201
|
Zhang DD, Jin C, Zhang YT, Gan XD, Zou MJ, Wang YY, Fu WL, Xu T, Xing WW, Xia WR, Xu DG. A novel IL-1RA-PEP fusion protein alleviates blood-brain barrier disruption after ischemia-reperfusion in male rats. J Neuroinflammation 2018; 15:16. [PMID: 29334965 PMCID: PMC5769540 DOI: 10.1186/s12974-018-1058-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 01/08/2018] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Current options to treat clinical relapse in inflammatory central nervous system (CNS) conditions such as cerebral ischemia-reperfusion injury are limited, and agents that are more effective are required. Disruption of the blood-brain barrier is an early feature of lesion formation that correlates with clinical exacerbation and facilitates the entry of inflammatory medium and inflammatory cells. Interleukin-1 receptor antagonist (IL-1RA) is a naturally occurring anti-inflammatory antagonist of the interleukin-1 (IL-1) family. The broad-spectrum anti-inflammatory effects of IL-1RA have been investigated against various forms of neuroinflammation. However, the effect of IL-1RA on blood-brain barrier disruption following ischemia-reperfusion has not been reported. METHODS In this study, we investigated the effects of IL-1RA and a novel protein (IL-1RA-PEP) that was fused to IL-1RA with a cell penetrating peptide, on blood-brain barrier integrity, in male rats subjected to transient middle cerebral artery occlusion. RESULTS After intravenous administration, IL-1RA-PEP (50 mg/kg) penetrated cerebral tissues more effectively than IL-1RA. Moreover, it preserved blood-brain barrier integrity, attenuated changes in expression and localization of tight junction proteins and matrix metalloproteinases, and enhanced angiogenesis in ischemic brain tissue. Further study suggested that the effects of IL-1RA-PEP on preserving blood-brain barrier integrity might be closely correlated with the p65/NF-κB pathway, as evidenced by the effects of the inhibitor JSH-23. CONCLUSIONS Collectively, our results demonstrated that IL-1RA-PEP could effectively penetrate the brain of rats with middle cerebral artery occlusion and ameliorate blood-brain barrier disruption. This finding might represent its novel therapeutic potential in the treatment of the cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Dong-Dong Zhang
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing, 100850, People's Republic of China.,Anhui Medical University, 81 Meishan Road, Hefei, 230032, People's Republic of China
| | - Chen Jin
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing, 100850, People's Republic of China.,Anhui Medical University, 81 Meishan Road, Hefei, 230032, People's Republic of China
| | - Ya-Tao Zhang
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing, 100850, People's Republic of China
| | - Xiang-Dong Gan
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing, 100850, People's Republic of China
| | - Min-Ji Zou
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing, 100850, People's Republic of China
| | - Yuan-Yuan Wang
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing, 100850, People's Republic of China
| | - Wen-Liang Fu
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing, 100850, People's Republic of China
| | - Tao Xu
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing, 100850, People's Republic of China
| | - Wei-Wei Xing
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing, 100850, People's Republic of China
| | - Wen-Ron Xia
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing, 100850, People's Republic of China
| | - Dong-Gang Xu
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing, 100850, People's Republic of China. .,Anhui Medical University, 81 Meishan Road, Hefei, 230032, People's Republic of China. .,Laboratory of Genome Engineering, Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing, 100850, People's Republic of China.
| |
Collapse
|
202
|
Moein M, Imani Fooladi AA, Mahmoodzadeh Hosseini H. Determining the effects of green chemistry synthesized Ag-nisin nanoparticle on macrophage cells. Microb Pathog 2017; 114:414-419. [PMID: 29241764 DOI: 10.1016/j.micpath.2017.12.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 12/10/2017] [Accepted: 12/10/2017] [Indexed: 12/24/2022]
Abstract
Bacteriocins are low molecular weight substances produced through post transcriptional changes. These molecules are easily degraded in mammalian gut by proteolytic enzymes especially protease. Nisin is a peptide with 34 aa and its structure contains a pentacyclic lanthionine and 4 beta metyllanthionine residues. Different formulations have been designed for nisin. Since "green synthesis" is a progressive method to prepare anti-microbial and anti-cancer compounds, this study aimed at green synthesis of nisin metal compounds to be used lower concentration still exerting nisin effects. For this purpose, a 1 mg/ml nisin solution was added to a 1 mM silver nitrate solution and incubated to synthesis nano Ag-nisin, then the optical density of new solution was detected using UV spectroscopy. To determine biomolecules in the Ag-nisin solution, the FTIR method was employed. The size and morphology of Ag-nisin was measured by TEM. The toxicity, inflammatory cytokines production, and intracellular ROS quantity was evaluated using MTT, ELISA and flow-cytometry. XRD pattern indicated the silver crystals in Ag-nisin solution. In addition, FTRI findings showed that the carbonyl groups of amino acid are potently able to bind to metal nanoparticles, cover, and prevent them from particle agglomeration. Treating macrophage cells with 10, 25, 50 and 100 μg/ml of Ag-nisin had no significant effect on the cell viability and intracellular ROS quantity compared to the control group. In addition, different concentrations of Ag-nisin had no effect on the IL-10 and TNF-α levels but caused an increased level of IL-12 in comparison with the control group. In the current study, for the first time, green synthesize was used to prepare Ag-nisin particles. The synthesized nanoparticle is able to induce inflammatory activity via increasing IL-12 without any change in the TNF-α level in macrophage cells.
Collapse
Affiliation(s)
- Masood Moein
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hamideh Mahmoodzadeh Hosseini
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
203
|
Rudobeck E, Bellone JA, Szücs A, Bonnick K, Mehrotra-Carter S, Badaut J, Nelson GA, Hartman RE, Vlkolinský R. Low-dose proton radiation effects in a transgenic mouse model of Alzheimer's disease - Implications for space travel. PLoS One 2017; 12:e0186168. [PMID: 29186131 PMCID: PMC5706673 DOI: 10.1371/journal.pone.0186168] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 09/26/2017] [Indexed: 12/13/2022] Open
Abstract
Space radiation represents a significant health risk for astronauts. Ground-based animal studies indicate that space radiation affects neuronal functions such as excitability, synaptic transmission, and plasticity, and it may accelerate the onset of Alzheimer's disease (AD). Although protons represent the main constituent in the space radiation spectrum, their effects on AD-related pathology have not been tested. We irradiated 3 month-old APP/PSEN1 transgenic (TG) and wild type (WT) mice with protons (150 MeV; 0.1-1.0 Gy; whole body) and evaluated functional and biochemical hallmarks of AD. We performed behavioral tests in the water maze (WM) before irradiation and in the WM and Barnes maze at 3 and 6 months post-irradiation to evaluate spatial learning and memory. We also performed electrophysiological recordings in vitro in hippocampal slices prepared 6 and 9 months post-irradiation to evaluate excitatory synaptic transmission and plasticity. Next, we evaluated amyloid β (Aβ) deposition in the contralateral hippocampus and adjacent cortex using immunohistochemistry. In cortical homogenates, we analyzed the levels of the presynaptic marker synaptophysin by Western blotting and measured pro-inflammatory cytokine levels (TNFα, IL-1β, IL-6, CXCL10 and CCL2) by bead-based multiplex assay. TG mice performed significantly worse than WT mice in the WM. Irradiation of TG mice did not affect their behavioral performance, but reduced the amplitudes of population spikes and inhibited paired-pulse facilitation in CA1 neurons. These electrophysiological alterations in the TG mice were qualitatively different from those observed in WT mice, in which irradiation increased excitability and synaptic efficacy. Irradiation increased Aβ deposition in the cortex of TG mice without affecting cytokine levels and increased synaptophysin expression in WT mice (but not in the TG mice). Although irradiation with protons increased Aβ deposition, the complex functional and biochemical results indicate that irradiation effects are not synergistic to AD pathology.
Collapse
Affiliation(s)
- Emil Rudobeck
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, United States of America
| | - John A. Bellone
- Department of Psychology, School of Behavioral Health, Loma Linda University, Loma Linda, CA, United States of America
| | - Attila Szücs
- BioCircuits Institute, University of California San Diego, La Jolla, CA, United States of America
| | - Kristine Bonnick
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, United States of America
| | - Shalini Mehrotra-Carter
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, United States of America
| | - Jerome Badaut
- Department of Physiology, School of Medicine, Loma Linda University, Loma Linda, CA, United States of America
| | - Gregory A. Nelson
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, United States of America
| | - Richard E. Hartman
- Department of Psychology, School of Behavioral Health, Loma Linda University, Loma Linda, CA, United States of America
| | - Roman Vlkolinský
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, United States of America
| |
Collapse
|
204
|
Abstract
The innate immune system plays diverse roles in health and disease. It represents the first line of defense against infection and is involved in tissue repair, wound healing, and clearance of apoptotic cells and cellular debris. Excessive or nonresolving innate immune activation can lead to systemic or local inflammatory complications and cause or contribute to the development of inflammatory diseases. In the brain, microglia represent the key innate immune cells, which are involved in brain development, brain maturation, and homeostasis. Impaired microglial function, either through aberrant activation or decreased functionality, can occur during aging and during neurodegeneration, and the resulting inflammation is thought to contribute to neurodegenerative diseases. This review highlights recent advances in our understanding of the influence of innate immunity on neurodegenerative disorders such as Alzheimer's disease, amyotrophic lateral sclerosis, Parkinson's disease, and Huntington's disease.
Collapse
Affiliation(s)
- Larisa I Labzin
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom;
| | - Michael T Heneka
- Department of Neurodegenerative Disease and Gerontopsychiatry/Neurology, University Hospitals Bonn, Bonn 53127, Germany; .,Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA.,German Center for Neurodegenerative Diseases, Bonn 53175, Germany
| | - Eicke Latz
- Institute of Innate Immunity, University Hospitals Bonn, Bonn 53127, Germany; .,Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA.,German Center for Neurodegenerative Diseases, Bonn 53175, Germany.,Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim 7491, Norway
| |
Collapse
|
205
|
Magistri M, Velmeshev D, Makhmutova M, Patel P, Sartor GC, Volmar CH, Wahlestedt C, Faghihi MA. The BET-Bromodomain Inhibitor JQ1 Reduces Inflammation and Tau Phosphorylation at Ser396 in the Brain of the 3xTg Model of Alzheimer's Disease. Curr Alzheimer Res 2017; 13:985-95. [PMID: 27117003 PMCID: PMC5026248 DOI: 10.2174/1567205013666160427101832] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 04/25/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by welldefined neuropathological brain changes including amyloid plaques, neurofibrillary tangles and the presence of chronic neuroinflammation. OBJECTIVE The brain penetrant BET bromodomain inhibitor JQ1 has been shown to regulate inflammation responses in vitro and in vivo, but its therapeutic potential in AD is currently unknown. METHOD Three-month-old 3xTg mice were injected once a day with JQ1 (50 mg/kg) or vehicle for 15 weeks. At the end of the treatment learning and memory was assessed using the modified Barnes maze and the Y maze behavioral tests. Tissue from the brain and other organs was collected for molecular evaluation of neuroinflammation tau pathology and amyloid β. RESULTS JQ1 treatment reduced splenomegaly and neuroinflammation in the brain of treated mice where we observed a reduction in the expression of the pro-inflammatory modulators Il-1b, Il-6, Tnfa, Ccl2, Nos2 and Ptgs2. Additionally, JQ1-treated mice showed a reduction of tau phosphorylation at Ser396 in the hippocampus and frontal cortex while total levels of tau remained unaffected. On the other hand, JQ1 did not ameliorate learning and memory deficits in 7-month-old 3xTg mice. CONCLUSION Taken together, our data suggest that BET bromodomain inhibitors hold the promise to be used for the treatment of neurological disorders characterized by neuroinflammation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mohammad Ali Faghihi
- Center for Therapeutic Innovation & Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, 1501 NW 10th Ave, BRB 508, Miami, FL 33136, USA.
| |
Collapse
|
206
|
BACE1 Function and Inhibition: Implications of Intervention in the Amyloid Pathway of Alzheimer's Disease Pathology. Molecules 2017; 22:molecules22101723. [PMID: 29027981 PMCID: PMC6151801 DOI: 10.3390/molecules22101723] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/09/2017] [Accepted: 10/10/2017] [Indexed: 01/18/2023] Open
Abstract
Alzheimer's disease (AD) is a fatal progressive neurodegenerative disorder characterized by increasing loss in memory, cognition, and function of daily living. Among the many pathologic events observed in the progression of AD, changes in amyloid β peptide (Aβ) metabolism proceed fastest, and precede clinical symptoms. BACE1 (β-secretase 1) catalyzes the initial cleavage of the amyloid precursor protein to generate Aβ. Therefore inhibition of BACE1 activity could block one of the earliest pathologic events in AD. However, therapeutic BACE1 inhibition to block Aβ production may need to be balanced with possible effects that might result from diminished physiologic functions BACE1, in particular processing of substrates involved in neuronal function of the brain and periphery. Potentials for beneficial or consequential effects resulting from pharmacologic inhibition of BACE1 are reviewed in context of ongoing clinical trials testing the effect of BACE1 candidate inhibitor drugs in AD populations.
Collapse
|
207
|
Wu Z, Ni J, Liu Y, Teeling JL, Takayama F, Collcutt A, Ibbett P, Nakanishi H. Cathepsin B plays a critical role in inducing Alzheimer's disease-like phenotypes following chronic systemic exposure to lipopolysaccharide from Porphyromonas gingivalis in mice. Brain Behav Immun 2017; 65:350-361. [PMID: 28610747 DOI: 10.1016/j.bbi.2017.06.002] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 06/05/2017] [Accepted: 06/06/2017] [Indexed: 12/14/2022] Open
Abstract
A number of clinical and experimental studies have revealed a strong association between periodontitis and accelerated cognitive decline in Alzheimer's disease (AD); however, the mechanism of the association is unknown. In the present study, we tested the hypothesis that cathepsin (Cat) B plays a critical role in the initiation of neuroinflammation and neural dysfunction following chronic systemic exposure to lipopolysaccharide from Porphyromonas gingivalis (PgLPS) in mice (1mg/kg, daily, intraperitoneally). Young (2months old) and middle-aged (12months old) wild-type (WT; C57BL/6N) or CatB-deficient (CatB-/-) mice were exposed to PgLPS daily for 5 consecutive weeks. The learning and memory function were assessed using the passive avoidance test, and the expression of amyloid precursor protein (APP), CatB, TLR2 and IL-1β was analyzed in brain tissues by immunohistochemistry and Western blotting. We found that chronic systemic exposure to PgLPS for five consecutive weeks induced learning and memory deficits with the intracellular accumulation of Aβ in neurons in the middle-aged WT mice, but not in young WT or middle-aged CatB-/- mice. PgLPS significantly increased the expression of CatB in both microglia and neurons in middle-aged WT mice, while increased expression of mature IL-1β and TLR2 was restricted to microglia in the hippocampus of middle-aged WT mice, but not in that of the middle-aged CatB-/- ones. In in vitro studies, PgLPS (1µg/ml) stimulation upregulated the mean mRNA expression of IL-1β, TLR2 and downregulated the protein levels of IκBα in the cultured MG6 microglia as well as in the primary microglia from WT mice, which were significantly inhibited by the CatB-specific inhibitor CA-074Me as well as by the primary microglia from CatB-/- mice. Furthermore, the mean mRNA expression of APP and CatB were significantly increased in the primary cultured hippocampal neurons after treatment with conditioned medium from PgLPS-treated WT primary microglia, but not after treatment with conditioned medium neutralized with anti-IL-1beta, and not after treatment with conditioned medium from PgLPS-treated CatB-/- primary microglia or with PgLPS directly. Taken together, these findings indicate that chronic systemic exposure to PgLPS induces AD-like phenotypes, including microglia-mediated neuroinflammation, intracellular Aβ accumulation in neurons and impairment of the learning and memory functions in the middle-aged mice in a CatB-dependent manner. We propose that CatB may be a therapeutic target for preventing periodontitis-associated cognitive decline in AD.
