201
|
Mangi MD, Zadow S, Lim W. Cystic lesions of the humeral head on magnetic resonance imaging: a pictorial review. Quant Imaging Med Surg 2022; 12:4304-4315. [PMID: 35919060 PMCID: PMC9338365 DOI: 10.21037/qims-22-108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 05/10/2022] [Indexed: 11/18/2022]
Abstract
Cystic lesions of the humeral head are commonly encountered on routine shoulder magnetic resonance imaging (MRI). Differential diagnoses include degenerative lesions, calcific tendinitis with osseous involvement, perianchor cysts, abscesses and less often, tumours. Degenerative lesions, including subcortical and subchondral cysts, are the most commonly encountered. These may be associated with rotator cuff disease and degenerative joint diseases or considered part of ageing depending on the location of the cystic lesions. For instance, cysts of the bare area of the humeral head are considered benign age-related entities, whereas cysts of the greater or lesser tuberosity may herald rotator cuff disease. Infectious lesions, particularly osteomyelitis and intraosseous (Brodie’s) abscesses, are intramedullary in location and should be suspected in the context of clinical features such as fever and radiological features such as the penumbra sign. Perianchor cysts are postoperative lesions associated with the use of suture anchors in surgeries such as rotator cuff tear repairs. They generally self-resolve over 18 to 24 months. On MRI, the distribution, morphology, and signal characteristics can help point towards a specific diagnosis. The patient’s demographic, clinical presentation, and past surgical history can be discriminatory. Knowledge of different cystic lesions in the humeral head and underlying aetiology can be useful in helping the radiologist develop a more thorough search pattern for associated conditions. Determining the underlying cause of cysts can have important implications on management, such as when differentiating perianchor cysts from infection. This pictorial review outlines the differential diagnoses of humeral head cysts on MRI and provides a diagnostic approach for the radiologist.
Collapse
Affiliation(s)
- Mohammad Danish Mangi
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia
| | - Steven Zadow
- Dr Jones & Partners Medical Imaging, Adelaide, Australia.,Department of Medical Imaging, Flinders Medical Centre, Adelaide, Australia
| | - Wanyin Lim
- Dr Jones & Partners Medical Imaging, Adelaide, Australia.,Department of Radiology, Royal Adelaide Hospital, Adelaide, Australia
| |
Collapse
|
202
|
Microbial biopolymers in articular cartilage tissue engineering. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03178-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
203
|
Choe R, Devoy E, Jabari E, Packer JD, Fisher JP. Biomechanical Aspects of Osteochondral Regeneration: Implications and Strategies for Three-Dimensional Bioprinting. TISSUE ENGINEERING. PART B, REVIEWS 2022; 28:766-788. [PMID: 34409874 PMCID: PMC9419968 DOI: 10.1089/ten.teb.2021.0101] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
Osteoarthritis is among the most prevalent of musculoskeletal disorders in the world that causes joint pain, deformity, and limited range of movement. The resulting osteochondral defect can significantly decrease the patient's quality of life, but current treatment options have not demonstrated the capacity to fully regenerate the entire osteochondral microenvironment. Structurally, the osteochondral unit is a composite system composed of three layers-articular cartilage, calcified cartilage, and subchondral bone. Collectively these distinct layers contribute to the distinct biomechanical properties that maintain the health and aid in load transfer during joint articulation. The purpose of this review was to examine the role of the osteochondral interface in tissue engineering. Topics of discussion include the biomechanics of the osteochondral unit and an overview of various strategies for osteochondral interface tissue engineering, with a specific focus on three-dimensional bioprinting. The goal of this review was to elucidate the importance of the osteochondral interface and overview some strategies of developing an interface layer within tissue engineered scaffolds. Impact Statement This review provides an overview of interface tissue engineering for osteochondral regeneration. It offers a detailed investigation into the biomechanics of the osteochondral unit as it relates to tissue engineering, and highlights the strategies that have been utilized to develop the osteochondral interface within tissue engineering scaffolds.
Collapse
Affiliation(s)
- Robert Choe
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland, USA
- Address correspondence to: Robert Choe, DMD, MSc, Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD 20742, USA
| | - Eoin Devoy
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland, USA
| | - Erfan Jabari
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland, USA
| | - Jonathan D. Packer
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - John P. Fisher
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
204
|
Bao Z, Chen M, Li C, Shan Q, Wang Y, Yang W. Monosodium iodoacetate-induced subchondral bone microstructure and inflammatory changes in an animal model of osteoarthritis. Open Life Sci 2022; 17:781-793. [PMID: 35903181 PMCID: PMC9287849 DOI: 10.1515/biol-2022-0079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/02/2022] [Accepted: 04/21/2022] [Indexed: 11/15/2022] Open
Abstract
The monosodium iodoacetate (MIA)-induced osteoarthritis (OA) may lead to cartilage degeneration and histopathological lesions. However, the correlation between inflammatory reaction and subchondral bone remodeling in a rodent osteoarthritic model is ambiguous. In this study, intra-articular injection of MIA was performed in 36 four-week-old specific pathogen-free male Wistar rats to induce OA. After 4 weeks of intervention, changes in intrinsic structural properties of the subchondral bones were measured, and the histological evaluation, as well as biochemical analysis, was conducted. We found that intra-articular injection of MIA increased chondrocyte apoptosis and promoted cartilage matrix degradation, such as cartilage surface defects and shallow or disappearing staining. MIA also induced inflammation, improved the expression of IL-1β, TNF-α, and matrix metalloproteinase, and decreased the expression of cartilage-specific proteins with the extension of modeling time. Meanwhile, the MIA also significantly accelerated the subchondral bone remodeling, as shown by the decreased subchondral bone density, thinning of trabeculae, disordered cartilage structure, and morphology. In conclusion, we have shown that MIA-induced rodent osteoarthritic model would cause decreased subchondral bone density, sparse trabecular bone, and other manifestations of osteoporosis accompanied by an inflammatory response, which would worsen with the progression of modeling time. Our results suggest that different phases of MIA-induced OA are associated with the changes in subchondral bone microstructure and the progression of local inflammation.
Collapse
Affiliation(s)
- Zheming Bao
- Department of Pharmacy, Medical Supplies Centre of PLA General Hospital, No. 28, Fuxing Road, Haidian District, Beijing 100853, China
- Orthopedics Department, 960th Hospital of PLA Joint Service Support Force, Jinan, China
| | - Mengli Chen
- Department of Pharmacy, Medical Supplies Centre of PLA General Hospital, No. 28, Fuxing Road, Haidian District, Beijing 100853, China
| | - Chen Li
- Department of Pharmacy, Medical Supplies Centre of PLA General Hospital, No. 28, Fuxing Road, Haidian District, Beijing 100853, China
| | - Qing Shan
- Department of Pharmacy, Medical Supplies Centre of PLA General Hospital, No. 28, Fuxing Road, Haidian District, Beijing 100853, China
| | - Yichen Wang
- Department of Pharmacy, Medical Supplies Centre of PLA General Hospital, No. 28, Fuxing Road, Haidian District, Beijing 100853, China
| | - Wenshan Yang
- Department of Pharmacy, Medical Supplies Centre of PLA General Hospital, No. 28, Fuxing Road, Haidian District, Beijing 100853, China
| |
Collapse
|
205
|
Does Bone Marrow Edema Influence the Clinical Results of Intra-Articular Platelet-Rich Plasma Injections for Knee Osteoarthritis? J Clin Med 2022; 11:jcm11154414. [PMID: 35956034 PMCID: PMC9369660 DOI: 10.3390/jcm11154414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 02/05/2023] Open
Abstract
Platelet-rich plasma (PRP) is increasingly used for the intra-articular treatment of knee osteoarthritis (OA). However, clinical studies on PRP injections reported controversial results. Bone marrow edema (BME) can cause symptoms by affecting the subchondral bone and it is not targeted by intra-articular treatments. The aim of this study was to investigate if the presence of BME can influence the outcome of intra-articular PRP injections in knee OA patients. A total of 201 patients were included in the study, 80 with and 121 without BME at the baseline MRI. BME area and site were evaluated, and BME was graded using the Whole-Organ Magnetic Resonance Imaging Score (WORMS). Patients were assessed with International Knee Documentation Committee (IKDC) score Knee injury and Osteoarthritis Outcome Score (KOOS) subscales, the EuroQol-Visual Analogue Scale (EQ-VAS), and the Tegner score at baseline, 2, 6, and 12 months. Overall, the presence of BME did not influence the clinical results of intra-articular PRP injections in these patients treated for knee OA. Patients with BME presented a similar failure rate and clinical improvement after PRP treatment compared to patients without BME. The area and site of BME did not affect clinical outcomes. However, patients with a higher BME grade had a higher failure rate.
Collapse
|
206
|
Lafuente-Merchan M, Ruiz-Alonso S, García-Villén F, Gallego I, Gálvez-Martín P, Saenz-del-Burgo L, Pedraz JL. Progress in 3D Bioprinting Technology for Osteochondral Regeneration. Pharmaceutics 2022; 14:1578. [PMID: 36015207 PMCID: PMC9414312 DOI: 10.3390/pharmaceutics14081578] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/22/2022] [Accepted: 07/28/2022] [Indexed: 12/20/2022] Open
Abstract
Osteochondral injuries can lead to osteoarthritis (OA). OA is characterized by the progressive degradation of the cartilage tissue together with bone tissue turnover. Consequently, joint pain, inflammation, and stiffness are common, with joint immobility and dysfunction being the most severe symptoms. The increase in the age of the population, along with the increase in risk factors such as obesity, has led OA to the forefront of disabling diseases. In addition, it not only has an increasing prevalence, but is also an economic burden for health systems. Current treatments are focused on relieving pain and inflammation, but they become ineffective as the disease progresses. Therefore, new therapeutic approaches, such as tissue engineering and 3D bioprinting, have emerged. In this review, the advantages of using 3D bioprinting techniques for osteochondral regeneration are described. Furthermore, the biomaterials, cell types, and active molecules that are commonly used for these purposes are indicated. Finally, the most recent promising results for the regeneration of cartilage, bone, and/or the osteochondral unit through 3D bioprinting technologies are considered, as this could be a feasible therapeutic approach to the treatment of OA.
Collapse
Affiliation(s)
- Markel Lafuente-Merchan
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (M.L.-M.); (S.R.-A.); (F.G.-V.); (I.G.)
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Health Institute Carlos III, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain
| | - Sandra Ruiz-Alonso
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (M.L.-M.); (S.R.-A.); (F.G.-V.); (I.G.)
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Health Institute Carlos III, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain
| | - Fátima García-Villén
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (M.L.-M.); (S.R.-A.); (F.G.-V.); (I.G.)
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Health Institute Carlos III, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain
| | - Idoia Gallego
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (M.L.-M.); (S.R.-A.); (F.G.-V.); (I.G.)
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Health Institute Carlos III, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain
| | | | - Laura Saenz-del-Burgo
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (M.L.-M.); (S.R.-A.); (F.G.-V.); (I.G.)
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Health Institute Carlos III, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain
| | - Jose Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (M.L.-M.); (S.R.-A.); (F.G.-V.); (I.G.)
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Health Institute Carlos III, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain
| |
Collapse
|
207
|
Elucidation of the Underlying Mechanism of Gujian Oral Liquid Acting on Osteoarthritis through Network Pharmacology, Molecular Docking, and Experiment. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9230784. [PMID: 35937393 PMCID: PMC9352474 DOI: 10.1155/2022/9230784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/19/2022] [Accepted: 07/06/2022] [Indexed: 11/20/2022]
Abstract
Gujian oral liquid (GJ), a traditional herbal formula in China, has been widely used to treat patients with osteoarthritis (OA). Nevertheless, the active component and potential mechanism of GJ are not fully elucidated. Thus, we investigate the effect of GJ and explore its underlying mechanism on OA through network pharmacology and experimental validation. First, a total of 175 bioactive compounds were identified, and 134 overlapping targets were acquired after comparing the targets of the GJ with those of OA. 8 hub targets, including IL6 and AKT1, were obtained in PPI network analysis. Then, we built up GJ-target-OA network and protein-protein interaction (PPI) network, followed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. The results underlined inflammatory tumor necrosis factor (TNF) as a promising signaling pathway of GJ for OA treatment. Moreover, molecular docking also verified the top two active compounds had direct bindings with the top three target genes. Finally, we verified the effect of GJ on OA in vivo and in vitro. In vivo experiments validated that GJ not only significantly attenuated OA phenotypes including articular cartilage degeneration and subchondral bone sclerosis but also reduced the expressions of tumor necrosis factor-α (TNF-α) and p-p65 in articular chondrocytes. Besides, GJ serum also had a protective effect on chondrocytes against inflammation caused by TNF-α in vitro. Hence, our study predicted and verified that GJ could exert anti-inflammation and anticatabolism effects partially via regulating TNF-α/NF-kappa B (NF-κB) signaling.
