1 or VvTCPB or both as a reference tool to normalize RNA expression in qPCR assays or other quantitative method intended to measure gene expression in berries and other tissues of this fruit crop, sampled at different developmental stages and physiological conditions.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Patricio Hinrichsen
- Instituto de Investigaciones Agropecuarias (INIA -Chile), La Platina Research Centre, Santiago, Chile, Av, Santa Rosa 11, 610, P,O, Box 439-3, Santiago, Chile.
| |
Collapse
|
214
|
Sang J, Han X, Liu M, Qiao G, Jiang J, Zhuo R. Selection and validation of reference genes for real-time quantitative PCR in hyperaccumulating ecotype of Sedum alfredii under different heavy metals stresses. PLoS One 2013; 8:e82927. [PMID: 24340067 PMCID: PMC3858333 DOI: 10.1371/journal.pone.0082927] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 10/29/2013] [Indexed: 12/24/2022] Open
Abstract
Real-time Quantitative PCR (RT-qPCR) has become an effective method for accurate analysis of gene expression in several biological systems as well as under different experimental conditions. Although with high sensitivity, specificity and broad dynamic range, this method requires suitable reference genes for transcript normalization in order to guarantee reproducible and meaningful results. In the present study, we evaluated five traditional housekeeping genes and five novel reference genes in Hyperaccumulating ecotype of Sedum alfredii, a well known hyperaccumulator for heavy metals phytoremediation, under Cd, Pb, Zn and Cu stresses of seven different durations. The expression stability of these ten candidates were determined with three programs - geNorm, NormFinder and BestKeeper. The results showed that all the selected reference genes except for SAND could be used for RT-qPCR normalization. Among them UBC9 and TUB were ranked as the most stable candidates across all samples by three programs together. For the least stable reference genes, however, BestKeeper produced different results compared with geNorm and NormFinder. Meanwhile, the expression profiles of PCS under Cd, Pb, Zn and Cu stresses were assessed using UBC9 and TUB respectively, and similar trends were obtained from the results of the two groups. The distinct expression patterns of PCS indicated that various strategies could be taken by plants in adaption to different heavy metals stresses. This study will provide appropriate reference genes for further gene expression quantification using RT-qPCR in Hyperaccumulator S. alfredii.
Collapse
Affiliation(s)
- Jian Sang
- State Key Laboratory of Tree Genetics and Breeding, Beijing, China
- Key Laboratory of Tree Genomics, The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, Zhejiang, China
| | - Xiaojiao Han
- State Key Laboratory of Tree Genetics and Breeding, Beijing, China
- Key Laboratory of Tree Genomics, The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, Zhejiang, China
| | - Mingying Liu
- State Key Laboratory of Tree Genetics and Breeding, Beijing, China
- Key Laboratory of Tree Genomics, The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, Zhejiang, China
| | - Guirong Qiao
- State Key Laboratory of Tree Genetics and Breeding, Beijing, China
- Key Laboratory of Tree Genomics, The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, Zhejiang, China
| | - Jing Jiang
- State Key Laboratory of Tree Genetics and Breeding, Beijing, China
- Key Laboratory of Tree Genomics, The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, Zhejiang, China
| | - Renying Zhuo
- State Key Laboratory of Tree Genetics and Breeding, Beijing, China
- Key Laboratory of Tree Genomics, The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, Zhejiang, China
- * E-mail:
| |
Collapse
|
215
|
Subburaj S, Chen G, Han C, Lv D, Li X, Zeller FJ, Hsam SLK, Yan Y. Molecular characterisation and evolution of HMW glutenin subunit genes in Brachypodium distachyon L. J Appl Genet 2013; 55:27-42. [PMID: 24306693 DOI: 10.1007/s13353-013-0187-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 11/10/2013] [Accepted: 11/19/2013] [Indexed: 01/13/2023]
Abstract
Brachypodium distachyon, a small wild grass within the Pooideae family, is a new model organism for exploring the functional genomics of cereal crops. It was shown to have close relationships to wheat, barley and rice. Here, we describe the molecular characterisation and evolutionary relationships of high molecular weight glutenin subunits (HMW-GS) genes from B. distachyon. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE), high performance capillary electrophoresis (HPCE) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyses demonstrated that there was no HMW-GS expression in the Brachypodium grains due to the silencing of their encoding genes. Through allele-specific polymerase chain reaction (AS-PCR) amplification and cloning, a total of 13 HMW-GS encoding genes from diploid, tetraploid and hexaploid Brachypodium species were obtained, and all of them had typical structural features of y-type HMW-GS genes from common wheat and related species, particularly more similar to the 1Dy12 gene. However, the presence of an in-frame premature stop codon (TAG) at position 1521 in the coding region resulted in the conversion of all the genes to pseudogenes. Further, quantitative real-time PCR (qRT-PCR) analysis revealed that HMW-GS genes in B. distachyon displayed a similar trend, but with a low transcriptional expression profile during grain development due to the occurrence of the stop codon. Phylogenetic analysis showed that the highly conserved Glu-1-2 loci were presented in B. distachyon, which displayed close phylogenetic evolutionary relationships with Triticum and related species.
Collapse
|
216
|
Identification of appropriate reference genes for normalizing transcript expression by quantitative real-time PCR in Litsea cubeba. Mol Genet Genomics 2013; 288:727-37. [DOI: 10.1007/s00438-013-0785-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 10/12/2013] [Indexed: 12/13/2022]
|
217
|
Ma S, Niu H, Liu C, Zhang J, Hou C, Wang D. Expression stabilities of candidate reference genes for RT-qPCR under different stress conditions in soybean. PLoS One 2013; 8:e75271. [PMID: 24124481 PMCID: PMC3790784 DOI: 10.1371/journal.pone.0075271] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Accepted: 08/14/2013] [Indexed: 11/19/2022] Open
Abstract
Due to its accuracy, sensitivity and high throughput, real time quantitative PCR (RT-qPCR) has been widely used in analysing gene expression. The quality of data from such analyses is affected by the quality of reference genes used. Expression stabilities for nine candidate reference genes widely used in soybean were evaluated under different stresses in this study. Our results showed that EF1A and ACT11 were the best under salinity stress, TUB4, TUA5 and EF1A were the best under drought stress, ACT11 and UKN2 were the best under dark treatment, and EF1B and UKN2 were the best under virus infection. EF1B and UKN2 were the top two genes which can be reliably used in all of the stress conditions assessed.
Collapse
Affiliation(s)
- Shuhua Ma
- College of Life Science, Agricultural University of Hebei, Baoding, Hebei Province, China
| | | | | | | | | | | |
Collapse
|
218
|
Simon B, Conner JA, Ozias-Akins P. Selection and validation of reference genes for gene expression analysis in apomictic and sexual Cenchrus ciliaris. BMC Res Notes 2013; 6:397. [PMID: 24083672 PMCID: PMC3854615 DOI: 10.1186/1756-0500-6-397] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 09/25/2013] [Indexed: 11/24/2022] Open
Abstract
Background Apomixis is a naturally occurring asexual mode of seed reproduction resulting in offspring genetically identical to the maternal plant. Identifying differential gene expression patterns between apomictic and sexual plants is valuable to help deconstruct the trait. Quantitative RT-PCR (qRT-PCR) is a popular method for analyzing gene expression. Normalizing gene expression data using proper reference genes which show stable expression under investigated conditions is critical in qRT-PCR analysis. We used qRT-PCR to validate expression and stability of six potential reference genes (EF1alpha, EIF4A, UBCE, GAPDH, ACT2 and TUBA) in vegetative and reproductive tissues of B-2S and B-12-9 accessions of C. ciliaris. Findings Among tissue types evaluated, EF1alpha showed the highest level of expression while TUBA showed the lowest. When all tissue types were evaluated and compared between genotypes, EIF4A was the most stable reference gene. Gene expression stability for specific ovary stages of B-2S and B-12-9 was also determined. Except for TUBA, all other tested reference genes could be used for any stage-specific ovary tissue normalization, irrespective of the mode of reproduction. Conclusion Our gene expression stability assay using six reference genes, in sexual and apomictic accessions of C. ciliaris, suggests that EIF4A is the most stable gene across all tissue types analyzed. All other tested reference genes, with the exception of TUBA, could be used for gene expression comparison studies between sexual and apomictic ovaries over multiple developmental stages. This reference gene validation data in C. ciliaris will serve as an important base for future apomixis-related transcriptome data validation.
Collapse
Affiliation(s)
- Bindu Simon
- Department of Horticulture, The University of Georgia Tifton Campus, Tifton, GA 31793, USA.
| | | | | |
Collapse
|
219
|
Kundu A, Patel A, Pal A. Defining reference genes for qPCR normalization to study biotic and abiotic stress responses in Vigna mungo. PLANT CELL REPORTS 2013; 32:1647-58. [PMID: 23868569 DOI: 10.1007/s00299-013-1478-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 07/05/2013] [Accepted: 07/08/2013] [Indexed: 05/20/2023]
Abstract
Expression of ACT, EF1A; H2A, EF1A, ACT and 18S, TUB showed stability under MYMIV, salinity and drought stress, respectively; these are recommended as reference genes for qPCR normalization in Vigna mungo. Accurate gene expression profiling through qPCR depends on selection of appropriate reference gene(s) for normalization. Due to lack of unanimous internal standard, suitable constitutively expressed reference genes are selected that exhibit stable expression under diverse experimental conditions. In this communication, a comparative evaluation of stability among seven V. mungo genes encoding actin (ACT), histone H2A (H2A), elongation factor 1-alpha (EF1A), 18S rRNA (18S), glyceraldehyde 3-phosphate dehydrogenase (GAPDH), cyclophilin (CYP) and tubulin (TUB) under biotic (MYMIV) and abiotic (drought and salinity) stress conditions has been attempted. Specificity and amplification efficiency for each primer pair were verified; however, cumulative assessment of their accumulated transcripts revealed no uniformity. Therefore, individual stability and suitability of these seven candidates have been assessed in silico, by two widely used algorithms, geNorm and Normfinder. Based on the computed results, high stability was obtained for ACT and EF1A during MYMIV stress, while H2A, EFIA and ACT were found to be most suitable in salinity stress experiments and TUB and 18S during drought treatments. Combinations of ACT/TUB or ACT/EFIA were recommended for their use in the pooled analysis, while expression of 18S and CYP showed greater variations and therefore considered unsuitable as reference genes. Additionally, precise quantification of the target gene VmPRX under these stresses was shown to be a function of reference genes' stability, which tends to get affected when normalized with the least stable genes. Hence, use of these normalizers will facilitate accurate and reliable analyses of gene expression in V. mungo.
