201
|
Zamble BZH, Yao SS, Adja AM, Bakli M, Zoh DD, Mathieu-Daudé F, Assi SB, Remoue F, Almeras L, Poinsignon A. First evaluation of antibody responses to Culex quinquefasciatus salivary antigens as a serological biomarker of human exposure to Culex bites: A pilot study in Côte d'Ivoire. PLoS Negl Trop Dis 2021; 15:e0010004. [PMID: 34898609 PMCID: PMC8699949 DOI: 10.1371/journal.pntd.0010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 12/23/2021] [Accepted: 11/17/2021] [Indexed: 12/03/2022] Open
Abstract
Background Culex mosquitoes are vectors for a variety of pathogens of public health concern. New indicators of exposure to Culex bites are needed to evaluate the risk of transmission of associated pathogens and to assess the efficacy of vector control strategies. An alternative to entomological indices is the serological measure of antibodies specific to mosquito salivary antigens. This study investigated whether the human IgG response to both the salivary gland extract and the 30 kDa salivary protein of Culex quinquefasciatus may represent a proxy of human exposure to Culex bites. Methodology/Principal findings A multidisciplinary survey was conducted with children aged 1 to 14 years living in neighborhoods with varying exposure to Culex quinquefasciatus in the city of Bouaké, Côte d’Ivoire. Children living in sites with high exposure to Cx quinquefasciatus had a significantly higher IgG response to both salivary antigens compared with children living in the control site where only very few Culex were recorded. Moreover, children from any Culex-high exposed sites had significantly higher IgG responses only to the salivary gland extract compared with children from the control village, whereas no difference was noted in the anti-30 kDa IgG response. No significant differences were noted in the specific IgG responses between age and gender. Sites and the use of a bed net were associated with the level of IgG response to the salivary gland extract and to the 30 kDa antigen, respectively. Conclusions/Significance These findings suggest that the IgG response to Culex salivary gland extracts is suitable as proxy of exposure; however, the specificity to the Culex genus needs further investigation. The lower antigenicity of the 30 kDa recombinant protein represents a limitation to its use. The high specificity of this protein to the Culex genus makes it an attractive candidate and other specific antibody responses might be more relevant as a biomarker of exposure. These epidemiological observations may form a starting point for additional work on developing serological biomarkers of Culex exposure. The evaluation of exposure to mosquitoes is a key parameter in assessing the risk of transmission of associated pathogens, including zoonoses. Entomological methods represent the gold standard but have several limitations, and efforts are being made to develop new indicators to accurately assess human–Culex contact. This study showed the IgG response to Culex quinquefasciatus salivary gland extract is suitable proxy of exposure to Culex bites. The lower antigenicity of the 30 kDa recombinant protein represents a limitation to its use. The high specificity of this protein to the Culex genus makes it an attractive candidate and other isotypic antibody responses specific to this salivary antigen might be more relevant as a biomarker of exposure.
Collapse
Affiliation(s)
- Bi Zamble H. Zamble
- Institut Pierre Richet / Institut National de Santé Publique, Bouaké, Côte d’Ivoire
- MIVEGEC, University of Montpellier, IRD, CNRS, Montpellier, France
- * E-mail:
| | - Serge S. Yao
- Institut Pasteur de Côte d’Ivoire, Abidjan, Côte d’Ivoire
| | - Akré M. Adja
- Institut Pierre Richet / Institut National de Santé Publique, Bouaké, Côte d’Ivoire
- UFR Biosciences, University Felix Houphouët Boigny, Abidjan, Côte d’Ivoire
| | | | - Dounin D. Zoh
- Institut Pierre Richet / Institut National de Santé Publique, Bouaké, Côte d’Ivoire
- UFR Biosciences, University Felix Houphouët Boigny, Abidjan, Côte d’Ivoire
| | | | - Serge B. Assi
- Institut Pierre Richet / Institut National de Santé Publique, Bouaké, Côte d’Ivoire
- Programme National de Lutte contre le Paludisme, Abidjan, Côte d’Ivoire
| | - Franck Remoue
- MIVEGEC, University of Montpellier, IRD, CNRS, Montpellier, France
| | - Lionel Almeras
- IHU Méditerranée Infection, Marseille, France
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France
- Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France
| | - Anne Poinsignon
- Institut Pierre Richet / Institut National de Santé Publique, Bouaké, Côte d’Ivoire
- MIVEGEC, University of Montpellier, IRD, CNRS, Montpellier, France
| |
Collapse
|
202
|
Recent trends in global insecticide use for disease vector control and potential implications for resistance management. Sci Rep 2021; 11:23867. [PMID: 34903838 PMCID: PMC8669011 DOI: 10.1038/s41598-021-03367-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 10/19/2021] [Indexed: 11/08/2022] Open
Abstract
Insecticides have played a major role in the prevention, control, and elimination of vector-borne diseases, but insecticide resistance threatens the efficacy of available vector control tools. A global survey was conducted to investigate vector control insecticide use from 2010 to 2019. Out of 140 countries selected as sample for the study, 87 countries responded. Also, data on ex-factory deliveries of insecticide-treated nets (ITNs) were analyzed. Insecticide operational use was highest for control of malaria, followed by dengue, leishmaniasis and Chagas disease. Vector control relied on few insecticide classes with pyrethroids the most used overall. Results indicated that IRS programs have been slow to react to detection of pyrethroid resistance, while proactive resistance management using insecticides with unrelated modes of action was generally weak. The intensive use of recently introduced insecticide products raised concern about product stewardship regarding the preservation of insecticide susceptibility in vector populations. Resistance management was weakest for control of dengue, leishmaniasis or Chagas disease. Therefore, it will be vital that vector control programs coordinate on insecticide procurement, planning, implementation, resistance monitoring, and capacity building. Moreover, increased consideration should be given to alternative vector control tools that prevent the development of insecticide resistance.
Collapse
|
203
|
Telleria EL, Azevedo-Brito DA, Kykalová B, Tinoco-Nunes B, Pitaluga AN, Volf P, Traub-Csekö YM. Leishmania infantum Infection Modulates the Jak-STAT Pathway in Lutzomyia longipalpis LL5 Embryonic Cells and Adult Females, and Affects Parasite Growth in the Sand Fly. FRONTIERS IN TROPICAL DISEASES 2021. [DOI: 10.3389/fitd.2021.747820] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Phlebotomine sand flies (Diptera, Psychodidae) belonging to the Lutzomyia genus transmit zoonoses in the New World. Lutzomyia longipalpis is the main vector of Leishmania infantum, which is the causative agent of visceral leishmaniasis in Brazil. To identify key molecular aspects involved in the interaction between vector and pathogens and contribute to developing disease transmission controls, we investigated the sand fly innate immunity mediated by the Janus kinase/signal transducer and activator of transcription (Jak-STAT) pathway in response to L. infantum infection. We used two study models: L. longipalpis LL5 embryonic cells co-cultured with L. infantum and sand fly females artificially infected with the parasite. We used qPCR to follow the L. longipalpis gene expression of molecules involved in the Jak-STAT pathway. Also, we modulated the Jak-STAT mediated immune response to understand its role in Leishmania parasite infection. For that, we used RNAi to silence the pathway regulators, protein inhibitor of activated STATs (PIAS) in LL5 cells, and STAT in adult females. In addition, the pathway suppression effect on parasite development within the vector was assessed by light microscopy in late-phase infection. The silencing of the repressor PIAS in LL5 cells led to a moderate increase in a protein tyrosine phosphatase 61F (PTP61F) expression. It suggests a compensatory regulation between these two repressors. L. infantum co-culture with LL5 cells upregulated repressors PIAS, suppressor of cytokine signaling (SOCS), and PTP61F. It also downmodulated virus-induced RNA-1 (VIR-1), a pathway effector, indicating that the parasite could repress the Jak-STAT pathway in LL5 cells. In Leishmania-infected L. longipalpis females, STAT and the antimicrobial peptide attacin were downregulated on the third day post-infection, suggesting a correlation that favors the parasite survival at the end of blood digestion in the sand fly. The antibiotic treatment of infected females showed that the reduction of gut bacteria had little effect on the Jak-STAT pathway regulation. STAT gene silencing mediated by RNAi reduced the expression of inducible nitric oxide synthase (iNOS) and favored Leishmania growth in sand flies on the first day post-infection. These results indicate that STAT participated in the iNOS regulation with subsequent effect on parasite survival.
Collapse
|
204
|
Kampango A, Furu P, Sarath DL, Haji KA, Konradsen F, Schiøler KL, Alifrangis M, Weldon CW, Saleh F. Targeted elimination of species-rich larval habitats can rapidly collapse arbovirus vector mosquito populations at hotel compounds in Zanzibar. MEDICAL AND VETERINARY ENTOMOLOGY 2021; 35:523-533. [PMID: 33970496 PMCID: PMC9292405 DOI: 10.1111/mve.12525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 05/12/2023]
Abstract
Understanding the dynamics of larval habitat utilization by mosquito communities is crucial for the design of efficient environmental control strategies. The authors investigated the structure of mosquito communities found at hotel compounds in Zanzibar, networks of mosquito interactions with larval habitats and robustness of mosquito communities to elimination of larval habitats. A total of 23 698 mosquitoes comprising 26 species in six genera were found. Aedes aegypti (n = 16 207), Aedes bromeliae/Aedes lillie (n = 1340), Culex quinquefasciatus (n = 1300) and Eretmapodites quinquevitattus (n = 659) were the most dominant species. Ecological network analyses revealed the presence of dominant, larval habitat generalist species (e.g., A. aegypti), exploiting virtually all types of water holding containers and few larval habitat specialist species (e.g., Aedes natalensis, Orthopodomyia spp). Simulations of mosquito community robustness to systematic elimination of larval habitats indicate that mosquito populations are highly sensitive to elimination of larval habitats sustaining higher mosquito species diversity. This study provides insights on potential foci of future mosquito-borne arboviral disease outbreaks in Zanzibar and underscores the need for detailed knowledge on the ecological function of larval habitats for effective mosquito control by larval sources management.
Collapse
Affiliation(s)
- A. Kampango
- Sector de Estudos de VectoresInstituto Nacional de Saúde (INS)MaputoMozambique
- Department of Zoology and EntomologyUniversity of PretoriaHatfieldSouth Africa
| | - P. Furu
- Global Health Section, Department of Public HealthUniversity of CopenhagenCopenhagenDenmark
| | - D. L. Sarath
- South Asian Clinical Toxicology Research Collaboration (SACTRC), Faculty of MedicineUniversity of PeradeniyaKandySri Lanka
| | - K. A. Haji
- Zanzibar Malaria Elimination Programme (ZAMEP)ZanzibarTanzania
| | - F. Konradsen
- Global Health Section, Department of Public HealthUniversity of CopenhagenCopenhagenDenmark
| | - K. L. Schiøler
- Global Health Section, Department of Public HealthUniversity of CopenhagenCopenhagenDenmark
| | - M. Alifrangis
- Center for Medical Parasitology, Department of Immunology and MicrobiologyUniversity of CopenhagenCopenhagenDenmark
- Department of Infectious DiseasesCopenhagen University Hospital (Rigshospitalet)CopenhagenDenmark
| | - C. W. Weldon
- Department of Zoology and EntomologyUniversity of PretoriaHatfieldSouth Africa
| | - F. Saleh
- Department of Allied Health Sciences, School of Health and Medical SciencesThe State University of ZanzibarZanzibarTanzania
| |
Collapse
|
205
|
Viswanatha R, Mameli E, Rodiger J, Merckaert P, Feitosa-Suntheimer F, Colpitts TM, Mohr SE, Hu Y, Perrimon N. Bioinformatic and cell-based tools for pooled CRISPR knockout screening in mosquitos. Nat Commun 2021; 12:6825. [PMID: 34819517 PMCID: PMC8613219 DOI: 10.1038/s41467-021-27129-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 11/02/2021] [Indexed: 12/20/2022] Open
Abstract
Mosquito-borne diseases present a worldwide public health burden. Current efforts to understand and counteract them have been aided by the use of cultured mosquito cells. Moreover, application in mammalian cells of forward genetic approaches such as CRISPR screens have identified essential genes and genes required for host-pathogen interactions, and in general, aided in functional annotation of genes. An equivalent approach for genetic screening of mosquito cell lines has been lacking. To develop such an approach, we design a new bioinformatic portal for sgRNA library design in several mosquito genomes, engineer mosquito cell lines to express Cas9 and accept sgRNA at scale, and identify optimal promoters for sgRNA expression in several mosquito species. We then optimize a recombination-mediated cassette exchange system to deliver CRISPR sgRNA and perform pooled CRISPR screens in an Anopheles cell line. Altogether, we provide a platform for high-throughput genome-scale screening in cell lines from disease vector species.
Collapse
Affiliation(s)
- Raghuvir Viswanatha
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA.
| | - Enzo Mameli
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
- Department of Microbiology, National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, 620 Albany Street, Boston, MA, 02118, USA
| | - Jonathan Rodiger
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Pierre Merckaert
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Fabiana Feitosa-Suntheimer
- Department of Microbiology, National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, 620 Albany Street, Boston, MA, 02118, USA
| | - Tonya M Colpitts
- Department of Microbiology, National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, 620 Albany Street, Boston, MA, 02118, USA
| | - Stephanie E Mohr
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Yanhui Hu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA.
- HHMI, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
206
|
Ávila MI, Vajda ÉA, Gutiérrez EJ, Gibson DA, Renteria MM, Presley N, O'Reilly D, Burton TA, Tatarsky A, Lobo NF. Anopheles drivers of persisting malaria transmission in Guna Yala, Panamá: an operational investigation. Malar J 2021; 20:443. [PMID: 34819092 PMCID: PMC8611962 DOI: 10.1186/s12936-021-03972-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 11/02/2021] [Indexed: 11/22/2022] Open
Abstract
Background Though most of Panamá is free from malaria, localized foci of transmission persist, including in the Guna Yala region. Government-led entomological surveillance using an entomological surveillance planning tool (ESPT) sought to answer programmatically-relevant questions that would enhance the understanding of both local entomological drivers of transmission and gaps in protection that result in persisting malaria transmission to guide local vector control decision-making. Methods The ESPT was used to design a sampling plan centered around the collection of minimum essential indicators to investigate the relevance of LLINs and IRS in the communities of Permé and Puerto Obaldía, Guna Yala, as well as to pinpoint any remaining spaces and times where humans are exposed to Anopheles bites (gaps in protection). Adult Anopheles were collected at three time points via human landing catches (HLCs), CDC Light Traps (LT), and pyrethrum spray catches (PSCs) during the rainy and dry seasons. Mosquitoes were identified to species via molecular methods. Insecticide susceptibility testing of the main vector species to fenitrothion was conducted. Results In total, 7537 adult Anopheles were collected from both sites. Of the 493 specimens molecularly confirmed to species, two thirds (n = 340) were identified as Nyssorhynchus albimanus, followed by Anopheles aquasalis. Overall Anopheles human biting rates (HBRs) were higher outdoors than indoors, and were higher in Permé than in Puerto Obaldía: nightly outdoor HBR ranged from 2.71 bites per person per night (bpn) (Puerto Obaldía), to 221.00 bpn (Permé), whereas indoor nightly HBR ranged from 0.70 bpn (Puerto Obaldía) to 81.90 bpn (Permé). Generally, peak biting occurred during the early evening. The CDC LT trap yields were significantly lower than that of HLCs and this collection method was dropped after the first collection. Pyrethrum spray catches resulted in only three indoor resting Anopheles collected. Insecticide resistance (IR) of Ny. albimanus to fenitrothion was confirmed, with only 65.5% mortality at the diagnostic time. Conclusion The early evening exophagic behaviour of Anopheles vectors, the absence of indoor resting behaviours, and the presence of resistance to the primary intervention insecticide demonstrate limitations of the current malaria strategy, including indoor residual spraying (IRS) and long-lasting insecticidal nets (LLINs), and point to both gaps in protection and to the drivers of persisting malaria transmission in Guna Yala. These findings highlight the need for continued and directed entomological surveillance, based on programmatic questions, that generates entomological evidence to inform an adaptive malaria elimination strategy.
