201
|
Bringmann A, Iandiev I, Pannicke T, Wurm A, Hollborn M, Wiedemann P, Osborne NN, Reichenbach A. Cellular signaling and factors involved in Müller cell gliosis: neuroprotective and detrimental effects. Prog Retin Eye Res 2009; 28:423-51. [PMID: 19660572 DOI: 10.1016/j.preteyeres.2009.07.001] [Citation(s) in RCA: 522] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Müller cells are active players in normal retinal function and in virtually all forms of retinal injury and disease. Reactive Müller cells protect the tissue from further damage and preserve tissue function by the release of antioxidants and neurotrophic factors, and may contribute to retinal regeneration by the generation of neural progenitor/stem cells. However, Müller cell gliosis can also contribute to neurodegeneration and impedes regenerative processes in the retinal tissue by the formation of glial scars. This article provides an overview of the neuroprotective and detrimental effects of Müller cell gliosis, with accounts on the cellular signal transduction mechanisms and factors which are implicated in Müller cell-mediated neuroprotection, immunomodulation, regulation of Müller cell proliferation, upregulation of intermediate filaments, glial scar formation, and the generation of neural progenitor/stem cells. A proper understanding of the signaling mechanisms implicated in gliotic alterations of Müller cells is essential for the development of efficient therapeutic strategies that increase the supportive/protective and decrease the destructive roles of gliosis.
Collapse
Affiliation(s)
- Andreas Bringmann
- Department of Ophthalmology and Eye Hospital, University of Leipzig, Liebigstrasse 10-14, D-04103 Leipzig, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
202
|
Chou YH, Kuo WL, Rosner MR, Tang WJ, Goldman RD. Structural changes in intermediate filament networks alter the activity of insulin-degrading enzyme. FASEB J 2009; 23:3734-42. [PMID: 19584300 DOI: 10.1096/fj.09-137455] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The intermediate filament (IF) protein nestin coassembles with vimentin and promotes the disassembly of these copolymers when vimentin is hyperphosphorylated during mitosis. The aim of this study is to determine the function of these nonfilamentous particles by identifying their interacting partners. In this study, we report that these disassembled vimentin/nestin complexes interact with insulin degrading enzyme (IDE). Both vimentin and nestin interact with IDE in vitro, but vimentin binds IDE with a higher affinity than nestin. Although the interaction between vimentin and IDE is enhanced by vimentin phosphorylation at Ser-55, the interaction between nestin and IDE is phosphorylation independent. Further analyses show that phosphorylated vimentin plays the dominant role in targeting IDE to the vimentin/nestin particles in vivo, while the requirement for nestin is related to its ability to promote vimentin IF disassembly. The binding of IDE to either nestin or phosphorylated vimentin regulates IDE activity differently, depending on the substrate. The insulin degradation activity of IDE is suppressed approximately 50% by either nestin or phosphorylated vimentin, while the cleavage of bradykinin-mimetic peptide by IDE is increased 2- to 3-fold. Taken together, our data demonstrate that the nestin-mediated disassembly of vimentin IFs generates a structure capable of sequestering and modulating the activity of IDE.
Collapse
Affiliation(s)
- Ying-Hao Chou
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, 303 East Chicago Ave., Chicago, IL 60611, USA
| | | | | | | | | |
Collapse
|
203
|
Herrmann H, Strelkov SV, Burkhard P, Aebi U. Intermediate filaments: primary determinants of cell architecture and plasticity. J Clin Invest 2009; 119:1772-83. [PMID: 19587452 DOI: 10.1172/jci38214] [Citation(s) in RCA: 225] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Intermediate filaments (IFs) are major constituents of the cytoskeleton and nuclear boundary in animal cells. They are of prime importance for the functional organization of structural elements. Depending on the cell type, morphologically similar but biochemically distinct proteins form highly viscoelastic filament networks with multiple nanomechanical functions. Besides their primary role in cell plasticity and their established function as cellular stress absorbers, recently discovered gene defects have elucidated that structural alterations of IFs can affect their involvement both in signaling and in controlling gene regulatory networks. Here, we highlight the basic structural and functional properties of IFs and derive a concept of how mutations may affect cellular architecture and thereby tissue construction and physiology.
Collapse
Affiliation(s)
- Harald Herrmann
- Group Functional Architecture of the Cell, German Cancer Research Center, Heidelberg, Germany.
| | | | | | | |
Collapse
|
204
|
Eriksson JE, Dechat T, Grin B, Helfand B, Mendez M, Pallari HM, Goldman RD. Introducing intermediate filaments: from discovery to disease. J Clin Invest 2009; 119:1763-71. [PMID: 19587451 DOI: 10.1172/jci38339] [Citation(s) in RCA: 311] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
It took more than 100 years before it was established that the proteins that form intermediate filaments (IFs) comprise a unified protein family, the members of which are ubiquitous in virtually all differentiated cells and present both in the cytoplasm and in the nucleus. However, during the past 2 decades, knowledge regarding the functions of these structures has been expanding rapidly. Many disease-related roles of IFs have been revealed. In some cases, the molecular mechanisms underlying these diseases reflect disturbances in the functions traditionally assigned to IFs, i.e., maintenance of structural and mechanical integrity of cells and tissues. However, many disease conditions seem to link to the nonmechanical functions of IFs, many of which have been defined only in the past few years.
Collapse
Affiliation(s)
- John E Eriksson
- Department of Biology, Abo Akademi University, Turku, Finland.
| | | | | | | | | | | | | |
Collapse
|
205
|
van Engelen E, Breeveld-Dwarkasing VNA, Everts ME, van der Weyden GC, Taverne MAM, Rutten VPMG. Smooth muscle cells of the bovine cervical stroma may have a secretory, rather than a contractile function during parturition. Reprod Domest Anim 2009; 44:303-11. [PMID: 19323797 DOI: 10.1111/j.1439-0531.2008.01070.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The bovine cervix contains a large amount of smooth muscle cells distributed over an outer muscular layer and within a stromal layer. The stromal layer exhibits no electromyographic (EMG) activity at parturition. This leads to the question whether the stromal smooth muscle cells of the bovine cervix are prepared to contract with parturition, or whether they have another function. To this end, cervical biopsies were repeatedly taken from 10 pregnant cows at day-185 and -275 of gestation, at spontaneous, uncomplicated calving and at 30 days after calving. The smooth muscle bundles of the stroma were immunohistochemically analysed (n = 5) with regard to their integrity and cellular density, and the degree of staining for connexin-43, smooth muscle actin alpha (SMA), desmin and vimentin. Additionally, the mRNA expression for connexin-43, SMA, desmin and vimentin was determined with RT-PCR (n = 5). The smooth muscle tissue was arranged in bundles, also at parturition. However, the cellular density of these bundles and the SMA mRNA expression were decreased at parturition. Additionally, the SMA staining and connexin-43 expression and staining remained constant during pregnancy and at parturition. This might indicate that stromal smooth muscle cells are not prepared to contract with parturition, in contrast to the myometrial smooth muscle cells. The smooth muscle cells, stained for SMA, also expressed vimentin, and the proportion of co-expression was increased at day-275 of pregnancy. This suggests that the stromal smooth muscle cells predominantly have a secretory function in cows.
Collapse
Affiliation(s)
- E van Engelen
- Department of Pathobiology, Division of Anatomy and Physiology, Utrecht University, Utrecht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
206
|
Phua DC, Humbert PO, Hunziker W. Vimentin regulates scribble activity by protecting it from proteasomal degradation. Mol Biol Cell 2009; 20:2841-55. [PMID: 19386766 PMCID: PMC2695792 DOI: 10.1091/mbc.e08-02-0199] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Revised: 03/17/2009] [Accepted: 04/13/2009] [Indexed: 02/07/2023] Open
Abstract
Scribble (Scrib), Discs large, and Lethal giant larvae form a protein complex that regulates different aspects of cell polarization, including apical-basal asymmetry in epithelial cells and anterior-posterior polarity in migrating cells. Here, we show that Scrib interacts with the intermediate filament cytoskeleton in epithelial Madin-Darby canine kidney (MDCK) cells and endothelial human umbilical vein endothelial cells. Scrib binds vimentin via its postsynaptic density 95/disc-large/zona occludens domains and in MDCK cells redistributes from filaments to the plasma membrane during the establishment of cell-cell contacts. RNA interference-mediated silencing of Scrib, vimentin, or both in MDCK cells results in defects in the polarization of the Golgi apparatus during cell migration. Concomitantly, wound healing is delayed due to the loss of directional movement. Furthermore, cell aggregation is dependent on both Scrib and vimentin. The similar phenotypes observed after silencing either Scrib or vimentin support a coordinated role for the two proteins in cell migration and aggregation. Interestingly, silencing of vimentin leads to an increased proteasomal degradation of Scrib. Thus, the upregulation of vimentin expression during epithelial to mesenchymal transitions may stabilize Scrib to promote directed cell migration.