Collapse
Affiliation(s)
- Anirban Kundu
- Division of Plant Biology, Bose Institute, Kolkata, 700054, West Bengal, India
| | | | | |
Collapse
|
220
|
Identification of reference genes for qRT-PCR analysis in Yesso scallop Patinopecten yessoensis. PLoS One 2013; 8:e75609. [PMID: 24069432 PMCID: PMC3777977 DOI: 10.1371/journal.pone.0075609] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 08/15/2013] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Bivalves comprise around 30,000 extant species and have received much attention for their importance in ecosystems, aquaculture and evolutionary studies. Despite the increasing application of real-time quantitative reverse transcription PCR (qRT-PCR) in gene expression studies on bivalve species, little research has been conducted on reference gene selection which is critical for reliable and accurate qRT-PCR analysis. For scallops, systematic evaluation of reference genes that can be used among tissues or embryo/larva stages is lacking, and β-actin (ACT) is most frequently used as qRT-PCR reference gene without validation. RESULTS In this study, 12 commonly used candidate reference genes were selected from the transcriptome data of Yesso scallop (Patinopectenyessoensis) for suitable qRT-PCR reference genes identification. The expression of these genes in 36 tissue samples and 15 embryo/larva samples under normal physiological conditions was examined by qRT-PCR, and their expression stabilities were evaluated using three statistic algorithms, geNorm, NormFinder, and comparative ∆Ct method. Similar results were obtained by the three approaches for the most and the least stably expressed genes. Final comprehensive ranking for the 12 genes combing the results from the three programs showed that, for different tissues, DEAD-box RNA helicase (HELI), ubiquitin (UBQ), and 60S ribosomal protein L16 (RPL16) were the optimal reference genes combination, while for different embryo/larva stages, gene set containing Cytochrome B (CB), Cytochrome C (CC), Histone H3.3 (His3.3), and Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were recommended for qRT-PCR normalization. ACT was among the least stable genes for both adult tissues and embryos/larvae. CONCLUSIONS This work constitutes the first systematic analysis on reference genes selection for qRT-PCR normalization in scallop under normal conditions. The suitable reference genes we recommended will be useful for the identification of genes related to biological processes in Yesso scallop, and also in the reference gene selection for other scallop or bivalve species.
Collapse
|
221
|
Warzybok A, Migocka M. Reliable reference genes for normalization of gene expression in cucumber grown under different nitrogen nutrition. PLoS One 2013; 8:e72887. [PMID: 24058446 PMCID: PMC3772881 DOI: 10.1371/journal.pone.0072887] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 07/20/2013] [Indexed: 11/19/2022] Open
Abstract
In plants, nitrogen is the most important nutritional factor limiting the yield of cultivated crops. Since nitrogen is essential for synthesis of nucleotides, amino acids and proteins, studies on gene expression in plants cultivated under different nitrogen availability require particularly careful selection of suitable reference genes which are not affected by nitrogen limitation. Therefore, the objective of this study was to select the most reliable reference genes for qPCR analysis of target cucumber genes under varying nitrogen source and availability. Among twelve candidate cucumber genes used in this study, five are highly homologous to the commonly used internal controls, whereas seven novel candidates were previously identified through the query of the cucumber genome. The expression of putative reference genes and the target CsNRT1.1 gene was analyzed in roots, stems and leaves of cucumbers grown under nitrogen deprivation, varying nitrate availability or different sources of nitrogen (glutamate, glutamine or NH3). The stability of candidate genes expression significantly varied depending on the tissue type and nitrogen supply. However, in most of the outputs genes encoding CACS, TIP41, F-box protein and EFα proved to be the most suitable for normalization of CsNRT1.1 expression. In addition, our results suggest the inclusion of 3 or 4 references to obtain highly reliable results of target genes expression in all cucumber organs under nitrogen-related stress.
Collapse
Affiliation(s)
- Anna Warzybok
- Wrocław University, Institute of Experimental Biology, Department of Plant Molecular Physiology, Wroclaw, Poland
- * E-mail:
| | - Magdalena Migocka
- Wrocław University, Institute of Experimental Biology, Department of Plant Molecular Physiology, Wroclaw, Poland
| |
Collapse
|
222
|
de Carvalho K, Bespalhok Filho JC, dos Santos TB, de Souza SGH, Vieira LGE, Pereira LFP, Domingues DS. Nitrogen starvation, salt and heat stress in coffee (Coffea arabica L.): identification and validation of new genes for qPCR normalization. Mol Biotechnol 2013; 53:315-25. [PMID: 22421886 DOI: 10.1007/s12033-012-9529-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Abiotic stresses are among the most important factors that affect food production. One important step to face these environmental challenges is the transcriptional modulation. Quantitative real-time PCR is a rapid, sensitive, and reliable method for the detection of mRNAs and it has become a powerful tool to mitigate plant stress tolerance; however, suitable reference genes are required for data normalization. Reference genes for coffee plants during nitrogen starvation, salinity and heat stress have not yet been reported. We evaluated the expression stability of ten candidate reference genes using geNorm PLUS, NormFinder, and BestKeeper softwares, in plants submitted to nitrogen starvation, salt and heat stress. EF1, EF1α, GAPDH, MDH, and UBQ10 were ranked as the most stable genes in all stresses and software analyses, while RPL39 and RPII were classified as the less reliable references. For reference gene validation, the transcriptional pattern of a Coffea non-symbiotic hemoglobin (CaHb1) was analyzed using the two new recommended and the most unstable gene references for normalization. The most unstable gene may lead to incorrect interpretation of CaHb1 transcriptional analysis. Here, we recommend two new reference genes in Coffea for use in data normalization in abiotic stresses: MDH and EF1.
Collapse
Affiliation(s)
- Kenia de Carvalho
- Laboratório de Biotecnologia Vegetal, Instituto Agronômico do Paraná, Londrina, PR, Brazil.
| | | | | | | | | | | | | |
Collapse
|
223
|
Handakumbura PP, Matos DA, Osmont KS, Harrington MJ, Heo K, Kafle K, Kim SH, Baskin TI, Hazen SP. Perturbation of Brachypodium distachyon CELLULOSE SYNTHASE A4 or 7 results in abnormal cell walls. BMC PLANT BIOLOGY 2013; 13:131. [PMID: 24024469 PMCID: PMC3847494 DOI: 10.1186/1471-2229-13-131] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 09/05/2013] [Indexed: 05/17/2023]
Abstract
BACKGROUND Cellulose is an integral component of the plant cell wall and accounts for approximately forty percent of total plant biomass but understanding its mechanism of synthesis remains elusive. CELLULOSE SYNTHASE A (CESA) proteins function as catalytic subunits of a rosette-shaped complex that synthesizes cellulose at the plasma membrane. Arabidopsis thaliana and rice (Oryza sativa) secondary wall CESA loss-of-function mutants have weak stems and irregular or thin cell walls. RESULTS Here, we identify candidates for secondary wall CESAs in Brachypodium distachyon as having similar amino acid sequence and expression to those characterized in A. thaliana, namely CESA4/7/8. To functionally characterize BdCESA4 and BdCESA7, we generated loss-of-function mutants using artificial microRNA constructs, specifically targeting each gene driven by a maize (Zea mays) ubiquitin promoter. Presence of the transgenes reduced BdCESA4 and BdCESA7 transcript abundance, as well as stem area, cell wall thickness of xylem and fibers, and the amount of crystalline cellulose in the cell wall. CONCLUSION These results suggest BdCESA4 and BdCESA7 play a key role in B. distachyon secondary cell wall biosynthesis.
Collapse
Affiliation(s)
- Pubudu P Handakumbura
- Biology Department, University of Massachusetts, Amherst, MA, USA
- Plant Biology Graduate Program, University of Massachusetts, Amherst, MA, USA
| | - Dominick A Matos
- Biology Department, University of Massachusetts, Amherst, MA, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, USA
| | - Karen S Osmont
- Biology Department, University of Massachusetts, Amherst, MA, USA
| | | | - Kyuyoung Heo
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA, USA
| | - Kabindra Kafle
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, USA
| | - Seong H Kim
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, USA
| | - Tobias I Baskin
- Biology Department, University of Massachusetts, Amherst, MA, USA
| | - Samuel P Hazen
- Biology Department, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
224
|
The choice of reference gene set for assessing gene expression in barley (Hordeum vulgare L.) under low temperature and drought stress. Mol Genet Genomics 2013; 288:639-49. [DOI: 10.1007/s00438-013-0774-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 07/09/2013] [Indexed: 10/26/2022]
|
225
|
Ruelens P, de Maagd RA, Proost S, Theißen G, Geuten K, Kaufmann K. FLOWERING LOCUS C in monocots and the tandem origin of angiosperm-specific MADS-box genes. Nat Commun 2013; 4:2280. [DOI: 10.1038/ncomms3280] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 07/10/2013] [Indexed: 12/11/2022] Open
|
226
|
Evaluation of reference genes for RT qPCR analyses of structure-specific and hormone regulated gene expression in Physcomitrella patens gametophytes. PLoS One 2013; 8:e70998. [PMID: 23951063 PMCID: PMC3739808 DOI: 10.1371/journal.pone.0070998] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 06/25/2013] [Indexed: 01/13/2023] Open
Abstract
The use of the moss Physcomitrella patens as a model system to study plant development and physiology is rapidly expanding. The strategic position of P. patens within the green lineage between algae and vascular plants, the high efficiency with which transgenes are incorporated by homologous recombination, advantages associated with the haploid gametophyte representing the dominant phase of the P. patens life cycle, the simple structure of protonemata, leafy shoots and rhizoids that constitute the haploid gametophyte, as well as a readily accessible high-quality genome sequence make this moss a very attractive experimental system. The investigation of the genetic and hormonal control of P. patens development heavily depends on the analysis of gene expression patterns by real time quantitative PCR (RT qPCR). This technique requires well characterized sets of reference genes, which display minimal expression level variations under all analyzed conditions, for data normalization. Sets of suitable reference genes have been described for most widely used model systems including e.g. Arabidopsis thaliana, but not for P. patens. Here, we present a RT qPCR based comparison of transcript levels of 12 selected candidate reference genes in a range of gametophytic P. patens structures at different developmental stages, and in P. patens protonemata treated with hormones or hormone transport inhibitors. Analysis of these RT qPCR data using GeNorm and NormFinder software resulted in the identification of sets of P. patens reference genes suitable for gene expression analysis under all tested conditions, and suggested that the two best reference genes are sufficient for effective data normalization under each of these conditions.