Collapse
Affiliation(s)
- Mario I Ávila
- Ministerio de Salud de Panamá (MINSA), Panama City, República de Panamá
| | - Élodie A Vajda
- Malaria Elimination Initiative (MEI), University of California, San Francisco (UCSF), USA.
| | | | - Daragh A Gibson
- Clinton Health Access Initiative (CHAI), Panama City, Panama
| | | | | | - Daniel O'Reilly
- Ministerio de Salud de Panamá (MINSA), Panama City, República de Panamá
| | - Timothy A Burton
- Eck Institute for Global Health, University of Notre Dame (UND), Notre Dame, IN, USA
| | - Allison Tatarsky
- Malaria Elimination Initiative (MEI), University of California, San Francisco (UCSF), USA
| | - Neil F Lobo
- Malaria Elimination Initiative (MEI), University of California, San Francisco (UCSF), USA.,Eck Institute for Global Health, University of Notre Dame (UND), Notre Dame, IN, USA
| |
Collapse
|
207
|
Tayipto Y, Liu Z, Mueller I, Longley RJ. Serology for Plasmodium vivax surveillance: A novel approach to accelerate towards elimination. Parasitol Int 2021; 87:102492. [PMID: 34728377 DOI: 10.1016/j.parint.2021.102492] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/30/2021] [Accepted: 10/28/2021] [Indexed: 01/13/2023]
Abstract
Plasmodium vivax is the most widespread causative agent of human malaria in the world. Despite the ongoing implementation of malaria control programs, the rate of case reduction has declined over the last 5 years. Hence, surveillance of malaria transmission should be in place to identify and monitor areas that require intensified malaria control interventions. Serological tools may offer additional insights into transmission intensity over parasite and entomological measures, especially as transmission levels decline. Antibodies can be detected in the host system for months to even years after parasite infections have been cleared from the blood, enabling malaria exposure history to be captured. Because the Plasmodium parasite expresses more than 5000 proteins, it is important to a) understand antibody longevity following infection and b) measure antibodies to more than one antigen in order to accurately inform on the exposure and/or immune status of populations. This review summarises current practices for surveillance of P. vivax malaria, the current state of research into serological exposure markers and their potential role for accelerating malaria elimination, and discusses further studies that need to be undertaken to see such technology implemented in malaria-endemic areas.
Collapse
Affiliation(s)
- Yanie Tayipto
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Zoe Liu
- The Institute for Mental and Physical Health and Clinical Translation, Barwon Health, Deakin University, Geelong, Victoria, Australia; School of Medicine, Centre for Molecular and Medical Research, Deakin University, Geelong, Australia
| | - Ivo Mueller
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Rhea J Longley
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
208
|
Boedeker W, Watts M, Clausing P, Marquez E. Response to: "letter to the editor regarding the article "the global distribution of acute unintentional pesticide poisoning: estimations based on a systematic review"" by Dunn et al. 2021 in BMC public health. BMC Public Health 2021; 21:1943. [PMID: 34702250 PMCID: PMC8549342 DOI: 10.1186/s12889-021-11941-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/07/2021] [Indexed: 11/30/2022] Open
Abstract
In a correspondence to BMC Public Health, Dunn et al. (Dunn SE, Reed J and Neumann C. BMC Public Health (n.d)) respond to our review on the occurrence of unintentional, acute pesticide poisoning (UAPP). Based on a systematic review and further data sources we estimated that about 385 million cases of UAPP occur annually world-wide including around 11,000 fatalities (Boedeker W. et al. BMC Public Health:1875, 2020).
Collapse
Affiliation(s)
- Wolfgang Boedeker
- Pesticide Action Network (PAN) Germany, Nernstweg 32, 22765, Hamburg, Germany.
| | - Meriel Watts
- Pesticide Action Network (PAN) Asia Pacific, P.O. Box 1170, 10850, Penang, Malaysia
| | - Peter Clausing
- Pesticide Action Network (PAN) Germany, Nernstweg 32, 22765, Hamburg, Germany
| | - Emily Marquez
- Pesticide Action Network (PAN) North America, 2029 University Ave., Suite 200, Berkeley, CA, 94704, USA
| |
Collapse
|
209
|
Chala B, Hamde F. Emerging and Re-emerging Vector-Borne Infectious Diseases and the Challenges for Control: A Review. Front Public Health 2021; 9:715759. [PMID: 34676194 PMCID: PMC8524040 DOI: 10.3389/fpubh.2021.715759] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/07/2021] [Indexed: 01/22/2023] Open
Abstract
Vector-borne emerging and re-emerging diseases pose considerable public health problem worldwide. Some of these diseases are emerging and/or re-emerging at increasing rates and appeared in new regions in the past two decades. Studies emphasized that the interactions among pathogens, hosts, and the environment play a key role for the emergence or re-emergence of these diseases. Furthermore, social and demographic factors such as human population growth, urbanization, globalization, trade exchange and travel and close interactions with livestock have significantly been linked with the emergence and/or re-emergence of vector-borne diseases. Other studies emphasize the ongoing evolution of pathogens, proliferation of reservoir populations, and antimicrobial drug use to be the principal exacerbating forces for emergence and re-emergence of vector-borne infectious diseases. Still other studies equivocally claim that climate change has been associated with appearance and resurgence of vector-borne infectious diseases. Despite the fact that many important emerging and re-emerging vector-borne infectious diseases are becoming better controlled, our success in stopping the many new appearing and resurging vector-borne infectious diseases that may happen in the future seems to be uncertain. Hence, this paper reviews and synthesizes the existing literature to explore global patterns of emerging and re-emerging vector-borne infections and the challenges for their control. It also attempts to give insights to the epidemiological profile of major vector-borne diseases including Zika fever, dengue, West Nile fever, Crimean-Congo hemorrhagic fever, Chikungunya, Yellow fever, and Rift Valley fever.
Collapse
Affiliation(s)
- Bayissa Chala
- Department of Applied Biology, School of Applied Natural Science, Adama Science and Technology University, Adama, Ethiopia
| | - Feyissa Hamde
- Department of Applied Biology, School of Applied Natural Science, Adama Science and Technology University, Adama, Ethiopia
| |
Collapse
|
210
|
Jori F, Hernandez-Jover M, Magouras I, Dürr S, Brookes VJ. Wildlife-livestock interactions in animal production systems: what are the biosecurity and health implications? Anim Front 2021; 11:8-19. [PMID: 34676135 PMCID: PMC8527523 DOI: 10.1093/af/vfab045] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Ferran Jori
- UMR ASTRE (Animal, Health, Territories, Risks and Ecosystems), Bios Department, CIRAD, INRAE, Campus International de Baillarguet, University de Montpellier, Montpellier, Cedex 5, France
- Department of Zoology and Entomology, University of Pretoria, Hatfield, Gauteng, South Africa
| | - Marta Hernandez-Jover
- School of Agriculture, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Ioannis Magouras
- Centre for Applied One Health Research and Policy Advice, Department of Infectious Diseases and Public Health, City University of Hong Kong, Kowloon Tong, Hong Kong SAR
| | - Salome Dürr
- Veterinary Public Health Institute, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Victoria J Brookes
- Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW, Australia
| |
Collapse
|
211
|
Amoah B, McCann RS, Kabaghe AN, Mburu M, Chipeta MG, Moraga P, Gowelo S, Tizifa T, van den Berg H, Mzilahowa T, Takken W, van Vugt M, Phiri KS, Diggle PJ, Terlouw DJ, Giorgi E. Identifying Plasmodium falciparum transmission patterns through parasite prevalence and entomological inoculation rate. eLife 2021; 10:65682. [PMID: 34672946 PMCID: PMC8530514 DOI: 10.7554/elife.65682] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 09/30/2021] [Indexed: 11/13/2022] Open
Abstract
Background Monitoring malaria transmission is a critical component of efforts to achieve targets for elimination and eradication. Two commonly monitored metrics of transmission intensity are parasite prevalence (PR) and the entomological inoculation rate (EIR). Comparing the spatial and temporal variations in the PR and EIR of a given geographical region and modelling the relationship between the two metrics may provide a fuller picture of the malaria epidemiology of the region to inform control activities. Methods Using geostatistical methods, we compare the spatial and temporal patterns of Plasmodium falciparum EIR and PR using data collected over 38 months in a rural area of Malawi. We then quantify the relationship between EIR and PR by using empirical and mechanistic statistical models. Results Hotspots identified through the EIR and PR partly overlapped during high transmission seasons but not during low transmission seasons. The estimated relationship showed a 1-month delayed effect of EIR on PR such that at lower levels of EIR, increases in EIR are associated with rapid rise in PR, whereas at higher levels of EIR, changes in EIR do not translate into notable changes in PR. Conclusions Our study emphasises the need for integrated malaria control strategies that combine vector and human host managements monitored by both entomological and parasitaemia indices. Funding This work was supported by Stichting Dioraphte grant number 13050800.
Collapse
Affiliation(s)
- Benjamin Amoah
- Centre for Health Informatics, Computing, and Statistics (CHICAS), Lancaster Medical School, Lancaster University, Lancaster, United Kingdom
| | - Robert S McCann
- Laboratory of Entomology, Wageningen University and Research, Wageningen, Netherlands.,Department of Public Health, College of Medicine, University of Malawi, Blantyre, Malawi.,Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, United States
| | - Alinune N Kabaghe
- Department of Public Health, College of Medicine, University of Malawi, Blantyre, Malawi.,Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - Monicah Mburu
- Laboratory of Entomology, Wageningen University and Research, Wageningen, Netherlands.,Department of Public Health, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Michael G Chipeta
- Department of Public Health, College of Medicine, University of Malawi, Blantyre, Malawi.,Malawi-Liverpool Wellcome Trust Research Programme, Blantyre, Malawi.,Big Data Institute, University of Oxford, Oxford, United Kingdom
| | - Paula Moraga
- Centre for Health Informatics, Computing, and Statistics (CHICAS), Lancaster Medical School, Lancaster University, Lancaster, United Kingdom.,Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Steven Gowelo
- Laboratory of Entomology, Wageningen University and Research, Wageningen, Netherlands.,Department of Public Health, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Tinashe Tizifa
- Department of Public Health, College of Medicine, University of Malawi, Blantyre, Malawi.,Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - Henk van den Berg
- Laboratory of Entomology, Wageningen University and Research, Wageningen, Netherlands
| | - Themba Mzilahowa
- Department of Public Health, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Willem Takken
- Laboratory of Entomology, Wageningen University and Research, Wageningen, Netherlands
| | - Michele van Vugt
- Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - Kamija S Phiri
- Department of Public Health, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Peter J Diggle
- Centre for Health Informatics, Computing, and Statistics (CHICAS), Lancaster Medical School, Lancaster University, Lancaster, United Kingdom
| | - Dianne J Terlouw
- Department of Public Health, College of Medicine, University of Malawi, Blantyre, Malawi.,Malawi-Liverpool Wellcome Trust Research Programme, Blantyre, Malawi.,Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Emanuele Giorgi
- Centre for Health Informatics, Computing, and Statistics (CHICAS), Lancaster Medical School, Lancaster University, Lancaster, United Kingdom
| |
Collapse
|
212
|
Li X, Hu S, Zhang H, Yin H, Wang H, Zhou D, Sun Y, Ma L, Shen B, Zhu C. MiR-279-3p regulates deltamethrin resistance through CYP325BB1 in Culex pipiens pallens. Parasit Vectors 2021; 14:528. [PMID: 34641939 PMCID: PMC8507342 DOI: 10.1186/s13071-021-05033-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/23/2021] [Indexed: 11/15/2022] Open
Abstract
Background The overuse of insecticides to control insect vectors has promoted extensive insecticide resistance in mosquitoes. In this study, the functions of microRNA (miR)-279-3p and its target CYP325BB1 in the regulation of deltamethrin resistance in Culex pipiens pallens was investigated. Methods Quantitative real-time reverse transcription PCR was used to detect the expression levels of miR-279-3p and CYP325BB1. Then, the dual-luciferase reporter assay system, RNA interference, CDC bottle bioassay and Cell Counting Kit-8 (CCK-8) assay were used to explore the roles of these molecules in deltamethrin resistance both in vivo and in vitro. Results The expression patterns of miR-279-3p and CYP325BB1 were compared between deltamethrin-sensitive (DS-strain) and deltamethrin-resistant (DR-strain) mosquitoes. Luciferase activity was downregulated by miR-279-3p, the effect of which was ablated by a mutation of the putative binding site for CYP325BB1. In DR-strain mosquitoes, the expression of miR-279-3p was increased by microinjection and oral feeding of miR-279-3p agomir (mimic). CYP325BB1 mRNA levels were downregulated, which resulted in a higher mortality of the mosquitoes in miR-279-3p mimic-treated groups. In the DS-strain mosquitoes, microinjection of a miR-279-3p inhibitor decreased miR-279-3p expression, whereas the expression of CYP325BB1 was increased; the mortality of these mosquitoes decreased significantly. In addition, overexpression of pIB/V5-His-CYP325BB1 changed the sensitivity of C6/36 cells to deltamethrin in vitro. Also in DR-strain mosquitoes, downregulation of CYP325BB1 expression by microinjection of si-CYP325BB1 increased mosquito mortality in vivo. Conclusions These findings provide empirical evidence of the involvement of miRNAs in the regulation of insecticide resistance and indicate that miR-279-3p suppresses the expression of CYP325BB1, which in turn decreases deltamethrin resistance, resulting in increased mosquito mortality. Taken together, the results provide important information for use in the development of future mosquito control strategies. Graphical abstract ![]()
Collapse
Affiliation(s)
- Xixi Li
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China.,Department of Pathogen Biology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210046, People's Republic of China
| | - Shengli Hu
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China.,Department of Stomatology, Fifty People's Hospital of Yuhang District, Hangzhou, Zhejiang, 311199, People's Republic of China
| | - Hongbo Zhang
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China
| | - Haitao Yin
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China
| | - Huan Wang
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China
| | - Dan Zhou
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China
| | - Yan Sun
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China
| | - Lei Ma
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China
| | - Bo Shen
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China.
| | - Changliang Zhu
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China
| |
Collapse
|
213
|
Stromsky VE, Hajkazemian M, Vaisbourd E, Mozūraitis R, Noushin Emami S. Plasmodium metabolite HMBPP stimulates feeding of main mosquito vectors on blood and artificial toxic sources. Commun Biol 2021; 4:1161. [PMID: 34620990 PMCID: PMC8497504 DOI: 10.1038/s42003-021-02689-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 09/16/2021] [Indexed: 02/08/2023] Open
Abstract
Recent data show that parasites manipulate the physiology of mosquitoes and human hosts to increase the probability of transmission. Here, we investigate phagostimulant activity of Plasmodium-metabolite, (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP), in the primary vectors of multiple human diseases, Anopheles coluzzii, An. arabiensis, An. gambiae s.s., Aedes aegypti, and Culex pipiens/Culex torrentium complex species. The addition of 10 µM HMBPP to blood meals significantly increased feeding in all the species investigated. Moreover, HMBPP also exhibited a phagostimulant property in plant-based-artificial-feeding-solution made of beetroot juice adjusted to neutral pH similar to that of blood. The addition of AlbuMAXTM as a lipid/protein source significantly improved the feeding rate of An. gambiae s.l. females providing optimised plant-based-artificial-feeding-solution for delivery toxins to control vector populations. Among natural and synthetic toxins tested, only fipronil sulfone did not reduce feeding. Overall, the toxic-plant-based-artificial-feeding-solution showed potential as an effector in environmentally friendly vector-control strategies.
