201
|
Azios NG, Dharmawardhane SF. Resveratrol and estradiol exert disparate effects on cell migration, cell surface actin structures, and focal adhesion assembly in MDA-MB-231 human breast cancer cells. Neoplasia 2005; 7:128-40. [PMID: 15802018 PMCID: PMC1501122 DOI: 10.1593/neo.04346] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Resveratrol, a grape polyphenol, is thought to be a cancer preventive, yet its effects on metastatic breast cancer are relatively unknown. Since cancer cell invasion is dependent on cell migration, the chemotactic response of MDA-MB-231 metastatic human breast cancer cells to resveratrol, estradiol (E2), or epidermal growth factor (EGF) was investigated. Resveratrol decreased while E2 and EGF increased directed cell migration. Resveratrol may inhibit cell migration by altering the cytoskeleton. Resveratrol induced a rapid global array of filopodia and decreased focal adhesions and focal adhesion kinase (FAK) activity. E2 or EGF treatment did not affect filopodia extension but increased lamellipodia and associated focal adhesions that are integral for cell migration. Combined resveratrol and E2 treatment resulted in a filopodia and focal adhesion response similar to resveratrol alone. Combined resveratrol and EGF resulted in a lamellipodia and focal adhesion response similar to EGF alone. E2 and to a lesser extent resveratrol increased EGFR activity. The cytoskeletal changes and EGFR activity in response to E2 were blocked by EGFR1 inhibitor indicating that E2 may increase cell migration via crosstalk with EGFR signaling. These data suggest a promotional role for E2 in breast cancer cell migration but an antiestrogenic, preventative role for resveratrol.
Collapse
Affiliation(s)
- Nicolas G Azios
- Molecular Cell and Developmental Biology Section and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | | |
Collapse
|
202
|
Boerner JL, Gibson MA, Fox EM, Posner ED, Parsons SJ, Silva CM, Shupnik MA. Estrogen negatively regulates epidermal growth factor (EGF)-mediated signal transducer and activator of transcription 5 signaling in human EGF family receptor-overexpressing breast cancer cells. Mol Endocrinol 2005; 19:2660-70. [PMID: 15976008 DOI: 10.1210/me.2004-0439] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Breast cancer cell growth may be stimulated by 17beta-estradiol (E2) or growth factors like epidermal growth factor (EGF). However, tumors typically depend on only one of these pathways and may overexpress either estrogen receptor (ER) or EGF receptor (EGFR) and related family members. Tumors overexpressing EGFR are more aggressive than those expressing ER. Intracellular mediators of these growth-stimulatory pathways are not completely defined, but one potential common mediator of EGF and E2 signaling is the transcription factor signal transducer and activator of transcription 5 (STAT5). To investigate the role of STAT5 in potential crosstalk between E2 and EGF, MDA-MB231 and SKBr3 breast cancer cells, which are ER-negative and overexpress human EGF family receptors, were used. Introduction of ERalpha and treatment with E2 decreased EGF-induced tyrosine phosphorylation of STAT5b, basal and EGF-induced STAT5-mediated transcription, and EGF-stimulated DNA synthesis in these cells. Suppressive effects of E2-EpsilonRalpha were specific for STAT5, as EGF stimulation of MAPK was unaffected. Deletion/mutation analysis of ERalpha demonstrated that the DNA-binding domain was insufficient, and that the ligand-binding domain was required for these responses. ERalpha transcriptional activity was not necessary for suppression of STAT5 activity. Overexpression of c-Src did not prevent suppression of STAT5 activity by E2 and ERalpha. However, ERalpha did prevent basal increases in STAT5 activity with overexpressed c-Src. In the context of human EGF receptor family overexpression, E2-ER opposes EGF signaling by regulating STAT5 activity. STAT5 may be a crucial point of signaling for both E2 and growth factors in breast cancer cells, allowing targeted therapy for many types of breast tumors.
Collapse
Affiliation(s)
- Julie L Boerner
- Department of Microbiology, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | | | |
Collapse
|
203
|
Abstract
Lung cancer is the leading cause of cancer death in the United States and is responsible for 20,000 more deaths yearly in US women than breast cancer. Cigarette smoking is the major cause of lung cancer, and unfortunately, approximately 22 million US women smoke. Mounting evidence suggests that there are significant differences in lung cancer between the sexes. There is a difference in the histologic distribution of lung cancer, with glandular differentiation being more common in women. Genetic variation may account for differences in susceptibility, and hormonal and biologic factors may play a role in carcinogenesis. Lung cancer patients have few therapeutic options. A more thorough understanding of the heterogeneity of lung cancer across populations may lead to innovations in treatment and prevention strategies.
Collapse
Affiliation(s)
- Jyoti D Patel
- Division of Hematology/Oncology, Northwestern University, 676 N St Clair Street, Suite 850, Chicago, IL 60611, USA.
| |
Collapse
|
204
|
Kanda N, Watanabe S. 17beta-estradiol enhances heparin-binding epidermal growth factor-like growth factor production in human keratinocytes. Am J Physiol Cell Physiol 2005; 288:C813-23. [PMID: 15761212 DOI: 10.1152/ajpcell.00483.2004] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Heparin-binding epidermal growth factor-like growth factor (HB-EGF) enhances reepithelialization in wounds. Estrogen is known to promote cutaneous wound repair. We examined the in vitro effects of 17beta-estradiol (E2) on HB-EGF production by human keratinocytes. E2 or membrane-impermeable BSA-conjugated E2 (E2-BSA) increased HB-EGF secretion, mRNA level, and promoter activity in keratinocytes. E2 or E2-BSA enhanced in vitro wound closure in keratinocytes, and the closure was suppressed by anti-HB-EGF antibody. Activator protein-1 (AP-1) and specificity protein 1 (Sp1) sites on HB-EGF promoter were responsible for the E2- or E2-BSA-induced transactivation. Antisense oligonucleotides against c-Fos, c-Jun, and Sp1 blocked E2- or E2-BSA-induced HB-EGF transactivation. E2 or E2-BSA enhanced DNA binding and transcriptional activity of AP-1 and generated c-Fos/c-Jun heterodimers by inducing c-Fos expression. E2 or E2-BSA enhanced DNA binding and transcriptional activity of Sp1 in parallel with the enhancement of Sp1 phosphorylation. These effects of E2 or E2-BSA were not blocked by the nuclear estrogen receptor antagonist ICI-182,780 or anti-estrogen receptor-alpha or -beta antibodies but were blocked by inhibitors of G protein, phosphatidylinositol-specific PLC, PKC-alpha, and MEK1. These results suggest that E2 or E2-BSA may enhance HB-EGF production via activation of AP-1 and Sp1. These effects of E2 or E2-BSA may be dependent on membrane G protein-coupled receptors different from nuclear estrogen receptors and on the receptor-mediated activities of phosphatidylinositol-specific PLC, PKC-alpha, and MEK1. E2 may enhance wound reepithelialization by promoting HB-EGF production in keratinocytes.