Collapse
|
227
|
Geng S, Li A, Tang L, Yin L, Wu L, Lei C, Guo X, Zhang X, Jiang G, Zhai W, Wei Y, Zheng Y, Lan X, Mao L. TaCPK2-A, a calcium-dependent protein kinase gene that is required for wheat powdery mildew resistance enhances bacterial blight resistance in transgenic rice. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:3125-36. [PMID: 23918959 PMCID: PMC3733141 DOI: 10.1093/jxb/ert146] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Calcium-dependent protein kinases (CPKs) are important Ca2+ signalling components involved in complex immune and stress signalling networks; but the knowledge of CPK gene functions in the hexaploid wheat is limited. Previously, TaCPK2 was shown to be inducible by powdery mildew (Blumeria graminis tritici, Bgt) infection in wheat. Here, its functions in disease resistance are characterized further. This study shows the presence of defence-response and cold-response cis-elements on the promoters of the A subgenome homoeologue (TaCPK2-A) and D subgenome homoeologue (TaCPK2-D), respectively. Their expression patterns were then confirmed by quantitative real-time PCR (qRT-PCR) using genome-specific primers, where TaCPK2-A was induced by Bgt treatment while TaCPK2-D mainly responded to cold treatment. Downregulation of TaCPK2-A by virus-induced gene silencing (VIGS) causes loss of resistance to Bgt in resistant wheat lines, indicating that TaCPK2-A is required for powdery mildew resistance. Furthermore, overexpression of TaCPK2-A in rice enhanced bacterial blight (Xanthomonas oryzae pv. oryzae, Xoo) resistance. qRT-PCR analysis showed that overexpression of TaCPK2-A in rice promoted the expression of OsWRKY45-1, a transcription factor involved in both fungal and bacterial resistance by regulating jasmonic acid and salicylic acid signalling genes. The opposite effect was found in wheat TaCPK2-A VIGS plants, where the homologue of OsWRKY45-1 was significantly repressed. These data suggest that modulation of WRKY45-1 and associated defence-response genes by CPK2 genes may be the common mechanism for multiple disease resistance in grass species, which may have undergone subfunctionalization in promoters before the formation of hexaploid wheat.
Collapse
Affiliation(s)
- Shuaifeng Geng
- Triticeae Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu, Sichuan, 611130, PR China
- National Key Facility of Crop Gene Resources and Genetic Improvement and Institute of Crop Sciences, MOA Key Laboratory for Germplasm and Biotechnology, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, PR China
- * These authors contributed equally to this work
| | - Aili Li
- National Key Facility of Crop Gene Resources and Genetic Improvement and Institute of Crop Sciences, MOA Key Laboratory for Germplasm and Biotechnology, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, PR China
- * These authors contributed equally to this work
| | - Lichuan Tang
- National Key Facility of Crop Gene Resources and Genetic Improvement and Institute of Crop Sciences, MOA Key Laboratory for Germplasm and Biotechnology, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, PR China
- * These authors contributed equally to this work
| | - Lingjie Yin
- National Key Facility of Crop Gene Resources and Genetic Improvement and Institute of Crop Sciences, MOA Key Laboratory for Germplasm and Biotechnology, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, PR China
| | - Liang Wu
- National Key Facility of Crop Gene Resources and Genetic Improvement and Institute of Crop Sciences, MOA Key Laboratory for Germplasm and Biotechnology, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, PR China
| | - Cailin Lei
- National Key Facility of Crop Gene Resources and Genetic Improvement and Institute of Crop Sciences, MOA Key Laboratory for Germplasm and Biotechnology, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, PR China
| | - Xiuping Guo
- National Key Facility of Crop Gene Resources and Genetic Improvement and Institute of Crop Sciences, MOA Key Laboratory for Germplasm and Biotechnology, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, PR China
| | - Xin Zhang
- National Key Facility of Crop Gene Resources and Genetic Improvement and Institute of Crop Sciences, MOA Key Laboratory for Germplasm and Biotechnology, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, PR China
| | - Guanghuai Jiang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Wenxue Zhai
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Yuming Wei
- Triticeae Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu, Sichuan, 611130, PR China
| | - Youliang Zheng
- Triticeae Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu, Sichuan, 611130, PR China
| | - Xiujin Lan
- Triticeae Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu, Sichuan, 611130, PR China
- To whom correspondence should be addressed. E-mail: ;
| | - Long Mao
- National Key Facility of Crop Gene Resources and Genetic Improvement and Institute of Crop Sciences, MOA Key Laboratory for Germplasm and Biotechnology, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, PR China
- To whom correspondence should be addressed. E-mail: ;
| |
Collapse
|
228
|
Schweiger W, Pasquet JC, Nussbaumer T, Paris MPK, Wiesenberger G, Macadré C, Ametz C, Berthiller F, Lemmens M, Saindrenan P, Mewes HW, Mayer KFX, Dufresne M, Adam G. Functional characterization of two clusters of Brachypodium distachyon UDP-glycosyltransferases encoding putative deoxynivalenol detoxification genes. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:781-92. [PMID: 23550529 DOI: 10.1094/mpmi-08-12-0205-r] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Plant small-molecule UDP-glycosyltransferases (UGT) glycosylate a vast number of endogenous substances but also act in detoxification of metabolites produced by plant-pathogenic microorganisms. The ability to inactivate the Fusarium graminearum mycotoxin deoxynivalenol (DON) into DON-3-O-glucoside is crucial for resistance of cereals. We analyzed the UGT gene family of the monocot model species Brachypodium distachyon and functionally characterized two gene clusters containing putative orthologs of previously identified DON-detoxification genes from Arabidopsis thaliana and barley. Analysis of transcription showed that UGT encoded in both clusters are highly inducible by DON and expressed at much higher levels upon infection with a wild-type DON-producing F. graminearum strain compared with infection with a mutant deficient in DON production. Expression of these genes in a toxin-sensitive strain of Saccharomyces cerevisiae revealed that only two B. distachyon UGT encoded by members of a cluster of six genes homologous to the DON-inactivating barley HvUGT13248 were able to convert DON into DON-3-O-glucoside. Also, a single copy gene from Sorghum bicolor orthologous to this cluster and one of three putative orthologs of rice exhibit this ability. Seemingly, the UGT genes undergo rapid evolution and changes in copy number, making it difficult to identify orthologs with conserved substrate specificity.
Collapse
Affiliation(s)
- Wolfgang Schweiger
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, A-3430 Tulln, Austria.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
229
|
Boden SA, Kavanová M, Finnegan EJ, Wigge PA. Thermal stress effects on grain yield in Brachypodium distachyon occur via H2A.Z-nucleosomes. Genome Biol 2013; 14:R65. [PMID: 23800039 PMCID: PMC4062847 DOI: 10.1186/gb-2013-14-6-r65] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 06/25/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Crop plants are highly sensitive to ambient temperature, with a 1 ºC difference in temperature sufficient to affect development and yield. Monocot crop plants are particularly vulnerable to higher temperatures during the reproductive and grain-filling phases. The molecular mechanisms by which temperature influences grain development are, however, unknown. In Arabidopsis thaliana, H2A.Z-nucleosomes coordinate transcriptional responses to higher temperature. We therefore investigated whether the effects of high temperature on grain development are mediated by H2A.Z-nucleosomes. RESULTS We have analyzed the thermal responses of the Pooid grass, Brachypodium distachyon, a model system for crops. We find that H2A.Z-nucleosome occupancy is more responsive to increases in ambient temperature in the reproductive tissue of developing grains compared withvegetative seedlings. This difference correlates with strong phenotypic responses of developing grain to increased temperature, including early maturity and reduced yield. Conversely, temperature has limited impact on the timing of transition from the vegetative to generative stage, with increased temperature unable to substitute for long photoperiod induction of flowering. RNAi silencing of components necessary for H2A.Z-nucleosome deposition is sufficient to phenocopythe effects of warmer temperature on grain development. CONCLUSIONS H2A.Z-nucleosomes are important in coordinating the sensitivity of temperate grasses to increased temperature during grain development. Perturbing H2A.Z occupancy, through higher temperature or genetically, strongly reduces yield. Thus, we provide a molecular understanding of the pathways through which high temperature impacts on yield. These findings may be useful for breeding crops resilient to thermal stress.