Collapse
Affiliation(s)
- Viktoria E Stromsky
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Melika Hajkazemian
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Elizabeth Vaisbourd
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Raimondas Mozūraitis
- Laboratory of Chemical and Behavioural Ecology, Institute of Ecology, Nature Research Centre, Vilnius, Lithuania
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - S Noushin Emami
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.
- Molecular Attraction AB, Elektravägen 10, 126 30 Hägersten, Stockholm, Sweden.
- Natural Resources Institute, FES, University of Greenwich, London, UK.
| |
Collapse
|
214
|
Genetic Diversity and Population Structure of the Asian Tiger Mosquito ( Aedes albopictus) in Vietnam: Evidence for Genetic Differentiation by Climate Region. Genes (Basel) 2021; 12:genes12101579. [PMID: 34680974 PMCID: PMC8535633 DOI: 10.3390/genes12101579] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/27/2021] [Accepted: 10/05/2021] [Indexed: 12/28/2022] Open
Abstract
Aedes albopictus is a native mosquito to Southeast Asia with a high potential for disease transmission. Understanding how Ae. albopictus populations that develop in the species' native range is useful for planning future control strategies and for identifying the sources of invasive ranges. The present study aims to investigate the genetic diversity and population structure of Ae. albopictus across various climatic regions of Vietnam. We analyzed mitochondrial cytochrome oxidase I (COI) gene sequences from specimens collected from 16 localities, and we used distance-based redundancy analysis to evaluate the amount of variation in the genetic distance that could be explained by both geographic distance and climatic factors. High levels of genetic polymorphism were detected, and the haplotypes were similar to those sequences from both temperate and tropical regions worldwide. Of note, these haplotype groups were geographically distributed, resulting in a distinct population structure in which northeastern populations and the remaining populations were genetically differentiated. Notably, genetic variation among the Ae. albopictus populations was driven primarily by climatic factors (64.55%) and to a lesser extent was also influenced by geographic distance (33.73%). These findings fill important gaps in the current understanding of the population genetics of Ae. albopictus in Vietnam, especially with respect to providing data to track the origin of the invaded regions worldwide.
Collapse
|
215
|
Manrique-Saide P, Herrera-Bojórquez J, Villegas-Chim J, Puerta-Guardo H, Ayora-Talavera G, Parra-Cardeña M, Medina-Barreiro A, Ramírez-Medina M, Chi-Ku A, Trujillo-Peña E, Méndez-Vales RE, Delfín-González H, Toledo-Romaní ME, Bazzani R, Bolio-Arceo E, Gómez-Dantés H, Che-Mendoza A, Pavía-Ruz N, Kirstein OD, Vazquez-Prokopec GM. Protective effect of house screening against indoor Aedes aegypti in Mérida, Mexico: A cluster randomised controlled trial. Trop Med Int Health 2021; 26:1677-1688. [PMID: 34587328 PMCID: PMC9298035 DOI: 10.1111/tmi.13680] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To evaluate the protective effect of house screening (HS) on indoor Aedes aegypti infestation, abundance and arboviral infection in Merida, Mexico. METHODS In 2019, we performed a cluster randomised controlled trial (6 control and 6 intervention areas: 100 households/area). Intervention clusters received permanently fixed fiberglass HS on all windows and doors. The study included two cross-sectional entomologic surveys, one baseline (dry season in May 2019) and one post-intervention (PI, rainy season between September and October 2019). The presence and number of indoor Aedes females and blood-fed females (indoor mosquito infestation) as well as arboviral infections with dengue (DENV) and Zika (ZIKV) viruses were evaluated in a subsample of 30 houses within each cluster. RESULTS HS houses had significantly lower risk for having Aedes aegypti female mosquitoes (odds ratio [OR] = 0.56, 95% CI 0.33-0.97, p = 0.04) and blood-fed females (OR = 0.53, 95% CI 0.28-0.97, p = 0.04) than unscreened households from the control arm. Compared to control houses, HS houses had significantly lower indoor Ae. aegypti abundance (rate ratio [RR] = 0.50, 95% CI 0.30-0.83, p = 0.01), blood-fed Ae. aegypti females (RR = 0.48, 95% CI 0.27-0.85, p = 0.01) and female Ae. aegypti positive for arboviruses (OR = 0.29, 95% CI 0.10-0.86, p = 0.02). The estimated intervention efficacy in reducing Ae. aegypti arbovirus infection was 71%. CONCLUSIONS These results provide evidence supporting the use of HS as an effective pesticide-free method to control house infestations with Aedes aegypti and reduce the transmission of Aedes-transmitted viruses such as DENV, chikungunya (CHIKV) and ZIKV.
Collapse
Affiliation(s)
- Pablo Manrique-Saide
- Unidad Colaborativa para Bioensayos Entomológicos, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Mérida, México
| | - Josué Herrera-Bojórquez
- Unidad Colaborativa para Bioensayos Entomológicos, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Mérida, México
| | - Josué Villegas-Chim
- Unidad Colaborativa para Bioensayos Entomológicos, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Mérida, México
| | - Henry Puerta-Guardo
- Unidad Colaborativa para Bioensayos Entomológicos, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Mérida, México
| | - Guadalupe Ayora-Talavera
- Laboratorio de Virología, Centro de Investigaciones Regionales 'Dr. Hideyo Noguchi', Universidad Autónoma de Yucatán, Mérida, México
| | - Manuel Parra-Cardeña
- Laboratorio de Virología, Centro de Investigaciones Regionales 'Dr. Hideyo Noguchi', Universidad Autónoma de Yucatán, Mérida, México
| | - Anuar Medina-Barreiro
- Unidad Colaborativa para Bioensayos Entomológicos, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Mérida, México
| | - Marypaz Ramírez-Medina
- Unidad Colaborativa para Bioensayos Entomológicos, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Mérida, México
| | - Aylin Chi-Ku
- Unidad Colaborativa para Bioensayos Entomológicos, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Mérida, México
| | - Emilio Trujillo-Peña
- Unidad Colaborativa para Bioensayos Entomológicos, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Mérida, México
| | | | - Hugo Delfín-González
- Unidad Colaborativa para Bioensayos Entomológicos, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Mérida, México
| | - María E Toledo-Romaní
- Departamento de Epidemiología, Instituto de Medicina Tropical 'Pedro Kourí', La Habana, Cuba
| | - Roberto Bazzani
- International Development Research Centre of Canada, Regional Office for Latin America and the Caribbean, Montevideo, Uruguay
| | | | - Hector Gómez-Dantés
- Centro de Investigación en Sistemas de Salud, Instituto Nacional de Salud Pública, Cuernavaca, México
| | - Azael Che-Mendoza
- Unidad Colaborativa para Bioensayos Entomológicos, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Mérida, México
| | - Norma Pavía-Ruz
- Laboratorio de Hematología, Centro de Investigaciones Regionales 'Dr. Hideyo Noguchi', Universidad Autónoma de Yucatán, Mérida, México
| | - Oscar D Kirstein
- Department of Environmental Sciences, Emory University, Atlanta, Georgia, USA
| | | |
Collapse
|
216
|
Saleh EA, Nassar AMK, Amer HH. Organochlorine pesticide residues in raw and grilled freshwater fish (Oreochromis niloticus) collected from various locations along the Nile basin in Egypt. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:673. [PMID: 34564761 DOI: 10.1007/s10661-021-09455-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
The current study aimed to assess meat quality of samples of Nile tilapia fish (Oreochromis niloticus), along with examining organochlorine pesticide (OCP) residues in these samples and their potential risks to humans. About 55 samples were collected from eleven sites on the Nile River in Egypt: Damietta, El-Behera, El-Dakahlia, Kafrelsheikh, El-Gharbia, El-Menoufia, Cairo, El-Giza, El-Fayoum, El-Menia, and Aswan Governorates. Fish samples were analyzed fresh and grilled for meat quality characteristics and the presence of OCP residues using the QuEChERS method for extraction and cleanup accompanied by detection using GC-MS (gas chromatography-mass spectrometry) system. Then, risk hazards of OCP residues were calculated. Results showed that all quality criteria of raw and cooked meat samples were within the permissible levels set by the Egyptian Organization for Standardization and Quality (EOS). The detected residues of OCPs in fresh samples were hexachlorocyclohexanes (α-HCH, β-HCH, and δ-HCH), heptachlor, heptachlor epoxide, aldrin, dieldrin, endrin aldehyde, endosulfan, and p,p'-DDE. Endrin aldehyde was detected in all tested sites, while heptachlor epoxide was found in eight (73%) out of the 11 tested locations. After grilling, aldrin, heptachlor epoxide, endosulfan, and endrin aldehyde compounds were found in fish meat. Cooking fish samples reduced the OCP residue amounts by at least 95% of detected amounts in fresh meat.
Collapse
Affiliation(s)
- Ebeed A Saleh
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Damanhour University, Damanhour, El-Behera, Egypt
| | - Atef M K Nassar
- Department of Plant Protection, Faculty of Agriculture, Damanhour University, El-Behera, PO Box 59, Damanhour, Egypt.
| | - Hanaa H Amer
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Damanhour University, Damanhour, El-Behera, Egypt
| |
Collapse
|
217
|
Prioritizing mosquito-borne diseases during and after the COVID-19 pandemic. Western Pac Surveill Response J 2021; 12:40-41. [PMID: 34540311 PMCID: PMC8421746 DOI: 10.5365/wpsar.2020.11.3.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
218
|
Abstract
The parasite that causes African sleeping sickness can be transmitted from mammals to tsetse flies in two stages of its lifecycle, rather than one as was previously thought.
Collapse
Affiliation(s)
- Fabien Guegan
- Instituto de Medicina Molecular João Lobo Antunes, Lisboa, Portugal
| | - Luisa Figueiredo
- Instituto de Medicina Molecular João Lobo Antunes, Lisboa, Portugal
| |
Collapse
|
219
|
To Kill or to Repel Mosquitoes? Exploring Two Strategies for Protecting Humans and Reducing Vector-Borne Disease Risks by Using Pyrethroids as Spatial Repellents. Pathogens 2021; 10:pathogens10091171. [PMID: 34578203 PMCID: PMC8471886 DOI: 10.3390/pathogens10091171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/01/2021] [Accepted: 09/07/2021] [Indexed: 11/29/2022] Open
Abstract
Although control efforts are improving, vector-borne diseases remain a global public health challenge. There is a need to shift vector control paradigms while developing new products and programmes. The importance of modifying vector behaviour has been recognised for decades but has received limited attention from the public health community. This study aims to: (1) explore how the use of spatial repellents at sublethal doses could promote public health worldwide; (2) propose new methods for evaluating insecticides for use by the general public; and (3) identify key issues to address before spatial repellents can be adopted as complementary vector control tools. Two field experiments were performed to assess the effects of an insecticidal compound, the pyrethroid transfluthrin, on Aedes albopictus mosquitoes. The first examined levels of human protection, and the second looked at mosquito knockdown and mortality. For the same transfluthrin dose and application method, the percent protection remained high (>80%) at 5 h even though mosquito mortality had declined to zero at 1 h. This result underscores that it matters which evaluation parameters are chosen. If the overarching goal is to decrease health risks, sublethal doses could be useful as they protect human hosts even when mosquito mortality is null.
Collapse
|
220
|
Stone CM. Highlights of Medical Entomology, 2020. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:2006-2011. [PMID: 34342359 PMCID: PMC8385844 DOI: 10.1093/jme/tjab103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Indexed: 06/13/2023]
Abstract
Medical Entomology as a field is inherently global - thriving on international and interdisciplinary collaborations and affected dramatically by arthropod and pathogen invasions and introductions. This past year also will be remembered as the year in which the SARS-CoV-2 COVID-19 pandemic affected every part of our lives and professional activities and impacted (or changed, sometimes in good ways) our ability to collaborate and detect or respond to invasions. This incredible year is the backdrop for the 2020 Highlights in Medical Entomology. This article highlights the broad scope of approaches and disciplines represented in the 2020 published literature, ranging from sensory and chemical ecology, population genetics, impacts of human-mediated environmental change on vector ecology, life history and the evolution of vector behaviors, to the latest developments in vector surveillance and control.
Collapse
Affiliation(s)
- Chris M Stone
- Illinois Natural History Survey, University of Illinois at Urbana-Champaign, 1816 S. Oak Drive, Champaign, IL 61820, USA
| |
Collapse
|
221
|
Lucas ER, Darby AC, Torr SJ, Donnelly MJ. A gene expression panel for estimating age in males and females of the sleeping sickness vector Glossina morsitans. PLoS Negl Trop Dis 2021; 15:e0009797. [PMID: 34555037 PMCID: PMC8491940 DOI: 10.1371/journal.pntd.0009797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 10/05/2021] [Accepted: 09/08/2021] [Indexed: 12/02/2022] Open
Abstract
Many vector-borne diseases are controlled by methods that kill the insect vectors responsible for disease transmission. Recording the age structure of vector populations provides information on mortality rates and vectorial capacity, and should form part of the detailed monitoring that occurs in the wake of control programmes, yet tools for obtaining estimates of individual age remain limited. We investigate the potential of using markers of gene expression to predict age in tsetse flies, which are the vectors of deadly and economically damaging African trypanosomiases. We use RNAseq to identify candidate expression markers, and test these markers using qPCR in laboratory-reared Glossina morsitans morsitans of known age. Measuring the expression of six genes was sufficient to obtain a prediction of age with root mean squared error of less than 8 days, while just two genes were sufficient to classify flies into age categories of ≤15 and >15 days old. Further testing of these markers in field-caught samples and in other species will determine the accuracy of these markers in the field.
