201
|
Vierck C. Mechanisms of Below-Level Pain Following Spinal Cord Injury (SCI). THE JOURNAL OF PAIN 2019; 21:262-280. [PMID: 31493490 DOI: 10.1016/j.jpain.2019.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 07/05/2019] [Accepted: 08/07/2019] [Indexed: 12/18/2022]
Abstract
Mechanisms of below-level pain are discoverable as neural adaptations rostral to spinal injury. Accordingly, the strategy of investigations summarized here has been to characterize behavioral and neural responses to below-level stimulation over time following selective lesions of spinal gray and/or white matter. Assessments of human pain and the pain sensitivity of humans and laboratory animals following spinal injury have revealed common disruptions of pain processing. Interruption of the spinothalamic pathway partially deafferents nocireceptive cerebral neurons, rendering them spontaneously active and hypersensitive to remaining inputs. The spontaneous activity among these neurons is disorganized and unlikely to generate pain. However, activation of these neurons by their remaining inputs can result in pain. Also, injury to spinal gray matter results in a cascade of secondary events, including excitotoxicity, with rostral propagation of excitatory influences that contribute to chronic pain. Establishment and maintenance of below-level pain results from combined influences of injured and spared axons in the spinal white matter and injured neurons in spinal gray matter on processing of nociception by hyperexcitable cerebral neurons that are partially deafferented. A model of spinal stenosis suggests that ischemic injury to the core spinal region can generate below-level pain. Additional questions are raised about demyelination, epileptic discharge, autonomic activation, prolonged activity of C nocireceptive neurons, and thalamocortical plasticity in the generation of below-level pain. PERSPECTIVE: An understanding of mechanisms can direct therapeutic approaches to prevent development of below-level pain or arrest it following spinal cord injury. Among the possibilities covered here are surgical and other means of attenuating gray matter excitotoxicity and ascending propagation of excitatory influences from spinal lesions to thalamocortical systems involved in pain encoding and arousal.
Collapse
Affiliation(s)
- Chuck Vierck
- Department of Neuroscience, University of Florida College of Medicine and McKnight Brain Institute, Gainesville, Florida.
| |
Collapse
|
202
|
Abstract
OBJECTIVE Older adults are among the most frequent users of emergency departments (EDs). Nonspecific symptoms, such as fatigue and widespread pain, are among the most common symptoms in patients admitted at the ED. Interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α) are inflammation biomarkers associated with chronic stress (i.e., dementia caregiving) and nonspecific symptoms. This study aimed to determine whether IL-6 and TNF-α were prospectively associated with ED risk in dementia caregivers (CGs). METHODS Participants were 85 dementia CGs, who reported during three assessments (3, 9, and 15 months after enrollment) if they had visited an ED for any reason. Cox proportional hazards models were used to examine the relations between resting circulating levels of IL-6 and TNF-α obtained at enrollment and subsequent risk for an ED visit, adjusting for age, sex, use of ED 1 month before enrollment, physical and mental health well-being, body mass index, and CG demands. RESULTS (log) IL-6 significantly predicted ED visits during the 15-month follow-up (B = 1.96, SE = 0.82, p = .017). For every (log) picogram per milliliter increase in IL-6, the risk of visiting an ED was 7.10 times greater. TNF-α was not associated with subsequent ED visits. Exploratory analyses suggested that CGs with levels of IL-6 above the 80th percentile and experiencing high CG demands were at highest risk of an ED visit. CONCLUSIONS IL-6 levels and CG demands may be useful for predicting vulnerability for future ED visits. Although further studies should be conducted to replicate and extend these findings, interventions that successfully modify inflammation markers, including the underlying pathophysiology related to stress and/or comorbid illnesses, may be useful in preventing costly and detrimental outcomes in this population.
Collapse
|
203
|
Andrés-Rodríguez L, Borràs X, Feliu-Soler A, Pérez-Aranda A, Rozadilla-Sacanell A, Arranz B, Montero-Marin J, García-Campayo J, Angarita-Osorio N, Maes M, Luciano JV. Machine Learning to Understand the Immune-Inflammatory Pathways in Fibromyalgia. Int J Mol Sci 2019; 20:ijms20174231. [PMID: 31470635 PMCID: PMC6747258 DOI: 10.3390/ijms20174231] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 08/24/2019] [Accepted: 08/26/2019] [Indexed: 12/30/2022] Open
Abstract
Fibromyalgia (FM) is a chronic syndrome characterized by widespread musculoskeletal pain, and physical and emotional symptoms. Although its pathophysiology is largely unknown, immune-inflammatory pathways may be involved. We examined serum interleukin (IL)-6, high sensitivity C-reactive protein (hs-CRP), CXCL-8, and IL-10 in 67 female FM patients and 35 healthy women while adjusting for age, body mass index (BMI), and comorbid disorders. We scored the Fibromyalgia Severity Score, Widespread Pain Index (WPI), Symptom Severity Scale (SSS), Hospital Anxiety (HADS-A), and Depression Scale and the Perceived Stress Scale (PSS-10). Clinical rating scales were significantly higher in FM patients than in controls. After adjusting for covariates, IL-6, IL-10, and CXCL-8 were lower in FM than in HC, whereas hs-CRP did not show any difference. Binary regression analyses showed that the diagnosis FM was associated with lowered IL-10, quality of sleep, aerobic activities, and increased HADS-A and comorbidities. Neural networks showed that WPI was best predicted by quality of sleep, PSS-10, HADS-A, and the cytokines, while SSS was best predicted by PSS-10, HADS-A, and IL-10. Lowered levels of cytokines are associated with FM independently from confounders. Lowered IL-6 and IL-10 signaling may play a role in the pathophysiology of FM.
Collapse
Affiliation(s)
- Laura Andrés-Rodríguez
- Group of Psychological Research in Fibromyalgia & Chronic Pain (AGORA), Institut de Recerca Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain
- Teaching, Research & Innovation Unit, Parc Sanitari Sant Joan de Déu, 08830 St. Boi de Llobregat, Spain
- Primary Care Prevention and Health Promotion Research Network, RedIAPP, 28013 Madrid, Spain
- Faculty of Psychology, Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès Barcelona, Spain
| | - Xavier Borràs
- Group of Psychological Research in Fibromyalgia & Chronic Pain (AGORA), Institut de Recerca Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain
- Faculty of Psychology, Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès Barcelona, Spain
| | - Albert Feliu-Soler
- Group of Psychological Research in Fibromyalgia & Chronic Pain (AGORA), Institut de Recerca Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain.
- Teaching, Research & Innovation Unit, Parc Sanitari Sant Joan de Déu, 08830 St. Boi de Llobregat, Spain.
- Primary Care Prevention and Health Promotion Research Network, RedIAPP, 28013 Madrid, Spain.
- Faculty of Psychology, Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès Barcelona, Spain.
| | - Adrián Pérez-Aranda
- Group of Psychological Research in Fibromyalgia & Chronic Pain (AGORA), Institut de Recerca Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain.
- Teaching, Research & Innovation Unit, Parc Sanitari Sant Joan de Déu, 08830 St. Boi de Llobregat, Spain.
- Primary Care Prevention and Health Promotion Research Network, RedIAPP, 28013 Madrid, Spain.
| | | | - Belén Arranz
- Parc Sanitari Sant Joan de Déu, CIBERSAM, 08950 Sant Boi de llobregat, Spain
| | - Jesús Montero-Marin
- Primary Care Prevention and Health Promotion Research Network, RedIAPP, 28013 Madrid, Spain
| | - Javier García-Campayo
- Primary Care Prevention and Health Promotion Research Network, RedIAPP, 28013 Madrid, Spain
- Department of Psychiatry, Miguel Servet Hospital, Aragon Institute of Health Sciences (I+CS), 50009 Zaragoza, Spain
| | - Natalia Angarita-Osorio
- Group of Psychological Research in Fibromyalgia & Chronic Pain (AGORA), Institut de Recerca Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain
- Teaching, Research & Innovation Unit, Parc Sanitari Sant Joan de Déu, 08830 St. Boi de Llobregat, Spain
| | - Michael Maes
- Department of Psychiatry, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Juan V Luciano
- Group of Psychological Research in Fibromyalgia & Chronic Pain (AGORA), Institut de Recerca Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain.
- Teaching, Research & Innovation Unit, Parc Sanitari Sant Joan de Déu, 08830 St. Boi de Llobregat, Spain.
- Primary Care Prevention and Health Promotion Research Network, RedIAPP, 28013 Madrid, Spain.
| |
Collapse
|
204
|
Alvarez P, Bogen O, Levine JD. Interleukin 6 decreases nociceptor expression of the potassium channel KV1.4 in a rat model of hand-arm vibration syndrome. Pain 2019; 160:1876-1882. [PMID: 31335655 PMCID: PMC6668361 DOI: 10.1097/j.pain.0000000000001570] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chronic muscle pain is a prominent symptom of the hand-arm vibration syndrome (HAVS), an occupational disease induced by exposure to vibrating power tools, but the underlying mechanism remains unknown. We evaluated the hypothesis that vibration induces an interleukin 6 (IL-6)-mediated downregulation of the potassium voltage-gated channel subfamily A member 4 (KV1.4) in nociceptors leading to muscle pain. Adult male rats were submitted to a protocol of mechanical vibration of the right hind limb. Twenty-four hours after vibration, muscle hyperalgesia was observed, concomitant to increased levels of IL-6 in the gastrocnemius muscle and decreased expression of KV1.4 in the dorsal root ganglia. Local injection of neutralizing antibodies against IL-6 attenuated the muscle hyperalgesia induced by vibration, whereas antisense knockdown of this channel in the dorsal root ganglia mimicked the muscle hyperalgesia observed in the model of HAVS. Finally, knockdown of the IL-6 receptor signaling subunit glycoprotein 130 (gp130) attenuated both vibration-induced muscle hyperalgesia and downregulation of KV1.4. These results support the hypothesis that IL-6 plays a central role in the induction of muscle pain in HAVS. This likely occurs through intracellular signaling downstream to the IL-6 receptor subunit gp130, which decreases the expression of KV1.4 in nociceptors.
Collapse
Affiliation(s)
- Pedro Alvarez
- Department of Oral and Maxillofacial Surgery, University of California, San Francisco, USA
| | - Oliver Bogen
- Department of Oral and Maxillofacial Surgery, University of California, San Francisco, USA
| | - Jon D. Levine
- Department of Oral and Maxillofacial Surgery, University of California, San Francisco, USA
- Department of Medicine, University of California, San Francisco, USA
| |
Collapse
|
205
|
Corriger A, Duclos M, Corcuff JB, Lambert C, Marceau G, Sapin V, Macian N, Roux D, Pereira B, Pickering G. Hormonal Status and Cognitivo-Emotional Profile in Real-Life Patients With Neuropathic Pain: A Case Control Study. Pain Pract 2019; 19:703-714. [PMID: 31127700 DOI: 10.1111/papr.12800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 05/17/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND The specific impact of neuropathic pain and recommended neuropathic pain treatments on the hormonal and immune status of patients has been so far poorly explored. This study aimed at studying, in real life, the hypothalamic-pituitary-adrenal axis and the cytokine profile of patients with neuropathic pain. It also explored their links with cognition, emotion, quality of life, and drug treatment. METHODS This prospective study (clinicaltrials.gov NCT01543425) included 60 patients with neuropathic pain and 60 age- and gender-matched healthy volunteers after obtaining signatures of informed consent. A number of parameters were measured: adrenocorticotropic hormone, cortisol, cortisol awakening response, dehydroepiandrosterone sulphate, sex hormone binding globulin, testosterone, 17-β-estradiol, progesterone, luteinizing hormone, follicle-stimulating hormone, cytokines, brain-derived neurotrophic factor, and vitamin D. Psychological parameters were assessed by questionnaires. RESULTS Patients with neuropathic pain had lower levels of adrenocorticotropic hormone (P = 0.009) and dehydroepiandrosterone sulphate (P < 0.001) than controls, and the cortisol awakening response was impaired. Patients were more depressed and anxious (P < 0.001) and had a diminished quality of life (P < 0.001), which was influenced by cytokines (P = 0.0067) and testosterone (P = 0.028). Antidepressants and antiepileptics appeared to interfere with testosterone and cognitivo-emotional domains. CONCLUSION An impairment of the hormonal status and of the immune system was observed in patients. It identified testosterone as a potential pivotal mediator between antidepressants/antiepileptics and quality of life. Further studies must address the exact impact of different types of drugs on central effects, of gender differences, and of the immune system of neuropathic pain.