Collapse
|
230
|
Duhoux A, Délye C. Reference genes to study herbicide stress response in Lolium sp.: up-regulation of P450 genes in plants resistant to acetolactate-synthase inhibitors. PLoS One 2013; 8:e63576. [PMID: 23696834 PMCID: PMC3656029 DOI: 10.1371/journal.pone.0063576] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Accepted: 04/04/2013] [Indexed: 02/05/2023] Open
Abstract
Variation in the expression of numerous genes is at the basis of plant response to environmental stresses. Non-target-site-based resistance to herbicides (NTSR), the major threat to grass weed chemical control, is governed by a subset of the genes involved in herbicide stress response. Quantitative PCR assays allowing reliable comparison of gene expression are thus key to identify genes governing NTSR. This work aimed at identifying a set of reference genes with a stable expression to be used as an internal standard for the normalisation of quantitative PCR data in studies investigating NTSR to herbicides inhibiting acetolactate synthase (ALS) in the major grass weed Lolium sp. Gene expression stability was assessed in plants resistant or sensitive to two ALS inhibitors, subjected or not to herbicide stress. Using three complementary approaches implemented in the programs BestKeeper, NormFinder and geNorm, cap-binding protein, glyceraldehyde-3-phosphate-dehydrogenase and ubiquitin were identified as the most suitable reference genes. This reference gene set can probably be used to study herbicide response in other weed species. It was used to compare the expression of the genes encoding two herbicide target enzymes (ALS and acetyl-coenzyme A carboxylase) and five cytochromes P450 (CYP) with potential herbicide-degrading activity between plants resistant or sensitive to ALS inhibitors. Overall, herbicide application enhanced CYP gene expression. Constitutive up-regulation of all CYP genes observed in resistant plants compared to sensitive plants suggested enhanced secondary metabolism in the resistant plants. Comprehensive transcriptome studies associated to gene expression analyses using the reference gene set validated here are required to unravel NTSR genetic determinants.
Collapse
|
231
|
Wei L, Miao H, Zhao R, Han X, Zhang T, Zhang H. Identification and testing of reference genes for Sesame gene expression analysis by quantitative real-time PCR. PLANTA 2013; 237:873-89. [PMID: 23229061 PMCID: PMC3579469 DOI: 10.1007/s00425-012-1805-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 10/30/2012] [Indexed: 05/07/2023]
Abstract
Sesame (Sesamum indicum L.) is an ancient and important oilseed crop. However, few sesame reference genes have been selected for quantitative real-time PCR until now. Screening and validating reference genes is a requisite for gene expression normalization in sesame functional genomics research. In this study, ten candidate reference genes, i.e., SiACT, SiUBQ6, SiTUB, Si18S rRNA, SiEF1α, SiCYP, SiHistone, SiDNAJ, SiAPT and SiGAPDH, were chosen and examined systematically in 32 sesame samples. Three qRT-PCR analysis methods, i.e., geNorm, NormFinder and BestKeeper, were evaluated systematically. Results indicated that all ten candidate reference genes could be used as reference genes in sesame. SiUBQ6 and SiAPT were the optimal reference genes for sesame plant development; SiTUB was suitable for sesame vegetative tissue development, SiDNAJ for pathogen treatment, SiHistone for abiotic stress, SiUBQ6 for bud development and SiACT for seed germination. As for hormone treatment and seed development, SiHistone, SiCYP, SiDNAJ or SiUBQ6, as well as SiACT, SiDNAJ, SiTUB or SiAPT, could be used as reference gene, respectively. To illustrate the suitability of these reference genes, we analyzed the expression variation of three functional sesame genes of SiSS, SiLEA and SiGH in different organs using the optimal qRT-PCR system for the first time. The stability levels of optimal and worst reference genes screened for seed development, anther sterility and plant development were validated in the qRT-PCR normalization. Our results provided a reference gene application guideline for sesame gene expression characterization using qRT-PCR system.
Collapse
Affiliation(s)
- Libin Wei
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 Henan People’s Republic of China
| | - Hongmei Miao
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 Henan People’s Republic of China
| | - Ruihong Zhao
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 Henan People’s Republic of China
| | - Xiuhua Han
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 Henan People’s Republic of China
| | - Tide Zhang
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 Henan People’s Republic of China
| | - Haiyang Zhang
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 Henan People’s Republic of China
| |
Collapse
|
232
|
Valdivia ER, Herrera MT, Gianzo C, Fidalgo J, Revilla G, Zarra I, Sampedro J. Regulation of secondary wall synthesis and cell death by NAC transcription factors in the monocot Brachypodium distachyon. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:1333-43. [PMID: 23386682 PMCID: PMC3598421 DOI: 10.1093/jxb/ers394] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
In several dicotyledonous species, NAC transcription factors act as master switches capable of turning on programmes of secondary cell-wall synthesis and cell death. This work used an oestradiol-inducible system to overexpress the NAC transcription factor BdSWN5 in the monocot model Brachypodium distachyon. This resulted in ectopic secondary cell-wall formation in both roots and shoots. Some of the genes upregulated in the process were a secondary cell-wall cellulose synthase (BdCESA4), a xylem-specific protease (BdXCP1) and an orthologue of AtMYB46 (BdMYB1). While activation of BdMYB1 may not be direct, this study showed that BdSWN5 is capable of transactivating the BdXCP1 promoter through two conserved binding sites. In the course of Brachypodium development, the BdXCP1 promoter was observed to be active in all types of differentiating tracheary elements. Together, these results suggest that Brachypodium SWNs can act as switches that turn on secondary cell-wall synthesis and programmed cell death.
Collapse
Affiliation(s)
- Elene R. Valdivia
- Dpto. Fisiología Vegetal, Facultad de Biología, Universidad de Santiago, Santiago de Compostela, 15782, Spain
| | - María Teresa Herrera
- Dpto. Fisiología Vegetal, Facultad de Biología, Universidad de Santiago, Santiago de Compostela, 15782, Spain
| | - Cristina Gianzo
- Dpto. Fisiología Vegetal, Facultad de Biología, Universidad de Santiago, Santiago de Compostela, 15782, Spain
| | - Javier Fidalgo
- Dpto. Fisiología Vegetal, Facultad de Biología, Universidad de Santiago, Santiago de Compostela, 15782, Spain
| | - Gloria Revilla
- Dpto. Fisiología Vegetal, Facultad de Biología, Universidad de Santiago, Santiago de Compostela, 15782, Spain
| | - Ignacio Zarra
- Dpto. Fisiología Vegetal, Facultad de Biología, Universidad de Santiago, Santiago de Compostela, 15782, Spain
| | - Javier Sampedro
- Dpto. Fisiología Vegetal, Facultad de Biología, Universidad de Santiago, Santiago de Compostela, 15782, Spain
| |
Collapse
|
233
|
Verelst W, Bertolini E, De Bodt S, Vandepoele K, Demeulenaere M, Pè ME, Inzé D. Molecular and physiological analysis of growth-limiting drought stress in Brachypodium distachyon leaves. MOLECULAR PLANT 2013; 6:311-22. [PMID: 23015761 DOI: 10.1093/mp/sss098] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The drought-tolerant grass Brachypodium distachyon is an emerging model species for temperate grasses and cereal crops. To explore the usefulness of this species for drought studies, a reproducible in vivo drought assay was developed. Spontaneous soil drying led to a 45% reduction in leaf size, and this was mostly due to a decrease in cell expansion, whereas cell division remained largely unaffected by drought. To investigate the molecular basis of the observed leaf growth reduction, the third Brachypodium leaf was dissected in three zones, namely proliferation, expansion, and mature zones, and subjected to transcriptome analysis, based on a whole-genome tiling array. This approach allowed us to highlight that transcriptome profiles of different developmental leaf zones respond differently to drought. Several genes and functional processes involved in drought tolerance were identified. The transcriptome data suggest an increased energy availability in the proliferation zones, along with an up-regulation of sterol synthesis that may influence membrane fluidity. This information may be used to improve the tolerance of temperate cereals to drought, which is undoubtedly one of the major environmental challenges faced by agriculture today and in the near future.
Collapse
Affiliation(s)
- Wim Verelst
- Department of Plant Systems Biology, VIB, Technologiepark 927, 9052 Gent, Belgium
| | | | | | | | | | | | | |
Collapse
|
234
|
Wei B, Liu D, Guo J, Leseberg CH, Zhang X, Mao L. Functional divergence of two duplicated D-lineage MADS-box genes BdMADS2 and BdMADS4 from Brachypodium distachyon. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:424-431. [PMID: 23286997 DOI: 10.1016/j.jplph.2012.11.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 11/05/2012] [Accepted: 11/05/2012] [Indexed: 06/01/2023]
Abstract
MADS-box genes are core members of the ABCDE model for flower development where D-lineage genes play essential roles in ovule identity determination. We report here the cloning and functional characterization of two duplicated MADS-box genes, BdMADS2 and BdMADS4 from Brachypodium distachyon, the model plant of temperate grasses. BdMADS2 and BdMADS4 were highly similar to grass D-lineage MADS-box genes on the protein level and they fell in a distinctive clade on the phylogenetic tree, with conserved intron/exon structures to their rice and maize orthologues. Quantitative real time PCR revealed comparable expression levels were detected in all floral organs of Brachypodium for both genes, except for the carpel where the expression level of BdMADS2 was five times higher than that of BdMADS4. Over expression of these two genes in Arabidopsis caused curly rosette leaves, small sepals and petals, and early flowering. However, BdMADS4 showed stronger phenotypic effects than BdMADS2, suggesting functional divergence between the two genes. Cis-regulatory element prediction showed that the promoter region (including the first intron) of BdMADS4 possesses much less class I BPC protein binding motifs than that of BdMADS2 which may be responsible for the specific expression in carpels. Yeast two-hybrid assays showed that both BdMADS2 and BdMADS4 can interact with BdSEP3, but BdMADS2 can additionally interact with the putative APETALA1 orthologue (BdAP1), suggesting a deviation in their protein interaction patterns. Taken together, our data demonstrate a significant divergence between the two Brachypodium D-lineage MADS-box genes and provide evidences for their sub-functionalization.
