201
|
Mao D, Innes-Brown H, Petoe MA, Wong YT, McKay CM. Fully objective hearing threshold estimation in cochlear implant users using phase-locking value growth functions. Hear Res 2019; 377:24-33. [DOI: 10.1016/j.heares.2019.02.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/21/2019] [Accepted: 02/26/2019] [Indexed: 01/18/2023]
|
202
|
Barios JA, Ezquerro S, Bertomeu-Motos A, Nann M, Badesa FJ, Fernandez E, Soekadar SR, Garcia-Aracil N. Synchronization of Slow Cortical Rhythms During Motor Imagery-Based Brain–Machine Interface Control. Int J Neural Syst 2019; 29:1850045. [DOI: 10.1142/s0129065718500454] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Modulation of sensorimotor rhythm (SMR) power, a rhythmic brain oscillation physiologically linked to motor imagery, is a popular Brain–Machine Interface (BMI) paradigm, but its interplay with slower cortical rhythms, also involved in movement preparation and cognitive processing, is not entirely understood. In this study, we evaluated the changes in phase and power of slow cortical activity in delta and theta bands, during a motor imagery task controlled by an SMR-based BMI system. In Experiment I, EEG of 20 right-handed healthy volunteers was recorded performing a motor-imagery task using an SMR-based BMI controlling a visual animation, and during task-free intervals. In Experiment II, 10 subjects were evaluated along five daily sessions, while BMI-controlling same visual animation, a buzzer, and a robotic hand exoskeleton. In both experiments, feedback received from the controlled device was proportional to SMR power (11–14[Formula: see text]Hz) detected by a real-time EEG-based system. Synchronization of slow EEG frequencies along the trials was evaluated using inter-trial-phase coherence (ITPC). Results: cortical oscillations of EEG in delta and theta frequencies synchronized at the onset and at the end of both active and task-free trials; ITPC was significantly modulated by feedback sensory modality received during the tasks; and ITPC synchronization progressively increased along the training. These findings suggest that phase-locking of slow rhythms and resetting by sensory afferences might be a functionally relevant mechanism in cortical control of motor function. We propose that analysis of phase synchronization of slow cortical rhythms might also improve identification of temporal edges in BMI tasks and might help to develop physiological markers for identification of context task switching and practice-related changes in brain function, with potentially important implications for design and monitoring of motor imagery-based BMI systems, an emerging tool in neurorehabilitation of stroke.
Collapse
Affiliation(s)
- Juan A. Barios
- Biomedical Neuroengineering Research Group (nBio), Systems Engineering and Automation, Department of Miguel Hernández University, Avda. de la Universidad s/n 03202 Elche, Spain
| | - Santiago Ezquerro
- Biomedical Neuroengineering Research Group (nBio), Systems Engineering and Automation, Department of Miguel Hernández University, Avda. de la Universidad s/n 03202 Elche, Spain
| | - Arturo Bertomeu-Motos
- Biomedical Neuroengineering Research Group (nBio), Systems Engineering and Automation, Department of Miguel Hernández University, Avda. de la Universidad s/n 03202 Elche, Spain
| | - Marius Nann
- University Hospital of Tuebingen, Applied Neurotechnology Lab, Department of Psychiatry and Psychotherapy, Calwerstr. 14, 72076 Tuebingen, Germany
| | - Fco. Javier Badesa
- Biomedical Neuroengineering Research Group (nBio), Systems Engineering and Automation, Department of Miguel Hernández University, Avda. de la Universidad s/n 03202 Elche, Spain
| | - Eduardo Fernandez
- Biomedical Neuroengineering Research Group (nBio), Systems Engineering and Automation, Department of Miguel Hernández University, Avda. de la Universidad s/n 03202 Elche, Spain
| | - Surjo R. Soekadar
- University Hospital of Tuebingen, Applied Neurotechnology Lab, Department of Psychiatry and Psychotherapy, Calwerstr. 14, 72076 Tuebingen, Germany
- Clinical Neurotechnology Laboratory, Neuroscience Research Center (NWFZ), Department of Psychiatry and Psychotherapy, Charite University Medicine Berlin, Berlin, Germany
| | - Nicolas Garcia-Aracil
- Biomedical Neuroengineering Research Group (nBio), Systems Engineering and Automation, Department of Miguel Hernández University, Avda. de la Universidad s/n 03202 Elche, Spain
| |
Collapse
|
203
|
Hämäläinen JA, Ortiz-Mantilla S, Benasich A. Change detection to tone pairs during the first year of life - Predictive longitudinal relationships for EEG-based source and time-frequency measures. Neuroimage 2019; 198:83-92. [PMID: 31102736 DOI: 10.1016/j.neuroimage.2019.05.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/25/2019] [Accepted: 05/13/2019] [Indexed: 11/25/2022] Open
Abstract
Brain responses related to auditory processing show large changes throughout infancy and childhood with some evidence that the two hemispheres might mature at different rates. Differing rates of hemispheric maturation could be linked to the proposed functional specialization of the hemispheres in which the left auditory cortex engages in analysis of precise timing information whereas the right auditory cortex focuses on analysis of sound frequency. Here the auditory change detection process for rapidly presented tone-pairs was examined in a longitudinal sample of infants at the age of 6 and 12 months using EEG. The ERP response related to change detection of a frequency contrast, its estimated source strength in the auditory areas, as well as time-frequency indices showed developmental effects. ERP amplitudes, source strength, spectral power and inter-trial phase locking decreased across age. A differential lateralization pattern emerged between 6 and 12 months as shown by inter-trial phase locking at 2-3 Hz; specifically, a larger developmental change was observed in the right as compared to the left hemisphere. Predictive relationships for the change in source strength from 6 months to 12 months were found. Six-month predictors were source strength and phase locking values at low frequencies. The results show that the infant change detection response in rapidly presented tone pairs is mainly determined by low frequency power and phase-locking with a larger phase-locking response at 6 months predicting greater change at 12 months. The ability of the auditory system to respond systematically across stimuli is suggested as a marker of maturational change that leads to more automatic and fine-tuned cortical responses.
Collapse
Affiliation(s)
- Jarmo A Hämäläinen
- Center for Interdisciplinary Brain Research, University of Jyväskylä, Finland; Department of Psychology, University of Jyväskylä, Finland.
| | - Silvia Ortiz-Mantilla
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, NJ, USA
| | - April Benasich
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, NJ, USA
| |
Collapse
|
204
|
Doelling KB, Assaneo MF, Bevilacqua D, Pesaran B, Poeppel D. An oscillator model better predicts cortical entrainment to music. Proc Natl Acad Sci U S A 2019; 116:10113-10121. [PMID: 31019082 PMCID: PMC6525506 DOI: 10.1073/pnas.1816414116] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A body of research demonstrates convincingly a role for synchronization of auditory cortex to rhythmic structure in sounds including speech and music. Some studies hypothesize that an oscillator in auditory cortex could underlie important temporal processes such as segmentation and prediction. An important critique of these findings raises the plausible concern that what is measured is perhaps not an oscillator but is instead a sequence of evoked responses. The two distinct mechanisms could look very similar in the case of rhythmic input, but an oscillator might better provide the computational roles mentioned above (i.e., segmentation and prediction). We advance an approach to adjudicate between the two models: analyzing the phase lag between stimulus and neural signal across different stimulation rates. We ran numerical simulations of evoked and oscillatory computational models, showing that in the evoked case,phase lag is heavily rate-dependent, while the oscillatory model displays marked phase concentration across stimulation rates. Next, we compared these model predictions with magnetoencephalography data recorded while participants listened to music of varying note rates. Our results show that the phase concentration of the experimental data is more in line with the oscillatory model than with the evoked model. This finding supports an auditory cortical signal that (i) contains components of both bottom-up evoked responses and internal oscillatory synchronization whose strengths are weighted by their appropriateness for particular stimulus types and (ii) cannot be explained by evoked responses alone.