Collapse
Affiliation(s)
- Alexandrine Corriger
- Laboratoire Neuro-Dol Inserm 1107, University Clermont Auvergne, Clermont-Ferrand, France
| | - Martine Duclos
- Sports Medicine Department, University Hospital, CHU, INRA UMR 1019, UNH, CRNH, Clermont-Ferrand, France
| | - Jean-Benoit Corcuff
- Hormone Laboratory, Nuclear Medicine, CHU Bordeaux UMR INRA 1286 - University Bordeaux, Bordeaux, France
| | - Céline Lambert
- Biostatistics Unit (DRCI), University Hospital Clermont-Ferrand, Clermont-Ferrand, France
| | - Geoffroy Marceau
- Biochemistry Department, University Hospital CHU, Clermont-Ferrand, France
| | - Vincent Sapin
- Biochemistry Department, University Hospital CHU, Clermont-Ferrand, France
| | - Nicolas Macian
- Clinical Pharmacology Department, CPC/CIC Inserm 1405, University Hospital CHU, Clermont-Ferrand, France
| | - Delphine Roux
- Clinical Pharmacology Department, CPC/CIC Inserm 1405, University Hospital CHU, Clermont-Ferrand, France
| | - Bruno Pereira
- Biostatistics Unit (DRCI), University Hospital Clermont-Ferrand, Clermont-Ferrand, France
| | - Gisèle Pickering
- Laboratoire Neuro-Dol Inserm 1107, University Clermont Auvergne, Clermont-Ferrand, France.,Clinical Pharmacology Department, CPC/CIC Inserm 1405, University Hospital CHU, Clermont-Ferrand, France
| |
Collapse
|
206
|
Choy EHS, Calabrese LH. Neuroendocrine and neurophysiological effects of interleukin 6 in rheumatoid arthritis. Rheumatology (Oxford) 2019; 57:1885-1895. [PMID: 29186541 PMCID: PMC6199533 DOI: 10.1093/rheumatology/kex391] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Indexed: 11/14/2022] Open
Abstract
RA is a chronic, systemic, autoimmune disease characterized by inflammation and degradation of the joints, causing significant negative impact on quality of life. In addition to joint disease, symptoms and co-morbidities associated with RA-namely pain, fatigue and mood disorders-are often as debilitating as the disease itself. The pro-inflammatory cytokine IL-6 plays a critical role in RA-associated pathology. However, a greater understanding of the translational effects of IL-6 outside of the immune system is needed. This review discusses our current understanding of emerging aspects of IL-6 in RA-associated pain, fatigue and mood disorders such as depression and anxiety. This review also describes the clinical effects of IL-6 inhibition on these symptoms and co-morbidities in patients with RA.
Collapse
Affiliation(s)
- Ernest H S Choy
- Section of Rheumatology, Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | | |
Collapse
|
207
|
Zhou YQ, Liu DQ, Chen SP, Sun J, Zhou XR, Xing C, Ye DW, Tian YK. The Role of CXCR3 in Neurological Diseases. Curr Neuropharmacol 2019; 17:142-150. [PMID: 29119926 PMCID: PMC6343204 DOI: 10.2174/1570159x15666171109161140] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/22/2017] [Accepted: 11/07/2017] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Neurological diseases have become an obvious challenge due to insufficient therapeutic intervention. Therefore, novel drugs for various neurological disorders are in desperate need. Recently, compelling evidence has demonstrated that chemokine receptor CXCR3, which is a G protein-coupled receptor in the CXC chemokine receptor family, may play a pivotal role in the development of neurological diseases. The aim of this review is to provide evidence for the potential of CXCR3 as a therapeutic target for neurological diseases. METHODS English journal articles that focused on the invovlement of CXCR3 in neurological diseases were searched via PubMed up to May 2017. Moreover, reference lists from identified articles were included for overviews. RESULTS The expression level of CXCR3 in T cells was significantly elevated in several neurological diseases, including multiple sclerosis (MS), glioma, Alzheimer's disease (AD), chronic pain, human T-lymphotropic virus type 1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) and bipolar disorder. CXCR3 antagonists showed therapeutic effects in these neurological diseases. CONCLUSION These studies provided hard evidence that CXCR3 plays a vital role in the pathogenesis of MS, glioma, AD, chronic pain, HAM/TSP and bipolar disorder. CXCR3 is a crucial molecule in neuroinflammatory and neurodegenerative diseases. It regulates the activation of infiltrating cells and resident immune cells. However, the exact functions of CXCR3 in neurological diseases are inconclusive. Thus, it is important to understand the topic of chemokines and the scope of their activity in neurological diseases.
Collapse
Affiliation(s)
- Ya-Qun Zhou
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dai-Qiang Liu
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shu-Ping Chen
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Sun
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xue-Rong Zhou
- Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cui Xing
- Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Da-Wei Ye
- Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu-Ke Tian
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
208
|
Tonello R, Lee SH, Berta T. Monoclonal Antibody Targeting the Matrix Metalloproteinase 9 Prevents and Reverses Paclitaxel-Induced Peripheral Neuropathy in Mice. THE JOURNAL OF PAIN 2019; 20:515-527. [PMID: 30471427 PMCID: PMC6511475 DOI: 10.1016/j.jpain.2018.11.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/05/2018] [Accepted: 11/05/2018] [Indexed: 12/18/2022]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a disabling condition accompanying several cancer drugs, including the front-line chemotherapeutic agent paclitaxel. Although CIPN can force dose reduction or even discontinuation of chemotherapy, affecting survival in cancer patients, there is no US Food and Drug Administration-approved treatment for CIPN. CIPN in mice is characterized by neuropathic pain (eg, mechanical allodynia) in association with oxidative stress and neuroinflammation in dorsal root ganglia (DRGs), as well as retraction of intraepidermal nerve fibers. Here, we report that paclitaxel-induced mechanical allodynia is associated with transcriptional increase in matrix metalloproteinase (MMP) 2 and 9 and decrease in metallopeptidase inhibitor 1 (TIMP1), a strong endogenous MMP9 inhibitor. Consistently, MMP9 protein levels are increased in DRG neurons in vivo and in vitro after paclitaxel treatment, and it is demonstrated, for the first time, that intrathecal injections of exogenous TIMP1 or a monoclonal antibody targeting MMP9 (MMP9 mAb) significantly prevented and reversed paclitaxel-induced mechanical allodynia in male and female mice. Analyses of DRG tissues showed that MMP9 mAb significantly decreased oxidative stress and neuroinflammatory mediators interleukin-6 and tumor necrosis factor α, as well as prevented paclitaxel-induced loss of intraepidermal nerve fibers. These findings suggest that MMP signaling plays a key role in paclitaxel-induced peripheral neuropathy, and MMP9 mAb may offer new therapeutic approaches for the treatment of CIPN. PERSPECTIVE: Chemotherapy-induced peripheral neuropathy (CIPN) remains ineffectively managed in cancer patients, potentially leading to the discontinuation of an otherwise life-saving treatment. Here, we demonstrate that a monoclonal antibody targeting MMP9 alleviates neuropathic pain and several mechanisms linked to CIPN. This study is particularly relevant, because a humanized MMP9 antibody is already in advanced clinical trials for the treatment of colitis and cancer, and it may be straightforwardly repurposed for the relief of CIPN.
Collapse
Affiliation(s)
- Raquel Tonello
- Department of Anesthesiology, Pain Research Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Sang Hoon Lee
- Department of Anesthesiology, Pain Research Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Temugin Berta
- Department of Anesthesiology, Pain Research Center, University of Cincinnati College of Medicine, Cincinnati, Ohio.
| |
Collapse
|
209
|
Yao FD, Yang JQ, Huang YC, Luo MP, Yang WJ, Zhang B, Liu XJ. Antinociceptive effects of Ginsenoside Rb1 in a rat model of cancer-induced bone pain. Exp Ther Med 2019; 17:3859-3866. [PMID: 30988771 PMCID: PMC6447891 DOI: 10.3892/etm.2019.7404] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 09/28/2018] [Indexed: 12/12/2022] Open
Abstract
Ginsenoside Rb1 (GRb1) is a major ingredient of ginseng, a traditional medicine that has been used for thousands of years. Previous studies have reported that GRb1 had anti-inflammatory, antioxidant and neuroprotective effects. The current study aimed to evaluate the antinociceptive effects of GRb1 in a rat model of cancer-induced bone pain (CIBP) established by intratibial injection of Walker 256 cells. Intraperitoneal injection (i.p.) of GRb1 (5 and 10 mg/kg, but not 1 mg/kg) partially and transiently reversed the mechanical allodynia and thermal hyperalgesia in CIBP rats at 14 days following surgery when the pain behavior is established. Furthermore, repeated administration of GRb1 demonstrated persistent analgesic effect. Additionally, the protein expression and immunoreactivity of iba1, which is the maker of microglia, was significantly suppressed in CIBP rats treated with GRb1 (i.p., 10 mg/kg) from day 12 for three consecutive days compared with CIBP rats treated with a vehicle. Furthermore, upregulation of spinal interleukin (IL)-1β, IL-6 and tumor necrosis factor-α were also significantly inhibited by the treatment of GRb1 (i.p., 10 mg/kg) from day 12 for three consecutive days. Together, these results indicated that GRb1 may attenuate CIBP via inhibiting the activation of microglia and glial-derived proinflammatory cytokines.
Collapse
Affiliation(s)
- Fu-Dong Yao
- Department of Spine Surgery, Baoji Central Hospital, Baoji, Shaanxi 721008, P.R. China
| | - Jun-Qi Yang
- Department of Orthopaedics, Baoji Central Hospital, Baoji, Shaanxi 721008, P.R. China
| | - Yuan-Chi Huang
- Department of Orthopaedics, Baoji Central Hospital, Baoji, Shaanxi 721008, P.R. China
| | - Ming-Peng Luo
- Department of Orthopaedics, Baoji Central Hospital, Baoji, Shaanxi 721008, P.R. China
| | - Wen-Jie Yang
- Department of Rehabilitation and Pain, The Second Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi 712000, P.R. China
| | - Bo Zhang
- Department of Orthopaedics, The Third Hospital of Xi'an City, Xi'an, Shaanxi 710018, P.R. China
| | - Xia-Jun Liu
- Department of Orthopaedics, Baoji Central Hospital, Baoji, Shaanxi 721008, P.R. China
| |
Collapse
|
210
|
Yin C, Hu Q, Liu B, Tai Y, Zheng X, Li Y, Xiang X, Wang P, Liu B. Transcriptome profiling of dorsal root ganglia in a rat model of complex regional pain syndrome type-I reveals potential mechanisms involved in pain. J Pain Res 2019; 12:1201-1216. [PMID: 31114302 PMCID: PMC6489655 DOI: 10.2147/jpr.s188758] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 02/27/2019] [Indexed: 12/27/2022] Open
Abstract
Purpose: Complex regional pain syndrome type-I (CRPS-I) is a progressive and devastating pain condition, which remains clinically challenging. The mechanisms of CRPS-I still remain largely unknown. We aim to identify transcriptome profiles of genes relevant to pain mechanisms and major pathways involved in CRPS-I. Methods: A rat model of chronic post-ischemia pain (CPIP) was established to mimic CRPS-I. RNA-sequencing (RNA-Seq) was used to profile transcriptome of L4-6 dorsal root ganglia (DRGs) of a rat model of CRPS-I. Results: CPIP model rats developed persistent mechanical/thermal hyperalgesia in ipsilateral hind paw. RNA-Seq identified a total of 295 differentially expressed genes (DEGs), including 195 up- and 100 downregulated, in ipsilateral DRGs of CPIP rats compared with sham rats. The expression of several representative genes was confirmed by qPCR. Functional analysis of DEGs revealed that the most significant enriched biological processes of upregulated genes include response to lipopolysaccharide, inflammatory response and cytokine activity, which are all important mechanisms mediating pain. We further screened DEGs implicated in pain progress, genes enriched in small- to medium-sized sensory neurons and enriched in TRPV1-lineage nociceptors. By comparing our dataset with other published datasets of neuropathic or inflammatory pain models, we identified a core set of genes and pathways that extensively participate in CPIP and other neuropathic pain states. Conclusion: Our study identified transcriptome gene changes in DRGs of an animal model of CRPS-I and could provide insights into identifying promising genes or pathways that can be potentially targeted to ameliorate CRPS-I.
