201
|
Abstract
Oxytocin is a hypothalamic neuropeptide first recognized as a regulator of parturition and lactation which has recently gained attention for its ability to modulate social behaviors. In this chapter, we review several aspects of the oxytocinergic system, focusing on evidence for release of oxytocin and its receptor distribution in the cortex as the foundation for important networks that control social behavior. We examine the developmental timeline of the cortical oxytocin system as demonstrated by RNA, autoradiographic binding, and protein immunohistochemical studies, and describe how that might shape brain development and behavior. Many recent studies have implicated oxytocin in cognitive processes such as processing of sensory stimuli, social recognition, social memory, and fear. We review these studies and discuss the function of oxytocin in the young and adult cortex as a neuromodulator of central synaptic transmission and mediator of plasticity.
Collapse
|
202
|
Abstract
A small, but powerful neuropeptide, oxytocin coordinates processes that are central to both human reproduction and human evolution. Also embedded in the evolution of the human nervous system are unique pathways necessary for modern human sociality and cognition. Oxytocin is necessary for facilitating the birth process, especially in light of anatomical restrictions imposed by upright human locomotion, which depends on a fixed pelvis. Oxytocin, by facilitating birth, allowed the development of a large cortex and a protective bony cranium. The complex human brain in turn permitted the continuing emergence of social sensitivity, complex thinking, and language. After birth is complete, oxytocin continues to support human development by providing direct nutrition, in the form of human milk, and emotional and intellectual support through high levels of maternal behavior and selective attachment. Oxytocin also encourages social sensitivity and reciprocal attunement, on the part of both the mother and child, which are necessary for human social behavior and for rearing an emotionally healthy human child. Oxytocin supports growth during development, resilience, and healing across the lifespan. Oxytocin dynamically moderates the autonomic nervous system, and effects of oxytocin on vagal pathways allowing high levels of oxygenation and digestion necessary to support adaptation in a complex environment. Finally, oxytocin has anti-oxidant and anti-inflammatory effects, helping to explain the pervasive adaptive consequences of social behavior for emotional and physical health.
Collapse
Affiliation(s)
- C Sue Carter
- Kinsey Institute, Indiana University Bloomington, Bloomington, IN, USA.
| |
Collapse
|
203
|
Abstract
Social dysfunction is a core symptom of many psychiatric disorders and current medications have little or no remedial effects on this. Following on from extensive studies on animal models demonstrating that the neuropeptide oxytocin plays an important role in social recognition and bonding, human-based research has explored its therapeutic potential for social dysfunction in psychiatric disorders. Here we outline the historical background of this human-based research and some of the current methodological challenges it is facing. To date, research has primarily attempted to establish functional effects through measuring altered endogenous concentrations, observing effects of exogenous administration and by investigating the effects of polymorphisms and epigenetic modifications of the oxytocin receptor gene. We summarize some of the key findings on behavioral and neural effects that have been reported in healthy subjects in the context of social cognition which have provided encouragement that oxytocin could represent a promising therapeutic target. At the same time, we have identified a number of key areas where we urgently need further information about optimal dosing strategies and interactions with other peptide and transmitter systems. Finally, we have summarized current translational findings, particularly in the context of therapeutic outcomes of intranasal oxytocin administration in autism and schizophrenia. These clinical findings while somewhat varied in outcome do offer increasing cause for optimism that targeting the oxytocin system may provide a successful therapeutic approach for social dysfunction. However, future research needs to focus on the most effective treatment strategy and which types of individuals are likely to benefit most.
Collapse
|
204
|
Toepfer P, Heim C, Entringer S, Binder E, Wadhwa P, Buss C. Oxytocin pathways in the intergenerational transmission of maternal early life stress. Neurosci Biobehav Rev 2016; 73:293-308. [PMID: 28027955 DOI: 10.1016/j.neubiorev.2016.12.026] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/08/2016] [Accepted: 12/17/2016] [Indexed: 12/17/2022]
Abstract
Severe stress in early life, such as childhood abuse and neglect, constitutes a major risk factor in the etiology of psychiatric disorders and somatic diseases. Importantly, these long-term effects may impact the next generation. The intergenerational transmission of maternal early life stress (ELS) may occur via pre-and postnatal pathways, such as alterations in maternal-fetal-placental stress physiology, maternal depression during pregnancy and postpartum, as well as impaired mother-offspring interactions. The neuropeptide oxytocin (OT) has gained considerable attention for its role in modulating all of these assumed transmission pathways. Moreover, central and peripheral OT signaling pathways are highly sensitive to environmental exposures and may be compromised by ELS with implications for these putative transmission mechanisms. Together, these data suggest that OT pathways play an important role in the intergenerational transmission of maternal ELS in humans. By integrating recent studies on gene-environment interactions and epigenetic modifications in OT pathway genes, the present review aims to develop a conceptual framework of intergenerational transmission of maternal ELS that emphasizes the role of OT.
Collapse
Affiliation(s)
- Philipp Toepfer
- Institute of Medical Psychology, Charité - Universitätsmedizin Berlin, Luisenstraße 57, 10117, Berlin, Germany
| | - Christine Heim
- Institute of Medical Psychology, Charité - Universitätsmedizin Berlin, Luisenstraße 57, 10117, Berlin, Germany; Department of Biobehavioral Health, Penn State University, 219 Biobehavioral Health Building University Park, PA, 16802, USA
| | - Sonja Entringer
- Institute of Medical Psychology, Charité - Universitätsmedizin Berlin, Luisenstraße 57, 10117, Berlin, Germany; UC Irvine Development, Health and Disease Research Program, 333 The City Blvd. W, Suite 810, Orange, CA, 92868, USA
| | - Elisabeth Binder
- Max-Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804, Munich, Germany; Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, School of Medicine Atlanta, GA, 30307, USA
| | - Pathik Wadhwa
- UC Irvine Development, Health and Disease Research Program, 333 The City Blvd. W, Suite 810, Orange, CA, 92868, USA
| | - Claudia Buss
- Institute of Medical Psychology, Charité - Universitätsmedizin Berlin, Luisenstraße 57, 10117, Berlin, Germany; UC Irvine Development, Health and Disease Research Program, 333 The City Blvd. W, Suite 810, Orange, CA, 92868, USA.
| |
Collapse
|
205
|
Schroeder DI, Schmidt RJ, Crary-Dooley FK, Walker CK, Ozonoff S, Tancredi DJ, Hertz-Picciotto I, LaSalle JM. Placental methylome analysis from a prospective autism study. Mol Autism 2016; 7:51. [PMID: 28018572 PMCID: PMC5159983 DOI: 10.1186/s13229-016-0114-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 11/28/2016] [Indexed: 11/10/2022] Open
Abstract
Background Autism spectrum disorders (ASD) are increasingly prevalent neurodevelopmental disorders that are behaviorally diagnosed in early childhood. Most ASD cases likely arise from a complex mixture of genetic and environmental factors, an interface where the epigenetic marks of DNA methylation may be useful as risk biomarkers. The placenta is a potentially useful surrogate tissue characterized by a methylation pattern of partially methylated domains (PMDs) and highly methylated domains (HMDs) reflective of methylation patterns observed in the early embryo. Methods In this study, we investigated human term placentas from the MARBLES (Markers of Autism Risk in Babies: Learning Early Signs) prospective study by whole genome bisulfite sequencing. We also examined the utility of PMD/HMDs in detecting methylation differences consistent with ASD diagnosis at age three. Results We found that while human placental methylomes have highly reproducible PMD and HMD locations, there is a greater variation between individuals in methylation levels over PMDs than HMDs due to both sampling and individual variability. In a comparison of methylation differences in placental samples from 24 ASD and 23 typically developing (TD) children, a HMD containing a putative fetal brain enhancer near DLL1 was found to reach genome-wide significance and was validated for significantly higher methylation in ASD by pyrosequencing. Conclusions These results suggest that the placenta could be an informative surrogate tissue for predictive ASD biomarkers in high-risk families. Electronic supplementary material The online version of this article (doi:10.1186/s13229-016-0114-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Diane I Schroeder
- Department of Medical Microbiology and Immunology, Genome Center, Davis, CA 95616 USA
| | - Rebecca J Schmidt
- Department of Public Health Sciences, University of California, Davis, CA 95616 USA ; MIND Institute, University of California, Davis, CA 95616 USA
| | | | - Cheryl K Walker
- Department of Obstetrics and Gynecology, University of California, Davis, CA 95616 USA ; MIND Institute, University of California, Davis, CA 95616 USA
| | - Sally Ozonoff
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA 95616 USA ; MIND Institute, University of California, Davis, CA 95616 USA
| | - Daniel J Tancredi
- Department of Pediatrics, University of California, Davis, CA 95616 USA
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences, University of California, Davis, CA 95616 USA ; MIND Institute, University of California, Davis, CA 95616 USA
| | - Janine M LaSalle
- Department of Medical Microbiology and Immunology, Genome Center, Davis, CA 95616 USA ; MIND Institute, University of California, Davis, CA 95616 USA
| |
Collapse
|
206
|
Smearman EL, Almli LM, Conneely KN, Brody GH, Sales JM, Bradley B, Ressler KJ, Smith AK. Oxytocin Receptor Genetic and Epigenetic Variations: Association With Child Abuse and Adult Psychiatric Symptoms. Child Dev 2016; 87:122-34. [PMID: 26822448 DOI: 10.1111/cdev.12493] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Childhood abuse can alter biological systems and increase risk for adult psychopathology. Epigenetic mechanisms, alterations in DNA structure that regulate the gene expression, are a potential mechanism underlying this risk. While abuse associates with methylation of certain genes, particularly those in the stress response system, no study to date has evaluated abuse and methylation of the oxytocin receptor (OXTR). However, studies support a role for OXTR in the link between abuse and adverse adult outcomes, showing that abuse can confer greater risk for psychiatric symptoms in those with specific OXTR genotypes. This study therefore sought to (a) assess the role of epigenetics in the link between abuse and psychopathology and (b) begin to integrate the genetic and epigenetic literature by exploring associations between OXTR genotypes and DNA CpG methylation. Data on 18 OXTR CpG sites, 44 single nucleotide polymorphisms, childhood abuse, and adult depression and anxiety symptoms were assessed in 393 African American adults (age = 41 ± 12.8 years). Overall, 68% of genotypes were associated with methylation of nearby CpG sites, with a subset surviving multiple test correction. Child abuse associated with higher methylation of two CpG sites yet did not survive correction or serve as a mediator of psychopathology. However, abuse interacted with CpG methylation to predict psychopathology. These findings suggest a role for OXTR in understanding the influence of early environments on adult psychiatric symptoms.
Collapse
Affiliation(s)
| | | | | | | | | | - Bekh Bradley
- Emory University School of Medicine.,Department of Veterans Affairs Medical Center
| | | | | |
Collapse
|
207
|
Gonzalez MZ, Allen JP, Coan JA. Lower neighborhood quality in adolescence predicts higher mesolimbic sensitivity to reward anticipation in adulthood. Dev Cogn Neurosci 2016; 22:48-57. [PMID: 27838595 PMCID: PMC5275766 DOI: 10.1016/j.dcn.2016.10.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 10/19/2016] [Indexed: 12/18/2022] Open
Abstract
Life history theory suggests that adult reward sensitivity should be best explained by childhood, but not current, socioeconomic conditions. In this functional magnetic resonance imaging (fMRI) study, 83 participants from a larger longitudinal sample completed the monetary incentive delay (MID) task in adulthood (∼25 years old). Parent-reports of neighborhood quality and parental SES were collected when participants were 13 years of age. Current income level was collected concurrently with scanning. Lower adolescent neighborhood quality, but neither lower current income nor parental SES, was associated with heightened sensitivity to the anticipation of monetary gain in putative mesolimbic reward areas. Lower adolescent neighborhood quality was also associated with heightened sensitivity to the anticipation of monetary loss activation in visuo-motor areas. Lower current income was associated with heightened sensitivity to anticipated loss in occipital areas and the operculum. We tested whether externalizing behaviors in childhood or adulthood could better account for neighborhood quality findings, but they did not. Findings suggest that neighborhood ecology in adolescence is associated with greater neural reward sensitivity in adulthood above the influence of parental SES or current income and not mediated through impulsivity and externalizing behaviors.