Collapse
Affiliation(s)
- Keith B Doelling
- Department of Psychology, New York University, New York, NY 10003;
| | | | - Dana Bevilacqua
- Department of Psychology, New York University, New York, NY 10003
| | - Bijan Pesaran
- Center for Neural Science, New York University, New York, NY 10003
| | - David Poeppel
- Department of Psychology, New York University, New York, NY 10003
- Department of Neuroscience, Max Planck Institute for Empirical Aesthetics, 60322 Frankfurt am Main, Germany
| |
Collapse
|
205
|
de la Salle S, Shah D, Choueiry J, Bowers H, McIntosh J, Ilivitsky V, Knott V. NMDA Receptor Antagonist Effects on Speech-Related Mismatch Negativity and Its Underlying Oscillatory and Source Activity in Healthy Humans. Front Pharmacol 2019; 10:455. [PMID: 31139075 PMCID: PMC6517681 DOI: 10.3389/fphar.2019.00455] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 04/11/2019] [Indexed: 11/18/2022] Open
Abstract
Background: Previous studies in schizophrenia have consistently shown that deficits in the generation of the auditory mismatch negativity (MMN) – a pre-attentive, event-related potential (ERP) typically elicited by changes to simple sound features – are linked to N-methyl-D-aspartate (NMDA) receptor hypofunction. Concomitant with extensive language dysfunction in schizophrenia, patients also exhibit MMN deficits to changes in speech but their relationship to NMDA-mediated neurotransmission is not clear. Accordingly, our study aimed to investigate speech MMNs in healthy humans and their underlying electrophysiological mechanisms in response to NMDA antagonist treatment. We also evaluated the relationship between baseline MMN/electrocortical activity and emergent schizophrenia-like symptoms associated with NMDA receptor blockade. Methods: In a sample of 18 healthy volunteers, a multi-feature Finnish language paradigm incorporating changes in syllables, vowels and consonant stimuli was used to assess the acute effects of the NMDA receptor antagonist ketamine and placebo on the MMN. Further, measures of underlying neural activity, including evoked theta power, theta phase locking and source-localized current density in cortical regions of interest were assessed. Subjective symptoms were assessed with the Clinician Administered Dissociative States Scale (CADSS). Results: Participants exhibited significant ketamine-induced increases in psychosis-like symptoms and depending on temporal or frontal recording region, co-occurred with reductions in MMN generation in response to syllable frequency/intensity, vowel duration, across vowel and consonant deviants. MMN attenuation was associated with decreases in evoked theta power, theta phase locking and diminished current density in auditory and inferior frontal (language-related cortical) regions. Baseline (placebo) MMN and underlying electrophysiological features associated with the processing of changes in syllable intensity correlated with the degree of psychotomimetic response to ketamine. Conclusion: Ketamine-induced impairments in healthy human speech MMNs and their underlying electrocortical mechanisms closely resemble those observed in schizophrenia and support a model of dysfunctional NMDA receptor-mediated neurotransmission of language processing deficits in schizophrenia.
Collapse
Affiliation(s)
| | - Dhrasti Shah
- School of Psychology, University of Ottawa, Ottawa, ON, Canada
| | - Joelle Choueiry
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Hayley Bowers
- Department of Psychology, University of Guelph, Guelph, ON, Canada
| | - Judy McIntosh
- The Royal's Institute of Mental Health Research, Ottawa, ON, Canada
| | | | - Verner Knott
- School of Psychology, University of Ottawa, Ottawa, ON, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.,The Royal's Institute of Mental Health Research, Ottawa, ON, Canada.,Royal Ottawa Mental Health Centre, Ottawa, ON, Canada
| |
Collapse
|
206
|
Roque L, Gaskins C, Gordon-Salant S, Goupell MJ, Anderson S. Age Effects on Neural Representation and Perception of Silence Duration Cues in Speech. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2019; 62:1099-1116. [PMID: 31026197 PMCID: PMC6802877 DOI: 10.1044/2018_jslhr-h-ascc7-18-0076] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/26/2018] [Accepted: 08/12/2018] [Indexed: 06/09/2023]
Abstract
Purpose Degraded temporal processing associated with aging may be a contributing factor to older adults' hearing difficulties, especially in adverse listening environments. This degraded processing may affect the ability to distinguish between words based on temporal duration cues. The current study investigates the effects of aging and hearing loss on cortical and subcortical representation of temporal speech components and on the perception of silent interval duration cues in speech. Method Identification functions for the words DISH and DITCH were obtained on a 7-step continuum of silence duration (0-60 ms) prior to the final fricative in participants who are younger with normal hearing (YNH), older with normal hearing (ONH), and older with hearing impairment (OHI). Frequency-following responses and cortical auditory-evoked potentials were recorded to the 2 end points of the continuum. Auditory brainstem responses to clicks were obtained to verify neural integrity and to compare group differences in auditory nerve function. A multiple linear regression analysis was conducted to determine the peripheral or central factors that contributed to perceptual performance. Results ONH and OHI participants required longer silence durations to identify DITCH than did YNH participants. Frequency-following responses showed reduced phase locking and poorer morphology, and cortical auditory-evoked potentials showed prolonged latencies in ONH and OHI participants compared with YNH participants. No group differences were noted for auditory brainstem response Wave I amplitude or Wave V/I ratio. After accounting for the possible effects of hearing loss, linear regression analysis revealed that both midbrain and cortical processing contributed to the variance in the DISH-DITCH perceptual identification functions. Conclusions These results suggest that age-related deficits in the ability to encode silence duration cues may be a contributing factor in degraded speech perception. In particular, degraded response morphology relates to performance on perceptual tasks based on silence duration contrasts between words.
Collapse
Affiliation(s)
- Lindsey Roque
- Department of Hearing and Speech Sciences, University of Maryland, College Park
| | - Casey Gaskins
- Department of Hearing and Speech Sciences, University of Maryland, College Park
| | - Sandra Gordon-Salant
- Department of Hearing and Speech Sciences, University of Maryland, College Park
- Neuroscience and Cognitive Science Program, University of Maryland, College Park
| | - Matthew J. Goupell
- Department of Hearing and Speech Sciences, University of Maryland, College Park
- Neuroscience and Cognitive Science Program, University of Maryland, College Park
| | - Samira Anderson
- Department of Hearing and Speech Sciences, University of Maryland, College Park
- Neuroscience and Cognitive Science Program, University of Maryland, College Park
| |
Collapse
|
207
|
Gaskins C, Jaekel BN, Gordon-Salant S, Goupell MJ, Anderson S. Effects of Aging on Perceptual and Electrophysiological Responses to Acoustic Pulse Trains as a Function of Rate. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2019; 62:1087-1098. [PMID: 31026191 PMCID: PMC6802875 DOI: 10.1044/2018_jslhr-h-ascc7-18-0133] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Purpose As pulse rate increases beyond a few hundred Hertz, younger normal-hearing (NH) participants' ability to encode temporal information in band-limited acoustic pulse trains decreases, demonstrating a rate limitation in processing rapid temporal information. Rate discrimination abilities, however, have yet to be investigated in older NH participants-a population that experiences age-related temporal processing deficits. It was hypothesized that age-related temporal processing deficits lead to decreased temporal rate discrimination abilities in older compared with younger NH participants, which could be observed in both perceptual and electrophysiological measurements. Method Fifteen younger and 15 older NH participants were presented acoustic pulse trains with a 4-kHz center frequency and 1-kHz bandwidth at 75 dB SPL monaurally. The pulse rate was 80, 200, or 400 Hz. Just noticeable differences were obtained using an adaptive procedure that instructed the participants to identify the pulse train with the highest pitch. Auditory steady-state responses (ASSRs) were recorded to the same pulse trains with 2 additional rates-20 and 40 Hz. The Digit Symbol Coding and Digit Symbol Search subtests of the Wechsler Adult Intelligence Scale ( Wechsler, 1997 ) were measured as correlates to domain-general cognitive processing speed. Results As rate increased from 80 to 400 Hz, performance on the perceptual rate discrimination task worsened in both groups. ASSR spectral energy also decreased, but only in the older group. Perceptual performance was equivalent between groups across rates. The older group had lower ASSR spectral energy (lower signal-to-noise ratios) at the 400-Hz rate than the younger group, but there were no group differences for the other rates. The overall strength of neural rate representation, along with speed of processing performance, predicted perceptual performance for the 400-Hz rate. Conclusion These results suggest that neural representation at early levels of the auditory system and processing speed are factors in perceptual auditory temporal processing performance, especially in older adults.