Collapse
Affiliation(s)
- Bo Wei
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, PR China.
| | | | | | | | | | | |
Collapse
|
235
|
Fan C, Ma J, Guo Q, Li X, Wang H, Lu M. Selection of reference genes for quantitative real-time PCR in bamboo (Phyllostachys edulis). PLoS One 2013; 8:e56573. [PMID: 23437174 PMCID: PMC3577859 DOI: 10.1371/journal.pone.0056573] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 01/11/2013] [Indexed: 01/24/2023] Open
Abstract
Background The Moso bamboo (Phyllostachys edulis) is one of the most important forestry resources and plays essential ecological roles in southern China. A draft nuclear genome sequence is expected to be publicly available in the near future; an explosion of gene expression data related to the unique traits of Moso bamboo will undoubtedly follow. Reverse transcription quantitative real-time PCR ((RT-)qPCR) is a widely used method for gene expression analysis. A necessary prerequisite of exact and reliable data is the accurate choice of reference genes. Result In this study, 14 candidate reference genes were chosen, and their expression levels were assessed by (RT-)qPCR in a set of six tissue samples (root, stem, mature stem, leaf, flower, and leaf sheath) and at two developmental stages (before and after flowering) in bamboo specimens obtained in three locations. The stability and suitability of the candidate reference genes were validated using the geNorm, NormFinder and BestKeeper programs. The results showed that TIP41 and NTB were suitable reference genes across all the tissues and at the different developmental stages examined in this study. While the expression of the NTB, TIP41 and UBQ were the mostly stable in different plant tissues samples, the expression of the TIP41, NTB and CAC were ranked the most stable in bamboo plants at various developmental stages. AP2-like gene was further assessed by using the reference genes TIP41 and NTB in comparison to ACT. Significant difference of the expression profile of AP2-like demonstrated the importance of choosing adequate reference genes in bamboo. Conclusion TIP41 and NTB were found to be homogeneously expressed and were adequate for normalization purposes, showing equivalent transcript levels in different samples. They are therefore the recommended reference genes for measuring gene expression in P. edulis.
Collapse
Affiliation(s)
- Chunjie Fan
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, People’s Republic of China
- Research Institute of Tropical Forestry, chinese Academy of Forestry, Guangzhou, People’s Republic of China
| | - Jinmin Ma
- Beijing Genomics Institute-Shenzhen, Shenzhen, People’s Republic of China
| | - Qirong Guo
- International Centre for Bamboo and Rattan, Beijing, People’s Republic of China
| | - Xiaotie Li
- Guilin Research Institute of Forestry, Guilin, People’s Republic of China
| | - Hui Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, People’s Republic of China
- Beijing Genomics Institute-Shenzhen, Shenzhen, People’s Republic of China
- Centre for Ecology and Hydrology, Natural Environment Research Council, Wallingford, United Kingdom
- * E-mail: (HW); (ML)
| | - Mengzhu Lu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, People’s Republic of China
- * E-mail: (HW); (ML)
| |
Collapse
|
236
|
Sun Y, Wang F, Wang N, Dong Y, Liu Q, Zhao L, Chen H, Liu W, Yin H, Zhang X, Yuan Y, Li H. Transcriptome exploration in Leymus chinensis under saline-alkaline treatment using 454 pyrosequencing. PLoS One 2013; 8:e53632. [PMID: 23365637 PMCID: PMC3554714 DOI: 10.1371/journal.pone.0053632] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 12/03/2012] [Indexed: 11/18/2022] Open
Abstract
Background Leymus chinensis (Trin.) Tzvel. is a high saline-alkaline tolerant forage grass genus of the tribe Gramineae family, which also plays an important role in protection of natural environment. To date, little is known about the saline-alkaline tolerance of L. chinensis on the molecular level. To better understand the molecular mechanism of saline-alkaline tolerance in L. chinensis, 454 pyrosequencing was used for the transcriptome study. Results We used Roche-454 massive parallel pyrosequencing technology to sequence two different cDNA libraries that were built from the two samples of control and under saline-alkaline treatment (optimal stress concentration-Hoagland solution with 100 mM NaCl and 200 mM NaHCO3). A total of 363,734 reads in control group and 526,267 reads in treatment group with an average length of 489 bp and 493 bp were obtained, respectively. The reads were assembled into 104,105 unigenes with MIRA sequence assemable software, among which, 73,665 unigenes were in control group, 88,016 unigenes in treatment group and 57,576 unigenes in both groups. According to the comparative expression analysis between the two groups with the threshold of “log2 Ratio ≥1”, there were 36,497 up-regulated unegenes and 18,218 down-regulated unigenes predicted to be the differentially expressed genes. After gene annotation and pathway enrichment analysis, most of them were involved in stress and tolerant function, signal transduction, energy production and conversion, and inorganic ion transport. Furthermore, 16 of these differentially expressed genes were selected for real-time PCR validation, and they were successfully confirmed with the results of 454 pyrosequencing. Conclusions This work is the first time to study the transcriptome of L. chinensis under saline-alkaline treatment based on the 454-FLX massively parallel DNA sequencing platform. It also deepened studies on molecular mechanisms of saline-alkaline in L. chinensis, and constituted a database for future studies.
Collapse
Affiliation(s)
- Yepeng Sun
- Ministry of Education Engineering Research Center of Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, Jilin, China
- College of Life Sciences, Jilin Agricultural University, Changchun, Jilin, China
| | - Fawei Wang
- Ministry of Education Engineering Research Center of Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, Jilin, China
| | - Nan Wang
- Ministry of Education Engineering Research Center of Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, Jilin, China
| | - Yuanyuan Dong
- Ministry of Education Engineering Research Center of Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, Jilin, China
| | - Qi Liu
- Institute of Genomic Medicine, Wenzhou Medical College, Wenzhou, China
| | - Lei Zhao
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species (GBOWS), Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Huan Chen
- Ministry of Education Engineering Research Center of Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, Jilin, China
- College of Life Sciences, Jilin Agricultural University, Changchun, Jilin, China
| | - Weican Liu
- Ministry of Education Engineering Research Center of Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, Jilin, China
- College of Life Sciences, Jilin Agricultural University, Changchun, Jilin, China
| | - Hailong Yin
- Ministry of Education Engineering Research Center of Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, Jilin, China
- College of Life Sciences, Jilin Agricultural University, Changchun, Jilin, China
| | - Xiaomei Zhang
- College of Life Sciences, Jilin Agricultural University, Changchun, Jilin, China
| | - Yanxi Yuan
- College of Life Sciences, Jilin Agricultural University, Changchun, Jilin, China
| | - Haiyan Li
- Ministry of Education Engineering Research Center of Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, Jilin, China
- College of Life Sciences, Jilin Agricultural University, Changchun, Jilin, China
- * E-mail:
| |
Collapse
|
237
|
Chambers JP, Behpouri A, Bird A, Ng CKY. Evaluation of the use of the polyubiquitin genes, Ubi4 and Ubi10 as reference genes for expression studies in Brachypodium distachyon. PLoS One 2012; 7:e49372. [PMID: 23166649 PMCID: PMC3498167 DOI: 10.1371/journal.pone.0049372] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 10/10/2012] [Indexed: 11/27/2022] Open
Abstract
Background Brachypodium distachyon is emerging as the model plant for temperate grass research and the genome of the community line Bd21 has been sequenced. Additionally, techniques have been developed for Agrobacterium-mediated transformation for the generation of T-DNA insertional lines. Recently, it was reported that expression of the polyubiquitin genes, Ubi4 and Ubi10 are stable in different tissues and growth hormone-treated plant samples, leading to the conclusion that both Ubi4 and Ubi10 are good reference genes for normalization of gene expression data using real-time, quantitative PCR (qPCR). Principal Findings Mining of the Joint Genome Institute (JGI) 8X Brachypodium distachyon genome assembly showed that Ubi4 and Ubi10 share a high level of sequence identity (89%), and in silico analyses of the sequences of Ubi4 (Bradi3g04730) and Ubi10 (Bradi1g32860) showed that the primers used previously exhibit multiple binding sites within the coding sequences arising from the presence of tandem repeats of the coding regions. This can potentially result in over-estimation of steady-state levels of Ubi4 and Ubi10. Additionally, due to the high level of sequence identity between both genes, primers used previously for amplification of Ubi4 can bind to Ubi10 and vice versa, resulting in the formation of non-specific amplification products. Conclusions The results from this study indicate that the primers used previously were not sufficiently robust and specific. Additionally, their use would result in over-estimation of the steady-state expression levels of Ubi4. Our results question the validity of using the previously proposed primer sets for qPCR amplification of Ubi4 and Ubi10. We demonstrate that primers designed to target the 3′-UTRs of Ubi4 and Ubi10 are better suited for real-time normalization of steady-state expression levels in Brachypodium distachyon.
Collapse
Affiliation(s)
- John P Chambers
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin, Ireland
| | | | | | | |
Collapse
|
238
|
Moura JCMS, Araújo P, Brito MDS, Souza UR, Viana JDOF, Mazzafera P. Validation of reference genes from Eucalyptus spp. under different stress conditions. BMC Res Notes 2012; 5:634. [PMID: 23148685 PMCID: PMC3542156 DOI: 10.1186/1756-0500-5-634] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 11/07/2012] [Indexed: 01/04/2023] Open
Abstract
Background The genus Eucalyptus consists of approximately 600 species and subspecies and has a physiological plasticity that allows some species to propagate in different regions of the world. Eucalyptus is a major source of cellulose for paper manufacturing, and its cultivation is limited by weather conditions, particularly water stress and low temperatures. Gene expression studies using quantitative reverse transcription polymerase chain reaction (qPCR) require reference genes, which must have stable expression to facilitate the comparison of the results from analyses using different species, tissues, and treatments. Such studies have been limited in eucalyptus. Results Eucalyptus globulus Labill, Eucalyptus urograndis (hybrid from Eucalyptus urophylla S.T. Blake X Eucalyptus grandis Hill ex-Maiden) and E. uroglobulus (hybrid from E. urograndis X E. globulus) were subjected to different treatments, including water deficiency and stress recovery, low temperatures, presence or absence of light, and their respective controls. Except for treatment with light, which examined the seedling hypocotyl or apical portion of the stem, the expression analyses were conducted in the apical and basal parts of the stem. To select the best pair of genes, the bioinformatics tools GeNorm and NormFinder were compared. Comprehensive analyses that did not differentiate between species, treatments, or tissue types, showed that IDH (isocitrate dehydrogenase), SAND (SAND protein), ACT (actin), and A-Tub (α-tubulin) genes were the most stable. IDH was the most stable gene in all of the treatments. Conclusion Comparing these results with those of other studies on eucalyptus, we concluded that five genes are stable in different species and experimental conditions: IDH, SAND, ACT, A-Tub, and UBQ (ubiquitin). It is usually recommended a minimum of two reference genes is expression analysis; therefore, we propose that IDH and two others genes among the five identified genes in this study should be used as reference genes for a wide range of conditions in eucalyptus.