Collapse
Affiliation(s)
- Eric R. Lucas
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Alistair C. Darby
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Stephen J. Torr
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Martin J. Donnelly
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Wellcome Sanger Institute, Cambridge, United Kingdom
| |
Collapse
|
222
|
Niang A, Sawadogo SP, Millogo AA, Akpodiete NO, Dabiré RK, Tripet F, Diabaté A. Entomological baseline data collection and power analyses in preparation of a mosquito swarm-killing intervention in south-western Burkina Faso. Malar J 2021; 20:346. [PMID: 34425839 PMCID: PMC8381508 DOI: 10.1186/s12936-021-03877-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/10/2021] [Indexed: 11/18/2022] Open
Abstract
Background Insecticides are currently the main tools used to reduce the transmission of malaria; therefore, the development of resistance to insecticides in malaria vectors is of major concern for malaria control. The resistance level to pyrethroids is particularly high in the Western region of Burkina Faso and may affect the efficacy of insecticidal bed nets and indoor residual spraying. Adult mosquito swarming and other nocturnal behaviours exhibit spatial and temporal patterns that suggest potential vulnerability to targeted space spraying with effective insecticides. Indeed, targeted space-spraying against adult mosquito swarms has been used to crash mosquito populations and disrupt malaria transmission. Methods Prior to impact assessment of swarm killing, a baseline data collection was conducted from June to November 2016 in 10 villages divided into two areas in western Burkina Faso. The data considered both ecological and demographic characteristics to monitor the key entomological parameters. Results The mean number of swarms observed was 35 per village, ranging from 25 to 70 swarms according to the village. Female density in both areas varied significantly as a function of the village and the period of collection. The human biting rate was significantly affected by the period of collection and depended upon whether the collection was carried out indoors or outdoors. Averages of parity rate were high in both areas for all periods of collection, ranging from 60 to 90%. These values ranged from 80 to 100% for inseminated females. Sporozoite rates ranged between 1.6 and 7.2% depending upon the village. The molecular identification of resting and swarming mosquitoes showed the presence of the three major malaria vectors in Burkina Faso, but in different proportions for each village. Conclusions The distribution of the potential swarm markers and swarms in villages suggested that swarms are clustered across space, making intervention easier. Power simulations showed that the direct sampling of swarms provides the highest statistical power, thereby reducing the number of villages needed for a trial. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-021-03877-x.
Collapse
Affiliation(s)
- Abdoulaye Niang
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso.
| | - Simon P Sawadogo
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
| | - Abdoul A Millogo
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso.,Institut des Sciences des Sociétés (INSS), Ouagadougou, Burkina Faso
| | - Nwamaka O Akpodiete
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Staffordshire, UK
| | - Roch K Dabiré
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
| | - Frederic Tripet
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Staffordshire, UK
| | - Abdoulaye Diabaté
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
| |
Collapse
|
223
|
Evaluation of Total Female and Male Aedes aegypti Proteomes Reveals Significant Predictive Protein-Protein Interactions, Functional Ontologies, and Differentially Abundant Proteins. INSECTS 2021; 12:insects12080752. [PMID: 34442320 PMCID: PMC8396896 DOI: 10.3390/insects12080752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/15/2021] [Accepted: 08/17/2021] [Indexed: 12/21/2022]
Abstract
Simple Summary Aedes aegypti is a significant vector for flavivirus diseases. Only the female mosquito transmits pathogens, while the male plays a vital role in mating and species continuity. In this study, female and male Ae. aegypti proteins were analysed using a mass analyser. Then, we identified proteins for the examination of protein-protein interactions, functional enrichment, and differential protein abundance analysis. This study identified 422 and 682 proteins exclusive to male and female Ae. aegypti, respectively, with 608 proteins found in both sexes. The most significant protein-protein interaction clusters and functional enrichments were observed in the biological process, molecular function, and cellular component for the proteins of both sexes. The abundance of the proteins differed, with one protein showing an increase (elongation factor 1 α, EF1α) and two showing reductions (actin family) in females versus males. The study highlights the protein differences in male and female Ae. aegypti, and future research could further investigate their roles in mosquito–viral interactions for blocking disease transmission. Abstract Aedes aegypti is a significant vector for many tropical and subtropical flavivirus diseases. Only the female mosquito transmits pathogens, while the male plays a vital role in mating and species continuity. This study explored the total proteomes of females and males based on the physiological and genetic differences of female and male mosquitoes. Protein extracts from mosquitoes were analysed using LC–ESI–MS/MS for protein identification, protein interaction network analysis, functional ontology enrichment, and differential protein abundance analyses. Protein identification revealed 422 and 682 proteins exclusive to males and females, respectively, with 608 common proteins found in both sexes. The most significant PPIs (<1.0 × 10−16) were for common proteins, followed by proteins exclusive to females (<1.0 × 10−16) and males (1.58 × 10−12). Significant functional enrichments were observed in the biological process, molecular function, and cellular component for the male and female proteins. The abundance of the proteins differed, with one protein showing an increase (elongation factor 1 α, EF1α) and two showing reductions (actin family) in females versus males. Overall, the study verified the total proteomes differences between male and female Ae. aegypti based on protein identification and interactions, functional ontologies, and differentially abundant proteins. Some of the identified proteins merit further investigation to elucidate their roles in blocking viral transmission.
Collapse
|
224
|
Xylella fastidiosa in Olive: A Review of Control Attempts and Current Management. Microorganisms 2021; 9:microorganisms9081771. [PMID: 34442850 PMCID: PMC8397937 DOI: 10.3390/microorganisms9081771] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/09/2021] [Accepted: 08/14/2021] [Indexed: 11/17/2022] Open
Abstract
Since 2013, Xylella fastidiosa Wells et al. has been reported to infect several hosts and to be present in different areas of Europe. The main damage has been inflicted on the olive orchards of southern Apulia (Italy), where a severe disease associated with X. fastidiosa subspecies pauca strain De Donno has led to the death of millions of trees. This dramatic and continuously evolving situation has led to European and national (Italian and Spanish) measures being implemented to reduce the spread of the pathogen and the associated olive quick decline syndrome (OQDS). Research has been also carried out to find solutions to better and directly fight the bacterium and its main insect vector, Philaenus spumarius L. In the course of this frantic effort, several treatments based on chemical or biological substances have been tested, in addition to plant breeding techniques and integrated pest management approaches. This review aims to summarize the attempts made so far and describe the prospects for better management of this serious threat, which poses alarming questions for the future of olive cultivation in the Mediterranean basin and beyond.
Collapse
|
225
|
Picciotti U, Lahbib N, Sefa V, Porcelli F, Garganese F. Aphrophoridae Role in Xylella fastidiosa subsp. pauca ST53 Invasion in Southern Italy. Pathogens 2021; 10:1035. [PMID: 34451499 PMCID: PMC8399165 DOI: 10.3390/pathogens10081035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 12/03/2022] Open
Abstract
The Philaenus spumarius L. (Hemiptera Aphrophoridae) is a xylem-sap feeder vector that acquires Xylella fastidiosa subsp. pauca ST53 during feeding on infected plants. The bacterium is the plant pathogen responsible for olive quick decline syndrome that has decimated olive trees in Southern Italy. Damage originates mainly from the insect vector attitude that multiplies the pathogen potentialities propagating Xf in time and space. The principal action to manage insect-borne pathogens and to contain the disease spread consists in vector and transmission control. The analysis of an innovative and sustainable integrated pest management quantitative strategy that targets the vector and the infection by combining chemical and physical control means demonstrates that it is possible to stop the Xylella invasion. This review updates the available topics addressing vectors' identification, bionomics, infection management, and induced disease by Xylella invasion to discuss major available tools to mitigate the damage consequent to the disease.
Collapse
Affiliation(s)
- Ugo Picciotti
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, University of Bari Aldo Moro, 70126 Bari, Italy; (U.P.); (N.L.); (V.S.); (F.G.)
- Department of Marine Science and Applied Biology, Laboratory of Plant Pathology, University of Alicante, 03080 Alicante, Spain
| | - Nada Lahbib
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, University of Bari Aldo Moro, 70126 Bari, Italy; (U.P.); (N.L.); (V.S.); (F.G.)
- Faculty of Sciences of Tunis, University of Tunis El-Manar, Tunis 1068, Tunisia
- INRAT—National Institute of Agronomic Research of Tunisia, Laboratory of Plant Protection, Rue Hédi Karray, Ariana 2049, Tunisia
| | - Valdete Sefa
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, University of Bari Aldo Moro, 70126 Bari, Italy; (U.P.); (N.L.); (V.S.); (F.G.)
| | - Francesco Porcelli
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, University of Bari Aldo Moro, 70126 Bari, Italy; (U.P.); (N.L.); (V.S.); (F.G.)
- CIHEAM—Centre International de Hautes Etudes Agronomiques Méditerranéennes, Mediterranean Agronomic Institute of Bari, 70010 Valenzano, BA, Italy
| | - Francesca Garganese
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, University of Bari Aldo Moro, 70126 Bari, Italy; (U.P.); (N.L.); (V.S.); (F.G.)
| |
Collapse
|
226
|
Balaska S, Fotakis EA, Chaskopoulou A, Vontas J. Chemical control and insecticide resistance status of sand fly vectors worldwide. PLoS Negl Trop Dis 2021; 15:e0009586. [PMID: 34383751 PMCID: PMC8360369 DOI: 10.1371/journal.pntd.0009586] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Phlebotomine sand flies are prominent vectors of Leishmania parasites that cause leishmaniasis, which comes second to malaria in terms of parasitic causative fatalities globally. In the absence of human vaccines, sand fly chemical-based vector control is a key component of leishmaniasis control efforts. METHODS AND FINDINGS We performed a literature review on the current interventions, primarily, insecticide-based used for sand fly control, as well as the global insecticide resistance (IR) status of the main sand fly vector species. Indoor insecticidal interventions, such as residual spraying and treated bed nets are the most widely deployed, while several alternative control strategies are also used in certain settings and/or are under evaluation. IR has been sporadically detected in sand flies in India and other regions, using non-standardized diagnostic bioassays. Molecular studies are limited to monitoring of known pyrethroid resistance mutations (kdr), which are present at high frequencies in certain regions. CONCLUSIONS As the leishmaniasis burden remains a major problem at a global scale, evidence-based rational use of insecticidal interventions is required to meet public health demands. Standardized bioassays and molecular markers are a prerequisite for this task, albeit are lagging behind. Experiences from other disease vectors underscore the need for the implementation of appropriate IR management (IRM) programs, in the framework of integrated vector management (IVM). The implementation of alternative strategies seems context- and case-specific, with key eco-epidemiological parameters yet to be investigated. New biotechnology-based control approaches might also come into play in the near future to further reinforce sand fly/leishmaniasis control efforts.
Collapse
Affiliation(s)
- Sofia Balaska
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, Heraklion, Greece
- Department of Biology, University of Crete, Heraklion, Greece
| | - Emmanouil Alexandros Fotakis
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, Heraklion, Greece
- Department of Crop Science, Agricultural University of Athens, Athens, Greece
| | | | - John Vontas
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, Heraklion, Greece
- Department of Crop Science, Agricultural University of Athens, Athens, Greece
- * E-mail:
| |
Collapse
|
227
|
Fonseca-Portilla R, Martínez-Gil M, Morgenstern-Kaplan D. Risk factors for hospitalization and mortality due to dengue fever in a Mexican population: a retrospective cohort study. Int J Infect Dis 2021; 110:332-336. [PMID: 34332086 DOI: 10.1016/j.ijid.2021.07.062] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/12/2021] [Accepted: 07/24/2021] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVES Identify risk factors associated with increased hospital admission and mortality due to dengue fever (DF), and estimate the risk magnitude associated with each individual variable. METHODS Records of patients diagnosed with dengue were obtained from the Mexican National Epidemiological Surveillance System. Descriptive statistics were performed in all variables. Demographic characteristics and comorbidities were compared between patients based on type of care and mortality. Multivariable analysis was done with a logistic regression model, using two different outcomes: hospitalization and mortality. RESULTS A total of 24,495 patients were included in the analysis, with a DF case fatality rate of 0.58%. Patients younger than 10 and older than 60, were found to have a greater risk of both hospitalization and mortality due to DF. Comorbidities associated with a higher risk for hospital admission include cirrhosis, CKD, immunosuppression, diabetes, and hypertension. For mortality, CKD, diabetes, and hypertension were identified as risk factors, along with pregnancy. CONCLUSION Identification of risk factors associated with increased hospitalization and mortality due to DF can help categorize patients that require close monitoring and inpatient care. Early identification of warning signs and patients at increased risk is key to avoiding delay of supportive care.
Collapse
Affiliation(s)
- Rodrigo Fonseca-Portilla
- Centro de Investigación en Ciencias de la Salud Anáhuac (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac, Mexico City
| | - Mercedes Martínez-Gil
- Centro de Investigación en Ciencias de la Salud Anáhuac (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac, Mexico City
| | - Dan Morgenstern-Kaplan
- Centro de Investigación en Ciencias de la Salud Anáhuac (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac, Mexico City.
| |
Collapse
|
228
|
Phuphisut O, Nitatsukprasert C, Pathawong N, Jaichapor B, Pongsiri A, Adisakwattana P, Ponlawat A. Sand fly identification and screening for Leishmania spp. in six provinces of Thailand. Parasit Vectors 2021; 14:352. [PMID: 34217359 PMCID: PMC8254935 DOI: 10.1186/s13071-021-04856-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 06/20/2021] [Indexed: 11/11/2022] Open
Abstract
Background Phlebotomine sand flies are vectors of Leishmania spp. At least 27 species of sand flies have been recorded in Thailand. Although human leishmaniasis cases in Thailand are mainly imported, autochthonous leishmaniasis has been increasingly reported in several regions of the country since 1999. Few studies have detected Leishmania infection in wild-caught sand flies, although these studies were carried out only in those areas reporting human leishmaniasis cases. The aim of this study was therefore to identity sand fly species and to investigate Leishmania infection across six provinces of Thailand. Methods Species of wild-caught sand flies were initially identified based on morphological characters. However, problems identifying cryptic species complexes necessitated molecular identification using DNA barcoding in parallel with identification based on morphological characters. The wild-caught sand flies were pooled and the DNA isolated prior to the detection of Leishmania infection by a TaqMan real-time PCR assay. Results A total of 4498 sand flies (1158 males and 3340 females) were caught by trapping in six provinces in four regions of Thailand. The sand flies were morphologically classified into eight species belonging to three genera (Sergentomyia, Phlebotomus and Idiophlebotomus). Sergentomyia iyengari was found at all collection sites and was the dominant species at most of these, followed in frequency by Sergentomyia barraudi and Phlebotomus stantoni, respectively. DNA barcodes generated from 68 sand flies allowed sorting into 14 distinct species with 25 operational taxonomic units, indicating a higher diversity (by 75%) than that based on morphological identification. Twelve barcoding sequences could not be assigned to any species for which cytochrome c oxidase subunit I sequences are available. All tested sand flies were negative for Leishmania DNA. Conclusions Our results confirm the presence of several sand fly species in different provinces of Thailand, highlighting the importance of using DNA barcoding as a tool to study sand fly species diversity. While all female sand flies tested in this study were negative for Leishmania, the circulation of Leishmania spp. in the investigated areas cannot be ruled out. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-04856-6.