Collapse
Affiliation(s)
- Casey Gaskins
- Department of Hearing and Speech Sciences, University of Maryland, College Park
| | - Brittany N. Jaekel
- Department of Hearing and Speech Sciences, University of Maryland, College Park
| | | | - Matthew J. Goupell
- Department of Hearing and Speech Sciences, University of Maryland, College Park
| | - Samira Anderson
- Department of Hearing and Speech Sciences, University of Maryland, College Park
| |
Collapse
|
208
|
Covert Intention to Answer to Self-Referential Questions Is Represented in Alpha-Band Local and Interregional Neural Synchronies. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2019; 2019:7084186. [PMID: 30723496 PMCID: PMC6339759 DOI: 10.1155/2019/7084186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 11/28/2018] [Indexed: 11/17/2022]
Abstract
The most fundamental and simplest intention for interpersonal communication may be the intentions to answer “yes” or “no” to a question, based on a binary decision. However, the neural mechanism of this type of intention has not been investigated in detail. The main purpose of this study was to investigate cortical processing of the “yes/no” intentions to answer self-referential questions. Multichannel electroencephalograms (EEGs) were recorded while covertly answering self-referential questions with either “yes” or “no”. Event-related spectral perturbation (ERSP) and interregional phase synchrony (PS) were investigated to identify the differences in local and global neural synchronies between two intentions. We found that the local and interregional neural synchronies in the alpha-band were significantly different between “yes” and “no,” especially at the period of retaining the intention in mind, which was greater for “no” than for “yes.” These results can be interpreted to signify that a higher cognitive load during working memory retention or higher attentional demand is required for the “no” intention compared to “yes.” Our findings suggest that both local and global neural synchronies in the alpha-band may be significantly differentiated during a critical temporal epoch, according to the contents of the mental representation of the intention.
Collapse
|
209
|
Phase-Amplitude Coupling of Neural Oscillations Can Be Effectively Probed with Concurrent TMS-EEG. Neural Plast 2019; 2019:6263907. [PMID: 31049054 PMCID: PMC6462323 DOI: 10.1155/2019/6263907] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 01/12/2019] [Accepted: 01/23/2019] [Indexed: 11/17/2022] Open
Abstract
Despite the widespread use of transcranial magnetic stimulation (TMS), knowledge of its neurophysiological mode of action is still incomplete. Recently, TMS has been proposed to synchronise neural oscillators and to thereby increase the detectability of corresponding oscillations at the population level. As oscillations in the human brain are known to interact within nested hierarchies via phase-amplitude coupling, TMS might also be able to increase the macroscopic detectability of such coupling. In a concurrent TMS-electroencephalography study, we therefore examined the technique's influence on theta-gamma, alpha-gamma, and beta-gamma phase-amplitude coupling by delivering single-pulse TMS (sTMS) and repetitive TMS (rTMS) over the left motor cortex and right visual cortex of healthy participants. The rTMS pulse trains were of 5 Hz, 11 Hz, and 23 Hz for the three coupling variations, respectively. Relative to sham stimulation, all conditions showed transient but significant increases in phase-amplitude coupling at the stimulation site. In addition, we observed enhanced coupling over various other cortical sites, with a more extensive propagation during rTMS than during sTMS. By indicating that scalp-recorded phase-amplitude coupling can be effectively probed with TMS, these findings open the door to the technique's application in manipulative dissections of such coupling during human cognition and behaviour in healthy and pathological conditions.
Collapse
|
210
|
Ortiz-Mantilla S, Cantiani C, Shafer VL, Benasich AA. Minimally-verbal children with autism show deficits in theta and gamma oscillations during processing of semantically-related visual information. Sci Rep 2019; 9:5072. [PMID: 30911038 PMCID: PMC6433949 DOI: 10.1038/s41598-019-41511-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 03/11/2019] [Indexed: 01/18/2023] Open
Abstract
To acquire language, children must build phonemic representations of their native language, learn to associate auditory words to visual objects and assemble a lexicon. It is not clear however, whether the limited linguistic ability seen in minimally-verbal (MV) children with Autism Spectrum Disorder (ASD) relates to deficits in cortical representation of an object and/or in linking an object to its semantic information. This EEG-based study investigated neural mechanisms underlying visual processing of common objects in MV-ASD and control children. Ten MV-ASD children, 4- to 7- years-old and 15 age/gender-matched controls, were presented with a picture-word matching paradigm. Time-frequency analyses were conducted at the sources generating the event-related responses at both early and late visual processing. Permutation testing identified spectral power and phase coherence clusters that significantly differed between the groups. As compared to controls, MV-ASD children exhibited smaller amplitudes and longer source latencies; decreased gamma and theta power with less theta phase coherence in occipital regions, and reduced frontal gamma power. Our results confirm that visual processing is altered in MV-ASD children and suggest that some of the linguistic differences observed in these children arise from impaired object/label cortical representations and reduced allocation of attention, which would impact lexical acquisition.
Collapse
Affiliation(s)
- Silvia Ortiz-Mantilla
- Center for Molecular & Behavioral Neuroscience, Rutgers University-Newark, Newark, NJ, USA.
| | - Chiara Cantiani
- Scientific Institute, IRCCS E. Medea, Child Psychopatology Unit, Bosisio Parini, Lecco, Italy
| | | | - April A Benasich
- Center for Molecular & Behavioral Neuroscience, Rutgers University-Newark, Newark, NJ, USA
| |
Collapse
|
211
|
A division of labor between power and phase coherence in encoding attention to stimulus streams. Neuroimage 2019; 193:146-156. [PMID: 30877058 DOI: 10.1016/j.neuroimage.2019.03.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/20/2019] [Accepted: 03/08/2019] [Indexed: 11/22/2022] Open
Abstract
Both time-based (when) and feature-based (what) aspects of attention facilitate behavior, so it is natural to hypothesize additive effects. We tested this conjecture by recording response behavior and electroencephalographic (EEG) data to auditory pitch changes, embedded at different time lags in a continuous sound stream. Participants reacted more rapidly to larger rather than smaller feature change magnitudes (deviancy), as well as to changes appearing after longer rather than shorter waiting times (hazard rate of response times). However, the feature and time dimensions of attention separately contributed to response speed, with no significant interaction. Notably, phase coherence at low frequencies (delta and theta bands, 1-7 Hz) predominantly reflected attention capture by feature changes, while oscillatory power at higher frequency bands, alpha (8-12 Hz) and beta (13-25 Hz) reflected the orienting of attention in time. Power and phase coherence predicted different portions of response speed variance, suggesting a division of labor in encoding sensory attention in complex auditory scenes.
Collapse
|
212
|
Jenkins KA, Fodor C, Presacco A, Anderson S. Effects of Amplification on Neural Phase Locking, Amplitude, and Latency to a Speech Syllable. Ear Hear 2019; 39:810-824. [PMID: 29287038 PMCID: PMC6014864 DOI: 10.1097/aud.0000000000000538] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Older adults often have trouble adjusting to hearing aids when they start wearing them for the first time. Probe microphone measurements verify appropriate levels of amplification up to the tympanic membrane. Little is known, however, about the effects of amplification on auditory-evoked responses to speech stimuli during initial hearing aid use. The present study assesses the effects of amplification on neural encoding of a speech signal in older adults using hearing aids for the first time. It was hypothesized that amplification results in improved stimulus encoding (higher amplitudes, improved phase locking, and earlier latencies), with greater effects for the regions of the signal that are less audible. DESIGN Thirty-seven adults, aged 60 to 85 years with mild to severe sensorineural hearing loss and no prior hearing aid use, were bilaterally fit with Widex Dream 440 receiver-in-the-ear hearing aids. Probe microphone measures were used to adjust the gain of the hearing aids and verify the fitting. Unaided and aided frequency-following responses and cortical auditory-evoked potentials to the stimulus /ga/ were recorded in sound field over the course of 2 days for three conditions: 65 dB SPL and 80 dB SPL in quiet, and 80 dB SPL in six-talker babble (+10 signal to noise ratio). RESULTS Responses from midbrain were analyzed in the time regions corresponding to the consonant transition (18 to 68 ms) and the steady state vowel (68 to 170 ms). Generally, amplification increased phase locking and amplitude and decreased latency for the region and presentation conditions that had lower stimulus amplitudes-the transition region and 65 dB SPL level. Responses from cortex showed decreased latency for P1, but an unexpected decrease in N1 amplitude. Previous studies have demonstrated an exaggerated cortical representation of speech in older adults compared to younger adults, possibly because of an increase in neural resources necessary to encode the signal. Therefore, a decrease in N1 amplitude with amplification and with increased presentation level may suggest that amplification decreases the neural resources necessary for cortical encoding. CONCLUSION Increased phase locking and amplitude and decreased latency in midbrain suggest that amplification may improve neural representation of the speech signal in new hearing aid users. The improvement with amplification was also found in cortex, and, in particular, decreased P1 latencies and lower N1 amplitudes may indicate greater neural efficiency. Further investigations will evaluate changes in subcortical and cortical responses during the first 6 months of hearing aid use.