Collapse
Affiliation(s)
- Naoko Kanda
- Dept. of Dermatology, Teikyo Univ., School of Medicine, 11-1, Kaga-2, Itabashi-Ku, Tokyo 173-8605, Japan
| | | |
Collapse
|
205
|
Hershberger PA, Vasquez AC, Kanterewicz B, Land S, Siegfried JM, Nichols M. Regulation of endogenous gene expression in human non-small cell lung cancer cells by estrogen receptor ligands. Cancer Res 2005; 65:1598-605. [PMID: 15735050 DOI: 10.1158/0008-5472.can-04-2694] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Estrogen receptor (ER) agonists and antagonists elicit distinct responses in non-small cell lung cancer (NSCLC) cells. To determine how such responses are generated, the expression of ERalpha, ERbeta, and ER coregulators in human lung fibroblasts and human NSCLC cell lines was evaluated by immunoblot. Ligand-dependent estrogenic responses in NSCLC cells are probably generated via ERbeta and the p160 coactivator GRIP1/TIF2, because expression of these proteins was detected, but not full-length ERalpha or the p160 coactivator SRC-1. ERbeta and GRIP1/TIF2 are shown to interact in vitro in a ligand-dependent manner and thus may form functional transcription complexes in NSCLC cells. Furthermore, the capacity of ER ligands to regulate gene expression in NSCLC cells was explored using gene miniarrays. Expression profiles were examined after treatment with ER agonist 17-beta-estradiol (E2), the pure ER antagonist ICI 182,780 (fulvestrant, Faslodex), or epidermal growth factor, which served as a positive control for an alternative growth stimulus. E-cadherin and inhibitor of differentiation 2 were differentially regulated by E2 versus ICI 182,780 in 201T and 273T NSCLC cell lines. Epidermal growth factor also stimulated proliferation of these cells but had no effect on expression of E-cadherin and inhibitor of differentiation 2, suggesting they are specific targets of ER signaling. These data show that NSCLC cells respond to estrogens/antiestrogens by altering endogenous gene expression and support a model in which ICI 182,780 reduces proliferation of NSCLC cells via its ability to disrupt ER signaling. ICI 182,780 may therefore have therapeutic benefit in NSCLC.
Collapse
Affiliation(s)
- Pamela A Hershberger
- Department of Pharmacology, University of Pittsburgh and The University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|
206
|
Stabile LP, Lyker JS, Gubish CT, Zhang W, Grandis JR, Siegfried JM. Combined targeting of the estrogen receptor and the epidermal growth factor receptor in non-small cell lung cancer shows enhanced antiproliferative effects. Cancer Res 2005; 65:1459-70. [PMID: 15735034 DOI: 10.1158/0008-5472.can-04-1872] [Citation(s) in RCA: 241] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Identifying new effective therapeutic treatments for lung cancer is critical to improving overall patient survival. We have targeted both the estrogen receptor (ER) and the epidermal growth factor receptor (EGFR) pathways using an ER antagonist, fulvestrant ("Faslodex"), and the selective EGFR tyrosine kinase inhibitor, gefitinib ("Iressa"), in non-small cell lung cancer (NSCLC) cells. Rapid activation of phospho-EGFR and phospho-p44/p42 mitogen-activated protein kinase by estrogen was observed, indicating nonnuclear ER transactivation of EGFR. Additionally, EGFR protein expression was down-regulated in response to estrogen and up-regulated in response to fulvestrant in vitro, suggesting that the EGFR pathway is activated when estrogen is depleted in NSCLC cells. Cell growth and apoptosis were examined in several NSCLC lines that express varying amounts of ERbeta, EGFR, and Neu but no full-length ERalpha. One cell line contained an EGFR mutation. Cells were exposed to 10 nmol/L estrogen and 10 ng/mL EGF and either 1 mumol/L fulvestrant or 1 mumol/L gefitinib alone or in combination. In all cell lines, the drug combination decreased cell proliferation up to 90% and increased apoptosis 2-fold. The relative responses to gefitinib and fulvestrant were similar regardless of ER and EGFR expression and mutation status. In an in vivo lung tumor xenograft model, the drug combination decreased tumor volume in severe combined immunodeficient mice by approximately 60% compared with 49% and 32% for gefitinib and fulvestrant treatment alone, respectively. Antitumor effects of the combination therapy were accompanied by biochemical and histologic evidence of increased apoptosis, decreased phospho-p44/p42 mitogen-activated protein kinase expression, and increased Ki-67 expression compared with individual treatment. These studies provide evidence of a functional interaction between the ER and the EGFR pathways in NSCLC.
Collapse
Affiliation(s)
- Laura P Stabile
- Department of Pharmacology and Otolaryngology, University of Pittsburgh and Lung and Thoracic Malignancy Program, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|
207
|
Osborne CK, Schiff R. Estrogen-receptor biology: continuing progress and therapeutic implications. J Clin Oncol 2005; 23:1616-22. [PMID: 15755967 DOI: 10.1200/jco.2005.10.036] [Citation(s) in RCA: 246] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- C Kent Osborne
- Breast Center, Baylor College of Medicine, One Baylor Plaza, BCM 600 Houston, TX 77030, USA.
| | | |
Collapse
|
208
|
Gutzman JH, Nikolai SE, Rugowski DE, Watters JJ, Schuler LA. Prolactin and estrogen enhance the activity of activating protein 1 in breast cancer cells: role of extracellularly regulated kinase 1/2-mediated signals to c-fos. Mol Endocrinol 2005; 19:1765-78. [PMID: 15746191 PMCID: PMC1630766 DOI: 10.1210/me.2004-0339] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Despite the important roles of both prolactin (PRL) and 17beta-estradiol (E2) in normal mammary development as well as in breast cancer, and coexpression of the estrogen receptor (ER) and PRL receptor in many mammary tumors, the interactions between PRL and E2 in breast cancer have not been well studied. The activating protein 1 (AP-1) transcription factor, a known regulator of processes essential for normal growth and development as well as carcinogenesis, is a potential site for cross-talk between these hormones in breast cancer cells. Here we demonstrate that PRL and E2 cooperatively enhance the activity of AP-1 in MCF-7-derived cells. In addition to the acute PRL-induced ERK1/2 activation, PRL and E2 also individually elicited delayed, sustained rises in levels of phosphorylated p38 and especially ERK1/2. Together, these hormones increased the dynamic phosphorylation of ERK1/2 and c-Fos, and induced c-fos promoter activity. Synergistic activation of the transcription factor, Elk-1, reflected the PRL-E2 interaction at ERK1/2 and is a likely mechanism for activation of the c-fos promoter via the serum response element. The enhanced AP-1 activity resulting from the interaction of these hormones may increase expression of many target genes that are critical for oncogenesis and may contribute to neoplastic progression.