Collapse
Affiliation(s)
- Dominic C.Y. Phua
- *Epithelial Cell Biology Laboratory, Cancer and Developmental Cell Biology Division, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore 138673, Republic of Singapore; and
| | - Patrick O. Humbert
- Cell Cycle and Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne 8006, Victoria, Australia
| | - Walter Hunziker
- *Epithelial Cell Biology Laboratory, Cancer and Developmental Cell Biology Division, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore 138673, Republic of Singapore; and
| |
Collapse
|
207
|
Miller TJ, Davis PB. S163 is critical for FXYD5 modulation of wound healing in airway epithelial cells. Wound Repair Regen 2009; 16:791-9. [PMID: 19128250 DOI: 10.1111/j.1524-475x.2008.00432.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The FXYD family, which contains seven members, are tissue specific regulators of the Na,K-ATPase. Increased expression of FXYD5, a cancer-cell-associated membrane glycoprotein, has been associated with increased cell motility and metastatic potential. To better understand how FXYD5 may modulate cell motility, we analyzed S163, a conserved residue in all FXYD family members located in the C-terminus. Ectopic expression of human FXYD5 S163 mutants in HEK 293 cells showed that negative charge at S163 (S163D) decreased membrane localization, assessed by immunofluorescence. Coimmunoprecipitation studies revealed decreased FXYD5/Na,K-ATPase interaction for S163D compared with wild-type or S163A mutants. Interestingly, FXYD5 overexpression induced expression of vimentin, a marker of epithelial-mesenchymal transition, in murine airway epithelial cells. Because Na,K-ATPase expression is decreased in some forms of cancer and is critical for establishing cell polarity and suppressing cell motility, we analyzed S163 mutants in an epithelial cell scratch-wound model as a measure of cell migration. Wild-type FXYD5 overexpression increased reepithelialization (p<0.0001), which was further increased in S163D mutants (p<0.005). However, S163A mutants inhibited epithelial cell migration compared with wild-type FXYD5 overexpression (p<0.0001). We conclude that negative charge at S163 regulates FXYD5/Na,K-ATPase interaction and that this interaction modulates cell migration across a wound in airway epithelial cells.
Collapse
Affiliation(s)
- Timothy J Miller
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| | | |
Collapse
|
208
|
Endosomal lipid accumulation in NPC1 leads to inhibition of PKC, hypophosphorylation of vimentin and Rab9 entrapment. Biol Cell 2009; 101:141-52. [PMID: 18681838 DOI: 10.1042/bc20070171] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND INFORMATION Within the group of lysosomal storage diseases, NPC1 [NPC (Niemann-Pick type C) 1] disease is a lipidosis characterized by excessive accumulation of free cholesterol as well as gangliosides, glycosphingolipids and fatty acids in the late E/L (endosomal/lysosomal) system (Chen et al., 2005) due to a defect in late endosome lipid egress. We have previously demonstrated that expression of the small GTPase Rab9 in NPC1 cells can rescue the lipid transport block phenotype (Walter et al., 2003), albeit by an undefined mechanism. RESULTS To investigate further the mechanism by which Rab9 facilitates lipid movement from late endosomes we sought to identify novel Rab9 binding/interacting proteins. In the present study, we report that Rab9 interacts with the intermediate filament phosphoprotein vimentin and this interaction is altered by lipid accumulation in late endosomes, which results in inhibition of PKC (protein kinase C) and hypophosphorylation of vimentin, leading to late endosome dysfunction. Intermediate filament hypophosphorylation, aggregation and entrapment of Rab9 ultimately leads to transport defects and inhibition of lipid egress from late endosomes. CONCLUSIONS These results reveal a previously unappreciated interaction between Rab proteins and intermediate filaments in regulating intracellular lipid transport.
Collapse
|
209
|
Kumar Y, Valdivia RH. Actin and intermediate filaments stabilize the Chlamydia trachomatis vacuole by forming dynamic structural scaffolds. Cell Host Microbe 2008; 4:159-69. [PMID: 18692775 DOI: 10.1016/j.chom.2008.05.018] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Revised: 04/29/2008] [Accepted: 05/23/2008] [Indexed: 01/11/2023]
Abstract
The obligate intracellular bacterial pathogen Chlamydia trachomatis replicates within a large vacuole or "inclusion" that expands as bacteria multiply but is maintained as an intact organelle. Here, we report that the inclusion is encased in a scaffold of host cytoskeletal structures made up of a network of F-actin and intermediate filaments (IF) that act cooperatively to stabilize the pathogen-containing vacuole. Formation of F-actin at the inclusion was dependent on RhoA, and its disruption led to the disassembly of IFs, loss of inclusion integrity, and leakage of inclusion contents into the host cytoplasm. In addition, IF proteins were processed by the secreted chlamydial protease CPAF to form filamentous structures at the inclusion surface with altered structural properties. We propose that Chlamydia has co-opted the function of F-actin and IFs to stabilize the inclusion with a dynamic, structural scaffold while minimizing the exposure of inclusion contents to cytoplasmic innate immune-surveillance pathways.
Collapse
Affiliation(s)
- Yadunanda Kumar
- Department of Molecular Genetics and Microbiology and Center for Microbial Pathogenesis, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
210
|
Brauksiepe B, Mujica AO, Herrmann H, Schmidt ER. The Serine/threonine kinase Stk33 exhibits autophosphorylation and phosphorylates the intermediate filament protein Vimentin. BMC BIOCHEMISTRY 2008; 9:25. [PMID: 18811945 PMCID: PMC2567967 DOI: 10.1186/1471-2091-9-25] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Accepted: 09/23/2008] [Indexed: 02/02/2023]
Abstract
Background Colocalization of Stk33 with vimentin by double immunofluorescence in certain cells indicated that vimentin might be a target for phosphorylation by the novel kinase Stk33. We therefore tested in vitro the ability of Stk33 to phosphorylate recombinant full length vimentin and amino-terminal truncated versions thereof. In order to prove that Stk33 and vimentin are also in vivo associated proteins co-immunoprecipitation experiments were carried out. For testing the enzymatic activity of immunoprecipitated Stk33 we incubated precipitated Stk33 with recombinant vimentin proteins. To investigate whether Stk33 binds directly to vimentin, an in vitro co-sedimentation assay was performed. Results The results of the kinase assays demonstrate that Stk33 is able to specifically phosphorylate the non-α-helical amino-terminal domain of vimentin in vitro. Furthermore, co-immunoprecipitation experiments employing cultured cell extracts indicate that Stk33 and vimentin are associated in vivo. Immunoprecipitated Stk33 has enzymatic activity as shown by successful phosphorylation of recombinant vimentin proteins. The results of the co-sedimentation assay suggest that vimentin binds directly to Stk33 and that no additional protein mediates the association. Conclusion We hypothesize that Stk33 is involved in the in vivo dynamics of the intermediate filament cytoskeleton by phosphorylating vimentin.
Collapse
|
211
|
Min C, Eddy SF, Sherr DH, Sonenshein GE. NF-kappaB and epithelial to mesenchymal transition of cancer. J Cell Biochem 2008; 104:733-44. [PMID: 18253935 DOI: 10.1002/jcb.21695] [Citation(s) in RCA: 315] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
During progression of an in situ to an invasive cancer, epithelial cells lose expression of proteins that promote cell-cell contact, and acquire mesenchymal markers, which promote cell migration and invasion. These events bear extensive similarities to the process of epithelial to mesenchymal transition (EMT), which has been recognized for several decades as critical feature of embryogenesis. The NF-kappaB family of transcription factors plays pivotal roles in both promoting and maintaining an invasive phenotype. After briefly describing the NF-kappaB family and its role in cancer, in this review we will first describe studies elucidating the functions of NF-kappaB in transcription of master regulator genes that repress an epithelial phenotype. In the second half, we discuss the roles of NF-kappaB in control of mesenchymal genes critical for promoting and maintaining an invasive phenotype. Overall, NF-kappaB is identified as a key target in prevention and in the treatment of invasive carcinomas.
Collapse
Affiliation(s)
- Chengyin Min
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118-2394, USA
| | | | | | | |
Collapse
|
212
|
Zhao Y, Yan Q, Long X, Chen X, Wang Y. Vimentin affects the mobility and invasiveness of prostate cancer cells. Cell Biochem Funct 2008; 26:571-7. [DOI: 10.1002/cbf.1478] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
213
|
O'Rourke M, Ward C, Worthington J, McKenna J, Valentine A, Robson T, Hirst DG, McKeown SR. Evaluation of the antiangiogenic potential of AQ4N. Clin Cancer Res 2008; 14:1502-9. [PMID: 18316575 DOI: 10.1158/1078-0432.ccr-07-1262] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE A number of cytotoxic chemotherapy agents tested at low concentrations show antiangiogenic properties with limited cytotoxicity, e.g., cyclophosphamide, tirapazamine, and mitoxantrone. AQ4N is a bioreductive alkylaminoanthraquinone that is cytotoxic when reduced to AQ4; hence, it can be used to target hypoxic tumor cells. AQ4N is structurally similar to mitoxantrone and was evaluated for antiangiogenic properties without the need for bioreduction. EXPERIMENTAL DESIGN The effect of AQ4N and fumagillin on human microvascular endothelial cells (HMEC-1) was measured using a variety of in vitro assays, i.e., 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, wound scrape, tubule formation, rat aortic ring, and invasion assays. Low-dose AQ4N (20 mg/kg) was also given in vivo to mice bearing a tumor in a dorsal skin flap. RESULTS AQ4N (10(-11) to 10(-5) mol/L) had no effect on HMEC-1 viability. AQ4N (10(-9) to 10(-5)mol/L) caused a sigmoidal dose-dependent inhibition of endothelial cell migration in the wound scrape model. Fumagillin showed a similar response over a lower dose range (10(-13) to 10(-9) mol/L); however, the maximal inhibition was less (25% versus 43% for AQ4N). AQ4N inhibited HMEC-1 cell contacts on Matrigel (10(-8) to 10(-5) mol/L), HMEC-1 cell invasion, and sprouting in rat aorta explants. Immunofluorescence staining with tubulin, vimentim, dynein, and phalloidin revealed that AQ4N caused disruption to the cell cytoskeleton. When AQ4N (20 mg/kg) was given in vivo for 5 days, microvessels disappeared in LNCaP tumors grown in a dorsal skin flap. CONCLUSIONS This combination of assays has shown that AQ4N possesses antiangiogenic effects in normoxic conditions, which could potentially contribute to antitumor activity.