Collapse
|
208
|
Huddleston HP, Cregar WM, Alzein MM, Vadhera AS, Wong SE, Yanke AB. Outcomes of Patellar Subchondroplasty Surgery: A Case Series. J Knee Surg 2022. [PMID: 35901796 DOI: 10.1055/s-0042-1747944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A select subset of patients can present with anterior knee pain in the setting of normal patellar tracking, no significant cartilage damage, and the presence of a bone marrow lesion (BML) involving the patella on advanced imaging. One novel treatment option for this condition is patellar subchondroplasty, where calcium phosphate is injected into the subchondral bone under fluoroscopic guidance. The purpose of this study is to report preliminary outcomes of patients who have undergone subchondroplasty of the patella. The surgical log of the senior author was retrospectively reviewed to identify patients who had undergone patellar subchondroplasty from January 2014 to June 2019. Indications for surgery included the presence of retropatellar pain refractory to conservative management without significant arthritis with a related focal BML on magnetic resonance imaging. International Knee Documentation Committee, Knee Injury and Osteoarthritis Outcome Score (KOOS), and Veterans Rand 12-item Health Survey (VR-12) were obtained preoperatively, at 6 months and at final follow-up. Eight patients (nine knees) who underwent patellar subchondroplasty with minimum 1-year follow-up participated in the study. On preoperative magnetic resonance imaging, patients had a mean BML that was 2 cm in diameter. Patients had a median Kellgren-Lawrence grade of 2 both preoperatively and at final radiographic follow-up (15.50 ± 20.52 months). No patient underwent subsequent surgery or conversion to arthroplasty. Compared with baseline, VR-12 mental (p = 0.046) and physical (p = 0.003), KOOS joint replacement (p = 0.024), KOOS pain (p = 0.033), and KOOS sports (p = 0.034) scores were significantly increased at final follow-up (24.00 ± 13.55 months). In addition, on a scale of 0 to 100, patient-reported satisfaction was 73.88 ± 33.90. This study introduces patellar subchondroplasty as a surgical treatment for patients with symptomatic BMLs of the patella without significant arthritis after failure of conservative management. Our results demonstrated good outcomes and patient satisfaction. In addition, no patients converted to patellofemoral or total knee arthroplasty. This study suggests that patellar subchondroplasty may be a reasonable treatment option in the correct patient population.
Collapse
Affiliation(s)
- Hailey P Huddleston
- Department of Orthopaedics, Rush University Medical Center, Chicago, Illinois
| | - William M Cregar
- Department of Orthopaedics, Rush University Medical Center, Chicago, Illinois
| | - Mohamad M Alzein
- Department of Orthopaedics, Rush University Medical Center, Chicago, Illinois
| | - Amar S Vadhera
- Department of Orthopaedics, Rush University Medical Center, Chicago, Illinois
| | - Stephanie E Wong
- Department of Orthopaedics, Rush University Medical Center, Chicago, Illinois
| | - Adam B Yanke
- Department of Orthopaedics, Rush University Medical Center, Chicago, Illinois
| |
Collapse
|
209
|
Su W, Liu G, Mohajer B, Wang J, Shen A, Zhang W, Liu B, Guermazi A, Gao P, Cao X, Demehri S, Wan M. Senescent preosteoclast secretome promotes metabolic syndrome associated osteoarthritis through cyclooxygenase 2. eLife 2022; 11:e79773. [PMID: 35881544 PMCID: PMC9365389 DOI: 10.7554/elife.79773] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/06/2022] [Indexed: 01/10/2023] Open
Abstract
Background Metabolic syndrome-associated osteoarthritis (MetS-OA) is a distinct osteoarthritis phenotype defined by the coexistence of MetS or its individual components. Despite the high prevalence of MetS-OA, its pathogenic mechanisms are unclear. The aim of this study was to determine the role of cellular senescence in the development of MetS-OA. Methods Analysis of the human osteoarthritis initiative (OAI) dataset was conducted to investigate the MRI subchondral bone features of MetS-human OA participants. Joint phenotype and senescent cells were evaluated in two MetS-OA mouse models: high-fat diet (HFD)-challenged mice and STR/Ort mice. In addition, the molecular mechanisms by which preosteoclasts become senescent as well as how the senescent preosteoclasts impair subchondral bone microenvironment were characterized using in vitro preosteoclast culture system. Results Humans and mice with MetS are more likely to develop osteoarthritis-related subchondral bone alterations than those without MetS. MetS-OA mice exhibited a rapid increase in joint subchondral bone plate and trabecular thickness before articular cartilage degeneration. Subchondral preosteoclasts undergo senescence at the pre- or early-osteoarthritis stage and acquire a unique secretome to stimulate osteoblast differentiation and inhibit osteoclast differentiation. Antagonizing preosteoclast senescence markedly mitigates pathological subchondral alterations and osteoarthritis progression in MetS-OA mice. At the molecular level, preosteoclast secretome activates COX2-PGE2, resulting in stimulated differentiation of osteoblast progenitors for subchondral bone formation. Administration of a selective COX2 inhibitor attenuated subchondral bone alteration and osteoarthritis progression in MetS-OA mice. Longitudinal analyses of the human Osteoarthritis Initiative (OAI) cohort dataset also revealed that COX2 inhibitor use, relative to non-selective nonsteroidal antiinflammatory drug use, is associated with less progression of osteoarthritis and subchondral bone marrow lesion worsening in participants with MetS-OA. Conclusions Our findings suggest a central role of a senescent preosteoclast secretome-COX2/PGE2 axis in the pathogenesis of MetS-OA, in which selective COX2 inhibitors may have disease-modifying potential. Funding This work was supported by the National Institutes of Health grant R01AG068226 and R01AG072090 to MW, R01AR079620 to SD, and P01AG066603 to XC.
Collapse
Affiliation(s)
- Weiping Su
- Department of Orthopaedic Surgery, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Orthopaedic Surgery, The Third Xiangya Hospital of Central South UniversityChangshaChina
| | - Guanqiao Liu
- Department of Orthopaedic Surgery, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of MedicineBaltimoreUnited States
- Division of Orthopaedics & Traumatology, Department of Orthopaedics, Southern Medical University Nanfang HospitalGuangzhouChina
| | - Bahram Mohajer
- Musculoskeletal Radiology, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Jiekang Wang
- Department of Orthopaedic Surgery, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Alena Shen
- University of Southern California, Dornsife College of Letters, Arts and SciencesLos AngelesUnited States
| | - Weixin Zhang
- Department of Orthopaedic Surgery, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Bin Liu
- Department of Orthopaedic Surgery, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Ali Guermazi
- Department of Radiology, Boston University School of MedicineBostonUnited States
| | - Peisong Gao
- Johns Hopkins Asthma & Allergy Center, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Xu Cao
- Department of Orthopaedic Surgery, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Shadpour Demehri
- Musculoskeletal Radiology, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Mei Wan
- Department of Orthopaedic Surgery, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of MedicineBaltimoreUnited States
| |
Collapse
|
210
|
Yang L, Sun J, Zhang Y, Guo X, Zhao G. Comprehensive comparative analysis of histopathology and gene expression in subchondral bone between kashin-beck disease and primary osteoarthritis. Front Genet 2022; 13:942326. [PMID: 35923709 PMCID: PMC9339956 DOI: 10.3389/fgene.2022.942326] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/29/2022] [Indexed: 12/01/2022] Open
Abstract
Kashin-Beck disease (KBD) is an endemic, degenerative osteoarthropathy that exhibits some similar characteristics to osteoarthritis (OA) but with different etiologies and pathogeneses. In addition to cartilage damage, microstructural changes of bone were observed in KBD. This study aimed to comparatively demonstrate the general histopathological changes, transcriptomics, and differentially expressed miRNAs of subchondral bone between KBD and OA. Tibial plateau subchondral bone samples were collected from eighteen patients with KBD and eighteen patients with OA. Histopathological changes were examined by hematoxylin-eosin (HE) staining, safranin O-fast green staining, and picrosirius red staining. RNA sequencing and miRNA array analysis were performed to screen the differentially expressed genes (DEGs) and differentially expressed miRNAs (DEMs), respectively. The subchondral bone samples of the tibial plateau of KBD and OA both showed increased thickness and sclerosis. A total of 179 DEGs and 124 DEMs were identified in subchondral bone between KBD and OA, which were involved in several vital GO terms and KEGG signaling pathways. Our results suggest that the pathological mechanisms of subchondral bone are different between KBD and OA, although they exhibit similar histopathological features. Integrated analysis revealed several genes such as ADAMTS14, SLC13A5, and CEACAM1, that may be crucial DEGs in subchondral bone between KBD and OA, suggesting that these genes could serve as potential differential diagnostic biomarkers for subchondral bone lesions in KBD and OA. These findings provide valuable information for further clarifying pathological changes in subchondral bone in KBD and OA.
Collapse
Affiliation(s)
- Lei Yang
- School of Nursing, Health Science Center, Xi’an Jiaotong University, Xi’an, China
- School of Public Health, Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Collaborative Innovation Center of Endemic Diseases and Health Promotion in Silk Road Region, Xi’an Jiaotong University, Xi’an, China
| | - Jingwen Sun
- School of Nursing, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Ying Zhang
- School of Nursing, Health Science Center, Xi’an Jiaotong University, Xi’an, China
- School of Public Health, Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Collaborative Innovation Center of Endemic Diseases and Health Promotion in Silk Road Region, Xi’an Jiaotong University, Xi’an, China
| | - Xiong Guo
- School of Public Health, Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Collaborative Innovation Center of Endemic Diseases and Health Promotion in Silk Road Region, Xi’an Jiaotong University, Xi’an, China
| | - Guanghui Zhao
- Department of Joint Surgery, Hong Hui Hospital, Xi’an Jiaotong University Health Science Center, Xi’an, China
- *Correspondence: Guanghui Zhao,
| |
Collapse
|
211
|
Wu X, Fan X, Crawford R, Xiao Y, Prasadam I. The Metabolic Landscape in Osteoarthritis. Aging Dis 2022; 13:1166-1182. [PMID: 35855332 PMCID: PMC9286923 DOI: 10.14336/ad.2021.1228] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/28/2021] [Indexed: 11/01/2022] Open
Abstract
Articular cartilage function depends on the temporal and zonal distribution of coordinated metabolic regulation in chondrocytes. Emerging evidence shows the importance of cellular metabolism in the molecular control of the cartilage and its dysregulation in degenerative diseases like osteoarthritis (OA). Compared to most other tissues, chondrocytes are sparsely located in the extracellular matrix, lacking the typical proximity of neural, vascular, and lymphatic tissue. Making up under 5% of the total tissue weight of cartilage, chondrocytes have a relative deficiency of access to nutrients and oxygen, as well as limited pathways for metabolite removal. This makes cartilage a unique tissue with hypocellularity, prolonged metabolic rate, and tissue turnover. Studies in the past decade have shown that several pathways of central carbon metabolism are essential for cartilage homeostasis. Here, we summarised the literature findings on the role of cellular metabolism in determining the chondrocyte function and how this metabolic dysregulation led to cartilage aging in OA and provided an outlook on how the field may evolve in the coming years. Although the various energy metabolism pathways are inextricably linked with one another, for the purpose of this review, we initially endeavoured to examine them individually and in relative isolation. Subsequently, we comment on what is known regarding the integration and linked signalling pathways between these systems and the therapeutic opportunities for targeting OA metabolism.
Collapse
Affiliation(s)
- Xiaoxin Wu
- Centre for Biomedical Technologies, Faculty of Engineering, Queensland University of Technology, Brisbane, Queensland, Australia.
- Department of Orthopaedic Surgery, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Xiwei Fan
- Centre for Biomedical Technologies, Faculty of Engineering, Queensland University of Technology, Brisbane, Queensland, Australia.
| | - Ross Crawford
- Centre for Biomedical Technologies, Faculty of Engineering, Queensland University of Technology, Brisbane, Queensland, Australia.
- The Prince Charles Hospital, Orthopedic Department, Brisbane, Queensland, Australia.
| | - Yin Xiao
- Centre for Biomedical Technologies, Faculty of Engineering, Queensland University of Technology, Brisbane, Queensland, Australia.
- Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, Queensland, Australia.
| | - Indira Prasadam
- Centre for Biomedical Technologies, Faculty of Engineering, Queensland University of Technology, Brisbane, Queensland, Australia.
| |
Collapse
|
212
|
Das P, Jana S, Kumar Nandi S. Biomaterial-Based Therapeutic Approaches to Osteoarthritis and Cartilage Repair Through Macrophage Polarization. CHEM REC 2022; 22:e202200077. [PMID: 35792527 DOI: 10.1002/tcr.202200077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/15/2022] [Indexed: 11/06/2022]
Abstract
There is an ever-increasing clinical and socioeconomic burden associated with cartilage lesions & osteoarthritis (OA). Its progression, chondrocyte death & hypertrophy are all facilitated by inflamed synovium & joint environment. Due to their capacity to switch between pro- & anti-inflammatory phenotypes, macrophages are increasingly being recognized as a key player in the healing process, which has been largely overlooked in the past. A biomaterial's inertness has traditionally been a goal while developing them in order to reduce the likelihood of adverse reactions from the host organism. A better knowledge of how macrophages respond to implanted materials has made it feasible to determine the biomaterial architectural parameters that control the host response & aid in effective tissue integration. Thus, this review summarizes novel therapeutic techniques for avoiding OA or increasing cartilage repair & regeneration that might be developed using new technologies tuning macrophages into desirable functional phenotypes.
Collapse
Affiliation(s)
- Piyali Das
- Department of Microbiology, School of Life Science and Biotechnology, Adamas University, Kolkata, 700126, India
| | - Sonali Jana
- Department of Veterinary Physiology, West Bengal University of Animal and Fishery Sciences, 700037, Kolkata, India
| | - Samit Kumar Nandi
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences, 700037, Kolkata, India
| |
Collapse
|
213
|
Ontogenetic Patterning of Human Subchondral Bone Microarchitecture in the Proximal Tibia. BIOLOGY 2022; 11:biology11071002. [PMID: 36101383 PMCID: PMC9312028 DOI: 10.3390/biology11071002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/24/2022] [Accepted: 06/29/2022] [Indexed: 01/11/2023]
Abstract
High-resolution computed tomography images were acquired for 31 proximal human tibiae, age 8 to 37.5 years, from Norris Farms #36 cemetery site (A.D. 1300). Morphometric analysis of subchondral cortical and trabecular bone architecture was performed between and within the tibial condyles. Kruskal−Wallis and Wilcoxon signed-rank tests were used to examine the association between region, age, body mass, and each morphometric parameter. The findings indicate that age-related changes in mechanical loading have varied effects on subchondral bone morphology. With age, trabecular microstructure increased in bone volume fraction (p = 0.033) and degree of anisotropy (p = 0.012), and decreased in connectivity density (p = 0.001). In the subchondral cortical plate, there was an increase in thickness (p < 0.001). When comparing condylar regions, only degree of anisotropy differed (p = 0.004) between the medial and lateral condyles. Trabeculae in the medial condyle were more anisotropic than in the lateral region. This research represents an innovative approach to quantifying both cortical and trabecular subchondral bone microarchitecture in archaeological remains.