Collapse
Affiliation(s)
| | | | | | | | - Linda A. Schuler
- Address all correspondence and requests for reprints to: L.A. Schuler, Department of Comparative Biosciences, University of Wisconsin, 2015 Linden Drive, Madison, Wisconsin 53706. E-mail:
| |
Collapse
|
209
|
Banerjee S, Sengupta K, Saxena NK, Dhar K, Banerjee SK. Epidermal Growth Factor Induces WISP-2/CCN5 Expression in Estrogen Receptor-α-Positive Breast Tumor Cells through Multiple Molecular Cross-talks. Mol Cancer Res 2005; 3:151-62. [PMID: 15798095 DOI: 10.1158/1541-7786.mcr-04-0130] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Epidermal growth factor (EGF) is a mitogen for estrogen receptor (ER)–positive breast tumor cells, and it has been proven that EGF occasionally mimicked estrogen action and cross-talks with ER-α to exert its activity. Therefore, the present study was undertaken to explore whether EGF is able to modulate the expression of Wnt-1-induced signaling protein-2/connective tissue growth factor/cysteine-rich 61/nephroblastoma overexpressed 5 (WISP-2/CCN5), an estrogen-responsive gene, in normal and transformed cell lines of the human breast and, if so, whether this induction is critical for EGF mitogenesis and what downstream signaling pathways are associated with this event. Here, we show that EGF-induced WISP-2 expression in ER- and EGF receptor–positive noninvasive MCF-7 breast tumor cells was dose and time dependent and that expression was modulated at transcription level. A synergism was seen in combination with estrogen. Moreover, small interfering RNA–mediated inhibition of WISP-2/CCN5 activity in MCF-7 cells resulted in abrogation of proliferation by EGF. The multiple molecular cross-talks, including the interactions between phosphatidylinositol 3-kinase/Akt and mitogen-activated protein kinase signaling pathways and two diverse receptors (i.e., ER-α and EGFR), were essential in the event of EGF-induced WISP-2/CCN5 up-regulation in MCF-7 cells. Moreover, EGF action on WISP-2/CCN5 is restricted to ER- and EGFR-positive noninvasive breast tumor cells, and this effect of EGF cannot be instigated in ER-α-negative and EGFR-positive normal or invasive breast tumor cells by introducing ER-α. Finally, regulation of phosphorylation of ER-α and EGFR may play critical roles in EGF-induced transcriptional activation of WISP-2 gene in breast tumor cells.
Collapse
MESH Headings
- Blotting, Northern
- Blotting, Western
- Breast Neoplasms/metabolism
- Butadienes/pharmacology
- CCN Intercellular Signaling Proteins
- Cell Line, Transformed
- Cell Line, Tumor
- Cell Proliferation
- Cloning, Molecular
- DNA, Complementary/metabolism
- Dose-Response Relationship, Drug
- Enzyme Inhibitors/pharmacology
- Epidermal Growth Factor/physiology
- Estrogen Receptor alpha/metabolism
- Gene Expression Regulation, Neoplastic
- Humans
- Intercellular Signaling Peptides and Proteins/biosynthesis
- MAP Kinase Signaling System
- Microscopy, Confocal
- Microscopy, Fluorescence
- Neoplasm Invasiveness
- Neoplasm Proteins/biosynthesis
- Nitriles/pharmacology
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphorylation
- RNA/chemistry
- RNA, Messenger/metabolism
- RNA, Small Interfering/metabolism
- Repressor Proteins
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction
- Subcellular Fractions
- Time Factors
- Transcription Factors/biosynthesis
- Transcription, Genetic
- Transcriptional Activation
- Transfection
- Up-Regulation
Collapse
Affiliation(s)
- Snigdha Banerjee
- Cancer Research Unit, Research Division 151, VA Medical Center, 4801 Linwood Boulevard, Kansas City, MO 64128, USA.
| | | | | | | | | |
Collapse
|
210
|
Manolagas SC, Kousteni S, Chen JR, Schuller M, Plotkin L, Bellido T. Kinase-mediated transcription, activators of nongenotropic estrogen-like signaling (ANGELS), and osteoporosis: a different perspective on the HRT dilemma. Kidney Int 2005:S41-9. [PMID: 15461702 DOI: 10.1111/j.1523-1755.2004.09107.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Studies in bone, as well as other nonreproductive target tissues of sex steroid, like the cardiovascular and the central nervous system (CNS), have elucidated a previously unappreciated mechanism of sex steroid action involving the rapid activation of mitogen-activated protein kinases and/or phosphatidyl inositol 3 kinase, and consequent potent regulatory affects on the transcription of a set of genes that is distinct from that regulated through classic (genotropic) control of transcription. These actions stem from an unexpected function of the classic nuclear receptors outside the nucleus, most probably from receptor interactions within distinct signal transduction pathways in preassembled scaffolds. Importantly, these nongenotropic actions are mediated by the ligand-binding domain of the receptor and can be functionally dissociated from classic transcriptional activation with synthetic ligands, termed activators of nongenotropic estrogen-like signaling (ANGELS). We highlight this evidence and discuss its pharmacotherapeutic implications vis a vis the dilemmas posed by the recently appreciated shortfalls of postmenopausal hormone replacement therapy.
Collapse
Affiliation(s)
- Stavros C Manolagas
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences, 4301 W. Markham St., Slot 587, Little Rock, AR 72205, USA.
| | | | | | | | | | | |
Collapse
|
211
|
Abstract
Changes in clinical practice regarding favoured first-line and adjuvant treatments for postmenopausal women with advanced breast cancer (ABC) mean that it is becoming increasingly important to identify agents that are effective following aromatase inhibitor (AI) failure as well as tamoxifen failure. Fulvestrant ("Faslodex") is a new oestrogen receptor (ER) antagonist with no agonist effects that binds, blocks and degrades the ER. Fulvestrant is at least as effective as anastrozole following tamoxifen failure and also shows activity after progression on AIs. Its very good tolerability profile and novel mode of action, might offer potential for the use of fulvestrant in combination regimens, and there is also scope for investigating the use of loading and higher dose regimens in an attempt to further enhance efficacy. Here, the rationale and evidence for the efficacy of fulvestrant following AI failure and its combination with AIs and novel agents such as gefitinib and trastuzumab will be reviewed. The ongoing clinical development programme for fulvestrant will more fully the role of this valuable new agent in the treatment of postmenopausal ABC.