Collapse
Affiliation(s)
- Martin O'Rourke
- Biomedical Sciences Research Institute, University of Ulster, Coleraine, Northern Ireland, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
214
|
Tilleman K, Van Steendam K, Cantaert T, De Keyser F, Elewaut D, Deforce D. Synovial detection and autoantibody reactivity of processed citrullinated isoforms of vimentin in inflammatory arthritides. Rheumatology (Oxford) 2008; 47:597-604. [DOI: 10.1093/rheumatology/ken077] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
215
|
Changes in cell morphology and cytoskeletal organization are induced by human mitotic checkpoint gene, Bub1. Biochem Biophys Res Commun 2008; 365:691-7. [DOI: 10.1016/j.bbrc.2007.11.053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Accepted: 11/06/2007] [Indexed: 02/02/2023]
|
216
|
Santilman V, Baran J, Anand-Apte B, Evans RM, Parat MO. Caveolin-1 polarization in transmigrating endothelial cells requires binding to intermediate filaments. Angiogenesis 2007; 10:297-305. [DOI: 10.1007/s10456-007-9083-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Accepted: 10/05/2007] [Indexed: 02/07/2023]
|
217
|
Bargagna-Mohan P, Hamza A, Kim YE, Ho YK(A, Mor-Vaknin N, Wendschlag N, Liu J, Evans RM, Markovitz DM, Zhan CG, Kim KB, Mohan R. The tumor inhibitor and antiangiogenic agent withaferin A targets the intermediate filament protein vimentin. ACTA ACUST UNITED AC 2007; 14:623-34. [PMID: 17584610 PMCID: PMC3228641 DOI: 10.1016/j.chembiol.2007.04.010] [Citation(s) in RCA: 244] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2007] [Revised: 03/30/2007] [Accepted: 04/19/2007] [Indexed: 11/22/2022]
Abstract
The natural product withaferin A (WFA) exhibits antitumor and antiangiogenesis activity in vivo, which results from this drug's potent growth inhibitory activities. Here, we show that WFA binds to the intermediate filament (IF) protein, vimentin, by covalently modifying its cysteine residue, which is present in the highly conserved alpha-helical coiled coil 2B domain. WFA induces vimentin filaments to aggregate in vitro, an activity manifested in vivo as punctate cytoplasmic aggregates that colocalize vimentin and F-actin. WFA's potent dominant-negative effect on F-actin requires vimentin expression and induces apoptosis. Finally, we show that WFA-induced inhibition of capillary growth in a mouse model of corneal neovascularization is compromised in vimentin-deficient mice. These findings identify WFA as a chemical genetic probe of IF functions, and illuminate a potential molecular target for withanolide-based therapeutics for treating angioproliferative and malignant diseases.
Collapse
Affiliation(s)
| | - Adel Hamza
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | | | - Yik Khuan (Abby) Ho
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Nirit Mor-Vaknin
- Department of Internal Medicine, Division of Infectious Diseases
| | | | - Junjun Liu
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Robert M. Evans
- Department of Pathology, University of Colorado Health Sciences Center, Denver, CO 80045, USA
| | - David M. Markovitz
- Department of Internal Medicine, Division of Infectious Diseases
- Cellular and Molecular Biology Program, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Chang-Guo Zhan
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Kyung Bo Kim
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Royce Mohan
- Department of Ophthalmology and Visual Sciences
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
- Correspondence:
| |
Collapse
|
218
|
Kim S, Coulombe PA. Intermediate filament scaffolds fulfill mechanical, organizational, and signaling functions in the cytoplasm. Genes Dev 2007; 21:1581-97. [PMID: 17606637 DOI: 10.1101/gad.1552107] [Citation(s) in RCA: 227] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Intermediate filaments (IFs) are cytoskeletal polymers whose protein constituents are encoded by a large family of differentially expressed genes. Owing in part to their properties and intracellular organization, IFs provide crucial structural support in the cytoplasm and nucleus, the perturbation of which causes cell and tissue fragility and accounts for a large number of genetic diseases in humans. A number of additional roles, nonmechanical in nature, have been recently uncovered for IF proteins. These include the regulation of key signaling pathways that control cell survival, cell growth, and vectorial processes including protein targeting in polarized cellular settings. As this discovery process continues to unfold, a rationale for the large size of this family and the context-dependent regulation of its members is finally emerging.
Collapse
Affiliation(s)
- Seyun Kim
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
219
|
Moisan E, Chiasson S, Girard D. The intriguing normal acute inflammatory response in mice lacking vimentin. Clin Exp Immunol 2007; 150:158-68. [PMID: 17680824 PMCID: PMC2219279 DOI: 10.1111/j.1365-2249.2007.03460.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Neutrophils express only two intermediate filament proteins, vimentin and, to a lesser extent, lamin B. Lamin B mutant mice die shortly after birth; however, mice lacking vimentin (vim(-/-)) develop and reproduce normally. Herein, we investigate for the first time the role of vimentin in general inflammation in vivo and in neutrophil functions ex vivo. Using the murine air pouch model, we show that the inflammatory response induced by lipopolysaccharide, interleukin-21 or carageenan is, intriguingly, uncompromised in vim(-/-) mice and that neutrophil functions are not altered ex vivo. Our results suggest that vimentin is dispensable for the establishment of an acute inflammatory response in vivo. In addition, based on several criteria presented in this study, one has to accept the existence of a very complex compensatory mechanism to explain the intriguing normal inflammatory response in absence of vimentin.
Collapse
Affiliation(s)
- E Moisan
- INRS-Institut Armand-Frappier, Université du Québec, Pointe-Claire, PQ, Canada
| | | | | |
Collapse
|
220
|
Kueper T, Grune T, Prahl S, Lenz H, Welge V, Biernoth T, Vogt Y, Muhr GM, Gaemlich A, Jung T, Boemke G, Elsässer HP, Wittern KP, Wenck H, Stäb F, Blatt T. Vimentin Is the Specific Target in Skin Glycation. J Biol Chem 2007; 282:23427-36. [PMID: 17567584 DOI: 10.1074/jbc.m701586200] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Until now, the glycation reaction was considered to be a nonspecific reaction between reducing sugars and amino groups of random proteins. We were able to identify the intermediate filament vimentin as the major target for the AGE modification N(epsilon)-(carboxymethyl)lysine (CML) in primary human fibroblasts. This glycation of vimentin is neither based on a slow turnover of this protein nor on an extremely high intracellular expression level, but remarkably it is based on structural properties of this protein. Glycation of vimentin was predominantly detected at lysine residues located at the linker regions using nanoLC-ESI-MS/MS. This modification results in a rigorous redistribution of vimentin into a perinuclear aggregate, which is accompanied by the loss of contractile capacity of human skin fibroblasts. CML-induced rearrangement of vimentin was identified as an aggresome. This is the first evidence that CML-vimentin represents a damaged protein inside the aggresome, linking the glycation reaction directly to aggresome formation. Strikingly, we were able to prove that the accumulation of modified vimentin can be found in skin fibroblasts of elderly donors in vivo, bringing AGE modifications in human tissues such as skin into strong relationship with loss of organ contractile functions.
Collapse
Affiliation(s)
- Thomas Kueper
- Department of Biochemistry and Molecular Biology, Hamburg University, 20146 Hamburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
221
|
Kokkinos MI, Wafai R, Wong MK, Newgreen DF, Thompson EW, Waltham M. Vimentin and epithelial-mesenchymal transition in human breast cancer--observations in vitro and in vivo. Cells Tissues Organs 2007; 185:191-203. [PMID: 17587825 DOI: 10.1159/000101320] [Citation(s) in RCA: 281] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Breast cancer is a highly prevalent disease among women worldwide. While the expression of certain proteins within these tumours is used for prognosis and selection of therapies, there is a continuing need for additional markers to be identified. A considerable amount of current literature, based predominantly on cell culture systems, suggests that a major mechanism responsible for the progression of breast cancer is due to tumour cells losing their epithelial features and gaining mesenchymal properties. These events are proposed to be very similar to the epithelial-mesenchymal transition (EMT) process that has been well characterised in embryonic development. For the developmental and putative cancer EMT, the cell intermediate filament status changes from a keratin-rich network which connects to adherens junctions and hemidesmosomes, to a vimentin-rich network connecting to focal adhesions. This review summarises observations of vimentin expression in breast cancer model systems, and discusses the potential role of EMT in human breast cancer progression, and the prognostic usefulness of vimentin expression.
Collapse
Affiliation(s)
- Maria I Kokkinos
- Department of Surgery, St. Vincent's Hospital, University of Melbourne, Melbourne, Australia.
| | | | | | | | | | | |
Collapse
|
222
|
McInroy L, Määttä A. Down-regulation of vimentin expression inhibits carcinoma cell migration and adhesion. Biochem Biophys Res Commun 2007; 360:109-14. [PMID: 17585878 DOI: 10.1016/j.bbrc.2007.06.036] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Accepted: 06/03/2007] [Indexed: 11/20/2022]
Abstract
Vimentin is a type III Intermediate filament protein that is expressed frequently in epithelial carcinomas correlating with invasiveness and poor prognosis. We have analysed migration and adhesion to collagenous matrix of a panel of carcinoma cell lines. In vitro invasiveness was highest in vimentin-positive SW480 colon cancer and MDA-MB-231 breast cancer cells and the role of vimentin in these cell lines was investigated by RNA interference. Down-regulation of vimentin expression resulted in impaired migration in both scratch-wound experiments and in invasion assays through cell culture inserts coated with collagen gel. Compromised migration was observed in both cell lines, whereas cell attachment assays revealed impaired adhesion to fibrillar collagen in MDA-MB-231 cells while the adhesion of vimentin-ablated SW480 cells, that express both vimentin and keratin intermediate filaments was not affected. In conclusion, ablation of vimentin expression inhibits migration and invasion of colon and breast cancer cell lines.