Collapse
|
214
|
Thermo-Responsive Gel Containing Hydroxytyrosol-Chitosan Nanoparticles (Hyt@tgel) Counteracts the Increase of Osteoarthritis Biomarkers in Human Chondrocytes. Antioxidants (Basel) 2022; 11:antiox11061210. [PMID: 35740107 PMCID: PMC9220116 DOI: 10.3390/antiox11061210] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/17/2022] [Accepted: 06/19/2022] [Indexed: 12/11/2022] Open
Abstract
Although osteoarthritis (OA) is a chronic inflammatory degenerative disease affecting millions of people worldwide, the current therapies are limited to palliative care and do not eliminate the necessity of surgical intervention in the most severe cases. Several dietary and nutraceutical factors, such as hydroxytyrosol (Hyt), have demonstrated beneficial effects in the prevention or treatment of OA both in vitro and in animal models. However, the therapeutic application of Hyt is limited due to its poor bioavailability following oral administration. In the present study, a localized drug delivery platform containing a combination of Hyt-loading chitosan nanoparticles (Hyt-NPs) and in situ forming hydrogel have been developed to obtain the benefits of both hydrogels and nanoparticles. This thermosensitive formulation, based on Pluronic F-127 (F-127), hyaluronic acid (HA) and Hyt-NPs (called Hyt@tgel) presents the unique ability to be injected in a minimally invasive way into a target region as a freely flowing solution at room temperature forming a gel at body temperature. The Hyt@tgel system showed reduced oxidative and inflammatory effects in the chondrocyte cellular model as well as a reduction in senescent cells after induction with H2O2. In addition, Hyt@tgel influenced chondrocytes gene expression under pathological state maintaining their metabolic activity and limiting the expression of critical OA-related genes in human chondrocytes treated with stressors promoting OA-like features. Hence, it can be concluded that the formulated hydrogel injection could be proposed for the efficient and sustained Hyt delivery for OA treatment. The next step would be the extraction of “added-value” bioactive polyphenols from by-products of the olive industry, in order to develop a green delivery system able not only to enhance the human wellbeing but also to promote a sustainable environment.
Collapse
|
215
|
Ikuta Y, Nakasa T, Sumii J, Nekomoto A, Adachi N. Distributional patterns of subchondral bone density and histopathological features of the first tarsometatarsal joint in hallux valgus feet. BMC Musculoskelet Disord 2022; 23:569. [PMID: 35701770 PMCID: PMC9195286 DOI: 10.1186/s12891-022-05523-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/06/2022] [Indexed: 11/10/2022] Open
Abstract
Background Hypermobility of the first tarsometatarsal (TMT) joint is frequently identified in patients with hallux valgus (HV); however, its association with the development of osteoarthritis in the first TMT joint in such patients remains unknown. The purpose of this study was to clarify the distribution of subchondral bone density of the first TMT joint via computed tomography (CT) using Hounsfield units (HU). Methods Patients were divided into three groups: the osteotomy (20 feet; 20 women, mean age: 61.8 years), arthrodesis (23 feet; two men, 21 women, 71.2 years), and control group (patients without HV deformity who had undergone CT scans of the foot; 13 feet; seven men, six women, 29.7 years). The HU ratios were calculated, which were defined as the HU value of each subdivision of the subarticular spongiosa of the first TMT joint [dorsomedial (DM), dorsolateral (DL), plantomedial (PM), and plantolateral (PL)] divided by the HU values of the entire joint surface. The ratios for the osteotomy, arthrodesis, and control groups were compared. The degradation of the articular cartilage in the first TMT joint was histologically graded in the arthrodesis group. Tukey–Kramer multiple comparison analysis was conducted to compare the HU ratios among the three groups, and the histological grade in each subdivision. Results The arthrodesis group demonstrated high HU ratios in the DM area of the medial cuneiform, and significantly lower HU ratios in the PL area of the first metatarsal. Lower HU ratios in the DL area were observed in both the osteotomy and the arthrodesis group when compared to that in the medial cuneiform of the control group. The histological evaluation indicated nearly normal articular cartilage for all subdivided areas in both the medial cuneiform and the first metatarsal in patients with severe HV. Conclusions Although high subchondral bone density was identified in the DM area of the medial cuneiform in severe HV, only mild degradation was histologically observed in the articular cartilage of the first TMT joint. Our findings suggest that the indications for arthrodesis of the first TMT should be reconsidered based on the severity of the degenerative changes in the first TMT joint.
Collapse
Affiliation(s)
- Yasunari Ikuta
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, 734-8551, Japan. .,Sports Medical Center, Hiroshima University Hospital, Hiroshima, Japan.
| | - Tomoyuki Nakasa
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, 734-8551, Japan.,Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan
| | - Junichi Sumii
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, 734-8551, Japan
| | - Akinori Nekomoto
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, 734-8551, Japan
| | - Nobuo Adachi
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, 734-8551, Japan
| |
Collapse
|
216
|
Knee Pain from Osteoarthritis: Pathogenesis, Risk Factors, and Recent Evidence on Physical Therapy Interventions. J Clin Med 2022; 11:jcm11123252. [PMID: 35743322 PMCID: PMC9224572 DOI: 10.3390/jcm11123252] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 01/04/2023] Open
Abstract
For patients presenting knee pain coming from osteoarthritis (OA), non-pharmacological conservative treatments (e.g., physical therapy interventions) are among the first methods in orthopedics and rehabilitation to prevent OA progression and avoid knee surgery. However, the best strategy for each patient is difficult to establish, because knee OA's exact causes of progression are not entirely understood. This narrative review presents (i) the most recent update on the pathogenesis of knee OA with the risk factors for developing OA and (ii) the most recent evidence for reducing knee pain with physical therapy intervention such as Diathermy, Exercise therapy, Ultrasounds, Knee Brace, and Electrical stimulation. In addition, we calculated the relative risk reduction in pain perception for each intervention. Our results show that only Brace interventions always reached the minimum for clinical efficiency, making the intervention significant and valuable for the patients regarding their Quality of Life. In addition, more than half of the Exercise and Diathermy interventions reached the minimum for clinical efficiency regarding pain level. This literature review helps clinicians to make evidence-based decisions for reducing knee pain and treating people living with knee OA to prevent knee replacement.
Collapse
|
217
|
Pozsgai M, Péter IA, Farkas N, Than P, Nusser N. End-range Maitland mobilization decreasing pain sensitivity in knee osteoarthritis: randomized, controlled clinical trial. Eur J Phys Rehabil Med 2022; 58:442-451. [PMID: 34985236 PMCID: PMC9980501 DOI: 10.23736/s1973-9087.22.06680-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Pressure pain threshold (PPT) is a widely applied method for measuring the magnitude of increased peripheral and central pain sensitivity causing hyperalgesia in knee osteoarthritis (OA). Although manual therapy techniques effects positively PPT, the effect of end-range Maitland mobilization has not been evaluated in knee OA. AIM The aim of this study was to investigate the effect of end-range Maitland mobilization compared to sham manual therapy technique on PPT and function-related measures. DESIGN The design of the study was of a randomized, controlled clinical trial. SETTING Outpatient setting. POPULATION Forty women with moderate-to-severe knee OA. METHODS Twenty patients (N.=20) were randomly assigned to Maitland group (MG) and twenty patients (N.=20) to control group (CG). Patients in MG received single end-range Maitland mobilization while patients in CG received sham manual therapy technique. Assessment was performed at baseline, 30 minutes and after 1-week period. Outcome measures were PPT locally at knee and distant at ipsilateral extensor carpi radialis longus muscle, general pain during the previous week using the Visual Analogue Scale (VAS), Timed Up and Go Test (TUG) time associated with pain measured with Numerating Pain Rating Scale (NPRS) and strength of passive resistance of knee at onset of pain. RESULTS Despite all outcome measures improved significantly postintervention, no changes were detected after 1-week period compared to postintervention in MG. No change of outcome measures was found also postintervention and after 1-week period compared to postintervention in CG. All postintervention results showed significant improvement in between-group comparison in favor of MG. However, after 1-week period, only strength of passive resistance revealed significant difference in between-group comparison in favor of MG (P<0.001). CONCLUSIONS Although end-range Maitland mobilization has an immediate effect on decreasing peripheral and central pain sensitivity and improving function-related measures in knee OA, these changes may not cause clinically relevant effect based on data measured after 1-week period. CLINICAL REHABILITATION IMPACT Investigating the time-course of end-range Maitland mobilization for determining the optimal treatment frequency during rehabilitation is suggested in knee OA.
Collapse
Affiliation(s)
- Miklós Pozsgai
- Department of Balneology, Harkány Termal Rehabilitation Center, Harkány, Hungary - .,Medical School, University of Pécs, Pécs, Hungary -
| | - Iván A Péter
- Department of Balneology, Harkány Termal Rehabilitation Center, Harkány, Hungary
| | - Nelli Farkas
- Medical School, Institute of Bioanalysis, University of Pécs, Pécs, Hungary
| | - Péter Than
- Medical School, University of Pécs, Pécs, Hungary.,Medical School, Department of Orthopaedics, University of Pécs, Pécs, Hungary
| | - Nóra Nusser
- Department of Balneology, Harkány Termal Rehabilitation Center, Harkány, Hungary.,Medical School, University of Pécs, Pécs, Hungary
| |
Collapse
|
218
|
Yoshioka NK, Young GM, Khajuria DK, Karuppagounder V, Pinamont WJ, Fanburg-Smith JC, Abraham T, Elbarbary RA, Kamal F. Structural changes in the collagen network of joint tissues in late stages of murine OA. Sci Rep 2022; 12:9159. [PMID: 35650306 PMCID: PMC9160297 DOI: 10.1038/s41598-022-13062-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/28/2022] [Indexed: 11/23/2022] Open
Abstract
Osteoarthritis (OA) is the most prevalent degenerative joint disease, resulting in joint pain, impaired movement, and structural changes. As the ability of joint tissue to resist stress is mainly imparted by fibrillar collagens in the extracellular matrix, changes in the composition and structure of collagen fibers contribute to the pathological remodeling observed in OA joints that includes cartilage degeneration, subchondral bone (SCB) sclerosis, and meniscal damage. Using the established OA model of destabilization of the medial meniscus (DMM) in C57BL/6J mice, we performed a comprehensive analysis of the content and structure of collagen fibers in the articular cartilage, subchondral bone, and menisci using complementary techniques, which included second harmonic generation microscopy and immunofluorescence staining. We found that regions exposed to increased mechanical stress in OA mice, typically closest to the site of injury, had increased collagen fiber thickness, dysregulated fiber formation, and tissue specific changes in collagen I and II (Col I and Col II) expression. In cartilage, OA was associated with decreased Col II expression in all regions, and increased Col I expression in the anterior and posterior regions. Col I fiber thickness was increased in all regions with disorganization in the center region. In the superficial SCB, all regions exhibited increased Col I expression and fiber thickness in OA mice; no changes were detected in the deeper regions of the subchondral bone except for increased Col I fiber thickness. In the menisci, OA led to increased Col I and Col II expression in the vascular and avascular regions of the anterior meniscus with increased Col I fiber thickness in these regions. Similar changes were observed only in the vascular region of the posterior meniscus. Our findings provide, for the first time, comprehensive insights into the microarchitectural changes of extracellular matrix in OA and serve as guidelines for studies investigating therapies that target collagenous changes as means to impede the progression of osteoarthritis.
Collapse
Affiliation(s)
- Natalie K Yoshioka
- Center for Orthopedic Research and Translational Sciences (CORTS), Penn State College of Medicine, Hershey, PA, USA
- Department of Orthopedics and Rehabilitation, Penn State College of Medicine, Hershey, PA, USA
| | - Gregory M Young
- Center for Orthopedic Research and Translational Sciences (CORTS), Penn State College of Medicine, Hershey, PA, USA
- Department of Orthopedics and Rehabilitation, Penn State College of Medicine, Hershey, PA, USA
| | - Deepak Kumar Khajuria
- Center for Orthopedic Research and Translational Sciences (CORTS), Penn State College of Medicine, Hershey, PA, USA
- Department of Orthopedics and Rehabilitation, Penn State College of Medicine, Hershey, PA, USA
| | - Vengadeshprabhu Karuppagounder
- Center for Orthopedic Research and Translational Sciences (CORTS), Penn State College of Medicine, Hershey, PA, USA
- Department of Orthopedics and Rehabilitation, Penn State College of Medicine, Hershey, PA, USA
| | - William J Pinamont
- Center for Orthopedic Research and Translational Sciences (CORTS), Penn State College of Medicine, Hershey, PA, USA
- Department of Orthopedics and Rehabilitation, Penn State College of Medicine, Hershey, PA, USA
| | - Julie C Fanburg-Smith
- Department of Pathology, Penn State Health/Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Thomas Abraham
- Department of Neural and Behavioral Science, Penn State University College of Medicine, Hershey, PA, USA
- Microscopy Imaging Facility, Penn State University College of Medicine, Hershey, PA, USA
| | - Reyad A Elbarbary
- Center for Orthopedic Research and Translational Sciences (CORTS), Penn State College of Medicine, Hershey, PA, USA.
- Department of Orthopedics and Rehabilitation, Penn State College of Medicine, Hershey, PA, USA.
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA, USA.
| | - Fadia Kamal
- Center for Orthopedic Research and Translational Sciences (CORTS), Penn State College of Medicine, Hershey, PA, USA.
- Department of Orthopedics and Rehabilitation, Penn State College of Medicine, Hershey, PA, USA.