Collapse
Affiliation(s)
- Anthony Howell
- CRUK Department of Medical Oncology, University of Manchester, Christie Hospital NHS Trust, Wilmslow Road, Manchester M20 4BX, UK.
| |
Collapse
|
212
|
Lu Q, Pallas DC, Surks HK, Baur WE, Mendelsohn ME, Karas RH. Striatin assembles a membrane signaling complex necessary for rapid, nongenomic activation of endothelial NO synthase by estrogen receptor alpha. Proc Natl Acad Sci U S A 2004; 101:17126-31. [PMID: 15569929 PMCID: PMC534607 DOI: 10.1073/pnas.0407492101] [Citation(s) in RCA: 198] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Steroid hormone receptors (SHRs) are ligand-activated transcription factors that regulate gene expression. SHRs also mediate rapid, nongenomic cellular activation by steroids. In vascular endothelial cells, the SHR for estrogen, estrogen receptor (ER) alpha, is targeted by unknown mechanisms to a functional signaling module in membrane caveolae that enables estrogen to rapidly activate the mitogen-activated protein kinase and phosphatidylinositol 3-Akt kinase pathways, and endothelial NO synthase (eNOS). Here we identify the 110-kDa caveolin-binding protein striatin as the molecular anchor that localizes ERalpha to the membrane and organizes the ERalpha-eNOS membrane signaling complex. Striatin directly binds to amino acids 183-253 of ERalpha, targets ERalpha to the cell membrane, and serves as a scaffold for the formation of an ERalpha-Galphai complex. Disruption of complex formation between ERalpha and striatin blocks estrogen-induced rapid activation mitogen-activated protein kinase, Akt kinase, and eNOS, but has no effect on ER-dependent regulation of an estrogen response element-driven reporter plasmid. These findings identify striatin as a molecular scaffold required for rapid, nongenomic estrogen-mediated activation of downstream signaling pathways. Furthermore, by demonstrating independent regulation of nongenomic vs. genomic ER-dependent signaling, these findings provide conceptual support for the potential development of "pathway-specific" selective ER modulators.
Collapse
Affiliation(s)
- Qing Lu
- Molecular Cardiology Research Institute, Department of Medicine, Tufts New England Medical Center, Boston, MA 02111, USA
| | | | | | | | | | | |
Collapse
|
213
|
Kumar R, Wang RA, Barnes CJ. Coregulators and chromatin remodeling in transcriptional control. Mol Carcinog 2004; 41:221-30. [PMID: 15468293 DOI: 10.1002/mc.20056] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Despite many years of investigation by numerous investigators, transcriptional regulatory control remains an intensely investigated and continuously evolving field of research. Transcriptional regulation is dependent not only on transcription factor activation and chromatin remodeling, but also on a host of transcription factor coregulators-coactivators and corepressors. In addition to transcription factor activation and chromatin changes, there is an expanding array of additional modifications that titrate transcriptional regulation for the specific conditions of a particular cell type, organ system, and developmental stage, and such events are likely to be greatly influenced by upstream signaling cascades. Here, we will briefly review the highlights and perspectives of chromatin remodeling and transcription controls as affected by cofactor availability, cellular energy state, relative ratios of reducing equivalents, and upstream signaling. We also present the C-terminal binding protein (CtBP) as a novel nuclear receptor (NR) coregulator, which exemplifies the integration of a number of transcriptional regulatory controls.
Collapse
Affiliation(s)
- Rakesh Kumar
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | |
Collapse
|
214
|
Shupnik MA. Crosstalk between steroid receptors and the c-Src-receptor tyrosine kinase pathways: implications for cell proliferation. Oncogene 2004; 23:7979-89. [PMID: 15489915 DOI: 10.1038/sj.onc.1208076] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Both steroids and growth factors stimulate proliferation of steroid-dependent tumor cells, and interaction between these signaling pathways may occur at several levels. Steroid receptors are typically classified as ligand-activated transcription factors, and steps by which they bind ligand, dimerize, recruit coregulatory molecules, and activate target gene transcription are well understood. Several steroid responses are functionally linked to c-Src or tyrosine kinase receptors, and the physiological impact and the precise molecular pathways involved in these responses are under intensive investigation. Ligand-independent stimulation of steroid receptor-mediated transcription by growth factors is now believed to occur through activated protein kinases that phosphorylate the receptors and receptor coregulators. Recently, steroid hormones themselves have been shown to rapidly activate intracellular signaling cascades, via binding to cognate cytoplasmic or membrane-associated receptors. In some contexts, steroid receptors interact directly with c-Src and other cytoplasmic signaling molecules, such as Shc, PI3K, and p130 Cas. Crosstalk between growth factors and steroids in both the cytoplasm and nucleus could have profound impact on complex biological processes such as cell growth, and play a significant role in the treatment of steroid-dependent cancers. The potential roles of progesterone and estrogen receptors in this crosstalk are discussed in this review.
Collapse
Affiliation(s)
- Margaret A Shupnik
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Virginia, Charlottesville, VA 22903, USA.
| |
Collapse
|
215
|
Sergeev IN. Genistein induces Ca2+ -mediated, calpain/caspase-12-dependent apoptosis in breast cancer cells. Biochem Biophys Res Commun 2004; 321:462-7. [PMID: 15358198 DOI: 10.1016/j.bbrc.2004.06.173] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2004] [Indexed: 11/25/2022]
Abstract
Genistein, a soy-derived isoflavone, has been suggested for breast cancer prevention; however, use of soy products for this purpose remains controversial. Genistein has been reported to regulate growth of tumor cells, although the involved molecular mechanisms are not defined. Here we report that genistein induces apoptosis in breast cancer cells via activation of the Ca2+ -dependent proapoptotic proteases, mu-calpain, and caspase-12. The treatment of MCF-7 breast cancer cells with genistein induced a sustained increase in concentration of intracellular Ca2+ resulting from depletion of the endoplasmic reticulum Ca2+ stores. This increase in Ca2+ was associated with activation of mu-calpain and caspase-12, as evaluated with the calpain and caspase-12 substrates and antibodies to active (cleaved) forms of the enzymes. Selective inhibition of Ca2+ binding sites of mu-calpain, forced increase of the cytosolic Ca2+ buffering capacity, and caspase inhibition decreased apoptotic indices in the genistein-treated cells. Our results suggest that Ca2+ -dependent proteases are potential targets for genistein in breast cancer cells and that the cellular Ca2+ regulatory activity of genistein underlies its apoptotic mechanism.