Collapse
|
208
|
The emerging roles of MicroRNAs in autism spectrum disorders. Neurosci Biobehav Rev 2016; 71:729-738. [DOI: 10.1016/j.neubiorev.2016.10.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 05/27/2016] [Accepted: 10/22/2016] [Indexed: 12/21/2022]
|
209
|
Cappi C, Diniz JB, Requena GL, Lourenço T, Lisboa BCG, Batistuzzo MC, Marques AH, Hoexter MQ, Pereira CA, Miguel EC, Brentani H. Epigenetic evidence for involvement of the oxytocin receptor gene in obsessive-compulsive disorder. BMC Neurosci 2016; 17:79. [PMID: 27903255 PMCID: PMC5131547 DOI: 10.1186/s12868-016-0313-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 11/24/2016] [Indexed: 12/22/2022] Open
Abstract
Background
Obsessive–compulsive disorder (OCD) is a chronic neurodevelopmental disorder that affects up to 3% of the general population. Although epigenetic mechanisms play a role in neurodevelopment disorders, epigenetic pathways associated with OCD have rarely been investigated. Oxytocin is a neuropeptide involved in neurobehavioral functions. Oxytocin has been shown to be associated with the regulation of complex socio-cognitive processes such as attachment, social exploration, and social recognition, as well as anxiety and other stress-related behaviors. Oxytocin has also been linked to the pathophysiology of OCD, albeit inconsistently. The aim of this study was to investigate methylation in two targets sequences located in the exon III of the oxytocin receptor gene (OXTR), in OCD patients and healthy controls. We used bisulfite sequencing to quantify DNA methylation in peripheral blood samples collected from 42 OCD patients and 31 healthy controls.
Results We found that the level of methylation of the cytosine-phosphate-guanine sites in two targets sequences analyzed was greater in the OCD patients than in the controls. The higher methylation in the OCD patients correlated with OCD severity. We measured DNA methylation in the peripheral blood, which prevented us from drawing any conclusions about processes in the central nervous system. Conclusion To our knowledge, this is the first study investigating DNA methylation of the OXTR in OCD. Further studies are needed to evaluate the roles that DNA methylation and oxytocin play in OCD.
Collapse
Affiliation(s)
- Carolina Cappi
- Department of Psychiatry, School of Medicine, University of São Paulo, R. Dr. Ovídio Pires de Campos, 785, 3º andar, sala 9, São Paulo, SP, 05403-010, Brazil.
| | - Juliana Belo Diniz
- Department of Psychiatry, School of Medicine, University of São Paulo, R. Dr. Ovídio Pires de Campos, 785, 3º andar, sala 9, São Paulo, SP, 05403-010, Brazil
| | - Guaraci L Requena
- Institute of Mathematics and Statistics, University of São Paulo, São Paulo, Brazil
| | - Tiaya Lourenço
- Department of Psychiatry, School of Medicine, University of São Paulo, R. Dr. Ovídio Pires de Campos, 785, 3º andar, sala 9, São Paulo, SP, 05403-010, Brazil
| | - Bianca Cristina Garcia Lisboa
- Department of Psychiatry, School of Medicine, University of São Paulo, R. Dr. Ovídio Pires de Campos, 785, 3º andar, sala 9, São Paulo, SP, 05403-010, Brazil
| | - Marcelo Camargo Batistuzzo
- Department of Psychiatry, School of Medicine, University of São Paulo, R. Dr. Ovídio Pires de Campos, 785, 3º andar, sala 9, São Paulo, SP, 05403-010, Brazil
| | - Andrea H Marques
- Department of Psychiatry, School of Medicine, University of São Paulo, R. Dr. Ovídio Pires de Campos, 785, 3º andar, sala 9, São Paulo, SP, 05403-010, Brazil
| | - Marcelo Q Hoexter
- Department of Psychiatry, School of Medicine, University of São Paulo, R. Dr. Ovídio Pires de Campos, 785, 3º andar, sala 9, São Paulo, SP, 05403-010, Brazil
| | - Carlos A Pereira
- Institute of Mathematics and Statistics, University of São Paulo, São Paulo, Brazil
| | - Euripedes Constantino Miguel
- Department of Psychiatry, School of Medicine, University of São Paulo, R. Dr. Ovídio Pires de Campos, 785, 3º andar, sala 9, São Paulo, SP, 05403-010, Brazil
| | - Helena Brentani
- Department of Psychiatry, School of Medicine, University of São Paulo, R. Dr. Ovídio Pires de Campos, 785, 3º andar, sala 9, São Paulo, SP, 05403-010, Brazil
| |
Collapse
|
210
|
Abstract
AbstractVariation in the quality of parental care has a tremendous impact on a child's social–emotional development. Research investigating the predictors of this variability in human caregiving behavior has mostly focused on learning mechanisms. Evidence is currently accumulating for the complementary underlying role of steroid hormones and neuropeptides. An overview is provided of the hormones and neuropeptides relevant for human caregiving behavior. Then the developmental factors are described that stimulate variability in sensitivity to these hormones and neuropeptides, which may result in variability in the behavioral repertoire of caregiving. The role of genetic variation in neuropeptide and steroid receptors, the role of testosterone and oxytocin during fetal development and parturition, and the impact of experienced caregiving in childhood on functioning of the neuroendocrine stress and oxytocin system are discussed. Besides providing a heuristic framework for further research on the ontogenetic development of human caregiving, a neuroendocrine model is also presented for the intergenerational transmission of caregiving practices. Insight into the underlying biological mechanisms that bring about maladaptive caregiving behavior, such as neglect and insensitive parenting, will hopefully result in more efficient approaches to reduce the high prevalence of such behavior and to minimize the impact on those affected.
Collapse
|
211
|
Cattaneo Z, Daini R, Malaspina M, Manai F, Lillo M, Fermi V, Schiavi S, Suchan B, Comincini S. Congenital prosopagnosia is associated with a genetic variation in the oxytocin receptor (OXTR) gene: An exploratory study. Neuroscience 2016; 339:162-173. [PMID: 27693815 DOI: 10.1016/j.neuroscience.2016.09.040] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 09/21/2016] [Accepted: 09/22/2016] [Indexed: 10/20/2022]
Abstract
Face-recognition deficits, referred to with the term prosopagnosia (i.e., face blindness), may manifest during development in the absence of any brain injury (from here the term congenital prosopagnosia, CP). It has been estimated that approximately 2.5% of the population is affected by face-processing deficits not depending on brain lesions, and varying a lot in severity. The genetic bases of this disorder are not known. In this study we tested for genetic association between single-nucleotide polymorphisms (SNPs) in the oxytocin receptor gene (OXTR) and CP in a restricted cohort of Italian participants. We found evidence of an association between the common genetic variants rs53576 and rs2254298 OXTR SNPs and prosopagnosia. This association was also found when including an additional group of German individuals classified as prosopagnosic in the analysis. Our preliminary data provide initial support for the involvement of genetic variants of OXTR in a relevant cognitive impairment, whose genetic bases are still largely unexplored.
Collapse
Affiliation(s)
- Zaira Cattaneo
- Department of Psychology, University of Milano-Bicocca, Milano, Italy; Brain Connectivity Center, C. Mondino National Neurological Institute, Pavia, Italy.
| | - Roberta Daini
- Department of Psychology, University of Milano-Bicocca, Milano, Italy; Milan Center for Neuroscience (NeuroMI), Milano, Italy
| | - Manuela Malaspina
- Department of Psychology, University of Milano-Bicocca, Milano, Italy; Milan Center for Neuroscience (NeuroMI), Milano, Italy
| | - Federico Manai
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Mariarita Lillo
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Valentina Fermi
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Susanna Schiavi
- Department of Psychology, University of Milano-Bicocca, Milano, Italy; Milan Center for Neuroscience (NeuroMI), Milano, Italy
| | - Boris Suchan
- Clinical Neuropsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr-University Bochum, Bochum, Germany
| | - Sergio Comincini
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy.
| |
Collapse
|
212
|
Salehi M, Kamali E, Karahmadi M, Mousavi SM. RORA and Autism in The Isfahan Population: Is There An Epigenetic Relationship. CELL JOURNAL 2016; 18:540-546. [PMID: 28042538 PMCID: PMC5086332 DOI: 10.22074/cellj.2016.4720] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/09/2016] [Indexed: 01/05/2023]
Abstract
Objective Autism is a neurodevelopmental disorder characterized by difficulty in verbal
and non-verbal communication, impaired social interaction, and restricted and repetitive
behavior. It has been recently introduced as a multigenic disorder with significant epigenetic effects on its pathology. Recently, epigenetic silencing of retinoic acid receptor-
related orphan receptor alpha (RORα) gene (which has an essential role in neural tissue
development) was shown to have occurred in autistic children due to methylation of its
promoter region. This may thus explain a significant part of the molecular pathogenesis
of autism. Therefore, we aimed to confirm this finding by implementing a case-control
(experimental) study in the population of Isfahan.
Materials and Methods The methylation status of a 136 bp sequence of a GpG island
(encompassing 13 CpG sites) in the RORA promoter region (positions -200 to -64) as an
experimental study was examined in the lymphocyte cells of 30 autistic children after sodium bisulfite treatment using the melting curve analysis-methylation (MCA-Meth) assay
compared with normal children. Also, quantitative reverse transcriptase-polymerase chain
reaction (qRT-PCR) analysis was used to estimate the level of mRNA transcripts and to
evaluate MCA-Meth analysis results.
Results This study revealed no methylation in the examined promoter regions in both
autistic and normal children, with the melting curve of all studied samples being comparable to that of the non-methylated control. The results of MCA-Meth analysis were also
consistent with qRT-PCR results. We therefore observed no significant difference in the
levels of RORα transcripts in the blood lymphocytes between autistic and healthy children.
Conclusion The methylation of the RORA promoter region may not be considered as a
common epigenetic risk factor for autism in all populations. Hence, the molecular pathogenesis of autism remains unclear in the population investigated.