Collapse
Affiliation(s)
- Lorna McInroy
- Centre for Stem Cell Research and Regenerative Medicine, School of Biological and Biomedical Sciences, University of Durham, DH1 3LE Durham, UK
| | | |
Collapse
|
223
|
Ivaska J, Pallari HM, Nevo J, Eriksson JE. Novel functions of vimentin in cell adhesion, migration, and signaling. Exp Cell Res 2007; 313:2050-62. [PMID: 17512929 DOI: 10.1016/j.yexcr.2007.03.040] [Citation(s) in RCA: 557] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Revised: 03/20/2007] [Accepted: 03/26/2007] [Indexed: 02/07/2023]
Abstract
Vimentin is the major intermediate filament (IF) protein of mesenchymal cells. It shows dynamically altered expression patterns during different developmental stages and high sequence homology throughout all vertebrates, suggesting that the protein is physiologically important. Still, until recently, the real tasks of vimentin have been elusive, primarily because the vimentin-deficient mice were originally characterized as having a very mild phenotype. Recent studies have revealed several key functions for vimentin that were not obvious at first sight. Vimentin emerges as an organizer of a number of critical proteins involved in attachment, migration, and cell signaling. The highly dynamic and complex phosphorylation of vimentin seems to be a likely regulator mechanism for these functions. The implicated novel vimentin functions have broad ramifications into many different aspects of cell physiology, cellular interactions, and organ homeostasis.
Collapse
Affiliation(s)
- Johanna Ivaska
- VTT Medical Biotechnology, Itäinen Pitkäkatu 4C, FI-20520 Turku, Finland
| | | | | | | |
Collapse
|
224
|
Oshima RG. Intermediate filaments: a historical perspective. Exp Cell Res 2007; 313:1981-94. [PMID: 17493611 PMCID: PMC1950476 DOI: 10.1016/j.yexcr.2007.04.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Revised: 04/03/2007] [Accepted: 04/05/2007] [Indexed: 01/08/2023]
Abstract
Intracellular protein filaments intermediate in size between actin microfilaments and microtubules are composed of a surprising variety of tissue specific proteins commonly interconnected with other filamentous systems for mechanical stability and decorated by a variety of proteins that provide specialized functions. The sequence conservation of the coiled-coil, alpha-helical structure responsible for polymerization into individual 10 nm filaments defines the classification of intermediate filament proteins into a large gene family. Individual filaments further assemble into bundles and branched cytoskeletons visible in the light microscope. However, it is the diversity of the variable terminal domains that likely contributes most to different functions. The search for the functions of intermediate filament proteins has led to discoveries of roles in diseases of the skin, heart, muscle, liver, brain, adipose tissues and even premature aging. The diversity of uses of intermediate filaments as structural elements and scaffolds for organizing the distribution of decorating molecules contrasts with other cytoskeletal elements. This review is an attempt to provide some recollection of how such a diverse field emerged and changed over about 30 years.
Collapse
Affiliation(s)
- Robert G Oshima
- Oncodevelopmental Biology Program, Cancer Research Center, The Burnham Institute for Medical Research, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
225
|
Tscharntke M, Pofahl R, Chrostek-Grashoff A, Smyth N, Niessen C, Niemann C, Hartwig B, Herzog V, Klein HW, Krieg T, Brakebusch C, Haase I. Impaired epidermal wound healing in vivo upon inhibition or deletion of Rac1. J Cell Sci 2007; 120:1480-90. [PMID: 17389689 DOI: 10.1242/jcs.03426] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
To address the functions of Rac1 in keratinocytes of the basal epidermal layer and in the outer root sheath of hair follicles, we generated transgenic mice expressing a dominant inhibitory mutant of Rac, N17Rac1, under the control of the keratin 14 promoter. These mice do not exhibit an overt skin phenotype but show protracted skin wound re-epithelialization. Investigation into the underlying mechanisms revealed that in vivo both proliferation of wound-edge keratinocytes and centripetal migration of the neo-epidermis were impaired. Similar results were obtained in mice with an epidermis-specific deletion of Rac1. Primary epidermal keratinocytes that expressed the N17Rac1 transgene were less proliferative than control cells and showed reduced ERK1/2 phosphorylation upon growth factor stimulation. Adhesion, spreading, random migration and closure of scratch wounds in vitro were significantly inhibited on collagen I and, to a lesser extent, on fibronectin. Stroboscopic analysis of cell dynamics (SACED) of N17Rac1 transgenic and control keratinocytes identified decreased lamella-protrusion persistence in connection with increased ruffle frequency as a probable mechanism for the observed impairment of keratinocyte adhesion and migration. We conclude that Rac1 is functionally required for normal epidermal wound healing and, in this context, exerts a dual function - namely the regulation of keratinocyte proliferation and migration.
Collapse
Affiliation(s)
- Michael Tscharntke
- Department of Dermatology, University of Cologne, Center for Molecular Medicine, (CMMC), Joseph-Stelzmann-Strasse 9, 50924 Cologne, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
226
|
Ngan CY, Yamamoto H, Seshimo I, Tsujino T, Man-i M, Ikeda JI, Konishi K, Takemasa I, Ikeda M, Sekimoto M, Matsuura N, Monden M. Quantitative evaluation of vimentin expression in tumour stroma of colorectal cancer. Br J Cancer 2007; 96:986-92. [PMID: 17325702 PMCID: PMC2360104 DOI: 10.1038/sj.bjc.6603651] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Recent studies have identified vimentin, a type III intermediate filament, among genes differentially expressed in tumours with more invasive features, suggesting an association between vimentin and tumour progression. The aim of this study, was to investigate whether vimentin expression in colon cancer tissue is of clinical relevance. We performed immunostaining in 142 colorectal cancer (CRC) samples and quantified the amount of vimentin expression using computer-assisted image analysis. Vimentin expression in the tumour stroma of CRC was associated with shorter survival. Overall survival in the high vimentin expression group was 71.2% compared with 90.4% in the low-expression group (P=0.002), whereas disease-free survival for the high-expression group was 62.7% compared with 86.7% for the low-expression group (P=0.001). Furthermore, the prognostic power of vimentin for disease recurrence was maintained in both stage II and III CRC. Multivariate analysis suggested that vimentin was a better prognostic indicator for disease recurrence (risk ratio=3.5) than the widely used lymph node status (risk ratio=2.2). Vimentin expression in the tumour stroma may reflect a higher malignant potential of the tumour and may be a useful predictive marker for disease recurrence in CRC patients.
Collapse
Affiliation(s)
- C Y Ngan
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - H Yamamoto
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita city, Osaka 565-0871, Japan; E-mail:
| | - I Seshimo
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - T Tsujino
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - M Man-i
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - J-I Ikeda
- Department of Pathology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - K Konishi
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - I Takemasa
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - M Ikeda
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - M Sekimoto
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - N Matsuura
- Department of Pathology, School of Allied Health Science, Faculty of Medicine, Osaka University, Osaka 565-0871, Japan
| | - M Monden
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
227
|
Broca O, Bello V. [Site specific mutagenesis by homologous recombination in embryonic stem cells]. Morphologie 2007; 90:123-37. [PMID: 17278451 DOI: 10.1016/s1286-0115(06)74493-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Twenty years ago, the production of mice whose genomes have been deliberatly modified revolutionised biology. Indeed, it is now possible to eliminate a gene's expression to various levels in desired locations, and also to broadcast these genetic modifications created in vitro to the progeny. The isolation and culture of embryonic stem cells (ES) and the discovery of the mechanism of homologous recombination between two sequences of DNA in the 80's, have contributed to the development of site-directed mutagenesis. Today, site specific mutagenesis by homologous recombination in embryonic stem cells is a powerful technique and is widely used throughout the world. In parallel, new techniques to invalidate targeted genes are emerging. These genetics tools, which we will introduce, allow for a better understanding of a gene's function both in fundamental and clinical research. It is now possible to create murine models of human genetic diseases including Lesch-Nhyan syndrome, Adenomatous Polyposis and Duchenne muscular dystrophy which we will discuss as examples.
Collapse
Affiliation(s)
- O Broca
- Centre de Génétique Moléculaire, CNRS, avenue de la Terrasse, 91198 Gif-sur-Yvette.
| | | |
Collapse
|
228
|
Abstract
Intermediate filaments (IFs) are cytoskeletal structures that are crucial for maintaining the structural and mechanical integrity of cells and tissues. Intriguingly, a wide range of previously unknown nonmechanical roles for the IF cytoskeleton are emerging: Recent studies have linked IFs to the integration of signals related to the determination of cell size, the regulation of cell migration and cell survival, and the buffering of the effects of stress-activated kinases. The characteristic structural features and expression patterns of the different members of this diverse family of highly abundant proteins make them well suited to act as cell- and tissue-specific modifiers and organizers of signaling.