Collapse
Affiliation(s)
- Jullyana Cristina Magalhães Silva Moura
- Departamento de Ciências Biológicas, Instituto de Ciências Exatas, Naturais e Educação, Universidade Federal do Triângulo Mineiro, Av. Getúlio Guaritá 159, Bairro Abadia, Uberaba, MG 38025-440, Brazil
| | | | | | | | | | | |
Collapse
|
239
|
Hernando-Amado S, González-Calle V, Carbonero P, Barrero-Sicilia C. The family of DOF transcription factors in Brachypodium distachyon: phylogenetic comparison with rice and barley DOFs and expression profiling. BMC PLANT BIOLOGY 2012; 12:202. [PMID: 23126376 PMCID: PMC3579746 DOI: 10.1186/1471-2229-12-202] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 10/30/2012] [Indexed: 05/18/2023]
Abstract
BACKGROUND Transcription factors (TFs) are proteins that have played a central role both in evolution and in domestication, and are major regulators of development in living organisms. Plant genome sequences reveal that approximately 7% of all genes encode putative TFs. The DOF (DNA binding with One Finger) TF family has been associated with vital processes exclusive to higher plants and to their close ancestors (algae, mosses and ferns). These are seed maturation and germination, light-mediated regulation, phytohormone and plant responses to biotic and abiotic stresses, etc. In Hordeum vulgare and Oryza sativa, 26 and 30 different Dof genes, respectively, have been annotated. Brachypodium distachyon has been the first Pooideae grass to be sequenced and, due to its genomic, morphological and physiological characteristics, has emerged as the model system for temperate cereals, such as wheat and barley. RESULTS Through searches in the B. distachyon genome, 27 Dof genes have been identified and a phylogenetic comparison with the Oryza sativa and the Hordeum vulgare DOFs has been performed. To explore the evolutionary relationship among these DOF proteins, a combined phylogenetic tree has been constructed with the Brachypodium DOFs and those from rice and barley. This phylogenetic analysis has classified the DOF proteins into four Major Cluster of Orthologous Groups (MCOGs). Using RT-qPCR analysis the expression profiles of the annotated BdDof genes across four organs (leaves, roots, spikes and seeds) has been investigated. These results have led to a classification of the BdDof genes into two groups, according to their expression levels. The genes highly or preferentially expressed in seeds have been subjected to a more detailed expression analysis (maturation, dry stage and germination). CONCLUSIONS Comparison of the expression profiles of the Brachypodium Dof genes with the published functions of closely related DOF sequences from the cereal species considered here, deduced from the phylogenetic analysis, indicates that although the expression profile has been conserved in many of the putative orthologs, in some cases duplication followed by subsequent divergence may have occurred (neo-functionalization).
Collapse
Affiliation(s)
- Sara Hernando-Amado
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA). Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid. Campus de Montegancedo, Pozuelo de Alarcón, Madrid, 28223, Spain
| | - Virginia González-Calle
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA). Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid. Campus de Montegancedo, Pozuelo de Alarcón, Madrid, 28223, Spain
| | - Pilar Carbonero
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA). Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid. Campus de Montegancedo, Pozuelo de Alarcón, Madrid, 28223, Spain
| | - Cristina Barrero-Sicilia
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA). Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid. Campus de Montegancedo, Pozuelo de Alarcón, Madrid, 28223, Spain
| |
Collapse
|
240
|
Mandadi KK, Scholthof KBG. Characterization of a viral synergism in the monocot Brachypodium distachyon reveals distinctly altered host molecular processes associated with disease. PLANT PHYSIOLOGY 2012; 160:1432-52. [PMID: 22961132 PMCID: PMC3490591 DOI: 10.1104/pp.112.204362] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 08/30/2012] [Indexed: 05/05/2023]
Abstract
Panicum mosaic virus (PMV) and its satellite virus (SPMV) together infect several small grain crops, biofuel, and forage and turf grasses. Here, we establish the emerging monocot model Brachypodium (Brachypodium distachyon) as an alternate host to study PMV- and SPMV-host interactions and viral synergism. Infection of Brachypodium with PMV+SPMV induced chlorosis and necrosis of leaves, reduced seed set, caused stunting, and lowered biomass, more than PMV alone. Toward gaining a molecular understanding of PMV- and SPMV-affected host processes, we used a custom-designed microarray and analyzed global changes in gene expression of PMV- and PMV+SPMV-infected plants. PMV infection by itself modulated expression of putative genes functioning in carbon metabolism, photosynthesis, metabolite transport, protein modification, cell wall remodeling, and cell death. Many of these genes were additively altered in a coinfection with PMV+SPMV and correlated to the exacerbated symptoms of PMV+SPMV coinfected plants. PMV+SPMV coinfection also uniquely altered expression of certain genes, including transcription and splicing factors. Among the host defenses commonly affected in PMV and PMV+SPMV coinfections, expression of an antiviral RNA silencing component, SILENCING DEFECTIVE3, was suppressed. Several salicylic acid signaling components, such as pathogenesis-related genes and WRKY transcription factors, were up-regulated. By contrast, several genes in jasmonic acid and ethylene responses were down-regulated. Strikingly, numerous protein kinases, including several classes of receptor-like kinases, were misexpressed. Taken together, our results identified distinctly altered immune responses in monocot antiviral defenses and provide insights into monocot viral synergism.
Collapse
Affiliation(s)
- Kranthi K. Mandadi
- Department of Plant Pathology and Microbiology, Texas A&M University, 2132 TAMU, College Station, Texas 77843
| | - Karen-Beth G. Scholthof
- Department of Plant Pathology and Microbiology, Texas A&M University, 2132 TAMU, College Station, Texas 77843
| |
Collapse
|
241
|
Podevin N, Krauss A, Henry I, Swennen R, Remy S. Selection and validation of reference genes for quantitative RT-PCR expression studies of the non-model crop Musa. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2012; 30:1237-1252. [PMID: 23024595 PMCID: PMC3460175 DOI: 10.1007/s11032-012-9711-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 02/08/2012] [Indexed: 05/20/2023]
Abstract
Gene expression analysis by reverse transcriptase real-time or quantitative polymerase chain reaction (RT-qPCR) is becoming widely used for non-model plant species. Given the high sensitivity of this method, normalization using multiple housekeeping or reference genes is critical, and careful selection of these reference genes is one of the most important steps to obtain reliable results. In this study, reference genes commonly used for other plant species were investigated to identify genes displaying highly uniform expression patterns in different varieties, tissues, developmental stages, fungal infection, and osmotic stress conditions for the non-model crop Musa (banana and plantains). The expression stability of six candidate reference genes was tested on six different sample sets, and the results were analyzed using the publicly available algorithms geNorm and NormFinder. Our results show that variety, plant material, primer set, and gene identity can all influence the robustness and outcome of RT-qPCR analysis. In the case of Musa, a combination of three reference genes (EF1, TUB and ACT) can be used for normalization of gene expression data from greenhouse leaf samples. In the case of shoot meristem cultures, numerous combinations can be used because the investigated reference genes exhibited limited variability. In contrast, variability in expression of the reference genes was much larger among leaf samples from plants grown in vitro, for which the best combination of reference genes (L2 and ACT genes) is still suboptimal. Overall, our data confirm that the stability of candidate reference genes should be thoroughly investigated for each experimental condition under investigation. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11032-012-9711-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nancy Podevin
- Laboratory of Tropical Crop Improvement, Department of Biosystems, Faculty of Bioscience Engineering, K.U. Leuven, Kasteelpark Arenberg 13, 3001 Leuven, Belgium
- Present Address: European Food Safety Authority (EFSA), Largo N. Palli 5/A, 43121 Parma, Italy
| | - An Krauss
- Laboratory of Tropical Crop Improvement, Department of Biosystems, Faculty of Bioscience Engineering, K.U. Leuven, Kasteelpark Arenberg 13, 3001 Leuven, Belgium
- Present Address: Roche Diagnostics Belgium, Schaarbeeklei 198, 1800 Vilvoorde, Belgium
| | - Isabelle Henry
- Laboratory of Tropical Crop Improvement, Department of Biosystems, Faculty of Bioscience Engineering, K.U. Leuven, Kasteelpark Arenberg 13, 3001 Leuven, Belgium
- Present Address: Section of Plant Biology and Genome Center, UC Davis, 451 E, Health Sciences Drive, Davis, CA 95616 USA
| | - Rony Swennen
- Laboratory of Tropical Crop Improvement, Department of Biosystems, Faculty of Bioscience Engineering, K.U. Leuven, Kasteelpark Arenberg 13, 3001 Leuven, Belgium
- Bioversity International, K.U. Leuven, Kasteelpark Arenberg 13, 3001 Leuven, Belgium
| | - Serge Remy
- Laboratory of Tropical Crop Improvement, Department of Biosystems, Faculty of Bioscience Engineering, K.U. Leuven, Kasteelpark Arenberg 13, 3001 Leuven, Belgium
| |
Collapse
|
242
|
Liu D, Shi L, Han C, Yu J, Li D, Zhang Y. Validation of reference genes for gene expression studies in virus-infected Nicotiana benthamiana using quantitative real-time PCR. PLoS One 2012; 7:e46451. [PMID: 23029521 PMCID: PMC3460881 DOI: 10.1371/journal.pone.0046451] [Citation(s) in RCA: 242] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 08/30/2012] [Indexed: 02/04/2023] Open
Abstract
Nicotiana benthamiana is the most widely-used experimental host in plant virology. The recent release of the draft genome sequence for N. benthamiana consolidates its role as a model for plant-pathogen interactions. Quantitative real-time PCR (qPCR) is commonly employed for quantitative gene expression analysis. For valid qPCR analysis, accurate normalisation of gene expression against an appropriate internal control is required. Yet there has been little systematic investigation of reference gene stability in N. benthamiana under conditions of viral infections. In this study, the expression profiles of 16 commonly used housekeeping genes (GAPDH, 18S, EF1α, SAMD, L23, UK, PP2A, APR, UBI3, SAND, ACT, TUB, GBP, F-BOX, PPR and TIP41) were determined in N. benthamiana and those with acceptable expression levels were further selected for transcript stability analysis by qPCR of complementary DNA prepared from N. benthamiana leaf tissue infected with one of five RNA plant viruses (Tobacco necrosis virus A, Beet black scorch virus, Beet necrotic yellow vein virus, Barley stripe mosaic virus and Potato virus X). Gene stability was analysed in parallel by three commonly-used dedicated algorithms: geNorm, NormFinder and BestKeeper. Statistical analysis revealed that the PP2A, F-BOX and L23 genes were the most stable overall, and that the combination of these three genes was sufficient for accurate normalisation. In addition, the suitability of PP2A, F-BOX and L23 as reference genes was illustrated by expression-level analysis of AGO2 and RdR6 in virus-infected N. benthamiana leaves. This is the first study to systematically examine and evaluate the stability of different reference genes in N. benthamiana. Our results not only provide researchers studying these viruses a shortlist of potential housekeeping genes to use as normalisers for qPCR experiments, but should also guide the selection of appropriate reference genes for gene expression studies of N. benthamiana under other biotic and abiotic stress conditions.