Collapse
Affiliation(s)
- Mansoor Salehi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elahe Kamali
- Division of Genetics, Department of Biology, Faculty of Science, University of Isfahan, Isfahan, Iran
| | - Mojgan Karahmadi
- Behavioral Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyyed Mohammad Mousavi
- Genetic and Identification Lab, Legal Medicine Center, Isfahan, Iran; Cellular and Molecular Research Center, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
213
|
Alvares GA, Quintana DS, Whitehouse AJ. Beyond the hype and hope: Critical considerations for intranasal oxytocin research in autism spectrum disorder. Autism Res 2016; 10:25-41. [DOI: 10.1002/aur.1692] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 08/03/2016] [Accepted: 08/11/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Gail A. Alvares
- Telethon Kids Institute; The University of Western Australia; Perth Western Australia Australia
- Cooperative Research Centre for Living with Autism (Autism CRC); Long Pocket Brisbane, Queensland Australia
| | - Daniel S. Quintana
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction; Oslo University Hospital, University of Oslo; Oslo Norway
| | - Andrew J.O. Whitehouse
- Telethon Kids Institute; The University of Western Australia; Perth Western Australia Australia
- Cooperative Research Centre for Living with Autism (Autism CRC); Long Pocket Brisbane, Queensland Australia
| |
Collapse
|
214
|
Oxytocin, a main breastfeeding hormone, prevents hypertension acquired in utero: A therapeutics preview. Biochim Biophys Acta Gen Subj 2016; 1861:3071-3084. [PMID: 27658996 DOI: 10.1016/j.bbagen.2016.09.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/29/2016] [Accepted: 09/16/2016] [Indexed: 02/07/2023]
Abstract
Hypertension is a major risk factor for ischemic heart disease and stroke, leading causes of morbidity and death worldwide. Intrauterine growth restriction (IUGR), caused by an excess of glucocorticoid exposure to the fetus, produces an imbalance in oxidative stress altering many biochemical and epigenetic gene transcription processes exposing the fetus and neonate to the 'thrifty' phenotype and pervasive polymorphisms appearance damaging health, cognitive, and behavioral processes in later life. OT is a major regulator of oxidative stress radicals that plays a major role in neonatal maturation of the central nervous system and many peripheral tissues expressing oxytocin/oxytocin-receptor (OT/OTR) system in the early postnatal period. OT and OTR are damaged by IUGR and early stress. This review highlights the fact that hypertension is likely to be a legacy of preterm birth due to IUGR and failure to meet nutritional needs in early infancy when fed formula instead of breastfeeding or human milk.
Collapse
|
215
|
Bakulski KM, Halladay A, Hu VW, Mill J, Fallin MD. Epigenetic Research in Neuropsychiatric Disorders: the "Tissue Issue". Curr Behav Neurosci Rep 2016; 3:264-274. [PMID: 28093577 PMCID: PMC5235359 DOI: 10.1007/s40473-016-0083-4] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
PURPOSE OF REVIEW Evidence has linked neuropsychiatric disorders with epigenetic marks as either a biomarker of disease, biomarker of exposure, or mechanism of disease processes. Neuropsychiatric epidemiologic studies using either target brain tissue or surrogate blood tissue each have methodological challenges and distinct advantages. RECENT FINDINGS Brain tissue studies are challenged by small sample sizes of cases and controls, incomplete phenotyping, post-mortem timing, and cellular heterogeneity, but the use of a primary disease relevant tissue is critical. Blood-based studies have access to much larger sample sizes and more replication opportunities, as well as the potential for longitudinal measurements, both prior to onset and during the course of treatments. Yet, blood studies also are challenged by cell-type heterogeneity, and many question the validity of using peripheral tissues as a brain biomarker. Emerging evidence suggests that these limitations to blood-based epigenetic studies are surmountable, but confirmation in target tissue remains important. SUMMARY Epigenetic mechanisms have the potential to help elucidate biology connecting experiential risk factors with neuropsychiatric disease manifestation. Cross-tissue studies as well as advanced epidemiologic methods should be employed to more effectively conduct neuropsychiatric epigenetic research.
Collapse
Affiliation(s)
- Kelly M Bakulski
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Alycia Halladay
- Autism Science Foundation, New York City, New York, USA; Department of Pharmacology and Toxicology, Rutgers University, New Brunswick, New Jersey, USA
| | - Valerie W Hu
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC, USA
| | - Jonathan Mill
- University of Exeter Medical School, University of Exeter, Exeter, UK; Institute for Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - M Daniele Fallin
- Department of Mental Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA; Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
216
|
Corbett BA, Bales KL, Swain D, Sanders K, Weinstein TAR, Muglia LJ. Comparing oxytocin and cortisol regulation in a double-blind, placebo-controlled, hydrocortisone challenge pilot study in children with autism and typical development. J Neurodev Disord 2016; 8:32. [PMID: 27540420 PMCID: PMC4989357 DOI: 10.1186/s11689-016-9165-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 08/05/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Children with autism spectrum disorder (ASD) show marked impairment in social functioning and poor adaptation to new and changing contexts, which may be influenced by underlying regulatory processes. Oxytocin (OT) and cortisol are key neuromodulators of biological and behavioral responses, show a synergistic effect, and have been implicated in the neuropathological profile in ASD. However, they are rarely investigated together. The purpose of the pilot study was to evaluate the relationship between cortisol and OT in children with ASD under baseline and physiological stress (hydrocortisone challenge) conditions. Arginine vasopressin (AVP), structurally similar to OT, was also examined. METHODS A double-blind, placebo-controlled, randomly assigned, crossover design was employed in 25 children 8-to-12 years with ASD (N = 14) or typical development (TD, N = 11). A low dose of hydrocortisone and placebo were administered via liquid suspension. Analysis of variance (ANOVA) was used to examine the within-subject factor "Condition" (hydrocortisone/placebo) and "Time" (pre and post) and the between-subject factor "Group" (ASD vs. TD). Pearson correlations examined the relationship between hormone levels and clinical profile. RESULTS There was a significant Time × Condition × Group interaction F (1.23) = 4.18, p = 0.05 showing a rise in OT during the experimental condition (hydrocortisone) and a drop during the placebo condition for the TD group but not the ASD group. There were no group differences for AVP. Hormone levels were associated with social profiles. CONCLUSIONS For the TD group, an inverse relationship was observed. OT increased during physiological challenge suggesting that OT played a stress-buffering role during cortisol administration. In contrast for the ASD group, OT remained unchanged or decreased during both the physiological challenge and the placebo condition, suggesting that OT failed to serve as a stress buffer under conditions of physiological stress. While OT has been tied to the social ability of children with ASD, the diminished moderating effect of OT on cortisol may also play a contributory role in the heightened stress often observed in children with ASD. These results contribute to our understanding of the growing complexity of the effects of OT on social behavior as well as the functional interplay and differential regulation OT may have on stress modulation.
Collapse
Affiliation(s)
- Blythe A. Corbett
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University, PMB 40, 230 Appleton Place, Nashville, TN 37203 USA
- Vanderbilt Kennedy Center for Research on Human Development, Nashville, TN USA
- Department of Psychology, Vanderbilt University, Nasvhille, TN USA
| | | | - Deanna Swain
- Virginia Polytechnic Institute and State University, Blacksburg, VA USA
| | - Kevin Sanders
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University, PMB 40, 230 Appleton Place, Nashville, TN 37203 USA
| | | | - Louis J. Muglia
- Department of Pediatrics, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH USA
| |
Collapse
|
217
|
Rijlaarsdam J, van IJzendoorn MH, Verhulst FC, Jaddoe VWV, Felix JF, Tiemeier H, Bakermans-Kranenburg MJ. Prenatal stress exposure, oxytocin receptor gene (OXTR) methylation, and child autistic traits: The moderating role of OXTR rs53576 genotype. Autism Res 2016; 10:430-438. [PMID: 27520745 DOI: 10.1002/aur.1681] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 07/06/2016] [Accepted: 07/07/2016] [Indexed: 01/20/2023]
Abstract
Findings of studies investigating OXTR SNP rs53576 (G-A) variation in social behavior have been inconsistent, possibly because DNA methylation after stress exposure was eliminated from consideration. Our goal was to examine OXTR rs53576 allele-specific sensitivity for neonatal OXTR DNA methylation in relation to (1) a prenatal maternal stress composite, and (2) child autistic traits. Prospective data from fetal life to age 6 years were collected in a total of 743 children participating in the Generation R Study. Prenatal maternal stress exposure was uniquely associated with child autistic traits but was unrelated to OXTR methylation across both OXTR rs53576 G-allele homozygous children and A-allele carriers. For child autistic traits in general and social communication problems in particular, we observed a significant OXTR rs53576 genotype by OXTR methylation interaction in the absence of main effects, suggesting that opposing effects cancelled each other out. Indeed, OXTR methylation levels were positively associated with social problems for OXTR rs53576 G-allele homozygous children but not for A-allele carriers. These results highlight the importance of incorporating epi-allelic information and support the role of OXTR methylation in child autistic traits. Autism Res 2017, 10: 430-438. © 2016 International Society for Autism Research, Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jolien Rijlaarsdam
- Centre for Child and Family Studies, Leiden University, Leiden, The Netherlands
| | - Marinus H van IJzendoorn
- Centre for Child and Family Studies, Leiden University, Leiden, The Netherlands.,School of Pedagogical and Educational Sciences, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Frank C Verhulst
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC-University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Vincent W V Jaddoe
- Generation R Study Group, Erasmus MC-University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Epidemiology, Erasmus MC-University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Pediatrics, Erasmus MC-University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Janine F Felix
- Department of Epidemiology, Erasmus MC-University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Henning Tiemeier
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC-University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Epidemiology, Erasmus MC-University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Psychiatry, Erasmus MC-University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | |
Collapse
|
218
|
Grove TB, Burghardt KJ, Kraal AZ, Dougherty RJ, Taylor SF, Ellingrod VL. Oxytocin Receptor (OXTR) Methylation and Cognition in Psychotic Disorders. MOLECULAR NEUROPSYCHIATRY 2016; 2:151-160. [PMID: 27867940 DOI: 10.1159/000448173] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 06/30/2016] [Indexed: 01/17/2023]
Abstract
Previous reports have identified an association between cognitive impairment and genetic variation in psychotic disorders. In particular, this association may be related to abnormal regulation of genes responsible for broad cognitive functions such as the oxytocin receptor (OXTR). Within psychotic disorders, it is unknown if OXTR methylation, which can have important implications for gene regulation, is related to cognitive function. The current study examined peripheral blood OXTR methylation and general cognition in people with schizophrenia, schizoaffective disorder, and psychotic disorder not otherwise specified (N = 101). Using hierarchical multiple regression analysis, methylation at the Chr3:8767638 site was significantly associated with composite cognitive performance independent of demographic and medication factors while controlling for multiple testing in this combined diagnostic sample (adjusted p = 0.023).
Collapse
Affiliation(s)
- Tyler B Grove
- Department of Psychology, University of Michigan, Ann Arbor, Mich., USA
| | - Kyle J Burghardt
- Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Mich., USA
| | - A Zarina Kraal
- Department of Psychology, University of Michigan, Ann Arbor, Mich., USA
| | - Ryan J Dougherty
- Luskin School of Public Affairs, University of California, Los Angeles, Los Angeles, Calif.,USA
| | - Stephan F Taylor
- Department of Psychology, University of Michigan, Ann Arbor, Mich., USA; Department of Psychiatry, University of Michigan, Ann Arbor, Mich., USA
| | - Vicki L Ellingrod
- Department of Psychology, University of Michigan, Ann Arbor, Mich., USA; Department of Psychiatry, University of Michigan, Ann Arbor, Mich., USA; College of Pharmacy, University of Michigan, Ann Arbor, Mich., USA
| |
Collapse
|
219
|
Bergman NJ. Hypothesis on supine sleep, sudden infant death syndrome reduction and association with increasing autism incidence. World J Clin Pediatr 2016; 5:330-342. [PMID: 27610351 PMCID: PMC4978628 DOI: 10.5409/wjcp.v5.i3.330] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/26/2016] [Accepted: 06/03/2016] [Indexed: 02/05/2023] Open
Abstract
AIM: To identify a hypothesis on: Supine sleep, sudden infant death syndrome (SIDS) reduction and association with increasing autism incidence.