Collapse
Affiliation(s)
- Orawan Phuphisut
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Chanyapat Nitatsukprasert
- Vector Biology and Control Section, Department of Entomology, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, 10400, Thailand
| | - Nattaphol Pathawong
- Vector Biology and Control Section, Department of Entomology, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, 10400, Thailand
| | - Boonsong Jaichapor
- Vector Biology and Control Section, Department of Entomology, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, 10400, Thailand
| | - Arissara Pongsiri
- Vector Biology and Control Section, Department of Entomology, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, 10400, Thailand
| | - Poom Adisakwattana
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
| | - Alongkot Ponlawat
- Vector Biology and Control Section, Department of Entomology, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, 10400, Thailand.
| |
Collapse
|
229
|
Parkash V, Ashwin H, Sadlova J, Vojtkova B, Jones G, Martin N, Greensted E, Allgar V, Kamhawi S, Valenzuela JG, Layton AM, Jaffe CL, Volf P, Kaye PM, Lacey CJN. A clinical study to optimise a sand fly biting protocol for use in a controlled human infection model of cutaneous leishmaniasis (the FLYBITE study). Wellcome Open Res 2021; 6:168. [PMID: 34693027 PMCID: PMC8506224 DOI: 10.12688/wellcomeopenres.16870.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2021] [Indexed: 02/02/2023] Open
Abstract
Background: Leishmaniasis is a globally important yet neglected parasitic disease transmitted by phlebotomine sand flies. With new candidate vaccines in or near the clinic, a controlled human challenge model (CHIM) using natural sand fly challenge would provide a method for early evaluation of prophylactic efficacy. Methods : We evaluated the biting frequency and adverse effects resulting from exposure of human volunteers to bites of either Phlebotomus papatasi or P. duboscqi, two natural vectors of Leishmania major. 12 healthy participants were recruited (mean age 40.2 ± 11.8 years) with no history of significant travel to regions where L. major-transmitting sand flies are prevalent. Participants were assigned to either vector by 1:1 allocation and exposed to five female sand flies for 30 minutes in a custom biting chamber. Bite frequency was recorded to confirm a bloodmeal was taken. Participant responses and safety outcomes were monitored using a visual analogue scale (VAS), clinical examination, and blood biochemistry. Focus groups were subsequently conducted to explore participant acceptability. Results: All participants had at least one successful sand fly bite with none reporting any serious adverse events, with median VAS scores of 0-1/10 out to day 21 post-sand fly bite. Corresponding assessment of sand flies confirmed that for each participant at least 1/5 sand flies had successfully taken a bloodmeal (overall mean 3.67±1.03 bites per participant). There was no significant difference between P. papatasi and P. duboscqi in the number of bites resulting from 5 sand flies applied to human participants (3.3±0.81 vs 3.00±1.27 bites per participant; p=0.56) . In the two focus groups (n=5 per group), themes relating to positive participant-reported experiences of being bitten and the overall study, were identified. Conclusions: These results validate a protocol for achieving successful sand fly bites in humans that is safe, well-tolerated and acceptable for participants. Clinicaltrials.gov registration: NCT03999970 (27/06/2019).
Collapse
Affiliation(s)
- Vivak Parkash
- York Biomedical Research Institute, Hull York Medical School, University of York, York, N.Yorks, YO10 5DD, UK
- Department of Infection and Tropical Medicine, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Helen Ashwin
- York Biomedical Research Institute, Hull York Medical School, University of York, York, N.Yorks, YO10 5DD, UK
| | - Jovana Sadlova
- Department of Parasitology, Charles University, Prague, Czech Republic
| | - Barbora Vojtkova
- Department of Parasitology, Charles University, Prague, Czech Republic
| | - Georgina Jones
- School of Social Sciences, Leeds Beckett University, Leeds, UK
| | - Nina Martin
- School of Social Sciences, Leeds Beckett University, Leeds, UK
| | - Elizabeth Greensted
- York Biomedical Research Institute, Hull York Medical School, University of York, York, N.Yorks, YO10 5DD, UK
| | - Victoria Allgar
- Peninsula Medical School, University of Plymouth, Plymouth, UK
| | - Shaden Kamhawi
- Laboratory of Malaria and Vector Research, National Institutes of Health, Rockville, MD, USA
| | - Jesus G. Valenzuela
- Laboratory of Malaria and Vector Research, National Institutes of Health, Rockville, MD, USA
| | - Alison M. Layton
- York Biomedical Research Institute, Hull York Medical School, University of York, York, N.Yorks, YO10 5DD, UK
| | - Charles L. Jaffe
- Department of Microbiology and Molecular Genetics, The Hebrew University – Hadassah Medical School, Jerusalem, Israel
| | - Petr Volf
- Department of Parasitology, Charles University, Prague, Czech Republic
| | - Paul M. Kaye
- York Biomedical Research Institute, Hull York Medical School, University of York, York, N.Yorks, YO10 5DD, UK
| | - Charles J. N. Lacey
- York Biomedical Research Institute, Hull York Medical School, University of York, York, N.Yorks, YO10 5DD, UK
| |
Collapse
|
230
|
Taconet P, Porciani A, Soma DD, Mouline K, Simard F, Koffi AA, Pennetier C, Dabiré RK, Mangeas M, Moiroux N. Data-driven and interpretable machine-learning modeling to explore the fine-scale environmental determinants of malaria vectors biting rates in rural Burkina Faso. Parasit Vectors 2021; 14:345. [PMID: 34187546 PMCID: PMC8243492 DOI: 10.1186/s13071-021-04851-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/12/2021] [Indexed: 12/02/2022] Open
Abstract
Background Improving the knowledge and understanding of the environmental determinants of malaria vector abundance at fine spatiotemporal scales is essential to design locally tailored vector control intervention. This work is aimed at exploring the environmental tenets of human-biting activity in the main malaria vectors (Anopheles gambiae s.s., Anopheles coluzzii and Anopheles funestus) in the health district of Diébougou, rural Burkina Faso. Methods Anopheles human-biting activity was monitored in 27 villages during 15 months (in 2017–2018), and environmental variables (meteorological and landscape) were extracted from high-resolution satellite imagery. A two-step data-driven modeling study was then carried out. Correlation coefficients between the biting rates of each vector species and the environmental variables taken at various temporal lags and spatial distances from the biting events were first calculated. Then, multivariate machine-learning models were generated and interpreted to (i) pinpoint primary and secondary environmental drivers of variation in the biting rates of each species and (ii) identify complex associations between the environmental conditions and the biting rates. Results Meteorological and landscape variables were often significantly correlated with the vectors’ biting rates. Many nonlinear associations and thresholds were unveiled by the multivariate models, for both meteorological and landscape variables. From these results, several aspects of the bio-ecology of the main malaria vectors were identified or hypothesized for the Diébougou area, including breeding site typologies, development and survival rates in relation to weather, flight ranges from breeding sites and dispersal related to landscape openness. Conclusions Using high-resolution data in an interpretable machine-learning modeling framework proved to be an efficient way to enhance the knowledge of the complex links between the environment and the malaria vectors at a local scale. More broadly, the emerging field of interpretable machine learning has significant potential to help improve our understanding of the complex processes leading to malaria transmission, and to aid in developing operational tools to support the fight against the disease (e.g. vector control intervention plans, seasonal maps of predicted biting rates, early warning systems). Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-04851-x.
Collapse
Affiliation(s)
- Paul Taconet
- MIVEGEC, Université de Montpellier, CNRS, IRD, Montpellier, France. .,Institut de Recherche en Sciences de La Santé (IRSS), Bobo-Dioulasso, Burkina Faso.
| | | | - Dieudonné Diloma Soma
- MIVEGEC, Université de Montpellier, CNRS, IRD, Montpellier, France.,Institut de Recherche en Sciences de La Santé (IRSS), Bobo-Dioulasso, Burkina Faso.,Université Nazi Boni, Bobo-Dioulasso, Burkina Faso
| | - Karine Mouline
- MIVEGEC, Université de Montpellier, CNRS, IRD, Montpellier, France
| | - Frédéric Simard
- MIVEGEC, Université de Montpellier, CNRS, IRD, Montpellier, France
| | | | - Cedric Pennetier
- MIVEGEC, Université de Montpellier, CNRS, IRD, Montpellier, France.,Institut de Recherche en Sciences de La Santé (IRSS), Bobo-Dioulasso, Burkina Faso
| | - Roch Kounbobr Dabiré
- Institut de Recherche en Sciences de La Santé (IRSS), Bobo-Dioulasso, Burkina Faso
| | - Morgan Mangeas
- ESPACE-DEV, Université Montpellier, IRD, Université Antilles, Université Guyane, Université Réunion, Montpellier, France
| | - Nicolas Moiroux
- MIVEGEC, Université de Montpellier, CNRS, IRD, Montpellier, France.,Institut de Recherche en Sciences de La Santé (IRSS), Bobo-Dioulasso, Burkina Faso
| |
Collapse
|
231
|
MacLeod HJ, Dimopoulos G, Short SM. Larval Diet Abundance Influences Size and Composition of the Midgut Microbiota of Aedes aegypti Mosquitoes. Front Microbiol 2021; 12:645362. [PMID: 34220739 PMCID: PMC8249813 DOI: 10.3389/fmicb.2021.645362] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/19/2021] [Indexed: 11/13/2022] Open
Abstract
The midgut microbiota of the yellow fever mosquito Aedes aegypti impacts pathogen susceptibility and transmission by this important vector species. However, factors influencing the composition and size of the microbiome in mosquitoes are poorly understood. We investigated the impact of larval diet abundance during development on the composition and size of the larval and adult microbiota by rearing Aedes aegypti under four larval food regimens, ranging from nutrient deprivation to nutrient excess. We assessed the persistent impacts of larval diet availability on the microbiota of the larval breeding water, larval mosquitoes, and adult mosquitoes under sugar and blood fed conditions using qPCR and high-throughput 16S amplicon sequencing to determine bacterial load and microbiota composition. Bacterial loads in breeding water increased with increasing larval diet. Larvae reared with the lowest diet abundance had significantly fewer bacteria than larvae from two higher diet treatments, but not from the highest diet abundance. Adults from the lowest diet abundance treatment had significantly fewer bacteria in their midguts compared to all higher diet abundance treatments. Larval diet amount also had a significant impact on microbiota composition, primarily within larval breeding water and larvae. Increasing diet correlated with increased relative levels of Enterobacteriaceae and Flavobacteriaceae and decreased relative levels of Sphingomonadaceae. Multiple individual OTUs were significantly impacted by diet including one mapping to the genus Cedecea, which increased with higher diet amounts. This was consistent across all sample types, including sugar fed and blood fed adults. Taken together, these data suggest that availability of diet during development can cause lasting shifts in the size and composition of the microbiota in the disease vector Aedes aegypti.
Collapse
Affiliation(s)
- Hannah J MacLeod
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Sarah M Short
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
232
|
Larvicidal Activities against Aedes aegypti of Supernatant and Pellet Fractions from Cultured Bacillus spp. Isolated from Amazonian Microenvironments. Trop Med Infect Dis 2021; 6:tropicalmed6020104. [PMID: 34204476 PMCID: PMC8293452 DOI: 10.3390/tropicalmed6020104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/30/2021] [Accepted: 06/13/2021] [Indexed: 11/16/2022] Open
Abstract
The Aedes aegypti mosquito is the primary vector of Dengue, Chikungunya and Zika causing major problems for public health, which requires new strategies for its control, like the use of entomopathogenic microorganisms. In this study, bacteria from various Amazonian environments were isolated and tested for their pathogenicity to A. aegypti larvae. Following thermal shock to select sporulated Bacillus spp., 77 bacterial strains were isolated. Molecular identification per 16S RNA sequences revealed that the assembled strains contained several species of the genus Bacillus and one species each of Brevibacillus, Klebsiella, Serratia, Achromobacter and Brevundimonas. Among the isolated Bacillus sp. strains, 19 showed larvicidal activity against A. aegypti. Two strains of Brevibacillus halotolerans also displayed larvicidal activity. For the first time, larvicidal activity against A. aegypti was identified for a strain of Brevibacillus halotolerans. Supernatant and pellet fractions of bacterial cultures were tested separately for larvicidal activities. Eight strains contained isolated fractions resulting in at least 50% mortality when tested at a concentration of 5 mg/mL. Further studies are needed to characterize the active larvicidal metabolites produced by these microorganisms and define their mechanisms of action.
Collapse
|
233
|
Gonçalves R, Logan RAE, Ismail HM, Paine MJI, Bern C, Courtenay O. Indoor residual spraying practices against Triatoma infestans in the Bolivian Chaco: contributing factors to suboptimal insecticide delivery to treated households. Parasit Vectors 2021; 14:327. [PMID: 34134775 PMCID: PMC8207695 DOI: 10.1186/s13071-021-04831-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 06/09/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Indoor residual spraying (IRS) of insecticides is a key method to reduce vector transmission of Trypanosoma cruzi, causing Chagas disease in a large part of South America. However, the successes of IRS in the Gran Chaco region straddling Bolivia, Argentina, and Paraguay, have not equalled those in other Southern Cone countries. AIMS This study evaluated routine IRS practices and insecticide quality control in a typical endemic community in the Bolivian Chaco. METHODS Alpha-cypermethrin active ingredient (a.i.) captured onto filter papers fitted to sprayed wall surfaces, and in prepared spray tank solutions, were measured using an adapted Insecticide Quantification Kit (IQK™) validated against HPLC quantification methods. The data were analysed by mixed-effects negative binomial regression models to examine the delivered insecticide a.i. concentrations on filter papers in relation to the sprayed wall heights, spray coverage rates (surface area / spray time [m2/min]), and observed/expected spray rate ratios. Variations between health workers and householders' compliance to empty houses for IRS delivery were also evaluated. Sedimentation rates of alpha-cypermethrin a.i. post-mixing of prepared spray tanks were quantified in the laboratory. RESULTS Substantial variations were observed in the alpha-cypermethrin a.i. concentrations delivered; only 10.4% (50/480) of filter papers and 8.8% (5/57) of houses received the target concentration of 50 mg ± 20% a.i./m2. The delivered concentrations were not related to those in the matched spray tank solutions. The sedimentation of alpha-cypermethrin a.i. in the surface solution of prepared spray tanks was rapid post-mixing, resulting in a linear 3.3% loss of a.i. content per minute and 49% loss after 15 min. Only 7.5% (6/80) of houses were sprayed at the WHO recommended rate of 19 m2/min (± 10%), whereas 77.5% (62/80) were sprayed at a lower than expected rate. The median a.i. concentration delivered to houses was not significantly associated with the observed spray coverage rate. Householder compliance did not significantly influence either the spray coverage rates or the median alpha-cypermethrin a.i. concentrations delivered to houses. CONCLUSIONS Suboptimal delivery of IRS is partially attributable to the insecticide physical characteristics and the need for revision of insecticide delivery methods, which includes training of IRS teams and community education to encourage compliance. The IQK™ is a necessary field-friendly tool to improve IRS quality and to facilitate health worker training and decision-making by Chagas disease vector control managers.
Collapse
Affiliation(s)
- Raquel Gonçalves
- Zeeman Institute and School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Rhiannon A E Logan
- Liverpool School of Tropical Medicine, Department of Vector Biology, Faculty of Biological Sciences, Pembroke Place, Liverpool, L3 5QA, UK
| | - Hanafy M Ismail
- Liverpool School of Tropical Medicine, Department of Vector Biology, Faculty of Biological Sciences, Pembroke Place, Liverpool, L3 5QA, UK
| | - Mark J I Paine
- Liverpool School of Tropical Medicine, Department of Vector Biology, Faculty of Biological Sciences, Pembroke Place, Liverpool, L3 5QA, UK
| | - Caryn Bern
- Department of Epidemiology and Biostatistics, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Orin Courtenay
- Zeeman Institute and School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|
234
|
Moreno-Gómez M, Bueno-Marí R, Miranda MA. A Three-Pronged Approach to Studying Sublethal Insecticide Doses: Characterising Mosquito Fitness, Mosquito Biting Behaviour, and Human/Environmental Health Risks. INSECTS 2021; 12:546. [PMID: 34208127 PMCID: PMC8230870 DOI: 10.3390/insects12060546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 10/30/2022]
Abstract
Worldwide, pyrethroids are one of the most widely used insecticide classes. In addition to serving as personal protection products, they are also a key line of defence in integrated vector management programmes. Many studies have assessed the effects of sublethal pyrethroid doses on mosquito fitness and behaviour. However, much remains unknown about the biological, physiological, demographic, and behavioural effects on individual mosquitoes or mosquito populations when exposure occurs via spatial treatments. Here, females and males of two laboratory-reared mosquito species, Culex pipiens and Aedes albopictus, were exposed to five different treatments: three doses of the pyrethroid prallethrin, as well as an untreated and a negative control. The effects of each treatment on mosquito species, sex, adult mortality, fertility, F1 population size, and biting behaviour were also evaluated. To compare knockdown and mortality among treatments, Mantel-Cox log-rank tests were used. The results showed that sublethal doses reduced mosquito survival, influencing population size in the next generation. They also provided 100% protection to human hosts and presented relatively low risks to human and environmental health. These findings emphasise the need for additional studies that assess the benefits of using sublethal doses as part of mosquito management strategies.