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA.
| |
Collapse
|
219
|
Jang JY, Kim JH, Kim MW, Kim SH, Yong SY. Study of the Efficacy of Artificial Intelligence Algorithm-Based Analysis of the Functional and Anatomical Improvement in Polynucleotide Treatment in Knee Osteoarthritis Patients: A Prospective Case Series. J Clin Med 2022; 11:2845. [PMID: 35628972 PMCID: PMC9148053 DOI: 10.3390/jcm11102845] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 12/19/2022] Open
Abstract
Knee osteoarthritis (OA) is one of the most common degenerative diseases in old age. Recent studies have suggested new treatment approaches dealing with subchondral remodeling, which is a typical feature of OA progression. However, diagnostic tools or therapeutic approaches related to such a process are still being researched. The automated artificial intelligence (AI) algorithm-based texture analysis is a new method used for OA-progression detection. We designed a prospective case series study to examine the efficacy of the AI algorithm-based texture analysis in detecting the restoration of the subchondral remodeling process, which is expected to follow therapeutic intervention. In this study, we used polynucleotide (PN) filler injections as the therapeutic modality and the treatment outcome was verified by symptom improvement, as well as by the induction of subchondral microstructural changes. We used AI algorithm-based texture analysis to observe these changes in the subchondral bone with the bone structure value (BSV). A total of 51 participants diagnosed with knee OA were enrolled in this study. Intra-articular PN filler (HP cell Vitaran J) injections were administered once a week and five times in total. Knee X-rays and texture analyses with BSVs were performed during the screening visit and the last visit three months after screening. The Visual Analogue Scale (VAS) and Korean-Western Ontario MacMaster (K-WOMAC) measurements were used at the screening visit, the fifth intra-articular injection visit, and the last visit. The VAS and K-WOMAC scores decreased after PN treatment and lasted for three months after the final injection. The BSV changed in the middle and deep layers of tibial bone after PN injection. This result could imply that there were microstructural changes in the subchondral bone after PN treatment, and that this change could be detected using the AI algorithm-based texture analysis. In conclusion, the AI- algorithm-based texture analysis could be a promising tool for detecting and assessing the therapeutic outcome in knee OA.
Collapse
Affiliation(s)
- Ji Yoon Jang
- Department of Rehabilitation Medicine, Yonsei University Wonju College of Medicine, Wonju 26426, Korea; (J.Y.J.); (J.H.K.); (M.W.K.)
| | - Ji Hyun Kim
- Department of Rehabilitation Medicine, Yonsei University Wonju College of Medicine, Wonju 26426, Korea; (J.Y.J.); (J.H.K.); (M.W.K.)
| | - Min Woo Kim
- Department of Rehabilitation Medicine, Yonsei University Wonju College of Medicine, Wonju 26426, Korea; (J.Y.J.); (J.H.K.); (M.W.K.)
| | - Sung Hoon Kim
- Department of Rehabilitation Medicine, Yonsei University Wonju College of Medicine, Wonju 26426, Korea; (J.Y.J.); (J.H.K.); (M.W.K.)
| | - Sang Yeol Yong
- Department of Rehabilitation Medicine, Yonsei University Wonju College of Medicine, Wonju 26426, Korea; (J.Y.J.); (J.H.K.); (M.W.K.)
- Yonsei Institute of Sports Science and Exercise Medicine, Wonju 26426, Korea
| |
Collapse
|
220
|
Ye T, Xue F, Hu H, He Z, Wang M, Yu Z, Zhao B, Chu L. Early Emergent and Progressive Aberrant Subchondral Bone Remodeling Coupled with Aggravated Cartilage Degeneration in Developmental Dysplasia of the Hip. Cartilage 2022; 13:19476035221098165. [PMID: 35549743 PMCID: PMC9251826 DOI: 10.1177/19476035221098165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE Developmental dysplasia of the hip (DDH) is the most common skeletal development in children and could result in secondary osteoarthritis. This study aims to clarify the alternations of subchondral trabecular bone remodeling and microstructural properties during the development of DDH, and the potential influence of these alternations on the overlying cartilage degeneration and DDH progression. DESIGN Traditional straight-leg swaddling method was adopted to establish DDH model in newborn Sprague Dawley rats. Hip joint specimens from normal or DDH rats were used. Typical features of DDH in radiological examination were observed by x-ray analysis. Micro-computed tomography analysis was applied to evaluate the microstructural properties of subchondral bone at postnatal weeks 2, 4, and 6. Histological and immunohistochemical analyses were adopted to appraise subchondral bone remodeling activity and cartilage degeneration. The associations among subchondral bone, articular cartilage, and DDH severity were analyzed via multiple linear regression analysis. RESULTS Compared with control group, the subchondral bone in DDH group displayed a gradual trend of deteriorated microstructure and worsening biomechanical properties along with aberrant bone remodeling, which might be responsible for the inhibition of stress transmission from the articular cartilage to the subchondral bone and thus leading to the cartilage degeneration and accelerated DDH progression. CONCLUSIONS Our findings indicate that alternations of subchondral trabecular bone in a time-dependent manner could contribute to the DDH progression and the amelioration on subchondral bone might be a favorable therapeutic candidate for DDH.
Collapse
Affiliation(s)
- Teng Ye
- Department of Orthopedic Surgery,
Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai,
China
| | - Feng Xue
- Department of Orthopedic Surgery,
Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai,
China
| | - Hai Hu
- Department of Orthopedic Surgery,
Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai,
China
| | - Zihao He
- Shanghai Key Laboratory of Orthopedic
Implants, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Minqi Wang
- Department of Bone and Joint Surgery,
Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai,
China
| | - Zhifeng Yu
- Shanghai Key Laboratory of Orthopedic
Implants, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bizeng Zhao
- Department of Orthopedic Surgery,
Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai,
China
| | - Linyang Chu
- Department of Orthopedic Surgery,
Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai,
China,Linyang Chu, Department of Orthopedic
Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, 600#
Yishan Road, Shanghai 200233, China.
| |
Collapse
|
221
|
Koushesh S, Shahtaheri SM, McWilliams DF, Walsh DA, Sheppard MN, Westaby J, Haybatollahi SM, Howe FA, Sofat N. The osteoarthritis bone score (OABS): a new histological scoring system for the characterisation of bone marrow lesions in osteoarthritis. Osteoarthritis Cartilage 2022; 30:746-755. [PMID: 35124198 PMCID: PMC9395274 DOI: 10.1016/j.joca.2022.01.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 02/02/2023]
Abstract
OBJECTIVES Bone marrow lesions (BMLs) are associated with pain in osteoarthritis (OA), but histological scores for OA focus on cartilage pathology. We developed a new scoring system, the Osteoarthritis Bone Score (OABS), to characterise OA-related BMLs. METHODS BML/non-BML tissues identified by Magnetic Resonance Imaging (MRI) in 10 knee OA subjects were harvested at total knee replacement (TKR). Osteochondral tissue from a further 140 TKR and 23 post-mortem (PM) cases was assessed. Histological features distinguishing MRI-defined BML/non-BML tissues on qualitative analysis were classified as present (0) or absent (1), summated for the OABS, validated by Rasch analysis and sensitivity to distinguish between sample groups. Immunohistochemistry for PGP9.5 assessed innervation. RESULTS Subchondral characteristics associated with BML tissues were cysts, fibrosis, hypervascularity, cartilage islands, trabecular thickening, loss of tidemark integrity and inflammatory cell infiltration. PGP9.5 immunoreactive perivascular nerves were associated with BMLs. OABS performed well as a measurement tool, displayed good reliability (Cronbach alpha = 0.68), had a 2-factor structure (trabecular/non-trabecular), with moderate correlation between the two factors (r = 0.56, 95% CI 0.46, 0.65). OABS scores were higher in TKR than PM cases with chondropathy, median difference 1.5 (95% CI -2, 0). OABS and Mankin scores similarly distinguished TKR from non-OA controls, but only OABS was higher in BML than non-BML tissues, median difference -4 (95% CI -5 to -2). CONCLUSIONS OABS identifies and validly quantifies histopathological changes associated with OA BMLs. Histopathology underlying BMLs may represent 2 inter-related pathological processes affecting trabecular/non-trabecular structures. Increased vascularity/perivascular innervation in BMLs might contribute to pain.
Collapse
Affiliation(s)
- S Koushesh
- Institute for Infection and Immunity, St George's, University of London, Cranmer Terrace, London, SW17 ORE, UK.
| | - S M Shahtaheri
- Pain Centre Versus Arthritis and NIHR Nottingham BRC, Academic Rheumatology, University of Nottingham Clinical Sciences Building, City Hospital, Hucknall Road, Nottingham, NG5 1PB, UK.
| | - D F McWilliams
- Pain Centre Versus Arthritis and NIHR Nottingham BRC, Academic Rheumatology, University of Nottingham Clinical Sciences Building, City Hospital, Hucknall Road, Nottingham, NG5 1PB, UK.
| | - D A Walsh
- Pain Centre Versus Arthritis and NIHR Nottingham BRC, Academic Rheumatology, University of Nottingham Clinical Sciences Building, City Hospital, Hucknall Road, Nottingham, NG5 1PB, UK.
| | - M N Sheppard
- Molecular and Clinical Sciences Research Institute, St George's, University of London, Cranmer Terrace, London, SW17 ORE, UK.
| | - J Westaby
- Molecular and Clinical Sciences Research Institute, St George's, University of London, Cranmer Terrace, London, SW17 ORE, UK.
| | - S M Haybatollahi
- Pain Centre Versus Arthritis and NIHR Nottingham BRC, Academic Rheumatology, University of Nottingham Clinical Sciences Building, City Hospital, Hucknall Road, Nottingham, NG5 1PB, UK; School of Psychology, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| | - F A Howe
- Molecular and Clinical Sciences Research Institute, St George's, University of London, Cranmer Terrace, London, SW17 ORE, UK.
| | - N Sofat
- Institute for Infection and Immunity, St George's, University of London, Cranmer Terrace, London, SW17 ORE, UK.
| |
Collapse
|
222
|
Connection between Mesenchymal Stem Cells Therapy and Osteoclasts in Osteoarthritis. Int J Mol Sci 2022; 23:ijms23094693. [PMID: 35563083 PMCID: PMC9102843 DOI: 10.3390/ijms23094693] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 12/12/2022] Open
Abstract
The use of mesenchymal stem cells constitutes a promising therapeutic approach, as it has shown beneficial effects in different pathologies. Numerous in vitro, pre-clinical, and, to a lesser extent, clinical trials have been published for osteoarthritis. Osteoarthritis is a type of arthritis that affects diarthritic joints in which the most common and studied effect is cartilage degradation. Nowadays, it is known that osteoarthritis is a disease with a very powerful inflammatory component that affects the subchondral bone and the rest of the tissues that make up the joint. This inflammatory component may induce the differentiation of osteoclasts, the bone-resorbing cells. Subchondral bone degradation has been suggested as a key process in the pathogenesis of osteoarthritis. However, very few published studies directly focus on the activity of mesenchymal stem cells on osteoclasts, contrary to what happens with other cell types of the joint, such as chondrocytes, synoviocytes, and osteoblasts. In this review, we try to gather the published bibliography in relation to the effects of mesenchymal stem cells on osteoclastogenesis. Although we find promising results, we point out the need for further studies that can support mesenchymal stem cells as a therapeutic tool for osteoclasts and their consequences on the osteoarthritic joint.
Collapse
|
223
|
Zhang H, Chen C, Song J. microRNA-4701-5p protects against interleukin-1β induced human chondrocyte CHON-001 cells injury via modulating HMGA1. J Orthop Surg Res 2022; 17:246. [PMID: 35459188 PMCID: PMC9034483 DOI: 10.1186/s13018-022-03083-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/17/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND miRNA-4701-5p has been reported to be a vital regulator in many diseases, including rheumatoid arthritis, and miRNA-4701-5p is evidenced to be participated in synovial invasion and joint destruction. In our report, we investigated the roles of miRNA-4701-5p in osteoarthritis (OA) and analyzed the molecular mechanism. METHODS Interleukin-1β (IL-1β) was applied for stimulating human chondrocyte CHON-001 cells to establish an OA injury model. mRNA levels and protein expression were measured using qRT-PCR and western blot assay, respectively. The proliferation ability and cytotoxicity of CHON-001 cells were checked using MTT assay and lactate dehydrogenase activity. The inflammation of chondrocytes was accessed by the secretion levels of interleukin-6 (IL-6), interleukin-8 (IL-8) and tumor necrosis factor (TNF)-α. The apoptosis of chondrocytes was determined by flow cytometry assay. Bioinformatics software Starbase v2.0 analyzed the functional binding sites between miRNA-4701-5p and HMGA1 and the interaction was further confirmed using dual luciferase reporter analysis. RESULTS miRNA-4701-5p was down-regulated in the IL-1β-stimulated chondrocytes and HMGA1 directly targeted miRNA-4701-5p. Up-regulation of miRNA-4701-5p could alleviate IL-1β-treated CHON-001 cells inflammation and apoptosis, and reversed the cell proliferation decrease and cytotoxicity increase after IL-1β treatment. Nevertheless, all the roles of miRNA-4701-5p overexpression in CHON-001 cells could be reversed by HMGA1 up-regulation. CONCLUSIONS miRNA-4701-5p could alleviate the inflammatory injury of IL-1β-treated CHON-001 cells via down-regulating HMGA1, indicating that miRNA-4701-5p/HMGA1 is a promising therapeutic target for OA.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Orthopedics, Huangshi Central Hospital, Edong Healthcare Group, Affiliated Hospital of Hubei Polytechnic University, Huangshi, 435000, China
| | - Cheng Chen
- Department of Geriatrics, Huangshi Central Hospital, Edong Healthcare Group, Affiliated Hospital of Hubei Polytechnic University, No. 141 Tianjin Road, Huangshi, 435000, China.
| | - Jie Song
- Department of Geriatrics, Huangshi Central Hospital, Edong Healthcare Group, Affiliated Hospital of Hubei Polytechnic University, No. 141 Tianjin Road, Huangshi, 435000, China
| |
Collapse
|
224
|
Gardner JE, Williams CW, Bowers RL. Subchondral versus intra-articular orthobiologic injections for the treatment of knee osteoarthritis: a review. Regen Med 2022; 17:389-400. [PMID: 35410486 DOI: 10.2217/rme-2021-0174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Recent perspectives suggest that osteoarthritis (OA) is a disease involving not only the articular cartilage but also the osteochondral unit, including the synovium, supportive cartilage and subchondral bone. Current conservative treatments for OA are symptomatic and do not prevent progression or reverse the disease process. Compelling data show that intra-articular orthobiologic injections, such as platelet-rich plasma and mesenchymal stromal cells, are effective in providing relief of OA symptoms. However, recent data suggest that injections of orthobiologics into the subchondral bone may be superior to intra-articular injections for the management of OA. This review highlights the rationale and current evidence for intra-articular and subchondral bone injections of orthobiologics for the treatment of OA.