METHODS: Literature was searched for autism spectrum disorder incidence time trends, with correlation of change-points matching supine sleep campaigns. A mechanistic model expanding the hypothesis was constructed based on further review of epidemiological and other literature on autism.
RESULTS: In five countries (Denmark, United Kingdom, Australia, Israel, United States) with published time trends of autism, change-points coinciding with supine sleep campaigns were identified. The model proposes that supine sleep does not directly cause autism, but increases the likelihood of expression of a subset of autistic criteria in individuals with genetic susceptibility, thereby specifically increasing the incidence of autism without intellectual disability.
CONCLUSION: Supine sleep is likely a physiological stressor, that does reduce SIDS, but at the cost of impact on emotional and social development in the population, a portion of which will be susceptible to, and consequently express autism. A re-evaluation of all benefits and harms of supine sleep is warranted. If the SIDS mechanism proposed and autism model presented can be verified, the research agenda may be better directed, in order to further decrease SIDS, and reduce autism incidence.
Collapse
|
220
|
Elagoz Yuksel M, Yuceturk B, Karatas OF, Ozen M, Dogangun B. The altered promoter methylation of oxytocin receptor gene in autism. J Neurogenet 2016; 30:280-284. [PMID: 27309964 DOI: 10.1080/01677063.2016.1202951] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Autism spectrum disorder (ASD) is one of the lifelong existing disorders. Abnormal methylation status of gene promoters of oxytonergic system has been implicated as among the etiologic factors of ASDs. We, therefore, investigated the methylation frequency of oxytocin receptor gene (OXTR) promoter from peripheral blood samples of children with autistic features. Our sample includes 66 children in total (22-94 months); 27 children with ASDs according to the DSM-IV-TR and the Childhood Autism Rating Scale (CARS) and 39 children who do not have any autistic like symptoms as the healthy control group. We investigated the DNA methylation status of OXTR promoter by methylation specific enzymatic digestion of genomic DNA and polymerase chain reaction. A significant relationship has been found between ASDs and healthy controls for the reduction of methylation frequency of the regions MT1 and MT3 of OXTR. We could not find any association in the methylation frequency of MT2 and MT4 regions of OXTR. Although our findings indicate high frequency of OXTR promoter hypomethylation in ASDs, there is need for independent replication of the results for a bigger sample set. We expect that future studies with the inclusion of larger, more homogeneous samples will attempt to disentangle the causes of ASDs.
Collapse
Affiliation(s)
- Mine Elagoz Yuksel
- a Department of Children and Adolescent Mental Health Clinics , Trabzon Kanuni Research and Training Hospital , Trabzon , Turkey
| | - Betul Yuceturk
- b Department of Medical Genetics , Cerrahpasa Medical School, Istanbul University , Istanbul , Turkey.,c Advanced Genomics and Bioinformatics Research Center , The Scientific and Technological Research Council of Turkey (TUBITAK) , Gebze , Kocaeli , Turkey
| | - Omer Faruk Karatas
- d Department of Molecular Biology and Genetics , Erzurum Technical University , Erzurum , Turkey
| | - Mustafa Ozen
- b Department of Medical Genetics , Cerrahpasa Medical School, Istanbul University , Istanbul , Turkey.,e Department of Pathology and Immunology , Baylor College of Medicine , Houston , TX , USA.,f Department of Molecular Biology and Genetics , Biruni University , Istanbul , Turkey
| | - Burak Dogangun
- g Department of Children and Adolescent Mental Health Clinics , Cerrahpasa Medical School, Istanbul University , Istanbul , Turkey
| |
Collapse
|
221
|
Toward a Mechanistic Understanding of How Variation in the Oxytocin Receptor Gene Shapes Individual Differences in Brain and Social Behavior. Biol Psychiatry 2016; 80:e7-e9. [PMID: 27346083 DOI: 10.1016/j.biopsych.2016.05.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 05/13/2016] [Accepted: 05/13/2016] [Indexed: 11/22/2022]
|
222
|
King LB, Walum H, Inoue K, Eyrich NW, Young LJ. Variation in the Oxytocin Receptor Gene Predicts Brain Region-Specific Expression and Social Attachment. Biol Psychiatry 2016; 80:160-169. [PMID: 26893121 PMCID: PMC4909578 DOI: 10.1016/j.biopsych.2015.12.008] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 11/09/2015] [Accepted: 12/05/2015] [Indexed: 12/14/2022]
Abstract
BACKGROUND Oxytocin (OXT) modulates several aspects of social behavior. Intranasal OXT is a leading candidate for treating social deficits in patients with autism spectrum disorder, and common genetic variants in the human OXTR gene are associated with emotion recognition, relationship quality, and autism spectrum disorder. Animal models have revealed that individual differences in Oxtr expression in the brain drive social behavior variation. Our understanding of how genetic variation contributes to brain OXTR expression is very limited. METHODS We investigated Oxtr expression in monogamous prairie voles, which have a well-characterized OXT system. We quantified brain region-specific levels of Oxtr messenger RNA and oxytocin receptor protein with established neuroanatomic methods. We used pyrosequencing to investigate allelic imbalance of Oxtr mRNA, a molecular signature of polymorphic genetic regulatory elements. We performed next-generation sequencing to discover variants in and near the Oxtr gene. We investigated social attachment using the partner preference test. RESULTS Our allelic imbalance data demonstrate that genetic variants contribute to individual differences in Oxtr expression, but only in particular brain regions, including the nucleus accumbens, where oxytocin receptor signaling facilitates social attachment. Next-generation sequencing identified one polymorphism in the Oxtr intron, near a putative cis-regulatory element, explaining 74% of the variance in striatal Oxtr expression specifically. Males homozygous for the high expressing allele display enhanced social attachment. CONCLUSIONS Taken together, these findings provide convincing evidence for robust genetic influence on Oxtr expression and provide novel insights into how noncoding polymorphisms in OXTR might influence individual differences in human social cognition and behavior.
Collapse
Affiliation(s)
| | | | | | | | - Larry J. Young
- Address Correspondence to: Larry J. Young, 954
Gatewood Rd., Yerkes National Primate Research Center, Emory University,
Atlanta, GA 30329, USA, Phone: 404 727-8272, Fax: 404 727-8070,
| |
Collapse
|
223
|
Pagliaroli L, Vető B, Arányi T, Barta C. From Genetics to Epigenetics: New Perspectives in Tourette Syndrome Research. Front Neurosci 2016; 10:277. [PMID: 27462201 PMCID: PMC4940402 DOI: 10.3389/fnins.2016.00277] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 06/06/2016] [Indexed: 11/13/2022] Open
Abstract
Gilles de la Tourette Syndrome (TS) is a neurodevelopmental disorder marked by the appearance of multiple involuntary motor and vocal tics. TS presents high comorbidity rates with other disorders such as attention deficit hyperactivity disorder (ADHD) and obsessive compulsive disorder (OCD). TS is highly heritable and has a complex polygenic background. However, environmental factors also play a role in the manifestation of symptoms. Different epigenetic mechanisms may represent the link between these two causalities. Epigenetic regulation has been shown to have an impact in the development of many neuropsychiatric disorders, however very little is known about its effects on Tourette Syndrome. This review provides a summary of the recent findings in genetic background of TS, followed by an overview on different epigenetic mechanisms, such as DNA methylation, histone modifications, and non-coding RNAs in the regulation of gene expression. Epigenetic studies in other neurological and psychiatric disorders are discussed along with the TS-related epigenetic findings available in the literature to date. Moreover, we are proposing that some general epigenetic mechanisms seen in other neuropsychiatric disorders may also play a role in the pathogenesis of TS.
Collapse
Affiliation(s)
- Luca Pagliaroli
- Institute of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis UniversityBudapest, Hungary; Research Centre for Natural Sciences, Institute of Enzymology, Hungarian Academy of SciencesBudapest, Hungary
| | - Borbála Vető
- Research Centre for Natural Sciences, Institute of Enzymology, Hungarian Academy of Sciences Budapest, Hungary
| | - Tamás Arányi
- Research Centre for Natural Sciences, Institute of Enzymology, Hungarian Academy of SciencesBudapest, Hungary; Centre National de la Recherche Scientifique UMR 6214, Institut National de la Santé et de la Recherche Médicale U1083, University of AngersAngers, France
| | - Csaba Barta
- Institute of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University Budapest, Hungary
| |
Collapse
|
224
|
Vogel Ciernia A, LaSalle J. The landscape of DNA methylation amid a perfect storm of autism aetiologies. Nat Rev Neurosci 2016; 17:411-23. [PMID: 27150399 PMCID: PMC4966286 DOI: 10.1038/nrn.2016.41] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Increasing evidence points to a complex interplay between genes and the environment in autism spectrum disorder (ASD), including rare de novo mutations in chromatin genes such as methyl-CpG binding protein 2 (MECP2) in Rett syndrome. Epigenetic mechanisms such as DNA methylation act at this interface, reflecting the plasticity in metabolic and neurodevelopmentally regulated gene pathways. Genome-wide studies of gene sequences, gene pathways and DNA methylation are providing valuable mechanistic insights into ASD. The dynamic developmental landscape of DNA methylation is vulnerable to numerous genetic and environmental insults: therefore, understanding pathways that are central to this 'perfect storm' will be crucial to improving the diagnosis and treatment of ASD.
Collapse
Affiliation(s)
- Annie Vogel Ciernia
- Medical Microbiology and Immunology, MIND Institute, Genome Center, University of California, Davis, California 95616, USA
| | - Janine LaSalle
- Medical Microbiology and Immunology, MIND Institute, Genome Center, University of California, Davis, California 95616, USA
| |
Collapse
|
225
|
Homs A, Codina-Solà M, Rodríguez-Santiago B, Villanueva CM, Monk D, Cuscó I, Pérez-Jurado LA. Genetic and epigenetic methylation defects and implication of the ERMN gene in autism spectrum disorders. Transl Psychiatry 2016; 6:e855. [PMID: 27404287 PMCID: PMC5545709 DOI: 10.1038/tp.2016.120] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 04/01/2016] [Accepted: 05/08/2016] [Indexed: 12/11/2022] Open
Abstract
Autism spectrum disorders (ASD) are highly heritable and genetically complex conditions. Although highly penetrant mutations in multiple genes have been identified, they account for the etiology of <1/3 of cases. There is also strong evidence for environmental contribution to ASD, which can be mediated by still poorly explored epigenetic modifications. We searched for methylation changes on blood DNA of 53 male ASD patients and 757 healthy controls using a methylomic array (450K Illumina), correlated the variants with transcriptional alterations in blood RNAseq data, and performed a case-control association study of the relevant findings in a larger cohort (394 cases and 500 controls). We found 700 differentially methylated CpGs, most of them hypomethylated in the ASD group (83.9%), with cis-acting expression changes at 7.6% of locations. Relevant findings included: (1) hypomethylation caused by rare genetic variants (meSNVs) at six loci (ERMN, USP24, METTL21C, PDE10A, STX16 and DBT) significantly associated with ASD (q-value <0.05); and (2) clustered epimutations associated to transcriptional changes in single-ASD patients (n=4). All meSNVs and clustered epimutations were inherited from unaffected parents. Resequencing of the top candidate genes also revealed a significant load of deleterious mutations affecting ERMN in ASD compared with controls. Our data indicate that inherited methylation alterations detectable in blood DNA, due to either genetic or epigenetic defects, can affect gene expression and contribute to ASD susceptibility most likely in an additive manner, and implicate ERMN as a novel ASD gene.