Collapse
Affiliation(s)
- Mara Moreno-Gómez
- Henkel Ibérica S.A, Research and Development (R&D) Insect Control Department, Carrer Llacuna 22, 1-1, 08005 Barcelona, Spain
| | - Rubén Bueno-Marí
- Laboratorios Lokímica, Departamento de Investigación y Desarrollo (I+D), Ronda Auguste y Louis Lumière 23, Nave 10, Parque Tecnológico, Paterna, 46980 Valencia, Spain;
- Área de Parasitología, Departamento de Farmacia y Tecnologia Farmacéutica y Parasitología, Facultad de Farmacia, Universitat de València, Avda. Vicent Andrés Estellés, s/n, Burjassot, 46100 València, Spain
| | - Miguel. A. Miranda
- Applied Zoology and Animal Conservation Research Group, University of the Balearic Islands, Cra. Valldemossa km 7,5, 07122 Palma de Mallorca, Spain;
| |
Collapse
|
235
|
Fortunato AK, Glasser CP, Watson JA, Lu Y, Rychtář J, Taylor D. Mathematical modelling of the use of insecticide-treated nets for elimination of visceral leishmaniasis in Bihar, India. ROYAL SOCIETY OPEN SCIENCE 2021; 8:201960. [PMID: 34234949 PMCID: PMC8242840 DOI: 10.1098/rsos.201960] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 05/24/2021] [Indexed: 05/27/2023]
Abstract
Visceral leishmaniasis (VL) is a deadly neglected tropical disease caused by a parasite Leishmania donovani and spread by female sand flies Phlebotomus argentipes. There is conflicting evidence regarding the role of insecticide-treated nets (ITNs) on the prevention of VL. Numerous studies demonstrated the effectiveness of ITNs. However, KalaNet, a large trial in Nepal and India did not support those findings. The purpose of this paper is to gain insight into the situation by mathematical modelling. We expand a mathematical model of VL transmission based on the KalaNet trial and incorporate the use of ITNs explicitly into the model. One of the major contributions of this work is that we calibrate the model based on the available epidemiological data, generally independent of the KalaNet trial. We validate the model on data collected during the KalaNet trial. We conclude that in order to eliminate VL, the ITN usage would have to stay above 96%. This is higher than the 91% ITNs use at the end of the trial which may explain why the trial did not show a positive effect from ITNs. At the same time, our model indicates that asymptomatic individuals play a crucial role in VL transmission.
Collapse
Affiliation(s)
- Anna K. Fortunato
- Department of Mathematics, University of Richmond, Richmond, VA 23173, USA
| | - Casey P. Glasser
- Department of Mathematics, Virginia Tech, Blacksburg, VA 24061-1026, USA
| | - Joy A. Watson
- Department of Mathematics and Economics, Virginia State University, Petersburg, VA 23806, USA
| | - Yongjin Lu
- Department of Mathematics and Economics, Virginia State University, Petersburg, VA 23806, USA
| | - Jan Rychtář
- Department of Mathematics and Applied Mathematics, Virginia Commonwealth University, Richmond, VA 23284-2014, USA
| | - Dewey Taylor
- Department of Mathematics and Applied Mathematics, Virginia Commonwealth University, Richmond, VA 23284-2014, USA
| |
Collapse
|
236
|
Soft Computing of a Medically Important Arthropod Vector with Autoregressive Recurrent and Focused Time Delay Artificial Neural Networks. INSECTS 2021; 12:insects12060503. [PMID: 34072705 PMCID: PMC8227104 DOI: 10.3390/insects12060503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 12/02/2022]
Abstract
Simple Summary Arthropod vectors are responsible for transmitting a large number of diseases, and for most, there are still not available effective vaccines. Vector disease control is mostly achieved by a sustained prediction of vector populations to maintain support for surveillance and control activities. Mathematical models may assist in predicting arthropod population dynamics. However, arthropod dynamics, and mosquitoes particularly, due their complex life cycle, often exhibit an abrupt and non-linear occurrence. Therefore, there is a growing interest in describing mosquito population dynamics using new methodologies. In this work, we made an effort to gain insights into the non-linear population dynamics of Culex sp. adults, aiming to introduce straightforward soft-computing techniques based on artificial neural networks (ANNs). We propose two kind of models, one autoregressive, handling temperature as an exogenous driver and population as an endogenous one, and a second based only on the exogenous factor. To the best of our knowledge, this is the first study using recurrent neural networks and the most influential environmental variable for prediction of the WNv vector Culex sp. population dynamics, providing a new framework to be used in arthropod decision-support systems. Abstract A central issue of public health strategies is the availability of decision tools to be used in the preventive management of the transmission cycle of vector-borne diseases. In this work, we present, for the first time, a soft system computing modeling approach using two dynamic artificial neural network (ANNs) models to describe and predict the non-linear incidence and time evolution of a medically important mosquito species, Culex sp., in Northern Greece. The first model is an exogenous non-linear autoregressive recurrent neural network (NARX), which is designed to take as inputs the temperature as an exogenous variable and mosquito abundance as endogenous variable. The second model is a focused time-delay neural network (FTD), which takes into account only the temperature variable as input to provide forecasts of the mosquito abundance as the target variable. Both models behaved well considering the non-linear nature of the adult mosquito abundance data. Although, the NARX model predicted slightly better (R = 0.623) compared to the FTD model (R = 0.534), the advantage of the FTD over the NARX neural network model is that it can be applied in the case where past values of the population system, here mosquito abundance, are not available for their forecasting.
Collapse
|
237
|
Saadatian-Elahi M, Alexander N, Möhlmann T, Langlois-Jacques C, Suer R, Ahmad NW, Mudin RN, Ariffin FD, Baur F, Schmitt F, Richardson JH, Rabilloud M, Hamid NA. Measuring the effectiveness of integrated vector management with targeted outdoor residual spraying and autodissemination devices on the incidence of dengue in urban Malaysia in the iDEM trial (intervention for Dengue Epidemiology in Malaysia): study protocol for a cluster randomized controlled trial. Trials 2021; 22:374. [PMID: 34053466 PMCID: PMC8166066 DOI: 10.1186/s13063-021-05298-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 04/27/2021] [Indexed: 11/23/2022] Open
Abstract
Background In common with many South East Asian countries, Malaysia is endemic for dengue. Dengue control in Malaysia is currently based on reactive vector management within 24 h of a dengue case being reported. Preventive rather than reactive vector control approaches, with combined interventions, are expected to improve the cost-effectiveness of dengue control programs. The principal objective of this cluster randomized controlled trial is to quantify the effectiveness of a preventive integrated vector management (IVM) strategy on the incidence of dengue as compared to routine vector control efforts. Methods The trial is conducted in randomly allocated clusters of low- and medium-cost housing located in the Federal Territory of Kuala Lumpur and Putrajaya. The IVM approach combines: targeted outdoor residual spraying with K-Othrine Polyzone, deployment of mosquito traps as auto-dissemination devices, and community engagement activities. The trial includes 300 clusters randomly allocated in a 1:1 ratio. The clusters receive either the preventive IVM in addition to the routine vector control activities or the routine vector control activities only. Epidemiological data from monthly confirmed dengue cases during the study period will be obtained from the Vector Borne Disease Sector, Malaysian Ministry of Health e-Dengue surveillance system. Entomological surveillance data will be collected in 12 clusters randomly selected from each arm. To measure the effectiveness of the IVM approach on dengue incidence, a negative binomial regression model will be used to compare the incidence between control and intervention clusters. To quantify the effect of the interventions on the main entomological outcome, ovitrap index, a modified ordinary least squares regression model using a robust standard error estimator will be used. Discussion Considering the ongoing expansion of dengue burden in Malaysia, setting up proactive control strategies is critical. Despite some limitations of the trial such as the use of passive surveillance to identify cases, the results will be informative for a better understanding of effectiveness of proactive IVM approach in the control of dengue. Evidence from this trial may help justify investment in preventive IVM approaches as preferred to reactive case management strategies. Trial registration ISRCTN ISRCTN81915073. Retrospectively registered on 17 April 2020. Supplementary Information The online version contains supplementary material available at 10.1186/s13063-021-05298-2.
Collapse
Affiliation(s)
- Mitra Saadatian-Elahi
- Service Hygiène, Epidémiologie, Infection, Vigilance et Prévention, Centre Hospitalier Edouard Herriot, Hospices Civils de Lyon, Lyon, France. .,CIRI, Centre International de Recherche en Infectiologie, (Equipe Laboratoire des Pathogènes Emergents), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France.
| | - Neal Alexander
- MRC Tropical Epidemiology Group, Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, Keppel St, London, WC1E 7HT, UK
| | - Tim Möhlmann
- In2Care B.V., Marijkeweg 22, 6709PG, Wageningen, The Netherlands
| | - Carole Langlois-Jacques
- Université de Lyon, F-69000, Lyon, France; Université Lyon 1, F-69100, Villeurbanne, France; Hospices Civils de Lyon, Pôle Santé Publique, Service de Biostatistique et Bioinformatique, F-69003, Lyon, France; CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Évolutive, Équipe Biostatistique-Santé, F-69100, Villeurbanne, France
| | - Remco Suer
- In2Care B.V., Marijkeweg 22, 6709PG, Wageningen, The Netherlands
| | - Nazni Wasi Ahmad
- Medical Entomology Unit, WHO Collaborating Centre for Vectors, Institute for Medical Research, Ministry of Health Malaysia, National Institutes of Health, Block C, Jalan Setia Murni U13/52, Seksyen U13, Setia Alam, 40170, Shah Alam, Malaysia
| | - Rose Nani Mudin
- Vector Borne Disease Sector, Disease Control Division, Ministry of Health Malaysia, Level 4, Block E10, Complex E, Federal Government Administrative Center, 62590, Putrajaya, Malaysia
| | - Farah Diana Ariffin
- Medical Entomology Unit, WHO Collaborating Centre for Vectors, Institute for Medical Research, Ministry of Health Malaysia, National Institutes of Health, Block C, Jalan Setia Murni U13/52, Seksyen U13, Setia Alam, 40170, Shah Alam, Malaysia
| | - Frederic Baur
- Bayer S.A.S, Environnemental Science, Crop Science Division, 16 rue Jean Marie Leclair, 69266, Lyon, Cedex 09, France
| | - Frederic Schmitt
- Bayer S.A.S, Environnemental Science, Crop Science Division, 16 rue Jean Marie Leclair, 69266, Lyon, Cedex 09, France
| | - Jason H Richardson
- Innovative Vector Control Consortium, Pembroke Place, L3 5QA, Liverpool, UK
| | - Muriel Rabilloud
- Université de Lyon, F-69000, Lyon, France; Université Lyon 1, F-69100, Villeurbanne, France; Hospices Civils de Lyon, Pôle Santé Publique, Service de Biostatistique et Bioinformatique, F-69003, Lyon, France; CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Évolutive, Équipe Biostatistique-Santé, F-69100, Villeurbanne, France
| | - Nurulhusna Ab Hamid
- Medical Entomology Unit, WHO Collaborating Centre for Vectors, Institute for Medical Research, Ministry of Health Malaysia, National Institutes of Health, Block C, Jalan Setia Murni U13/52, Seksyen U13, Setia Alam, 40170, Shah Alam, Malaysia
| |
Collapse
|
238
|
Wu P, Tang X, Jian R, Li J, Lin M, Dai H, Wang K, Sheng Z, Chen B, Xu X, Li C, Lin Z, Zhang Q, Zheng X, Zhang K, Li D, Hong WD. Chemical Composition, Antimicrobial and Insecticidal Activities of Essential Oils of Discarded Perfume Lemon and Leaves ( Citrus Limon (L.) Burm. F.) as Possible Sources of Functional Botanical Agents. Front Chem 2021; 9:679116. [PMID: 34109157 PMCID: PMC8184092 DOI: 10.3389/fchem.2021.679116] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/06/2021] [Indexed: 11/13/2022] Open
Abstract
Two essential oils were isolated from discarded perfume lemon and leaves (Citrus limon (L.) Burm. F.) by hydro-distillation with good yield (0.044% for perfume lemon and 0.338% for leaves). Their biological activities were evaluated against five selected bacterial strains and Aedes albopictus (Ae. albopictus, Diptera: Culicidae). Chemical composition indicated that both essential oils were rich in essential phytochemicals including hydrocarbons, monoterpenes and sesquiterpene. These constituents revealed some variability among the oils displaying interesting chemotypes (R)-(+)-limonene (12.29–49.63%), citronellal (5.37–78.70%) and citronellol (2.98–7.18%). The biological assessments proved that the two essential oils had similar effect against bacterial (inhibition zones diameter ranging from 7.27 ± 0.06 to 10.37 ± 0.15 mm; MICs and MBCs ranging from 1.6 to 6.4 mg/mL); against Ae. albopictus larvae (LC50 ranging from 384.81 to 395.09 ppm) and adult mosquito (LD50 ranging from 133.059 to 218.962 μg/cm2); the activity of the two chemotypes ((R)-(+)-limonene and citronellal): larvae (LC50 ranging from 267.08 to 295.28 ppm), which were all presented in dose-dependent manners. Through this work, we have showcased that recycling and reusing of agriculture by-products, such as discarded perfume lemon and leaves can produce eco-friendly alternatives in bacterial disinfectants and mosquito control product.
