201
|
Lu JS, Chang JS, Lee DJ. Adding carbon-based materials on anaerobic digestion performance: A mini-review. BIORESOURCE TECHNOLOGY 2020; 300:122696. [PMID: 31928924 DOI: 10.1016/j.biortech.2019.122696] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/21/2019] [Accepted: 12/23/2019] [Indexed: 06/10/2023]
Abstract
The anaerobic digestion is the adopted to remediate the pollutant and extract the bioenergy from the waste during the treatment. Effects of adding carbon-based materials on enhancement of digestion performance are studied in literature. This paper provided a mini review on the current research efforts on the traditional view on the cytotoxicity of carbon-based materials to the aquatic microorganisms and the novel "adding carbon-based material strategy" for improving the anaerobic digestion performances. The further research needs for comprehending the interactions between the added carbon materials, the substrates and the microorganisms and the impacts of adopting these additives on full-scale operations were highlighted.
Collapse
Affiliation(s)
- Jia-Shun Lu
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Jo-Shu Chang
- College of Engineering, Tunghai University, Taichung 40704, Taiwan
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan; College of Engineering, Tunghai University, Taichung 40704, Taiwan; Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; College of Technology and Engineering, National Taiwan Normal University, Taipei 10610, Taiwan.
| |
Collapse
|
202
|
Peng Z, Zhao T, Zhou Y, Li S, Li J, Leblanc RM. Bone Tissue Engineering via Carbon-Based Nanomaterials. Adv Healthc Mater 2020; 9:e1901495. [PMID: 31976623 DOI: 10.1002/adhm.201901495] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/21/2019] [Indexed: 01/14/2023]
Abstract
Bone tissue engineering (BTE) has received significant attention due to its enormous potential in treating critical-sized bone defects and related diseases. Traditional materials such as metals, ceramics, and polymers have been widely applied as BTE scaffolds; however, their clinical applications have been rather limited due to various considerations. Recently, carbon-based nanomaterials attract significant interests for their applications as BTE scaffolds due to their superior properties, including excellent mechanical strength, large surface area, tunable surface functionalities, high biocompatibility as well as abundant and inexpensive nature. In this article, recent studies and advancements on the use of carbon-based nanomaterials with different dimensions such as graphene and its derivatives, carbon nanotubes, and carbon dots, for BTE are reviewed. Current challenges of carbon-based nanomaterials for BTE and future trends in BTE scaffolds development are also highlighted and discussed.
Collapse
Affiliation(s)
- Zhili Peng
- School of Materials Science and Engineering, Yunnan Key Laboratory for Micro/Nano Materials & Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Tianshu Zhao
- School of Materials Science and Engineering, Yunnan Key Laboratory for Micro/Nano Materials & Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Yiqun Zhou
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL, 33146, USA
| | - Shanghao Li
- MP Biomedicals, 9 Goddard, Irvine, CA, 92618, USA
| | - Jiaojiao Li
- School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650091, P. R. China
| | - Roger M Leblanc
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL, 33146, USA
| |
Collapse
|
203
|
Shafiq M, Anjum S, Hano C, Anjum I, Abbasi BH. An Overview of the Applications of Nanomaterials and Nanodevices in the Food Industry. Foods 2020; 9:E148. [PMID: 32028580 PMCID: PMC7074443 DOI: 10.3390/foods9020148] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 01/21/2020] [Accepted: 01/26/2020] [Indexed: 12/31/2022] Open
Abstract
The efficient progress in nanotechnology has transformed many aspects of food science and the food industry with enhanced investment and market share. Recent advances in nanomaterials and nanodevices such as nanosensors, nano-emulsions, nanopesticides or nanocapsules are intended to bring about innovative applications in the food industry. In this review, the current applications of nanotechnology for packaging, processing, and the enhancement of the nutritional value and shelf life of foods are targeted. In addition, the functionality and applicability of food-related nanotechnologies are also highlighted and critically discussed in order to provide an insight into the development and evaluation of the safety of nanotechnology in the food industry.
Collapse
Affiliation(s)
- Mehwish Shafiq
- Department of Biotechnology, Kinnaird College for Women, Lahore 54000, Pakistan; (M.S.); (I.A.)
| | - Sumaira Anjum
- Department of Biotechnology, Kinnaird College for Women, Lahore 54000, Pakistan; (M.S.); (I.A.)