Collapse
Affiliation(s)
- Chengyu Yin
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, People's Republic of China.,College of Life Science, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Qimiao Hu
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, People's Republic of China
| | - Boyu Liu
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, People's Republic of China
| | - Yan Tai
- Academy of Chinese Medicine Sciences, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Xiaoli Zheng
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, People's Republic of China
| | - Yuanyuan Li
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, People's Republic of China
| | - Xuaner Xiang
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, People's Republic of China
| | - Ping Wang
- Department of Pathology, School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Boyi Liu
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, People's Republic of China
| |
Collapse
|
211
|
Serizawa K, Tomizawa-Shinohara H, Yasuno H, Yogo K, Matsumoto Y. Anti-IL-6 Receptor Antibody Inhibits Spontaneous Pain at the Pre-onset of Experimental Autoimmune Encephalomyelitis in Mice. Front Neurol 2019; 10:341. [PMID: 31024434 PMCID: PMC6465542 DOI: 10.3389/fneur.2019.00341] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 03/20/2019] [Indexed: 12/13/2022] Open
Abstract
Chronic pain is a significant symptom in patients with autoimmune encephalomyelitis, such as multiple sclerosis and neuromyelitis optica. The most commonly used animal model of these diseases is experimental autoimmune encephalomyelitis (EAE). We previously reported that evoked pain, such as mechanical allodynia, was improved by an anti-IL-6 receptor antibody in EAE mice. However, few reports have evaluated spontaneous pain in EAE mice. Here, we assessed spontaneous pain in EAE mice by utilizing the Mouse Grimace Scale (MGS, a standardized murine facial expression-based coding system) and evaluated the influence of an anti-IL-6 receptor antibody (MR16-1). EAE was induced in female C57BL/6J mice by subcutaneous immunization with myelin oligodendrocyte glycoprotein 35–55 emulsified in adjuvant and administration of pertussis toxin. Mice were placed individually in cubicles and filmed for about 10 min. Ten clear head shots per mouse from the video recording were given a score of 0, 1, or 2 for each of three facial action units: orbital tightening, nose bulge, and ear position. Clinical symptoms of EAE were also scored. Measurement of 5-HT in the spinal cord and functional imaging of the periaqueductal gray (PAG) were also performed. Compared with control mice, MGS score was significantly higher in EAE mice. MR16-1 prevented this increase, especially in pre-onset EAE mice. Promotion of spinal 5-HT turnover and reduction of PAG activity were observed in pre-onset EAE mice. These results suggest that MR16-1 prevented spontaneous pain developed before EAE onset.
Collapse
Affiliation(s)
- Kenichi Serizawa
- Product Research Department, Chugai Pharmaceutical Co., Ltd, Shizuoka, Japan
| | | | - Hideyuki Yasuno
- Product Research Department, Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan
| | - Kenji Yogo
- Product Research Department, Chugai Pharmaceutical Co., Ltd, Shizuoka, Japan
| | - Yoshihiro Matsumoto
- Product Research Department, Chugai Pharmaceutical Co., Ltd, Shizuoka, Japan
| |
Collapse
|
212
|
Kleckner IR, Kamen C, Cole C, Fung C, Heckler CE, Guido JJ, Culakova E, Onitilo AA, Conlin A, Kuebler JP, Mohile S, Janelsins M, Mustian KM. Effects of exercise on inflammation in patients receiving chemotherapy: a nationwide NCORP randomized clinical trial. Support Care Cancer 2019; 27:4615-4625. [PMID: 30937600 PMCID: PMC6774911 DOI: 10.1007/s00520-019-04772-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 03/22/2019] [Indexed: 12/12/2022]
Abstract
Purpose. A growing body of research suggests that inflammation plays a role in many chemotherapy-related toxicities such as fatigue, anxiety, and neuropathy. Regular exercise can change levels of individual cytokines (e.g., reducing IL-6, increasing IL-10); however, it is not known whether exercise during chemotherapy affects relationships between cytokines (i.e., whether cytokine concentrations change collectively vs. independently). This study assessed how 6 weeks of exercise during chemotherapy affected relationships between changes in concentrations of several cytokines. Methods. This is a secondary analysis of a randomized trial studying 6 weeks of moderate-intensity walking and resistance exercise during chemotherapy compared to chemotherapy alone. At pre- and post-intervention, patients provided blood to assess serum concentrations of cytokines IL-1β, IL-6, IL-8, IL-10, and IFN-γ, and receptor sTNFR1. We investigated relationships between cytokines using the correlations between changes in cytokine concentrations from pre- to post-intervention. Results. We obtained complete data from 293 patients (149 randomized to exercise). Exercise strengthened the correlation between concentration changes of IL-10 and IL-6 (r=0.44 in exercisers vs. 0.11 in controls; p=0.001). We observed the same pattern for IL-10:IL-1β and IL-10:sTNFR1. Exercise also induced an anti-inflammatory cytokine profile, per reductions in pro-inflammatory IFNγ (p=0.044) and perhaps IL-1β (p=0.099, trend-level significance). Conclusions. Our hypothesis-generating work suggests that regular exercise during 6 weeks of chemotherapy may cause certain cytokine concentrations to change collectively (not independently). This work enhances our understanding of relationships between cytokines and complements traditional analyses of cytokines in isolation. Future work should test for replication and relationships to patient outcomes.
Collapse
Affiliation(s)
- Ian R Kleckner
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA. .,Cancer Control Unit, Department of Surgery, Department of Neuroscience, University of Rochester Medical Center, 265 Crittenden Blvd., Box CU 420658, Rochester, NY, 14642, USA.
| | - Charles Kamen
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Calvin Cole
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Chunkit Fung
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Charles E Heckler
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Joseph J Guido
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Eva Culakova
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Adedayo A Onitilo
- Wisconsin NCORP, Weston, WI, USA.,Marshfield Clinic, 3501 Cranberry Blvd, Weston, WI, 54476, USA
| | - Alison Conlin
- Pacific Cancer Research Consortium NCORP, Bethesda, MD, USA
| | | | - Supriya Mohile
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Michelle Janelsins
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Karen M Mustian
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
213
|
Contribution of Infrapatellar Fat Pad and Synovial Membrane to Knee Osteoarthritis Pain. BIOMED RESEARCH INTERNATIONAL 2019; 2019:6390182. [PMID: 31049352 PMCID: PMC6462341 DOI: 10.1155/2019/6390182] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/26/2019] [Accepted: 03/14/2019] [Indexed: 02/07/2023]
Abstract
Osteoarthritis (OA) is the most common form of joint disease and a major cause of pain and disability in the adult population. Interestingly, there are patients with symptomatic OA displaying pain, while patients with asymptomatic OA that do not experience pain but show radiographic signs of joint damage. Pain is a complex experience integrating sensory, affective, and cognitive processes related to several peripheral and central nociceptive factors besides inflammation. During the last years, the role of infrapatellar fat pad (IFP), other than the synovial membrane, has been investigated as a potential source of pain in OA. Interestingly, new findings suggest that IFP and synovial membrane might act as a functional unit in OA pathogenesis and pain. The present review discuss the role of IFP and synovial membrane in the development of OA, with a particular focus on pain onset and the possible involved mediators that may play a role in OA pathology and pain mechanisms. Inflammation of IFP and synovial membrane may drive peripheral and central sensitization in KOA. Since sensitization is associated with pain severity in knee OA and may potentially contribute to the transition from acute to chronic, persistent pain in knee OA, preventing sensitization would be a potentially effective and novel means of preventing worsening of pain in knee OA.
Collapse
|
214
|
Abstract
Supplemental Digital Content is Available in the Text. Pharmacological blockade of FKBP51 can reduce established persistent pain states across sexes. It is well established that FKBP51 regulates the stress system by modulating the sensitivity of the glucocorticoid receptor to stress hormones. Recently, we have demonstrated that FKBP51 also drives long-term inflammatory pain states in male mice by modulating glucocorticoid signalling at spinal cord level. Here, we explored the potential of FKBP51 as a new pharmacological target for the treatment of persistent pain across the sexes. First, we demonstrated that FKBP51 regulates long-term pain states of different aetiologies independently of sex. Deletion of FKBP51 reduced the mechanical hypersensitivity seen in joint inflammatory and neuropathic pain states in female and male mice. Furthermore, FKBP51 deletion also reduced the hypersensitivity seen in a translational model of chemotherapy-induced pain. Interestingly, these 3 pain states were associated with changes in glucocorticoid signalling, as indicated by the increased expression, at spinal cord level, of the glucocorticoid receptor isoform associated with glucocorticoid resistance, GRβ, and increased levels of plasma corticosterone. These pain states were also accompanied by an upregulation of interleukin-6 in the spinal cord. Crucially, we were able to pharmacologically reduce the severity of the mechanical hypersensitivity seen in these 3 models of persistent pain with the unique FKBP51 ligand SAFit2. When SAFit2 was combined with a state-of-the-art vesicular phospholipid gel formulation for slow release, a single injection of SAFit2 offered pain relief for at least 7 days. We therefore propose the pharmacological blockade of FKBP51 as a new approach for the treatment of persistent pain across sexes, likely in humans as well as rodents.
Collapse
|
215
|
Leegwater NC, van der Meer SM, Sierevelt IN, Spruijt H, Nolte PA. Continuous-flow cryocompression therapy penetrates to bone level in hip fracture patients in a numerical simulation. J Orthop Surg Res 2019; 14:49. [PMID: 30764844 PMCID: PMC6376712 DOI: 10.1186/s13018-019-1081-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 01/31/2019] [Indexed: 10/27/2022] Open
Abstract
BACKGROUND The aim of this study was to define deep tissue temperature during cryotherapy in postoperative hip fracture patients, by using measured skin temperature as input parameter for a simple numerical model. Second, an association was investigated between pain and tissue temperature distribution, to assess cryotherapy-induced analgesia of soft tissue-derived pain. METHODS Data from 35 participants in an ongoing trial was used. In three subjects who consented on optional measurements, skin temperature was measured in 3 days during and after cryotherapy. A simple numerical model was developed to calculate tissue temperature distribution during cryotherapy. RESULTS Inter and intrasubject skin temperature displayed high variation: trochanter 11-27 °C, mid-femur 11-24 °C, distal femur 10-16 °C. Predicted temperatures decreased to 20 °C at 1 cm, 26 °C at 2 cm, and 30 °C at 3 cm tissue depth. Smallest soft tissue layer was measured at the trochanter; 42% had less than 30 mm and 21% had less than 20 mm. Numeric rating scale pain varied (mean = 2.14; SD = 1.92), and no association was found between pain and decrease in temperature (r = 0.064; p = 0.204). CONCLUSIONS Cryotherapy was predicted to reduce temperature up to 3 cm; in cachectic patients, this reaches the bone, where it might have implications for bone tissue healing when treated for a prolonged period of time. Cryotherapy-induced analgesia is likely to originate from skin analgesia rather than analgesia of muscle or bone-derived pain.
Collapse
Affiliation(s)
- Nick C. Leegwater
- 0000 0004 0568 6419grid.416219.9Department of Orthopedics, Spaarne Gasthuis, Spaarnepoort 1, 2134 TM Hoofddorp, The Netherlands
| | - Sander M. van der Meer
- 0000 0004 0568 6419grid.416219.9Department of Clinical Physics, Spaarne Gasthuis, Hoofddorp, The Netherlands
| | - Inger N. Sierevelt
- 0000 0004 0568 6419grid.416219.9Department of Orthopedics, Spaarne Gasthuis, Spaarnepoort 1, 2134 TM Hoofddorp, The Netherlands
| | - Hugo Spruijt
- 0000 0004 0568 6419grid.416219.9Department of Clinical Physics, Spaarne Gasthuis, Hoofddorp, The Netherlands
| | - Peter A. Nolte
- 0000 0004 0568 6419grid.416219.9Department of Orthopedics, Spaarne Gasthuis, Spaarnepoort 1, 2134 TM Hoofddorp, The Netherlands
| |
Collapse
|
216
|
Bönhof GJ, Herder C, Strom A, Papanas N, Roden M, Ziegler D. Emerging Biomarkers, Tools, and Treatments for Diabetic Polyneuropathy. Endocr Rev 2019; 40:153-192. [PMID: 30256929 DOI: 10.1210/er.2018-00107] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 08/23/2018] [Indexed: 12/12/2022]
Abstract
Diabetic neuropathy, with its major clinical sequels, notably neuropathic pain, foot ulcers, and autonomic dysfunction, is associated with substantial morbidity, increased risk of mortality, and reduced quality of life. Despite its major clinical impact, diabetic neuropathy remains underdiagnosed and undertreated. Moreover, the evidence supporting a benefit for causal treatment is weak at least in patients with type 2 diabetes, and current pharmacotherapy is largely limited to symptomatic treatment options. Thus, a better understanding of the underlying pathophysiology is mandatory for translation into new diagnostic and treatment approaches. Improved knowledge about pathogenic pathways implicated in the development of diabetic neuropathy could lead to novel diagnostic techniques that have the potential of improving the early detection of neuropathy in diabetes and prediabetes to eventually embark on new treatment strategies. In this review, we first provide an overview on the current clinical aspects and illustrate the pathogenetic concepts of (pre)diabetic neuropathy. We then describe the biomarkers emerging from these concepts and novel diagnostic tools and appraise their utility in the early detection and prediction of predominantly distal sensorimotor polyneuropathy. Finally, we discuss the evidence for and limitations of the current and novel therapy options with particular emphasis on lifestyle modification and pathogenesis-derived treatment approaches. Altogether, recent years have brought forth a multitude of emerging biomarkers reflecting different pathogenic pathways such as oxidative stress and inflammation and diagnostic tools for an early detection and prediction of (pre)diabetic neuropathy. Ultimately, these insights should culminate in improving our therapeutic armamentarium against this common and debilitating or even life-threatening condition.