Collapse
Affiliation(s)
- Zhou Wu
- Department of Aging Science and Pharmacology, Kyushu University, Japan; OBT Research Center, Faculty of Dental Science, Kyushu University, Japan.
| | - Junjun Ni
- Department of Aging Science and Pharmacology, Kyushu University, Japan
| | - Yicong Liu
- Department of Aging Science and Pharmacology, Kyushu University, Japan
| | - Jessica L Teeling
- Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, United Kingdom
| | - Fumiko Takayama
- Department of Aging Science and Pharmacology, Kyushu University, Japan
| | - Alex Collcutt
- Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, United Kingdom
| | - Paul Ibbett
- Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, United Kingdom
| | - Hiroshi Nakanishi
- Department of Aging Science and Pharmacology, Kyushu University, Japan
| |
Collapse
|
208
|
Chen KY, Wang LC. Stimulation of IL-1β and IL-6 through NF-κB and sonic hedgehog-dependent pathways in mouse astrocytes by excretory/secretory products of fifth-stage larval Angiostrongylus cantonensis. Parasit Vectors 2017; 10:445. [PMID: 28950910 PMCID: PMC5615811 DOI: 10.1186/s13071-017-2385-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 09/17/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Angiostrongylus cantonensis is an important causative agent of eosinophilic meningitis and eosinophilic meningoencephalitis in humans. Previous studies have shown that the Sonic hedgehog (Shh) signaling pathway may reduce cell apoptosis by inhibiting oxidative stress in A. cantonensis infection. In this study, we investigated the relationship between cytokine secretion and Shh pathway activation after treatment with excretory/secretory products (ESP) of fifth-stage larval A. cantonensis (L5). RESULTS The results showed that IL-1β and IL-6 levels in mouse astrocytes were increased. Moreover, ESP stimulated the protein expression of Shh pathway molecules, including Shh, Ptch, Smo and Gli-1, and induced IL-1β and IL-6 secretion. The transcription factor nuclear factor-κB (NF-κB) plays an important role in inflammation, and it regulates the expression of proinflammatory genes, including cytokines and chemokines, such as IL-1β and TNF-α. After ESP treatment, NF-κB induced IL-1β and IL-6 secretion in astrocytes by activating the Shh signaling pathway. CONCLUSIONS Overall, the data presented in this study showed that ESP of fifth-stage larval A. cantonensis stimulates astrocyte activation and cytokine generation through NF-κB and the Shh signaling pathway.
Collapse
Affiliation(s)
- Kuang-Yao Chen
- Department of Parasitology, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Lian-Chen Wang
- Department of Parasitology, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan. .,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan. .,Molecular Infectious Disease Research Centre, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| |
Collapse
|
209
|
Taib T, Leconte C, Van Steenwinckel J, Cho AH, Palmier B, Torsello E, Lai Kuen R, Onyeomah S, Ecomard K, Benedetto C, Coqueran B, Novak AC, Deou E, Plotkine M, Gressens P, Marchand-Leroux C, Besson VC. Neuroinflammation, myelin and behavior: Temporal patterns following mild traumatic brain injury in mice. PLoS One 2017; 12:e0184811. [PMID: 28910378 PMCID: PMC5599047 DOI: 10.1371/journal.pone.0184811] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 08/31/2017] [Indexed: 01/11/2023] Open
Abstract
Traumatic brain injury (TBI) results in white matter injury (WMI) that is associated with neurological deficits. Neuroinflammation originating from microglial activation may participate in WMI and associated disorders. To date, there is little information on the time courses of these events after mild TBI. Therefore we investigated (i) neuroinflammation, (ii) WMI and (iii) behavioral disorders between 6 hours and 3 months after mild TBI. For that purpose, we used experimental mild TBI in mice induced by a controlled cortical impact. (i) For neuroinflammation, IL-1b protein as well as microglial phenotypes, by gene expression for 12 microglial activation markers on isolated CD11b+ cells from brains, were studied after TBI. IL-1b protein was increased at 6 hours and 1 day. TBI induced a mixed population of microglial phenotypes with both pro-inflammatory, anti-inflammatory and immunomodulatory markers from 6 hours to 3 days post-injury. At 7 days, microglial activation was completely resolved. (ii) Three myelin proteins were assessed after TBI on ipsi- and contralateral corpus callosum, as this structure is enriched in white matter. TBI led to an increase in 2',3'-cyclic-nucleotide 3'-phosphodiesterase, a marker of immature and mature oligodendrocyte, at 2 days post-injury; a bilateral demyelination, evaluated by myelin basic protein, from 7 days to 3 months post-injury; and an increase in myelin oligodendrocyte glycoprotein at 6 hours and 3 days post-injury. Transmission electron microscopy study revealed various myelin sheath abnormalities within the corpus callosum at 3 months post-TBI. (iii) TBI led to sensorimotor deficits at 3 days post-TBI, and late cognitive flexibility disorder evidenced by the reversal learning task of the Barnes maze 3 months after injury. These data give an overall invaluable overview of time course of neuroinflammation that could be involved in demyelination and late cognitive disorder over a time-scale of 3 months in a model of mild TBI. This model could help to validate a pharmacological strategy to prevent post-traumatic WMI and behavioral disorders following mild TBI.
Collapse
Affiliation(s)
- Toufik Taib
- EA4475 – Pharmacologie de la Circulation Cérébrale, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Claire Leconte
- EA4475 – Pharmacologie de la Circulation Cérébrale, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | | | - Angelo H. Cho
- EA4475 – Pharmacologie de la Circulation Cérébrale, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Bruno Palmier
- EA4475 – Pharmacologie de la Circulation Cérébrale, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Egle Torsello
- EA4475 – Pharmacologie de la Circulation Cérébrale, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Rene Lai Kuen
- Cellular and Molecular Imaging Platform, CRP2, UMS 3612 CNRS, US25 INSERM, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Somfieme Onyeomah
- EA4475 – Pharmacologie de la Circulation Cérébrale, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Karine Ecomard
- EA4475 – Pharmacologie de la Circulation Cérébrale, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Chiara Benedetto
- EA4475 – Pharmacologie de la Circulation Cérébrale, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Bérard Coqueran
- EA4475 – Pharmacologie de la Circulation Cérébrale, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Anne-Catherine Novak
- EA4475 – Pharmacologie de la Circulation Cérébrale, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Edwige Deou
- EA4475 – Pharmacologie de la Circulation Cérébrale, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Michel Plotkine
- EA4475 – Pharmacologie de la Circulation Cérébrale, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Pierre Gressens
- U1141 PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Catherine Marchand-Leroux
- EA4475 – Pharmacologie de la Circulation Cérébrale, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Valérie C. Besson
- EA4475 – Pharmacologie de la Circulation Cérébrale, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- * E-mail:
| |
Collapse
|
210
|
Marwarha G, Rostad S, Lilek J, Kleinjan M, Schommer J, Ghribi O. Palmitate Increases β-site AβPP-Cleavage Enzyme 1 Activity and Amyloid-β Genesis by Evoking Endoplasmic Reticulum Stress and Subsequent C/EBP Homologous Protein Activation. J Alzheimers Dis 2017; 57:907-925. [PMID: 28304295 PMCID: PMC5389045 DOI: 10.3233/jad-161130] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Epidemiological studies implicate diets rich in saturated free fatty acids (sFFA) as a potential risk factor for developing Alzheimer's disease (AD). In particular, high plasma levels of the sFFA palmitic acid (palmitate) were shown to inversely correlate with cognitive function. However, the cellular mechanisms by which sFFA may increase the risk for AD are not well known. Endoplasmic reticulum (ER) stress has emerged as one of the signaling pathways initiating and fostering the neurodegenerative changes in AD by increasing the aspartyl protease β-site AβPP cleaving enzyme 1 (BACE1) and amyloid-β (Aβ) genesis. In this study, we determined the extent to which palmitate increases BACE1 and Aβ levels in vitro and in vivo as well as the potential role of ER stress as cellular mechanism underlying palmitate effects. We demonstrate, in palmitate-treated SH-SY5Y neuroblastoma cells and in the hippocampi of palmitate-enriched diet-fed mice, that palmitate evokes the activation of the C/EBP Homologous Protein (CHOP), a transcription factor that is specifically responsive to ER stress. Induction of CHOP expression is associated with increased BACE1 mRNA, protein and activity levels, and subsequent enhanced amyloidogenic processing of amyloid-β protein precursor (AβPP) that culminates in a substantial increase in Aβ genesis. We further show that CHOP is an indispensable molecular mediator of palmitate-induced upregulation in BACE1 activity and Aβ genesis. Indeed, we show that Chop-/- mice and CHOP knocked-down SH-SY5Y neuroblastoma cells do not exhibit the same commensurate degree of palmitate-induced increase in BACE1 expression levels and Aβ genesis.
Collapse
Affiliation(s)
| | | | | | | | | | - Othman Ghribi
- Correspondence to: Dr. Othman Ghribi, Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, 1301 North Columbia Road, Grand Forks, North Dakota 58202, USA. Tel.: +1 701 777 2522; Fax: +1 701 777 4490; E-mail:
| |
Collapse
|
211
|
Kaufmann FN, Costa AP, Ghisleni G, Diaz AP, Rodrigues ALS, Peluffo H, Kaster MP. NLRP3 inflammasome-driven pathways in depression: Clinical and preclinical findings. Brain Behav Immun 2017; 64:367-383. [PMID: 28263786 DOI: 10.1016/j.bbi.2017.03.002] [Citation(s) in RCA: 268] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/13/2017] [Accepted: 03/01/2017] [Indexed: 12/12/2022] Open
Abstract
Over the past three decades, an intricate interaction between immune activation, release of pro-inflammatory cytokines and changes in brain circuits related to mood and behavior has been described. Despite extensive efforts, questions regarding when inflammation becomes detrimental or how we can target the immune system to develop new therapeutic strategies for the treatment of psychiatric disorders remain unresolved. In this context, novel aspects of the neuroinflammatory process activated in response to stressful challenges have recently been documented in major depressive disorder (MDD). The Nod-like receptor pyrin containing 3 inflammasome (NLRP3) is an intracellular multiprotein complex responsible for a number of innate immune processes associated with infection, inflammation and autoimmunity. Recent data have demonstrated that NLRP3 activation appears to bridge the gap between immune activation and metabolic danger signals or stress exposure, which are key factors in the pathogenesis of psychiatric disorders. In this review, we discuss both preclinical and clinical evidence that links the assembly of the NLRP3 complex and the subsequent proteolysis and release of the pro-inflammatory cytokines interleukin-1β (IL-1β) and interleukin-18 (IL-18) in chronic stress models and patients with MDD. Importantly, we also focus on the therapeutic potential of targeting the NLRP3 inflammasome complex to improve stress resilience and depressive symptoms.
Collapse
Affiliation(s)
- Fernanda N Kaufmann
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Ana Paula Costa
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Gabriele Ghisleni
- Department of Life and Health Sciences, Catholic University of Pelotas, Rio Grande do Sul, Brazil
| | - Alexandre P Diaz
- Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Santa Catarina, Brazil
| | - Ana Lúcia S Rodrigues
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Hugo Peluffo
- Neuroinflammation and Gene Therapy Lab., Institut Pasteur de Montevideo, Uruguay; Dept. Histology and Embryology, Faculty of Medicine, UDELAR, Uruguay
| | - Manuella P Kaster
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|
212
|
Schmitt A, Martins-de-Souza D, Akbarian S, Cassoli JS, Ehrenreich H, Fischer A, Fonteh A, Gattaz WF, Gawlik M, Gerlach M, Grünblatt E, Halene T, Hasan A, Hashimoto K, Kim YK, Kirchner SK, Kornhuber J, Kraus TFJ, Malchow B, Nascimento JM, Rossner M, Schwarz M, Steiner J, Talib L, Thibaut F, Riederer P, Falkai P. Consensus paper of the WFSBP Task Force on Biological Markers: Criteria for biomarkers and endophenotypes of schizophrenia, part III: Molecular mechanisms. World J Biol Psychiatry 2017; 18:330-356. [PMID: 27782767 DOI: 10.1080/15622975.2016.1224929] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Despite progress in identifying molecular pathophysiological processes in schizophrenia, valid biomarkers are lacking for both the disease and treatment response. METHODS This comprehensive review summarises recent efforts to identify molecular mechanisms on the level of protein and gene expression and epigenetics, including DNA methylation, histone modifications and micro RNA expression. Furthermore, it summarises recent findings of alterations in lipid mediators and highlights inflammatory processes. The potential that this research will identify biomarkers of schizophrenia is discussed. RESULTS Recent studies have not identified clear biomarkers for schizophrenia. Although several molecular pathways have emerged as potential candidates for future research, a complete understanding of these metabolic pathways is required to reveal better treatment modalities for this disabling condition. CONCLUSIONS Large longitudinal cohort studies are essential that pair a thorough phenotypic and clinical evaluation for example with gene expression and proteome analysis in blood at multiple time points. This approach might identify biomarkers that allow patients to be stratified according to treatment response and ideally also allow treatment response to be predicted. Improved knowledge of molecular pathways and epigenetic mechanisms, including their potential association with environmental influences, will facilitate the discovery of biomarkers that could ultimately be effective tools in clinical practice.