Collapse
Affiliation(s)
- Hanna-Mari Pallari
- Turku Centre for Biotechnology, University of Turku and Abo Akademi University, Post Office Box 123, FIN- 20521 Turku, Finland
| | | |
Collapse
|
229
|
Garg A, Barnes PF, Porgador A, Roy S, Wu S, Nanda JS, Griffith DE, Girard WM, Rawal N, Shetty S, Vankayalapati R. Vimentin Expressed onMycobacterium tuberculosis-Infected Human Monocytes Is Involved in Binding to the NKp46 Receptor. THE JOURNAL OF IMMUNOLOGY 2006; 177:6192-8. [PMID: 17056548 DOI: 10.4049/jimmunol.177.9.6192] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We previously showed that human NK cells used the NKp46 receptor to lyse Mycobacterium tuberculosis H37Ra-infected monocytes. To identify ligands on H37Ra-infected human mononuclear phagocytes, we used anti-NKp46 to immunoprecipitate NKp46 from NK cells bound to its ligand(s) on H37Ra-infected monocytes. Mass spectrometry analysis identified a 57-kDa molecule, vimentin, as a putative ligand for NKp46. Vimentin expression was significantly up-regulated on the surface of infected monocytes, compared with uninfected cells, and this was confirmed by fluorescence microscopy. Anti-vimentin antiserum inhibited NK cell lysis of infected monocytes, whereas antiserum to actin, another filamentous protein, did not. CHO-K1 cells transfected with a vimentin construct were lysed much more efficiently by NK cells than cells transfected with a control plasmid. This lysis was inhibited by mAb-mediated masking of NKp46 (on NK cells) or vimentin (on infected monocytes). ELISA and Far Western blotting showed that recombinant vimentin bound to a NKp46 fusion protein. These results indicate that vimentin is involved in binding of NKp46 to M. tuberculosis H37Ra-infected mononuclear phagocytes.
Collapse
Affiliation(s)
- Ankita Garg
- Center for Pulmonary and Infectious Disease Control, University of Texas Health Center, 11937 U.S. Highway 271, Tyler, TX 75708, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
230
|
Cha MH, Rhim T, Kim KH, Jang AS, Paik YK, Park CS. Proteomic identification of macrophage migration-inhibitory factor upon exposure to TiO2 particles. Mol Cell Proteomics 2006; 6:56-63. [PMID: 17028300 DOI: 10.1074/mcp.m600234-mcp200] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Inhalation of particulate matter aggravates respiratory symptoms in patients with chronic airway diseases, but the mechanisms underlying this response remain poorly understood. We used a proteomics approach to examine this phenomenon. Treatment of epithelial cells with BSA-coated titanium dioxide (TiO(2)) particles altered 20 protein spots on the two-dimensional gel, and these were then analyzed by nano-LC-MS/MS. These proteins included defense-related, cell-activating, and cytoskeletal proteins implicated in the response to oxidative stress. The proteins were classified into four groups according to the time course of their expression patterns. For validation, RT-PCR was performed on extracts of in vitro TiO(2)-treated cells, and lung issues from TiO(2)-treated rats were analyzed by immunohistochemical staining and enzyme immunoassay. TiO(2) treatment was found to increase the amount of mRNA for macrophage migration-inhibitory factor (MIF). MIF was expressed primarily in epithelium and was elevated in lung tissues and bronchoalveolar lavage fluids of TiO(2)-treated rats as compared with sham-treated rats. Carbon black and diesel exhaust particles also induced expression of MIF protein in the epithelial cells.
Collapse
Affiliation(s)
- Myung-Hwa Cha
- Genome Research Center for Allergy and Respiratory Diseases, Soonchunhyang University Hospital, Bucheon-si, Gyeonggi-do 420-853, Korea
| | | | | | | | | | | |
Collapse
|
231
|
Guzmán C, Jeney S, Kreplak L, Kasas S, Kulik AJ, Aebi U, Forró L. Exploring the mechanical properties of single vimentin intermediate filaments by atomic force microscopy. J Mol Biol 2006; 360:623-30. [PMID: 16765985 DOI: 10.1016/j.jmb.2006.05.030] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Revised: 05/10/2006] [Accepted: 05/11/2006] [Indexed: 01/29/2023]
Abstract
Intermediate filaments (IFs), together with actin filaments and microtubules, compose the cytoskeleton. Among other functions, IFs impart mechanical stability to cells when exposed to mechanical stress and act as a support when the other cytoskeletal filaments cannot keep the structural integrity of the cells. Here we present a study on the bending properties of single vimentin IFs in which we used an atomic force microscopy (AFM) tip to elastically deform single filaments hanging over a porous membrane. We obtained a value for the bending modulus of non-stabilized IFs between 300 MPa and 400 MPa. Our results together with previous ones suggest that IFs present axial sliding between their constitutive building blocks and therefore have a bending modulus that depends on the filament length. Measurements of glutaraldehyde-stabilized filaments were also performed to reduce the axial sliding between subunits and therefore provide a lower limit estimate of the Young's modulus of the filaments. The results show an increment of two to three times in the bending modulus for the stabilized IFs with respect to the non-stabilized ones, suggesting that the Young's modulus of vimentin IFs should be around 900 MPa or higher.
Collapse
Affiliation(s)
- C Guzmán
- Institut de Physique de la Matière Complexe, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
232
|
Benes P, Macecková V, Zdráhal Z, Konecná H, Zahradnícková E, Muzík J, Smarda J. Role of vimentin in regulation of monocyte/macrophage differentiation. Differentiation 2006; 74:265-76. [PMID: 16831196 DOI: 10.1111/j.1432-0436.2006.00077.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Maturation of blood cells depends on dramatic changes of expression profiles of specific genes. Although these changes have been extensively studied, their functional outcomes often remain unclear. In this study, we explored the identity and function of an unknown protein that was greatly overexpressed in v-myb-transformed BM2 monoblasts undergoing differentiation to macrophage-like cells. We identified this protein as vimentin, the intermediate filament protein. We show that an increased level of vimentin protein results from activation of the vimentin gene promoter occurring in monoblastic cells induced to differentiate by multiple agents. Furthermore, our studies reveal that the vimentin gene promoter is stimulated by Myb and Jun proteins, the key transcriptional regulators of myeloid maturation. Silencing of vimentin gene expression using siRNA markedly suppressed the ability of BM2 cells to form macrophage polykaryons active in phagocytosis and producing reactive oxygen species. Taken together, these findings document that up-regulation of vimentin gene expression is important for formation of fully active macrophage-like cells and macrophage polykaryons.
Collapse
Affiliation(s)
- Petr Benes
- Department of Genetics and Molecular Biology, Faculty of Science Masaryk University ILBIT, Pavilion A3, Kamenice 3, 62500 Brno, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
233
|
Bindels S, Mestdagt M, Vandewalle C, Jacobs N, Volders L, Noël A, van Roy F, Berx G, Foidart JM, Gilles C. Regulation of vimentin by SIP1 in human epithelial breast tumor cells. Oncogene 2006; 25:4975-85. [PMID: 16568083 DOI: 10.1038/sj.onc.1209511] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The expression of Smad interacting protein-1 (SIP1; ZEB2) and the de novo expression of vimentin are frequently involved in epithelial-to-mesenchymal transitions (EMTs) under both normal and pathological conditions. In the present study, we investigated the potential role of SIP1 in the regulation of vimentin during the EMT associated with breast tumor cell migration and invasion. Examining several breast tumor cell lines displaying various degrees of invasiveness, we found SIP1 and vimentin expression only in invasive cell lines. Also, using a model of cell migration with human mammary MCF10A cells, we showed that SIP1 is induced specifically in vimentin-positive migratory cells. Furthermore, transfection of SIP1 cDNA in MCF10A cells increased their vimentin expression both at the mRNA and protein levels and enhanced their migratory abilities in Boyden Chamber assays. Inversely, inhibition of SIP1 expression by RNAi strategies in BT-549 cells and MCF10A cells decreased vimentin expression. We also showed that SIP1 transfection did not activate the TOP-FLASH reporter system, suggesting that the beta-catenin/TCF pathway is not implicated in the regulation of vimentin by SIP1. Our results therefore implicate SIP1 in the regulation of vimentin observed in the EMT associated with breast tumor cell migration, a pathway that may contribute to the metastatic progression of breast cancer.
Collapse
Affiliation(s)
- S Bindels
- Laboratory of Tumor and Developmental Biology, Center for Biomedical Integrated Genoproteomics, University of Liège, CHU Sart-Tilman, Liège, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
234
|
Thibault MM, Buschmann MD. Migration of bone marrow stromal cells in 3D: 4 Color methodology reveals spatially and temporally coordinated events. ACTA ACUST UNITED AC 2006; 63:725-40. [PMID: 17009327 DOI: 10.1002/cm.20160] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The cytoskeleton plays a central role in many cell processes including directed cell migration. Since most previous work has investigated cell migration in two dimensions (2D), new methods are required to study movement in three dimensions (3D) while preserving 3D structure of the cytoskeleton. Most previous studies have labeled two cytoskeletal networks simultaneously, impeding an appreciation of their complex and dynamic interconnections. Here we report the development of a 4 color method to simultaneously image vimentin, actin, tubulin and the nucleus for high-resolution confocal microscopy of bone-marrow stromal cells (BMSCs) migrating through a porous membrane. Several methods were tested for structural preservation and labeling intensity resulting in identification of an optimized simultaneous fixation and permeabilization method using glutaraldehyde, paraformaldehyde and Triton X-100 followed by a quadruple fluorescent labeling method. This procedure was then applied at a sequence of time points to migrating cells, allowing temporal progression of migration to be assessed by visualizing all three networks plus the nucleus, providing new insights into 3D directed cell migration including processes such as leading edge structure, cytoskeletal distribution and nucleokinesis. Colocalization of actin and microtubules with distinct spatial arrangements at the cellular leading edge during migration, together with microtubule axial polarization supports recent reports indicating the pivotal role of microtubules in directed cell migration. This study also provides a foundation for 3D migration studies versus 2D studies, providing precise and robust methods to attain new insights into the cellular mechanisms of motility.