Collapse
Affiliation(s)
- A Homs
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain,Institut Hospital del Mar d’Investigacions Mèdiques, Barcelona, Spain,Centro de Investigación Biomédica en Red de Enfermedades Raras, Barcelona, Spain
| | - M Codina-Solà
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain,Institut Hospital del Mar d’Investigacions Mèdiques, Barcelona, Spain,Centro de Investigación Biomédica en Red de Enfermedades Raras, Barcelona, Spain
| | | | - C M Villanueva
- Center for Research in Environmental Epidemiology, Barcelona, Spain,Consorcio de Investigación Biomédica de Epidemiología y Salud Pública, Barcelona, Spain
| | - D Monk
- Cancer Epigenetics Group, Institut d'Investigació Biomedica de Bellvitge, Hospital Duran i Reynals, Barcelona, Spain
| | - I Cuscó
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain,Institut Hospital del Mar d’Investigacions Mèdiques, Barcelona, Spain,Centro de Investigación Biomédica en Red de Enfermedades Raras, Barcelona, Spain,Genetics Unit, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Dr. Aiguader 88, Barcelona 08003, Spain. E-mails: and
| | - L A Pérez-Jurado
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain,Institut Hospital del Mar d’Investigacions Mèdiques, Barcelona, Spain,Centro de Investigación Biomédica en Red de Enfermedades Raras, Barcelona, Spain,Genetics Unit, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Dr. Aiguader 88, Barcelona 08003, Spain. E-mails: and
| |
Collapse
|
226
|
Methylation of the oxytocin receptor gene mediates the effect of adversity on negative schemas and depression. Dev Psychopathol 2016; 29:725-736. [PMID: 27323309 DOI: 10.1017/s0954579416000420] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Building upon various lines of research, we posited that methylation of the oxytocin receptor gene (OXTR) would mediate the effect of adult adversity on increased commitment to negative schemas and in turn the development of depression. We tested our model using structural equation modeling and longitudinal data from a sample of 100 middle-aged, African American women. The results provided strong support for the model. Analysis of the 12 CpG sites available for the promoter region of the OXTR gene identified four factors. One of these factors was related to the study variables, whereas the others were not. This factor mediated the effect of adult adversity on schemas relating to pessimism and distrust, and these schemas, in turn, mediated the impact of OXTR methylation on depression. All indirect effects were statistically significant, and they remained significant after controlling for childhood trauma, age, romantic relationship status, individual differences in cell types, and average level of genome-wide methylation. These finding suggest that epigenetic regulation of the oxytocin system may be a mechanism whereby the negative cognitions central to depression become biologically embedded.
Collapse
|
227
|
Irwin RE, Pentieva K, Cassidy T, Lees-Murdock DJ, McLaughlin M, Prasad G, McNulty H, Walsh CP. The interplay between DNA methylation, folate and neurocognitive development. Epigenomics 2016; 8:863-79. [PMID: 27319574 DOI: 10.2217/epi-2016-0003] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
DNA methylation provides an attractive possible means for propagating the effects of environmental inputs during fetal life and impacting subsequent adult mental health, which is leading to increasing collaboration between molecular biologists, nutritionists and psychiatrists. An area of interest is the potential role of folate, not just in neural tube closure in early pregnancy, but in later major neurodevelopmental events, with consequences for later sociocognitive maturation. Here, we set the scene for recent discoveries by reviewing the major events of neural development during fetal life, with an emphasis on tissues and structures where dynamic methylation changes are known to occur. Following this, we give an indication of some of the major classes of genes targeted by methylation and important for neurological and behavioral development. Finally, we highlight some cognitive disorders where methylation changes are implicated as playing an important role.
Collapse
Affiliation(s)
- Rachelle E Irwin
- EpiFASSTT study, Biomedical Sciences, Ulster University, Coleraine, UK
| | - Kristina Pentieva
- EpiFASSTT study, Biomedical Sciences, Ulster University, Coleraine, UK
| | - Tony Cassidy
- EpiFASSTT study, Psychology, Ulster University, Coleraine, UK
| | | | | | - Girijesh Prasad
- EpiFASSTT study, Computer Sciences Research Institutes, Ulster University, Londonderry, UK
| | - Helene McNulty
- EpiFASSTT study, Biomedical Sciences, Ulster University, Coleraine, UK
| | - Colum P Walsh
- EpiFASSTT study, Biomedical Sciences, Ulster University, Coleraine, UK
| |
Collapse
|
228
|
Theofanopoulou C. Implications of Oxytocin in Human Linguistic Cognition: From Genome to Phenome. Front Neurosci 2016; 10:271. [PMID: 27378840 PMCID: PMC4906233 DOI: 10.3389/fnins.2016.00271] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 05/31/2016] [Indexed: 11/18/2022] Open
Abstract
The neurohormone oxytocin (OXT) has been found to mediate the regulation of complex socioemotional cognition in multiple ways both in humans and other animals. Recent studies have investigated the effects of OXT in different levels of analysis (from genetic to behavioral) chiefly targeting its impact on the social component and only indirectly indicating its implications in other components of our socio-interactive abilities. This article aims at shedding light onto how OXT might be modulating the multimodality that characterizes our higher-order linguistic abilities (vocal-auditory-attentional-memory-social systems). Based on evidence coming from genetic, EEG, fMRI, and behavioral studies, I attempt to establish the promises of this perspective with the goal of stressing the need for neuropeptide treatments to enter clinical practice.
Collapse
|
229
|
Clipperton-Allen AE, Chen Y, Page DT. Autism-relevant behaviors are minimally impacted by conditional deletion of Pten in oxytocinergic neurons. Autism Res 2016; 9:1248-1262. [PMID: 27220363 DOI: 10.1002/aur.1641] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 04/04/2016] [Accepted: 04/18/2016] [Indexed: 01/04/2023]
Abstract
Germline heterozygous mutations in Pten (phosphatase and tensin homolog) are associated with macrocephaly and autism spectrum disorders (ASD). Pten germline heterozygous (Pten+/- ) mice approximate these mutations, and both sexes show widespread brain overgrowth and impaired social behavior. Strikingly similar behavior phenotypes have been reported in oxytocin (Oxt) and/or oxytocin receptor (OxtR) knockout mice. Thus, we hypothesized that the behavioral phenotypes of germline Pten+/- mice may be caused by reduced Pten function in Oxt-expressing cells. To investigate this, we tested mice in which Pten was conditionally deleted using oxytocin-Cre (Oxt-Cre+ ; PtenloxP/+ , Oxt-Cre+ ; PtenloxP/loxP ) on a battery including assays of social, repetitive, depression-like, and anxiety-like behaviors. Minimal behavioral abnormalities were found; decreased anxiety-like behavior in the open field test in Oxt-Cre+ ; PtenloxP/loxP males was the only result that phenocopied germline Pten+/- mice. However, Oxt cell size was dramatically increased in Oxt-Cre+ ; PtenloxP/loxP mice in adulthood. Thus, conditional deletion of Pten using Oxt-Cre has a profound effect on Oxt cell structure, but not on ASD-relevant behavior. We interpret these results as inconsistent with our starting hypothesis that reduced Pten function in Oxt-expressing cells causes the behavioral deficits observed in germline Pten+/- mice. Autism Res 2016, 9: 1248-1262. © 2016 International Society for Autism Research, Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Youjun Chen
- Department of Neuroscience, Scripps Research Institute, Jupiter, Florida
| | - Damon T Page
- Department of Neuroscience, Scripps Research Institute, Jupiter, Florida
| |
Collapse
|
230
|
Kubota T, Mochizuki K. Epigenetic Effect of Environmental Factors on Autism Spectrum Disorders. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13050504. [PMID: 27187441 PMCID: PMC4881129 DOI: 10.3390/ijerph13050504] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 04/23/2016] [Accepted: 05/10/2016] [Indexed: 12/22/2022]
Abstract
Both environmental factors and genetic factors are involved in the pathogenesis of autism spectrum disorders (ASDs). Epigenetics, an essential mechanism for gene regulation based on chemical modifications of DNA and histone proteins, is also involved in congenital ASDs. It was recently demonstrated that environmental factors, such as endocrine disrupting chemicals and mental stress in early life, can change epigenetic status and gene expression, and can cause ASDs. Moreover, environmentally induced epigenetic changes are not erased during gametogenesis and are transmitted to subsequent generations, leading to changes in behavior phenotypes. However, epigenetics has a reversible nature since it is based on the addition or removal of chemical residues, and thus the original epigenetic status may be restored. Indeed, several antidepressants and anticonvulsants used for mental disorders including ASDs restore the epigenetic state and gene expression. Therefore, further epigenetic understanding of ASDs is important for the development of new drugs that take advantages of epigenetic reversibility.
Collapse
Affiliation(s)
- Takeo Kubota
- Department of Epigenetic Medicine, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan.
| | - Kazuki Mochizuki
- Department of Local Produce and Food Sciences, Faculty of Life and Environmental Sciences, University of Yamanashi, 4-4-37 Takeda, Kofu-City, Yamanashi 400-8510, Japan.
| |
Collapse
|
231
|
Kim KC, Gonzales EL, Lázaro MT, Choi CS, Bahn GH, Yoo HJ, Shin CY. Clinical and Neurobiological Relevance of Current Animal Models of Autism Spectrum Disorders. Biomol Ther (Seoul) 2016; 24:207-43. [PMID: 27133257 PMCID: PMC4859786 DOI: 10.4062/biomolther.2016.061] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 04/05/2016] [Indexed: 12/24/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by social and communication impairments, as well as repetitive and restrictive behaviors. The phenotypic heterogeneity of ASD has made it overwhelmingly difficult to determine the exact etiology and pathophysiology underlying the core symptoms, which are often accompanied by comorbidities such as hyperactivity, seizures, and sensorimotor abnormalities. To our benefit, the advent of animal models has allowed us to assess and test diverse risk factors of ASD, both genetic and environmental, and measure their contribution to the manifestation of autistic symptoms. At a broader scale, rodent models have helped consolidate molecular pathways and unify the neurophysiological mechanisms underlying each one of the various etiologies. This approach will potentially enable the stratification of ASD into clinical, molecular, and neurophenotypic subgroups, further proving their translational utility. It is henceforth paramount to establish a common ground of mechanistic theories from complementing results in preclinical research. In this review, we cluster the ASD animal models into lesion and genetic models and further classify them based on the corresponding environmental, epigenetic and genetic factors. Finally, we summarize the symptoms and neuropathological highlights for each model and make critical comparisons that elucidate their clinical and neurobiological relevance.