Collapse
Affiliation(s)
- Andrea Schmitt
- a Department of Psychiatry and Psychotherapy , LMU Munich , Germany.,b Laboratory of Neuroscience (LIM27) , Institute of Psychiatry, University of Sao Paulo , Sao Paulo , Brazil
| | - Daniel Martins-de-Souza
- b Laboratory of Neuroscience (LIM27) , Institute of Psychiatry, University of Sao Paulo , Sao Paulo , Brazil.,c Laboratory of Neuroproteomics, Department of Biochemistry , Institute of Biology University of Campinas (UNICAMP), Campinas , SP , Brazil
| | - Schahram Akbarian
- d Division of Psychiatric Epigenomics, Departments of Psychiatry and Neuroscience , Mount Sinai School of Medicine , New York , USA
| | - Juliana S Cassoli
- c Laboratory of Neuroproteomics, Department of Biochemistry , Institute of Biology University of Campinas (UNICAMP), Campinas , SP , Brazil
| | - Hannelore Ehrenreich
- e Clinical Neuroscience , Max Planck Institute of Experimental Medicine, DFG Centre for Nanoscale Microscopy & Molecular Physiology of the Brain , Göttingen , Germany
| | - Andre Fischer
- f Research Group for Epigenetics in Neurodegenerative Diseases , German Centre for Neurodegenerative Diseases (DZNE), Göttingen , Germany.,g Department of Psychiatry and Psychotherapy , University Medical Centre Göttingen , Germany
| | - Alfred Fonteh
- h Neurosciences , Huntington Medical Research Institutes , Pasadena , CA , USA
| | - Wagner F Gattaz
- b Laboratory of Neuroscience (LIM27) , Institute of Psychiatry, University of Sao Paulo , Sao Paulo , Brazil
| | - Michael Gawlik
- i Department of Psychiatry and Psychotherapy , University of Würzburg , Germany
| | - Manfred Gerlach
- j Centre for Mental Health, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy , University of Würzburg , Germany
| | - Edna Grünblatt
- i Department of Psychiatry and Psychotherapy , University of Würzburg , Germany.,k Department of Child and Adolescent Psychiatry and Psychotherapy , Psychiatric Hospital, University of Zürich , Switzerland.,l Neuroscience Centre Zurich , University of Zurich and the ETH Zurich , Switzerland.,m Zurich Centre for Integrative Human Physiology , University of Zurich , Switzerland
| | - Tobias Halene
- d Division of Psychiatric Epigenomics, Departments of Psychiatry and Neuroscience , Mount Sinai School of Medicine , New York , USA
| | - Alkomiet Hasan
- a Department of Psychiatry and Psychotherapy , LMU Munich , Germany
| | - Kenij Hashimoto
- n Division of Clinical Neuroscience , Chiba University Centre for Forensic Mental Health , Chiba , Japan
| | - Yong-Ku Kim
- o Department of Psychiatry , Korea University, College of Medicine , Republic of Korea
| | | | - Johannes Kornhuber
- p Department of Psychiatry and Psychotherapy , Friedrich-Alexander-University Erlangen-Nuremberg , Erlangen , Germany
| | | | - Berend Malchow
- a Department of Psychiatry and Psychotherapy , LMU Munich , Germany
| | - Juliana M Nascimento
- c Laboratory of Neuroproteomics, Department of Biochemistry , Institute of Biology University of Campinas (UNICAMP), Campinas , SP , Brazil
| | - Moritz Rossner
- r Department of Psychiatry, Molecular and Behavioural Neurobiology , LMU Munich , Germany.,s Research Group Gene Expression , Max Planck Institute of Experimental Medicine , Göttingen , Germany
| | - Markus Schwarz
- t Institute for Laboratory Medicine, LMU Munich , Germany
| | - Johann Steiner
- u Department of Psychiatry , University of Magdeburg , Magdeburg , Germany
| | - Leda Talib
- b Laboratory of Neuroscience (LIM27) , Institute of Psychiatry, University of Sao Paulo , Sao Paulo , Brazil
| | - Florence Thibaut
- v Department of Psychiatry , University Hospital Cochin (site Tarnier), University of Paris-Descartes, INSERM U 894 Centre Psychiatry and Neurosciences , Paris , France
| | - Peter Riederer
- w Center of Psychic Health; Department of Psychiatry, Psychosomatics and Psychotherapy , University Hospital of Würzburg , Germany
| | - Peter Falkai
- a Department of Psychiatry and Psychotherapy , LMU Munich , Germany
| | | |
Collapse
|
213
|
Shamim D, Laskowski M. Inhibition of Inflammation Mediated Through the Tumor Necrosis Factor α Biochemical Pathway Can Lead to Favorable Outcomes in Alzheimer Disease. J Cent Nerv Syst Dis 2017; 9:1179573517722512. [PMID: 28811745 PMCID: PMC5536370 DOI: 10.1177/1179573517722512] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 06/25/2017] [Indexed: 11/17/2022] Open
Abstract
Tumor necrosis factor α (TNF-α) inhibitors have long been used as disease-modifying agents in immune disorders. Recently, research has shown a role of chronic neuroinflammation in the pathophysiology of neurodegenerative diseases such as Alzheimer disease, and interest has been generated in the use of anti-TNF agents and TNF-modulating agents for prevention and treatment. This article extensively reviewed literature on animal studies testing these agents. The results showed a role for direct and indirect TNF-α inhibition through agents such as thalidomide, 3,6-dithiothalidomide, etanercept, infliximab, exendin-4, sodium hydrosulfide, minocycline, imipramine, and atorvastatin. Studies were performed on mice, rats, and monkeys, with induction of neurodegenerative physiology either through the use of chemical agents or through the use of transgenic animals. Most of these agents showed an improvement in cognitive function as tested with the Morris water maze, and immunohistochemical and histopathological staining studies consistently showed better outcomes with these agents. Brains of treated animals showed significant reduction in pro-inflammatory TNF-α and reduced the burden of neurofibrillary tangles, amyloid precursor protein, and β-amyloid plaques. Also, recruitment of microglial cells in the central nervous system was significantly reduced through these drugs. These studies provide a clearer mechanistic understanding of the role of TNF-α modulation in Alzheimer disease. All studies in this review explored the use of these drugs as prophylactic agents to prevent Alzheimer disease through immune modulation of the TNF inflammatory pathway, and their success highlights the need for further research of these drugs as therapeutic agents.
Collapse
Affiliation(s)
- Daniah Shamim
- Saba University School of Medicine, The Bottom, Dutch Caribbean
| | | |
Collapse
|
214
|
D'Anna L, Abu-Rumeileh S, Fabris M, Pistis C, Baldi A, Sanvilli N, Curcio F, Gigli GL, D'Anna S, Valente M. Serum Interleukin-10 Levels Correlate with Cerebrospinal Fluid Amyloid Beta Deposition in Alzheimer Disease Patients. NEURODEGENER DIS 2017; 17:227-234. [PMID: 28719891 DOI: 10.1159/000474940] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 04/03/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND AND OBJECTIVE In Alzheimer disease (AD) inflammation becomes evident throughout the course of the disease. However, the association between inflammation, cognitive impairment, and cerebrospinal biomarkers (Aβ42, t-tau, p-tau181, and Aβ42/p-tau181 ratio) is poorly understood. METHODS A large panel of inflammatory cytokines (interleukin [IL]-1β, IL-1ra, IL-2, IL-4, IL-6, IL-10, IL-17, interferon-γ, tumor necrosis factor-α, and vascular endothelial growth factor) was analyzed using a multiplex immunoassay in 27 patients with a diagnosis of AD dementia and in 18 control subjects. In a subgroup with available cerebrospinal fluid (CSF) samples, cytokines in serum were correlated with the levels of neurodegenerative CSF biomarkers (Aβ42, t-tau, p-tau181, and Aβ42/p-tau181 ratio). RESULTS Compared to control subjects, AD patients showed a significant upregulation of IL-10, IL-1β, and IL-17 serum levels. Several cytokines appeared intercorrelated, and IL-10 in particular presented a significant inverse correlation with CFS levels of Aβ42 and the Aβ42/p-tau ratio. CONCLUSION Our findings indicate that serum levels of IL-10 may represent a possible peripheral expression of amyloid beta deposition in AD patients.
Collapse
Affiliation(s)
- Lucio D'Anna
- Department of Experimental and Clinical Medical Sciences, University of Udine Medical School, Udine, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
215
|
Leyns CEG, Holtzman DM. Glial contributions to neurodegeneration in tauopathies. Mol Neurodegener 2017; 12:50. [PMID: 28662669 PMCID: PMC5492997 DOI: 10.1186/s13024-017-0192-x] [Citation(s) in RCA: 272] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 06/20/2017] [Indexed: 01/09/2023] Open
Abstract
Tauopathies are a broad set of neurodegenerative dementias characterized by aggregation of the tau protein into filamentous inclusions that can be found in neurons and glial cells. Activated microglia, astrocytes and elevated levels of proinflammatory molecules are also pathological hallmarks that are found in brain regions affected by tau pathology. There has been abundant research in recent years to understand the role of gliosis and neuroinflammation in neurodegenerative diseases, particularly in Alzheimer's disease (AD) which is the most common form of dementia. AD is a tauopathy characterized by both extracellular amyloid-β plaques in addition to intracellular neurofibrillary tangles and neuropil threads containing aggregated tau protein. Accumulating evidence suggests that neuroinflammation offers a possible mechanistic link between these pathologies. Additionally, there appears to be a role for neuroinflammation in aggravating tau pathology and neurodegeneration in tauopathies featuring tau deposits as the predominant pathological signature. In this review, we survey the literature regarding inflammatory mechanisms that may impact neurodegeneration in AD and related tauopathies. We consider a physical role for microglia in the spread of tau pathology as well as the non-cell autonomous effects of secreted proinflammatory cytokines, specifically interleukin 1 beta, interleukin 6, tumor necrosis factor alpha and complement proteins. These molecules appear to have direct effects on tau pathophysiology and overall neuronal health. They also indirectly impact neuronal homeostasis by altering glial function. We conclude by proposing a complex role for gliosis and neuroinflammation in accelerating the progression of AD and other tauopathies.
Collapse
Affiliation(s)
- Cheryl E. G. Leyns
- Department of Neurology, Washington University, Hope Center for Neurological Disorders, Knight Alzheimer’s Disease Research Center, 660 S. Euclid Ave, St. Louis, MO 63110 USA
| | - David M. Holtzman
- Department of Neurology, Washington University, Hope Center for Neurological Disorders, Knight Alzheimer’s Disease Research Center, 660 S. Euclid Ave, St. Louis, MO 63110 USA
| |
Collapse
|
216
|
Cysteinyl Leukotriene Receptor Antagonists Inhibit Migration, Invasion, and Expression of MMP-2/9 in Human Glioblastoma. Cell Mol Neurobiol 2017; 38:559-573. [DOI: 10.1007/s10571-017-0507-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 06/06/2017] [Indexed: 12/21/2022]
|
217
|
Shao QH, Zhang XL, Yang PF, Yuan YH, Chen NH. Amyloidogenic proteins associated with neurodegenerative diseases activate the NLRP3 inflammasome. Int Immunopharmacol 2017; 49:155-160. [PMID: 28595078 DOI: 10.1016/j.intimp.2017.05.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 05/12/2017] [Accepted: 05/22/2017] [Indexed: 10/19/2022]
Abstract
Neuroinflammation has been shown as an essential factor in the pathogenesis of neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease, and Multiple Sclerosis. Furthermore, activated microglia and increased pro-inflammatory cytokines are the major hallmarks in neurodegenerative diseases. A multimolecular complex named as inflammasome is involved in the process of inflammatory response, which can activate inflammatory caspases, leading to the cleavage and secretion of inflammatory cytokines, and finally generates a potent inflammatory response. In neurodegenerative diseases, it has been widely assumed that some types of amyloid proteins might be the triggers to activate the NLRP3 inflammasome. In this review, we summarize the current researches about the role of NLRP3 inflammasome, by reviewing the main studies in vitro and in vivo experiments and discuss the potential for new therapeutic interventions in neurodegenerative diseases.
Collapse
Affiliation(s)
- Qian-Hang Shao
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiao-Ling Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Peng-Fei Yang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yu-He Yuan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; College of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China.
| |
Collapse
|
218
|
Mendiola AS, Cardona AE. The IL-1β phenomena in neuroinflammatory diseases. J Neural Transm (Vienna) 2017; 125:781-795. [PMID: 28534174 DOI: 10.1007/s00702-017-1732-9] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 05/04/2017] [Indexed: 02/06/2023]
Abstract
It is becoming increasingly clear that neuroinflammation has a causal role in the pathogenesis of central nervous system (CNS)-related diseases, and therefore therapeutic strategies targeting the regulation or availability of inflammatory mediators can be used to prevent or mitigate pathology. Interestingly, the proinflammatory cytokine, interleukin-1 beta (IL-1β), has been implicated in perpetuating immune responses and contributing to disease severity in a variety of CNS diseases ranging from multiple sclerosis, neurodegenerative diseases, traumatic brain injury, and diabetic retinopathy. Moreover, pharmacological blockade of IL-1 signaling has shown to be beneficial in some autoimmune and autoinflammatory diseases, making IL-1β a promising therapeutic target in neuroinflammatory conditions. This review highlights recent advances of our understanding on the multifaceted roles of IL-1β in neuroinflammatory diseases.
Collapse
Affiliation(s)
- Andrew S Mendiola
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Astrid E Cardona
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, 78249, USA.
| |
Collapse
|
219
|
Stenfors CUD, Jonsdottir IH, Magnusson Hanson LL, Theorell T. Associations between systemic pro-inflammatory markers, cognitive function and cognitive complaints in a population-based sample of working adults. J Psychosom Res 2017; 96:49-59. [PMID: 28545793 DOI: 10.1016/j.jpsychores.2017.03.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 03/03/2017] [Accepted: 03/22/2017] [Indexed: 11/18/2022]
Abstract
BACKGROUND The knowledge is limited regarding the relation between systemic inflammatory biomarkers and subjective and objective cognitive functioning in population-based samples of healthy adults across the adult age-span. Thus, the aim of this study was to study a selection of four pro-inflammatory biomarkers (IL-6, MCP-1, TNF-α, CRP) in relation to executive cognitive functioning, episodic memory and subjective cognitive complaints (SCC) in a population-based sample of 215 working adults (age 25-67). RESULTS Higher levels of MCP-1 were associated with poorer executive cognitive functioning, even after adjustments for demographical factors, health status/conditions, SCC and depressive symptoms. IL-6 and CRP were associated with poorer executive cognitive functioning, but these associations covaried with age especially and were not present after adjustment for demographical factors. MCP-1 was associated with poorer episodic memory, but this association also covaried with age especially and was not present after adjustment for demographical factors, and CRP was associated with episodic memory only among participants without reported health conditions. Higher MCP-1 levels were also associated with more SCC and this association covaried with depressive symptoms, while higher levels of TNF-α were associated with less SCC. CONCLUSION Low grade inflammatory processes in terms of higher systemic levels of pro-inflammatory biomarkers (MCP-1, IL-6 & CRP) were associated with poorer executive functioning in this sample of working adults, and MCP-1 was so after extensive adjustments. Support for associations between these biomarkers and episodic memory and SCC were more limited. Future research should address the causality of associations between low grade inflammatory processes and cognitive functioning.