Collapse
Affiliation(s)
- Marc M Thibault
- Department of Chemical Engineering and Institute of Biomedical Engineering, Ecole Polytechnique, Montreal, Quebec, Canada
| | | |
Collapse
|
235
|
Hewett JW, Zeng J, Niland BP, Bragg DC, Breakefield XO. Dystonia-causing mutant torsinA inhibits cell adhesion and neurite extension through interference with cytoskeletal dynamics. Neurobiol Dis 2005; 22:98-111. [PMID: 16361107 DOI: 10.1016/j.nbd.2005.10.012] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2005] [Revised: 10/05/2005] [Accepted: 10/16/2005] [Indexed: 01/05/2023] Open
Abstract
Early onset torsion dystonia is a movement disorder inherited as an autosomal dominant syndrome with reduced penetrance. Symptoms appear to result from altered neuronal circuitry within the brain with no evidence of neuronal loss. Most cases are caused by loss of a glutamic acid residue in the AAA+ chaperone protein, torsinA, encoded in the DYT1 gene. In this study, torsinA was found to move in conjunction with vimentin in three cell culture paradigms-recovery from microtubule depolymerization, expression of a dominant-negative form of kinesin light chain and respreading after trypsinization. Co-immune precipitation studies revealed association between vimentin and torsinA in a complex including other cytoskeletal elements, actin and tubulin, as well as two proteins previously shown to interact with torsinA-the motor protein, kinesin light chain 1, and the nuclear envelope protein, LAP1. Morphologic and functional differences related to vimentin were noted in primary fibroblasts from patients carrying this DYT1 mutation as compared with controls, including an increased perinuclear concentration of vimentin and a delayed rate of adhesion to the substratum. Overexpression of mutant torsinA inhibited neurite extension in human neuroblastoma cells, with torsinA and vimentin immunoreactivity enriched in the perinuclear region and in cytoplasmic inclusions. Collectively, these studies suggest that mutant torsinA interferes with cytoskeletal events involving vimentin, possibly by restricting movement of these particles/filaments, and hence may affect development of neuronal pathways in the brain.
Collapse
Affiliation(s)
- Jeffrey W Hewett
- Molecular Neurogenetics Unit, Departments of Neurology and Radiology, Massachusetts General Hospital, and Program in Neuroscience, Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | |
Collapse
|
236
|
El-Kott AF, Ismaeil MF, El-Moneim MMA, El-Baz MA. Histogenesis of human renal cell carcinoma by using electron microscopy and immunohistochemical techniques. Int Urol Nephrol 2005; 37:439-45. [PMID: 16307314 DOI: 10.1007/s11255-004-6103-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Electron microscopy and immunohistochemical techniques are powerful tools for the determination of tissue origin. Both techniques have been used in the current experiment for histogenesis of renal cell carcinoma. Fifty kidney tumors were subjected to immunohistochemical detection for intermediate filaments cytokeratin and vimentin, which are normally expressed in epithelial tissue and mesenchymal tissues, respectively. Twenty cases of the above were examined by electron microscopy for detection of ultrastructure features. From each kidney, two specimens were taken, one from the diseased area and another far from it to serve as a control. Immunohistochemical study revealed in cases of renal cell carcinoma, cytokeratin and vimentin were expressed alone in 44% of cases, and 40% of cases, respectively. Twelve percent of cases were coexpressed with both cytokeratin and vimentin. Electron microscopic study of diseased specimens revealed the expression of desmosomes which was observed in almost all tumor specimens. The expression of the vimentin in some cases either alone or with cytokeratin was interpreted as a change in the characters of some tumor cells which indicates the need for additional techniques in such cases to get the proper interpretation. The prevalence of the expression of cytokeratin and the persistence existence of desmosomes indicate the epithelial origin of the tumor. This data is very beneficial for determination of line of therapy and follow up of the patients. The results confirm the power of combined use of both immunohistochemistry and electron microscopy in the field of histogenesis.
Collapse
Affiliation(s)
- Attalla F El-Kott
- Urology and Nephrology Center, Mansoura University, Mansoura, Egypt.
| | | | | | | |
Collapse
|
237
|
Schietke R, Bröhl D, Wedig T, Mücke N, Herrmann H, Magin TM. Mutations in vimentin disrupt the cytoskeleton in fibroblasts and delay execution of apoptosis. Eur J Cell Biol 2005; 85:1-10. [PMID: 16373170 DOI: 10.1016/j.ejcb.2005.09.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Accepted: 09/26/2005] [Indexed: 01/18/2023] Open
Abstract
To get new insights into the function of the intermediate filament (IF) protein vimentin in cell physiology, we generated two mutant cDNAs, one with a point mutation in the consensus motif in coil1A (R113C) and one with the complete deletion of coil 2B of the rod domain. In keratins and glia filament protein (GFAP), analogous mutations cause keratinopathies and Alexander disease, respectively. Both mutants prevented filament assembly in vitro and inhibited assembly of wild-type vimentin when present in equal amounts. In stably transfected preadipocytes, these mutants caused the complete disruption of the endogenous vimentin network, demonstrating their dominant-negative behaviour. Cytoplasmic vimentin aggregates colocalised with the chaperones alphaB-crystallin and HSP40. Moreover, vimR113C mutant cells were more resistant against staurosporine-induced apoptosis compared to controls. We hypothesise that mutations in the vimentin gene, like in most classes of IF genes, may contribute to distinct human diseases.
Collapse
Affiliation(s)
- Ruth Schietke
- Institut für Physiologische Chemie, Abteilung für Zellbiochemie and LIMES, Universitätsklinikum Bonn, Nussallee 11, D-53115 Bonn, Germany
| | | | | | | | | | | |
Collapse
|
238
|
Lu FZ, Fujino M, Kitazawa Y, Uyama T, Hara Y, Funeshima N, Jiang JY, Umezawa A, Li XK. Characterization and gene transfer in mesenchymal stem cells derived from human umbilical-cord blood. ACTA ACUST UNITED AC 2005; 146:271-8. [PMID: 16242526 DOI: 10.1016/j.lab.2005.07.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2005] [Revised: 05/27/2005] [Accepted: 07/04/2005] [Indexed: 12/26/2022]
Abstract
It has been shown that the stromal-cell population found in bone marrow can be expanded and differentiated into cells with the phenotypes of bone, cartilage, muscle, neural, and fat cells. However, whether mesenchymal stem cells (MSCs) are present in human umbilical-cord blood (UCB) has been the subject of ongoing debate. In this study, we report on a population of fibroblastlike cells derived from the mononuclear fraction of human UCB with osteogenic and adipogenic potential, as well as the presence of a subset of cells that have been maintained in continuous culture for more than 6 months. These cells were found to express CD29, CD44, CD90, CD95, CD105, CD166, and MHC class, but not CD14, CD34, CD40, CD45, CD80, CD86, CD117, CD152, or MHC class II. We also compared gene expression after gene transfer using lenti- and adenoviral vectors carrying the green fluorescence protein to the MSCs derived from UCB because a reliable gene-delivery system is required to transfer target genes into MSCs, which have attracted attention as potential platforms for the systemic delivery of therapeutic genes. The lentiviral vectors can transduce these cells more efficiently than can adenoviral vectors, and we maintained transgene expression for at least 5 weeks. This is the first report showing that UCB-derived MSCs can express exogenous genes by way of a lentivirus vector. These results demonstrate that human UCB is a source of mesenchymal progenitors and may be used in cell transplantation and a wide range of gene-therapy treatments.
Collapse
Affiliation(s)
- Fei-Zhou Lu
- Laboratory of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
239
|
Ivaska J, Vuoriluoto K, Huovinen T, Izawa I, Inagaki M, Parker PJ. PKCepsilon-mediated phosphorylation of vimentin controls integrin recycling and motility. EMBO J 2005; 24:3834-45. [PMID: 16270034 PMCID: PMC1283946 DOI: 10.1038/sj.emboj.7600847] [Citation(s) in RCA: 202] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2005] [Accepted: 09/28/2005] [Indexed: 11/09/2022] Open
Abstract
PKCepsilon controls the transport of endocytosed beta1-integrins to the plasma membrane regulating directional cell motility. Vimentin, an intermediate filament protein upregulated upon epithelial cell transformation, is shown here to be a proximal PKCepsilon target within the recycling integrin compartment. On inhibition of PKC and vimentin phosphorylation, integrins become trapped in vesicles and directional cell motility towards matrix is severely attenuated. In vitro reconstitution assays showed that PKCepsilon dissociates from integrin containing endocytic vesicles in a selectively phosphorylated vimentin containing complex. Mutagenesis of PKC (controlled) sites on vimentin and ectopic expression of the variant leads to the accumulation of intracellular PKCepsilon/integrin positive vesicles. Finally, introduction of ectopic wild-type vimentin is shown to promote cell motility in a PKCepsilon-dependent manner; alanine substitutions in PKC (controlled) sites on vimentin abolishes the ability of vimentin to induce cell migration, whereas the substitution of these sites with acidic residues enables vimentin to rescue motility of PKCepsilon null cells. Our results indicate that PKC-mediated phosphorylation of vimentin is a key process in integrin traffic through the cell.