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRA USC1328/Université d’Orléans, 28000 Chartres, France;
| | - Iram Anjum
- Department of Biotechnology, Kinnaird College for Women, Lahore 54000, Pakistan; (M.S.); (I.A.)
| | - Bilal Haider Abbasi
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| |
Collapse
|
204
|
Adeyemi JA, Machado ART, Ogunjimi AT, Alberici LC, Antunes LMG, Barbosa F. Cytotoxicity, mutagenicity, oxidative stress and mitochondrial impairment in human hepatoma (HepG2) cells exposed to copper oxide, copper-iron oxide and carbon nanoparticles. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 189:109982. [PMID: 31830603 DOI: 10.1016/j.ecoenv.2019.109982] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 06/10/2023]
Abstract
The increasing application of nanomaterials in various fields such as drug delivery, cosmetics, disease detection, cancer treatment, food preservation etc. has resulted in high levels of engineered nanoparticles in the environment, thus leading to higher possibility of direct or indirect interactions between these particles and biological systems. In this study, the toxic effects of three commercially available nanomaterials; copper oxide nanoparticles, copper-iron oxide nanopowders and carbon nanopowders were determined in the human hepatoma HepG2 cells using various toxicological assays which are indicative of cytotoxicity (MTT and neutral red assays), mutagenicity (cytokinesis-block micronucleus assay), oxidative stress (total reactive oxygen species and superoxide anion production) and mitochondrial impairment (cellular oxygen consumption). There was increased cytotoxicity, mutagenicity, and mitochondrial impairment in the cells treated with higher concentrations of the nanomaterials, especially the copper oxide nanoparticles. The fold production of reactive oxygen species was similar at the concentrations tested in this study but longer exposure duration resulted in production of more superoxide anions. The results of this study showed that copper oxide nanoparticles are highly toxic to the human HepG2 cells, thus implying that the liver is a target organ in human for copper oxide nanoparticles toxicity.
Collapse
Affiliation(s)
- Joseph A Adeyemi
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café s/nº, CEP, 14040-903, Ribeirão Preto, São Paulo, Brazil; Department of Biology, School of Sciences, Federal University of Technology, P.M.B. 704, Akure, Ondo State, Nigeria
| | - Ana Rita Thomazela Machado
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café s/nº, CEP, 14040-903, Ribeirão Preto, São Paulo, Brazil
| | - Abayomi T Ogunjimi
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, 115 S Grand Avenue, Iowa City, IA, USA
| | - Luciane Carla Alberici
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café s/nº, CEP, 14040-903, Ribeirão Preto, São Paulo, Brazil
| | - Lusania Maria Greggi Antunes
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café s/nº, CEP, 14040-903, Ribeirão Preto, São Paulo, Brazil
| | - Fernando Barbosa
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café s/nº, CEP, 14040-903, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
205
|
Wang Z, Chen C, Liu H, Hrynshpan D, Savitskaya T, Chen J, Chen J. Effects of carbon nanotube on denitrification performance of Alcaligenes sp. TB: Promotion of electron generation, transportation and consumption. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 183:109507. [PMID: 31386942 DOI: 10.1016/j.ecoenv.2019.109507] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/14/2019] [Accepted: 07/30/2019] [Indexed: 06/10/2023]
Abstract
Multi-walled carbon nanotubes (MWCNTs) promote biodegradation in water treatment, but the effect of MWCNT on denitrification under aerobic conditions is still unclear. This investigation focused on the denitrification performance of MWCNT and its toxic effects on Alcaligenes sp. TB which showed that 30 mg/L MWCNTs increased NO3- removal efficiency from 84% to 100% and decreased the NO2-and N2O accumulation rates by 36% and 17.5%, respectively. Nitrite reductase and nitrous oxide reductase activities were further increased by 19.5% and 7.5%, respectively. The mechanism demonstrated that electron generation (NADH yield) and electron transportation system activity increased by 14.5% and 104%, respectively. Cell membrane analysis found that MWCNT caused an increase in polyunsaturated fatty acids, which had positive effects on electron transportation and membrane fluidity at a low concentration of 96 mg/kg but caused membrane lipid peroxidation and impaired membrane integrity at a high concentration of 115 mg/L. These findings confirmed that MWCNT affects the activity of Alcaligenes sp. TB and consequently enhances denitrification performance.
Collapse
Affiliation(s)
- Zeyu Wang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Cong Chen
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Huan Liu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Dzmitry Hrynshpan
- Research Institute of Physical and Chemical Problems, Belarusian State University, Minsk, 220030, Belarus
| | - Tatsiana Savitskaya
- Research Institute of Physical and Chemical Problems, Belarusian State University, Minsk, 220030, Belarus
| | - Jianmeng Chen
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Jun Chen
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310021, PR China.