Collapse
Affiliation(s)
- C U D Stenfors
- Aging Research Centre, Department of Neurobiology, Care Science & Society, Karolinska Institute, Stockholm, Sweden; Department of Psychology, University of Chicago, IL, USA.
| | | | | | - T Theorell
- Stress Research Institute, Stockholm University, Stockholm, Sweden; Department of Public Health Sciences, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
220
|
Multiplexed Electrochemical Immunosensors for Clinical Biomarkers. SENSORS 2017; 17:s17050965. [PMID: 28448466 PMCID: PMC5464191 DOI: 10.3390/s17050965] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 04/10/2017] [Accepted: 04/24/2017] [Indexed: 01/10/2023]
Abstract
Management and prognosis of disease requires the accurate determination of specific biomarkers indicative of normal or disease-related biological processes or responses to therapy. Moreover since multiple determinations of biomarkers have demonstrated to provide more accurate information than individual determinations to assist the clinician in prognosis and diagnosis, the detection of several clinical biomarkers by using the same analytical device hold enormous potential for early detection and personalized therapy and will simplify the diagnosis providing more information in less time. In this field, electrochemical immunosensors have demonstrated to offer interesting alternatives against conventional strategies due to their simplicity, fast response, low cost, high sensitivity and compatibility with multiplexed determination, microfabrication technology and decentralized determinations, features which made them very attractive for integration in point-of-care (POC) devices. Therefore, in this review, the relevance and current challenges of multiplexed determination of clinical biomarkers are briefly introduced, and an overview of the electrochemical immunosensing platforms developed so far for this purpose is given in order to demonstrate the great potential of these methodologies. After highlighting the main features of the selected examples, the unsolved challenges and future directions in this field are also briefly discussed.
Collapse
|
221
|
van Gijsel-Bonnello M, Baranger K, Benech P, Rivera S, Khrestchatisky M, de Reggi M, Gharib B. Metabolic changes and inflammation in cultured astrocytes from the 5xFAD mouse model of Alzheimer's disease: Alleviation by pantethine. PLoS One 2017; 12:e0175369. [PMID: 28410378 PMCID: PMC5391924 DOI: 10.1371/journal.pone.0175369] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 03/26/2017] [Indexed: 12/14/2022] Open
Abstract
Astrocytes play critical roles in central nervous system homeostasis and support of neuronal function. A better knowledge of their response may both help understand the pathophysiology of Alzheimer's disease (AD) and implement new therapeutic strategies. We used the 5xFAD transgenic mouse model of AD (Tg thereafter) to generate astrocyte cultures and investigate the impact of the genotype on metabolic changes and astrocytes activation. Metabolomic analysis showed that Tg astrocytes exhibited changes in the glycolytic pathway and tricarboxylic acid (TCA) cycle, compared to wild type (WT) cells. Tg astrocytes displayed also a prominent basal inflammatory status, with accentuated reactivity and increased expression of the inflammatory cytokine interleukin-1 beta (IL-1β). Compensatory mechanisms were activated in Tg astrocytes, including: i) the hexose monophosphate shunt with the consequent production of reducing species; ii) the induction of hypoxia inducible factor-1 alpha (HIF-1α), known to protect against amyloid-β (Aβ) toxicity. Such events were associated with the expression by Tg astrocytes of human isoforms of both amyloid precursor protein (APP) and presenilin-1 (PS1). Similar metabolic and inflammatory changes were induced in WT astrocytes by exogenous Aβ peptide. Pantethine, the vitamin B5 precursor, known to be neuroprotective and anti-inflammatory, alleviated the pathological pattern in Tg astrocytes as well as WT astrocytes treated with Aß. In conclusion, our data enlighten the dual pathogenic/protective role of astrocytes in AD pathology and the potential protective role of pantethine.
Collapse
Affiliation(s)
| | | | | | | | | | - Max de Reggi
- Aix Marseille Univ, CNRS, NICN, Marseille, France
| | | |
Collapse
|
222
|
Das A, Arifuzzaman S, Kim SH, Lee YS, Jung KH, Chai YG. FTY720 (fingolimod) regulates key target genes essential for inflammation in microglial cells as defined by high-resolution mRNA sequencing. Neuropharmacology 2017; 119:1-14. [PMID: 28373076 DOI: 10.1016/j.neuropharm.2017.03.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/29/2017] [Accepted: 03/30/2017] [Indexed: 12/23/2022]
Abstract
Although microglial cells have an essential role in the host defense of the brain, the abnormal activation of microglia can lead to devastating outcomes, such as neuroinflammation and neurodegeneration. Emerging evidence indicates that FTY720 (fingolimod), an FDA-approved drug, has beneficial effects on brain cells in the central nervous system (CNS) and, more recently, immunosuppressive activities in microglia via modulation of the sphingosine 1 phosphate (S1P) 1 receptor. However, the exact molecular aspects of FTY720 contribution in microglia remain largely unaddressed. To understand the molecular mechanisms underlying the roles of FTY720 in microglia, we performed gene expression profiling in resting, FTY720, LPS and LPS + FTY720 challenged primary microglial (PM) cells isolated from 3-day-old ICR mice, and we identified FTY720 target genes and co-regulated modules that were critical in inflammation. By examining RNA sequencing and binding motif datasets from FTY720 suppressed LPS-induced inflammatory mediators, we also identified unexpected relationships between the inducible transcription factors (TFs), motif strength, and the transcription of key inflammatory mediators. Furthermore, we showed that FTY720 controls important inflammatory genes targets by modulating STAT1 and IRF8 levels at their promoter site. Our unprecedented findings demonstrate that FTY720 could be a useful therapeutic application for neuroinflammatory diseases associated with microglia activation, as well as provide a rich resource and framework for future analyses of FTY720 effects on microglia interaction.
Collapse
Affiliation(s)
- Amitabh Das
- Institute of Natural Science & Technology, Hanyang University, Ansan, 15588, Republic of Korea.
| | - Sarder Arifuzzaman
- Department of Bionanotechnology, Hanyang University, Seoul, 04673, Republic of Korea.
| | - Sun Hwa Kim
- Department of Molecular & Life Sciences, Hanyang University, Ansan, 15588, Republic of Korea.
| | - Young Seek Lee
- Department of Molecular & Life Sciences, Hanyang University, Ansan, 15588, Republic of Korea.
| | - Kyoung Hwa Jung
- Institute of Natural Science & Technology, Hanyang University, Ansan, 15588, Republic of Korea.
| | - Young Gyu Chai
- Department of Bionanotechnology, Hanyang University, Seoul, 04673, Republic of Korea; Department of Molecular & Life Sciences, Hanyang University, Ansan, 15588, Republic of Korea.
| |
Collapse
|
223
|
Terzi M, Altun G, Şen S, Kocaman A, Kaplan AA, Yurt KK, Kaplan S. The use of non-steroidal anti-inflammatory drugs in neurological diseases. J Chem Neuroanat 2017; 87:12-24. [PMID: 28341179 DOI: 10.1016/j.jchemneu.2017.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 02/14/2017] [Accepted: 03/20/2017] [Indexed: 02/07/2023]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) have been in use for many years and constitute a large part of prescriptions issued in daily practice. Although NSAIDs are used for many diseases in neurology, they have also been tested as a new therapeutic option for various other diseases. While their effects on headache and cerebrovascular diseases are well known, little is known about their impact on neurodegenerative diseases. This review discusses the use, effects and safety of NSAIDs in neurological diseases.
Collapse
Affiliation(s)
- Murat Terzi
- Department of Neurology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey.
| | - Gamze Altun
- Department of Histology and Embryology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Sedat Şen
- Department of Neurology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Adem Kocaman
- Department of Histology and Embryology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Arife Ahsen Kaplan
- Department of Histology and Embryology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Kıymet Kübra Yurt
- Department of Histology and Embryology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Süleyman Kaplan
- Department of Histology and Embryology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| |
Collapse
|
224
|
Sinha SP, Avcu P, Spiegler KM, Komaravolu S, Kim K, Cominski T, Servatius RJ, Pang KCH. Startle suppression after mild traumatic brain injury is associated with an increase in pro-inflammatory cytokines, reactive gliosis and neuronal loss in the caudal pontine reticular nucleus. Brain Behav Immun 2017; 61:353-364. [PMID: 28089558 DOI: 10.1016/j.bbi.2017.01.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 12/12/2016] [Accepted: 01/08/2017] [Indexed: 01/15/2023] Open
Abstract
Mild traumatic brain injury (mTBI) can produce somatic symptoms such as headache, dizziness, fatigue, sleep disturbances and sensorimotor dysfunction. Sensorimotor function can be measured by tests such as the acoustic startle reflex (ASR), an evolutionarily conserved defensive response to a brief yet sharp acoustic stimulus. mTBI produces a long-lasting suppression of ASR in rodents and humans; however, the mechanism of this suppression is unknown. The present study examined whether inflammatory processes in the brainstem (particularly the caudal pontine reticular nucleus, PnC) could account for the suppression of ASR after mTBI, because the PnC is an essential nucleus of the ASR circuit. Furthermore, while inflammation after mTBI is commonly observed in brain regions proximal to the site of impact (cortex and hippocampus), the effects of mTBI in brainstem structures remains largely understudied. The present study demonstrated a suppression of ASR one day after injury and lasting at least three weeks after an mTBI, replicating previous findings. Within the PnC, transient elevations of IL-1β and TNF-α mRNA were observed at one day after injury, while IL-1α mRNA exhibited a delayed increase at three weeks after injury. Reactive gliosis (via IBA-1-ir for microglia and GFAP-ir for astrocytes) were also observed in the PnC, at one day and seven days after injury, respectively. Finally, the number of giant neurons (the major functional cell population in the PnC) was decreased three weeks after injury. The results indicate that glial activation precedes neuronal loss in the PnC, and correlates with the behavioral suppression of the ASR. The results also raise implications for brainstem involvement in the development of post-traumatic symptoms.
Collapse
Affiliation(s)
- Swamini P Sinha
- Graduate School of Biomedical Sciences, New Jersey Medical School-Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Pelin Avcu
- Graduate School of Biomedical Sciences, New Jersey Medical School-Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Kevin M Spiegler
- Graduate School of Biomedical Sciences, New Jersey Medical School-Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | | | - Kevin Kim
- B.S./M.D. Program, The College of New Jersey, Ewing, NJ, USA
| | - Tara Cominski
- Neurobehavioral Research Lab, Department of Veteran Affairs Medical Center-New Jersey Health Care System, East Orange, NJ, USA
| | - Richard J Servatius
- Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School - Rutgers Biomedical and Health Sciences, Newark, NJ, USA; Graduate School of Biomedical Sciences, New Jersey Medical School-Rutgers Biomedical and Health Sciences, Newark, NJ, USA; Syracuse Veterans Affairs Medical Center, Syracuse, NY, USA
| | - Kevin C H Pang
- Neurobehavioral Research Lab, Department of Veteran Affairs Medical Center-New Jersey Health Care System, East Orange, NJ, USA; Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School - Rutgers Biomedical and Health Sciences, Newark, NJ, USA; Graduate School of Biomedical Sciences, New Jersey Medical School-Rutgers Biomedical and Health Sciences, Newark, NJ, USA.
| |
Collapse
|
225
|
Lucinda N, Figueiredo MM, Pessoa NL, Santos BSÁDS, Lima GK, Freitas AM, Machado AMV, Kroon EG, Antonelli LRDV, Campos MA. Dendritic cells, macrophages, NK and CD8 + T lymphocytes play pivotal roles in controlling HSV-1 in the trigeminal ganglia by producing IL1-beta, iNOS and granzyme B. Virol J 2017; 14:37. [PMID: 28222752 PMCID: PMC5320739 DOI: 10.1186/s12985-017-0692-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 01/18/2017] [Indexed: 02/06/2023] Open
Abstract
Background Herpes simplex virus type 1 (HSV-1) cause not only mild symptoms but also blindness and encephalitis. It was previously shown that the immune response against HSV-1 occurs mainly in the trigeminal ganglia (TG) and that Toll-like receptors 2 and 9 (TLR2/9) are important in mediating this response. It was also demonstrated that iNOS (nitric oxide synthase) and interleukin 1 beta (IL-1β) play an essential role in the defense against HSV-1 infection. Importantly, the present work aimed to identify the primary cells responsible for iNOS and IL-1β production and search for other important molecules and cells that might or might not depend on TLR2/9 receptors to mediate the immune response against HSV-1. Methods C57BL/6 (wild type, WT) and TLR2/9−/− mice were infected by the intranasal route with HSV-1 (1 × 106 p.f.u.). Cells were obtained from the TG and spleen tissues and the profile of immune cells was determined by flow cytometry in infected and mock infected WT and knockout mice. The percentage of cells producing iNOS, IL-1β, granzyme B and perforin was also determined by flow cytometry. Chemokine monocyte chemoattractant protein-1 (MCP1) was measured by Cytometric Bead Array (CBA) in the TG, spleen and lung. Expression of type I interferons (IFNs), interleukins (IL) 5 and 10, IL-1β and granzyme B were quantified by real time PCR. Results The results indicate that dendritic cells (DCs) and monocytes/macrophages (Mo/Mϕ) were the main sources of IL-1β and iNOS, respectively, which, together with type I IFNs, were essential for the immune response against HSV-1. Additionally, we showed that granzyme B produced by CD8+ T and NK lymphocytes and MCP-1 were also important for this immune response. Moreover, our data indicate that the robust production of MCP-1 and granzyme B is either TLR-independent or down regulated by TLRs and occurs in the TG of TLR2/9−/− infected mice. Conclusion Taken together, our data provide strong evidence that the responses mediated by DCs, Mo/Mϕ, NK and CD8+ T lymphocytes through IL-1β, iNOS and granzyme B production, respectively, together with the production of type I IFN early in the infection, are crucial to host defense against HSV-1. Electronic supplementary material The online version of this article (doi:10.1186/s12985-017-0692-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Natália Lucinda
- Imunologia de Doenças Virais, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Fiocruz, Avenida Augusto de Lima 1715, Belo Horizonte, 30190-002, MG, Brazil
| | - Maria Marta Figueiredo
- Imunologia de Doenças Virais, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Fiocruz, Avenida Augusto de Lima 1715, Belo Horizonte, 30190-002, MG, Brazil
| | - Natália Lima Pessoa
- Imunologia de Doenças Virais, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Fiocruz, Avenida Augusto de Lima 1715, Belo Horizonte, 30190-002, MG, Brazil
| | - Beatriz Senra Álvares da Silva Santos
- Imunologia de Doenças Virais, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Fiocruz, Avenida Augusto de Lima 1715, Belo Horizonte, 30190-002, MG, Brazil
| | - Graciela Kunrath Lima
- Escola de Veterinária, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, 31270-901, MG, Brazil
| | - Arthur Molinari Freitas
- Imunologia de Doenças Virais, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Fiocruz, Avenida Augusto de Lima 1715, Belo Horizonte, 30190-002, MG, Brazil
| | - Alexandre Magalhães Vieira Machado
- Imunologia de Doenças Virais, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Fiocruz, Avenida Augusto de Lima 1715, Belo Horizonte, 30190-002, MG, Brazil
| | - Erna Geessien Kroon
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, 31270-901, MG, Brazil
| | - Lis Ribeiro do Valle Antonelli
- Biologia e Imunologia Parasitária, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Fiocruz, Avenida Augusto de Lima 1715, Belo Horizonte, 30190-002, MG, Brazil
| | - Marco Antônio Campos
- Imunologia de Doenças Virais, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Fiocruz, Avenida Augusto de Lima 1715, Belo Horizonte, 30190-002, MG, Brazil.
| |
Collapse
|
226
|
Choi HS, Im S, Park Y, Hong KB, Suh HJ. Deer Bone Oil Extract Suppresses Lipopolysaccharide-Induced Inflammatory Responses in RAW264.7 Cells. Biol Pharm Bull 2017; 39:593-600. [PMID: 27040632 DOI: 10.1248/bpb.b15-00952] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of this study was to investigate the effect of deer bone oil extract (DBOE) on lipopolysaccharide (LPS)-induced inflammatory responses in RAW264.7 cells. DBOE was fractionated by liquid-liquid extraction to obtain two fractions: methanol fraction (DBO-M) and hexane fraction (DBO-H). TLC showed that DBO-M had relatively more hydrophilic lipid complexes, including unsaturated fatty acids, than DBOE and DBO-H. The relative compositions of tetradecenoyl carnitine, α-linoleic acid, and palmitoleic acid increased in the DBO-M fraction by 61, 38, and 32%, respectively, compared with DBOE. The concentration of sugar moieties was 3-fold higher in the DBO-M fraction than DBOE and DBO-H. DBO-M significantly decreased LPS-induced nitric oxide (NO) production in RAW264.7 cells in a dose-dependent manner. This DBO-M-mediated decrease in NO production was due to downregulation of mRNA and protein levels of inducible nitric oxide synthase (iNOS). In addition, mRNA expression of pro-inflammatory mediators, such as cyclooxygenase (COX-2), interleukin (IL)-1β, and IL-12β, was suppressed by DBO-M. Our data showed that DBO-M, which has relatively higher sugar content than DBOE and DBO-H, could play an important role in suppressing inflammatory responses by controlling pro-inflammatory cytokines and mediators.