Collapse
Affiliation(s)
- Johanna Ivaska
- VTT Technical Research Centre for Finland, Medical Biotechnology and University of Turku Centre for Biotechnology, Turku, Finland
| | - Karoliina Vuoriluoto
- VTT Technical Research Centre for Finland, Medical Biotechnology and University of Turku Centre for Biotechnology, Turku, Finland
| | - Tuomas Huovinen
- VTT Technical Research Centre for Finland, Medical Biotechnology and University of Turku Centre for Biotechnology, Turku, Finland
| | - Ichiro Izawa
- Division of Biochemistry, Aichi Cancer Center Research Institute, Chikusa-ku, Nagoya, Aichi, Japan
| | - Masaki Inagaki
- Division of Biochemistry, Aichi Cancer Center Research Institute, Chikusa-ku, Nagoya, Aichi, Japan
| | - Peter J Parker
- Protein Phosphorylation Laboratory, London Research Institute, London, UK
- Protein Phosphorylation Laboratory, London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3PX, UK. Tel.:+44 20 7269 3513; Fax: +44 20 7269 3094; E-mail:
| |
Collapse
|
240
|
Helfand BT, Chou YH, Shumaker DK, Goldman RD. Intermediate filament proteins participate in signal transduction. Trends Cell Biol 2005; 15:568-70. [PMID: 16213139 DOI: 10.1016/j.tcb.2005.09.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Revised: 08/11/2005] [Accepted: 09/21/2005] [Indexed: 12/18/2022]
Abstract
How timely transport of chemical signals between the distal end of long axonal processes and the cell bodies of neurons occurs is an interesting and unresolved issue. Recently, Perlson et al. presented evidence that cleavage products of newly synthesized vimentin, an intermediate filament (IF) protein, interact with mitogen-activated protein (MAP) kinases at sites of axon injury. These IF fragments appear to be required for the transport of these kinases to the cell body along microtubule tracks. The truncated vimentin is instrumental in signal propagation as it provides a scaffold that brings together activated MAP kinases (such as Erk 1 and Erk2), as well as importin beta and cytoplasmic dynein. The authors propose that this all-in-one transport complex has the extraordinary ability to travel towards the cell body and enter the nucleus where the kinases activate and influence gene expression so that a neuron can generate a timely response to injury.
Collapse
Affiliation(s)
- Brian T Helfand
- Department of Cell and Molecular Biology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | | | |
Collapse
|
241
|
Thomson S, Buck E, Petti F, Griffin G, Brown E, Ramnarine N, Iwata KK, Gibson N, Haley JD. Epithelial to Mesenchymal Transition Is a Determinant of Sensitivity of Non–Small-Cell Lung Carcinoma Cell Lines and Xenografts to Epidermal Growth Factor Receptor Inhibition. Cancer Res 2005; 65:9455-62. [PMID: 16230409 DOI: 10.1158/0008-5472.can-05-1058] [Citation(s) in RCA: 538] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Treatment of second- and third-line patients with non-small-cell lung carcinoma (NSCLC) with the epidermal growth factor receptor (EGFR) kinase inhibitor erlotinib significantly increased survival relative to placebo. Whereas patient tumors with EGFR mutations have shown responses to EGFR inhibitors, an exclusive role for mutations in patient survival benefit from EGFR inhibition is unclear. Here we show that wild-type EGFR-containing human NSCLC lines grown both in culture and as xenografts show a range of sensitivities to EGFR inhibition dependent on the degree to which they have undergone an epithelial to mesenchymal transition (EMT). NSCLC lines which express the epithelial cell junction protein E-cadherin showed greater sensitivity to EGFR inhibition in vitro and in xenografts. In contrast, NSCLC lines having undergone EMT, expressing vimentin and/or fibronectin, were insensitive to the growth inhibitory effects of EGFR kinase inhibition in vitro and in xenografts. The differential sensitivity of NSCLC cells with epithelial or mesenchymal phenotypes to EGFR inhibition did not correlate with cell cycle status in vitro or with xenograft growth rates in vivo, or with total EGFR protein levels. Cells sensitive to EGFR inhibition, with an epithelial cell phenotype, did exhibit increased phosphorylation of EGFR and ErbB3 and a marked increase in total ErbB3. The loss of E-cadherin and deregulation of beta-catenin associated with EMT have been shown to correlate with poor prognosis in multiple solid tumor types. These data suggest that EMT may be a general biological switch rendering non-small cell lung tumors sensitive or insensitive to EGFR inhibition.
Collapse
Affiliation(s)
- Stuart Thomson
- Departments of Translational Research and Oncology Research, OSI Pharmaceuticals, Inc., Farmingdale, NY 11735, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
242
|
Tscharntke M, Pofahl R, Krieg T, Haase I. Ras-induced spreading and wound closure in human epidermal keratinocytes. FASEB J 2005; 19:1836-8. [PMID: 16170018 DOI: 10.1096/fj.04-3327fje] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Although it is known that growth factor signaling cascades are active during epithelial wound healing, signals that regulate reepithelialization after wounding are not very well characterized. The small GTP binding protein Ras is a molecular switch involved in the regulation of signals originating from different growth factor receptors. We have investigated consequences of its activation in primary human keratinocytes. We provide evidence that activation of Ras can lead to shape changes of keratinocytes caused by rearrangements of the actin cytoskeleton that result in membrane protrusion and ruffling. Similar shape changes were found in the migrating tip of newly formed epithelium in mouse wounds. These cytoskeletal changes occur independently of keratinocyte terminal differentiation, and they can determine the speed of wound epithelialization in vitro. Using various mutant constructs and specific pharmacological inhibitors, we found that the effects of activated Ras on the cytoskeleton of keratinocytes are mediated by a phosphatidylinositol 3 kinase-independent activation of Rac. Our results suggest that growth factor-induced, Ras-mediated changes of keratinocyte shape may be an important mechanism that determines the speed of wound epithelialization.
Collapse
Affiliation(s)
- Michael Tscharntke
- Department Dermatology, University of Cologne and Centre for Molecular Medicine, University of Cologne (CMMC), Cologne, Germany
| | | | | | | |
Collapse
|
243
|
Galiè M, Sorrentino C, Montani M, Micossi L, Di Carlo E, D'Antuono T, Calderan L, Marzola P, Benati D, Merigo F, Orlando F, Smorlesi A, Marchini C, Amici A, Sbarbati A. Mammary carcinoma provides highly tumourigenic and invasive reactive stromal cells. Carcinogenesis 2005; 26:1868-78. [PMID: 15975963 DOI: 10.1093/carcin/bgi158] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The progression of a lesion to a carcinoma is dependent on the engagement of 'reactive stroma' that provides structural and vascular support for tumour growth and also leads to tissue reorganization and invasiveness. The composition of reactive stroma closely resembles that of granulation tissue, and myofibroblasts are thought to play a critical role in driving the stromal reaction of invasive tumours as well as of physiological wound repair. In the present work, we established a myofibroblast-like cell line, named A17, from a mouse mammary carcinoma model in which tumourigenesis is triggered in a single step by the overexpression of HER-2/neu transgene in the epithelial compartment of mammary glands. We showed that although they derived from a tumour of epithelial origin and did not express HER-2/neu transgene, their subcutaneous injection into the backs of syngeneic mice gave rise to sarcomatoid tumours which expressed alpha-smooth muscle actin at the invasive edge. The expression of cytokeratin 14 suggested a myoepithelial origin but immunophenotypical profile, invasive and neoangiogenic potential of A17 cells and tumours showed many similarities with the reactive stroma that occurs in wound repair and in cancerogenesis. Our results suggest that epithelial tumours have the potential to develop highly tumourigenic and invasive reactive stromal cells and our cell line represents a novel, effective model for studying epithelial-stromal interaction and the role of myofibroblasts in tumour development.
Collapse
Affiliation(s)
- Mirco Galiè
- Department of Morphological and Biomedical Sciences, Section Anatomy and Histology, University of Verona, Verona, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
244
|
Masinde G, Li X, Baylink DJ, Nguyen B, Mohan S. Isolation of wound healing/regeneration genes using restrictive fragment differential display-PCR in MRL/MPJ and C57BL/6 mice. Biochem Biophys Res Commun 2005; 330:117-22. [PMID: 15781240 DOI: 10.1016/j.bbrc.2005.02.143] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2005] [Indexed: 11/16/2022]
Abstract
Wound healing in mammals can take several weeks to months and the process is always accompanied by scar formation. Wound healing mechanisms that mimic regeneration are not found in most mature mammalian tissues. However, the MRL/MPJ (MRL) mouse has the unique capacity to regenerate ear hole wound completely in less than a month. To identify genes involved in wound healing without a scar, we chose to use restriction fragment differential display-PCR to isolate genes differentially expressed in the MRL (good healer) mouse and the C57BL/6 (poor healer) mouse at different stages of wound healing. We identified 36 genes that were differentially expressed in the regenerating tissue of good and poor healer strains of which several genes are also genetically linked to wound healing and thus are potential candidate genes for scarless wound healing.