Collapse
Affiliation(s)
- Kimberly A. Jenkins
- Department of Hearing and Speech Sciences, University of Maryland, College Park, Maryland, USA
| | - Calli Fodor
- Department of Hearing and Speech Sciences, University of Maryland, College Park, Maryland, USA
| | - Alessandro Presacco
- Department of Hearing and Speech Sciences, University of Maryland, College Park, Maryland, USA
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, Maryland, USA
| | - Samira Anderson
- Department of Hearing and Speech Sciences, University of Maryland, College Park, Maryland, USA
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
213
|
Cantiani C, Ortiz-Mantilla S, Riva V, Piazza C, Bettoni R, Musacchia G, Molteni M, Marino C, Benasich AA. Reduced left-lateralized pattern of event-related EEG oscillations in infants at familial risk for language and learning impairment. NEUROIMAGE-CLINICAL 2019; 22:101778. [PMID: 30901712 PMCID: PMC6428938 DOI: 10.1016/j.nicl.2019.101778] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 03/07/2019] [Accepted: 03/10/2019] [Indexed: 02/02/2023]
Abstract
The ability to rapidly discriminate successive auditory stimuli within tens-of-milliseconds is crucial for speech and language development, particularly in the first year of life. This skill, called Rapid Auditory Processing (RAP), is altered in infants at familial risk for language and learning impairment (LLI) and is a robust predictor of later language outcomes. In the present study, we investigate the neural substrates of RAP, i.e., the underlying neural oscillatory patterns, in a group of Italian 6-month-old infants at risk for LLI (FH+, n = 24), compared to control infants with no known family history of LLI (FH−, n = 32). Brain responses to rapid changes in fundamental frequency and duration were recorded via high-density electroencephalogram during a non-speech double oddball paradigm. Sources of event-related potential generators were localized to right and left auditory regions in both FH+ and FH− groups. Time-frequency analyses showed variations in both theta (Ɵ) and gamma (ɣ) ranges across groups. Our results showed that overall RAP stimuli elicited a more left-lateralized pattern of oscillations in FH− infants, whereas FH+ infants demonstrated a more right-lateralized pattern, in both the theta and gamma frequency bands. Interestingly, FH+ infants showed reduced early left gamma power (starting at 50 ms after stimulus onset) during deviant discrimination. Perturbed oscillatory dynamics may well constitute a candidate neural mechanism to explain group differences in RAP. Additional group differences in source location suggest that anatomical variations may underlie differences in oscillatory activity. Regarding the predictive value of early oscillatory measures, we found that the amplitude of the source response and the magnitude of oscillatory power and phase synchrony were predictive of expressive vocabulary at 20 months of age. These results further our understanding of the interplay among neural mechanisms that support typical and atypical rapid auditory processing in infancy. Neural sources of RAP in infancy were identified at right/left auditory regions. FH− infants demonstrated a mature left-lateralized pattern of neural oscillations. FH+ infants demonstrated a more right-lateralized pattern of neural oscillations. FH+ infants showed reduced left gamma power during rapid auditory discrimination. Source and oscillatory measures are both associated with later language skills.
Collapse
Affiliation(s)
- Chiara Cantiani
- Child Psychopathology Unit, Scientific Institute, IRCCS E. Medea, Bosisio Parini, Lecco, Italy.
| | | | - Valentina Riva
- Child Psychopathology Unit, Scientific Institute, IRCCS E. Medea, Bosisio Parini, Lecco, Italy
| | - Caterina Piazza
- Bioengineering Lab, Scientific Institute IRCCS E. Medea, Bosisio Parini, Lecco, Italy
| | - Roberta Bettoni
- Child Psychopathology Unit, Scientific Institute, IRCCS E. Medea, Bosisio Parini, Lecco, Italy; Department of Psychology, University of Milano-Bicocca, Milano, Italy
| | - Gabriella Musacchia
- Department of Audiology, University of the Pacific, USA; Department of Otolaryngology - Head and Neck Surgery, Stanford University, USA
| | - Massimo Molteni
- Child Psychopathology Unit, Scientific Institute, IRCCS E. Medea, Bosisio Parini, Lecco, Italy
| | - Cecilia Marino
- Centre for Addiction and Mental Health (CAMH), University of Toronto, Toronto, Canada
| | - April A Benasich
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, USA
| |
Collapse
|
214
|
Kim S, Jang SK, Kim DW, Shim M, Kim YW, Im CH, Lee SH. Cortical volume and 40-Hz auditory-steady-state responses in patients with schizophrenia and healthy controls. NEUROIMAGE-CLINICAL 2019; 22:101732. [PMID: 30851675 PMCID: PMC6407311 DOI: 10.1016/j.nicl.2019.101732] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 01/05/2019] [Accepted: 02/20/2019] [Indexed: 11/25/2022]
Abstract
Background Abnormalities in the 40-Hz auditory steady-state response (ASSR) of the gamma range have been reported in schizophrenia (SZ) and are regarded as important pathophysiological features. Many of the previous studies reported diminished gamma oscillations in SZ, although some studies reported increased spontaneous gamma oscillations. Furthermore, brain morphological correlates of the gamma band ASSR deficits have rarely examined. We investigated different measures of the 40-Hz ASSR and their association with brain volumes and psychological measures of SZ. Methods The 40-Hz ASSR was measured for 80 dB click sounds (1 ms, 500-ms trains at 40-Hz, with 3050 to 3500 inter-train interval) using electroencephalography with 64 electrodes in 33 patients with SZ (male: 16, female: 17 (age range: 21–60)) and 30 healthy controls (HCs) (male: 13, female: 17 (age range: 23–64)). Four gamma oscillation measures (evoked power, spontaneous oscillations (baseline and total power), and inter-trial phase coherence (ITC)) were assessed. The source activities of the ASSR were also analyzed. Brain volumes were assessed using high-resolution magnetic resonance imaging and voxel-based morphometry and superior temporal gyrus (STG) volume measures were obtained. Results Patients with SZ had larger total and evoked powers and higher ITC than HCs. Both groups showed significantly different association between mean evoked power and right STG volume. In HCs but not SZ, mean evoked power showed significant positive correlation with right STG volume. In addition, the two groups showed significantly different association between verbal fluency and mean evoked power. High evoked power was significantly correlated with poor verbal fluency in SZ. Conclusions The current study found increased gamma oscillation in SZ and suggests significant involvement of the STG in gamma oscillations. SZ had larger total and evoked powers and higher ITC than HCs. Evoked power positively correlated with right STG volume in HCs. High evoked power correlated with poor verbal fluency in SZ.