Collapse
Affiliation(s)
- Hyeon-Son Choi
- Department of Food Science and Technology, Seoul Women's University
| | | | | | | | | |
Collapse
|
227
|
Sánchez-Tirado E, Salvo C, González-Cortés A, Yáñez-Sedeño P, Langa F, Pingarrón JM. Electrochemical immunosensor for simultaneous determination of interleukin-1 beta and tumor necrosis factor alpha in serum and saliva using dual screen printed electrodes modified with functionalized double-walled carbon nanotubes. Anal Chim Acta 2017; 959:66-73. [PMID: 28159106 DOI: 10.1016/j.aca.2016.12.034] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 12/21/2016] [Accepted: 12/23/2016] [Indexed: 11/30/2022]
Abstract
Dual screen-printed carbon electrodes modified with 4-carboxyphenyl-functionalized double-walled carbon nanotubes (HOOC-Phe-DWCNTs/SPCEs) have been used as scaffolds for the preparation of electrochemical immunosensors for the simultaneous determination of the cytokines Interleukin-1β (IL-1β) and factor necrosis tumor α (TNF-α). IL-1β. Capture antibodies were immobilized onto HOOC-Phe-DWCNTs/SPCEs in an oriented form making using the commercial polymeric coating Mix&Go™. Sandwich type immunoassays with amperometric signal amplification through the use of poly-HRP-streptavidin conjugates and H2O2 as HRP substrate and hydroquinone as redox mediator were implemented. Upon optimization of the experimental variables affecting the immunosensor performance, the dual immunosensor allows ranges of linearity extending between 0.5 and 100 pg/mL and from 1 to 200 pg/mL for IL-1β and TNF-α, respectively, these ranges being adequate for the determination of the cytokines in clinical samples. The achieved limits of detection were 0.38 pg/mL (IL-1β) and 0.85 pg/mL (TNF-α). In addition, the dual immunosensor exhibits excellent reproducibility of the measurements, storage stability of the anti-IL-Phe-DWCNTs/SPCE and anti-TNF-Phe-DWCNTs/SPCE conjugates, and selectivity as well as negligible cross-talking. The dual immunosensor was applied to the simultaneous determination of IL-1β and TNF-α in human serum spiked at clinically relevant concentration levels and in real saliva samples.
Collapse
Affiliation(s)
- E Sánchez-Tirado
- Department of Analytical Chemistry, Faculty of Chemistry, University Complutense of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - C Salvo
- Department of Analytical Chemistry, Faculty of Chemistry, University Complutense of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - A González-Cortés
- Department of Analytical Chemistry, Faculty of Chemistry, University Complutense of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - P Yáñez-Sedeño
- Department of Analytical Chemistry, Faculty of Chemistry, University Complutense of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain.
| | - F Langa
- Instituto de Nanociencia, Nanotecnología y Materiales Moleculares (INAMOL), Universidad de Castilla-La Mancha, 45071, Toledo, Spain
| | - J M Pingarrón
- Department of Analytical Chemistry, Faculty of Chemistry, University Complutense of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| |
Collapse
|
228
|
McKee CA, Lukens JR. Emerging Roles for the Immune System in Traumatic Brain Injury. Front Immunol 2016. [PMID: 27994591 DOI: 10.3389/fimmu.201600556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
Traumatic brain injury (TBI) affects an ever-growing population of all ages with long-term consequences on health and cognition. Many of the issues that TBI patients face are thought to be mediated by the immune system. Primary brain damage that occurs at the time of injury can be exacerbated and prolonged for months or even years by chronic inflammatory processes, which can ultimately lead to secondary cell death, neurodegeneration, and long-lasting neurological impairment. Researchers have turned to rodent models of TBI in order to understand how inflammatory cells and immunological signaling regulate the post-injury response and recovery mechanisms. In addition, the development of numerous methods to manipulate genes involved in inflammation has recently expanded the possibilities of investigating the immune response in TBI models. As results from these studies accumulate, scientists have started to link cells and signaling pathways to pro- and anti-inflammatory processes that may contribute beneficial or detrimental effects to the injured brain. Moreover, emerging data suggest that targeting aspects of the immune response may offer promising strategies to treat TBI. This review will cover insights gained from studies that approach TBI research from an immunological perspective and will summarize our current understanding of the involvement of specific immune cell types and cytokines in TBI pathogenesis.
Collapse
Affiliation(s)
- Celia A McKee
- Department of Neuroscience, Center for Brain Immunology and Glia, School of Medicine, University of Virginia , Charlottesville, VA , USA
| | - John R Lukens
- Department of Neuroscience, Center for Brain Immunology and Glia, School of Medicine, University of Virginia , Charlottesville, VA , USA
| |
Collapse
|
229
|
McKee CA, Lukens JR. Emerging Roles for the Immune System in Traumatic Brain Injury. Front Immunol 2016; 7:556. [PMID: 27994591 PMCID: PMC5137185 DOI: 10.3389/fimmu.2016.00556] [Citation(s) in RCA: 169] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 11/18/2016] [Indexed: 12/11/2022] Open
Abstract
Traumatic brain injury (TBI) affects an ever-growing population of all ages with long-term consequences on health and cognition. Many of the issues that TBI patients face are thought to be mediated by the immune system. Primary brain damage that occurs at the time of injury can be exacerbated and prolonged for months or even years by chronic inflammatory processes, which can ultimately lead to secondary cell death, neurodegeneration, and long-lasting neurological impairment. Researchers have turned to rodent models of TBI in order to understand how inflammatory cells and immunological signaling regulate the post-injury response and recovery mechanisms. In addition, the development of numerous methods to manipulate genes involved in inflammation has recently expanded the possibilities of investigating the immune response in TBI models. As results from these studies accumulate, scientists have started to link cells and signaling pathways to pro- and anti-inflammatory processes that may contribute beneficial or detrimental effects to the injured brain. Moreover, emerging data suggest that targeting aspects of the immune response may offer promising strategies to treat TBI. This review will cover insights gained from studies that approach TBI research from an immunological perspective and will summarize our current understanding of the involvement of specific immune cell types and cytokines in TBI pathogenesis.
Collapse
Affiliation(s)
- Celia A. McKee
- Department of Neuroscience, Center for Brain Immunology and Glia, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - John R. Lukens
- Department of Neuroscience, Center for Brain Immunology and Glia, School of Medicine, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
230
|
Gajardo-Gómez R, Labra VC, Maturana CJ, Shoji KF, Santibañez CA, Sáez JC, Giaume C, Orellana JA. Cannabinoids prevent the amyloid β-induced activation of astroglial hemichannels: A neuroprotective mechanism. Glia 2016; 65:122-137. [PMID: 27757991 DOI: 10.1002/glia.23080] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/13/2016] [Accepted: 09/19/2016] [Indexed: 11/06/2022]
Abstract
The mechanisms involved in Alzheimer's disease are not completely understood and how astrocytes and their gliotransmission contribute to this neurodegenerative disease remains to be fully elucidated. Previous studies have shown that amyloid-β peptide (Aβ) induces neuronal death by a mechanism that involves the excitotoxic release of ATP and glutamate associated to astroglial hemichannel opening. We have demonstrated that synthetic and endogenous cannabinoids (CBs) reduce the opening of astrocyte Cx43 hemichannels evoked by activated microglia or inflammatory mediators. Nevertheless, whether CBs could prevent the astroglial hemichannel-dependent death of neurons evoked by Aβ is unknown. Astrocytes as well as acute hippocampal slices were treated with the active fragment of Aβ alone or in combination with the following CBs: WIN, 2-AG, or methanandamide (Meth). Hemichannel activity was monitored by single channel recordings and by time-lapse ethidium uptake while neuronal death was assessed by Fluoro-Jade C staining. We report that CBs fully prevented the hemichannel activity and inflammatory profile evoked by Aβ in astrocytes. Moreover, CBs fully abolished the Aβ-induced release of excitotoxic glutamate and ATP associated to astrocyte Cx43 hemichannel activity, as well as neuronal damage in hippocampal slices exposed to Aβ. Consequently, this work opens novel avenues for alternative treatments that target astrocytes to maintain neuronal function and survival during AD. GLIA 2016 GLIA 2017;65:122-137.
Collapse
Affiliation(s)
- Rosario Gajardo-Gómez
- Departamento de Neurología; Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Valeria C Labra
- Departamento de Neurología; Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carola J Maturana
- Departamento de Neurología; Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Kenji F Shoji
- Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago de Chile, Chile and Instituto Milenio, Centro Interdisciplinario de Neurociencias de Valparaíso, Chile
| | - Cristian A Santibañez
- Departamento de Neurología; Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan C Sáez
- Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago de Chile, Chile and Instituto Milenio, Centro Interdisciplinario de Neurociencias de Valparaíso, Chile
| | - Christian Giaume
- Center for Interdisciplinary Research in Biology, Collège de France/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241, Institut National de la Santé et de la Recherche Médicale U1050, Paris Cedex 05, France
| | - Juan A Orellana
- Departamento de Neurología; Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
231
|
Andreasson KI, Bachstetter AD, Colonna M, Ginhoux F, Holmes C, Lamb B, Landreth G, Lee DC, Low D, Lynch MA, Monsonego A, O’Banion MK, Pekny M, Puschmann T, Russek-Blum N, Sandusky LA, Selenica MLB, Takata K, Teeling J, Town T, Van Eldik LJ, Russek-Blum N, Monsonego A, Low D, Takata K, Ginhoux F, Town T, O’Banion MK, Lamb B, Colonna M, Landreth G, Andreasson KI, Sandusky LA, Selenica MLB, Lee DC, Holmes C, Teeling J, Lynch MA, Van Eldik LJ, Bachstetter AD, Pekny M, Puschmann T. Targeting innate immunity for neurodegenerative disorders of the central nervous system. J Neurochem 2016; 138:653-93. [PMID: 27248001 PMCID: PMC5433264 DOI: 10.1111/jnc.13667] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/01/2016] [Accepted: 04/30/2016] [Indexed: 12/21/2022]
Abstract
Neuroinflammation is critically involved in numerous neurodegenerative diseases, and key signaling steps of innate immune activation hence represent promising therapeutic targets. This mini review series originated from the 4th Venusberg Meeting on Neuroinflammation held in Bonn, Germany, 7-9th May 2015, presenting updates on innate immunity in acute brain injury and chronic neurodegenerative disorders, such as traumatic brain injury and Alzheimer disease, on the role of astrocytes and microglia, as well as technical developments that may help elucidate neuroinflammatory mechanisms and establish clinical relevance. In this meeting report, a brief overview of physiological and pathological microglia morphology is followed by a synopsis on PGE2 receptors, insights into the role of arginine metabolism and further relevant aspects of neuroinflammation in various clinical settings, and concluded by a presentation of technical challenges and solutions when working with microglia and astrocyte cultures. Microglial ontogeny and induced pluripotent stem cell-derived microglia, advances of TREM2 signaling, and the cytokine paradox in Alzheimer's disease are further contributions to this article. Neuroinflammation is critically involved in numerous neurodegenerative diseases, and key signaling steps of innate immune activation hence represent promising therapeutic targets. This mini review series originated from the 4th Venusberg Meeting on Neuroinflammation held in Bonn, Germany, 7-9th May 2015, presenting updates on innate immunity in acute brain injury and chronic neurodegenerative disorders, such as traumatic brain injury and Alzheimer's disease, on the role of astrocytes and microglia, as well as technical developments that may help elucidate neuroinflammatory mechanisms and establish clinical relevance. In this meeting report, a brief overview on physiological and pathological microglia morphology is followed by a synopsis on PGE2 receptors, insights into the role of arginine metabolism and further relevant aspects of neuroinflammation in various clinical settings, and concluded by a presentation of technical challenges and solutions when working with microglia cultures. Microglial ontogeny and induced pluripotent stem cell-derived microglia, advances of TREM2 signaling, and the cytokine paradox in Alzheimer's disease are further contributions to this article.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Niva Russek-Blum
- The Dead Sea and Arava Science Center, Central Arava Branch, Yair Station, Hazeva, Israel
| | - Alon Monsonego
- The Shraga Segal Dept. of Microbiology, Immunology and Genetics, The Faculty of Health Sciences: The National Institute of Biotechnology in the Negev, and Zlotowski Center for Neuroscience, Ben-Gurion University, Beer-Sheva 84105, Israel
| | - Donovan Low
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Kazuyuki Takata
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
- Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Terrence Town
- Departments of Physiology and Biophysics, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089,
| | - M. Kerry O’Banion
- Departments of Neuroscience and Neurology, Del Monte Neuromedicine Institute, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642,
| | - Bruce Lamb
- Department of Neurosciences, Cleveland Clinic, Cleveland, OH 44106
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Gary Landreth
- Department of Neurosciences, Case Western Reserve University 44106
| | - Katrin I. Andreasson
- Department of Neurology and Neurological Sciences, Stanford Neuroscience Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Leslie A. Sandusky
- USF Health Byrd Alzheimer’s Institute, Tampa, FL 33613
- College of Pharmacy & Pharmaceutical Sciences, Tampa, FL 33613
| | - Maj-Linda B. Selenica
- USF Health Byrd Alzheimer’s Institute, Tampa, FL 33613
- College of Pharmacy & Pharmaceutical Sciences, Tampa, FL 33613
| | - Daniel C. Lee
- USF Health Byrd Alzheimer’s Institute, Tampa, FL 33613
- College of Pharmacy & Pharmaceutical Sciences, Tampa, FL 33613
| | - Clive Holmes
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Tremona Road, Southampton, SO16 7YD, United Kingdom
| | - Jessica Teeling
- Centre for Biological Sciences, University of Southampton, Southampton General Hospital, Tremona Road, Southampton, SO16 7YD, United Kingdom
| | | | | | | | - Milos Pekny
- Center for Brain Repair and Rehabilitation, Department of Clinical Neuroscience and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, SE-405 30 Gothenburg, Sweden
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
- Hunter Medical Research Institute, University of Newcastle, New South Wales, Australia
| | - Till Puschmann
- Center for Brain Repair and Rehabilitation, Department of Clinical Neuroscience and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, SE-405 30 Gothenburg, Sweden
| |
Collapse
|
232
|
Nagae T, Araki K, Shimoda Y, Sue LI, Beach TG, Konishi Y. Cytokines and Cytokine Receptors Involved in the Pathogenesis of Alzheimer's Disease. JOURNAL OF CLINICAL & CELLULAR IMMUNOLOGY 2016; 7:441. [PMID: 27895978 PMCID: PMC5123596 DOI: 10.4172/2155-9899.1000441] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Inflammatory mechanisms are implicated in the pathology of Alzheimer's disease (AD). However, it is unclear whether inflammatory alterations are a cause or consequence of neurodegeneration leading to dementia. Clarifying this issue would provide valuable insight into the early diagnosis and therapeutic management of AD. To address this, we compared the mRNA expression profiles of cytokines in the brains of AD patients with "non-demented individuals with AD pathology" and non-demented healthy control (ND) individuals. "Non-demented individuals with AD pathology" are referred to as high pathology control (HPC) individuals that are considered an intermediate subset between AD and ND. HPC represents a transition between normal aging and early stage of AD, and therefore, is useful for determining whether neuroinflammation is a cause or consequence of AD pathology. We observed that immunological conditions that produce cytokines in the HPC brain were more representative of ND than AD. To validate these result, we investigated the expression of inflammatory mediators at the protein level in postmortem brain tissues. We examined the protein expression of tumor necrosis factor (TNF)α and its receptors (TNFRs) in the brains of AD, HPC, and ND individuals. We found differences in soluble TNFα and TNFRs expression between AD and ND groups and between AD and HPC groups. Expression in the temporal cortex was lower in the AD brains than HPC and ND. Our findings indicate that alterations in immunological conditions involving TNFR-mediated signaling are not the primary events initiating AD pathology, such as amyloid plaques and tangle formation. These may be early events occurring along with synaptic and neuronal changes or later events caused by these changes. In this review, we emphasize that elucidating the temporal expression of TNFα signaling molecules during AD is important to understand the selective tuning of these pathways required to develop effective therapeutic strategies for AD.