Collapse
Affiliation(s)
- Godfred Masinde
- Musculoskeletal Disease Center, JL Pettis VA Medical Center, Loma Linda, CA 92357, USA
| | | | | | | | | |
Collapse
|
245
|
Dal Pra I, Freddi G, Minic J, Chiarini A, Armato U. De novo engineering of reticular connective tissue in vivo by silk fibroin nonwoven materials. Biomaterials 2005; 26:1987-99. [PMID: 15576173 DOI: 10.1016/j.biomaterials.2004.06.036] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2004] [Accepted: 06/25/2004] [Indexed: 11/25/2022]
Abstract
Biologically tolerated biomaterials are the focus of intense research. In this work, we examined the biocompatibility of three-dimensional (3D) nonwovens of sericin-deprived, Bombyx mori silk fibroin (SF) in beta-sheet form implanted into the subcutaneous tissue of C57BL6 mice, using sham-operated mice as controls. Both groups of mice similarly healed with no residual problem. Macroarray analysis showed that an early (day 3) transient expression of macrophage migration inhibitory factor (MIF) mRNA, but not of the mRNAs encoding for 22 additional proinflammatory cytokines, occurred solely at SF-grafted places, where no remarkable infiltration of macrophages or lymphocytes subsequently happened. Even an enduring moderate increase in total cytokeratins without epidermal hyperkeratosis and a transient (days 10-15) upsurge of vimentin occurred exclusively at SF-grafted sites, whose content of collagen type-I, after a delayed (day 15) rise, ultimately fell considerably under that proper of sham-operated places. By day 180, the interstices amid and surfaces of the SF chords, which had not been appreciably biodegraded, were crammed with a newly produced tissue histologically akin to a vascularized reticular connective tissue, while some macrophages but no lymphocytic infiltrates or fibrous capsules occurred in the adjoining tissues. Therefore, SF nonwovens may be excellent candidates for clinical applications since they both enjoy a long-lasting biocompatibility, inducing a quite mild foreign body response, but no fibrosis, and efficiently guide reticular connective tissue engineering.
Collapse
Affiliation(s)
- Ilaria Dal Pra
- Department of Biomedical & Surgical Sciences, University of Verona Medical School, Histology & Embryology Unit, Strada Le Grazie 8, Verona, Veneto, I-37134, Italy
| | | | | | | | | |
Collapse
|
246
|
Perlson E, Hanz S, Ben-Yaakov K, Segal-Ruder Y, Seger R, Fainzilber M. Vimentin-dependent spatial translocation of an activated MAP kinase in injured nerve. Neuron 2005; 45:715-26. [PMID: 15748847 DOI: 10.1016/j.neuron.2005.01.023] [Citation(s) in RCA: 389] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2004] [Revised: 11/16/2004] [Accepted: 01/14/2005] [Indexed: 01/26/2023]
Abstract
How are phosphorylated kinases transported over long intracellular distances, such as in the case of axon to cell body signaling after nerve injury? Here, we show that the MAP kinases Erk1 and Erk2 are phosphorylated in sciatic nerve axoplasm upon nerve injury, concomitantly with the production of soluble forms of the intermediate filament vimentin by local translation and calpain cleavage in axoplasm. Vimentin binds phosphorylated Erks (pErk), thus linking pErk to the dynein retrograde motor via direct binding of vimentin to importin beta. Injury-induced Elk1 activation and neuronal regeneration are inhibited or delayed in dorsal root ganglion neurons from vimentin null mice, and in rats treated with a MEK inhibitor or with a peptide that prevents pErk-vimentin binding. Thus, soluble vimentin enables spatial translocation of pErk by importins and dynein in lesioned nerve.
Collapse
Affiliation(s)
- Eran Perlson
- Department of Biological Chemistry, Weizmann Institute of Science, 76100 Rehovot, Israel
| | | | | | | | | | | |
Collapse
|
247
|
Green KJ, Böhringer M, Gocken T, Jones JCR. Intermediate filament associated proteins. ADVANCES IN PROTEIN CHEMISTRY 2005; 70:143-202. [PMID: 15837516 DOI: 10.1016/s0065-3233(05)70006-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Intermediate filament associated proteins (IFAPs) coordinate interactions between intermediate filaments (IFs) and other cytoskeletal elements and organelles, including membrane-associated junctions such as desmosomes and hemidesmosomes in epithelial cells, costameres in striated muscle, and intercalated discs in cardiac muscle. IFAPs thus serve as critical connecting links in the IF scaffolding that organizes the cytoplasm and confers mechanical stability to cells and tissues. However, in recent years it has become apparent that IFAPs are not limited to structural crosslinkers and bundlers but also include chaperones, enzymes, adapters, and receptors. IF networks can therefore be considered scaffolding upon which associated proteins are organized and regulated to control metabolic activities and maintain cell homeostasis.
Collapse
Affiliation(s)
- Kathleen J Green
- Departments of Pathology and Dermatology and R.H. Lurie Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | |
Collapse
|
248
|
Xu B, deWaal RM, Mor-Vaknin N, Hibbard C, Markovitz DM, Kahn ML. The endothelial cell-specific antibody PAL-E identifies a secreted form of vimentin in the blood vasculature. Mol Cell Biol 2004; 24:9198-206. [PMID: 15456890 PMCID: PMC517872 DOI: 10.1128/mcb.24.20.9198-9206.2004] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
During mammalian vascular development, endothelial cells form a complex array of vessels that differ markedly in structure and function, but the molecular basis for this vascular complexity is poorly understood. Recent insights into endothelial diversity have come from the identification of molecular markers expressed on distinct endothelial cell populations. One such marker, the PAL-E antibody, has been used for almost 20 years to distinguish blood and lymphatic vessels, but the identity of the protein recognized by PAL-E has been unknown. In the present study we have used protein purification and tandem mass spectrometry analysis of tryptic peptides to identify the PAL-E antigen as a secreted form of vimentin. Vimentin has been well characterized as an intracellular intermediate filament protein expressed broadly in mesenchymal cells. In contrast, PAL-E-reactive vimentin is secreted extracellularly, its synthesis is restricted to a distinct population of blood endothelial cells and activated macrophages, and PAL-E-reactive vimentin is found in circulating human blood. PAL-E-reactive vimentin does not arise from an endothelial cell-specific mRNA transcript but is the product of cell-specific posttranslational modification. The PAL-E antibody therefore defines secretion of vimentin as a molecular distinction among endothelial cells and exposes a novel, extracellular role for vimentin in the blood vasculature.
Collapse
Affiliation(s)
- Bin Xu
- Division of Cardiology, Department of Medicine, University of Pennsylvania, 421 Curie Blvd., BRB II/III Room 952, Philadelphia, PA 19104-6100, USA
| | | | | | | | | | | |
Collapse
|
249
|
Abstract
Reactive gliosis is a prominent result of many types of insult to the central nervous system (CNS) and leads to the formation of glial scar that impedes the regeneration of axons. The intermediate filament protein vimentin is found in pathology of the CNS, mainly in the vicinity of injuries to the CNS. In the present study we investigated the role of vimentin in the formation of glial scars in vitro and in vivo by using immunohistochemistry, Western blot analysis, and in situ hybridization. In vitro experiments showed that the intensity of immunofluorescent labeling for vimentin and glial fibrillary acidic protein (GFAP) was consistently decreased in astrocytes after transfection with a retrovirus carrying antisense complementary DNA (cDNA) for vimentin. Transfection also inhibited the growth of astrocytes and decreased the expression of vimentin mRNA. In vivo studies demonstrated that transfection with the retrovirus carrying the antisense cDNA vimentin inhibited the upregulation of vimentin and GFAP in stab wounds in rat cerebrum. These results suggest that vimentin may play a key role in the formation of glial scars in the CNS.
Collapse
Affiliation(s)
- Jiangkai Lin
- Department of Neurosurgery, Southwest Hospital, College of Medicine, Third Military Medical University, Chongqing, The People's Republic of China.
| | | |
Collapse
|
250
|
Haxhinasto K, Kamath A, Blackwell K, Bodmer J, Van Heukelom J, English A, Bai EW, Moy AB. Gene delivery of l-caldesmon protects cytoskeletal cell membrane integrity against adenovirus infection independently of myosin ATPase and actin assembly. Am J Physiol Cell Physiol 2004; 287:C1125-38. [PMID: 15189814 DOI: 10.1152/ajpcell.00530.2003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The cytoskeleton is critical to the viral life cycle. Agents like cytochalasin inhibit viral infections but cannot be used for antiviral therapy because of their toxicity. We report the efficacy, safety, and mechanisms by which gene delivery of human wild-type low-molecular-weight caldesmon (l-CaD) protects cell membrane integrity from adenovirus infection in a DF-1 cell line, an immortalized avian fibroblast that is null for l-CaD. Transfection with an adenovirus (Ad)-controlled construct mediated a dose-dependent decline in transcellular resistance. In accordance with a computational model of cytoskeletal membrane properties, Ad disturbed cell-cell and cell-matrix adhesion and membrane capacitance. Transfection with the Ad-l-CaD construct attenuated adenovirus-mediated loss in transcellular resistance. Quantitation of vinculin-stained plaques revealed an increase in total focal contact mass in monolayers transfected with the Ad-l-CaD construct. Expression of l-CaD protected transcellular resistance through primary effects on membrane capacitance and independently of actin solubility and effects on prestress, as measured by the decline in isometric tension in response to cytochalasin D. Expression of l-CaD exhibited less Trypan blue cell toxicity than cytochalasin, and, unlike cytochalasin, it did not interfere with wound closure or adversely effect transcellular resistance. These findings demonstrate the gene delivery of wild-type human l-CaD as a potentially efficacious and safe agent that inhibits some of the cytopathic effects of adenovirus.
Collapse
Affiliation(s)
- Kari Haxhinasto
- Department of Internal Medicine, C33 GH, University of Iowa College of Medicine, Iowa City, IA 52242, USA
| | | | | | | | | | | | | | | |
Collapse
|