Collapse
Affiliation(s)
- Sungkean Kim
- Clinical Emotion and Cognition Research Laboratory, Inje University, Goyang, Republic of Korea; Department of Biomedical Engineering, Hanyang University, Seoul, Republic of Korea
| | - Seon-Kyeong Jang
- Clinical Emotion and Cognition Research Laboratory, Inje University, Goyang, Republic of Korea
| | - Do-Won Kim
- Department of Biomedical Engineering, Chonnam National University, Yeosu, Republic of Korea
| | - Miseon Shim
- Department of Psychiatry, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Yong-Wook Kim
- Clinical Emotion and Cognition Research Laboratory, Inje University, Goyang, Republic of Korea; Department of Biomedical Engineering, Hanyang University, Seoul, Republic of Korea
| | - Chang-Hwan Im
- Department of Biomedical Engineering, Hanyang University, Seoul, Republic of Korea
| | - Seung-Hwan Lee
- Clinical Emotion and Cognition Research Laboratory, Inje University, Goyang, Republic of Korea; Department of Psychiatry, Inje University, Ilsan-Paik Hospital, Goyang, Republic of Korea.
| |
Collapse
|
215
|
Barik K, Daimi SN, Jones R, Bhattacharya J, Saha G. A machine learning approach to predict perceptual decisions: an insight into face pareidolia. Brain Inform 2019; 6:2. [PMID: 30721365 PMCID: PMC6363645 DOI: 10.1186/s40708-019-0094-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 01/17/2019] [Indexed: 11/21/2022] Open
Abstract
The perception of an external stimulus not only depends upon the characteristics of the stimulus but is also influenced by the ongoing brain activity prior to its presentation. In this work, we directly tested whether spontaneous electrical brain activities in prestimulus period could predict perceptual outcome in face pareidolia (visualizing face in noise images) on a trial-by-trial basis. Participants were presented with only noise images but with the prior information that some faces would be hidden in these images, while their electrical brain activities were recorded; participants reported their perceptual decision, face or no-face, on each trial. Using differential hemispheric asymmetry features based on large-scale neural oscillations in a machine learning classifier, we demonstrated that prestimulus brain activities could achieve a classification accuracy, discriminating face from no-face perception, of 75% across trials. The time–frequency features representing hemispheric asymmetry yielded the best classification performance, and prestimulus alpha oscillations were found to be mostly involved in predicting perceptual decision. These findings suggest a mechanism of how prior expectations in the prestimulus period may affect post-stimulus decision making.
Collapse
Affiliation(s)
- Kasturi Barik
- Department of Electronics and Electrical Communication Engineering, Indian Institute of Technology, Kharagpur, India.
| | - Syed Naser Daimi
- Department of Electronics and Electrical Communication Engineering, Indian Institute of Technology, Kharagpur, India
| | - Rhiannon Jones
- Department of Psychology, University of Winchester, Winchester, UK
| | | | - Goutam Saha
- Department of Electronics and Electrical Communication Engineering, Indian Institute of Technology, Kharagpur, India
| |
Collapse
|
216
|
Kolesnik A, Begum Ali J, Gliga T, Guiraud J, Charman T, Johnson MH, Jones EJH. Increased cortical reactivity to repeated tones at 8 months in infants with later ASD. Transl Psychiatry 2019; 9:46. [PMID: 30700699 PMCID: PMC6353960 DOI: 10.1038/s41398-019-0393-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 11/12/2018] [Accepted: 01/01/2019] [Indexed: 02/08/2023] Open
Abstract
Dysregulation of cortical excitation/inhibition (E/I) has been proposed as a neuropathological mechanism underlying core symptoms of autism spectrum disorder (ASD). Determining whether dysregulated E/I could contribute to the emergence of behavioural symptoms of ASD requires evidence from human infants prior to diagnosis. In this prospective longitudinal study, we examine differences in neural responses to auditory repetition in infants later diagnosed with ASD. Eight-month-old infants with (high-risk: n = 116) and without (low-risk: n = 27) an older sibling with ASD were tested in a non-linguistic auditory oddball paradigm. Relative to high-risk infants with typical development (n = 44), infants with later ASD (n = 14) showed reduced repetition suppression of 40-60 Hz evoked gamma and significantly greater 10-20 Hz inter-trial coherence (ITC) for repeated tones. Reduced repetition suppression of cortical gamma and increased phase-locking to repeated tones are consistent with cortical hyper-reactivity, which could in turn reflect disturbed E/I balance. Across the whole high-risk sample, a combined index of cortical reactivity (cortical gamma amplitude and ITC) was dimensionally associated with reduced growth in language skills between 8 months and 3 years, as well as elevated levels of parent-rated social communication symptoms at 3 years. Our data show that cortical 'hyper-reactivity' may precede the onset of behavioural traits of ASD in development, potentially affecting experience-dependent specialisation of the developing brain.
Collapse
Affiliation(s)
- Anna Kolesnik
- Centre for Brain and Cognitive Development, Birkbeck, University of London, London, UK.
| | - Jannath Begum Ali
- Centre for Brain and Cognitive Development, Birkbeck, University of London, London, UK
| | - Teodora Gliga
- Centre for Brain and Cognitive Development, Birkbeck, University of London, London, UK
| | - Jeanne Guiraud
- Core CAMHS (Child and Adolescent Mental Health Service), Brookside Family Consultation Clinic, Cambridge, UK
| | - Tony Charman
- Psychology Department, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Mark H Johnson
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Emily J H Jones
- Centre for Brain and Cognitive Development, Birkbeck, University of London, London, UK.
| |
Collapse
|
217
|
Miyauchi E, Ide M, Tachikawa H, Nemoto K, Arai T, Kawasaki M. A novel approach for assessing neuromodulation using phase-locked information measured with TMS-EEG. Sci Rep 2019; 9:428. [PMID: 30674902 PMCID: PMC6344580 DOI: 10.1038/s41598-018-36317-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 08/23/2018] [Indexed: 02/05/2023] Open
Abstract
Neuromodulation therapies such as electroconvulsive therapy (ECT) are used to treat several neuropsychiatric disorders, including major depressive disorder (MDD). Recent work has highlighted the use of combined transcranial magnetic stimulation and electroencephalography (TMS-EEG) to evaluate the therapeutic effects of neuromodulation; particularly, the phase locking factor (PLF) and phase locking value (PLV) can reportedly assess neuromodulation-induced functional changes in cortical networks. To examine changes in TMS-induced PLV and PLF before and after ECT, and their relationship with depression severity in patients with MDD, TMS-EEG and the Montgomery–Åsberg Depression Rating Scale (MADRS; depression severity) were implemented before and after ECT in 10 patients with MDD. Single-pulse TMS was applied to the visual and motor areas to induce phase propagation in the visuo-motor network at rest. Functional changes were assessed using PLF and PLV data. Pre-ECT TMS-induced alpha band (9–12 Hz) PLV was negatively correlated with depression severity, and increments of post-ECT from pre-ECT TMS-induced alpha band PLV were positively correlated with the reduction in depression severity. Moreover, we found a negative correlation between pre-ECT TMS-induced PLF at TMS-destination and depression severity. Finally, differences in post-ECT TMS-induced PLF peak latencies between visual and motor areas were positively correlated with depression severity. TMS-EEG-based PLV and PLF may be used to assess the therapeutic effects of neuromodulation and depressive states, respectively. Furthermore, our results provide new insights about the neural mechanisms of ECT and depression.
Collapse
Affiliation(s)
- Eri Miyauchi
- Department of Intelligent Interaction Technology, Graduate School of Systems and Information Engineering, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
| | - Masayuki Ide
- Faculty of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
| | - Hirokazu Tachikawa
- Faculty of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Kiyotaka Nemoto
- Faculty of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Tetsuaki Arai
- Faculty of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Masahiro Kawasaki
- Department of Intelligent Interaction Technology, Graduate School of Systems and Information Engineering, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8573, Japan.
| |
Collapse
|
218
|
Comparing the potential of MEG and EEG to uncover brain tracking of speech temporal envelope. Neuroimage 2019; 184:201-213. [DOI: 10.1016/j.neuroimage.2018.09.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 08/22/2018] [Accepted: 09/03/2018] [Indexed: 11/20/2022] Open
|
219
|
Kohl MC, Schebsdat E, Schneider EN, Niehl A, Strauss DJ, Özdamar Ö, Bohórquez J. Fast acquisition of full-range auditory event-related potentials using an interleaved deconvolution approach. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 145:540. [PMID: 30710975 DOI: 10.1121/1.5087825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 01/02/2019] [Indexed: 06/09/2023]
Abstract
This work relates to recent advances in the field of auditory event-related potentials (ERP), specifically deconvolution-based ERP acquisition and single-trial processing. An efficient stimulus sequence optimization method for ERP deconvolution is proposed, achieving consistent noise attenuation within a broad designated frequency range. Furthermore, a stimulus presentation paradigm for the fast, interleaved acquisition of auditory brainstem, middle-latency and late responses featuring alternating periods of high-rate deconvolution sequences, and subsequent low-rate stimulation is investigated in 20 normal hearing subjects. Deconvolved sequence responses containing early and middle-latency ERP components are fused with subsequent late responses using a time-frequency resolved weighted averaging method based on cross-trial regularity, yielding a uniform signal-to-noise ratio of the full-range auditory ERP across investigated timescales. Obtained average ERP waveforms exhibit morphologies consistent with both literature values and reference recordings acquired in 15 normal hearing subjects using a prior art approach to full-range auditory ERP acquisition, with all prominent waves being visible in the grand average waveforms. Results suggest the proposed interleaved stimulus presentation and associated ERP processing methodology to be suitable for the fast, reliable extraction of full-range auditory processing correlates in future ERP studies.