Collapse
Affiliation(s)
- Tomone Nagae
- Department of Clinical Research, National Tottori Medical Center, Tottori 689-0203, Japan
| | - Kiho Araki
- Department of Clinical Research, National Tottori Medical Center, Tottori 689-0203, Japan
| | - Yuki Shimoda
- Department of Clinical Research, National Tottori Medical Center, Tottori 689-0203, Japan
| | - Lucia I. Sue
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ, 85351, USA
| | - Thomas G. Beach
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ, 85351, USA
| | - Yoshihiro Konishi
- Department of Clinical Research, National Tottori Medical Center, Tottori 689-0203, Japan
| |
Collapse
|
233
|
Monif M, Reid CA, Powell KL, Drummond KJ, O'Brien TJ, Williams DA. Interleukin-1β has trophic effects in microglia and its release is mediated by P2X7R pore. J Neuroinflammation 2016; 13:173. [PMID: 27364756 PMCID: PMC4929731 DOI: 10.1186/s12974-016-0621-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 06/10/2016] [Indexed: 11/21/2022] Open
Abstract
Background Enhanced expression of the purinergic P2X7 receptor (P2X7R) occurs in several neuroinflammatory conditions where increased microglial activation is a co-existing feature. P2X7 receptors can function either as a cation channel or, upon continued stimulation, a large pore. P2X7R-over-expression alone is sufficient to drive microglial activation and proliferation in a process that is P2X7R pore dependent, although the biological signaling pathway through which this occurs remains unclear. Once activated, microglia are known to release a number of bioactive substances that include the proinflammatory cytokine interleukin-1β (IL-1β). Previous studies have linked P2X7R stimulation to the processing and release of IL-1β, but whether the channel or pore state of P2X7R is predominant in driving IL-1β release is unknown and is a major aim of this study. In addition, we will determine whether IL-1β has trophic effects on surrounding microglia. Methods Electron microscopy and immunohistochemistry were used to delineate the sub-cellular localization of P2X7R and IL-1β in primary hippocampal rat cultures. FM1-43 fluorescent dye and confocal microscopy were used to quantify vesicular exocytosis from microglia expressing the pore-forming P2X7R versus a non-pore-forming point mutant, P2X7RG345Y. IL-1β in culture was quantified with an enzyme-linked immunosorbent assay (ELISA). IL-1β intracellular processing was blocked with inhibition of caspase 1 (with a synthetic peptide antagonist), and its extracellular form was neutralized with an IL-1β neutralizing antibody. Microglial activation and proliferation was quantified immunohistochemically with confocal microscopy. Results P2X7R and IL-1β were co-localized in lysosomes. Vesicular exocytosis was higher in microglia expressing the pore-forming P2X7R compared to those expressing the non-pore-forming mutant. There was increased IL-1β in cultures expressing the pore-forming P2X7R, and this proinflammatory cytokine was found to mediate the trophic effects of P2X7R pore in microglia. Inhibition of IL-1β production and function resulted in a significant decrease in P2X7R-mediated microglial activation and proliferation. Conclusions IL-1β is a mediator of microglial activation and proliferation, and its release/production is P2X7R pore dependent. Blockade of P2X7R pore could serve as a therapeutic target in alleviating the degree of inflammation seen in neurodegenerative and neoplastic conditions. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0621-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mastura Monif
- Department of Physiology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, 3010, Australia.,The Department of Neurology, The Royal Melbourne Hospital, Parkville, Victoria, 3052, Australia
| | - Christopher A Reid
- Howard Florey Institute, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Kim L Powell
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Katherine J Drummond
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Terrence J O'Brien
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - David A Williams
- Department of Physiology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, 3010, Australia.
| |
Collapse
|
234
|
Role of the IL-1 Pathway in Dopaminergic Neurodegeneration and Decreased Voluntary Movement. Mol Neurobiol 2016; 54:4486-4495. [PMID: 27356916 PMCID: PMC5509814 DOI: 10.1007/s12035-016-9988-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 06/14/2016] [Indexed: 12/26/2022]
Abstract
Interleukin-1 (IL-1), a proinflammatory cytokine synthesized and released by activated microglia, can cause dopaminergic neurodegeneration leading to Parkinson’s disease (PD). However, it is uncertain whether IL-1 can act directly, or by exacerbating the harmful actions of other brain insults. To ascertain the role of the IL-1 pathway on dopaminergic neurodegeneration and motor skills during aging, we compared mice with impaired [caspase-1 knockout (casp1−/−)] or overactivated IL-1 activity [IL-1 receptor antagonist knockout (IL-1ra−/−)] to wild-type (wt) mice at young and middle age. Their motor skills were evaluated by the open-field and rotarod tests, and quantification of their dopamine neurons and activated microglia within the substantia nigra were performed by immunohistochemistry. IL-1ra−/− mice showed an age-related decline in motor skills, a reduced number of dopamine neurons, and an increase in activated microglia when compared to wt or casp1−/− mice. Casp1−/− mice had similar changes in motor skills and dopamine neurons, but fewer activated microglia cells than wt mice. Our results suggest that the overactivated IL-1 pathway occurring in IL-1ra−/− mice in the absence of inflammatory interventions (e.g., intracerebral injections performed in animal models of PD) increased activated microglia, decreased the number of dopaminergic neurons, and reduced their motor skills. Decreased IL-1 activity in casp1−/− mice did not yield clear protective effects when compared with wt mice. In summary, in the absence of overt brain insults, chronic activation of the IL-1 pathway may promote pathological aspects of PD per se, but its impairment does not appear to yield advantages over wt mice.
Collapse
|
235
|
Sordillo PP, Sordillo LA, Helson L. Bifunctional role of pro-inflammatory cytokines after traumatic brain injury. Brain Inj 2016; 30:1043-53. [DOI: 10.3109/02699052.2016.1163618] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
236
|
Gui WS, Wei X, Mai CL, Murugan M, Wu LJ, Xin WJ, Zhou LJ, Liu XG. Interleukin-1β overproduction is a common cause for neuropathic pain, memory deficit, and depression following peripheral nerve injury in rodents. Mol Pain 2016; 12:12/0/1744806916646784. [PMID: 27175012 PMCID: PMC4956151 DOI: 10.1177/1744806916646784] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 04/04/2016] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Chronic pain is often accompanied by short-term memory deficit and depression. Currently, it is believed that short-term memory deficit and depression are consequences of chronic pain. Here, we test the hypothesis that the symptoms might be caused by overproduction of interleukin-1beta (IL-1β) in the injured nerve independent of neuropathic pain following spared nerve injury in rats and mice. RESULTS Mechanical allodynia, a behavioral sign of neuropathic pain, was not correlated with short-term memory deficit and depressive behavior in spared nerve injury rats. Spared nerve injury upregulated IL-1β in the injured sciatic nerve, plasma, and the regions in central nervous system closely associated with pain, memory and emotion, including spinal dorsal horn, hippocampus, prefrontal cortex, nucleus accumbens, and amygdala. Importantly, the spared nerve injury-induced memory deficits, depressive, and pain behaviors were substantially prevented by peri-sciatic administration of IL-1β neutralizing antibody in rats or deletion of IL-1 receptor type 1 in mice. Furthermore, the behavioral abnormalities induced by spared nerve injury were mimicked in naïve rats by repetitive intravenous injection of re combinant rat IL-1β (rrIL-1β) at a pathological concentration as determined from spared nerve injury rats. In addition, microglia were activated by both spared nerve injury and intravenous injection of rrIL-1β and the effect of spared nerve injury was substantially reversed by peri-sciatic administration of anti-IL-1β. CONCLUSIONS Neuropathic pain was not necessary for the development of cognitive and emotional disorders, while the overproduction of IL-1β in the injured sciatic nerve following peripheral nerve injury may be a common mechanism underlying the generation of neuropathic pain, memory deficit, and depression.
Collapse
Affiliation(s)
- Wen-Shan Gui
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China Guangdong Province Key Laboratory of Brain Function and Disease, Guangzhou, China
| | - Xiao Wei
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China Guangdong Province Key Laboratory of Brain Function and Disease, Guangzhou, China
| | - Chun-Lin Mai
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China Guangdong Province Key Laboratory of Brain Function and Disease, Guangzhou, China
| | - Madhuvika Murugan
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Long-Jun Wu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Wen-Jun Xin
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China Guangdong Province Key Laboratory of Brain Function and Disease, Guangzhou, China
| | - Li-Jun Zhou
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China Guangdong Province Key Laboratory of Brain Function and Disease, Guangzhou, China Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Xian-Guo Liu
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China Guangdong Province Key Laboratory of Brain Function and Disease, Guangzhou, China
| |
Collapse
|
237
|
Cao Z, Yang X, Zhang H, Wang H, Huang W, Xu F, Zhuang C, Wang X, Li Y. Aluminum chloride induces neuroinflammation, loss of neuronal dendritic spine and cognition impairment in developing rat. CHEMOSPHERE 2016; 151:289-95. [PMID: 26946116 DOI: 10.1016/j.chemosphere.2016.02.092] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/18/2016] [Accepted: 02/21/2016] [Indexed: 05/25/2023]
Abstract
Aluminum (Al) is present in the daily life of humans, and the incidence of Al contamination increased in recent years. Long-term excessive Al intake induces neuroinflammation and cognition impairment. Neuroinflammation alter density of dendritic spine, which, in turn, influence cognition function. However, it is unknown whether increased neuroinflammation is associated with altered density of dendritic spine in Al-treated rats. In the present study, AlCl3 was orally administrated to rat at 50, 150 and 450 mg/kg for 90d. We examined the effects of AlCl3 on the cognition function, density of dendritic spine in hippocampus of CA1 and DG region and the mRNA levels of IL-1β, IL-6, TNF-α, MHC II, CX3CL1 and BNDF in developing rat. These results showed exposure to AlCl3 lead to increased mRNA levels of IL-1β, IL-6, TNF-α and MCH II, decreased mRNA levels of CX3CL1 and BDNF, decreased density of dendritic spine and impaired learning and memory in developing rat. Our results suggest AlCl3 can induce neuroinflammation that may result in loss of spine, and thereby leads to learning and memory deficits.
Collapse
Affiliation(s)
- Zheng Cao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Xu Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Haiyang Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Haoran Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Wanyue Huang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Feibo Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Cuicui Zhuang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Xiaoguang Wang
- Suihua Food and Drug Administration, Suihua, 152000, China
| | - Yanfei Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
238
|
Wilson GD, Marples B. A New Use for an Old Treatment: Radiation Therapy and Alzheimer's Disease. Radiat Res 2016; 185:443-8. [PMID: 27092764 DOI: 10.1667/rr14367.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- George D Wilson
- Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, Michigan
| | - Brian Marples
- Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, Michigan
| |
Collapse
|
239
|
Rai S, Bhatnagar S. Hyperlipidemia, Disease Associations, and Top 10 Potential Drug Targets: A Network View. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2016; 20:152-68. [DOI: 10.1089/omi.2015.0172] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Sneha Rai
- Computational and Structural Biology Laboratory, Division of Biotechnology, Netaji Subhas Institute of Technology, Dwarka, New Delhi, India
| | - Sonika Bhatnagar
- Computational and Structural Biology Laboratory, Division of Biotechnology, Netaji Subhas Institute of Technology, Dwarka, New Delhi, India
| |
Collapse
|
240
|
Ugen KE, Lin X, Bai G, Liang Z, Cai J, Li K, Song S, Cao C, Sanchez-Ramos J. Evaluation of an α synuclein sensitized dendritic cell based vaccine in a transgenic mouse model of Parkinson disease. Hum Vaccin Immunother 2016; 11:922-30. [PMID: 25714663 DOI: 10.1080/21645515.2015.1012033] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
In order to develop a cell-based vaccine against the Parkinson disease (PD) associated protein α-synuclein (α-Syn) 3 peptides were synthesized based upon predicted B cell epitopes within the full length α-Syn protein sequence. These peptide fragments as well as the full length recombinant human α-Syn (rh- α-Syn) protein were used to sensitize mouse bone marrow-derived dendritic cells (DC) ex vivo, followed by intravenous delivery of these sensitized DCs into transgenic (Tg) mice expressing the human A53T variant of α-Syn. ELISA analysis and testing of behavioral locomotor function by rotometry were performed on all mice after the 5th vaccination as well as just prior to euthanasia. The results indicated that vaccination with peptide sensitized DCs (PSDC) as well as DCs sensitized by rh-α-Syn induced specific anti-α-Syn antibodies in all immunized mice. In terms of rotometry performance, a measure of locomotor activity correlated to brain dopamine levels, mice vaccinated with PSDC or rh- α-Syn sensitized DCs performed significantly better than non-vaccinated Tg control mice during the final assessment (i.e. at 17 months of age) before euthanasia. As well, measurement of levels of brain IL-1α, a cytokine hypothesized to be associated with neuroinflammation, demonstrated that this proinflammatory molecule was significantly reduced in the PSDC and rh- α-Syn sensitized DC vaccinated mice compared to the non-vaccinated Tg control group. Overall, α-Syn antigen-sensitized DC vaccination was effective in generating specific anti- α-Syn antibodies and improved locomotor function without eliciting an apparent general inflammatory response, indicating that this strategy may be a safe and effective treatment for PD.