Collapse
Affiliation(s)
- Ki Chan Kim
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Edson Luck Gonzales
- Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences, Konkuk University, Seoul 05029, Republic of Korea.,School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - María T Lázaro
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Chang Soon Choi
- Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences, Konkuk University, Seoul 05029, Republic of Korea.,School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Geon Ho Bahn
- Department of Neuropsychiatry, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hee Jeong Yoo
- Department of Neuropsychiatry, Seoul National University Bungdang Hospital, Seongnam 13620, Republic of Korea
| | - Chan Young Shin
- Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences, Konkuk University, Seoul 05029, Republic of Korea.,School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
232
|
3: Epigenetics. Per Med 2016. [DOI: 10.1201/b19687-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
233
|
Unternaehrer E, Bolten M, Nast I, Staehli S, Meyer AH, Dempster E, Hellhammer DH, Lieb R, Meinlschmidt G. Maternal adversities during pregnancy and cord blood oxytocin receptor (OXTR) DNA methylation. Soc Cogn Affect Neurosci 2016; 11:1460-70. [PMID: 27107296 DOI: 10.1093/scan/nsw051] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 04/10/2016] [Indexed: 12/20/2022] Open
Abstract
The aim of this study was to investigate whether maternal adversities and cortisol levels during pregnancy predict cord blood DNA methylation of the oxytocin receptor (OXTR). We collected cord blood of 39 babies born to mothers participating in a cross-sectional study (N = 100) conducted in Basel, Switzerland (2007-10). Mothers completed the Inventory of Life Events (second trimester: T2), the Edinburgh Postnatal Depression Scale (EPDS, third trimester: T3), the Trier Inventory of Chronic Stress (TICS-K, 1-3 weeks postpartum) and provided saliva samples (T2, T3) for maternal cortisol profiles, as computed by the area under the curve with respect to ground (AUCg) or increase (AUCi) for the cortisol awakening response (CAR) and for diurnal cortisol profiles (DAY). OXTR DNA methylation was quantified using Sequenom EpiTYPER. The number of stressful life events (P = 0.032), EPDS score (P = 0.007) and cortisol AUCgs at T2 (CAR: P = 0.020; DAY: P = 0.024) were negatively associated with OXTR DNA methylation. Our findings suggest that distinct prenatal adversities predict decreased DNA methylation in a gene that is relevant for childbirth, maternal behavior and wellbeing of mother and offspring. If a reduced OXTR methylation increases OXTR expression, our findings could suggest an epigenetic adaptation to an adverse early environment.
Collapse
Affiliation(s)
- Eva Unternaehrer
- University of Basel, Department of Psychology, Division of Clinical Psychology and Epidemiology, 4055 Basel, Switzerland University of Basel, National Centre of Competence in Research (NCCR) Swiss Etiological Study of Adjustment and Mental Health (sesam), 4055 Basel, Switzerland Douglas Mental Health University Institute, McGill University, 6875 La Salle Boulevard, Montreal, QC H4H 1R3, Canada
| | - Margarete Bolten
- University of Basel, Child and Adolescent Psychiatric Hospital, 4058 Basel, Switzerland Ludwig-Maximilians-University Munich, Department of Psychology, 80802 Munich, Germany
| | - Irina Nast
- University of Basel, National Centre of Competence in Research (NCCR) Swiss Etiological Study of Adjustment and Mental Health (sesam), 4055 Basel, Switzerland Zurich University of Applied Sciences, School of Health Professions, 8401 Winterthur, Switzerland
| | - Simon Staehli
- University of Trier, Institute of Psychobiology, 54296 Trier, Germany
| | - Andrea H Meyer
- University of Basel, Department of Psychology, Division of Clinical Psychology and Epidemiology, 4055 Basel, Switzerland
| | - Emma Dempster
- University of Exeter Medical School, Exeter EX1 2LU, UK
| | | | - Roselind Lieb
- University of Basel, Department of Psychology, Division of Clinical Psychology and Epidemiology, 4055 Basel, Switzerland University of Basel, National Centre of Competence in Research (NCCR) Swiss Etiological Study of Adjustment and Mental Health (sesam), 4055 Basel, Switzerland
| | - Gunther Meinlschmidt
- University of Basel, Department of Psychology, Division of Clinical Psychology and Epidemiology, 4055 Basel, Switzerland University of Basel, National Centre of Competence in Research (NCCR) Swiss Etiological Study of Adjustment and Mental Health (sesam), 4055 Basel, Switzerland Ruhr-University Bochum, Faculty of Medicine, Universitaetsstrasse 150, 44801 Bochum, Germany
| |
Collapse
|
234
|
Stoop R, Hegoburu C, van den Burg E. New opportunities in vasopressin and oxytocin research: a perspective from the amygdala. Annu Rev Neurosci 2016; 38:369-88. [PMID: 26154981 DOI: 10.1146/annurev-neuro-071714-033904] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In the present review, we discuss how the evolution of oxytocin and vasopressin from a single ancestor peptide after gene duplication has stimulated the development of the vertebrate social brain. Separate production sites became possible with a hypothalamic development, which, interestingly, is triggered by the same transcription factors that underlie the development of various subcortical regions where vasopressin and oxytocin receptors are adjacently expressed and which are connected by inhibitory circuits. The opposite modulation of their output by vasopressin and oxytocin could thus create a dynamic equilibrium for rapid responsiveness to external stimuli. At the level of the individual, nurturing early in life can long-lastingly program oxytocin signaling, maintaining a capability of learning and sensitivity to external stimuli that contributes to development of social behavior in adulthood. Oxytocin and vasopressin are thus important for the development of a vertebrate brain that supports bonding between individuals and building of an interactive community.
Collapse
Affiliation(s)
- Ron Stoop
- Center for Psychiatric Neuroscience, Lausanne University Hospital, 1008 Prilly, Lausanne, Switzerland;
| | | | | |
Collapse
|
235
|
Freeman SM, Young LJ. Comparative Perspectives on Oxytocin and Vasopressin Receptor Research in Rodents and Primates: Translational Implications. J Neuroendocrinol 2016; 28. [PMID: 26940141 PMCID: PMC4886472 DOI: 10.1111/jne.12382] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 02/01/2016] [Accepted: 03/01/2016] [Indexed: 12/20/2022]
Abstract
In the last several decades, sophisticated experimental techniques have been used to determine the neurobiology of the oxytocin and vasopressin systems in rodents. Using a suite of methodologies, including electrophysiology, site-specific selective pharmacology, receptor autoradiography, in vivo microdialysis, and genetic and optogenetic manipulations, we have gained unprecedented knowledge about how these neuropeptides engage neural circuits to regulate behaviour, particularly social behaviour. Based on this foundation of information from rodent studies, we have started generating new hypotheses and frameworks about how the oxytocin and vasopressin systems could be acting in humans to influence social cognition. However, despite the recent inundation of publications using intranasal oxytocin in humans, we still know very little about the neurophysiology of the oxytocin system in primates more broadly. Furthermore, the design and analysis of these human studies have remained largely uninformed of the potential neurobiological mechanisms underlying their findings. Although the methods available for studying the oxytocin and vasopressin systems in humans are incredibly limited as a result of practical and ethical considerations, there is great potential to fill the gaps in our knowledge by developing better nonhuman primate models of social functioning. Behavioural pharmacology and receptor autoradiography have been used to study the oxytocin and vasopressin systems in nonhuman primates, and there is now great potential to broaden our understanding of the neurobiology of these systems. In this review, we discuss comparative findings in receptor distributions in rodents and primates, with perspectives on the functionality of conserved regions of expression in these distinct mammalian clades. We also identify specific ways that established technologies can be used to answer basic research questions in primates. Finally, we highlight areas of future research in nonhuman primates that are experimentally poised to yield critical insights into the anatomy, physiology and behavioural effects of the oxytocin system, given its remarkable translational potential.
Collapse
Affiliation(s)
- Sara M Freeman
- Department of Psychology, California National Primate Research Center, University of California-Davis, Davis, CA, USA
| | - Larry J Young
- Department of Psychiatry and Behavioral Sciences, Silvio O. Conte Center for Oxytocin and Social Cognition, Center for Translational Social Neuroscience, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| |
Collapse
|
236
|
The two fold role of oxytocin in social developmental disorders: A cause and a remedy? Neurosci Biobehav Rev 2016; 63:168-76. [DOI: 10.1016/j.neubiorev.2016.01.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 11/05/2015] [Accepted: 01/27/2016] [Indexed: 11/23/2022]
|
237
|
Husarova VM, Lakatosova S, Pivovarciova A, Babinska K, Bakos J, Durdiakova J, Kubranska A, Ondrejka I, Ostatnikova D. Plasma Oxytocin in Children with Autism and Its Correlations with Behavioral Parameters in Children and Parents. Psychiatry Investig 2016; 13:174-83. [PMID: 27081377 PMCID: PMC4823192 DOI: 10.4306/pi.2016.13.2.174] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 05/08/2015] [Accepted: 06/04/2015] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE Oxytocin (OT) has been implicated to play an important role in autism spectrum disorders (ASD) etiology. We aimed to find out the differences in plasma OT levels between children with autism and healthy children, the associations of OT levels with particular autism symptoms and the associations of particular parental autistic traits with their ASD children OT levels. METHODS We included 19 boys with autism and 44 healthy age-matched boys. OT levels were analyzed by ELISA method. Children with autism were scored by Childhood Autism Rating Scale and Autism Diagnostic Interview (ADI), adjusted research version. Autism Spectrum Quotient (AQ), Systemizing Quotient (SQ) and Empathizing Quotient were completed by parents of children with autism. RESULTS Children with autism had significantly lower plasma OT levels than controls. OT levels positively correlated with ADI Reciprocal Interaction and Communication scores. AQ and SQ of fathers positively correlated with children plasma OT level. CONCLUSION Our results support the hypothesis of OT deficiency in autism. The "paradoxical" associations of OT levels and social skills in children with autism indicate disturbances at various levels of OT system. We first reported associations of OT levels in children with autism and behavioral measures in fathers indicating that OT abnormalities stay between parental autistic traits and autism symptoms in their children.
Collapse
Affiliation(s)
- Veronika Marcincakova Husarova
- Institute of Physiology, Medical Faculty Comenius University, Bratislava, Slovakia
- Clinic of Psychiatry, Martin University Hospital and Jessenius Faculty of Medicine, Comenius University, Martin, Slovakia
| | - Silvia Lakatosova
- Institute of Physiology, Medical Faculty Comenius University, Bratislava, Slovakia
| | - Anna Pivovarciova
- Institute of Physiology, Medical Faculty Comenius University, Bratislava, Slovakia
| | - Katarina Babinska
- Institute of Physiology, Medical Faculty Comenius University, Bratislava, Slovakia
| | - Jan Bakos
- Institute of Physiology, Medical Faculty Comenius University, Bratislava, Slovakia
| | - Jaroslava Durdiakova
- Institute of Physiology, Medical Faculty Comenius University, Bratislava, Slovakia
| | - Aneta Kubranska
- Institute of Physiology, Medical Faculty Comenius University, Bratislava, Slovakia
| | - Igor Ondrejka
- Clinic of Psychiatry, Martin University Hospital and Jessenius Faculty of Medicine, Comenius University, Martin, Slovakia
| | - Daniela Ostatnikova
- Institute of Physiology, Medical Faculty Comenius University, Bratislava, Slovakia
| |
Collapse
|
238
|
Feldman R, Monakhov M, Pratt M, Ebstein RP. Oxytocin Pathway Genes: Evolutionary Ancient System Impacting on Human Affiliation, Sociality, and Psychopathology. Biol Psychiatry 2016; 79:174-84. [PMID: 26392129 DOI: 10.1016/j.biopsych.2015.08.008] [Citation(s) in RCA: 255] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 08/05/2015] [Accepted: 08/06/2015] [Indexed: 01/09/2023]
Abstract
Oxytocin (OT), a nonapeptide signaling molecule originating from an ancestral peptide, appears in different variants across all vertebrate and several invertebrate species. Throughout animal evolution, neuropeptidergic signaling has been adapted by organisms for regulating response to rapidly changing environments. The family of OT-like molecules affects both peripheral tissues implicated in reproduction, homeostasis, and energy balance, as well as neuromodulation of social behavior, stress regulation, and associative learning in species ranging from nematodes to humans. After describing the OT-signaling pathway, we review research on the three genes most extensively studied in humans: the OT receptor (OXTR), the structural gene for OT (OXT/neurophysin-I), and CD38. Consistent with the notion that sociality should be studied from the perspective of social life at the species level, we address human social functions in relation to OT-pathway genes, including parenting, empathy, and using social relationships to manage stress. We then describe associations between OT-pathway genes with psychopathologies involving social dysfunctions such as autism, depression, or schizophrenia. Human research particularly underscored the involvement of two OXTR single nucleotide polymorphisms (rs53576, rs2254298) with fewer studies focusing on other OXTR (rs7632287, rs1042778, rs2268494, rs2268490), OXT (rs2740210, rs4813627, rs4813625), and CD38 (rs3796863, rs6449197) single nucleotide polymorphisms. Overall, studies provide evidence for the involvement of OT-pathway genes in human social functions but also suggest that factors such as gender, culture, and early environment often confound attempts to replicate first findings. We conclude by discussing epigenetics, conceptual implications within an evolutionary perspective, and future directions, especially the need to refine phenotypes, carefully characterize early environments, and integrate observations of social behavior across ecological contexts.