Collapse
Affiliation(s)
- Gidon J Bönhof
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Christian Herder
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,German Center for Diabetes Research, Munich-Neuherberg, Neuherberg, Partner Düsseldorf, Düsseldorf, Germany.,Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Alexander Strom
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,German Center for Diabetes Research, Munich-Neuherberg, Neuherberg, Partner Düsseldorf, Düsseldorf, Germany
| | - Nikolaos Papanas
- Second Department of Internal Medicine, Diabetes Center, Diabetic Foot Clinic, Democritus University of Thrace, Alexandroupolis, Greece
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,German Center for Diabetes Research, Munich-Neuherberg, Neuherberg, Partner Düsseldorf, Düsseldorf, Germany.,Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Dan Ziegler
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,German Center for Diabetes Research, Munich-Neuherberg, Neuherberg, Partner Düsseldorf, Düsseldorf, Germany.,Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
217
|
Jones SA, Takeuchi T, Aletaha D, Smolen J, Choy EH, McInnes I. Interleukin 6: The biology behind the therapy. ACTA ACUST UNITED AC 2019. [DOI: 10.1136/conmed-2018-000005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The cytokine interleukin (IL)−6 performs a diverse portfolio of functions in normal physiology and disease. These functions extend beyond the typical role for an inflammatory cytokine, and IL-6 often displays hormone-like properties that affect metabolic processes associated with lipid metabolism, insulin resistance, and the neuroendocrine system. Consequently, the biology of IL-6 is complex. Recent advances in the field have led to novel interpretations of how IL-6 delivers immune homeostasis in health and yet drives disease pathology during infection, autoimmunity, and cancer. Various biological drugs that target IL-6 are in clinical practice or emerging in clinical trials and pre-clinical development programmes. The challenge is knowing how and when to apply these therapies. In this review, we will explore the biology behind IL-6 directed therapies and identify some key hurdles for future investigation.
Collapse
|
218
|
Al-Massri KF, Ahmed LA, El-Abhar HS. Mesenchymal stem cells therapy enhances the efficacy of pregabalin and prevents its motor impairment in paclitaxel-induced neuropathy in rats: Role of Notch1 receptor and JAK/STAT signaling pathway. Behav Brain Res 2018; 360:303-311. [PMID: 30543902 DOI: 10.1016/j.bbr.2018.12.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 11/12/2018] [Accepted: 12/06/2018] [Indexed: 02/07/2023]
Abstract
Peripheral neuropathy is a common adverse effect observed during the use of paclitaxel (PTX) as chemotherapy. The present investigation was directed to estimate the modulatory effect of bone marrow derived mesenchymal stem cells (BM-MSCs) on pregabalin (PGB) treatment in PTX-induced peripheral neuropathy. Neuropathic pain was induced in rats by injecting PTX (2 mg/kg, i.p) 4 times every other day. Rats were then treated with PGB (30 mg/kg/day, p.o.) for 21 days with or without a single intravenous administration of BM-MSCs. At the end of experiment, behavioral and motor abnormalities were assessed. Animals were then sacrificed for measurement of total antioxidant capacity (TAC), nerve growth factor (NGF), nuclear factor kappa B p65 (NF-κB p65), tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and active caspase-3 in the sciatic nerve. Moreover, protein expressions of Notch1 receptor, phosphorylated Janus kinase 2 (p-JAK2), phosphorylated signal transducer and activator of transcription 3 (p-STAT3), and phosphorylated p38 mitogen-activated protein kinase (p-p38-MAPK) were estimated. Finally, histological examinations were performed to assess severity of sciatic nerve damage and for estimation of BM-MSCs homing. Combined PGB/BM-MSCs therapy provided an additional improvement toward reducing PTX-induced oxidative stress, neuro-inflammation, and apoptotic markers. Interestingly, BM-MSCs therapy effectively prevented motor impairment observed by PGB treatment. Combined therapy also induced a significant increase in cell homing and prevented PTX-induced sciatic nerve damage in histological examination. The present study highlights a significant role for BM-MSCs in enhancing treatment potential of PGB and reducing its motor side effects when used as therapy in the management of peripheral neuropathy.
Collapse
Affiliation(s)
- Khaled F Al-Massri
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Lamiaa A Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Hanan S El-Abhar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| |
Collapse
|
219
|
Abstract
Increasing numbers of those living with and beyond cancer presents a clinical challenge for pain specialists. A large proportion of these patients experience pain secondary to their disease or its treatment, impeding rehabilitation and significantly impacting upon their quality of life. The successful management of this pain presents a considerable challenge. This review aims to outline current concepts and treatment options, while considering nuances within pain assessment and the use of large-scale data to help guide further advances.
Collapse
Affiliation(s)
- David Magee
- Department of Pain Medicine, The Royal Marsden Hospital, Fulham Road, London, SW3 6JJ, UK
| | - Sabina Bachtold
- Department of Pain Medicine, The Royal Marsden Hospital, Fulham Road, London, SW3 6JJ, UK
| | - Matthew Brown
- Department of Pain Medicine, The Royal Marsden Hospital, Fulham Road, London, SW3 6JJ, UK.,Targeted Approaches to Cancer Pain Group, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, UK
| | - Paul Farquhar-Smith
- Department of Pain Medicine, The Royal Marsden Hospital, Fulham Road, London, SW3 6JJ, UK
| |
Collapse
|
220
|
Zhang LY, Liu ZH, Zhu Q, Wen S, Yang CX, Fu ZJ, Sun T. Resolvin D2 Relieving Radicular Pain is Associated with Regulation of Inflammatory Mediators, Akt/GSK-3β Signal Pathway and GPR18. Neurochem Res 2018; 43:2384-2392. [DOI: 10.1007/s11064-018-2666-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/12/2018] [Accepted: 10/16/2018] [Indexed: 12/12/2022]
|
221
|
Hyperbaric oxygen and aerobic exercise in the long-term treatment of fibromyalgia: A narrative review. Biomed Pharmacother 2018; 109:629-638. [PMID: 30399600 DOI: 10.1016/j.biopha.2018.10.157] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/13/2018] [Accepted: 10/25/2018] [Indexed: 12/20/2022] Open
Abstract
Chronic pain is one of the most common clinical presentations in the primary care settings. In the US, Fibromyalgia (FM) affects about 1-3% of adults and commonly occurs in adults between the ages of 40-50 years. FM causes widespread muscular pain and tenderness with hyperalgesia and allodynia and may be associated with other somatic complaints. Hyperbaric oxygen therapy (HBOT) has been utilized and has recently shown promising effects in the management of FM and other chronic pain disorders. In HBOT, the intermittent breathing of 100% oxygen in a pressurized chamber where the pressure is higher than 1 atmosphere absolute (ATA) has been utilized. HBOT exhibits a significant anti-inflammatory effect through reducing production of glial cells and inflammatory mediators which results in pain alleviation in different chronic pain conditions. HBOT can also influence neuroplasticity and affects the mitochondrial mechanisms resulting in functional brain changes. In addition to that, HBOT stimulates nitric oxide (NO) synthesis which helps in alleviating hyperalgesia and NO-dependent release of endogenous opioids which seemed to be the primary HBOT mechanism of antinociception. Moreover, aerobic exercise and meditative movement therapies (MMT) have gained attention for their role in pain alleviation through different anti-inflammatory and antioxidant mechanisms. In this review, we aim to elucidate the different mechanisms of HBOT and aerobic exercise in attenuating pain as adjuvant therapy in the multidisciplinary treatment strategy of chronic pain, and more particularly fibromyalgia.
Collapse
|
222
|
Gravius N, Chaudhry SR, Muhammad S, Boström A, Gravius S, Randau T, Scheele D, Westhofen P, Kruppenbacher J, Stoffel-Wagner B, Maier C, Weidlich A, Yearwood TL, Chakravarthy KV, Kramer JM, Hurlemann R, Kinfe TM. Selective L4 Dorsal Root Ganglion Stimulation Evokes Pain Relief and Changes of Inflammatory Markers: Part I Profiling of Saliva and Serum Molecular Patterns. Neuromodulation 2018; 22:44-52. [DOI: 10.1111/ner.12866] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/01/2018] [Accepted: 08/15/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Nadine Gravius
- Department of Orthopedics and Trauma Surgery; University Hospital Bonn; Bonn Germany
- University Hospital Bonn, Rheinische Friedrich-Wilhelms-University Bonn; Bonn Germany
| | - Shafqat R. Chaudhry
- University Hospital Bonn, Rheinische Friedrich-Wilhelms-University Bonn; Bonn Germany
- Department of Neurosurgery; University Hospital Bonn; Bonn Germany
| | - Sajjad Muhammad
- Department of Neurosurgery; Helsinki University Hospital; Helsinki Finland
| | - Azize Boström
- University Hospital Bonn, Rheinische Friedrich-Wilhelms-University Bonn; Bonn Germany
- Department of Neurosurgery; University Hospital Bonn; Bonn Germany
| | - Sascha Gravius
- Department of Orthopedics and Trauma Surgery; University Hospital Bonn; Bonn Germany
- University Hospital Bonn, Rheinische Friedrich-Wilhelms-University Bonn; Bonn Germany
| | - Thomas Randau
- Department of Orthopedics and Trauma Surgery; University Hospital Bonn; Bonn Germany
- University Hospital Bonn, Rheinische Friedrich-Wilhelms-University Bonn; Bonn Germany
| | - Dirk Scheele
- University Hospital Bonn, Rheinische Friedrich-Wilhelms-University Bonn; Bonn Germany
- Department of Psychiatry; University Hospital Bonn; Bonn Germany
- Division of Medical Psychology; University Hospital Bonn; Bonn Germany
| | | | | | - Birgit Stoffel-Wagner
- University Hospital Bonn, Rheinische Friedrich-Wilhelms-University Bonn; Bonn Germany
- Department of Clinical Chemistry and Clinical Pharmacology; University Hospital Bonn; Bonn Germany
| | - Christian Maier
- Department of Radiology and Neuroradiology; Hochsauerland Clinics, Hospital Arnsberg; Arnsberg Germany
| | - Anna Weidlich
- University Hospital Bonn, Rheinische Friedrich-Wilhelms-University Bonn; Bonn Germany
- Department of Psychiatry; University Hospital Bonn; Bonn Germany
- Division of Medical Psychology; University Hospital Bonn; Bonn Germany
| | | | - Krishnan V. Chakravarthy
- Department of Anesthesiology and Pain Medicine; University of California, San Diego Health Sciences; San Diego CA USA
- VA San Diego Healthcare System; San Diego CA USA
| | | | - Rene Hurlemann
- University Hospital Bonn, Rheinische Friedrich-Wilhelms-University Bonn; Bonn Germany
- Department of Psychiatry; University Hospital Bonn; Bonn Germany
- Division of Medical Psychology; University Hospital Bonn; Bonn Germany
| | - Thomas M. Kinfe
- University Hospital Bonn, Rheinische Friedrich-Wilhelms-University Bonn; Bonn Germany
- Department of Psychiatry; University Hospital Bonn; Bonn Germany
- Division of Medical Psychology; University Hospital Bonn; Bonn Germany
| |
Collapse
|
223
|
Togha M, Razeghi Jahromi S, Ghorbani Z, Martami F, Seifishahpar M. Serum Vitamin D Status in a Group of Migraine Patients Compared With Healthy Controls: A Case-Control Study. Headache 2018; 58:1530-1540. [PMID: 30341768 DOI: 10.1111/head.13423] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2018] [Indexed: 12/18/2022]
Abstract
OBJECTIVE The association between serum vitamin D and migraine is investigated in this research.s BACKGROUND: Although the pathogenesis of migraine headache is not fully understood, the possible role of inflammation and disturbed immune system has been proposed; thus, higher levels of vitamin D might reduce the risk of migraine. However, the results of related studies have been inconclusive. METHODS Seventy healthy individuals and 70 age- and sex-matched migraineurs (34 chronic and 36 episodic migraineurs), diagnosed according to the International Headache Society criteria (ICHD-IIIβ), were recruited. After obtaining baseline data and assessing migraine disability, a 30-day headache diary was given to the participants. Blood samples were obtained and 25(OH)D serum concentrations were determined using ELISA techniques. Serum 25(OH)D under 20, 20-29, and 30-100 ng/mL were considered deficient, insufficient, and sufficient, respectively. The applied statistical tests for between-group comparisons include independent-sample t-test, chi-square, and analysis of variance. Multiple regression analysis was also performed to identify the possible risk factors of migraine headache. RESULTS Migraine patients had significantly lower mean (SD) of serum VitD (30 (16) ng/mL) than healthy subjects (43 (19) ng/mL) (P < .001). The number (%) of subjects with VitD deficiency and insufficiency was significantly higher among the migraineurs (36 (53.7%)) than the controls (18 (26.1%)) (P < .0001). A significant negative association between migraine headache and serum VitD was detected in the fully adjusted multiple regression models when comparing the third and the highest serum 25(OH)D quartiles with the lowest (OR = 0.20; 95% CI = 0.05-0.77; OR = 0.17; 95% CI = 0.04-0.64, respectively, P for trend = .009). For each 5 ng/mL increase in serum 25(OH)D, there was a 22% odds decrease in the odds of migraine (OR = 0.78; 95% CI = 0.68-0.90; P = .001). CONCLUSION We have found that a higher level of serum VitD (between 50 to less than 100 ng/mL) among a sample of the Iranian population is associated with 80-83% lower odds of migraine headache than those with serum 25(OH)D levels below 20 ng/mL. However, there is a need for well-designed clinical trials to investigate beneficial effects of increased serum 25(OH)D on lower risk of migraine.