Collapse
Affiliation(s)
- Kenneth E Ugen
- a Department of Molecular Medicine ; University of South Florida; Morsani College of Medicine ; Tampa , FL USA
| | | | | | | | | | | | | | | | | |
Collapse
|
241
|
Mayer AMS, Murphy J, MacAdam D, Osterbauer C, Baseer I, Hall ML, Feher D, Williams P. Classical and Alternative Activation of Cyanobacterium Oscillatoria sp. Lipopolysaccharide-Treated Rat Microglia in vitro. Toxicol Sci 2016; 149:484-95. [PMID: 26609141 PMCID: PMC4900220 DOI: 10.1093/toxsci/kfv251] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The purpose of this investigation was to test the hypothesis that an in vitro exposure to cyanobacterium Oscillatoria sp. Lipopolysaccharide (LPS) might result in classical and alternative activation of rat neonatal microglia. Using Escherichia coli LPS-primed microglia as a positive control, this study revealed that treatment of rat microglia with Oscillatoria sp. LPS for 17 h in vitro resulted in both classical and alternative activation as well as concomitant pro-inflammatory and anti-inflammatory mediator release, in a concentration-dependent manner: (1) treatment with 0.1-10 000 ng/ml Oscillatoria sp. LPS resulted in minimal lactic dehydrogenase (LDH) release, induced concentration-dependent and statistically significant O2 (-) generation, matrix metalloproteinase-9 (MMP-9) release, generation of the cytokines tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), and the chemokines macrophage inflammatory protein-2 (MIP-2/CXCL2), interferon γ-induced protein 10 kDa (IP-10/CXCL-10), (MIP-1α/CCL3), monocyte chemotactic protein-1 (MCP-1/CCL2), regulated on activation, normal T cell expressed and secreted (RANTES/CCL5), and the alternative activation cytokine IL-10; (3) in contrast, treatment with 100 000 ng/ml Oscillatoria sp. LPS appeared to damage the microglia cell membrane, because it resulted in minimal O2 (-) generation, statistically significant LDH release, and a decrease in the generation of all the cytokines and chemokines investigated, with the exception of IL-1α and cytokine-induced neutrophil chemoattractant 1 (CINC-1/CXCL1) generation, which was increased. Thus, our results provide experimental support for our working hypothesis, namely that Oscillatoria sp. LPS induces classical and alternative activation of rat brain microglia in vitro in a concentration-dependent manner, namely 0.1-10 000 ng/ml Oscillatoria sp. LPS, when microglia cells were shown to be viable. Furthermore, should cyanobacterium Oscillatoria sp. LPS gain entry into the CNS, our findings suggest that classical and alternative activation of rat brain microglia in vivo, might lead to concomitant mediator release that could result in an interplay between neuroinflammation and neural repair in a concentration-dependent manner.
Collapse
Affiliation(s)
| | - Joseph Murphy
- Biomedical Sciences Program, College of Health Sciences, Midwestern University, Downers Grove, Illinois 60515; and
| | - David MacAdam
- Biomedical Sciences Program, College of Health Sciences, Midwestern University, Downers Grove, Illinois 60515; and
| | - Christopher Osterbauer
- Biomedical Sciences Program, College of Health Sciences, Midwestern University, Downers Grove, Illinois 60515; and
| | - Imaan Baseer
- Biomedical Sciences Program, College of Health Sciences, Midwestern University, Downers Grove, Illinois 60515; and
| | - Mary L Hall
- *Department of Pharmacology, Chicago College of Osteopathic Medicine and
| | - Domonkos Feher
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96882
| | - Phillip Williams
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96882
| |
Collapse
|
242
|
Couturier J, Stancu IC, Schakman O, Pierrot N, Huaux F, Kienlen-Campard P, Dewachter I, Octave JN. Activation of phagocytic activity in astrocytes by reduced expression of the inflammasome component ASC and its implication in a mouse model of Alzheimer disease. J Neuroinflammation 2016; 13:20. [PMID: 26818951 PMCID: PMC4729126 DOI: 10.1186/s12974-016-0477-y] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 01/06/2016] [Indexed: 12/19/2022] Open
Abstract
Background The proinflammatory cytokine interleukin-1β (IL-1β) is overexpressed in Alzheimer disease (AD) as a key regulator of neuroinflammation. Amyloid-β (Aβ) peptide triggers activation of inflammasomes, protein complexes responsible for IL-1β maturation in microglial cells. Downregulation of NALP3 (NACHT, LRR, and PYD domains-containing protein 3) inflammasome has been shown to decrease amyloid load and rescue cognitive deficits in a mouse model of AD. Whereas activation of inflammasome in microglial cells has been described in AD, no data are currently available concerning activation of inflammasome in astrocytes, although they are involved in inflammatory response and phagocytosis. Here, by targeting the inflammasome adaptor protein ASC (apoptosis-associated speck-like protein containing a CARD domain), we investigated the influence of activation of the inflammasome on the phagocytic activity of astrocytes. Methods We used an ASC knockout mouse model, as ASC is a central protein in the inflammasome, acting as an adaptor and stabilizer of the complex and thus critical for its activation. Lipopolysaccharide (LPS)-primed primary cultures of astrocytes from newborn mice were utilized to evaluate Aβ-induced inflammasome activation by measuring IL-1β release by ECLIA (electro-chemiluminescence immunoassay). Phagocytosis efficiency was measured by incorporation of bioparticles, and the release of the chemokine CCL3 (C-C motif ligand 3) was measured by ECLIA. ASC mice were crossbred with 5xFAD (familial Alzheimer disease) mice and tested for spatial reference memory using the Morris water maze (MWM) at 7–8 months of age. Amyloid load and CCL3 were quantified by thioflavine S staining and quantitative real-time polymerase chain reaction (qRT-PCR), respectively. Results Cultured astrocytes primed with LPS and treated with Aβ showed an ASC-dependent production of IL-1β resulting from inflammasome activation mediated by Aβ phagocytosis and cathepsin B enzymatic activity. ASC+/− astrocytes displayed a higher phagocytic activity as compared to ASC+/+ and ASC −/− cells, resulting from a higher release of the chemokine CCL3. A significant decrease in amyloid load was measured in the brain of 7–8-month-old 5xFAD mice carrying the ASC +/− genotype, correlated with an increase in CCL3 gene expression. In addition, the ASC +/− genotype rescued spatial reference memory deficits observed in 5xFAD mice. Conclusions Our results demonstrate that Aβ is able to activate astrocytic inflammasome. Downregulation of inflammasome activity increases phagocytosis in astrocytes due to the release of CCL3. This could explain why downregulation of inflammasome activity decreases amyloid load and rescues memory deficits in a mouse model of AD. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0477-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Julien Couturier
- Université catholique de Louvain, Avenue Hippocrate 54, B1.5410, B-1200, Brussels, Belgium. .,Institute of Neuroscience, Université catholique de Louvain, Avenue Hippocrate 54, B1.5410, B-1200, Brussels, Belgium.
| | - Ilie-Cosmin Stancu
- Université catholique de Louvain, Avenue Hippocrate 54, B1.5410, B-1200, Brussels, Belgium. .,Institute of Neuroscience, Université catholique de Louvain, Avenue Hippocrate 54, B1.5410, B-1200, Brussels, Belgium.
| | - Olivier Schakman
- Université catholique de Louvain, Avenue Hippocrate 54, B1.5410, B-1200, Brussels, Belgium. .,Institute of Neuroscience, Université catholique de Louvain, Avenue Hippocrate 54, B1.5410, B-1200, Brussels, Belgium.
| | - Nathalie Pierrot
- Université catholique de Louvain, Avenue Hippocrate 54, B1.5410, B-1200, Brussels, Belgium. .,Institute of Neuroscience, Université catholique de Louvain, Avenue Hippocrate 54, B1.5410, B-1200, Brussels, Belgium.
| | - François Huaux
- Université catholique de Louvain, Avenue Hippocrate 54, B1.5410, B-1200, Brussels, Belgium. .,Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Université catholique de Louvain, Brussels, Belgium.
| | - Pascal Kienlen-Campard
- Université catholique de Louvain, Avenue Hippocrate 54, B1.5410, B-1200, Brussels, Belgium. .,Institute of Neuroscience, Université catholique de Louvain, Avenue Hippocrate 54, B1.5410, B-1200, Brussels, Belgium.
| | - Ilse Dewachter
- Université catholique de Louvain, Avenue Hippocrate 54, B1.5410, B-1200, Brussels, Belgium. .,Institute of Neuroscience, Université catholique de Louvain, Avenue Hippocrate 54, B1.5410, B-1200, Brussels, Belgium.
| | - Jean-Noël Octave
- Université catholique de Louvain, Avenue Hippocrate 54, B1.5410, B-1200, Brussels, Belgium. .,Institute of Neuroscience, Université catholique de Louvain, Avenue Hippocrate 54, B1.5410, B-1200, Brussels, Belgium.
| |
Collapse
|
243
|
Li J, Zhao R, Li X, Sun W, Qu M, Tang Q, Yang X, Zhang S. Shen-Qi-Jie-Yu-Fang exerts effects on a rat model of postpartum depression by regulating inflammatory cytokines and CD4(+)CD25(+) regulatory T cells. Neuropsychiatr Dis Treat 2016; 12:883-96. [PMID: 27143890 PMCID: PMC4841396 DOI: 10.2147/ndt.s98131] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Shen-Qi-Jie-Yu-Fang (SJF) is composed of eight Chinese medicinal herbs. It is widely used in traditional Chinese medicine for treating postpartum depression (PPD). Previous studies have shown that SJF treats PPD through the neuroendocrine mechanism. AIM To further investigate the effect of SJF on the immune system, including the inflammatory response system and CD4(+)CD25(+) regulatory T (Treg) cells. MATERIALS AND METHODS Sprague Dawley rats were used to create an animal model of PPD by inducing hormone-simulated pregnancy followed by hormone withdrawal. After hormone withdrawal, the PPD rats were treated with SJF or fluoxetine for 1, 2, and 4 weeks. Levels of Treg cells in peripheral blood were measured by flow cytometry analysis. Serum interleukin (IL)-1β and IL-6 were evaluated by enzyme-linked immunosorbent assay, and gene and protein expressions of IL-1RI, IL-6Rα, and gp130 in the hippocampus were observed by reverse-transcription polymerase chain reaction and Western blot. RESULTS Serum IL-1β in PPD rats increased at 2 weeks and declined from then on, while serum IL-6 increased at 1, 2, and 4 weeks. Both IL-1β and IL-6 were downregulated by SJF and fluoxetine. Changes in gene and protein expressions of IL-1RI and gp130 in PPD rats were consistent with changes in serum IL-1β, and were able to be regulated by SJF and fluoxetine. The levels of Treg cells were negatively correlated with serum IL-1β and IL-6, and were decreased in PPD rats. The levels of Treg cells were increased by SJF and fluoxetine. CONCLUSION Dysfunction of proinflammatory cytokines and Tregs in different stages of PPD was attenuated by SJF and fluoxetine through the modulation of serum concentrations of IL-1β and IL-6, expressions of IL-1RI, and gp130 in the hippocampus, and CD4(+)CD25(+) Treg cells in peripheral blood.
Collapse
Affiliation(s)
- Jingya Li
- Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Ruizhen Zhao
- Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Xiaoli Li
- Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Wenjun Sun
- Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Miao Qu
- Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Qisheng Tang
- Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Xinke Yang
- Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Shujing Zhang
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| |
Collapse
|
244
|
Nrf2–ARE pathway: An emerging target against oxidative stress and neuroinflammation in neurodegenerative diseases. Pharmacol Ther 2016; 157:84-104. [DOI: 10.1016/j.pharmthera.2015.11.003] [Citation(s) in RCA: 324] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
245
|
Marples B, McGee M, Callan S, Bowen SE, Thibodeau BJ, Michael DB, Wilson GD, Maddens ME, Fontanesi J, Martinez AA. Cranial irradiation significantly reduces beta amyloid plaques in the brain and improves cognition in a murine model of Alzheimer’s Disease (AD). Radiother Oncol 2016; 118:43-51. [DOI: 10.1016/j.radonc.2015.10.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 09/29/2015] [Accepted: 10/19/2015] [Indexed: 10/22/2022]
|
246
|
Benedet AL, Labbe A, Lemay P, Zimmer ER, Pascoal TA, Leuzy A, Mathotaarachchi S, Mohades S, Shin M, Dionne-Laporte A, Beaudry T, Picard C, Gauthier S, Poirier J, Rouleau G, Rosa-Neto P. Epistasis analysis links immune cascades and cerebral amyloidosis. J Neuroinflammation 2015; 12:227. [PMID: 26626881 PMCID: PMC4666175 DOI: 10.1186/s12974-015-0436-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 11/16/2015] [Indexed: 12/21/2022] Open
Abstract
Background Several lines of evidence suggest the involvement of neuroinflammatory changes in Alzheimer’s disease (AD) pathophysiology such as amyloidosis and neurodegeneration. In fact, genome-wide association studies (GWAS) have shown a link between genes involved in neuroinflammation and AD. In order to further investigate whether interactions between candidate genetic variances coding for neuroinflammatory molecules are associated with brain amyloid β (Aβ) fibrillary accumulation, we conducted an epistasis analysis on a pool of genes associated with molecular mediators of inflammation. Methods [18F]Florbetapir positron emission tomography (PET) imaging was employed to assess brain Aβ levels in 417 participants from ADNI-GO/2 and posteriorly 174 from ADNI-1. IL-1β, IL4, IL6, IL6r, IL10, IL12, IL18, C5, and C9 genes were chosen based on previous studies conducted in AD patients. Using the [18F]florbetapir standardized uptake value ratio (SUVR) as a quantitative measure of fibrillary Aβ, epistasis analyses were performed between two sets of markers of immune-related genes using gender, diagnosis, and apolipoprotein E (APOE) as covariates. Voxel-based analyses were also conducted. The results were corrected for multiple comparison tests. Cerebrospinal fluid (CSF) Aβ1-42/phosphorylated tau (p-tau) ratio concentrations were used to confirm such associations. Results Epistasis analysis unveiled two significant single nucleotide polymorphism (SNP)-SNP interactions (false discovery rate (FDR) threshold 0.1), both interactions between C9 gene (rs261752) and IL6r gene (rs4240872, rs7514452). In a combined sample, the interactions were confirmed (p ≤ 10–5) and associated with amyloid accumulation within cognitively normal and AD spectrum groups. Voxel-based analysis corroborated initial findings. CSF biomarker (Aβ1-42/p-tau) confirmed the genetic interaction. Additionally, rs4240872 and rs7514452 SNPs were shown to be associated with CSF and plasma concentrations of IL6r protein. Conclusions Certain allele combinations involving IL6r and C9 genes are associated with Aβ burden in the brain. Hypothesis-driven search for epistasis is a valuable strategy for investigating imaging endophenotypes in complex neurodegenerative diseases. Electronic supplementary material The online version of this article (doi:10.1186/s12974-015-0436-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andréa L Benedet
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, 6825 LaSalle Blvd, H4H 1R3, Montreal, QC, Canada. .,CAPES Foundation, Ministry of Education of Brazil, Brasília, Brazil.