Collapse
Affiliation(s)
- Manuel C Kohl
- Systems Neuroscience & Neurotechnology Unit, Saarland University, Faculty of Medicine, Neurocenter, Building 90.5, 66421 Homburg/Saar, Germany
| | - Erik Schebsdat
- Systems Neuroscience & Neurotechnology Unit, Saarland University, Faculty of Medicine, Neurocenter, Building 90.5, 66421 Homburg/Saar, Germany
| | - Elena N Schneider
- Systems Neuroscience & Neurotechnology Unit, Saarland University, Faculty of Medicine, Neurocenter, Building 90.5, 66421 Homburg/Saar, Germany
| | - Annika Niehl
- Systems Neuroscience & Neurotechnology Unit, Saarland University, Faculty of Medicine, Neurocenter, Building 90.5, 66421 Homburg/Saar, Germany
| | - Daniel J Strauss
- Systems Neuroscience & Neurotechnology Unit, Saarland University, Faculty of Medicine, Neurocenter, Building 90.5, 66421 Homburg/Saar, Germany
| | - Özcan Özdamar
- Department of Biomedical Engineering, College of Engineering, University of Miami, McArthur Engineering Building, 1251 Memorial Drive, Coral Gables, Florida 33124, USA
| | - Jorge Bohórquez
- Department of Biomedical Engineering, College of Engineering, University of Miami, McArthur Engineering Building, 1251 Memorial Drive, Coral Gables, Florida 33124, USA
| |
Collapse
|
220
|
Borghesani V, Buiatti M, Eger E, Piazza M. Conceptual and Perceptual Dimensions of Word Meaning Are Recovered Rapidly and in Parallel during Reading. J Cogn Neurosci 2019; 31:95-108. [DOI: 10.1162/jocn_a_01328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
A single word (the noun “ elephant”) encapsulates a complex multidimensional meaning, including both perceptual (“ big”, “ gray”, “ trumpeting”) and conceptual (“ mammal”, “ can be found in India”) features. Opposing theories make different predictions as to whether different features (also conceivable as dimensions of the semantic space) are stored in similar neural regions and recovered with similar temporal dynamics during word reading. In this magnetoencephalography study, we tracked the brain activity of healthy human participants while reading single words varying orthogonally across three semantic dimensions: two perceptual ones (i.e., the average implied real-world size and the average strength of association with a prototypical sound) and a conceptual one (i.e., the semantic category). The results indicate that perceptual and conceptual representations are supported by partially segregated neural networks: Whereas visual and auditory dimensions are encoded in the phase coherence of low-frequency oscillations of occipital and superior temporal regions, respectively, semantic features are encoded in the power of low-frequency oscillations of anterior temporal and inferior parietal areas. However, despite the differences, these representations appear to emerge at the same latency: around 200 msec after stimulus onset. Taken together, these findings suggest that perceptual and conceptual dimensions of the semantic space are recovered automatically, rapidly, and in parallel during word reading.
Collapse
Affiliation(s)
- Valentina Borghesani
- Université Pierre et Marie Curie, Paris, France
- Institut National de la Santé et de la Recherche Médicale, Gif/Yvette, France
- University of California, San Francisco
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| | - Marco Buiatti
- Institut National de la Santé et de la Recherche Médicale, Gif/Yvette, France
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| | - Evelyn Eger
- Institut National de la Santé et de la Recherche Médicale, Gif/Yvette, France
| | - Manuela Piazza
- Institut National de la Santé et de la Recherche Médicale, Gif/Yvette, France
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| |
Collapse
|
221
|
Foik AT, Ghazaryan A, Waleszczyk WJ. Oscillations in Spontaneous and Visually Evoked Neuronal Activity in the Superficial Layers of the Cat's Superior Colliculus. Front Syst Neurosci 2018; 12:60. [PMID: 30559653 PMCID: PMC6287086 DOI: 10.3389/fnsys.2018.00060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 11/19/2018] [Indexed: 11/16/2022] Open
Abstract
Oscillations are ubiquitous features of neuronal activity in sensory systems and are considered as a substrate for the integration of sensory information. Several studies have described oscillatory activity in the geniculate visual pathway, but little is known about this phenomenon in the extrageniculate visual pathway. We describe oscillations in evoked and background activity in the cat's superficial layers of the superior colliculus, a retinorecipient structure in the extrageniculate visual pathway. Extracellular single-unit activity was recorded during periods with and without visual stimulation under isoflurane anesthesia in the mixture of N2O/O2. Autocorrelation, FFT and renewal density analyses were used to detect and characterize oscillations in the neuronal activity. Oscillations were common in the background and stimulus-evoked activity. Frequency range of background oscillations spanned between 5 and 90 Hz. Oscillations in evoked activity were observed in about half of the cells and could appear in two forms —stimulus-phase-locked (10–100 Hz), and stimulus-phase-independent (8–100 Hz) oscillations. Stimulus-phase-independent and background oscillatory frequencies were very similar within activity of particular neurons suggesting that stimulus-phase-independent oscillations may be a form of enhanced “spontaneous” oscillations. Stimulus-phase-locked oscillations were present in responses to moving and flashing stimuli. In contrast to stimulus-phase-independent oscillations, the strength of stimulus-phase-locked oscillations was positively correlated with stimulus velocity and neuronal firing rate. Our results suggest that in the superficial layers of the superior colliculus stimulus-phase-independent oscillations may be generated by the same mechanism(s) that lie in the base of “spontaneous” oscillations, while stimulus-phase-locked oscillations may result from interactions within the intra-collicular network and/or from a phase reset of oscillations present in the background activity.
Collapse
Affiliation(s)
- Andrzej T Foik
- Department of Neurophysiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Anaida Ghazaryan
- Department of Neurophysiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Wioletta J Waleszczyk
- Department of Neurophysiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| |
Collapse
|
222
|
Speed of time-compressed forward replay flexibly changes in human episodic memory. Nat Hum Behav 2018; 3:143-154. [DOI: 10.1038/s41562-018-0491-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 11/07/2018] [Indexed: 01/16/2023]
|
223
|
Xia X, Zhang G, Wang X. Anger Weakens Behavioral Inhibition Selectively in Contact Athletes. Front Hum Neurosci 2018; 12:463. [PMID: 30515088 PMCID: PMC6255881 DOI: 10.3389/fnhum.2018.00463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 11/01/2018] [Indexed: 11/22/2022] Open
Abstract
Studies have increasingly found that the aggression level of contact athletes is higher than that of non-athletes. Given that higher aggression levels are associated with worse behavioral inhibition and that athletes show better behavioral inhibition than non-athletes, it is unclear why contact athletes would exhibit higher aggression levels. Emotion, especially anger, is an important factor in the generation of aggressive behavior, and anger has been shown to affect behavioral inhibition. Thus, the present study examined the influence of anger on behavioral inhibition in contact athletes. An implicit emotional Go/No-go task was used that contained 50 anger-associated words and 50 neutral words as stimuli. Participants were asked to execute a key press depending on the explicit color of word and to ignore any (implicit) emotional information associated with the word. The results showed a significant interaction in performance accuracy on the No-go task between emotion (i.e., anger-associated words versus neutral words) and group (athlete versus non-athlete). The performance accuracy of the contact athletes on anger-associated stimuli was significantly lower than that for neutral stimuli. Evoked delta and theta oscillations were analyzed at the time windows 200–600 and 200–400 ms respectively in both groups. A time-frequency analysis indicated a significant interaction between group, emotion and task for both evoked delta and theta oscillations. Post hoc analyses showed that stronger evoked delta and theta oscillations were evoked during the presentation of anger-associated stimuli compared with neutral stimuli on the No-go task in athletes. By contrast, no other significant effect was found in the control group or between the control and athlete groups. These results indicate that time-frequency analysis can effectively distinguish conventional ERP components and that implicit anger significantly weakens behavioral inhibition in contact athletes but not in non-athletes.