Collapse
Affiliation(s)
- Igor N Sergeev
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD 57007, USA.
| |
Collapse
|
216
|
Kalli KR, Bradley SV, Fuchshuber S, Conover CA. Estrogen receptor-positive human epithelial ovarian carcinoma cells respond to the antitumor drug suramin with increased proliferation: possible insight into ER and epidermal growth factor signaling interactions in ovarian cancer. Gynecol Oncol 2004; 94:705-12. [PMID: 15350362 DOI: 10.1016/j.ygyno.2004.05.059] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2004] [Indexed: 01/03/2023]
Abstract
OBJECTIVES Development of targeted therapeutics for ovarian cancer requires a basic understanding of ovarian epithelial carcinoma cell biology. The role of estrogen and epidermal growth factor (EGF) in control of cell growth was investigated in a panel of ovarian carcinoma lines. METHODS EGF receptor (EGFR) was detected by flow cytometry and estrogen receptor (ER) by Northern blot. Western blotting and [(3)H]thymidine incorporation were used to determine receptor activation and the effects of ligand exposure and growth factor antagonists, including the antineoplastic agent, suramin, on cell growth. RESULTS Only one cell line, OV266, expressed ER and responded to beta-estradiol with increases in DNA synthesis and cell proliferation that could be blocked by the pure antiestrogen ICI 182,780. All cell lines possessed functional EGFR as measured by flow cytometry and phosphorylation of the receptor and mitogen-activated protein kinase after EGF treatment, but only two cell lines (OV177 and OV266) proliferated in response to exogenous EGF. Suramin had limited effectiveness in inhibiting growth in four of five cell lines and had a striking dose-dependent stimulatory effect on OV266 cell growth. The proliferative response to suramin could be inhibited with EGFR antagonists. CONCLUSION Cultured epithelial ovarian carcinoma cell lines express EGFR (5/5) and can express ER (1/5). Differential growth responses to EGF were observed despite uniform receptor and MAPK activation. Unexpectedly, the antineoplastic agent suramin increased growth of ER positive ovarian carcinoma cells in an EGFR-dependent manner. These studies provide insight into the complex interactions of these systems in control of ovarian cancer cell growth.
Collapse
Affiliation(s)
- Kimberly R Kalli
- Department of Oncology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| | | | | | | |
Collapse
|
217
|
Razandi M, Pedram A, Rosen EM, Levin ER. BRCA1 inhibits membrane estrogen and growth factor receptor signaling to cell proliferation in breast cancer. Mol Cell Biol 2004; 24:5900-13. [PMID: 15199145 PMCID: PMC480898 DOI: 10.1128/mcb.24.13.5900-5913.2004] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
BRCA1 mutations and estrogen use are risk factors for the development of breast cancer. Recent work has identified estrogen receptors localized at the plasma membrane that signal to cell biology. We examined the impact of BRCA1 on membrane estrogen and growth factor receptor signaling to breast cancer cell proliferation. MCF-7 and ZR-75-1 cells showed a rapid and sustained activation of extracellular signal-related kinase (ERK) in response to estradiol (E2) that was substantially prevented by wild-type (wt) but not mutant BRCA1. The proliferation of MCF-7 cells induced by E2 was significantly inhibited by PD98059, a specific ERK inhibitor, or by dominant negative ERK2 expression and by expression of wt BRCA1 (but not mutant BRCA1). E2 induced the synthesis of cyclins D1 and B1, the activity of cyclin-dependent kinases Cdk4 and CDK1, and G(1)/S and G(2)/M cell cycle progression. The intact tumor suppressor inhibited all of these. wt BRCA1 also inhibited epidermal growth factor and insulin-like growth factor I-induced ERK and cell proliferation. The inhibition of ERK and cell proliferation by BRCA1 was prevented by phosphatase inhibitors and by interfering RNA knockdown of the ERK phosphatase, mitogen-activated kinase phosphatase 1. Our findings support a novel tumor suppressor function of BRCA1 that is relevant to breast cancer and identify a potential interactive risk factor for women with BRCA1 mutations.
Collapse
Affiliation(s)
- Mahnaz Razandi
- Division of Endocrinology, Veterans Affairs Medical Center, Long Beach, California 90822, USA
| | | | | | | |
Collapse
|
218
|
Alexaki VI, Charalampopoulos I, Kampa M, Vassalou H, Theodoropoulos P, Stathopoulos EN, Hatzoglou A, Gravanis A, Castanas E. Estrogen exerts neuroprotective effects via membrane estrogen receptors and rapid Akt/NOS activation. FASEB J 2004; 18:1594-6. [PMID: 15289442 DOI: 10.1096/fj.04-1495fje] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The neuroprotective role of estrogen (E2) is supported by a multitude of experimental and epidemiological data, although its mode of action is not fully understood. The present work was conducted to study the underlying mechanisms of its neuroprotective action, using the rat cell line PC12, an established model for neuronal cell apoptosis and survival. Our results show that E2 (but not androgens or progestins) prevent growth inhibition and apoptosis of PC12 cells, induced by serum deprivation. Several mechanisms of action were investigated: 1) intracellular estrogen receptors (ERs) have been identified but do not appear to mediate the protective effect of E2. 2) The antioxidant properties of E2 cannot explain their protective actions at the concentrations used (10(-12)-10(-6) M). 3) Finally, membrane sites for E2 have been identified, and the underlying initial signaling cascade (2-30 min after E2) has been tested, showing Ca(2+) mobilization-->PI3K activation-->Akt phosporylation-->NOS activation. Inhibition of PI3K or NOS completely reversed the anti-apoptotic effect of E2. These results suggest a new mechanism of neuroprotective action of estrogen.
Collapse
Affiliation(s)
- Vasilia-Ismini Alexaki
- Laboratory of Experimental Endocrinology, University of Crete, School of Medicine, Heraklion, Greece
| | | | | | | | | | | | | | | | | |
Collapse
|
219
|
Abstract
Lung cancer is the leading cause of death from neoplasia in men and women in the United States. Some studies suggest that women are more susceptible than men to tobacco-induced carcinogenesis and may show higher risk than men for lung cancer development from smoking. More recently, increasing biochemical and genetic data have supported this male-female difference in response to tobacco. Estrogens may be involved in lung carcinogenesis, and estrogen receptors (ERs), mainly ERb, are present and functional in normal lung and tumor cell lines and tissues. Estrogen can directly stimulate the transcription of estrogen-responsive genes in the nucleus of lung cells, and it can also transactivate growth factor signaling pathways, in particular the epidermal growth factor pathway. Lung cancer patients currently have few effective therapeutic options. An understanding of these new developments in estrogen signaling and cross-talk pathways may pave the way for innovative combinatorial approaches for treatment of lung cancer and possibly chemoprevention.