Collapse
Affiliation(s)
- James E Gardner
- Department of Physical Medicine & Rehabilitation, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Christopher W Williams
- Department of Physical Medicine & Rehabilitation, Emory University, Atlanta, GA 30322, USA.,Interventional Orthopedics of Atlanta, Atlanta, GA 30305, USA
| | - Robert L Bowers
- Department of Orthopaedics, Emory University, Atlanta, GA 30322, USA.,Department of Physical Medicine & Rehabilitation, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
225
|
ABSTRACTS (BY NUMBER). Tissue Eng Part A 2022. [DOI: 10.1089/ten.tea.2022.29025.abstracts] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
226
|
Sprague Dawley Rats Show More Severe Bone Loss, Osteophytosis and Inflammation Compared toWistar Han Rats in a High-Fat, High-Sucrose Diet Model of Joint Damage. Int J Mol Sci 2022; 23:ijms23073725. [PMID: 35409085 PMCID: PMC8999132 DOI: 10.3390/ijms23073725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 02/01/2023] Open
Abstract
In animal models, joint degeneration observed in response to obesogenic diet varies in nature and severity. In this study, we compare joint damage in Sprague Dawley and Wistar-Han rats in response to a high-fat, high-sucrose (HFS) diet groove model of osteoarthritis (OA). Wistar Han (n = 5) and Sprague Dawley (n = 5) rats were fed an HFS diet for 24 weeks. OA was induced 12 weeks after the diet onset by groove surgery in the right knee joint. The left knee served as a control. Outcomes were OARSI histopathology scoring, bone changes by µCT imaging, local (synovial and fat pad) and systemic (blood cytokine) inflammation markers. In both rat strains, the HFS diet resulted in a similar change in metabolic parameters, but only Sprague Dawley rats showed a large, osteoporosis-like decrease in trabecular bone volume. Osteophyte count and local joint inflammation were higher in Sprague Dawley rats. In contrast, cartilage degeneration and systemic inflammatory marker levels were similar between the rat strains. The difference in bone volume loss, osteophytosis and local inflammation suggest that both rat strains show a different joint damage phenotype and could, therefore, potentially represent different OA phenotypes observed in humans.
Collapse
|
227
|
Liu Y, Schwam J, Chen Q. Senescence-Associated Cell Transition and Interaction (SACTAI): A Proposed Mechanism for Tissue Aging, Repair, and Degeneration. Cells 2022; 11:1089. [PMID: 35406653 PMCID: PMC8997723 DOI: 10.3390/cells11071089] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 02/01/2023] Open
Abstract
Aging is a broad process that occurs as a time-dependent functional decline and tissue degeneration in living organisms. On a smaller scale, aging also exists within organs, tissues, and cells. As the smallest functional unit in living organisms, cells "age" by reaching senescence where proliferation stops. Such cellular senescence is achieved through replicative stress, telomere erosion and stem cell exhaustion. It has been shown that cellular senescence is key to tissue degradation and cell death in aging-related diseases (ARD). However, senescent cells constitute only a small percentage of total cells in the body, and they are resistant to death during aging. This suggests that ARD may involve interaction of senescent cells with non-senescent cells, resulting in senescence-triggered death of non-senescent somatic cells and tissue degeneration in aging organs. Here, based on recent research evidence from our laboratory and others, we propose a mechanism-Senescence-Associated Cell Transition and Interaction (SACTAI)-to explain how cell heterogeneity arises during aging and how the interaction between somatic cells and senescent cells, some of which are derived from aging somatic cells, results in cell death and tissue degeneration.
Collapse
Affiliation(s)
| | | | - Qian Chen
- Laboratory of Molecular Biology and Nanomedicine, Department of Orthopaedics, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI 02903, USA; (Y.L.); (J.S.)
| |
Collapse
|
228
|
Haut Donahue TL, Narez GE, Powers M, Dejardin LM, Wei F, Haut RC. A Morphological Study of the Meniscus, Cartilage and Subchondral Bone Following Closed-Joint Traumatic Impact to the Knee. Front Bioeng Biotechnol 2022; 10:835730. [PMID: 35387294 PMCID: PMC8977861 DOI: 10.3389/fbioe.2022.835730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/22/2022] [Indexed: 11/13/2022] Open
Abstract
Post-traumatic osteoarthritis (PTOA) is a debilitating disease that is a result of a breakdown of knee joint tissues following traumatic impact. The interplay of how these tissues influence each other has received little attention because of complex interactions. This study was designed to correlate the degeneration of the menisci, cartilage and subchondral bone following an acute traumatic event that resulted in anterior cruciate ligament (ACL) and medial meniscus tears. We used a well-defined impact injury animal model that ruptures the ACL and tears the menisci. Subsequently, the knee joints underwent ACL reconstruction and morphological analyses were performed on the menisci, cartilage and subchondral bone at 1-, 3- and 6-months following injury. The results showed that the morphological scores of the medial and lateral menisci worsened with time, as did the tibial plateau and femoral condyle articular cartilage scores. The medial meniscus was significantly correlated to the medial tibial subchondral bone at 1 month (p = 0.01), and to the medial tibial cartilage at 3 months (p = 0.04). There was only one significant correlation in the lateral hemijoint, i.e., the lateral tibial cartilage to the lateral tibial subchondral bone at 6 months (p = 0.05). These data may suggest that, following trauma, the observed medial meniscal damage should be treated acutely by means other than a full or partial meniscectomy, since that procedure may have been the primary cause of degenerative changes in the underlying cartilage and subchondral bone. In addition to potentially treating meniscal damage differently, improvements could be made in optimizing treatment of acute knee trauma.
Collapse
Affiliation(s)
- T. L. Haut Donahue
- Department of Biomedical Engineering, University of Memphis, Memphis, TN, United States
- *Correspondence: T. L. Haut Donahue,
| | - G. E. Narez
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA, United States
| | - M. Powers
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA, United States
| | - L. M. Dejardin
- Department of Small Animal Clinical Sciences, Michigan State University, East Lansing, MI, United States
| | - F. Wei
- Orthopaedic Biomechanics Laboratories, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, United States
| | - R. C. Haut
- Orthopaedic Biomechanics Laboratories, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
229
|
Jones GMC, Pitsillides AA, Meeson RL. Moving Beyond the Limits of Detection: The Past, the Present, and the Future of Diagnostic Imaging in Canine Osteoarthritis. Front Vet Sci 2022; 9:789898. [PMID: 35372534 PMCID: PMC8964951 DOI: 10.3389/fvets.2022.789898] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/17/2022] [Indexed: 12/13/2022] Open
Abstract
Osteoarthritis (OA) is the most common orthopedic condition in dogs, characterized as the chronic, painful end-point of a synovial joint with limited therapeutic options other than palliative pain control or surgical salvage. Since the 1970s, radiography has been the standard-of-care for the imaging diagnosis of OA, despite its known limitations. As newer technologies have been developed, the limits of detection have lowered, allowing for the identification of earlier stages of OA. Identification of OA at a stage where it is potentially reversible still remains elusive, however, yet there is hope that newer technologies may be able to close this gap. In this article, we review the changes in the imaging of canine OA over the past 50 years and give a speculative view on future innovations which may provide for earlier identification, with the ultimate goal of repositioning the limit of detection to cross the threshold of this potentially reversible disease.
Collapse
Affiliation(s)
- Gareth M. C. Jones
- Department of Clinical Science and Services, Royal Veterinary College, Hatfield, United Kingdom
| | - Andrew A. Pitsillides
- Department of Comparative Biological Science, Royal Veterinary College, London, United Kingdom
| | - Richard L. Meeson
- Department of Clinical Science and Services, Royal Veterinary College, Hatfield, United Kingdom
| |
Collapse
|
230
|
Jiang W, Jin Y, Zhang S, Ding Y, Huo K, Yang J, Zhao L, Nian B, Zhong TP, Lu W, Zhang H, Cao X, Shah KM, Wang N, Liu M, Luo J. PGE2 activates EP4 in subchondral bone osteoclasts to regulate osteoarthritis. Bone Res 2022; 10:27. [PMID: 35260562 PMCID: PMC8904489 DOI: 10.1038/s41413-022-00201-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 12/08/2021] [Accepted: 12/22/2021] [Indexed: 12/14/2022] Open
Abstract
Prostaglandin E2 (PGE2), a major cyclooxygenase-2 (COX-2) product, is highly secreted by the osteoblast lineage in the subchondral bone tissue of osteoarthritis (OA) patients. However, NSAIDs, including COX-2 inhibitors, have severe side effects during OA treatment. Therefore, the identification of novel drug targets of PGE2 signaling in OA progression is urgently needed. Osteoclasts play a critical role in subchondral bone homeostasis and OA-related pain. However, the mechanisms by which PGE2 regulates osteoclast function and subsequently subchondral bone homeostasis are largely unknown. Here, we show that PGE2 acts via EP4 receptors on osteoclasts during the progression of OA and OA-related pain. Our data show that while PGE2 mediates migration and osteoclastogenesis via its EP2 and EP4 receptors, tissue-specific knockout of only the EP4 receptor in osteoclasts (EP4LysM) reduced disease progression and osteophyte formation in a murine model of OA. Furthermore, OA-related pain was alleviated in the EP4LysM mice, with reduced Netrin-1 secretion and CGRP-positive sensory innervation of the subchondral bone. The expression of platelet-derived growth factor-BB (PDGF-BB) was also lower in the EP4LysM mice, which resulted in reduced type H blood vessel formation in subchondral bone. Importantly, we identified a novel potent EP4 antagonist, HL-43, which showed in vitro and in vivo effects consistent with those observed in the EP4LysM mice. Finally, we showed that the Gαs/PI3K/AKT/MAPK signaling pathway is downstream of EP4 activation via PGE2 in osteoclasts. Together, our data demonstrate that PGE2/EP4 signaling in osteoclasts mediates angiogenesis and sensory neuron innervation in subchondral bone, promoting OA progression and pain, and that inhibition of EP4 with HL-43 has therapeutic potential in OA.
Collapse
Affiliation(s)
- Wenhao Jiang
- Yangzhi Rehabilitation Hospital (Sunshine Rehabilitation Centre), Tongji University School of Medicine, Shanghai, PR China.,Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, PR China
| | - Yunyun Jin
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, PR China
| | - Shiwei Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, PR China
| | - Yi Ding
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, PR China
| | - Konglin Huo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, PR China
| | - Junjie Yang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, PR China
| | - Lei Zhao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, PR China
| | - Baoning Nian
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, PR China
| | - Tao P Zhong
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, PR China
| | - Weiqiang Lu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, PR China
| | - Hankun Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, PR China
| | - Xu Cao
- Departments of Orthopaedic Surgery and Biomedical Engineering and Institute of Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Karan Mehul Shah
- Department of Oncology and Metabolism, The University of Sheffield, Sheffield, UK
| | - Ning Wang
- Department of Oncology and Metabolism, The University of Sheffield, Sheffield, UK
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, PR China
| | - Jian Luo
- Yangzhi Rehabilitation Hospital (Sunshine Rehabilitation Centre), Tongji University School of Medicine, Shanghai, PR China. .,Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, PR China.
| |
Collapse
|
231
|
Crolla JP, Lawless BM, Cederlund AA, Aspden RM, Espino DM. Analysis of hydration and subchondral bone density on the viscoelastic properties of bovine articular cartilage. BMC Musculoskelet Disord 2022; 23:228. [PMID: 35260135 PMCID: PMC8905800 DOI: 10.1186/s12891-022-05169-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 02/24/2022] [Indexed: 11/23/2022] Open
Abstract
Background Articular cartilage is known to be a viscoelastic material, however little research has explored the impact of cartilage water content and bone density on its viscoelasticity. This study aimed to isolate subchondral bone density and hydration of articular cartilage and analyse their effects on the viscoelastic properties of articular cartilage. Methods Dynamic mechanical analysis was used to test samples at frequencies of 1, 8, 12, 29, 49, 71, and 88 Hz. Synthetic bone material with densities of 663.7 kg/m3 and 156.8 kg/m3 were used to mimic the bone mineral density (BMD). Dehydration occurred in a stepwise manner at relative humidity (RH) levels of 100%, 30%, and 1%. These relative humidity levels led to water contents of approximately 76%, 8.5%, and ≈ 0% by mass, respectively. Results Samples from eight bovine femoral heads were tested under a sinusoidal load. Storage stiffness was lower on the lower substrate density. Storage stiffness, though, increased as cartilage samples were dehydrated from a water content of 76% to 8.5%; decreasing again as the water content was further reduced. Loss stiffness was lower on a lower density substrate and decreased as the water content decreased. Conclusions In conclusions, a decrease in hydration decreases the loss stiffness, but a non-linear relationship between hydration and storage stiffness may exist. Additionally, higher BMD values led to greater storage and loss stiffnesses. Supplementary Information The online version contains supplementary material available at 10.1186/s12891-022-05169-0.