Collapse
Affiliation(s)
- Panpan Wu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China.,International Healthcare Innovation Institute (Jiangmen), Jiangmen, China
| | - Xiaowen Tang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China.,International Healthcare Innovation Institute (Jiangmen), Jiangmen, China
| | - Rongchao Jian
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China.,International Healthcare Innovation Institute (Jiangmen), Jiangmen, China
| | - Jiahao Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China.,International Healthcare Innovation Institute (Jiangmen), Jiangmen, China
| | - Maoyu Lin
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China.,International Healthcare Innovation Institute (Jiangmen), Jiangmen, China
| | - Huachao Dai
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China.,International Healthcare Innovation Institute (Jiangmen), Jiangmen, China
| | - Kangpeng Wang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China.,International Healthcare Innovation Institute (Jiangmen), Jiangmen, China
| | - Zhaojun Sheng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China.,International Healthcare Innovation Institute (Jiangmen), Jiangmen, China
| | - Baizhong Chen
- Guangdong Xinbaotang Biotechnology Co. Ltd., Jiangmen, China
| | - Xuetao Xu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China.,International Healthcare Innovation Institute (Jiangmen), Jiangmen, China
| | - Chen Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China.,International Healthcare Innovation Institute (Jiangmen), Jiangmen, China
| | - Zhongze Lin
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China.,International Healthcare Innovation Institute (Jiangmen), Jiangmen, China
| | - Qingmin Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China.,International Healthcare Innovation Institute (Jiangmen), Jiangmen, China
| | - Xi Zheng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China.,International Healthcare Innovation Institute (Jiangmen), Jiangmen, China
| | - Kun Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China.,International Healthcare Innovation Institute (Jiangmen), Jiangmen, China
| | - Dongli Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China.,International Healthcare Innovation Institute (Jiangmen), Jiangmen, China
| | - Weiqian David Hong
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China.,International Healthcare Innovation Institute (Jiangmen), Jiangmen, China.,Department of Chemistry, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
239
|
Ta-Tang TH, Luz SLB, Crainey JL, Rubio JM. An Overview of the Management of Mansonellosis. Res Rep Trop Med 2021; 12:93-105. [PMID: 34079424 PMCID: PMC8163967 DOI: 10.2147/rrtm.s274684] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 04/30/2021] [Indexed: 02/02/2023] Open
Abstract
Mansonellosis is caused by three filarial parasite species from the genus Mansonella that commonly produce chronic human microfilaraemias: M. ozzardi, M. perstans and M. streptocerca. The disease is widespread in Africa, the Caribbean and South and Central America, and although it is typically asymptomatic it has been associated with mild pathologies including leg-chills, joint-pains, headaches, fevers, and corneal lesions. No robust mansonellosis disease burden estimates have yet been made and the impact the disease has on blood bank stocks and the monitoring of other filarial diseases is not thought to be of sufficient public health importance to justify dedicated disease management interventions. Mansonellosis´s Ceratopogonidae and Simuliidae vectors are not targeted by other control programmes and because of their small size and out-door biting habits are unlikely to be affected by interventions targeting other disease vectors like mosquitoes. The ivermectin and mebendazole-based mass drug administration (iMDA and mMDA) treatment regimens deployed by the WHO´s Elimination of Neglected Tropical Diseases (ESPEN) programme and its forerunners have, however, likely impacted significantly on the mansonellosis disease burden, principally by reducing the transmission of M. streptocerca in Africa. The increasingly popular plan of using iMDA to control malaria could also affect M. ozzardi parasite prevalence and transmission in Latin America in the future. However, a potentially far greater mansonellosis disease burden impact is likely to come from short-course curative anti-Wolbachia therapeutics, which are presently being developed for onchocerciasis and lymphatic filariasis treatment. Even if the WHO´s ESPEN programme does not choose to deploy these drugs in MDA interventions, they have the potential to dramatically increase the financial and logistical feasibility of effective mansonellosis management. There is, thus, now a fresh and urgent need to better characterise the disease burden and eco-epidemiology of mansonellosis so that effective management programmes can be designed, advocated for and implemented.
Collapse
Affiliation(s)
- Thuy-Huong Ta-Tang
- Malaria and NTDs Laboratory, National Centre of Tropical Medicine, Instituto de Salud Carlos III, Madrid, Spain
| | - Sergio L B Luz
- Laboratório de Ecologia de Doenças Transmissíveis na Amazônia, Instituto Leônidas e Maria Deane, Fundação Oswaldo Cruz, Manaus, Amazonas State, Brazil
| | - James L Crainey
- Laboratório de Ecologia de Doenças Transmissíveis na Amazônia, Instituto Leônidas e Maria Deane, Fundação Oswaldo Cruz, Manaus, Amazonas State, Brazil
| | - José M Rubio
- Malaria & Emerging Parasitic Diseases Laboratory, National Microbiology Center, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
240
|
van den Berg H, da Silva Bezerra HS, Chanda E, Al-Eryani S, Nagpal BN, Gasimov E, Velayudhan R, Yadav RS. Management of insecticides for use in disease vector control: a global survey. BMC Infect Dis 2021; 21:468. [PMID: 34022823 PMCID: PMC8141140 DOI: 10.1186/s12879-021-06155-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 05/10/2021] [Indexed: 11/25/2022] Open
Abstract
Background Vector control plays a critical role in the prevention, control and elimination of vector-borne diseases, and interventions of vector control continue to depend largely on the action of chemical insecticides. A global survey was conducted on the management practices of vector control insecticides at country level to identify gaps to inform future strategies on pesticide management, seeking to improve efficacy of interventions and reduce the side-effects of chemicals used on health and the environment. Methods A survey by questionnaire on the management practices of vector control insecticides was disseminated among all WHO Member States. Data were analysed using descriptive statistics in MS Excel. Results Responses were received from 94 countries, or a 48% response rate. Capacity for insecticide resistance monitoring was established in 68–80% of the countries in most regions, often with external support; however, this capacity was largely lacking from the European & Others Region (i.e. Western & Eastern Europe, North America, Australia and New Zealand). Procurement of vector control insecticides was in 50–75% of countries taking place by agencies other than the central-level procuring agency, over which the central authorities lacked control, for example, to select the product or assure its quality, highlighting the importance of post-market monitoring. Moreover, some countries experienced problems with estimating the correct amounts for procurement, especially for emergency purposes. Large fractions (29–78%) of countries across regions showed shortcomings in worker safety, pesticide storage practices and pesticide waste disposal. Shortcomings were most pronounced in countries of the European & Others Region, which has long been relatively free from mosquito-borne diseases but has recently faced challenges of re-emerging vector-borne diseases. Conclusions Critical shortcomings in the management of vector control insecticides are common in countries across regions, with risks of adverse pesticide effects on health and the environment. Advocacy and resource mobilization are needed at regional and country levels to address these challenges. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-021-06155-y.
Collapse
Affiliation(s)
- Henk van den Berg
- Laboratory of Entomology, Wageningen University, PO Box 16, 6700AA, Wageningen, The Netherlands
| | - Haroldo Sergio da Silva Bezerra
- Department of Communicable Diseases and Environmental Determinants of Health, Pan-American Health Organization/World Health Organization, Washington, DC, USA
| | | | | | | | | | - Raman Velayudhan
- Department of Control of Neglected Tropical Diseases, World Health Organization, 20 Avenue Appia, 1211, 27, Geneva, Switzerland
| | - Rajpal S Yadav
- Department of Control of Neglected Tropical Diseases, World Health Organization, 20 Avenue Appia, 1211, 27, Geneva, Switzerland.
| |
Collapse
|
241
|
Tambwe MM, Saddler A, Kibondo UA, Mashauri R, Kreppel KS, Govella NJ, Moore SJ. Semi-field evaluation of the exposure-free mosquito electrocuting trap and BG-Sentinel trap as an alternative to the human landing catch for measuring the efficacy of transfluthrin emanators against Aedes aegypti. Parasit Vectors 2021; 14:265. [PMID: 34016149 PMCID: PMC8138975 DOI: 10.1186/s13071-021-04754-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/28/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The human landing catch (HLC) measures human exposure to mosquito bites and evaluates the efficacy of vector control tools. However, it may expose volunteers to potentially infected mosquitoes. The mosquito electrocuting trap (MET) and BG-Sentinel traps (BGS) represent alternative, exposure-free methods for sampling host-seeking mosquitoes. This study investigates whether these methods can be effectively used as alternatives to HLC for measuring the efficacy of transfluthrin emanator against Aedes aegypti. METHODS The protective efficacy (PE) of freestanding passive transfluthrin emanators (FTPEs), measured by HLC, MET and BGS, was compared in no-choice and choice tests. The collection methods were conducted 2 m from an experimental hut with FTPEs positioned at 3 m on either side of them. For the choice experiment, a competitor HLC was included 10 m from the first collection point. One hundred laboratory-reared Ae. aegypti mosquitoes were released and collected for 3 consecutive h. RESULTS In the no-choice test, each method measured similar PE: HLC: 66% (95% confidence interval [CI]: 50-82), MET: 55% (95% CI: 48-63) and BGS: 64% (95% CI: 54-73). The proportion of mosquitoes recaptured was consistent between methods (20-24%) in treatment and varied (47-71%) in the control. However, in choice tests, the PE measured by each method varied: HLC: 37% (95% CI: 25-50%), MET: 76% (95% CI: 61-92) and BGS trap: 0% (95% CI: 0-100). Recaptured mosquitoes were no longer consistent between methods in treatment (2-26%) and remained variable in the control (7-42%). FTPE provided 50% PE to the second HLC 10 m away. In the control, the MET and the BGS were less efficacious in collecting mosquitoes in the presence of a second HLC. CONCLUSIONS Measuring the PE in isolation was fairly consistent for HLC, MET and BGS. Because HLC is not advisable, it is reasonable to use either MET or BGS as a proxy for HLC for testing volatile pyrethroid (VP) in areas of active arbovirus-endemic areas. The presence of a human host in close proximity invalidated the PE estimates from BGS and METs. Findings also indicated that transfluthrin can protect multiple people in the peridomestic area and that at short range mosquitoes select humans over the BGS.
Collapse
Affiliation(s)
- Mgeni M. Tambwe
- Vector Control Product Testing Unit, Ifakara Health Institute, Environmental Health and Ecological Sciences, P.O. Box 74, Bagamoyo, Tanzania
- Swiss Tropical & Public Health Institute, Socinstrasse 57, 4051 Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Switzerland
| | - Adam Saddler
- Vector Control Product Testing Unit, Ifakara Health Institute, Environmental Health and Ecological Sciences, P.O. Box 74, Bagamoyo, Tanzania
- Swiss Tropical & Public Health Institute, Socinstrasse 57, 4051 Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Switzerland
- Telethon Kids Institute, Perth, Australia
| | - Ummi Abdul Kibondo
- Vector Control Product Testing Unit, Ifakara Health Institute, Environmental Health and Ecological Sciences, P.O. Box 74, Bagamoyo, Tanzania
| | - Rajabu Mashauri
- Vector Control Product Testing Unit, Ifakara Health Institute, Environmental Health and Ecological Sciences, P.O. Box 74, Bagamoyo, Tanzania
| | - Katharina S. Kreppel
- Nelson Mandela African Institution of Science and Technology (NM-AIST), P.O. Box 447, Tengeru, Tanzania
| | - Nicodem J. Govella
- Vector Control Product Testing Unit, Ifakara Health Institute, Environmental Health and Ecological Sciences, P.O. Box 74, Bagamoyo, Tanzania
- Nelson Mandela African Institution of Science and Technology (NM-AIST), P.O. Box 447, Tengeru, Tanzania
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Graham Kerr Building, Glasgow, G12 8QQ UK
| | - Sarah J. Moore
- Vector Control Product Testing Unit, Ifakara Health Institute, Environmental Health and Ecological Sciences, P.O. Box 74, Bagamoyo, Tanzania
- Swiss Tropical & Public Health Institute, Socinstrasse 57, 4051 Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Switzerland
- Nelson Mandela African Institution of Science and Technology (NM-AIST), P.O. Box 447, Tengeru, Tanzania
| |
Collapse
|
242
|
Junkum A, Intirach J, Chansang A, Champakaew D, Chaithong U, Jitpakdi A, Riyong D, Somboon P, Pitasawat B. Enhancement of Temephos and Deltamethrin Toxicity by Petroselinum crispum Oil and its Main Constituents Against Aedes aegypti (Diptera: Culicidae). JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:1298-1315. [PMID: 33570125 DOI: 10.1093/jme/tjab008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Indexed: 06/12/2023]
Abstract
Previous work presented the profound antimosquito potential of Petroselinum crispum essential oil (PEO) against either the pyrethroid-susceptible or resistant strains of Aedes aegypti. This plant oil also inhibited the activity of acetylcholinesterase and mixed-function oxidases significantly, thus suggesting its potential as a synergist for improving mosquitocidal efficacy of insecticidal formulations. This study investigated the chemical composition, larvicidal activity, and potential synergism with synthetic insecticides of PEO and its main compounds for the purpose of interacting with insecticide resistance in mosquito vectors. The chemical profile of PEO, obtained by GC-MS analysis, showed a total of 17 bioactive compounds, accounting for 99.09% of the whole oil, with the most dominant constituents being thymol (74.57%), p-cymene (10.73%), and γ-terpinene (8.34%). All PEO constituents exhibited promising larvicidal effects, with LC50 values ranging from 19.47 to 59.75 ppm against Ae. aegypti, in both the pyrethroid-susceptible and resistant strains. Furthermore, combination-based bioassays revealed that PEO, thymol, p-cymene, and γ-terpinene enhanced the efficacy of temephos and deltamethrin significantly. The most effective synergist with temephos was PEO, which reduced LC50 values to 2.73, 4.94, and 3.28 ppb against MCM-S, PMD-R, and UPK-R, respectively, with synergism ratio (SR) values of 1.33, 1.38, and 2.12, respectively. The best synergist with deltamethrin also was PEO, which reduced LC50 values against MCM-S, PMD-R, and UPK-R to 0.008, 0.18, and 2.49 ppb, respectively, with SR values of 21.25, 9.00, and 4.06, respectively. This research promoted the potential for using essential oil and its principal constituents as not only alternative larvicides, but also attractive synergists for enhancing efficacy of existing conventional insecticides.
Collapse
Affiliation(s)
- Anuluck Junkum
- Center of Insect Vector Study, Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | | | - Arpaporn Chansang
- Center of Insect Vector Study, Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Danita Champakaew
- School of Public Health, Walailak University, Nakhon Si Thammarat, Thailand
| | - Udom Chaithong
- Center of Insect Vector Study, Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Atchariya Jitpakdi
- Center of Insect Vector Study, Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Doungrat Riyong
- Center of Insect Vector Study, Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Pradya Somboon
- Center of Insect Vector Study, Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Benjawan Pitasawat
- Center of Insect Vector Study, Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
243
|
Effectiveness of vector control methods for the control of cutaneous and visceral leishmaniasis: A meta-review. PLoS Negl Trop Dis 2021; 15:e0009309. [PMID: 33983930 PMCID: PMC8118276 DOI: 10.1371/journal.pntd.0009309] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Elimination of visceral leishmaniasis (VL) in Southeast Asia and global control of cutaneous leishmaniasis (CL) and VL are priorities of the World Health Organization (WHO). But is the existing evidence good enough for public health recommendations? This meta-review summarises the available and new evidence for vector control with the aims of establishing what is known about the value of vector control for the control of CL and VL, establishing gaps in knowledge, and particularly focusing on key recommendations for further scientific work. This meta-review follows the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) criteria, including (1) systematic reviews and meta-analyses (SRs/MAs) for (2) vector control methods and strategies and (3) for the control of CL and/or VL. Nine SRs/MAs were included, with different research questions and inclusion/exclusion criteria. The methods analysed for vector control can be broadly classified into (1) indoor residual spraying (IRS); (2) insecticide-treated nets (ITNs; including insecticide-impregnated bednets); (3) insecticide-treated curtains (ITCs; including insecticide-treated house screening); (4) insecticide-treated bedsheets (ITSs) and insecticide-treated fabrics (ITFs; including insecticide-treated clothing) and (5) durable wall lining (treated with insecticides) and other environmental measures to protect the house; (6) control of the reservoir host; and (7) strengthening vector control operations through health education. The existing SRs/MAs include a large variation of different primary studies, even for the same specific research sub-question. Also, the SRs/MAs are outdated, using available information until earlier than 2018 only. Assessing the quality of the SRs/MAs, there is a considerable degree of variation. It is therefore very difficult to summarise the results of the available SRs/MAs, with contradictory results for both vector indices and—if available—human transmission data. Conclusions of this meta-review are that (1) existing SRs/MAs and their results make policy recommendations for evidence-based vector control difficult; (2) further work is needed to establish efficacy and community effectiveness of key vector control methods with specific SRs and MAs (3) including vector and human transmission parameters; and (4) attempting to conclude with recommendations in different transmission scenarios.