Collapse
Affiliation(s)
- Mansoureh Togha
- Headache Department, Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Soodeh Razeghi Jahromi
- Headache Department, Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.,Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeinab Ghorbani
- Headache Department, Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.,School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Fahimeh Martami
- Headache Department, Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.,Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Seifishahpar
- Headache Department, Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.,Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
224
|
Martin Jensen M, Jia W, Schults AJ, Ye X, Prestwich GD, Oottamasathien S. IL-33 mast cell axis is central in LL-37 induced bladder inflammation and pain in a murine interstitial cystitis model. Cytokine 2018; 110:420-427. [PMID: 29784508 PMCID: PMC6103803 DOI: 10.1016/j.cyto.2018.05.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 05/09/2018] [Accepted: 05/14/2018] [Indexed: 12/23/2022]
Abstract
Interstitial cystitis (IC), also known as painful bladder syndrome (PBS), is a debilitating chronic condition that afflicts over 3 million women above the age of 18 in the U.S., and most patients fail to respond to current treatment options. Mast cells have previously been implicated as both a diagnostic and prognostic marker in IC/PBS. Patients with IC/PBS have been shown to have elevated levels of IL-33, a cytokine released in response to tissue insult, in their urine. We hypothesize that mast cell-mediated inflammation induced from IL-33 may play an important role in initiating pain and inflammation in IC/PBS. A human cathelicidin, LL-37, which is found at elevated levels in IC/PBS patients, was used to induce an IC/PBS-like state of inflammation and bladder pain in mast cell deficient C-kit (-/-) and wild type C57Bl/6 (WT) mice. Inflammation was quantified using myeloperoxidase (MPO) expression in bladder tissues measured via ELISA. Response rate to suprapubic stimulation from von Frey filaments was used to assess the relative pain and discomfort. Both types of mice increased IL-33 expression in response to LL-37 exposure. However, mast cell deficient mice demonstrated significantly lower levels of inflammation (p < 0.001) and reduced pain response (p < 0.001) compared to WT mice. These findings implicate an IL-33-mast cell dependent axis with a potential etiology of pain and inflammation in IC/PBS. Future therapeutics aimed at targeting the IL-33 - mast cell axis could potentially serve as useful targets for treating IC/PBS.
Collapse
Affiliation(s)
- M Martin Jensen
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Wanjian Jia
- Division of Urology, Section of Pediatric Urology, University of Utah, Salt Lake City, UT, 84113, USA
| | - Austin J Schults
- Division of Urology, Section of Pediatric Urology, University of Utah, Salt Lake City, UT, 84113, USA
| | - Xiangyang Ye
- Department of Pharmacotherapy, University of Utah, Salt Lake City, UT, 84112, USA
| | - Glenn D Prestwich
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT, 84112, USA
| | - Siam Oottamasathien
- Division of Urology, Section of Pediatric Urology, University of Utah, Salt Lake City, UT, 84113, USA; Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT, 84112, USA; Department of Surgery and Division of Pediatric Urology, Primary Children's Hospital, Salt Lake City, UT, 84113, USA; Department of Pediatric Surgery, Division of Pediatric Urology, Massachusetts General Hospital for Children, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
225
|
Changes in Dorsal Root Ganglion Gene Expression in Response to Spinal Cord Stimulation. Reg Anesth Pain Med 2018; 42:246-251. [PMID: 28079752 DOI: 10.1097/aap.0000000000000550] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND OBJECTIVES Spinal cord stimulation (SCS) has been shown to influence pain-related genes in the spinal cord directly under the stimulating electrodes. There is limited information regarding changes occurring at the dorsal root ganglion (DRG). This study evaluates gene expression in the DRG in response to SCS therapy. METHODS Rats were randomized into experimental or control groups (n = 6 per group). Experimental animals underwent spared-nerve injury, implantation of lead, and continuous SCS (72 hours). Behavioral assessment for mechanical hyperalgesia was conducted to compare responses after injury and treatment. Ipsilateral DRG tissue was collected, and gene expression quantified for interleukin 1b (IL-1b), interleukin 6 (IL-6), tumor necrosis factor α (TNF-α), GABA B receptor 1 (GABAbr1), substance P (subP), Integrin alpha M (ITGAM), sodium/potassium ATP-ase (Na/K ATPase), fos proto-oncogene (cFOS), serotonin receptor 3A (5HT3r), galanin (Gal), vasoactive intestinal peptide (VIP), neuropeptide Y (NpY), glial fibrillary acidic protein (GFAP), and brain derived neurotropic factor (BDNF) via quantitative polymerase chain reaction. Statistical significance was established using analysis of variance (ANOVA), independent t tests, and Pearson correlation tests. RESULTS Expression of IL-1b and IL-6 was reversed following SCS therapy relative to the increase caused by the injury model. Both GABAbr1 and Na/K ATPase were significantly up-regulated upon implantation of the lead, and SCS therapy reversed their expression to within control levels. Pearson correlation analyses reveal that GABAbr1 and Na/K ATPase expression was dependent on the stimulating current intensity. CONCLUSIONS Spinal cord stimulation modulates expression of key pain-related genes in the DRG. Specifically, SCS led to reversal of IL-1b and IL-6 expression induced by injury. Interleukin 6 expression was still significantly larger than in sham animals, which may correlate to residual sensitivity following continuous SCS treatment. In addition, expression of GABAbr1 and Na/K ATPase was down-regulated to within control levels following SCS and correlates with applied current.
Collapse
|
226
|
Wu J, Li M, Zhang Y, Cai Y, Zhao G. Molecular mechanism of activated T cells in breast cancer. Onco Targets Ther 2018; 11:5015-5024. [PMID: 30174439 PMCID: PMC6109664 DOI: 10.2147/ott.s173018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Introduction This study aimed to explore the effect of activated T cells on breast cancer (BC) cells and provide a theoretical basis for the interaction mechanism studies between BC and immune cells. Methods The microarray dataset GSE73527 was downloaded from the Gene Expression Omnibus database. The common differentially expressed mRNAs (co-DEMs) and the common differentially expressed long non-coding RNAs (co-DElncRNAs) were identified between MDA-MB-231 cells and MCF7 activated human T cells, respectively. The RNA–miRNA–lncRNA (ceRNA) network was constructed. Furthermore, the Kyoto encyclopedia of genes and genomes pathway and the gene ontology function analyses were performed on co-DEMs. The protein–protein interaction networks and modules were investigated. Results A total of 639 co-DEMs (such as interleukin-6 [IL6] and signal transducer and activator of transcription 1 [STAT1]) were detected in this study. Defense response to other organisms and herpes simplex infection were the most outstanding function and pathway assembled with co-DEMs, respectively. One protein–protein interaction network and three modules were further constructed. A total of 88 mRNA–miRNA–lncRNA relationships such as BTN3A1-has-mir-20-b-5p-HCP5 were explored in the ceRNA network. Conclusion Activated T cells may play a crucial role in the defense response to other organism functions and herpes simplex infection pathways by upregulating IL6 and STAT1, which further affected the progression of BC. The BTN3A1-has-miR-20b-5p-HCP5 relationship may be the potential interaction mechanism between BC and immune cells.
Collapse
Affiliation(s)
- Jie Wu
- Key Laboratory of Hydrodynamics (Ministry of Education), Department of Engineering Mechanics, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China,
| | - Maolan Li
- Department of General Surgery, Shanghai Research Center of Biliary Tract Disease, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yijian Zhang
- Department of General Surgery, Shanghai Research Center of Biliary Tract Disease, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.,Shanghai Key Laboratory of Biliary Tract Disease Research, Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yan Cai
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Gaiping Zhao
- Institute of Medical Instrument Engineering, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| |
Collapse
|
227
|
Al-Massri KF, Ahmed LA, El-Abhar HS. Pregabalin and lacosamide ameliorate paclitaxel-induced peripheral neuropathy via inhibition of JAK/STAT signaling pathway and Notch-1 receptor. Neurochem Int 2018; 120:164-171. [PMID: 30118739 DOI: 10.1016/j.neuint.2018.08.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/22/2018] [Accepted: 08/13/2018] [Indexed: 12/12/2022]
Abstract
Anticonvulsant drugs such as pregabalin (PGB) and lacosamide (LCM), exhibit potent analgesic effects in diabetic neuropathy; however, their possible role/mechanisms in paclitaxel (PTX)-induced peripheral neuropathy have not been elucidated, which is the aim of the present study. Neuropathic pain was induced in rats by injecting PTX (2 mg/kg, i. p) on days 0, 2, 4 and 6. Forty eight hours after the last dose of PTX, rats were treated orally with 30 mg/kg/day of either PGB or LCM for 21 days. Both therapies improved thermal hyperalgesia and cold allodynia induced by PTX. Interestingly, LCM therapy showed no motor impairment that was observed upon using PGB, as demonstrated using rotarod test. Treatment with PGB or LCM restored the sciatic nerve content of the depleted total antioxidant capacity (TAC) and nerve growth factor (NGF), and lessened the elevated contents of nuclear factor kappa B p65 (NF-kB p65), tumor necrosis factor-α (TNF-α), and active caspase-3. On the molecular level, the drugs reduced the protein expression of Notch1 receptor, phosphorylated p38 mitogen-activated protein kinase (p-p38-MAPK), and the trajectory interleukin-6/phosphorylated janus kinase 2/phosphorylated signal transducer and activator of transcription 3 (IL-6/p-JAK2/p-STAT3). Therefore, the current study demonstrated a pivotal role for LCM in the management of PTX-induced peripheral neuropathy similar to PGB, but without motor adverse effects via the inhibition of oxidative stress, inflammation and apoptosis, as well as IL-6/JAK/STAT pathway and Notch1 receptor over-expression.