| | - Aurélie Labbe
- Douglas Hospital Research Centre, McGill University, Montreal, Canada. .,Department of Epidemiology, Biostatistics & Occupational Health, McGill University, Montreal, Canada. .,Department of Psychiatry, McGill University, Montreal, Canada.
| | - Philippe Lemay
- Department of Biochemistry, Université de Montréal, Montréal, Canada.
| | - Eduardo R Zimmer
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, 6825 LaSalle Blvd, H4H 1R3, Montreal, QC, Canada. .,Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil. .,Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.
| | - Tharick A Pascoal
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, 6825 LaSalle Blvd, H4H 1R3, Montreal, QC, Canada.
| | - Antoine Leuzy
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, 6825 LaSalle Blvd, H4H 1R3, Montreal, QC, Canada. .,Department of NVS, Center for Alzheimer Research, Translational Alzheimer Neurobiology, Karolinska Institutet, Stockholm, Sweden. .,Alzheimer's Disease Research Unit, McGill University Research Centre for Studies in Aging, McGill University, Montreal, Canada.
| | - Sulantha Mathotaarachchi
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, 6825 LaSalle Blvd, H4H 1R3, Montreal, QC, Canada.
| | - Sara Mohades
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, 6825 LaSalle Blvd, H4H 1R3, Montreal, QC, Canada.
| | - Monica Shin
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, 6825 LaSalle Blvd, H4H 1R3, Montreal, QC, Canada.
| | - Alexandre Dionne-Laporte
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada. .,Montreal Neurological Institute, Montreal, Canada.
| | - Thomas Beaudry
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, 6825 LaSalle Blvd, H4H 1R3, Montreal, QC, Canada.
| | - Cynthia Picard
- Douglas Hospital Research Centre, McGill University, Montreal, Canada.
| | - Serge Gauthier
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada.
| | - Judes Poirier
- Douglas Hospital Research Centre, McGill University, Montreal, Canada. .,Alzheimer's Disease Research Unit, McGill University Research Centre for Studies in Aging, McGill University, Montreal, Canada. .,Department of Neurology and Neurosurgery, McGill University, Montreal, Canada.
| | - Guy Rouleau
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada. .,Montreal Neurological Institute, Montreal, Canada.
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, 6825 LaSalle Blvd, H4H 1R3, Montreal, QC, Canada. .,Alzheimer's Disease Research Unit, McGill University Research Centre for Studies in Aging, McGill University, Montreal, Canada. .,Department of Neurology and Neurosurgery, McGill University, Montreal, Canada. .,Montreal Neurological Institute, Montreal, Canada.
| | | |
Collapse
|
247
|
Johnson DA, Johnson JA. Nrf2--a therapeutic target for the treatment of neurodegenerative diseases. Free Radic Biol Med 2015; 88:253-267. [PMID: 26281945 PMCID: PMC4809057 DOI: 10.1016/j.freeradbiomed.2015.07.147] [Citation(s) in RCA: 263] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 07/19/2015] [Accepted: 07/20/2015] [Indexed: 12/13/2022]
Abstract
The brain is very sensitive to changes in redox status; thus maintaining redox homeostasis in the brain is critical for the prevention of accumulating oxidative damage. Aging is the primary risk factor for developing neurodegenerative diseases. In addition to age, genetic and environmental risk factors have also been associated with disease development. The primary reactive insults associated with the aging process are a result of oxidative stress (OS) and nitrosative stress (NS). Markers of increased oxidative stress, protein and DNA modification, inflammation, and dysfunctional proteostasis have all been implicated in contributing to the progression of neurodegeneration. The ability of the cell to combat OS/NS and maintain a clearance mechanism for misfolded aggregating proteins determines whether or not it will survive. A critical pathway in this regard is the Nrf2 (nuclear factor erythroid 2-related factor 2)- antioxidant response element (ARE) pathway. Nrf2 activation has been shown to mitigate a number of pathologic mechanisms associated with Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease, and multiple sclerosis. This review will focus on the role of Nrf2 in these diseases and the potential for Nrf2 activation to attenuate disease progression.
Collapse
Affiliation(s)
- Delinda A Johnson
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | - Jeffrey A Johnson
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
248
|
Woods LT, Ajit D, Camden JM, Erb L, Weisman GA. Purinergic receptors as potential therapeutic targets in Alzheimer's disease. Neuropharmacology 2015; 104:169-79. [PMID: 26519903 DOI: 10.1016/j.neuropharm.2015.10.031] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/22/2015] [Accepted: 10/23/2015] [Indexed: 01/06/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by a progressive loss of memory and cognitive ability and is a serious cause of mortality. Many of the pathological characteristics associated with AD are revealed post-mortem, including amyloid-β plaque deposition, neurofibrillary tangles containing hyperphosphorylated tau proteins and neuronal loss in the hippocampus and cortex. Although several genetic mutations and risk factors have been associated with the disease, the causes remain poorly understood. Study of disease-initiating mechanisms and AD progression in humans is inherently difficult as most available tissue specimens are from late-stages of disease. Therefore, AD researchers rely on in vitro studies and the use of AD animal models where neuroinflammation has been shown to be a major characteristic of AD. Purinergic receptors are a diverse family of proteins consisting of P1 adenosine receptors and P2 nucleotide receptors for ATP, UTP and their metabolites. This family of receptors has been shown to regulate a wide range of physiological and pathophysiological processes, including neuroinflammation, and may contribute to the pathogenesis of neurodegenerative diseases like Parkinson's disease, multiple sclerosis and AD. Experimental evidence from human AD tissue has suggested that purinergic receptors may play a role in AD progression and studies using selective purinergic receptor agonists and antagonists in vitro and in AD animal models have demonstrated that purinergic receptors represent novel therapeutic targets for the treatment of AD. This article is part of the Special Issue entitled 'Purines in Neurodegeneration and Neuroregeneration'.
Collapse
Affiliation(s)
- Lucas T Woods
- Department of Biochemistry, University of Missouri, Columbia, MO, USA; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Deepa Ajit
- Department of Biochemistry, University of Missouri, Columbia, MO, USA; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Jean M Camden
- Department of Biochemistry, University of Missouri, Columbia, MO, USA; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Laurie Erb
- Department of Biochemistry, University of Missouri, Columbia, MO, USA; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Gary A Weisman
- Department of Biochemistry, University of Missouri, Columbia, MO, USA; Interdisciplinary Neuroscience Program, University of Missouri, Columbia, MO, USA; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
249
|
Julian A, Dugast E, Ragot S, Krolak-Salmon P, Berrut G, Dantoine T, Hommet C, Hanon O, Page G, Paccalin M. There is no correlation between peripheral inflammation and cognitive status at diagnosis in Alzheimer's disease. Aging Clin Exp Res 2015; 27:589-94. [PMID: 25700558 DOI: 10.1007/s40520-015-0332-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 02/10/2015] [Indexed: 12/18/2022]
Abstract
BACKGROUND Besides the neurofibrillary tangles and amyloid plaques, an inflammatory process is involved at central and peripheral levels in Alzheimer's disease (AD). We aimed to determine whether peripheral inflammatory parameter levels, in plasma and in peripheral blood mononuclear cells (PBMCs), could be correlated with the cognitive status at the time of AD diagnosis. METHODS Patients were included at diagnosis with MMSE score between 16 and 25 and were naive of symptomatic treatment for AD. C-reactive protein >10 mg/L and any acute or chronic inflammation were considered as exclusion criteria. Cognitive assessment also included the ADAScog scale. Plasma interleukins (IL)-1β, IL-6, tumor necrosis factor (TNF)-α and the chemokine ligand 5 (CCL5) were measured using Luminex(®) X-MAP(®) technology. A subgroup of patients also underwent measures of these parameters in extracellular and intracellular compartments of PBMCs (ancillary study). RESULTS One hundred and nine patients were included; mean age 79.4 ± 6.8 years with 37 patients in the ancillary study. The mean values of IL-1β, TNF-α, IL-6 and CCL5 values were 1.49, 7.18, 3.09 and 69,615.81 pg/mL, respectively. No correlation between plasma cytokines or chemokine levels and cognitive scores was found. In PBMCs, the levels of cytokines were detectable but did not either show any correlation with cognitive scores. CONCLUSION Our data indicate that at diagnosis, peripheral levels of cytokines and CCL5 display low values without any correlation with the cognitive status. Further results of our study will show if these circulating markers are related to the progression of AD.
Collapse
Affiliation(s)
- Adrien Julian
- Centre Mémoire de Ressources et de Recherche, Poitiers University Hospital, Poitiers, France.
- Department of Neurology, Poitiers University Hospital, Poitiers, France.
- EA3808 molecular Targets and Therapeutic of Alzheimer's disease, University of Poitiers, Pôle Biologie Santé Bâtiment B36/B37, Secteur β-Niveau 0, 1 Rue Georges Bonnet, TSA 51106, 86073, Poitiers Cedex 9, France.
| | - Emilie Dugast
- EA3808 molecular Targets and Therapeutic of Alzheimer's disease, University of Poitiers, Pôle Biologie Santé Bâtiment B36/B37, Secteur β-Niveau 0, 1 Rue Georges Bonnet, TSA 51106, 86073, Poitiers Cedex 9, France
- Centre d'Investigation Clinique, Poitiers University Hospital, Poitiers, France
| | - Stéphanie Ragot
- Centre d'Investigation Clinique, Poitiers University Hospital, Poitiers, France
| | - Pierre Krolak-Salmon
- Centre Mémoire de Ressources et de Recherche, Lyon University Hospital, Lyon, France
| | - Gilles Berrut
- Department of Geriatrics, Nantes University Hospital, Nantes, France
| | - Thierry Dantoine
- Department of Geriatrics, Limoges University Hospital, Limoges, France
| | - Caroline Hommet
- Centre Mémoire de Ressources et de Recherche, Tours University Hospital, Tours, France
| | - Olivier Hanon
- Department of Geriatrics, Paris Broca University Hospital, Paris, France
| | - Guylène Page
- EA3808 molecular Targets and Therapeutic of Alzheimer's disease, University of Poitiers, Pôle Biologie Santé Bâtiment B36/B37, Secteur β-Niveau 0, 1 Rue Georges Bonnet, TSA 51106, 86073, Poitiers Cedex 9, France
| | - Marc Paccalin
- Centre Mémoire de Ressources et de Recherche, Poitiers University Hospital, Poitiers, France
- EA3808 molecular Targets and Therapeutic of Alzheimer's disease, University of Poitiers, Pôle Biologie Santé Bâtiment B36/B37, Secteur β-Niveau 0, 1 Rue Georges Bonnet, TSA 51106, 86073, Poitiers Cedex 9, France
- Centre d'Investigation Clinique, Poitiers University Hospital, Poitiers, France
- Department of Geriatrics, Poitiers University Hospital, Poitiers, France
| |
Collapse
|
250
|
Vázquez C, Tolón RM, Grande MT, Caraza M, Moreno M, Koester EC, Villaescusa B, Ruiz-Valdepeñas L, Fernández-Sánchez FJ, Cravatt BF, Hillard CJ, Romero J. Endocannabinoid regulation of amyloid-induced neuroinflammation. Neurobiol Aging 2015; 36:3008-3019. [PMID: 26362942 DOI: 10.1016/j.neurobiolaging.2015.08.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 07/20/2015] [Accepted: 08/04/2015] [Indexed: 12/26/2022]
Abstract
The modulation of endocannabinoid (EC) levels and the activation of cannabinoid receptors are seen as promising therapeutic strategies in a variety of diseases, including Alzheimer's disease (AD). We aimed to evaluate the effect of the pharmacologic and genetic inhibition of anandamide-degrading enzyme in a mouse model of AD (5xFAD). Pharmacologic inhibition of the fatty acid amide hydrolase (FAAH) had little impact on the expression of key enzymes and cytokines and also on the cognitive impairment, plaque deposition, and gliosis in 5xFAD mice. CB1 blockade exacerbated inflammation in this transgenic mouse model of AD. The genetic inactivation of FAAH led to increases in the expression of inflammatory cytokines. At the same time, FAAH-null 5xFAD mice exhibited a behavioral improvement in spatial memory that was independent of the level of anxiety and was not CB1 mediated. Finally, mice lacking FAAH showed diminished soluble amyloid levels, neuritic plaques, and gliosis. These data reinforce the notion of a role for the EC system in neuroinflammation and open new perspectives on the relevance of modulating EC levels in the inflamed brain.
Collapse
Affiliation(s)
- Carmen Vázquez
- Laboratorio de Apoyo a la Investigación, Hospital Universitario Fundación Alcorcón, Alcorcón, Madrid, Spain
| | - Rosa M Tolón
- Laboratorio de Apoyo a la Investigación, Hospital Universitario Fundación Alcorcón, Alcorcón, Madrid, Spain
| | - M Teresa Grande
- School of Biosciences, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Madrid, Spain
| | - Marina Caraza
- Laboratorio de Apoyo a la Investigación, Hospital Universitario Fundación Alcorcón, Alcorcón, Madrid, Spain; School of Biosciences, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Madrid, Spain
| | - Marta Moreno
- Laboratorio de Apoyo a la Investigación, Hospital Universitario Fundación Alcorcón, Alcorcón, Madrid, Spain
| | - Erin C Koester
- Department of Pharmacology and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Borja Villaescusa
- Laboratorio de Apoyo a la Investigación, Hospital Universitario Fundación Alcorcón, Alcorcón, Madrid, Spain
| | - Lourdes Ruiz-Valdepeñas
- Laboratorio de Apoyo a la Investigación, Hospital Universitario Fundación Alcorcón, Alcorcón, Madrid, Spain
| | | | - Benjamin F Cravatt
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA; Department of Cell Biology, The Scripps Research Institute, La Jolla, CA, USA; Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Cecilia J Hillard
- Department of Pharmacology and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Julián Romero
- Laboratorio de Apoyo a la Investigación, Hospital Universitario Fundación Alcorcón, Alcorcón, Madrid, Spain; School of Biosciences, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Madrid, Spain.
| |
Collapse
|