Collapse
Affiliation(s)
- Laura P Stabile
- Department of Pharmacology, University of Pittsburgh, Hillman Cancer Center, UPCI Research Pavilion, Suite 2.18, Pittsburgh, PA 15213-1863, USA
| | | |
Collapse
|
220
|
Nieto-Fernandez FE, Ianuzzi F, Ruiz A, Nodimele L. Estradiol-stimulated nitric oxide release in nervous tissue, vasculature, and gonads of the giant cockroach Blaberus craniifer. ACTA BIOLOGICA HUNGARICA 2004; 55:143-8. [PMID: 15270228 DOI: 10.1556/abiol.55.2004.1-4.17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The vertebrate system of steroid hormones appears to have been conserved widely throughout the animal kingdom. The sex hormone estrogen, 17-beta-estradiol (E2), long considered to be exclusively a vertebrate hormone, is found also in invertebrates related to reproductive and developmental processes such as spawning, vitellogenesis and molting. These processes are affected by estrogen induced changes at the genomic level and take place at a large time scale. The discovery of surface membrane receptors for E2 has opened new possibilities for the involvement of estrogen in biological functions other than reproductive. These processes take place within a few seconds to minutes and involve sudden cytosolic calcium transients, activation of adenylate cyclase or activation of phospholipase C (PLC). E2 can modulate the production of nitric oxide (NO) in endotheliar and other cells. A similar mechanism linking estrogen to cNOS catalized nitric oxide (NO) release is reported herein for the first time in several tissues of the giant cockroach Blaberus craniifer. This process has been identified in the brain, nerve cord, vasculature and ovaries. This effect is concentration dependent and is inhibited by tamoxifen an estrogen receptor blocker.
Collapse
Affiliation(s)
- F E Nieto-Fernandez
- SUNY College at Old Westbury, Neuroscience Research Institute, Old Westbury, NY 11568, USA.
| | | | | | | |
Collapse
|
221
|
Razandi M, Pedram A, Merchenthaler I, Greene GL, Levin ER. Plasma membrane estrogen receptors exist and functions as dimers. Mol Endocrinol 2004; 18:2854-65. [PMID: 15231873 DOI: 10.1210/me.2004-0115] [Citation(s) in RCA: 254] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
A small pool of estrogen receptors (ERalpha and -beta) localize at the plasma membrane and rapidly signal to affect cellular physiology. Although nuclear ERs function mainly as homodimers, it is unknown whether membrane-localized ER exists or functions with similar requirements. We report that the endogenous ER isoforms at the plasma membrane of breast cancer or endothelial cells exist predominantly as homodimers in the presence of 17beta-estradiol (E2). Interestingly, in endothelial cells made from ERalpha /ERbeta homozygous double-knockout mice, membrane ERalpha or ERbeta are absent, indicating that the endogenous membrane receptors derive from the same gene(s) as the nuclear receptors. In ER-negative breast cancer cells or Chinese hamster ovary cells, we expressed and compared wild-type and dimer mutant mouse ERalpha. Only wild-type ERalpha supported the ability of E2 to rapidly activate ERK, cAMP, and phosphatidylinositol 3-kinase signaling. This resulted from E2 activating Gsalpha and Gqalpha at the membrane in cells expressing the wild-type, but not the dimer mutant, ERalpha. Intact, but not dimer mutant, ERalpha also supported E2-induced epidermal growth factor receptor transactivation and cell survival. We also confirmed the requirement of dimerization for membrane ER function using a second, less extensively mutated, human ERalpha. In summary, endogenous membrane ERs exist as dimers, a structural requirement that supports rapid signal transduction and affects cell physiology.
Collapse
Affiliation(s)
- Mahnaz Razandi
- Long Beach Veterans Affairs Medical Center/University of California-Irvine, 5901 East 7th Street, Long Beach, California 90822, USA
| | | | | | | | | |
Collapse
|
222
|
Fernando RI, Wimalasena J. Estradiol abrogates apoptosis in breast cancer cells through inactivation of BAD: Ras-dependent nongenomic pathways requiring signaling through ERK and Akt. Mol Biol Cell 2004; 15:3266-84. [PMID: 15121878 PMCID: PMC452582 DOI: 10.1091/mbc.e03-11-0823] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2003] [Revised: 04/16/2004] [Accepted: 04/18/2004] [Indexed: 11/11/2022] Open
Abstract
Estrogens such as 17-beta estradiol (E(2)) play a critical role in sporadic breast cancer progression and decrease apoptosis in breast cancer cells. Our studies using estrogen receptor-positive MCF7 cells show that E(2) abrogates apoptosis possibly through phosphorylation/inactivation of the proapoptotic protein BAD, which was rapidly phosphorylated at S112 and S136. Inhibition of BAD protein expression with specific antisense oligonucleotides reduced the effectiveness of tumor necrosis factor-alpha, H(2)O(2), and serum starvation in causing apoptosis. Furthermore, the ability of E(2) to prevent tumor necrosis factor-alpha-induced apoptosis was blocked by overexpression of the BAD S112A/S136A mutant but not the wild-type BAD. BAD S112A/S136A, which lacks phosphorylation sites for p90(RSK1) and Akt, was not phosphorylated in response to E(2) in vitro(.) E(2) treatment rapidly activated phosphatidylinositol 3-kinase (PI-3K)/Akt and p90(RSK1) to an extent similar to insulin-like growth factor-1 treatment. In agreement with p90(RSK1) activation, E(2) also rapidly activated extracellular signal-regulated kinase, and this activity was down-regulated by chemical and biological inhibition of PI-3K suggestive of cross talk between signaling pathways responding to E(2). Dominant negative Ras blocked E(2)-induced BAD phosphorylation and the Raf-activator RasV12T35S induced BAD phosphorylation as well as enhanced E(2)-induced phosphorylation at S112. Chemical inhibition of PI-3K and mitogen-activated protein kinase kinase 1 inhibited E(2)-induced BAD phosphorylation at S112 and S136 and expression of dominant negative Ras-induced apoptosis in proliferating cells. Together, these data demonstrate a new nongenomic mechanism by which E(2) prevents apoptosis.
Collapse
Affiliation(s)
- Romaine Ingrid Fernando
- Department of Obstetrics and Gynecology, and the Comparative and Experimental Medicine Program, Graduate School of Medicine, University of Tennessee, Knoxville, Tennessee 37920, USA
| | | |
Collapse
|
223
|
Patel JD, Pasche B, Argiris A. Targeting non-small cell lung cancer with epidermal growth factor tyrosine kinase inhibitors: where do we stand, where do we go. Crit Rev Oncol Hematol 2004; 50:175-86. [PMID: 15182824 DOI: 10.1016/j.critrevonc.2004.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2004] [Indexed: 10/26/2022] Open
Abstract
Cytotoxic chemotherapy has only yielded modest gains in survival in lung cancer in the past decade. However, the development of agents targeting specific signaling pathways that drive carcinogenesis has heralded a major paradigm shift in the approach to treatment of cancer. In non-small cell lung cancer (NSCLC), many researchers have focused on the epidermal growth factor receptor (EGFR) because this protein is present on a relatively high proportion of non-small cell lung cancers and its intracellular tyrosine kinase activates a signaling cascade that drives tumor growth. Blockade of the EGFR by small molecule inhibitors of the tyrosine kinase, such as gefitinib and erlotinib, causes tumor regressions in NSCLC. Phase II monotherapy trials of EGFR tyrosine kinase inhibitors in patients with previously treated advanced NSCLC demonstrated anti-tumor activity with objective response rates of 10-19% with acceptable toxicities and an associated improvement in lung cancer symptomatology. Gefitinib is now an FDA approved treatment for advanced NSCLC previously treated with platinum and docetaxel-based therapies. However, phase III trials of gefitinib and erlotinib in combination with chemotherapy doublets have failed to demonstrate a survival advantage when compared with chemotherapy alone. It remains unclear why these drugs work so effectively in certain patients and so poorly in combination with chemotherapy. The goal of ongoing and future investigation is to identify which patients may benefit from this new therapeutic approach.