Collapse
Affiliation(s)
- Khaled F Al-Massri
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Egypt.
| | - Lamiaa A Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Egypt.
| | - Hanan S El-Abhar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Egypt.
| |
Collapse
|
228
|
Ibudilast produces anti-allodynic effects at the persistent phase of peripheral or central neuropathic pain in rats: Different inhibitory mechanism on spinal microglia from minocycline and propentofylline. Eur J Pharmacol 2018; 833:263-274. [DOI: 10.1016/j.ejphar.2018.06.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 06/06/2018] [Accepted: 06/06/2018] [Indexed: 12/13/2022]
|
229
|
Zhou YQ, Liu DQ, Chen SP, Sun J, Wang XM, Tian YK, Wu W, Ye DW. Minocycline as a promising therapeutic strategy for chronic pain. Pharmacol Res 2018; 134:305-310. [PMID: 30042091 DOI: 10.1016/j.phrs.2018.07.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/03/2018] [Accepted: 07/03/2018] [Indexed: 01/25/2023]
Abstract
Chronic pain remains to be a clinical challenge due to insufficient therapeutic strategies. Minocycline is a member of the tetracycline class of antibiotics, which has been used in clinic for decades. It is frequently reported that minocycline may has many non-antibiotic properties, among which is its anti-nociceptive effect. The results from our lab and others suggest that minocycline exerts strong analgesic effect in animal models of chronic pain including visceral pain, chemotherapy-induced periphery neuropathy, periphery injury induced neuropathic pain, diabetic neuropathic pain, spinal cord injury, inflammatory pain and bone cancer pain. In this review, we summarize the mechanisms underlying the analgesic effect of minocycline in preclinical studies. Due to a good safety record when used chronically, minocycline may become a promising therapeutic strategy for chronic pain in clinic.
Collapse
Affiliation(s)
- Ya-Qun Zhou
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dai-Qiang Liu
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shu-Ping Chen
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Sun
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Mei Wang
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu-Ke Tian
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Wu
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Da-Wei Ye
- Cancer Center, Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
230
|
Black BJ, Atmaramani R, Kumaraju R, Plagens S, Romero-Ortega M, Dussor G, Price TJ, Campbell ZT, Pancrazio JJ. Adult mouse sensory neurons on microelectrode arrays exhibit increased spontaneous and stimulus-evoked activity in the presence of interleukin-6. J Neurophysiol 2018; 120:1374-1385. [PMID: 29947589 DOI: 10.1152/jn.00158.2018] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Following inflammation or injury, sensory neurons located in the dorsal root ganglia (DRG) may exhibit increased spontaneous and/or stimulus-evoked activity, contributing to chronic pain. Current treatment options for peripherally mediated chronic pain are highly limited, driving the development of cell- or tissue-based phenotypic (function-based) screening assays for peripheral analgesic and mechanistic lead discovery. Extant assays are often limited by throughput, content, use of tumorigenic cell lines, or tissue sources from immature developmental stages (i.e., embryonic or postnatal). Here, we describe a protocol for culturing adult mouse DRG neurons on substrate-integrated multiwell microelectrode arrays (MEAs). This approach enables multiplexed measurements of spontaneous as well as stimulus-evoked extracellular action potentials from large populations of cells. The DRG cultures exhibit stable spontaneous activity from 9 to 21 days in vitro. Activity is readily evoked by known chemical and physical agonists of sensory neuron activity such as capsaicin, bradykinin, PGE2, heat, and electrical field stimulation. Most importantly, we demonstrate that both spontaneous and stimulus-evoked activity may be potentiated by incubation with the inflammatory cytokine interleukin-6 (IL-6). Acute responsiveness to IL-6 is inhibited by treatment with a MAPK-interacting kinase 1/2 inhibitor, cercosporamide. In total, these findings suggest that adult mouse DRG neurons on multiwell MEAs are applicable to ongoing efforts to discover peripheral analgesic and their mechanisms of action. NEW & NOTEWORTHY This work describes methodologies for culturing spontaneously active adult mouse dorsal root ganglia (DRG) sensory neurons on microelectrode arrays. We characterize spontaneous and stimulus-evoked adult DRG activity over durations consistent with pharmacological interventions. Furthermore, persistent hyperexcitability could be induced by incubation with inflammatory cytokine IL-6 and attenuated with cercosporamide, an inhibitor of the IL-6 sensitization pathway. This constitutes a more physiologically relevant, moderate-throughput in vitro model for peripheral analgesic screening as well as mechanistic lead discovery.
Collapse
Affiliation(s)
- Bryan J Black
- Department of Bioengineering, The University of Texas at Dallas , Richardson, Texas
| | - Rahul Atmaramani
- Department of Bioengineering, The University of Texas at Dallas , Richardson, Texas
| | - Rajeshwari Kumaraju
- Department of Bioengineering, The University of Texas at Dallas , Richardson, Texas
| | - Sarah Plagens
- Department of Bioengineering, The University of Texas at Dallas , Richardson, Texas
| | - Mario Romero-Ortega
- Department of Bioengineering, The University of Texas at Dallas , Richardson, Texas
| | - Gregory Dussor
- School of Behavioral and Brain Sciences, The University of Texas at Dallas , Richardson, Texas
| | - Theodore J Price
- School of Behavioral and Brain Sciences, The University of Texas at Dallas , Richardson, Texas
| | - Zachary T Campbell
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Richardson, Texas
| | - Joseph J Pancrazio
- Department of Bioengineering, The University of Texas at Dallas , Richardson, Texas
| |
Collapse
|
231
|
Serizawa K, Tomizawa-Shinohara H, Magi M, Yogo K, Matsumoto Y. Anti-IL-6 receptor antibody improves pain symptoms in mice with experimental autoimmune encephalomyelitis. J Neuroimmunol 2018; 319:71-79. [DOI: 10.1016/j.jneuroim.2018.03.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 03/12/2018] [Accepted: 03/26/2018] [Indexed: 02/04/2023]
|
232
|
Singh AK, Kumar S, Vinayak M. Recent development in antihyperalgesic effect of phytochemicals: anti-inflammatory and neuro-modulatory actions. Inflamm Res 2018; 67:633-654. [PMID: 29767332 DOI: 10.1007/s00011-018-1156-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/04/2018] [Accepted: 05/08/2018] [Indexed: 02/08/2023] Open
Abstract
INTRODUCTION Pain is an unpleasant sensation triggered by noxious stimulation. It is one of the most prevalent conditions, limiting productivity and diminishing quality of life. Non steroidal anti inflammatory drugs (NSAIDs) are widely used as pain relievers in present day practice as pain is mostly initiated due to inflammation. However, due to potentially serious side effects, long term use of these antihyperalgesic drugs raises concern. Therefore there is a demand to search novel medicines with least side effects. Herbal products have been used for centuries to reduce pain and inflammation, and phytochemicals are known to cause fewer side effects. However, identification of active phytochemicals of herbal medicines and clear understanding of the molecular mechanism of their action is needed for clinical acceptance. MATERIALS AND METHODS In this review, we have briefly discussed the cellular and molecular changes during hyperalgesia via inflammatory mediators and neuro-modulatory action involved therein. The review includes 54 recently reported phytochemicals with antihyperalgesic action, as per the literature available with PubMed, Google Scholar and Scopus. CONCLUSION Compounds of high interest as potential antihyperalgesic agents are: curcumin, resveratrol, capsaicin, quercetin, eugenol, naringenin and epigallocatechin gallate (EGCG). Current knowledge about molecular targets of pain and their regulation by these phytochemicals is elaborated and the scope of further research is discussed.
Collapse
Affiliation(s)
- Ajeet Kumar Singh
- Department of Zoology, Biochemistry and Molecular Biology Laboratory, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.,Department of Zoology, CMP Degree College, University of Allahabad, Allahabad, 211002, India
| | - Sanjay Kumar
- Department of Zoology, Biochemistry and Molecular Biology Laboratory, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Manjula Vinayak
- Department of Zoology, Biochemistry and Molecular Biology Laboratory, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
233
|
Zaky A, Bouali-Benazzouz R, Favereaux A, Tell G, Landry M. APE1/Ref-1 redox function contributes to inflammatory pain sensitization. Exp Neurol 2018; 307:1-11. [PMID: 29772245 DOI: 10.1016/j.expneurol.2018.05.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 04/09/2018] [Accepted: 05/12/2018] [Indexed: 11/17/2022]
Abstract
Inflammatory pain is a complex and multifactorial disorder. Apurinic/apyrimidinic endonuclease 1 (APE1), also called Redox Factor-1 (Ref-1), is constitutively expressed in the central nervous system and regulates various cellular functions including oxidative stress. In the present study, we investigated APE1 modulation and associated pain behavior changes in the complete Freund's adjuvant (CFA) model of inflammatory pain in rats. In addition we tested the anti-inflammatory effects of E3330, a selective inhibitor of APE1-redox activity, in CFA pain condition. We demonstrate that APE1 expression and subcellular distribution are significantly altered in rats at 4 days post CFA injection. We observed around 30% reduction in the overall APE1 mRNA and protein levels. Interestingly, our data point to an increased nuclear accumulation in the inflamed group as compared to the sham group. E3330 inhibitor injection in CFA rats normalized APE1 mRNA expression and changed its distribution toward cytosolic accumulation. Furthermore, intrathecal injection of E3330 decreased inflammation (i.e. reduced IL-6 expression) and alleviated pain, as assessed by measuring the paw withdrawal threshold with the von Frey test. In conclusion, our data indicate that changes in APE1 expression and sub-cellular distribution are implicated in inflammatory pain mechanisms mediated by APE1 redox functions. Further studies are required to elucidate the exact function of APE1 in inflammatory pain processes.
Collapse
Affiliation(s)
- Amira Zaky
- Department of Biochemistry, Faculty of Science, Alexandria University, Moharram Bek, PO Box 21511, Egypt; Bordeaux University, Bordeaux, France; Interdisciplinary Institute for Neuroscience, UMR 5297, CNRS, Bordeaux, France.
| | - Rabia Bouali-Benazzouz
- Bordeaux University, Bordeaux, France; Interdisciplinary Institute for Neuroscience, UMR 5297, CNRS, Bordeaux, France.
| | - Alexandre Favereaux
- Bordeaux University, Bordeaux, France; Interdisciplinary Institute for Neuroscience, UMR 5297, CNRS, Bordeaux, France.
| | - Gianluca Tell
- Department of Medicine, University of Udine, Udine 33100, Italy.
| | - Marc Landry
- Bordeaux University, Bordeaux, France; Interdisciplinary Institute for Neuroscience, UMR 5297, CNRS, Bordeaux, France.
| |
Collapse
|
234
|
Interleukin-6 trans-signaling and pathological low back pain in patients with Paget disease of bone. Pain 2018; 159:1664-1673. [DOI: 10.1097/j.pain.0000000000001260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
235
|
Quercetin attenuates AZT-induced neuroinflammation in the CNS. Sci Rep 2018; 8:6194. [PMID: 29670213 PMCID: PMC5906611 DOI: 10.1038/s41598-018-24618-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 04/04/2018] [Indexed: 02/06/2023] Open
Abstract
Highly active anti-retroviral therapy (HAART) is very effective in suppressing HIV-1 replication in patients. However, continuous HAART is required to prevent viral rebound, which may have detrimental effects in various tissues, including persistent neuroinflammation in the central nervous system (CNS). Here, we show that quercetin (3,5,7,3’,4’-pentahydroxy flavones), a natural antioxidant used in Chinese traditional medicines, suppresses the neuroinflammation that is induced by chronic exposure to Zidovudine (azidothymidine, AZT), a nucleoside reverse transcriptase inhibitor (NRTI) that is commonly part of HAART regimens. We found that the up-regulation of pro-inflammatory cytokines and microglial and astrocytic markers induced by AZT (100 mg/kg/day; 8 days) was significantly inhibited by co-administration of quercetin (50 mg/kg/day) in the mouse cortex, hippocampus and spinal cord. We further showed that quercetin attenuated AZT-induced up-regulation of Wnt5a, a key regulator of neuroinflammation. These results suggest that quercetin has an inhibitory effect on AZT-induced neuroinflammation in the CNS, and Wnt5a signaling may play an important role in this process. Our results may further our understanding of the mechanisms of HAART-related neurotoxicity and help in the development of effective adjuvant therapy.