Collapse
Affiliation(s)
- Ruth Feldman
- Department of Psychology (RF, MP) Bar-Ilan University, Ramat-Gan, Israel; Gonda Brain Sciences Center (RF), Bar-Ilan University, Ramat-Gan, Israel.
| | - Mikhail Monakhov
- Department of Psychology (MM, RPE), National University of Singapore, Singapore, Singapore
| | - Maayan Pratt
- Department of Psychology (RF, MP) Bar-Ilan University, Ramat-Gan, Israel
| | - Richard P Ebstein
- Department of Psychology (MM, RPE), National University of Singapore, Singapore, Singapore
| |
Collapse
|
239
|
Kranz TM, Kopp M, Waltes R, Sachse M, Duketis E, Jarczok TA, Degenhardt F, Görgen K, Meyer J, Freitag CM, Chiocchetti AG. Meta-analysis and association of two common polymorphisms of the human oxytocin receptor gene in autism spectrum disorder. Autism Res 2016; 9:1036-1045. [PMID: 26788924 DOI: 10.1002/aur.1597] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 10/26/2015] [Accepted: 12/03/2015] [Indexed: 12/24/2022]
Abstract
Neuropeptides such as oxytocin (OXT) are known facilitators of social behavior across species. Variants of the OXT receptor gene (OXTR) have been tested for association with autism spectrum disorder (ASD) across manifold ethnicities, yielding both positive and negative findings. A recent meta-analysis, comprising 16 single nucleotide polymorphisms (SNPs), has corroborated the implication of OXTR in the etiology of ASD. Here, we genotyped and tested two additional variants (rs237889 and rs237897) for association with ASD in two German predominantly high-functioning ASD samples. We found nominal over-transmission (OR = 1.48, CI95 = 1.06-2.08, P = 0.022) for the minor A allele of variant rs237889G>A in sample 1 (N = 135 complete parent-offspring trios, 29 parent child duos), but not in sample 2 (362 trios, 69 duos). Still, in a meta-analysis comprising four different studies including the two unreported German data sets (N = 542 families), this finding was confirmed (OR = 1.12; CI95 = 1.01-1.24, random effects P = 0.012). In addition, carriers of the minor risk allele rs237889-A showed significantly increased severity scores, as assessed through the autism diagnostic interview - revised (ADI-R), with highly significant increases in social interaction deficits. Our results corroborate the implication of common OXTR variants in the etiology of ASD. There is a need for functional studies to delineate the neurobiological implications of this and other association findings. (172/250). Autism Res 2016, 9: 1036-1045. © 2016 International Society for Autism Research, Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Thorsten M Kranz
- Department of Neurobehavioral Genetics, University of Trier, Johanniterufer 15, Trier, D-54290, Germany
| | - Marnie Kopp
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, JW Goethe University Frankfurt, Deutschordenstraße 50, Frankfurt am Main, D-60528, Germany
| | - Regina Waltes
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, JW Goethe University Frankfurt, Deutschordenstraße 50, Frankfurt am Main, D-60528, Germany
| | - Michael Sachse
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, JW Goethe University Frankfurt, Deutschordenstraße 50, Frankfurt am Main, D-60528, Germany
| | - Eftichia Duketis
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, JW Goethe University Frankfurt, Deutschordenstraße 50, Frankfurt am Main, D-60528, Germany
| | - Tomasz A Jarczok
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, JW Goethe University Frankfurt, Deutschordenstraße 50, Frankfurt am Main, D-60528, Germany
| | - Franziska Degenhardt
- Institute of Human Genetics, University of Bonn, Sigmund-Freud-Str. 25, Bonn, D-53127, Germany
| | - Katharina Görgen
- Department of Neurobehavioral Genetics, University of Trier, Johanniterufer 15, Trier, D-54290, Germany
| | - Jobst Meyer
- Department of Neurobehavioral Genetics, University of Trier, Johanniterufer 15, Trier, D-54290, Germany
| | - Christine M Freitag
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, JW Goethe University Frankfurt, Deutschordenstraße 50, Frankfurt am Main, D-60528, Germany
| | - Andreas G Chiocchetti
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, JW Goethe University Frankfurt, Deutschordenstraße 50, Frankfurt am Main, D-60528, Germany.
| |
Collapse
|
240
|
Romano A, Tempesta B, Micioni Di Bonaventura MV, Gaetani S. From Autism to Eating Disorders and More: The Role of Oxytocin in Neuropsychiatric Disorders. Front Neurosci 2016; 9:497. [PMID: 26793046 PMCID: PMC4709851 DOI: 10.3389/fnins.2015.00497] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 12/14/2015] [Indexed: 11/13/2022] Open
Abstract
Oxytocin (oxy) is a pituitary neuropeptide hormone synthesized from the paraventricular and supraoptic nuclei within the hypothalamus. Like other neuropeptides, oxy can modulate a wide range of neurotransmitter and neuromodulator activities. Additionally, through the neurohypophysis, oxy is secreted into the systemic circulation to act as a hormone, thereby influencing several body functions. Oxy plays a pivotal role in parturition, milk let-down and maternal behavior and has been demonstrated to be important in the formation of pair bonding between mother and infants as well as in mating pairs. Furthermore, oxy has been proven to play a key role in the regulation of several behaviors associated with neuropsychiatric disorders, including social interactions, social memory response to social stimuli, decision-making in the context of social interactions, feeding behavior, emotional reactivity, etc. An increasing body of evidence suggests that deregulations of the oxytocinergic system might be involved in the pathophysiology of certain neuropsychiatric disorders such as autism, eating disorders, schizophrenia, mood, and anxiety disorders. The potential use of oxy in these mental health disorders is attracting growing interest since numerous beneficial properties are ascribed to this neuropeptide. The present manuscript will review the existing findings on the role played by oxy in a variety of distinct physiological and behavioral functions (Figure 1) and on its role and impact in different psychiatric disorders. The aim of this review is to highlight the need of further investigations on this target that might contribute to the development of novel more efficacious therapies.
Oxytocin regulatory control of different and complex processes. ![]()
Collapse
Affiliation(s)
- Adele Romano
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome Rome, Italy
| | - Bianca Tempesta
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome Rome, Italy
| | | | - Silvana Gaetani
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome Rome, Italy
| |
Collapse
|
241
|
Caldwell HK, Albers HE. Oxytocin, Vasopressin, and the Motivational Forces that Drive Social Behaviors. Curr Top Behav Neurosci 2016; 27:51-103. [PMID: 26472550 DOI: 10.1007/7854_2015_390] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The motivation to engage in social behaviors is influenced by past experience and internal state, but also depends on the behavior of other animals. Across species, the oxytocin (Oxt) and vasopressin (Avp) systems have consistently been linked to the modulation of motivated social behaviors. However, how they interact with other systems, such as the mesolimbic dopamine system, remains understudied. Further, while the neurobiological mechanisms that regulate prosocial/cooperative behaviors have been extensively examined, far less is understood about competitive behaviors, particularly in females. In this chapter, we highlight the specific contributions of Oxt and Avp to several cooperative and competitive behaviors and discuss their relevance to the concept of social motivation across species, including humans. Further, we discuss the implications for neuropsychiatric diseases and suggest future areas of investigation.
Collapse
|
242
|
Beery AK, McEwen LM, MacIsaac JL, Francis DD, Kobor MS. Natural variation in maternal care and cross-tissue patterns of oxytocin receptor gene methylation in rats. Horm Behav 2016; 77:42-52. [PMID: 26122287 PMCID: PMC4691570 DOI: 10.1016/j.yhbeh.2015.05.022] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/16/2015] [Accepted: 05/27/2015] [Indexed: 12/27/2022]
Abstract
This article is part of a Special Issue "Parental Care". Since the first report of maternal care effects on DNA methylation in rats, epigenetic modifications of the genome in response to life experience have become the subject of intense focus across many disciplines. Oxytocin receptor expression varies in response to early experience, and both oxytocin signaling and methylation status of the oxytocin receptor gene (Oxtr) in blood have been related to disordered social behavior. It is unknown whether Oxtr DNA methylation varies in response to early life experience, and whether currently employed peripheral measures of Oxtr methylation reflect variation in the brain. We examined the effects of early life rearing experience via natural variation in maternal licking and grooming during the first week of life on behavior, physiology, gene expression, and epigenetic regulation of Oxtr across blood and brain tissues (mononucleocytes, hippocampus, striatum, and hypothalamus). Rats reared by "high" licking-grooming (HL) and "low" licking-grooming (LL) rat dams exhibited differences across study outcomes: LL offspring were more active in behavioral arenas, exhibited lower body mass in adulthood, and showed reduced corticosterone responsivity to a stressor. Oxtr DNA methylation was significantly lower at multiple CpGs in the blood of LL versus HL males, but no differences were found in the brain. Across groups, Oxtr transcript levels in the hypothalamus were associated with reduced corticosterone secretion in response to stress, congruent with the role of oxytocin signaling in this region. Methylation of specific CpGs at a high or low level was consistent across tissues, especially within the brain. However, individual variation in DNA methylation relative to these global patterns was not consistent across tissues. These results suggest that blood Oxtr DNA methylation may reflect early experience of maternal care, and that Oxtr methylation across tissues is highly concordant for specific CpGs, but that inferences across tissues are not supported for individual variation in Oxtr methylation.
Collapse
Affiliation(s)
- Annaliese K Beery
- Department of Psychology, Neuroscience Program, Smith College, Northampton, MA, USA; Robert Wood Johnson Health and Society Scholars Program, University of California, Berkeley and San Francisco, CA, USA.
| | - Lisa M McEwen
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, and Child and Family Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Julia L MacIsaac
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, and Child and Family Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Darlene D Francis
- Robert Wood Johnson Health and Society Scholars Program, University of California, Berkeley and San Francisco, CA, USA; School of Public Health, University of California, Berkeley, CA, USA
| | - Michael S Kobor
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, and Child and Family Research Institute, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
243
|
Singletary WM. An integrative model of autism spectrum disorder: ASD as a neurobiological disorder of experienced environmental deprivation, early life stress and allostatic overload. ACTA ACUST UNITED AC 2015. [DOI: 10.1080/15294145.2015.1092334] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
244
|
Yoo H. Genetics of Autism Spectrum Disorder: Current Status and Possible Clinical Applications. Exp Neurobiol 2015; 24:257-72. [PMID: 26713075 PMCID: PMC4688327 DOI: 10.5607/en.2015.24.4.257] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 12/02/2015] [Accepted: 12/02/2015] [Indexed: 12/18/2022] Open
Abstract
Autism spectrum disorder (ASD) is one of the most complex behavioral disorders with a strong genetic influence. The objectives of this article are to review the current status of genetic research in ASD, and to provide information regarding the potential candidate genes, mutations, and genetic loci possibly related to pathogenesis in ASD. Investigations on monogenic causes of ASD, candidate genes among common variants, rare de novo mutations, and copy number variations are reviewed. The current possible clinical applications of the genetic knowledge and their future possibilities are highlighted.