Collapse
Affiliation(s)
- Jyoti D Patel
- Department of Medicine, Northwestern University Feinberg School of Medicine and the Robert H Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL 60611, USA
| | | | | |
Collapse
|
224
|
Osborne CK, Schiff R. Growth factor receptor cross-talk with estrogen receptor as a mechanism for tamoxifen resistance in breast cancer. Breast 2004; 12:362-7. [PMID: 14659106 DOI: 10.1016/s0960-9776(03)00137-1] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Breast cancer growth is regulated by steroid hormones and by polypeptide hormones and growth factors. Endocrine therapies for breast cancer have been designed to interrupt estrogen signaling by either blocking its receptor (ER) or by lowering the amount of estrogen available in the cell for binding. These therapies are very effective in many patients but de novo and acquired resistance are common. Growing evidence suggests that cross-talk between ER and growth factor receptor pathways contributes to the development of this resistance. Signaling via the EGF receptor and HER-2/neu can activate both ER and the important ER coactivator AIB1. In turn, ER located in the cell membrane can activate the growth factor receptor pathways. Breast tumors with high levels of AIB1 and HER-2 may be resistant to tamoxifen because of an increase in its estrogen agonist activity.
Collapse
Affiliation(s)
- C Kent Osborne
- Breast Center, Baylor College of Medicine and The Methodist Hospital, One Baylor Plaza, BCM 600, Houston, TX 77030, USA
| | | |
Collapse
|
225
|
Abstract
The ovarian hormones oestradiol and progesterone exert their actions on target cells predominantly through the binding and activation of the oestrogen receptor (ER) and progesterone receptor (PR), respectively. These receptors are members of the steroid/thyroid hormone superfamily of ligand-dependent transcription factors and bind to the control regions (promoters) of specific genes, where they recruit co-activators or co-repressors and the transcriptional machinery necessary to elicit gene expression. The ability of a nuclear receptor to modulate gene transcription is further dependent on its interaction with other transcription factors, which in turn can be regulated by either distinct or multiple cytoplasmic signalling pathways. This chapter summarises the extraordinary diversity of factors involved in determining the cellular response to a hormonal signal and emphasises the role of ER and PR in regulating ovarian and uterine functions.
Collapse
Affiliation(s)
- Jan J Brosens
- Faculty of Medicine, Hammersmith Hospital, Institute of Reproductive and Developmental Biology, Wolfson and Weston Research Centre for Family Health, Imperial College London, London W12 0NN, UK.
| | | | | | | |
Collapse
|
226
|
Abstract
Extended exposure to the selective estrogen receptor modulators (SERMs) such as raloxifene to prevent osteoporosis and tamoxifen or the aromatase inhibitors to treat or prevent breast cancer are established therapeutic strategies. However, there are now clearly defined consequences of exhaustive antihormonal therapy in breast cancer. Ultimately, drug resistance to SERMs and aromatase inhibitors enhances cancer cell survival but a paradoxical supersensitivity to estrogen action develops that causes cancer cell apoptosis. The future exploitation of these novel data will allow selective killing of cancer with fewer side effects for patients.
Collapse
|
227
|
Bulayeva NN, Gametchu B, Watson CS. Quantitative measurement of estrogen-induced ERK 1 and 2 activation via multiple membrane-initiated signaling pathways. Steroids 2004; 69:181-92. [PMID: 15072920 PMCID: PMC1201430 DOI: 10.1016/j.steroids.2003.12.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2003] [Revised: 11/24/2003] [Accepted: 12/16/2003] [Indexed: 12/20/2022]
Abstract
Estradiol (E2) and other steroids have recently been shown to initiate various intracellular signaling cascades from the plasma membrane, including those stimulating mitogen-activated protein kinases (MAPKs), and particularly extracellular-regulated kinases (ERKs). In this study we demonstrated the ability of E2 to activate ERKs in the GH3/B6/F10 pituitary tumor cell line, originally selected for its enhanced expression of membrane estrogen receptor-alpha (mERalpha). We compared E2 to its cell-impermeable analog (E2 conjugated to peroxidase, E2-P), and to the synthetic estrogen diethylstilbestrol (DES). Time-dependent ERK activation was quantified with a novel fixed cell-based immunoassay developed to efficiently determine activation by multiple compounds over multiple parameters. Both E2 and DES produced bimodal responses, but with distinctly different time courses of enzyme phosphorylation (activation) and inactivation; E2-P induced a monophasic ERK activation. E2 also phosphorylated ERKs in concentration-dependent manner with two concentration optima (10(-14) and 10(-8)M). Inhibitors were employed to determine pathway (ER, EGFR, membrane organization, PI3 kinase, Src kinase, Ca2+) involvement and timing of pathway activations; all affected ERK activation as early as 3-6 min, suggesting simultaneous, not sequential, activation. Therefore, E2 and other estrogenic compounds can produce rapid ERK phosphorylations via nongenomic pathways, using more than one pathway for signal generation.
Collapse
Affiliation(s)
- Nataliya N. Bulayeva
- Department of Human Biological Chemistry & Genetics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Bahiru Gametchu
- National Institutes of Health (NIH), 6701 Rockledge Drive, Bethesda, MD 20892, USA
| | - Cheryl S. Watson
- Department of Human Biological Chemistry & Genetics, University of Texas Medical Branch, Galveston, TX 77555, USA
- * Corresponding author. Tel./fax: +1-409-772-2382. E-mail address: (C.S. Watson)
| |
Collapse
|
228
|
Sengupta K, Banerjee S, Saxena NK, Banerjee SK. Thombospondin-1 Disrupts Estrogen-Induced Endothelial Cell Proliferation and Migration and Its Expression Is Suppressed by Estradiol. Mol Cancer Res 2004. [DOI: 10.1158/1541-7786.150.2.3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
The natural hormone 17β-estradiol (17β-E2) is known to induce tumor angiogenesis in various target organs by activating positive regulators of angiogenesis. In this study, we show for the first time that in human umbilical vein endothelial cells (HUVECs), 17β-E2 transiently down-regulates the expression and secretion of a potent negative regulator of angiogenesis, thrombospondin-1 (TSP-1). This inhibitory effect of 17β-E2 is mediated through nongenomic estrogen receptor (ER)/mitogen-activated protein kinase (MAPK)/extracellular-regulated kinase (ERK) 1/2 and c-Jun NH2-terminal kinase (JNK)/stress-activated protein kinase (SAPK) signaling pathways, because this effect can be abolished by a pure ER antagonist (ICI 182,780) and inhibitors of downstream signaling proteins of MAPK signaling cascades, including MAPK kinase 1/2 and ERK1/2 inhibitor and JNK/SAPK inhibitor. To understand the functional role(s) of TSP-1 during estradiol-induced angiogenesis, we examined the growth and migration of endothelial cells in different experimental environments. Using a recombinant protein, we show that increments of TSP-1 protein concentration in culture medium significantly reduce the migration and proliferation of HUVECs stimulated by 17β-E2. Together, these studies suggest that TSP-1 can be considered an important negative factor in understanding the increased angiogenesis in response to estrogens.