Collapse
Affiliation(s)
- Xue Xia
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Guanghui Zhang
- Department of Mathematical Information Technology, University of Jyväskylä, Jyväskylä, Finland
| | - Xiaochun Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
224
|
Mao D, Innes-Brown H, Petoe MA, Wong YT, McKay CM. Cortical auditory evoked potential time-frequency growth functions for fully objective hearing threshold estimation. Hear Res 2018; 370:74-83. [DOI: 10.1016/j.heares.2018.09.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/24/2018] [Accepted: 09/26/2018] [Indexed: 01/18/2023]
|
225
|
Young JJ, Rudebeck PH, Marcuse LV, Fields MC, Yoo JY, Panov F, Ghatan S, Fazl A, Mandelbaum S, Baxter MG. Theta band network supporting human episodic memory is not activated in the seizure onset zone. Neuroimage 2018; 183:565-573. [PMID: 30144571 PMCID: PMC6197910 DOI: 10.1016/j.neuroimage.2018.08.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 07/18/2018] [Accepted: 08/21/2018] [Indexed: 10/28/2022] Open
Abstract
Episodic memory, everyday memory for events, is frequently impaired in patients with epilepsy. We tested patients undergoing intracranial electroencephalography (intracranial EEG) monitoring for the treatment of medically-refractory epilepsy on a well-characterized paradigm that requires episodic memory. We report that an anatomically diffuse network characterized by theta-band (4-7 Hz) coherence is activated at the time of target selection in a task that requires episodic memory. This distinct network of oscillatory activity is absent when episodic memory is not required. Further, the theta band synchronous network was absent in electrodes within the patient's seizure onset zone (SOZ). Our data provide novel empirical evidence for a set of brain areas that supports episodic memory in humans, and it provides a pathophysiologic mechanism for the memory deficits observed in patients with epilepsy.
Collapse
Affiliation(s)
- James J Young
- Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.
| | - Peter H Rudebeck
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA; The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Lara V Marcuse
- Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Madeline C Fields
- Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Ji Yeoun Yoo
- Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Fedor Panov
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Saadi Ghatan
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Arash Fazl
- Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Sarah Mandelbaum
- Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Mark G Baxter
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA; The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| |
Collapse
|
226
|
Peng F, McKay CM, Mao D, Hou W, Innes-Brown H. Auditory Brainstem Representation of the Voice Pitch Contours in the Resolved and Unresolved Components of Mandarin Tones. Front Neurosci 2018; 12:820. [PMID: 30505262 PMCID: PMC6250765 DOI: 10.3389/fnins.2018.00820] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 10/22/2018] [Indexed: 11/24/2022] Open
Abstract
Accurate perception of voice pitch plays a vital role in speech understanding, especially for tonal languages such as Mandarin. Lexical tones are primarily distinguished by the fundamental frequency (F0) contour of the acoustic waveform. It has been shown that the auditory system could extract the F0 from the resolved and unresolved harmonics, and the tone identification performance of resolved harmonics was better than unresolved harmonics. To evaluate the neural response to the resolved and unresolved components of Mandarin tones in quiet and in speech-shaped noise, we recorded the frequency-following response. In this study, four types of stimuli were used: speech with either only-resolved harmonics or only-unresolved harmonics, both in quiet and in speech-shaped noise. Frequency-following responses (FFRs) were recorded to alternating-polarity stimuli and were added or subtracted to enhance the neural response to the envelope (FFRENV) or fine structure (FFRTFS), respectively. The neural representation of the F0 strength reflected by the FFRENV was evaluated by the peak autocorrelation value in the temporal domain and the peak phase-locking value (PLV) at F0 in the spectral domain. Both evaluation methods showed that the FFRENV F0 strength in quiet was significantly stronger than in noise for speech including unresolved harmonics, but not for speech including resolved harmonics. The neural representation of the temporal fine structure reflected by the FFRTFS was assessed by the PLV at the harmonic near to F1 (4th of F0). The PLV at harmonic near to F1 (4th of F0) of FFRTFS to resolved harmonics was significantly larger than to unresolved harmonics. Spearman's correlation showed that the FFRENV F0 strength to unresolved harmonics was correlated with tone identification performance in noise (0 dB SNR). These results showed that the FFRENV F0 strength to speech sounds with resolved harmonics was not affected by noise. In contrast, the response to speech sounds with unresolved harmonics, which were significantly smaller in noise compared to quiet. Our results suggest that coding resolved harmonics was more important than coding envelope for tone identification performance in noise.
Collapse
Affiliation(s)
- Fei Peng
- Key Laboratory of Biorheological Science and Technology, Chongqing University, Ministry of Education, Chongqing, China.,The Bionics Institute of Australia, East Melbourne, VIC, Australia.,Medical Bionics Department, University of Melbourne, Melbourne, VIC, Australia.,Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing, China
| | - Colette M McKay
- The Bionics Institute of Australia, East Melbourne, VIC, Australia.,Medical Bionics Department, University of Melbourne, Melbourne, VIC, Australia
| | - Darren Mao
- The Bionics Institute of Australia, East Melbourne, VIC, Australia.,Department of Biomedical Engineering, University of Melbourne, Melbourne, VIC, Australia
| | - Wensheng Hou
- Key Laboratory of Biorheological Science and Technology, Chongqing University, Ministry of Education, Chongqing, China.,Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing, China.,Chongqing Engineering Research Center of Medical Electronics Technology, Chongqing University, Chongqing, China
| | - Hamish Innes-Brown
- The Bionics Institute of Australia, East Melbourne, VIC, Australia.,Medical Bionics Department, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
227
|
Price MH, Johnson JD. Failure to reactivate salient episodic information during indirect and direct tests of memory retrieval. Brain Res 2018; 1699:9-18. [DOI: 10.1016/j.brainres.2018.06.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 05/18/2018] [Accepted: 06/28/2018] [Indexed: 11/27/2022]
|
228
|
Ruggles DR, Tausend AN, Shamma SA, Oxenham AJ. Cortical markers of auditory stream segregation revealed for streaming based on tonotopy but not pitch. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2018; 144:2424. [PMID: 30404514 PMCID: PMC6909992 DOI: 10.1121/1.5065392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/05/2018] [Accepted: 10/08/2018] [Indexed: 06/08/2023]
Abstract
The brain decomposes mixtures of sounds, such as competing talkers, into perceptual streams that can be attended to individually. Attention can enhance the cortical representation of streams, but it is unknown what acoustic features the enhancement reflects, or where in the auditory pathways attentional enhancement is first observed. Here, behavioral measures of streaming were combined with simultaneous low- and high-frequency envelope-following responses (EFR) that are thought to originate primarily from cortical and subcortical regions, respectively. Repeating triplets of harmonic complex tones were presented with alternating fundamental frequencies. The tones were filtered to contain either low-numbered spectrally resolved harmonics, or only high-numbered unresolved harmonics. The behavioral results confirmed that segregation can be based on either tonotopic or pitch cues. The EFR results revealed no effects of streaming or attention on subcortical responses. Cortical responses revealed attentional enhancement under conditions of streaming, but only when tonotopic cues were available, not when streaming was based only on pitch cues. The results suggest that the attentional modulation of phase-locked responses is dominated by tonotopically tuned cortical neurons that are insensitive to pitch or periodicity cues.