Collapse
Affiliation(s)
- Joseph P Crolla
- Deptment of Mechanical Engineering, University of Birmingham, Birmingham, B15 2TT, UK.
| | - Bernard M Lawless
- Deptment of Mechanical Engineering, University of Birmingham, Birmingham, B15 2TT, UK
| | - Anna A Cederlund
- Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, AB25 2ZD, Foresterhill Aberdeen, UK
| | - Richard M Aspden
- Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, AB25 2ZD, Foresterhill Aberdeen, UK
| | - Daniel M Espino
- Deptment of Mechanical Engineering, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
232
|
Gupta SD, Workman J, Finnilä MA, Saarakkala S, Thambyah A. Subchondral bone plate thickness is associated with micromechanical and microstructural changes in the bovine patella osteochondral junction with different levels of cartilage degeneration. J Mech Behav Biomed Mater 2022; 129:105158. [PMID: 35279448 DOI: 10.1016/j.jmbbm.2022.105158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 10/07/2021] [Accepted: 02/27/2022] [Indexed: 10/19/2022]
Abstract
The influence of joint degeneration on the biomechanical properties of calcified cartilage and subchondral bone plate at the osteochondral junction is relatively unknown. Common experimental difficulties include accessibility to and visualization of the osteochondral junction, application of mechanical testing at the appropriate length scale, and availability of tissue that provides a consistent range of degenerative changes. This study addresses these challenges. A well-established bovine patella model of early joint degeneration was employed, in which micromechanical testing of fully hydrated osteochondral sections was carried out in conjunction with high-resolution imaging using differential interference contrast (DIC) optical light microscopy. A total of forty-two bovine patellae with different grades of tissue health ranging from healthy to mild, moderate, and severe cartilage degeneration, were selected. From the distal-lateral region of each patella, two adjacent osteochondral sections were obtained for the mechanical testing and the DIC imaging, respectively. Mechanical testing was carried out using a robotic micro-force acquisition system, applying compression tests over an array (area: 200 μm × 1000 μm, step size: 50 μm) across the osteochondral junction to obtain a stiffness map. Morphometric analysis was performed for the DIC images of fully hydrated cryo-sections. The levels of cartilage degeneration, DIC images, and the stiffness maps were used to associate the mechanical properties onto the specific tissue regions of cartilage, calcified cartilage, and subchondral bone plate. The results showed that there were up to 20% and 24% decreases (p < 0.05) in the stiffness of calcified cartilage and subchondral bone plate, respectively, in the severely degenerated group compared to the healthy group. Furthermore, there were increases (p < 0.05) in the number of tidemarks, bone spicules at the cement line, and the mean thickness of the subchondral bone plate with increasing levels of degeneration. The decreasing stiffness in the subchondral bone plate coupled with the presence of bone spicules may be indicative of a subchondral remodeling process involving new bone formation. Moreover, the mean thickness of the subchondral bone plate was found to be the strongest indicator of mechanical and associated structural changes in the osteochondral joint tissues.
Collapse
|
233
|
Owen-Woods C, Kusumbe A. Fundamentals of bone vasculature: Specialization, interactions and functions. Semin Cell Dev Biol 2022; 123:36-47. [PMID: 34281770 DOI: 10.1016/j.semcdb.2021.06.025] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 02/06/2023]
Abstract
Angiogenesis, hematopoiesis and osteogenesis are fundamental processes mediating complex and essential biological functions. In the bone marrow, endothelial cells (ECs) are a principal mediator of regulatory signals that govern hematopoietic and mesenchymal stem cells. EC and osteoblast interactions and niche functions of ECs are fundamental in maintaining bone health and coordinating repair and regeneration following injury. These cellular interactions are subject to dysregulation and deterioration under stress, aging, chronic disease states and malignancy. Thus, the prospect of manipulating the bone vasculature has tremendous potential to advance therapeutic interventions for the management of bone diseases. This review discusses the current state of vascular-skeletal tissue interactions focusing on osteoblast and hematopoietic stem cells interaction with ECs.
Collapse
Affiliation(s)
- Charlotte Owen-Woods
- Tissue and Tumor Microenvironments Group, NDORMS, University of Oxford, Oxford OX3 7FY, UK
| | - Anjali Kusumbe
- Tissue and Tumor Microenvironments Group, NDORMS, University of Oxford, Oxford OX3 7FY, UK.
| |
Collapse
|
234
|
Carpintero-Fernández P, Varela-Eirín M, García-Yuste A, López-Díaz I, Caeiro JR, Mayán MD. Osteoarthritis: Mechanistic Insights, Senescence, and Novel Therapeutic Opportunities. Bioelectricity 2022; 4:39-47. [PMID: 39355566 PMCID: PMC11441363 DOI: 10.1089/bioe.2021.0039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Osteoarthritis (OA) is the most common joint disease. In the last years, the research community has focused on understanding the molecular mechanisms that led to the pathogenesis of the disease, trying to identify different molecular and clinical phenotypes along with the discovery of new therapeutic opportunities. Different types of cell-to-cell communication mechanisms have been proposed to contribute to OA progression, including mechanisms mediated by connexin43 (Cx43) channels or by small extracellular vesicles. Furthermore, changes in the chondrocyte phenotype such as cellular senescence have been proposed as new contributors of the OA progression, changing the paradigm of the disease. The use of different drugs able to restore chondrocyte phenotype, to reduce cellular senescence and senescence-associated secretory phenotype components, and to modulate ion channel activity or Cx43 appears to be promising therapeutic strategies for the different types of OA. In this review, we aim to summarize the current knowledge in OA phenotypes related with aging and tissue damage and the new therapeutic opportunities currently available.
Collapse
Affiliation(s)
- Paula Carpintero-Fernández
- CellCOM Research Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña (UDC), A Coruña, Spain
| | - Marta Varela-Eirín
- CellCOM Research Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña (UDC), A Coruña, Spain
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), University of Groningen (RUG), Groningen, The Netherlands
| | - Alejandro García-Yuste
- CellCOM Research Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña (UDC), A Coruña, Spain
| | - Iñaki López-Díaz
- CellCOM Research Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña (UDC), A Coruña, Spain
| | - José Ramón Caeiro
- Department of Orthopaedic Surgery and Traumatology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - María D Mayán
- CellCOM Research Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña (UDC), A Coruña, Spain
| |
Collapse
|
235
|
Hu W, Cai C, Li Y, Kang F, Chu T, Dong S. Farnesoid X receptor agonist attenuates subchondral bone osteoclast fusion and osteochondral pathologies of osteoarthritis via suppressing JNK1/2/NFATc1 pathway. FASEB J 2022; 36:e22243. [PMID: 35224782 DOI: 10.1096/fj.202101717r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/04/2022] [Accepted: 02/17/2022] [Indexed: 11/11/2022]
Abstract
Osteoarthritis (OA) is a prevalent degenerative disease of the joint, featured by articular cartilage destruction and subchondral bone marrow lesions. Articular cartilage and subchondral bone constitute an osteochondral unit that guarantees joint homeostasis. During OA initiation, activated osteoclasts in subchondral bone ultimately result in impaired capacities of the subchondral bone in response to mechanical stress, followed by the degradation of overlying articular cartilage. Thus, targeting osteoclasts could be a potential therapeutic option for treating OA. Here, we observed that farnesoid X receptor (FXR) expression and osteoclast fusion and activity in subchondral bone were concomitantly changed during early-stage OA in the OA mouse model established by anterior cruciate ligament transection (ACLT). Then, we explored the therapeutic effects of FXR agonist GW4064 on the osteochondral pathologies in ACLT mice. We showed that GW4064 obviously ameliorated subchondral bone deterioration, associated with reduction in tartrate-resistant acid phosphatase (TRAP) positive multinuclear osteoclast number, as well as articular cartilage degradation, which were blocked by the treatment with FXR antagonist Guggulsterone. Mechanistically, GW4064 impeded osteoclastogenesis through inhibiting subchondral bone osteoclast fusion via suppressing c-Jun N-terminal kinase (JNK) 1/2/nuclear factor of activated T-cells 1 (NFATc1) pathway. Taken together, our results present evidence for the protective effects of GW4064 against OA by blunting osteoclast-mediated aberrant subchondral bone loss and subsequent cartilage deterioration. Therefore, GW4064 demonstrates the potential as an alternative therapeutic option against OA for further drug development.
Collapse
Affiliation(s)
- Wenhui Hu
- Department of Biomedical Materials Science, College of Biomedical Engineering, Third Military Medical University (Army Medical University), Chongqing, China
| | - Chenhui Cai
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yuheng Li
- Department of Biomedical Materials Science, College of Biomedical Engineering, Third Military Medical University (Army Medical University), Chongqing, China
| | - Fei Kang
- Department of Biomedical Materials Science, College of Biomedical Engineering, Third Military Medical University (Army Medical University), Chongqing, China
| | - Tongwei Chu
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Shiwu Dong
- Department of Biomedical Materials Science, College of Biomedical Engineering, Third Military Medical University (Army Medical University), Chongqing, China.,State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
236
|
Syed Sulaiman SZ, Tan WM, Radzi R, Shafie INF, Ajat M, Mansor R, Mohamed S, Rahmad N, Ng AMH, Lau SF. Synovial fluid proteome profile of surgical versus chemical induced osteoarthritis in rabbits. PeerJ 2022; 10:e12897. [PMID: 35228907 PMCID: PMC8881915 DOI: 10.7717/peerj.12897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 01/16/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Animal models are significant for understanding human osteoarthritis (OA). This study compared the synovial fluid proteomics changes in surgical and chemical induced OA models. METHODS Thirty rabbits either had anterior cruciate ligament transection (ACLT) procedure or injected intra-articularly with monosodium iodoacetate (MIA, 8 mg) into the right knee. The joints were anatomically assessed, and the synovial fluid proteins analyzed using two-dimensional polyacrylamide gel electrophoresis (2DGE) and MALDI TOF/TOF mass spectrometry analysis at 4, 8 and 12 weeks. The proteins' upregulation and downregulation were compared with control healthy knees. RESULTS Seven proteins (histidine-rich glycoprotein, beta-actin-like protein 2 isoform X1, retinol-binding protein-4, alpha-1-antiproteinase, gelsolin isoform, serotransferrin, immunoglobulin kappa-b4 chain-C-region) were significantly expressed by the surgical induction. They characterized cellular process (27%), organization of cellular components or biogenesis (27%), localization (27%) and biological regulation (18%), which related to synovitis, increased cellularity, and subsequently cartilage damage. Three proteins (apolipoprotein I-IV precursor, serpin peptidase inhibitor and haptoglobin precursor) were significantly modified by the chemical induction. They characterized stimulus responses (23%), immune responses (15%), biological regulations (15%), metabolism (15%), organization of cellular components or biogenesis (8%), cellular process (8%), biological adhesions (8%) and localization (8%), which related to chondrocytes glycolysis/death, neovascularization, subchondral bone necrosis/collapse and inflammation. CONCLUSIONS The surgical induced OA model showed a wider range of protein changes, which were most upregulated at week 12. The biological process proteins expressions showed the chemical induced joints had slower OA progression compared to surgical induced joints. The chemical induced OA joints showed early inflammatory changes, which later decreased.
Collapse
Affiliation(s)
| | - Wei Miao Tan
- Department of Veterinary Clinical Studies, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Rozanaliza Radzi
- Department of Veterinary Clinical Studies, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Intan Nur Fatiha Shafie
- Department of Veterinary Clinical Studies, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mokrish Ajat
- Department of Veterinary Preclinical Studies, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Rozaihan Mansor
- Department of Farm and Exotic Animals Medicine and Surgery, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Suhaila Mohamed
- Laboratory of Cancer Research UPM-MAKNA (CANRES), Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | | | - Angela Min Hwei Ng
- Tissue Engineering Centre, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Seng Fong Lau
- Department of Veterinary Clinical Studies, Universiti Putra Malaysia, Serdang, Selangor, Malaysia,Laboratory of Cancer Research UPM-MAKNA (CANRES), Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
237
|
Orava H, Huang L, Ojanen SP, Mäkelä JT, Finnilä MA, Saarakkala S, Herzog W, Korhonen RK, Töyräs J, Tanska P. Changes in subchondral bone structure and mechanical properties do not substantially affect cartilage mechanical responses – A finite element study. J Mech Behav Biomed Mater 2022; 128:105129. [DOI: 10.1016/j.jmbbm.2022.105129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/19/2021] [Accepted: 02/10/2022] [Indexed: 10/19/2022]
|
238
|
Ozasa R, Matsugaki A, Ishimoto T, Kamura S, Yoshida H, Magi M, Matsumoto Y, Sakuraba K, Fujimura K, Miyahara H, Nakano T. Bone fragility via degradation of bone quality featured by collagen/apatite micro-arrangement in human rheumatic arthritis. Bone 2022; 155:116261. [PMID: 34826630 DOI: 10.1016/j.bone.2021.116261] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/20/2022]
Abstract
Although increased bone fragility is a well-recognized consequence in patients with rheumatoid arthritis (RA), the essential cause of degenerate bone strength remains unknown. This study aimed to determine factors contributing to bone dysfunction in RA by focusing on the bone matrix micro-arrangement, based on the preferential orientation of collagen and the related apatite c-axis as a bone quality index. The classical understanding of RA is limited to its severe pathological conditions associated with inflammation-induced bone loss. This study examined periarticular proximal tibiae from RA patients as compared with osteoarthritis (OA) patients as controls. Bone tissue material strength was disrupted in the RA group compared with the control. Collagen/apatite micro-arrangement and vBMD were significantly lower in the RA group, and the rate of decrease in apatite c-axis orientation (-45%) was larger than that in vBMD (-22%). Multiple regression analysis showed that the degree of apatite c-axis orientation (β = 0.52, p = 1.9 × 10-2) significantly contributed to RA-induced bone material impairment as well as vBMD (β = 0.46, p = 3.8 × 10-2). To the best of our knowledge, this is the first report to demonstrate that RA reduces bone material strength by deteriorating the micro-arrangement of collagen/apatite bone matrix, leading to decreased fracture resistance. Our findings represent the significance of bone quality-based analysis for precise evaluation and subsequent therapy of the integrity and soundness of the bone in patients with RA.