Collapse
Affiliation(s)
- Krishanu Sengupta
- Cancer Research Unit, VA Medical Center, Kansas City, MO and Division of Hematology and Oncology, Department of Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Snigdha Banerjee
- Cancer Research Unit, VA Medical Center, Kansas City, MO and Division of Hematology and Oncology, Department of Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Neela K. Saxena
- Cancer Research Unit, VA Medical Center, Kansas City, MO and Division of Hematology and Oncology, Department of Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Sushanta K. Banerjee
- Cancer Research Unit, VA Medical Center, Kansas City, MO and Division of Hematology and Oncology, Department of Medicine, University of Kansas Medical Center, Kansas City, KS
| |
Collapse
|
229
|
Chen DB, Bird IM, Zheng J, Magness RR. Membrane estrogen receptor-dependent extracellular signal-regulated kinase pathway mediates acute activation of endothelial nitric oxide synthase by estrogen in uterine artery endothelial cells. Endocrinology 2004; 145:113-25. [PMID: 14512434 DOI: 10.1210/en.2003-0547] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Rapid uterine vasodilatation after estrogen administration is believed to be mediated by endothelial production of nitric oxide (NO) via endothelial NO synthase (eNOS). However, the mechanism(s) by which estrogen activates eNOS in uterine artery endothelial cells (UAEC) is unknown. In this study, we observed that estradiol-17beta (E2) and E2-BSA rapidly (<2 min) increased total NOx production in UAEC in vitro. This was associated with rapid eNOS phosphorylation and activation but was unaltered by pretreatment with actinomycin-D. Estrogen receptor-alpha protein was detectable in isolated plasma membrane proteins by immunoblotting, and E2-BSA-fluorescein isothiocyanate binding was evident on the plasma membrane of UAEC. E2 did not mobilize intracellular Ca2+, but E2 and ionomycin in combination induced greater eNOS phosphorylation than either E2 or ionomycin alone. E2 did not stimulate rapid Akt phosphorylation. E2 stimulated rapid ERK2/1 activation in a time- and dose-dependent manner, with maximal responses observed at 5-10 min with E2 (10 nm to 1 microm) treatment. Acute activation of eNOS and NOx production by E2 could be inhibited by PD98059 but not by LY294002. When E2-BSA was applied, similar responses in NOx production, eNOS, and ERK2/1 activation to those of E2 were achieved. In addition, E2 and E2-BSA-induced ERK2/1 activation and ICI 182,780 could inhibit NOx production by E2. Thus, acute activation of eNOS to produce NO in UAEC by estrogen is at least partially through an ERK pathway, possibly via estrogen receptor localized on the plasma membrane. This pathway may provide a novel mechanism for NO-mediated rapid uterine vasodilatation by estrogen.
Collapse
Affiliation(s)
- Dong-Bao Chen
- Department of Reproductive Medicine, University of California San Diego, La Jolla, California 92093-0802, USA.
| | | | | | | |
Collapse
|
230
|
|
231
|
|
232
|
Foster JS, Fernando RI, Ishida N, Nakayama KI, Wimalasena J. Estrogens down-regulate p27Kip1 in breast cancer cells through Skp2 and through nuclear export mediated by the ERK pathway. J Biol Chem 2003; 278:41355-66. [PMID: 12904306 DOI: 10.1074/jbc.m302830200] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The cyclin-dependent kinase (CDK) inhibitor p27Kip1 plays a key role in growth and development of the mammary epithelium and in breast cancer. p27Kip1 levels are regulated through ubiquitin/proteasome-mediated proteolysis, promoted by CDK2 and the F box protein Skp2 at the G1/S transition, and independent of Skp2 in mid-G1. We investigated the respective roles of Skp2 and subcellular localization of p27Kip1 in down-regulation of p27Kip1 induced in MCF-7 cells by estrogens. 17beta-Estradiol treatment increased Skp2 expression in MCF-7 cells; however, this increase was prevented by G1 blockade mediated by p16Ink4a or the CDK inhibitor roscovitine, whereas down-regulation of p27Kip1 was maintained. Exogenous Skp2 prevented growth arrest of MCF-7 cells by antiestrogen, coinciding with decreased p27Kip1 expression. Under conditions of G1 blockade, p27Kip1 was stabilized by inhibition of CRM1-dependent nuclear export with leptomycin B or by mutation of p27Kip1 (Ser10 --> Ala; S10A) interfering with CRM1/p27Kip1 interaction. Antisense Skp2 oligonucleotides and a dominant-interfering Cul-1(1-452) mutant prevented down-regulation of p27Kip1S10A, whereas Skp2 overexpression elicited its destruction in mitogen-deprived cells. Active mediators of the extracellular signal-regulated kinase (ERK) pathway including Raf-1caax induced cytoplasmic localization of p27Kip1 in antiestrogen-treated cells and prevented accumulation of p27Kip1 in these cells independent of Skp2 expression and coinciding with ERK activation. Genetic or chemical blockade of the ERK pathway prevented down-regulation and cytoplasmic localization of p27Kip1 in response to estrogen. Our studies indicate that estrogens elicit down-regulation of p27Kip1 in MCF-7 cells through Skp2-dependent and -independent mechanisms that depend upon subcellular localization of p27Kip1 and require the participation of mediators of the Ras/Raf-1/ERK signaling pathway.
Collapse
Affiliation(s)
- James S Foster
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Program in Comparative and Experimental Medicine, University of Tennessee Medical Center, Knoxville, Tennessee 37920, USA
| | | | | | | | | |
Collapse
|
233
|
Dodson RE, Goolsby KM, Acena-Nagel M, Mao C, Shapiro DJ. RNA Gel Shift Assays for Analysis of Hormone Control of mRNA Stability. Methods Enzymol 2003; 364:350-61. [PMID: 14631855 DOI: 10.1016/s0076-6879(03)64020-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Affiliation(s)
- Robin E Dodson
- Department of Biochemistry, University of Illinois, Urbana, Illinois 61801, USA
| | | | | | | | | |
Collapse
|