Collapse
|
236
|
Young A, Kalladka M, Viswanath A, Zusman T, Khan J. Consomic rats parental strains differ in sensory perception, pain developed following nerve injury and in IL-1 beta and IL-6 levels. ACTA ACUST UNITED AC 2018; 25:137-141. [PMID: 29580677 DOI: 10.1016/j.pathophys.2018.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 03/12/2018] [Accepted: 03/18/2018] [Indexed: 11/26/2022]
Affiliation(s)
- Andrew Young
- Orofacial Disorders Clinic, Department of Diagnostic Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, 155 Fifth Street, San Francisco, CA, 94103, USA.
| | - Mythili Kalladka
- Orofacial Pain and TMJ Disorders, Eastman Institute for Oral Health, 625 Elmwood Ave, Rochester, NY, 14620, USA.
| | - Archana Viswanath
- Department of Oral and Maxillofacial Surgery, Tufts University School of Dental Medicine, USA.
| | - Tal Zusman
- Graduate School of Biomedical Sciences, Rutgers University, Newark, NJ, USA.
| | - Junad Khan
- Orofacial Pain and TMJ Disorders, Eastman Institute for Oral Health, 625 Elmwood Ave, Rochester, NY, 14620, USA.
| |
Collapse
|
237
|
Zhou R, Xu T, Liu X, Chen Y, Kong D, Tian H, Yue M, Huang D, Zeng J. Activation of spinal dorsal horn P2Y 13 receptors can promote the expression of IL-1β and IL-6 in rats with diabetic neuropathic pain. J Pain Res 2018; 11:615-628. [PMID: 29628771 PMCID: PMC5877493 DOI: 10.2147/jpr.s154437] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Objective The dorsal horn P2Y13 receptor is involved in the development of pain behavior induced by peripheral nerve injury. It is unclear whether the expression of proinflammatory cytokines interleukin (IL)-1β and IL-6 at the spinal dorsal horn are influenced after the activation of P2Y13 receptor in rats with diabetic neuropathic pain (DNP). Methods A rat model of type 1 DNP was induced by intraperitoneal injection of streptozotocin (STZ). We examined the expression of P2Y13 receptor, Iba-1, IL-1β, IL-6, JAK2, STAT3, pTyr1336, and pTyr1472 NR2B in rat spinal dorsal horn. Results Compared with normal rats, STZ-diabetic rats displayed obvious mechanical allodynia and the increased expression of P2Y13 receptor, Iba-1, IL-1β, and IL-6 in the dorsal spinal cord that was continued for 6 weeks in DNP rats. The data obtained indicated that, in DNP rats, administration of MRS2211 significantly attenuated mechanical allodynia. Compared with DNP rats, after MRS2211 treatment, expression of the P2Y13 receptor, Iba-1, IL-1β, and IL-6 were reduced 4 weeks after the STZ injection. However, MRS2211 treatment did not attenuate the expression of the P2Y13 receptor, Iba-1, IL-1β, and IL-6 at 6 weeks after the STZ injection. MRS2211 suppressed JAK2 and STAT3 expression in the early stage, but not in the later stage. Moreover, pTyr1336 NR2B was significantly decreased, whereas pTyr1472 NR2B was unaffected in the dorsal spinal cord of MRS2211-treated DNP rats. Conclusion Intrathecal MRS2211 produces an anti-nociceptive effect in early-stage DNP. A possible mechanism involved in MRS2211-induced analgesia is that blocking the P2Y13 receptor downregulates levels of IL-1β and IL-6, which subsequently inhibit the activation of the JAK2/STAT3 signaling pathway. Furthermore, blocking the activation of the P2Y13 receptor can decrease NR2B-containing NMDAR phosphorylation in dorsal spinal cord neurons, thereby attenuating central sensitization in STZ-induced DNP rats.
Collapse
Affiliation(s)
- Rui Zhou
- Department of Physiology, Zunyi Medical College, Zunyi, People's Republic of China
| | - Tao Xu
- Department of Physiology, Zunyi Medical College, Zunyi, People's Republic of China
| | - XiaoHong Liu
- Department of Physiology, Zunyi Medical College, Zunyi, People's Republic of China
| | - YuanShou Chen
- Department of Physiology, Zunyi Medical College, Zunyi, People's Republic of China
| | - DeYing Kong
- Department of Physiology, Zunyi Medical College, Zunyi, People's Republic of China
| | - Hong Tian
- Department of Physiology, Zunyi Medical College, Zunyi, People's Republic of China
| | - Mingxia Yue
- Department of Physiology, Zunyi Medical College, Zunyi, People's Republic of China
| | - Dujuan Huang
- Department of Physiology, Zunyi Medical College, Zunyi, People's Republic of China
| | - Junwei Zeng
- Department of Physiology, Zunyi Medical College, Zunyi, People's Republic of China
| |
Collapse
|
238
|
Paul F, Murphy O, Pardo S, Levy M. Investigational drugs in development to prevent neuromyelitis optica relapses. Expert Opin Investig Drugs 2018; 27:265-271. [DOI: 10.1080/13543784.2018.1443077] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Friedemann Paul
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin and Berlin Institute of Health, NeuroCure Clinical Research Center, Berlin, Germany
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Olwen Murphy
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Santiago Pardo
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Michael Levy
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
239
|
DeMars KM, McCrea AO, Siwarski DM, Sanz BD, Yang C, Candelario-Jalil E. Protective Effects of L-902,688, a Prostanoid EP4 Receptor Agonist, against Acute Blood-Brain Barrier Damage in Experimental Ischemic Stroke. Front Neurosci 2018. [PMID: 29527151 PMCID: PMC5829545 DOI: 10.3389/fnins.2018.00089] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Ischemic stroke occurs when a clot forms in the brain vasculature that starves downstream tissue of oxygen and nutrients resulting in cell death. The tissue immediately downstream of the blockage, the core, dies within minutes, but the surrounding tissue, the penumbra is potentially salvageable. Prostaglandin E2 binds to four different G-protein coupled membrane receptors EP1–EP4 mediating different and sometimes opposing responses. Pharmacological activation of the EP4 receptor has already been established as neuroprotective in stroke, but the mechanism(s) of protection are not well-characterized. In this study, we hypothesized that EP4 receptor activation reduces ischemic brain injury by reducing matrix metalloproteinase (MMP)-3/-9 production and blood-brain barrier (BBB) damage. Rats underwent transient ischemic stroke for 90 min. Animals received an intravenous injection of either the vehicle or L-902,688, a highly specific EP4 agonist, at the onset of reperfusion. Brain tissue was harvested at 24 h. We established a dose-response curve and used the optimal dose that resulted in the greatest infarct reduction to analyze BBB integrity compared to vehicle-treated rats. The presence of IgG, a blood protein, in the brain parenchyma is a marker of BBB damage, and L-902,688 (1 mg/kg; i.v.) dramatically reduced IgG extravasation (P < 0.05). Consistent with these data, we assessed zona occludens-1 and occludin, tight junction proteins integral to the maintenance of the BBB, and found reduced degradation with L-902,688 administration. With immunoblotting, qRT-PCR, and/or a fluorescence resonance energy transfer (FRET)-based activity assay, we next measured MMP-3/-9 since they are key effectors of BBB breakdown in stroke. In the cerebral cortex, not only was MMP-3 activity significantly decreased (P < 0.05), but L-902,688 treatment also reduced MMP-9 mRNA, protein, and enzymatic activity (P < 0.001). In addition, post-ischemic administration of the EP4 agonist significantly reduced pro-inflammatory cytokines IL-1β (P < 0.05) and IL-6 (P < 0.01) in the ischemic cerebral cortex. Most importantly, one injection of L-902,688 (1 mg/kg; i.v) at the onset of reperfusion significantly reduces neurological deficits up to 3 weeks later (P < 0.05). Our data show for the first time that pharmacological activation of EP4 with L-902,688 is neuroprotective in ischemic stroke by reducing MMP-3/-9 and BBB damage.
Collapse
Affiliation(s)
- Kelly M DeMars
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Austin O McCrea
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - David M Siwarski
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Brian D Sanz
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Changjun Yang
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Eduardo Candelario-Jalil
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| |
Collapse
|
240
|
Nakayama T, Kashiwagi Y, Kawashima H. Long-term regulation of local cytokine production following immunization in mice. Microbiol Immunol 2018; 62:124-131. [DOI: 10.1111/1348-0421.12566] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 12/12/2017] [Accepted: 12/18/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Tetsuo Nakayama
- Laboratory of Viral Infection; Kitasato Institute for Life Sciences, Shirokane 5-9-1; Minato-ku Tokyo 108-8641 Japan
| | - Yasuyo Kashiwagi
- Department of Pediatrics; Tokyo Medical University; Nishishinjuku 6-7-1, Shinjuku-ku Tokyo 160-0023 Japan
| | - Hisashi Kawashima
- Department of Pediatrics; Tokyo Medical University; Nishishinjuku 6-7-1, Shinjuku-ku Tokyo 160-0023 Japan
| |
Collapse
|
241
|
Ge A, Wang S, Miao B, Yan M. Effects of metformin on the expression of AMPK and STAT3 in the spinal dorsal horn of rats with neuropathic pain. Mol Med Rep 2018; 17:5229-5237. [PMID: 29393487 PMCID: PMC5865989 DOI: 10.3892/mmr.2018.8541] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 12/29/2017] [Indexed: 12/14/2022] Open
Abstract
Neuropathic pain (NP) is a frustrating and burdensome problem. Current treatments for NP have unendurable side effects and/or questionable efficacy, and once these therapies are stopped, the symptoms often return. Thus, novel drugs are needed to enhance the effectiveness of treatments for NP. One novel target for pain treatments is adenosine monophosphate-activated protein kinase (AMPK), which regulates a variety of cellular processes, including protein translation, which is considered to be affected in NP. Metformin is a widely available drug that possesses the ability to activate AMPK. The signal transducer and activator of transcription 3 (STAT3) pathway plays an important role in neuroinflammation. The present study investigated the analgesic effect of metformin on NP induced by chronic constriction injury (CCI), and the influence of metformin on the expression of AMPK and STAT3 in the spinal dorsal horn (SDH). In CCI rats, paw withdrawal latencies in response to thermal hyperalgesia were significantly shorter, while phosphorylated (p)-AMPK was expressed at lower levels and p-STAT3 was expressed at higher levels in the SDH. Administering intraperitoneal injections of metformin (200 mg/kg) for 6 successive days activated AMPK and suppressed the expression of p-STAT3, in addition to reversing hyperalgesia. Finally, metformin inhibited the activation of microglia and astrocytes in the SDH, which may explain how it alleviates NP.
Collapse
Affiliation(s)
- Anqi Ge
- Jiangsu Province Key Laboratory of Anesthesiology, Clinic Skill Center, Xuzhou Medical University, Xuzhou, Jiangsu 221000, P.R. China
| | - Shu Wang
- Department of Anesthesiology, The Third People's Hospital, Yancheng, Jiangsu 224001, P.R. China
| | - Bei Miao
- Laboratory of Gastroenterology, Xuzhou Medical University, Xuzhou, Jiangsu 221000, P.R. China
| | - Ming Yan
- Jiangsu Province Key Laboratory of Anesthesiology, Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, P.R. China
| |
Collapse
|
242
|
Conditioned Medium of Bone Marrow-Derived Mesenchymal Stromal Cells as a Therapeutic Approach to Neuropathic Pain: A Preclinical Evaluation. Stem Cells Int 2018. [PMID: 29535781 PMCID: PMC5831939 DOI: 10.1155/2018/8179013] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Neuropathic pain is a type of chronic pain caused by injury or dysfunction of the nervous system, without effective therapeutic approaches. Mesenchymal stromal cells (MSCs), through their paracrine action, have great potential in the treatment of this syndrome. In the present study, the therapeutic potential of MSC-derived conditioned medium (CM) was investigated in a mouse model of neuropathic pain induced by partial sciatic nerve ligation (PSL). PSL mice were treated by endovenous route with bone marrow-derived MSCs (1 × 106), CM, or vehicle. Gabapentin was the reference drug. Twelve hours after administration, neuropathic mice treated with CM exhibited an antinociceptive effect that was maintained throughout the evaluation period. MSCs also induced nonreversed antinociception, while gabapentin induced short-lasting antinociception. The levels of IL-1β, TNF-α, and IL-6 were reduced, while IL-10 was enhanced on sciatic nerve and spinal cord by treatment with CM and MSCs. Preliminary analysis of the CM secretome revealed the presence of growth factors and cytokines likely involved in the antinociception. In conclusion, the CM, similar to injection of live cells, produces a powerful and long-lasting antinociceptive effect on neuropathic pain, which is related with modulatory properties on peripheral and central levels of cytokines involved with the maintenance of this syndrome.