| |
Collapse
|
206
|
Cirillo G, Vittorio O, Kunhardt D, Valli E, Voli F, Farfalla A, Curcio M, Spizzirri UG, Hampel S. Combining Carbon Nanotubes and Chitosan for the Vectorization of Methotrexate to Lung Cancer Cells. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E2889. [PMID: 31500165 PMCID: PMC6766185 DOI: 10.3390/ma12182889] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 12/11/2022]
Abstract
A hybrid system composed of multi-walled carbon nanotubes coated with chitosan was proposed as a pH-responsive carrier for the vectorization of methotrexate to lung cancer. The effective coating of the carbon nanostructure by chitosan, quantified (20% by weight) by thermogravimetric analysis, was assessed by combined scanning and transmission electron microscopy, and X-ray photoelectron spectroscopy (N1s signal), respectively. Furthermore, Raman spectroscopy was used to characterize the interaction between polysaccharide and carbon counterparts. Methotrexate was physically loaded onto the nanohybrid and the release profiles showed a pH-responsive behavior with higher and faster release in acidic (pH 5.0) vs. neutral (pH 7.4) environments. Empty nanoparticles were found to be highly biocompatible in either healthy (MRC-5) or cancerous (H1299) cells, with the nanocarrier being effective in reducing the drug toxicity on MRC-5 while enhancing the anticancer activity on H1299.
Collapse
Affiliation(s)
- Giuseppe Cirillo
- Leibniz Institute of Solid State and Material Research Dresden, 01069 Dresden, Germany.
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy.
| | - Orazio Vittorio
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, NSW 2031, Australia.
- ARC Centre of Excellence for Convergent BioNano Science and Technology, Australian Centre for NanoMedicine, UNSW Sydney, NSW 2052, Australia.
- School of Women's and Children's Health, Faculty of Medicine, UNSW Sydney, NSW 2052, Australia.
| | - David Kunhardt
- Leibniz Institute of Solid State and Material Research Dresden, 01069 Dresden, Germany.
| | - Emanuele Valli
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, NSW 2031, Australia.
- School of Women's and Children's Health, Faculty of Medicine, UNSW Sydney, NSW 2052, Australia.
| | - Florida Voli
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, NSW 2031, Australia.
| | - Annafranca Farfalla
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy.
| | - Manuela Curcio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy.
| | - Umile Gianfranco Spizzirri
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy.
| | - Silke Hampel
- Leibniz Institute of Solid State and Material Research Dresden, 01069 Dresden, Germany.
| |
Collapse
|
207
|
Ji J, Ganguly K, Mihai X, Sun J, Malmlöf M, Gerde P, Upadhyay S, Palmberg L. Exposure of normal and chronic bronchitis-like mucosa models to aerosolized carbon nanoparticles: comparison of pro-inflammatory oxidative stress and tissue injury/repair responses. Nanotoxicology 2019; 13:1362-1379. [PMID: 31462114 DOI: 10.1080/17435390.2019.1655600] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Carbon nanoparticles (CNP) are generated by incomplete combustion of diesel engines. Several epidemiological studies associated higher susceptibility to particulate matter related adverse respiratory outcomes with preexisting conditions like chronic bronchitis (CB). Therefore, we compared the effect of CNP exposure on primary bronchial epithelial cells (PBEC) developed in air-liquid interface (ALI) models of normal versus CB-like-mucosa.PBEC cultured at ALI represented normal mucosa (PBEC-ALI). To develop CB-like-mucosa (PBEC-ALI/CB), 1 ng/ml interleukin-13 was added to the basal media of PBEC-ALI culturing. PBEC-ALI and PBEC-ALI/CB were exposed to sham or to aerosolized CNP using XposeALI® system. Protein levels of CXCL-8 and MMP-9 were measured in the basal media using ELISA. Transcript expression of pro-inflammatory (CXCL8, IL6, TNF, NFKB), oxidative stress (HMOX1, SOD3, GSTA1, GPx), tissue injury/repair (MMP9/TIMP1) and bronchial cell type markers (MUC5AC, CC10) were assessed using qRT-PCR.Increased secretion of CXCL-8 and MMP-9 markers was detected 24 h post-exposure in both PBEC-ALI and PBEC-ALI/CB with more pronounced effect in the later. Pro-inflammatory and tissue injury markers were increased at both 6 h and 24 h post-exposure in PBEC-ALI/CB. Oxidative stress markers exhibited similar responses at 6 h and 24 h post-exposure in PBEC-ALI/CB. The club cell specific marker CC10 was increased by 300 fold in PBEC-ALI/CB and 20 fold in PBEC-ALI following CNP exposure.Our data indicates an earlier and stronger reaction of pro-inflammatory, oxidative stress and tissue injury markers in PBEC-ALI/CB models compared to PBEC-ALI models following CNP exposure. The findings may provide insight into the plausible mechanisms of higher susceptibility among predisposed individuals to nanoparticle exposure.
Collapse
Affiliation(s)
- Jie Ji
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Koustav Ganguly
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Xenia Mihai
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jitong Sun
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Maria Malmlöf
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Inhalation Sciences Sweden AB, Stockholm, Sweden
| | - Per Gerde
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Inhalation Sciences Sweden AB, Stockholm, Sweden
| | - Swapna Upadhyay
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Lena Palmberg
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|