Collapse
Affiliation(s)
- Ryosuke Ozasa
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Aira Matsugaki
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takuya Ishimoto
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Satoshi Kamura
- Department of Orthopaedic Surgery, National Hospital Organization, Kyushu Medical Center, 1-8-1 Jigyouhama chuo-ku, Fukuoka, Fukuoka 811-1395, Japan
| | - Hiroto Yoshida
- Product Research Department, Kamakura Research Laboratories, Chugai Pharmaceutical Co., Ltd., 200 Kajiwara, Kamakura, Kanagawa 247-8530, Japan
| | - Mayu Magi
- Product Research Department, Kamakura Research Laboratories, Chugai Pharmaceutical Co., Ltd., 200 Kajiwara, Kamakura, Kanagawa 247-8530, Japan
| | - Yoshihiro Matsumoto
- Product Research Department, Kamakura Research Laboratories, Chugai Pharmaceutical Co., Ltd., 200 Kajiwara, Kamakura, Kanagawa 247-8530, Japan
| | - Koji Sakuraba
- Department of Orthopaedic Surgery, National Hospital Organization, Kyushu Medical Center, 1-8-1 Jigyouhama chuo-ku, Fukuoka, Fukuoka 811-1395, Japan
| | - Kenjiro Fujimura
- Department of Orthopaedic Surgery, National Hospital Organization, Kyushu Medical Center, 1-8-1 Jigyouhama chuo-ku, Fukuoka, Fukuoka 811-1395, Japan
| | - Hisaaki Miyahara
- Department of Orthopaedic Surgery, National Hospital Organization, Kyushu Medical Center, 1-8-1 Jigyouhama chuo-ku, Fukuoka, Fukuoka 811-1395, Japan
| | - Takayoshi Nakano
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
239
|
Liang W, Han B, Hai Y, Sun D, Yin P. Mechanism of Action of Mesenchymal Stem Cell-Derived Exosomes in the Intervertebral Disc Degeneration Treatment and Bone Repair and Regeneration. Front Cell Dev Biol 2022; 9:833840. [PMID: 35096846 PMCID: PMC8795890 DOI: 10.3389/fcell.2021.833840] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 12/27/2021] [Indexed: 12/19/2022] Open
Abstract
Exosomes are extracellular vesicles formed by various donor cells that regulate gene expression and cellular function in recipient cells. Exosomes derived from mesenchymal stem cells (MSC-Exos) perform the regulatory function of stem cells by transporting proteins, nucleic acids, and lipids. Intervertebral disc degeneration (IDD) is one of the main causes of low back pain, and it is characterized by a decreased number of nucleus pulposus cells, extracellular matrix decomposition, aging of the annulus fibrosus, and cartilage endplate calcification. Besides, nutrient transport and structural repair of intervertebral discs depend on bone and cartilage and are closely related to the state of the bone. Trauma, disease and aging can all cause bone injury. However, there is a lack of effective drugs against IDD and bone injury. Recent MSC-Exos fine tuning has led to significant progress in the IDD treatment and bone repair and regeneration. In this review, we looked at the uniqueness of MSC-Exos, and the potential treatment mechanisms of MSC-Exos with respect to IDD, bone defects and injuries.
Collapse
Affiliation(s)
- Weishi Liang
- Department of Orthopedic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Bo Han
- Department of Orthopedic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Yong Hai
- Department of Orthopedic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Duan Sun
- Department of Orthopedic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Peng Yin
- Department of Orthopedic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
240
|
Microstructural and histomorphological features of osteophytes in late-stage human knee osteoarthritis with varus deformity. Joint Bone Spine 2022; 89:105353. [DOI: 10.1016/j.jbspin.2022.105353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/30/2021] [Accepted: 01/18/2022] [Indexed: 11/19/2022]
|
241
|
Glorieux FH, Bonewald LF, Harvey NC, van der Meulen MCH. Potential influences on optimizing long-term musculoskeletal health in children and adolescents with X-linked hypophosphatemia (XLH). Orphanet J Rare Dis 2022; 17:30. [PMID: 35101067 PMCID: PMC8802511 DOI: 10.1186/s13023-021-02156-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/19/2021] [Indexed: 12/20/2022] Open
Abstract
In recent years, much progress has been made in understanding the mechanisms of bone growth and development over a lifespan, including the crosstalk between muscle and bone, to achieve optimal structure and function. While there have been significant advances in understanding how to help improve and maintain bone health in normal individuals, there is limited knowledge on whether these mechanisms apply or are compromised in pathological states. X-linked hypophosphatemia (XLH) (ORPHA:89936) is a rare, heritable, renal phosphate-wasting disorder. The resultant chronic hypophosphatemia leads to progressive deterioration in musculoskeletal function, including impaired growth, rickets, and limb deformities in children, as well as lifelong osteomalacia with reduced bone quality and impaired muscle structure and function. The clinical manifestations of the disease vary both in presentation and severity in affected individuals, and many of the consequences of childhood defects persist into adulthood, causing significant morbidity that impacts physical function and quality of life. Intervention to restore phosphate levels early in life during the critical stages of skeletal development in children with XLH could optimize growth and may prevent or reduce bone deformities in childhood. A healthier bone structure, together with improved muscle function, can lead to physical activity enhancing musculoskeletal health throughout life. In adults, continued management may help to maintain the positive effects acquired from childhood treatment, thereby slowing or halting disease progression. In this review, we summarize the opinions from members of a working group with expertise in pediatrics, epidemiology, and bone, joint and muscle biology, on potential outcomes for people with XLH, who have been optimally treated from an early age and continue treatment throughout life.
Collapse
Affiliation(s)
| | - Lynda F Bonewald
- Indiana Center for Musculoskeletal Health, Indiana University, Indianapolis, IN, USA
| | - Nicholas C Harvey
- MRC Lifecourse Epidemiology Centre, University of Southampton, Southampton, UK
| | | |
Collapse
|
242
|
Liu A, Chen J, Zhang J, Zhang C, Zhou Q, Niu P, Yuan Y. Intra-Articular Injection of Umbilical Cord Mesenchymal Stem Cells Loaded With Graphene Oxide Granular Lubrication Ameliorates Inflammatory Responses and Osteoporosis of the Subchondral Bone in Rabbits of Modified Papain-Induced Osteoarthritis. Front Endocrinol (Lausanne) 2022; 12:822294. [PMID: 35095776 PMCID: PMC8794924 DOI: 10.3389/fendo.2021.822294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 12/21/2021] [Indexed: 11/22/2022] Open
Abstract
AIM This study is to investigate the effects of umbilical cord mesenchymal stem cells (UCMSCs) loaded with the graphene oxide (GO) granular lubrication on ameliorating inflammatory responses and osteoporosis of the subchondral bone in knee osteoarthritis (KOA) animal models. METHODS The KOA animal models were established using modified papain joint injection. 24 male New Zealand rabbits were classified into the blank control group, GO group, UCMSCs group, and GO + UCMSCs group, respectively. The concentration in serum and articular fluid nitric oxide (NO), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), type II collagen (COL-II), and glycosaminoglycan (GAG) was detected using ELISA, followed by the dissection of femoral condyles and staining of HE and Micro-CT for observation via the microscope. RESULTS GO granular lubrication and UCMSCs repaired the KOA animal models. NO, IL-6, TNF-α, GAG, and COL-II showed optimal improvement performance in the GO + UCMSCs group, with statistical significance in contrast to the blank group (P <0.01). Whereas, there was a great difference in levels of inflammatory factors in serum and joint fluid. Micro-CT scan results revealed the greatest efficacy of the GO + UCMSCs group in improving joint surface damage and subchondral bone osteoporosis. HE staining pathology for femoral condyles revealed that the cartilage repair effect in GO + UCMSCs, UCMSCs, GO, and blank groups were graded down. CONCLUSION UCMSCs loaded with graphene oxide granular lubrication can promote the secretion of chondrocytes, reduce the level of joint inflammation, ameliorate osteoporosis of the subchondral bone, and facilitate cartilage repair.
Collapse
Affiliation(s)
- Aifeng Liu
- Department of Orthopaedic Surgery, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Jixin Chen
- Department of Orthopaedic Surgery, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Juntao Zhang
- Department of Orthopaedic Surgery, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Chao Zhang
- Department of Orthopaedic Surgery, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Qinxin Zhou
- Department of Orthopaedic Surgery, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Puyu Niu
- Department of Orthopaedic Surgery, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Ye Yuan
- Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, Hebei University of Technology, Tianjin, China
| |
Collapse
|
243
|
Lin C, Chen Z, Guo D, Zhou L, Lin S, Li C, Li S, Wang X, Lin B, Ding Y. Increased expression of osteopontin in subchondral bone promotes bone turnover and remodeling, and accelerates the progression of OA in a mouse model. Aging (Albany NY) 2022; 14:253-271. [PMID: 34982732 PMCID: PMC8791213 DOI: 10.18632/aging.203707] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/28/2021] [Indexed: 02/05/2023]
Abstract
Osteopontin (OPN) has been proved to be closely related to the pathogenesis of osteoarthritis (OA), but the role of OPN in the pathogenesis of OA has not been fully clarified. Current studies on OPN in OA mostly focus on articular cartilage, synovial membrane and articular fluid, while ignoring its role in OA subchondral bone turnover and remodeling. In this study, we used a destabilization OA mouse model to investigate the role of OPN in OA subchondral bone changes. Our results indicate that increased expression of OPN accelerates the turnover and remodeling of OA subchondral bone, promotes the formation of h-type vessels in subchondral bone, and mediates articular cartilage degeneration induced by subchondral bone metabolism. In addition, our results confirmed that inhibition of PI3K/AKT signaling pathway inhibits OPN-mediated OA subchondral bone remodeling and cartilage degeneration. This study revealed the role and mechanism of OPN in OA subchondral bone, which is of great significance for exploring specific biological indicators for early diagnosis of OA and monitoring disease progression, as well as for developing drugs to regulate the metabolism and turnover of subchondral bone and alleviate the subchondral bone sclerosis of OA.
Collapse
Affiliation(s)
- Chuangxin Lin
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P.R. China
- Department of Orthopedic Surgery, Shantou Central Hospital, Shantou 515000, P.R. China
| | - Zhong Chen
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P.R. China
| | - Dong Guo
- Department of Joint Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, P.R China
| | - Laixi Zhou
- Department of Orthopedic Surgery, Shantou Central Hospital, Shantou 515000, P.R. China
| | - Sipeng Lin
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P.R. China
| | - Changchuan Li
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P.R. China
| | - Shixun Li
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P.R. China
| | - Xinjia Wang
- Department of Orthopedic, Affiliated Cancer Hospital, Shantou University Medical College, Shantou 515041, P.R. China
| | - Bendan Lin
- Department of Orthopedic Surgery, Shantou Central Hospital, Shantou 515000, P.R. China
| | - Yue Ding
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P.R. China
| |
Collapse
|
244
|
Li Z, Xu G, Wang C, Wang Q, Liu C, Guo T, Wu L, Cao D. Variation characteristics of stress distribution in the subchondral bone of the knee joint of judo athletes with long-term stress changes. Front Endocrinol (Lausanne) 2022; 13:1082799. [PMID: 36778597 PMCID: PMC9909959 DOI: 10.3389/fendo.2022.1082799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/29/2022] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVE To investigate the distribution of bone density in the subchondral bone tissue of the knee joint due to the mechanical stress load generated by judo, the bone tissue volume of different densities and the bone remodeling characteristics of the subchondral bone of the knee joint. METHODS CT imaging data of the knee joint were collected from 15 healthy individuals as controls and 15 elite judo athletes. Firstly, they were processed by the CTOAM technique, and secondly, the distribution pattern of high-density areas of the knee joint was localized using nine anatomical regions. In addition, three tomographic images were selected in the sagittal, coronal, and axial 2D image windows to observe the distribution of different densities of bone tissue. Finally, the percentage of bone tissue volume (%BTV) and bone remodeling trend of bone tissues with different densities were determined. RESULTS In this study, high-density areas were found in the 4th, 5th, and 6th regions of the articular surface of the distal femur and the 1st, 2nd, 3rd, 4th, 5th, 6th, 7th and 8th regions of the tibial plateau in judo athletes; the distribution of high-density areas on the articular surface of the distal femur in control subjects was similar with judo athletes, and high-density areas were mainly found in the 4th and 5th regions of the tibial plateau. The %BTV of low (401-500HU in the distal femur; 301-400 HU and 401-500HU in the tibial plateau), moderate, and high bone density was higher in judo athletes than in controls in the subchondral bone of the distal femur and tibial plateau (P< 0.05). CONCLUSION The history of compressive stresses, struck stresses, soft tissue tension and pull, self-gravity and intra-articular stress loading generated by the lower limb exercise technique of judo leads to specific forms of stress distribution and bone tissue remodeling in the subchondral bone tissue within the distal femur and tibia plateau.
Collapse
Affiliation(s)
- Zhiqiang Li
- School of Physical Education, North University of China, Taiyuan, China
| | - Guanghua Xu
- School of Physical Education, North University of China, Taiyuan, China
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Orthopedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Chengjun Wang
- School of Physical Education, North University of China, Taiyuan, China
| | - Qiuyuan Wang
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Caiping Liu
- School of Physical Education, North University of China, Taiyuan, China
| | - Tingting Guo
- Ergonomics and Functional Clothing Laboratory, School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai, China
| | - Lijun Wu
- School of Physical Education, Shanxi University, Taiyuan, China
- *Correspondence: Diankang Cao, ; Lijun Wu,
| | - Diankang Cao
- School of Physical Education, North University of China, Taiyuan, China
- *Correspondence: Diankang Cao, ; Lijun Wu,
| |
Collapse
|
245
|
Chitnavis J, Maghsoudi D, Grewal H. OUP accepted manuscript. J Surg Case Rep 2022; 2022:rjac064. [PMID: 35350211 PMCID: PMC8944735 DOI: 10.1093/jscr/rjac064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 02/12/2022] [Indexed: 11/12/2022] Open
Abstract
A 49-year-old patient, with a maternal history of arthritis, presented with an extra-capsular lump of the left knee. Following magnetic resonance imaging (MRI) scan and excision biopsy, the lump proved to be a benign ganglion cyst. The scan had also shown focal subchondral cyst formation and articular cartilage wear in the medial femoral condyle and patella, with no other abnormality. Four years later, she presented with identical symptoms and signs in the right knee. MRI scan confirmed a symmetrical pattern of ganglion and subchondral cyst location and size. Although both ganglion and subchondral cysts of the knee are common, their development is poorly understood and this combination of cyst formation and chondral wear has not been previously documented. Symmetry of end-stage knee osteoarthritis (OA) is recognized by clinicians. We speculate that OA of the knee begins asymptomatically with point-specific loss of articular cartilage, typically reflecting an inherent and bilateral vulnerability to degeneration.