Collapse
Affiliation(s)
- Deshui Liu
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Lindan Shi
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Chenggui Han
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jialin Yu
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Dawei Li
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yongliang Zhang
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
243
|
Gao ZH, Wei JH, Yang Y, Zhang Z, Zhao WT. Selection and validation of reference genes for studying stress-related agarwood formation of Aquilaria sinensis. PLANT CELL REPORTS 2012; 31:1759-1768. [PMID: 22678434 DOI: 10.1007/s00299-012-1289-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 05/08/2012] [Accepted: 05/15/2012] [Indexed: 06/01/2023]
Abstract
UNLABELLED Agarwood is a high-valued woody material for medicine, perfume, and incense production in Asia, Middle East, and Europe. The wild resources of agarwood-producing tree species, e.g., Aquilaria sinensis have been greatly threatened. The formation of agarwood is considered to be associated with the plant stress and defensive responses, thus it would be urgent and significant to investigate the molecular mechanism of these species responding to a variety of stresses. This is the first report regarding the reference gene selection of Aquilaria species for studying the molecular mechanism of stress-related agarwood production. Candidate reference genes were selected according to previous reports and the sequences were obtained from the 454 EST library of A. sinensis. To obtain the robust genes, we applied three independent programs depending on distinct assumptions and combined these results by a rank aggregation algorithm. The result supports tubulin, ribosomal protein, and glyceraldehyde-3-phosphate dehydrogenase to be the most stable reference genes for quantification of target gene expression in the overall samples examined. Validation of these genes through normalizing the expression of a terpene synthase demonstrated that these three genes are reliable. The selective usage of three algorithms based on their characteristics was underlined. However, more robust genes could be identified if the results of all algorithms were combined by a proper method such as the rank aggregation algorithm. KEY MESSAGE Reference genes which are critical in gene expression studies are recommended for future molecular studies of stress response and agarwood production in the endangered Aquilaria and other tree species.
Collapse
Affiliation(s)
- Zhi-Hui Gao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science and Peking Union Medicinal College, Malianwabei Road, Beijing, 100193, China
| | | | | | | | | |
Collapse
|
244
|
Zhu X, Li X, Chen W, Chen J, Lu W, Chen L, Fu D. Evaluation of new reference genes in papaya for accurate transcript normalization under different experimental conditions. PLoS One 2012; 7:e44405. [PMID: 22952972 PMCID: PMC3432124 DOI: 10.1371/journal.pone.0044405] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 08/02/2012] [Indexed: 12/18/2022] Open
Abstract
Real-time reverse transcription PCR (RT-qPCR) is a preferred method for rapid and accurate quantification of gene expression studies. Appropriate application of RT-qPCR requires accurate normalization though the use of reference genes. As no single reference gene is universally suitable for all experiments, thus reference gene(s) validation under different experimental conditions is crucial for RT-qPCR analysis. To date, only a few studies on reference genes have been done in other plants but none in papaya. In the present work, we selected 21 candidate reference genes, and evaluated their expression stability in 246 papaya fruit samples using three algorithms, geNorm, NormFinder and RefFinder. The samples consisted of 13 sets collected under different experimental conditions, including various tissues, different storage temperatures, different cultivars, developmental stages, postharvest ripening, modified atmosphere packaging, 1-methylcyclopropene (1-MCP) treatment, hot water treatment, biotic stress and hormone treatment. Our results demonstrated that expression stability varied greatly between reference genes and that different suitable reference gene(s) or combination of reference genes for normalization should be validated according to the experimental conditions. In general, the internal reference genes EIF (Eukaryotic initiation factor 4A), TBP1 (TATA binding protein 1) and TBP2 (TATA binding protein 2) genes had a good performance under most experimental conditions, whereas the most widely present used reference genes, ACTIN (Actin 2), 18S rRNA (18S ribosomal RNA) and GAPDH (Glyceraldehyde-3-phosphate dehydrogenase) were not suitable in many experimental conditions. In addition, two commonly used programs, geNorm and Normfinder, were proved sufficient for the validation. This work provides the first systematic analysis for the selection of superior reference genes for accurate transcript normalization in papaya under different experimental conditions.
Collapse
Affiliation(s)
- Xiaoyang Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Key Laboratory for Postharvest Science and Technology, College of Horticulture, South China Agricultural University, Guangzhou, P.R. China
| | - Xueping Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Key Laboratory for Postharvest Science and Technology, College of Horticulture, South China Agricultural University, Guangzhou, P.R. China
| | - Weixin Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Key Laboratory for Postharvest Science and Technology, College of Horticulture, South China Agricultural University, Guangzhou, P.R. China
| | - Jianye Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Key Laboratory for Postharvest Science and Technology, College of Horticulture, South China Agricultural University, Guangzhou, P.R. China
| | - Wangjin Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Key Laboratory for Postharvest Science and Technology, College of Horticulture, South China Agricultural University, Guangzhou, P.R. China
| | - Lei Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Key Laboratory for Postharvest Science and Technology, College of Horticulture, South China Agricultural University, Guangzhou, P.R. China
| | - Danwen Fu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Key Laboratory for Postharvest Science and Technology, College of Horticulture, South China Agricultural University, Guangzhou, P.R. China
| |
Collapse
|
245
|
Shi J, Liu M, Shi J, Zheng G, Wang Y, Wang J, Chen Y, Lu C, Yin W. Reference gene selection for qPCR in Ammopiptanthus mongolicus under abiotic stresses and expression analysis of seven ROS-scavenging enzyme genes. PLANT CELL REPORTS 2012; 31:1245-54. [PMID: 22451089 DOI: 10.1007/s00299-012-1245-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 02/14/2012] [Accepted: 02/21/2012] [Indexed: 05/08/2023]
Abstract
Ammopiptanthus mongolicus, the only evergreen broadleaf shrub endemic to the northwest desert of China, is a valuable species for plant abiotic stress research. No report has so far described the selection of reference genes to get stringent normalization for qPCR in A. mongolicus. This work identified reliable reference genes for normalization of qPCR data in A. mongolicus under abiotic stresses from 14 reference gene candidates (UBQ, Tub1, Tub2, Abc1, Ubc1, Ubc2, Ubc4, Ubc5, eIF1, eIF2, eIF3, eIF4, EF1, EF2), and used the most suitable combination of reference genes to normalize the expression profiles of seven ROS-scavenging enzyme genes (AmSOD, AmAPX, AmGPX, AmCAT, AmGLR, AmPrx, and AmTrx). We set a series of 22 experimental samples covering the control and different time points under cold, dry, salt, and heat stresses. According to geNorm and NormFinder, the combination of eIF1 and eIF3 was best for accurate normalization across all the treatments, confirmed by normalizing qPCR data with AmHsp90. In contrast, these data show that Tub1, Abc1, and EF1 are not suitable reference gene candidates. After being normalized against eIF1 and eIF3, the seven ROS-scavenging enzyme genes exhibited differentially up- or down-regulated expression patterns. AmSOD and AmGPX were up-regulated by all four treatments, indicating that they may participate in an anti-oxidative mechanism under abiotic stresses in A. mongolicus. AmCAT exhibited a much higher expression level than AmAPX, AmPrx, and AmGPX, suggesting a principle role in detoxifying excessive H₂O₂. AmSOD, AmGPX and AmAPX showing the most abundant transcripts under heat, AmCAT and AmGLR under drought, and AmPrx under salt, were observed. Expression patterns of the seven ROS-scavenging enzyme genes suggest different antioxidant protection roles of these genes under abiotic stresses. These results are valuable for future research on gene expression and abiotic stress tolerance in A. mongolicus.