Collapse
|
243
|
Chen SP, Sun J, Zhou YQ, Cao F, Braun C, Luo F, Ye DW, Tian YK. Sinomenine attenuates cancer-induced bone pain via suppressing microglial JAK2/STAT3 and neuronal CAMKII/CREB cascades in rat models. Mol Pain 2018; 14:1744806918793232. [PMID: 30027795 PMCID: PMC6096675 DOI: 10.1177/1744806918793232] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/04/2018] [Accepted: 06/25/2018] [Indexed: 12/12/2022] Open
Abstract
Cancer-induced bone pain is one of the most severe types of pathological pain, which often occurs in patients with advanced prostate, breast, and lung cancer. It is of great significance to improve the therapies of cancer-induced bone pain due to the opioids' side effects including addiction, sedation, pruritus, and vomiting. Sinomenine, a traditional Chinese medicine, showed obvious analgesic effects on a rat model of chronic inflammatory pain, but has never been proven to treat cancer-induced bone pain. In the present study, we investigated the analgesic effect of sinomenine after tumor cell implantation and specific cellular mechanisms in cancer-induced bone pain. Our results indicated that single administration of sinomenine significantly and dose-dependently alleviated mechanical allodynia in rats with cancer-induced bone pain and the effect lasted for 4 h. After tumor cell implantation, the protein levels of phosphorylated-Janus family tyrosine kinase 2 (p-JAK2), phosphorylated-signal transducers and activators of transcription 3 (p-STAT3), phosphorylated-Ca2+/calmodulin-dependent protein kinase II (p-CAMKII), and phosphorylated-cyclic adenosine monophosphate response element-binding protein (p-CREB) were persistently up-regulated in the spinal cord horn. Chronic intraperitoneal treatment with sinomenine markedly suppressed the activation of microglia and effectively inhibited the expression of JAK2/STAT3 and CAMKII/CREB signaling pathways. We are the first to reveal that up-regulation of microglial JAK2/STAT3 pathway are involved in the development and maintenance of cancer-induced bone pain. Moreover, our investigation provides the first evidence that sinomenine alleviates cancer-induced bone pain by inhibiting microglial JAK2/STAT3 and neuronal CAMKII/CREB cascades.
Collapse
Affiliation(s)
- Shu-Ping Chen
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Sun
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ya-Qun Zhou
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Cao
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Psychiatry, UMKC School of Medicine, Kansas City, MO
| | - Cody Braun
- UMKC School of Medicine, Kansas City, MO
| | - Fang Luo
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Da-Wei Ye
- Cancer Center, Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, Wuhan, China
| | - Yu-Ke Tian
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
244
|
Mojarad N, Janzadeh A, Yousefifard M, Nasirinezhad F. The role of low level laser therapy on neuropathic pain relief and interleukin-6 expression following spinal cord injury: An experimental study. J Chem Neuroanat 2018; 87:60-70. [DOI: 10.1016/j.jchemneu.2017.04.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 04/13/2017] [Accepted: 04/14/2017] [Indexed: 12/13/2022]
|
245
|
Masuda H, Mori M, Uzawa A, Uchida T, Ohtani R, Kobayashi S, Kuwabara S. Validation of the Modified Fatigue Impact Scale and the relationships among fatigue, pain and serum interleukin-6 levels in patients with neuromyelitis optica spectrum disorder. J Neurol Sci 2017; 385:64-68. [PMID: 29406915 DOI: 10.1016/j.jns.2017.11.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 11/02/2017] [Accepted: 11/30/2017] [Indexed: 11/16/2022]
Abstract
Fatigue and pain are disabling symptoms in patients with neuromyelitis optica spectrum disorder (NMOSD). The Modified Fatigue Impact Scale (MFIS) has not yet been validated in patients with NMOSD, and anti-interleukin-6 (IL-6) receptor antibody was reported to decrease pain and fatigue in patients with NMOSD. The aim of this study was to validate MFIS and to investigate the relationships among fatigue, pain and serum IL-6 levels in patients with NMOSD. MFIS and the Multidimensional Fatigue Inventory (MFI), an established scale for fatigue, were administered to patients with NMOSD and age- and sex-matched healthy controls (HCs). The Pain Effects Scale score and serum IL-6 levels were also measured in patients with NMOSD. Correlations among clinical characteristics, laboratory data and each score were investigated. To validate MFIS in patients with NMOSD, MFIS was administered twice within 4days from the first administration. Fifty-one patients answered the first MFIS, and 26 patients answered the second MFIS. There was no difference between the first and second MFIS scores. Patients with NMOSD had higher MFIS and MFI scores than HCs. No correlations were observed between serum IL-6 levels and either score. MFIS was validated in patients with NMOSD. Serum IL-6 levels may not be involved in the pathogenesis of fatigue and pain in patients with NMOSD.
Collapse
Affiliation(s)
- Hiroki Masuda
- Department of Neurology, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Masahiro Mori
- Department of Neurology, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8670, Japan.
| | - Akiyuki Uzawa
- Department of Neurology, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Tomohiko Uchida
- Department of Neurology, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Ryohei Ohtani
- Department of Neurology, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Shigeo Kobayashi
- Health Management Center, Sannou Hospital, 166-2, Sannou-cho, Inage-ku, Chiba 263-0002, Japan
| | - Satoshi Kuwabara
- Department of Neurology, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8670, Japan
| |
Collapse
|
246
|
Leiguarda C, Coronel MF, Montaner AD, Villar MJ, Brumovsky PR. Long-lasting ameliorating effects of the oligodeoxynucleotide IMT504 on mechanical allodynia and hindpaw edema in rats with chronic hindpaw inflammation. Neurosci Lett 2017; 666:17-23. [PMID: 29248616 DOI: 10.1016/j.neulet.2017.12.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 12/10/2017] [Accepted: 12/13/2017] [Indexed: 12/14/2022]
Abstract
PURPOSE Previously we showed that systemic administration of IMT504 prevents or ameliorates mechanical and thermal allodynia in rats with sciatic nerve crush. Here we analyzed if IMT504 is also effective in reducing mechanical allodynia and inflammation in rats undergoing hindpaw inflammation. MATERIALS AND METHODS Male Sprague-Dawley rats received unilateral intraplantar injection of complete Freund́s adjuvant (CFA), and were grouped into: 1) untreated CFA, 2) vehicle-treated CFA, 3) IMT504-treated CFA (5 daily (5*) doses of 20, 2 or 0.2 mg/kg, or 3*2 mg/kg). Naïve groups were also included. Finally, early (immediately after intraplantar CFA) and late (7 days after intraplantar CFA) IMT504 treatment protocols were also tested. Hindpaw mechanical allodynia, dorsoventral thickness, edema and cellular infiltration of ipsilateral hindpaws were evaluated in all groups. RESULTS Untreated CFA rats exhibited mechanical allodynia of quick onset (day 1) and long duration (7 weeks inclusive). Early and late treatments with 5*20 mg/kg IMT504 to CFA rats resulted in both quick and long-lasting antiallodynic effects, as compared to untreated CFA rats. This was also the case in CFA rats undergoing late IMT504 treatment at lower doses (3* and 5*2 mg/kg). Very low doses of IMT504 (5*0.2 mg/kg) only showed a mild improvement in withdrawal threshold, never reaching basal levels. Finally, rats treated with 3* or 5*2 mg/kg or 5*0.2 mg/kg exhibited significant decreases in dorsoventral thickness, edema, and inflammatory cell infiltration of the inflamed hindpaw. CONCLUSION Early and late administration of IMT504 results in quick and long-lasting reductions in mechanical allodynia and hindpaw edema. While the mechanisms behind these effects remain to be established, data suggests that IMT504 administration could be a promising strategy in the control of inflammatory pain.
Collapse
Affiliation(s)
- Candelaria Leiguarda
- Instituto de Investigaciones en Medicina Traslacional (IIMT), Universidad Austral-CONICET, Av. Juan D. Perón 1500, Derqui, Pilar, B1629AHJ, Buenos Aires, Argentina
| | - María Florencia Coronel
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Vuelta de Obligado 2490, Ciudad Autónoma de Buenos Aires, C1428ADN, Argentina
| | - Alejandro Daniel Montaner
- Instituto de Ciencia y Tecnología "Dr. César Milstein", CONICET, Fundación Pablo Cassará, Ciudad Autónoma de Buenos Aires, C1440FFX, Argentina
| | - Marcelo José Villar
- Instituto de Investigaciones en Medicina Traslacional (IIMT), Universidad Austral-CONICET, Av. Juan D. Perón 1500, Derqui, Pilar, B1629AHJ, Buenos Aires, Argentina
| | - Pablo Rodolfo Brumovsky
- Instituto de Investigaciones en Medicina Traslacional (IIMT), Universidad Austral-CONICET, Av. Juan D. Perón 1500, Derqui, Pilar, B1629AHJ, Buenos Aires, Argentina.
| |
Collapse
|
247
|
Inflammaging in cervical and lumbar degenerated intervertebral discs: analysis of proinflammatory cytokine and TRP channel expression. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2017; 27:564-577. [DOI: 10.1007/s00586-017-5360-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 10/15/2017] [Accepted: 10/19/2017] [Indexed: 12/29/2022]
|
248
|
Ding CP, Guo YJ, Li HN, Wang JY, Zeng XY. Red nucleus interleukin-6 participates in the maintenance of neuropathic pain through JAK/STAT3 and ERK signaling pathways. Exp Neurol 2017; 300:212-221. [PMID: 29183675 DOI: 10.1016/j.expneurol.2017.11.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/21/2017] [Accepted: 11/24/2017] [Indexed: 12/18/2022]
Abstract
We previously reported that interleukin-6 (IL-6) in the red nucleus (RN) is up-regulated at 3weeks after spared nerve injury (SNI), and plays facilitated role in the later maintenance of neuropathic pain. The current study aimed to reveal the roles of different signaling pathways, including Janus kinase/signal transducer and activator of transcription 3 (JAK/STAT3), extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (MAPK) and phosphatidylinositide 3-kinase/protein kinase B (PI3K/AKT), in RN IL-6-mediated pain modulation. In accord with the increase of IL-6 in the RN following SNI, the protein levels of phospho-STAT3 (p-STAT3), p-ERK and p-JNK were also up-regulated in the RN contralateral to the nerve injury side at 3weeks after SNI. The increases of p-STAT3 and p-ERK (but not p-JNK) were associated with IL-6 and could be blocked by anti-IL-6 antibody. Microinjection of JAK2 inhibitor AG490, ERK inhibitor PD98059 and also JNK inhibitor SP600125 into the RN significantly increased the paw withdrawal threshold (PWT) and alleviated SNI-induced mechanical allodynia. Further studies showed that microinjection of recombinant rat IL-6 (rrIL-6, 20ng) into the RN of normal rats significantly decreased the PWT of rats and increased the local protein levels of p-STAT3 and p-ERK, but not p-JNK. Pre-treatment with AG490 and PD98059 could prevent IL-6-induced mechanical allodynia. Whereas, p-p38 MAPK and p-AKT did not show any expression changes in the RN of rats with SNI or rats treated with rrIL-6. These results suggest that RN IL-6 participates in the later maintenance of SNI-induced neuropathic pain and plays facilitated role through activating JAK/STAT3 and ERK signaling pathways.
Collapse
Affiliation(s)
- Cui-Ping Ding
- Department of Laboratory Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Department of Pathogenic Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Yi-Jie Guo
- Department of Pathogenic Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Hao-Nan Li
- Department of Pathogenic Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Jun-Yang Wang
- Department of Pathogenic Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Xiao-Yan Zeng
- Department of Laboratory Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
249
|
Reactive oxygen species scavengers ameliorate mechanical allodynia in a rat model of cancer-induced bone pain. Redox Biol 2017; 14:391-397. [PMID: 29055283 PMCID: PMC5650652 DOI: 10.1016/j.redox.2017.10.011] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 10/10/2017] [Accepted: 10/14/2017] [Indexed: 12/20/2022] Open
Abstract
Cancer-induced bone pain (CIBP) is a frequent complication in patients suffering from bone metastases. Previous studies have demonstrated a pivotal role of reactive oxygen species (ROS) in inflammatory and neuropathic pain, and ROS scavengers exhibited potent antinociceptive effect. However, the role of spinal ROS remains unclear. In this study, we investigated the analgesic effect of two ROS scavengers in a well-established CIBP model. Our results found that intraperitoneal injection of N-tert-Butyl-α-phenylnitrone (PBN, 50 and 100 mg/kg) and 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (Tempol, 100 and 200 mg/kg) significantly suppressed the established mechanical allodynia in CIBP rats. Moreover, repeated injection of PBN and Tempol showed cumulative analgesic effect without tolerance. However, early treatment with PBN and Tempol failed to prevent the development of CIBP. Naive rats received repetitive injection of PBN and Tempol showed no significant change regarding the nociceptive responses. Finally, PBN and Tempol treatment notably suppressed the activation of spinal microglia in CIBP rats. In conclusion, ROS scavengers attenuated established CIBP by suppressing the activation of microglia in the spinal cord. PBN and Tempol could suppress established mechanical allodynia in CIBP rats. Repeated injection of PBN and Tempol showed cumulative analgesic effect. PBN and Tempol failed to prevent the development of CIBP. PBN and Tempol could suppress the microglia activation in CIBP rats.
Collapse
|
250
|
|