Collapse
Affiliation(s)
- Heejeong Yoo
- Department of Psychiatry, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Korea
| |
Collapse
|
245
|
Wade M, Hoffmann TJ, Jenkins JM. Gene-environment interaction between the oxytocin receptor (OXTR) gene and parenting behaviour on children's theory of mind. Soc Cogn Affect Neurosci 2015; 10:1749-57. [PMID: 25977357 PMCID: PMC4666114 DOI: 10.1093/scan/nsv064] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 04/27/2015] [Accepted: 05/08/2015] [Indexed: 12/13/2022] Open
Abstract
Theory of mind (ToM) is the ability to interpret and understand human behaviour by representing the mental states of others. Like many human capacities, ToM is thought to develop through both complex biological and socialization mechanisms. However, no study has examined the joint effect of genetic and environmental influences on ToM. This study examined how variability in the oxytocin receptor gene (OXTR) and parenting behavior--two widely studied factors in ToM development-interacted to predict ToM in pre-school-aged children. Participants were 301 children who were part of an ongoing longitudinal birth cohort study. ToM was assessed at age 4.5 using a previously validated scale. Parenting was assessed through observations of mothers' cognitively sensitive behaviours. Using a family-based association design, it was suggestive that a particular variant (rs11131149) interacted with maternal cognitive sensitivity on children's ToM (P = 0.019). More copies of the major allele were associated with higher ToM as a function of increasing cognitive sensitivity. A sizeable 26% of the variability in ToM was accounted for by this interaction. This study provides the first empirical evidence of gene-environment interactions on ToM, supporting the notion that genetic factors may be modulated by potent environmental influences early in development.
Collapse
Affiliation(s)
- Mark Wade
- Department of Applied Psychology and Human Development, University of Toronto, 252 Bloor Street West, Toronto, Ontario, Canada M5S 1V6 and
| | - Thomas J Hoffmann
- Department of Epidemiology and Biostatistics, Institute for Human Genetics, University of California at San Francisco, UCSF Box 0794, 513 Parnassus Avenue, S965, San Francisco, CA 94143-0794, USA
| | - Jennifer M Jenkins
- Department of Applied Psychology and Human Development, University of Toronto, 252 Bloor Street West, Toronto, Ontario, Canada M5S 1V6 and
| |
Collapse
|
246
|
Lee SY, Lee AR, Hwangbo R, Han J, Hong M, Bahn GH. Is Oxytocin Application for Autism Spectrum Disorder Evidence-Based? Exp Neurobiol 2015; 24:312-24. [PMID: 26713079 PMCID: PMC4688331 DOI: 10.5607/en.2015.24.4.312] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 11/25/2015] [Accepted: 11/25/2015] [Indexed: 01/06/2023] Open
Abstract
Autism spectrum disorder (ASD) is characterized by persistent deficits within two core symptom domains: social communication and restricted, repetitive behaviors. Although numerous studies have reported psychopharmacological treatment outcomes for the core symptom domains of ASD, there are not enough studies on fundamental treatments based on the etiological pathology of ASD. Studies on candidate medications related to the pathogenesis of ASD, such as naltrexone and secretin, were conducted, but the results were inconclusive. Oxytocin has been identified as having an important role in maternal behavior and attachment, and it has been recognized as a key factor in the social developmental deficit seen in ASD. Genetic studies have also identified associations between ASD and the oxytocin pathway. As ASD has its onset in infancy, parents are willing to try even experimental or unapproved treatments in an effort to avoid missing the critical period for diagnosis and treatment, which can place their child in an irreversible state. While therapeutic application of oxytocin for ASD is in its early stages, we have concluded that oxytocin would be a promising therapeutic substance via a thorough literature review focusing on the following: the relationship between oxytocin and sociality; single nucleotide polymorphisms as a biological marker of ASD; and validity verification of oxytocin treatment in humans. We also reviewed materials related to the mechanism of oxytocin action that may support its potential application in treating ASD.
Collapse
Affiliation(s)
- Seung Yup Lee
- Graduate School of Medicine, Kyung Hee University, Seoul 02543, Korea
| | - Ah Rah Lee
- Kyung Hee University School of Medicine, Seoul 02543, Korea
| | - Ram Hwangbo
- Department of Psychiatry, Kyung Hee University Hospital, Seoul 02447, Korea
| | - Juhee Han
- Department of Psychiatry, Kyung Hee University Hospital, Seoul 02447, Korea
| | - Minha Hong
- Department of Psychiatry, Seonam University, College of Medicine, Myongji Hospital, Goyang 10475, Korea
| | - Geon Ho Bahn
- Department of Psychiatry, Kyung Hee University School of Medicine, Seoul 02447, Korea
| |
Collapse
|
247
|
Johnson L, Manzardo AM, Miller JL, Driscoll DJ, Butler MG. Elevated plasma oxytocin levels in children with Prader-Willi syndrome compared with healthy unrelated siblings. Am J Med Genet A 2015; 170:594-601. [PMID: 26615966 DOI: 10.1002/ajmg.a.37488] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 11/05/2015] [Indexed: 11/07/2022]
Abstract
Prader-Willi syndrome (PWS) is a rare genetic disorder associated with distinct abnormal behaviors including hyperphagia, profound social deficits, and obsessive-compulsive tendencies. PWS males showed reduced oxytocin receptor (OTR) gene expression and density in the hypothalamic paraventricular nucleus that may play a role in PWS psychopathology. Oxytocin is an anorexigenic neuropeptide similar to vasopressin that is associated with social cognition and obsessive-compulsive behavior. To evaluate oxytocin biology in PWS, we examined overnight fasting plasma oxytocin levels in 23 children with PWS (mean ± SD age: 8.2 ± 2.0 year) having genetic confirmation and 18 age matched healthy unrelated siblings without PWS (mean ± SD age: 8.2 ± 2.3 year) and a similar gender ratio under the same clinical assessments, specimen processing and laboratory conditions. Multiplex immune assays were carried out using the Milliplex Human Neuropeptide Magnetic panel and the Luminex system. Natural log-transformed oxytocin levels were analyzed using general linear model adjusting for diagnosis, gender, age and body mass index (BMI). Oxytocin plasma levels were significantly elevated in children with PWS (168 ± 121 pg/ml) compared with unrelated and unaffected siblings without the diagnosis of PWS (64.8 ± 83.8 pg/ml, F = 8.8, P < 0.01) and the diagnosis of PWS predicted oxytocin level (F = 9.5, P < 0.003) in controlled regression analysis with an overall model fit R(2) = 0.33 (P < 0.01). The symptoms of hyperphagia, anxiety and repetitive behaviors classically seen in PWS may be related to the disruption of oxytocin responsivity or feedback in the hypothalamic paraventricular nucleus possibly influencing vasopressin signaling. Further study is needed to characterize oxytocin function in PWS.
Collapse
Affiliation(s)
- Lisa Johnson
- Departments of Psychiatry and Behavioral Sciences and Pediatrics, University of Kansas Medical Center, Kansas City, Kansas
| | - Ann M Manzardo
- Departments of Psychiatry and Behavioral Sciences and Pediatrics, University of Kansas Medical Center, Kansas City, Kansas
| | - Jennifer L Miller
- Department of Pediatrics, University of Florida Medical Center, Gainesville, Florida
| | - Daniel J Driscoll
- Department of Pediatrics, University of Florida Medical Center, Gainesville, Florida
| | - Merlin G Butler
- Departments of Psychiatry and Behavioral Sciences and Pediatrics, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
248
|
Sex and diagnosis specific associations between DNA methylation of the oxytocin receptor gene with emotion processing and temporal-limbic and prefrontal brain volumes in psychotic disorders. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2015; 1:141-151. [PMID: 26977453 DOI: 10.1016/j.bpsc.2015.10.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND The oxytocin (OT) system, including receptor epigenetic mechanisms, has been shown to influence emotion processing, especially in females. Whether OT receptor (OXTR) epigenetic alterations occur across psychotic disorders in relation to illness-related disturbances in social cognition and brain anatomy is unknown. METHODS Participants with affective and nonaffective psychotic disorders (92 women, 75 men) and healthy controls (38 women, 37 men) from the Chicago site of the BSNIP study completed the Penn Emotion Recognition Test (ER-40), a facial emotion recognition task. We measured cytosine methylation at site -934 upstream of the OXTR start codon in DNA from whole blood, and for the first time their relationship with plasma OT levels assessed by enzyme-immunoassay. Volumes of brain regions supporting social cognition were measured from MRI scans using FreeSurfer. RESULTS Patients with prototypic schizophrenia features showed higher levels of DNA methylation than those with prototypic bipolar features. Methylation was higher in women than men, and was associated with poorer emotion recognition only in female patients and controls. Greater methylation was associated with smaller volumes in temporal-limbic and prefrontal regions associated previously with social cognition, but only in healthy women and females with schizophrenia. CONCLUSION DNA methylation of the OXTR site -934 was higher in schizophrenia spectrum than bipolar patients. Among patients, it was linked to behavioral deficits in social cognition and neuroanatomic structures known to support emotion processing only in schizophrenia spectrum individuals.
Collapse
|
249
|
Grayson DR, Guidotti A. Merging data from genetic and epigenetic approaches to better understand autistic spectrum disorder. Epigenomics 2015; 8:85-104. [PMID: 26551091 PMCID: PMC4864049 DOI: 10.2217/epi.15.92] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder that is characterized by a wide range of cognitive and behavioral abnormalities. Genetic research has identified large numbers of genes that contribute to ASD phenotypes. There is compelling evidence that environmental factors contribute to ASD through influences that differentially impact the brain through epigenetic mechanisms. Both genetic mutations and epigenetic influences alter gene expression in different cell types of the brain. Mutations impact the expression of large numbers of genes and also have downstream consequences depending on specific pathways associated with the mutation. Environmental factors impact the expression of sets of genes by altering methylation/hydroxymethylation patterns, local histone modification patterns and chromatin remodeling. Herein, we discuss recent developments in the research of ASD with a focus on epigenetic pathways as a complement to current genetic screening.
Collapse
Affiliation(s)
- Dennis R Grayson
- Department of Psychiatry, The Psychiatric Institute, University of Illinois at Chicago, 1601 W. Taylor St., Chicago, IL 60607, USA
| | - Alessandro Guidotti
- Department of Psychiatry, The Psychiatric Institute, University of Illinois at Chicago, 1601 W. Taylor St., Chicago, IL 60607, USA
| |
Collapse
|
250
|
Oxytocin receptor gene sequences in owl monkeys and other primates show remarkable interspecific regulatory and protein coding variation. Mol Phylogenet Evol 2015; 91:160-77. [DOI: 10.1016/j.ympev.2015.05.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 04/11/2015] [Accepted: 05/08/2015] [Indexed: 11/18/2022]
|