Collapse
Affiliation(s)
- Jing Shi
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | | | | | | | | | | | | | | | | |
Collapse
|
246
|
Li XS, Yang HL, Zhang DY, Zhang YM, Wood AJ. Reference gene selection in the desert plant Eremosparton songoricum. Int J Mol Sci 2012; 13:6944-6963. [PMID: 22837673 PMCID: PMC3397505 DOI: 10.3390/ijms13066944] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 05/03/2012] [Accepted: 05/30/2012] [Indexed: 11/30/2022] Open
Abstract
Eremosparton songoricum (Litv.) Vass. (E. songoricum) is a rare and extremely drought-tolerant desert plant that holds promise as a model organism for the identification of genes associated with water deficit stress. Here, we cloned and evaluated the expression of eight candidate reference genes using quantitative real-time reverse transcriptase polymerase chain reactions. The expression of these candidate reference genes was analyzed in a diverse set of 20 samples including various E. songoricum plant tissues exposed to multiple environmental stresses. GeNorm analysis indicated that expression stability varied between the reference genes in the different experimental conditions, but the two most stable reference genes were sufficient for normalization in most conditions. EsEF and Esα-TUB were sufficient for various stress conditions, EsEF and EsACT were suitable for samples of differing germination stages, and EsGAPDHand EsUBQ were most stable across multiple adult tissue samples. The Es18S gene was unsuitable as a reference gene in our analysis. In addition, the expression level of the drought-stress related transcription factor EsDREB2 verified the utility of E. songoricum reference genes and indicated that no single gene was adequate for normalization on its own. This is the first systematic report on the selection of reference genes in E. songoricum, and these data will facilitate future work on gene expression in this species.
Collapse
Affiliation(s)
- Xiao-Shuang Li
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; E-Mails: (X.-S.L.); (H.-L.Y.); (Y.-M.Z.)
- Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong-Lan Yang
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; E-Mails: (X.-S.L.); (H.-L.Y.); (Y.-M.Z.)
| | - Dao-Yuan Zhang
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; E-Mails: (X.-S.L.); (H.-L.Y.); (Y.-M.Z.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +86-991-7823109; Fax: +86-991-7823109
| | - Yuan-Ming Zhang
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; E-Mails: (X.-S.L.); (H.-L.Y.); (Y.-M.Z.)
| | - Andrew J. Wood
- Department of Plant Biology, Southern Illinois University, Carbondale, IL 62901, USA; E-Mail:
| |
Collapse
|
247
|
Coussens G, Aesaert S, Verelst W, Demeulenaere M, De Buck S, Njuguna E, Inzé D, Van Lijsebettens M. Brachypodium distachyon promoters as efficient building blocks for transgenic research in maize. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:4263-73. [PMID: 22523343 DOI: 10.1093/jxb/ers113] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The biotechnological approach to improve performance or yield of crops or for engineering metabolic pathways requires the expression of a number of transgenes, each with a specific promoter to avoid induction of silencing mechanisms. In maize (Zea mays), used as a model for cereals, an efficient Agrobacterium tumefaciens-mediated transformation system has been established that is applied for translational research. In the current transformation vectors, the promoters of the 35S gene of the cauliflower mosaic virus and of the ubiquitin gene of maize are often used to drive the bialaphos-selectable marker and the transgene, respectively. To expand the number of promoters, genes with either constitutive or seed-specific expression were selected in Brachypodium distachyon, a model grass distantly related to maize. After the corresponding Brachypodium promoters had been fused to the β-glucuronidase reporter gene, their activity was followed throughout maize development and quantified in a fluorimetric assay with the 4-methylumbelliferyl β-D-glucuronide substrate. The promoters pBdEF1α and pBdUBI10 were constitutively and highly active in maize, whereas pBdGLU1 was clearly endosperm-specific, hence, expanding the toolbox for transgene analysis in maize. The data indicate that Brachypodium is an excellent resource for promoters for transgenic research in heterologous cereal species.
Collapse
Affiliation(s)
- Griet Coussens
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
248
|
Chandna R, Augustine R, Bisht NC. Evaluation of candidate reference genes for gene expression normalization in Brassica juncea using real time quantitative RT-PCR. PLoS One 2012; 7:e36918. [PMID: 22606308 PMCID: PMC3350508 DOI: 10.1371/journal.pone.0036918] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 04/16/2012] [Indexed: 02/03/2023] Open
Abstract
The real time quantitative reverse transcription PCR (qRT-PCR) is becoming increasingly important to gain insight into function of genes. Given the increased sensitivity, ease and reproducibility of qRT-PCR, the requirement of suitable reference genes for normalization has become important and stringent. It is now known that the expression of internal control genes in living organism vary considerably during developmental stages and under different experimental conditions. For economically important Brassica crops, only a couple of reference genes are reported till date. In this study, expression stability of 12 candidate reference genes including ACT2, ELFA, GAPDH, TUA, UBQ9 (traditional housekeeping genes), ACP, CAC, SNF, TIPS-41, TMD, TSB and ZNF (new candidate reference genes), in a diverse set of 49 tissue samples representing different developmental stages, stress and hormone treated conditions and cultivars of Brassica juncea has been validated. For the normalization of vegetative stages the ELFA, ACT2, CAC and TIPS-41 combination would be appropriate whereas TIPS-41 along with CAC would be suitable for normalization of reproductive stages. A combination of GAPDH, TUA, TIPS-41 and CAC were identified as the most suitable reference genes for total developmental stages. In various stress and hormone treated samples, UBQ9 and TIPS-41 had the most stable expression. Across five cultivars of B. juncea, the expression of CAC and TIPS-41 did not vary significantly and were identified as the most stably expressed reference genes. This study provides comprehensive information that the new reference genes selected herein performed better than the traditional housekeeping genes. The selection of most suitable reference genes depends on the experimental conditions, and is tissue and cultivar-specific. Further, to attain accuracy in the results more than one reference genes are necessary for normalization.
Collapse
Affiliation(s)
- Ruby Chandna
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Rehna Augustine
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Naveen C. Bisht
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
- * E-mail:
| |
Collapse
|
249
|
Xiao D, Zhang NW, Zhao JJ, Bonnema G, Hou XL. Validation of reference genes for real-time quantitative PCR normalisation in non-heading Chinese cabbage. FUNCTIONAL PLANT BIOLOGY : FPB 2012; 39:342-350. [PMID: 32480786 DOI: 10.1071/fp11246] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2011] [Accepted: 03/07/2012] [Indexed: 05/09/2023]
Abstract
Non-heading Chinese cabbage is an important vegetable crop that includes pak choi, caixin and several Japanese vegetables like mizuna, mibuna and komatsuna. Gene expression studies are frequently used to unravel the genetics of complex traits and in such studies the proper selection of reference genes for normalisation is crucial. We assessed the expression of 13 candidate reference genes including ACTIN, ACTIN-1, ACTIN-2, GAPDH, Tub_α, CyP, EF1-α, 18S rRNA, UBQ, UBC30, PPR, PP2A and MDH. Their expression stabilities were analysed using two programs, geNorm and NormFinder, in 20 different samples that represent four strategic groups. Results showed that no single gene was uniformly expressed in all tested samples. ACTIN and CyP are proposed as good reference genes when studying developmental stages. CyP, Tub_α and UBC30 are good reference genes when studying different tissues (from flowering to seed set). CyP and Tub_α are the most stable reference genes under biotic stress treatments using the fungi Peronospora parasitica and Alternaria brassicicola. UBC30, EF1-α and ACTIN are recommended for normalisation in abiotic stress studies, including hormone, salt, drought, cold and heath treatments. Moreover, at least five reference genes (ACTIN, CyP, UBC30, EF1-α and UBQ) are required for accurate qRT-PCR data normalisation when studying gene expression across all tested samples.
Collapse
Affiliation(s)
- Dong Xiao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement; Horticultural College, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Ning-Wen Zhang
- Laboratory of Plant Breeding, Wageningen University, The Netherlands
| | - Jian-Jun Zhao
- Laboratory of Plant Breeding, Wageningen University, The Netherlands
| | - Guusje Bonnema
- Laboratory of Plant Breeding, Wageningen University, The Netherlands
| | - Xi-Lin Hou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement; Horticultural College, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| |
Collapse
|
250
|
Liu C, Wu G, Huang X, Liu S, Cong B. Validation of housekeeping genes for gene expression studies in an ice alga Chlamydomonas during freezing acclimation. Extremophiles 2012; 16:419-25. [PMID: 22527038 DOI: 10.1007/s00792-012-0441-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 03/22/2012] [Indexed: 10/28/2022]
Abstract
Antarctic ice alga Chlamydomonas sp. ICE-L can endure extreme low temperature and high salinity stress under freezing conditions. To elucidate the molecular acclimation mechanisms using gene expression analysis, the expression stabilities of ten housekeeping genes of Chlamydomonas sp. ICE-L during freezing stress were analyzed. Some discrepancies were detected in the ranking of the candidate reference genes between geNorm and NormFinder programs, but there was substantial agreement between the groups of genes with the most and the least stable expression. RPL19 was ranked as the best candidate reference genes. Pairwise variation (V) analysis indicated the combination of two reference genes was sufficient for qRT-PCR data normalization under the experimental conditions. Considering the co-regulation between RPL19 and RPL32 (the most stable gene pairs given by geNorm program), we propose that the mean data rendered by RPL19 and GAPDH (the most stable gene pairs given by NormFinder program) be used to normalize gene expression values in Chlamydomonas sp. ICE-L more accurately. The example of FAD3 gene expression calculation demonstrated the importance of selecting an appropriate category and number of reference genes to achieve an accurate and reliable normalization of gene expression during freeze acclimation in Chlamydomonas sp. ICE-L.
Collapse
Affiliation(s)
- Chenlin Liu
- The First Institute of Oceanography, Marine Ecological Center, State Oceanic Administration, Qingdao, 266061, China.
| | | | | | | | | |
Collapse
|