Collapse
|
244
|
Macias AE, Werneck GL, Castro R, Mascareñas C, Coudeville L, Morley D, Recamier V, Guergova-Kuras M, Etcheto A, Puentes-Rosas E, Baurin N, Toh ML. Mortality among Hospitalized Dengue Patients with Comorbidities in Mexico, Brazil, and Colombia. Am J Trop Med Hyg 2021; 105:102-109. [PMID: 33970884 PMCID: PMC8274750 DOI: 10.4269/ajtmh.20-1163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 02/11/2021] [Indexed: 11/23/2022] Open
Abstract
Dengue patients with comorbidities may be at higher risk of death. In this cross-sectional study, healthcare databases from Mexico (2008–2014), Brazil (2008–2015), and Colombia (2009–2017) were used to identify hospitalized dengue cases and their comorbidities. Case fatality rates (CFRs), relative risk, and odds ratios (OR) for in-hospital mortality were determined. Overall, 678,836 hospitalized dengue cases were identified: 68,194 from Mexico, 532,821 from Brazil, and 77,821 from Colombia. Of these, 35%, 5%, and 18% were severe dengue, respectively. Severe dengue and age ≥ 46 years were associated with increased risk of in-hospital mortality. Comorbidities were identified in 8%, 1%, and 4% of cases in Mexico, Brazil, and Colombia, respectively. Comorbidities increased hospitalized dengue CFRs 3- to 17-fold; CFRs were higher with comorbidities regardless of dengue severity or age. The odds of in-hospital mortality were significantly higher in those with pulmonary disorders (11.6 [95% CI 7.4–18.2], 12.7 [95% CI 9.3–17.5], and 8.0 [95% CI 4.9–13.1] in Mexico, Brazil, and Colombia, respectively), ischemic heart disease (23.0 [95% CI 6.6–79.6], 5.9 [95% CI 1.4–24.6], and 7.0 [95% CI 1.9–25.5]), and renal disease/failure (8.3 [95% CI 4.8–14.2], 8.0 [95% CI 4.5–14.4], and 9.3 [95% CI 3.1–28.0]) across the three countries; the odds of in-hospital mortality from dengue with comorbidities was at least equivalent or higher than severe dengue alone (4.5 [95% CI 3.4–6.1], 9.6 [95% CI 8.6–10.6], and 9.0 [95% CI 6.8–12.0). In conclusion, the risk of death because of dengue increases with comorbidities independently of age and/or disease severity.
Collapse
Affiliation(s)
- Alejandro E Macias
- 1Área De Microbiología, Departamento De Medicina y Nutrición, Universidad de Guanajuato, Guanajuato, Mexico
| | - Guilherme L Werneck
- 2Instituto de Estudos em Saúde Coletiva, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
245
|
Selvaraj S, Gaonkar O, Kumar B, Cincinelli A, Chakraborty P. Legacy persistent organochlorine pollutants and polycyclic aromatic hydrocarbons in the surface soil from the industrial corridor of South India: occurrence, sources and risk assessment. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:2105-2120. [PMID: 33392898 DOI: 10.1007/s10653-020-00786-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 11/19/2020] [Indexed: 06/12/2023]
Abstract
Conversion of agricultural fields into the industrial corridor under the State Industries Promotion Corporation of Tamil Nadu Limited (SIPCOT) necessitated the investigation of soil-borne organic contaminants. This study is the first attempt to evaluate the occurrence of organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) in soils from Mambakkam and Cheyyar SIPCOT belt, along the residential, industrial and agricultural transects. Concentrations of Σ28PCBs, Σ16PAHs and OCPs were in the range 0.3-9 ng/g, 33-2934 ng/g and nd-81.4 ng/g, respectively. Residential areas showed higher OCP concentrations than other site types, probably due to their frequent use in vector control programmes. DDT isomers and α-isomer of endosulfan showed low concentrations indicating past usage of these OCPs. Principal component analysis indicated that high-temperature combustion and industrial processes might be the major sources of high molecular weight PAHs, while low-temperature combustion processes might be responsible for low molecular weight PAHs. PCBs in soil were probably attributed to unaccounted combustion processes of e-waste in the region. Carcinogenic PAHs and Σ28PCBs were higher in the industrial sites. Mean Σ28PCBs at Mambakkam (4.8 ng/g) was significantly higher (p < 0.05) than that at the incipient industrial corridor Cheyyar (2.7 ng/g). Lower chlorinated PCBs (3-Cl and 4-Cl) amounted to more than half of Σ28PCBs in 75% of the sites. Total toxic equivalents (TEQs) of PAHs (total BaPeq) were found to be maximum in industrial areas. Maximum contribution to TEQs due to dioxin-like-PCBs was from PCB-157, followed by PCB-189.
Collapse
Affiliation(s)
- Sakthivel Selvaraj
- SRM Research Institute and Department of Civil Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Omkar Gaonkar
- SRM Research Institute and Department of Civil Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Bhupander Kumar
- Central Pollution Control Board, East Arjun Nagar, Delhi, 110032, India
| | - Alessandra Cincinelli
- Department of Chemistry "Ugo Schiff", Via della Lastruccia, 3, 50019, Sesto Fiorentino, Florence, Italy
| | - Paromita Chakraborty
- SRM Research Institute and Department of Civil Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India.
| |
Collapse
|
246
|
Management of insecticides for use in disease vector control: Lessons from six countries in Asia and the Middle East. PLoS Negl Trop Dis 2021; 15:e0009358. [PMID: 33930033 PMCID: PMC8115796 DOI: 10.1371/journal.pntd.0009358] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 05/12/2021] [Accepted: 03/31/2021] [Indexed: 01/22/2023] Open
Abstract
Interventions to control the vectors of human diseases, notably malaria, leishmaniasis and dengue, have relied mainly on the action of chemical insecticides. However, concerns have been raised regarding the management of insecticides in vector-borne disease-endemic countries. Our study aimed to analyze how vector control insecticides are managed in selected countries to extract lessons learned. A qualitative analysis of the situation of vector control insecticides management was conducted in six countries. Multi-stakeholder meetings and key informer interviews were conducted on aspects covering the pesticide lifecycle. Findings were compared and synthesized to extract lessons learned. Centrally executed guidelines and standards on the management of insecticides offered direction and control in most malaria programs, but were largely lacking from decentralized dengue programs, where practices of procurement, application, safety, storage, and disposal were variable between districts. Decentralized programs were better at facilitating participation of stakeholders and local communities and securing financing from local budgets. However, little coordination existed between malaria, visceral leishmaniasis and dengue programs within countries. Entomological capacity was concentrated in malaria programs at central level, while dengue and visceral leishmaniasis programs were missing out on expertise. Monitoring systems for insecticide resistance in malaria vectors were rarely used for dengue or visceral leishmaniasis vectors. Strategies for insecticide resistance management, where present, did not extend across programs or sectors in most countries. Dengue programs in most countries continued to rely on space spraying which, considering the realities on the ground, call for revision of international guidelines. Vector control programs in the selected countries were confronted with critical shortcomings in the procurement, application, safety measures, storage, and disposal of vector control insecticides, with implications for the efficiency, effectiveness, and safety of vector control. Further international support is needed to assist countries in situation analysis, action planning and development of national guidelines on vector control insecticide management. Vector-borne diseases such as dengue, malaria and leishmaniasis are transmitted by insect vectors. Transmission can be interrupted through vector control. Chemical insecticides are the mainstay for controlling these insect vectors. However, the use of chemicals also introduces risks to health and the environment and may lead to insecticide resistance. Hence, proper management of those insecticides is critical. To find out how the insecticides used for vector control are being managed, the authors conducted investigations in six countries in Asia and the Middle East. They found that the practices of insecticide procurement, application, storage, and disposal depended on how a program is organized. Dengue programs were operated in a decentralized manner and, consequently, lacked coordination through guidelines and standards on best practices. Also, coordination between malaria, visceral leishmaniasis and dengue programs within countries was minimal, and expertise needed to guide decisions on vector control and to monitor insecticide resistance was in short supply. The identified shortcomings in how vector control insecticides are managed likely affected the efficiency, effectiveness, and safety of vector control operations.
Collapse
|
247
|
Batson J, Dudas G, Haas-Stapleton E, Kistler AL, Li LM, Logan P, Ratnasiri K, Retallack H. Single mosquito metatranscriptomics identifies vectors, emerging pathogens and reservoirs in one assay. eLife 2021; 10:e68353. [PMID: 33904402 PMCID: PMC8110308 DOI: 10.7554/elife.68353] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 04/09/2021] [Indexed: 12/22/2022] Open
Abstract
Mosquitoes are major infectious disease-carrying vectors. Assessment of current and future risks associated with the mosquito population requires knowledge of the full repertoire of pathogens they carry, including novel viruses, as well as their blood meal sources. Unbiased metatranscriptomic sequencing of individual mosquitoes offers a straightforward, rapid, and quantitative means to acquire this information. Here, we profile 148 diverse wild-caught mosquitoes collected in California and detect sequences from eukaryotes, prokaryotes, 24 known and 46 novel viral species. Importantly, sequencing individuals greatly enhanced the value of the biological information obtained. It allowed us to (a) speciate host mosquito, (b) compute the prevalence of each microbe and recognize a high frequency of viral co-infections, (c) associate animal pathogens with specific blood meal sources, and (d) apply simple co-occurrence methods to recover previously undetected components of highly prevalent segmented viruses. In the context of emerging diseases, where knowledge about vectors, pathogens, and reservoirs is lacking, the approaches described here can provide actionable information for public health surveillance and intervention decisions.
Collapse
Affiliation(s)
| | - Gytis Dudas
- Gothenburg Global Biodiversity CentreGothenburgSweden
| | | | | | - Lucy M Li
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | | | - Kalani Ratnasiri
- Program in Immunology, Stanford University School of MedicineStanfordUnited States
| | - Hanna Retallack
- Department of Biochemistry and Biophysics, University of California San FranciscoSan FranciscoUnited States
| |
Collapse
|
248
|
Convergence Research for Emerging Zoonoses. Trends Parasitol 2021; 37:465-467. [PMID: 33858779 DOI: 10.1016/j.pt.2021.03.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/18/2021] [Accepted: 03/18/2021] [Indexed: 12/26/2022]
Abstract
Global emergence of vector-borne and zoonotic diseases presents a rapidly growing 'wicked' problem. We outline the need for a transdisciplinary research program that is grounded in ecological and evolutionary theory but integrates fundamentally with research perspectives spanning the health, social, and natural sciences.
Collapse
|
249
|
Olajiga O, Holguin-Rocha AF, Rippee-Brooks M, Eppler M, Harris SL, Londono-Renteria B. Vertebrate Responses against Arthropod Salivary Proteins and Their Therapeutic Potential. Vaccines (Basel) 2021; 9:347. [PMID: 33916367 PMCID: PMC8066741 DOI: 10.3390/vaccines9040347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/30/2021] [Accepted: 03/30/2021] [Indexed: 01/11/2023] Open
Abstract
The saliva of hematophagous arthropods contains a group of active proteins to counteract host responses against injury and to facilitate the success of a bloodmeal. These salivary proteins have significant impacts on modulating pathogen transmission, immunogenicity expression, the establishment of infection, and even disease severity. Recent studies have shown that several salivary proteins are immunogenic and antibodies against them may block infection, thereby suggesting potential vaccine candidates. Here, we discuss the most relevant salivary proteins currently studied for their therapeutic potential as vaccine candidates or to control the transmission of human vector-borne pathogens and immune responses against different arthropod salivary proteins.
Collapse
Affiliation(s)
- Olayinka Olajiga
- Vector Biology Laboratory, Department of Entomology, Kansas State University, Manhattan, KS 66506, USA; (O.O.); (A.F.H.-R.); (M.E.); (S.L.H.)
| | - Andrés F. Holguin-Rocha
- Vector Biology Laboratory, Department of Entomology, Kansas State University, Manhattan, KS 66506, USA; (O.O.); (A.F.H.-R.); (M.E.); (S.L.H.)
| | | | - Megan Eppler
- Vector Biology Laboratory, Department of Entomology, Kansas State University, Manhattan, KS 66506, USA; (O.O.); (A.F.H.-R.); (M.E.); (S.L.H.)
| | - Shanice L. Harris
- Vector Biology Laboratory, Department of Entomology, Kansas State University, Manhattan, KS 66506, USA; (O.O.); (A.F.H.-R.); (M.E.); (S.L.H.)
| | - Berlin Londono-Renteria
- Vector Biology Laboratory, Department of Entomology, Kansas State University, Manhattan, KS 66506, USA; (O.O.); (A.F.H.-R.); (M.E.); (S.L.H.)
| |
Collapse
|
250
|
Connolly JB, Mumford JD, Fuchs S, Turner G, Beech C, North AR, Burt A. Systematic identification of plausible pathways to potential harm via problem formulation for investigational releases of a population suppression gene drive to control the human malaria vector Anopheles gambiae in West Africa. Malar J 2021; 20:170. [PMID: 33781254 PMCID: PMC8006393 DOI: 10.1186/s12936-021-03674-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Population suppression gene drive has been proposed as a strategy for malaria vector control. A CRISPR-Cas9-based transgene homing at the doublesex locus (dsxFCRISPRh) has recently been shown to increase rapidly in frequency in, and suppress, caged laboratory populations of the malaria mosquito vector Anopheles gambiae. Here, problem formulation, an initial step in environmental risk assessment (ERA), was performed for simulated field releases of the dsxFCRISPRh transgene in West Africa. METHODS Building on consultative workshops in Africa that previously identified relevant environmental and health protection goals for ERA of gene drive in malaria vector control, 8 potentially harmful effects from these simulated releases were identified. These were stratified into 46 plausible pathways describing the causal chain of events that would be required for potential harms to occur. Risk hypotheses to interrogate critical steps in each pathway, and an analysis plan involving experiments, modelling and literature review to test each of those risk hypotheses, were developed. RESULTS Most potential harms involved increased human (n = 13) or animal (n = 13) disease transmission, emphasizing the importance to subsequent stages of ERA of data on vectorial capacity comparing transgenics to non-transgenics. Although some of the pathways (n = 14) were based on known anatomical alterations in dsxFCRISPRh homozygotes, many could also be applicable to field releases of a range of other transgenic strains of mosquito (n = 18). In addition to population suppression of target organisms being an accepted outcome for existing vector control programmes, these investigations also revealed that the efficacy of population suppression caused by the dsxFCRISPRh transgene should itself directly affect most pathways (n = 35). CONCLUSIONS Modelling will play an essential role in subsequent stages of ERA by clarifying the dynamics of this relationship between population suppression and reduction in exposure to specific potential harms. This analysis represents a comprehensive identification of plausible pathways to potential harm using problem formulation for a specific gene drive transgene and organism, and a transparent communication tool that could inform future regulatory studies, guide subsequent stages of ERA, and stimulate further, broader engagement on the use of population suppression gene drive to control malaria vectors in West Africa.
Collapse
Affiliation(s)
- John B Connolly
- Department of Life Sciences, Imperial College London, London, UK.
| | - John D Mumford
- Centre for Environmental Policy, Imperial College London, London, UK
| | - Silke Fuchs
- Department of Life Sciences, Imperial College London, London, UK
| | - Geoff Turner
- Department of Life Sciences, Imperial College London, London, UK
| | | | - Ace R North
- Department of Zoology, University of Oxford, Oxford, UK
| | - Austin Burt
- Department of Life Sciences, Imperial College London, London, UK
| |
Collapse
|