Collapse
Affiliation(s)
- Jai Chitnavis
- Correspondence address. The Cambridge Knee Clinic, Compass House, Chivers Way, Cambridge CB24 9AD, UK. Tel: +44-1223-253763; Fax: +44-1223-257842; E-mail:
| | - Daniel Maghsoudi
- Human Anatomy Centre, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Harshvir Grewal
- Human Anatomy Centre, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| |
Collapse
|
246
|
Han X, Cui J, Chu L, Zhang W, Xie K, Jiang X, He Z, Du J, Ai S, Sun Q, Wang L, Wu H, Yan M, Yu Z. Abnormal subchondral trabecular bone remodeling in knee osteoarthritis under the influence of knee alignment. Osteoarthritis Cartilage 2022; 30:100-109. [PMID: 34699993 DOI: 10.1016/j.joca.2021.10.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 08/06/2021] [Accepted: 10/13/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVE This study aimed to investigate the abnormal subchondral trabecular bone (STB) remodeling in knee osteoarthritis (OA) under the influence of knee alignment [hip-knee-ankle (HKA) angle]. DESIGN Forty-one patients with knee OA underwent radiographic examination before total knee arthroplasty (TKA) for the measurement of HKA angle. Tibial plateau specimens obtained during TKA were used for histomorphometric analyses to assess STB remodeling and cartilage degradation. Tartrate-resistant acidic phosphatase (TRAP) staining was used to test osteoclast activity. Osterix, osteocalcin, and sclerostin expression in the STB were determined using immunohistochemistry. RESULTS The interaction between HKA angle and side (medial vs lateral of tibial plateau) was the main significant influence factor for STB remodeling and microstructure. The STB with the deviation of the knee alignment was accompanied by obvious abnormal bone remodeling and microstructural sclerosis. Bone volume fraction (BV/TV) was the only significant influence factor for OARSI score, the larger the BV/TV of STB, the higher the OARSI score of cartilage. Moreover, the tibial plateau affected by alignment had more TRAP + osteoclasts, Osterix + osteoprogenitors, and osteocalcin + osteoblasts and fewer sclerostin + osteocytes. CONCLUSIONS The variation of tibial plateau STB remodeling activity and microstructure was associated with HKA angle and cartilage degradation. Knee malalignment may cause abnormal STB remodeling and microstructural sclerosis, which may potentially affect load stress transmission from the cartilage to the STB, thus resulting in accelerated knee OA progression.
Collapse
Affiliation(s)
- Xuequan Han
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Junqi Cui
- Department of Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Linyang Chu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, China.
| | - Weituo Zhang
- Clinical Research Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Kai Xie
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xu Jiang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Zihao He
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jingke Du
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Songtao Ai
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Qi Sun
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Liao Wang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Haishan Wu
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Mengning Yan
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Zhifeng Yu
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
247
|
Wang Y, Zhang T, Xu Y, Chen R, Qu N, Zhang B, Xia C. Suppressing phosphoinositide-specific phospholipases Cγ1 promotes mineralization of osteoarthritic subchondral bone osteoblasts via increasing autophagy, thereby ameliorating articular cartilage degeneration. Bone 2022; 154:116262. [PMID: 34813965 DOI: 10.1016/j.bone.2021.116262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/11/2021] [Accepted: 11/16/2021] [Indexed: 11/23/2022]
Abstract
INTRODUCTION Phosphoinositide-specific phospholipases C-γ1 (PLC-γ1) signaling has been shown to modulate osteoarthritis (OA) chondrocyte metabolism. However, the role of PLC-γ1 in OA osteoblasts remains unclear. Herein, whether and how PLC-γ1 was involved in mineralization in OA subchondral bone osteoblasts were investigated. METHODS Primary non-OA and OA osteoblasts of human and rat isolated from the subchondral bone or the calvaria were cultured in vitro, as well as mouse pre-osteoblastic cell line MC3T3-E1 cells. Rat knee OA model was induced by anterior cruciate ligament transection (ACLT), in which bone canal was carried out from the surface of lateral epicondyle of femur using micro-electric drill. Morphological characteristics of subchondral bone structure and articular cartilage were assessed using CT, micro-CT, and Safranin O/Fast green staining, respectively. Mineralization was measured by alizarin red staining. The expression and production of genes involved in osteoblastic phenotype and mineralization were evaluated by qPCR, western blotting, and immunohistochemistry assays, respectively. The inhibitions were performed using inhibitors and ShRNAs. RESULTS The decreased relative bone density and thickness in the early stage of OA and the increased one in the late stage of OA were observed in subchondral bone of ACLT-rat model. Decreased ALP and OCN levels and absorbance values of ARS content were observed in in vitro osteoblasts isolated from 2 w post-ACLT rat model, as well as IL-1β-treated (for maintaining and mimicking inflammatory status) human OA and rat osteoblasts. Decreased Atg7 level and LC3BII/I ratio in combination with an increase in the P62 level, was concomitant with decreased ALP and OCN mRNA levels and absorbance values of ARS content in OA or IL-1β-treated osteoblasts. Specific inhibition of PLC-γ1 by ShRNAs or inhibitor (U73122) elevated ALP and OCN mRNA levels and absorbance values of ARS content accompanied with increased Atg7 level and LC3BII/I ratio in combination with a decrease in the P62 level in OA osteoblasts. Furthermore, the promoting effect of PLC-γ1 inhibition on ALP and OCN mRNA levels and absorbance values of ARS content was reversed by endoplasmic reticulum (ER) stress activator HA15, as well as autophagic inhibitors CQ and 3MA. Injection with PLC-γ1 inhibitor U73122 from the surface of lateral epicondyle of femur reduced aberrant subchondral bone formation and attenuated articular cartilage degeneration in ACLT-rat. CONCLUSION Aberrant changes of OA subchondral bone structure were concomitant with altered osteoblastic phenotype and mineralization. Impaired autophagy contributed to decreased osteoblastic mineralization in the early stage of OA. PLC-γ1 inhibition promoted osteoblastic mineralization through increasing autophagy in OA osteoblasts, which was partially attributed to suppression of ER stress. Targeting PLC-γ1 in subchondral bone osteoblasts could be more efficacious for OA therapy through treating the bone and cartilage at the same time. In summary, we hypothesize that suppressing PLCγ1 promotes mineralization of osteoarthritic subchondral bone osteoblasts via increasing autophagy, thereby ameliorating articular cartilage degeneration.
Collapse
Affiliation(s)
- Yue Wang
- Bone & Joint Research Institute, Zhongshan Hospital, Xiamen University, Xiamen, Fujian, China
| | - Tongen Zhang
- Bone & Joint Research Institute, Zhongshan Hospital, Xiamen University, Xiamen, Fujian, China
| | - Yang Xu
- Bone & Joint Research Institute, Zhongshan Hospital, Xiamen University, Xiamen, Fujian, China
| | - Rui Chen
- School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Ning Qu
- School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Bing Zhang
- School of Medicine, Xiamen University, Xiamen, Fujian, China.
| | - Chun Xia
- Bone & Joint Research Institute, Zhongshan Hospital, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
248
|
Chen Y, Miao Y, Liu K, Xue F, Zhu B, Zhang C, Li G. Evolutionary course of the femoral head osteonecrosis: Histopathological - radiologic characteristics and clinical staging systems. J Orthop Translat 2022; 32:28-40. [PMID: 35591937 PMCID: PMC9072800 DOI: 10.1016/j.jot.2021.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 02/07/2023] Open
Abstract
Osteonecrosis of the femoral head (ONFH) is a recalcitrant ischemic disorder, which could be classified into two major categories: traumatic and nontraumatic. Regardless of different risk factors, it has been testified that ONFH results from primitive vascular problems, leading to temporary or permanent loss of blood supply to bone tissue. Histopathological and microarchitectural alterations ensues, which is a gradual evolutionary process involving bone marrow and osteocyte necrosis, progressive destruction of subchondral bone, unsuccessful reparative process, and eventual articular collapse and degenerative arthritis. Based on the imaging features of ONFH, different classification systems have been developed to evaluate the severity and prognosis of the disease, which is pivotal for implementation of treatment strategy, especially the joint-preserving surgery. However, patients classified with the same severity stage, especially in the peri-collapse stage, sometimes responded differently after similar joint-preserving surgery. The unusual phenomenon may be attributed to the limitation of the current imaging classification systems, which might underestimate the disease severity, especially when referring to the early stages. In this review, we briefly summarize the etiology and pathogenesis of ONFH. The imaging features and staging classification systems of ONFH are also described. More importantly, we focus on histopathological and microstructural alterations of the femoral head, and provide an overview of their essential contribution to ONFH progression. Given the observation of discordance between imaging characteristics and histopathological alterations, a substantial amount of research on the relationship between imaging and histopathological features is required to further modify and revise the current wide-accepted classification systems.
Collapse
|
249
|
Zhou Y, Ni J, Wen C, Lai P. Light on osteoarthritic joint: from bench to bed. Theranostics 2022; 12:542-557. [PMID: 34976200 PMCID: PMC8692899 DOI: 10.7150/thno.64340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 11/08/2021] [Indexed: 12/19/2022] Open
Abstract
Osteoarthritis (OA) is one of the rapidly growing disability-associated conditions with population aging worldwide. There is a pressing need for precise diagnosis and timely intervention for OA in the early stage. Current clinical imaging modalities, including pain radiography, magnetic resonance imaging, ultrasound, and optical coherent tomography, are limited to provide structural changes when the damage has been established or advanced. It prompts further endeavors in search of novel functional and molecular imaging, which potentially enables early diagnosis and intervention of OA. A hybrid imaging modality based on photothermal effects, photoacoustic imaging, has drawn wide attention in recent years and has seen a variety of biomedical applications, due to its great performance in yielding high-contrast and high-resolution images from structure to function, from tissue down to molecular levels, from animals to human subjects. Photoacoustic imaging has witnessed gratifying potentials and preliminary effects in OA diagnosis. Regarding the treatment of OA, photothermal-triggered therapy has exhibited its attractions for enhanced therapeutic outcomes. In this narrative review, we will discuss photoacoustic imaging for the diagnosis and monitoring of OA at different stages. Structural, functional, and molecular parameter changes associated with OA joints captured by photoacoustics will be summarized, forming the diagnosis perspective of the review. Photothermal therapy applications related to OA will also be discussed herein. Lastly, relevant clinical applications and its potential solutions to extend photoacoustic imaging to deeper OA situations have been proposed. Although some aspects may not be covered, this mini review provides a better understanding of the diagnosis and treatment of OA with exciting innovations based on tissue photothermal effects. It may also inspire more explorations in the field towards earlier and better theranostics of OA.
Collapse
Affiliation(s)
- Yingying Zhou
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Junguo Ni
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR
| | - Chunyi Wen
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
- Research Institute of Smart Ageing, The Hong Kong Polytechnic University, HKSAR
| | - Puxiang Lai
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
- Photonics Research Institute, The Hong Kong Polytechnic University, HKSAR
| |
Collapse
|
250
|
Lawson T, Joenathan A, Patwa A, Snyder BD, Grinstaff MW. Tantalum Oxide Nanoparticles for the Quantitative Contrast-Enhanced Computed Tomography of Ex Vivo Human Cartilage: Assessment of Biochemical Composition and Biomechanics. ACS NANO 2021; 15:19175-19184. [PMID: 34882411 DOI: 10.1021/acsnano.1c03375] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nanoparticle-based contrast agents, when used in concert with imaging modalities such as computed tomography (CT), enhance the visualization of tissues and boundary interfaces. However, the ability to determine the physiological state of the tissue via the quantitative assessment of biochemical or biomechanical properties remains elusive. We report the synthesis and characterization of tantalum oxide (Ta2O5) nanoparticle (NP) contrast agents for rapid, nondestructive, and quantitative contrast-enhanced computed tomography (CECT) to assess both the glycosaminoglycan (GAG) content and the biomechanical integrity of human metacarpal phalangeal joint (MCPJ) articular cartilage. Ta2O5 NPs 3-6 nm in diameter and coated with either nonionic poly(ethylene) glycol (PEG) or cationic trimethylammonium ligands readily diffuse into both healthy and osteoarthritic MCPJ cartilage. The CECT attenuation for the cationic and neutral NPs correlates with the glycosaminoglycan (GAG) content (R2 = 0.8975, p < 0.05 and 0.7054, respectively) and the equilibrium modulus (R2 = 0.8285, p < 0.05 and 0.9312, p < 0.05, respectively). The results highlight the importance of the surface charge and size in the design of NP agents for targeting and imaging articular cartilage. Further, nanoparticle CECT offers the visualization of both soft tissue and underlying bone unlike plain radiography, which is the standard for imaging bone in musculoskeletal diseases, and the ability to provide a real-time quantitative assessment of both hard and soft tissues to provide a comprehensive image of the disease stage, as demonstrated herein.
Collapse
Affiliation(s)
- Taylor Lawson
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
- Department of Mechanical Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Anisha Joenathan
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
- Division of Material Science, Boston University, Boston, Massachusetts 02215, United States
| | - Amit Patwa
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
- Department of Chemistry, School of Science, Navrachana University, Vadodara, Gujarat 391410, India
| | - Brian D Snyder
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
- Department of Orthopaedic Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Mark W Grinstaff
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
- Department of Medicine, Boston University, Boston, Massachusetts 02215 United States
| |
Collapse
|