Collapse
Affiliation(s)
- Dorea R Ruggles
- Department of Psychology, University of Minnesota, 75 East River Parkway, Minneapolis, Minnesota 55455, USA
| | - Alexis N Tausend
- Department of Psychology, University of Minnesota, 75 East River Parkway, Minneapolis, Minnesota 55455, USA
| | - Shihab A Shamma
- Electrical and Computer Engineering Department & Institute for Systems, University of Maryland, College Park, Maryland 20740, USA
| | - Andrew J Oxenham
- Department of Psychology, University of Minnesota, 75 East River Parkway, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
229
|
Recasens M, Gross J, Uhlhaas PJ. Low-Frequency Oscillatory Correlates of Auditory Predictive Processing in Cortical-Subcortical Networks: A MEG-Study. Sci Rep 2018; 8:14007. [PMID: 30228366 PMCID: PMC6143554 DOI: 10.1038/s41598-018-32385-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 08/31/2018] [Indexed: 11/26/2022] Open
Abstract
Emerging evidence supports the role of neural oscillations as a mechanism for predictive information processing across large-scale networks. However, the oscillatory signatures underlying auditory mismatch detection and information flow between brain regions remain unclear. To address this issue, we examined the contribution of oscillatory activity at theta/alpha-bands (4-8/8-13 Hz) and assessed directed connectivity in magnetoencephalographic data while 17 human participants were presented with sound sequences containing predictable repetitions and order manipulations that elicited prediction-error responses. We characterized the spectro-temporal properties of neural generators using a minimum-norm approach and assessed directed connectivity using Granger Causality analysis. Mismatching sequences elicited increased theta power and phase-locking in auditory, hippocampal and prefrontal cortices, suggesting that theta-band oscillations underlie prediction-error generation in cortical-subcortical networks. Furthermore, enhanced feedforward theta/alpha-band connectivity was observed in auditory-prefrontal networks during mismatching sequences, while increased feedback connectivity in the alpha-band was observed between hippocampus and auditory regions during predictable sounds. Our findings highlight the involvement of hippocampal theta/alpha-band oscillations towards auditory prediction-error generation and suggest a spectral dissociation between inter-areal feedforward vs. feedback signalling, thus providing novel insights into the oscillatory mechanisms underlying auditory predictive processing.
Collapse
Affiliation(s)
- Marc Recasens
- Institute of Neuroscience and Psychology, University of Glasgow, 58 Hillhead Street, Glasgow, G12 8QB, Scotland, United Kingdom
| | - Joachim Gross
- Institute of Neuroscience and Psychology, University of Glasgow, 58 Hillhead Street, Glasgow, G12 8QB, Scotland, United Kingdom
- Institute of Biomagnetism and Biosignalanalysis, University of Muenster, Malmedyweg 15, 48149, Muenster, Germany
| | - Peter J Uhlhaas
- Institute of Neuroscience and Psychology, University of Glasgow, 58 Hillhead Street, Glasgow, G12 8QB, Scotland, United Kingdom.
| |
Collapse
|
230
|
Bozhilova NS, Michelini G, Kuntsi J, Asherson P. Mind wandering perspective on attention-deficit/hyperactivity disorder. Neurosci Biobehav Rev 2018; 92:464-476. [PMID: 30036553 PMCID: PMC6525148 DOI: 10.1016/j.neubiorev.2018.07.010] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 06/19/2018] [Accepted: 07/19/2018] [Indexed: 11/29/2022]
Abstract
Attention-Deficit/Hyperactivity Disorder (ADHD) is a common neurodevelopmental disorder associated with a range of mental health, neurocognitive and functional problems. Although the diagnosis is based on descriptions of behaviour, individuals with ADHD characteristically describe excessive spontaneous mind wandering (MW). MW in individuals with ADHD reflects constant mental activity which lacks topic stability and content consistency. Based on this review of the neural correlates of ADHD and MW, we outline a new perspective on ADHD: the MW hypothesis. We propose that altered deactivation of the default mode network, and dysfunctional interaction with the executive control network, leads to excessive and spontaneous MW, which underpins symptoms and impairments of ADHD. We highlight that processes linked to the normal neural regulation of MW (context regulation, sensory decoupling, salience thresholds) are deficient in ADHD. MW-related measures could serve as markers of the disease process, as MW can be experimentally manipulated, as well as measured using rating scales, and experience sampling during both cognitive tasks and daily life. MW may therefore be a potential endophenotype.
Collapse
Affiliation(s)
- Natali S Bozhilova
- King's College London, Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, Denmark Hill, De Crespigny Park, SE5 8AF, United Kingdom.
| | - Giorgia Michelini
- King's College London, Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, Denmark Hill, De Crespigny Park, SE5 8AF, United Kingdom
| | - Jonna Kuntsi
- King's College London, Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, Denmark Hill, De Crespigny Park, SE5 8AF, United Kingdom
| | - Philip Asherson
- King's College London, Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, Denmark Hill, De Crespigny Park, SE5 8AF, United Kingdom.
| |
Collapse
|
231
|
Eilbeigi E, Setarehdan SK. Detecting intention to execute the next movement while performing current movement from EEG using global optimal constrained ICA. Comput Biol Med 2018; 99:63-75. [DOI: 10.1016/j.compbiomed.2018.05.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/02/2018] [Accepted: 05/25/2018] [Indexed: 10/16/2022]
|
232
|
Núñez P, Poza J, Bachiller A, Gomez-Pilar J, Lubeiro A, Molina V, Hornero R. Exploring non-stationarity patterns in schizophrenia: neural reorganization abnormalities in the alpha band. J Neural Eng 2018; 14:046001. [PMID: 28424430 DOI: 10.1088/1741-2552/aa6e05] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE The aim of this paper was to characterize brain non-stationarity during an auditory oddball task in schizophrenia (SCH). The level of non-stationarity was measured in the baseline and response windows of relevant tones in SCH patients and healthy controls. APPROACH Event-related potentials were recorded from 28 SCH patients and 51 controls. Non-stationarity was estimated in the conventional electroencephalography frequency bands by means of Kullback-Leibler divergence (KLD). Relative power (RP) was also computed to assess a possible complementarity with KLD. MAIN RESULTS Results showed a widespread statistically significant increase in the level of non-stationarity from baseline to response in all frequency bands for both groups. Statistically significant differences in non-stationarity were found between SCH patients and controls in beta-2 and in the alpha band. SCH patients showed more non-stationarity in the left parieto-occipital region during the baseline window in the beta-2 band. A leave-one-out cross validation classification study with feature selection based on binary stepwise logistic regression to discriminate between SCH patients and controls provided a positive predictive value of 72.73% and negative predictive value of 78.95%. SIGNIFICANCE KLD can characterize transient neural reorganization during an attentional task in response to novelty and relevance. Our findings suggest anomalous reorganization of neural dynamics in SCH during an oddball task. The abnormal frequency-dependent modulation found in SCH patients during relevant tones is in agreement with the hypothesis of aberrant salience detection in SCH. The increase in non-stationarity in the alpha band during the active task supports the notion that this band is involved in top-down processing. The baseline differences in the beta-2 band suggest that hyperactivation of the default mode network during attention tasks may be related to SCH symptoms. Furthermore, the classification improved when features from both KLD and RP were used, supporting the idea that these measures can be complementary.
Collapse
Affiliation(s)
- Pablo Núñez
- Biomedical Engineering Group, University of Valladolid, Valladolid, Spain
| | | | | | | | | | | | | |
Collapse
|
233
|
Acute cardiovascular exercise promotes functional changes in cortico-motor networks during the early stages of motor memory consolidation. Neuroimage 2018; 174:380-392. [DOI: 10.1016/j.neuroimage.2018.03.029] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 03/06/2018] [Accepted: 03/14/2018] [Indexed: 12/31/2022] Open
|
234
|
Lovelace JW, Ethell IM, Binder DK, Razak KA. Translation-relevant EEG phenotypes in a mouse model of Fragile X Syndrome. Neurobiol Dis 2018; 115:39-48. [PMID: 29605426 PMCID: PMC5969806 DOI: 10.1016/j.nbd.2018.03.012] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/16/2018] [Accepted: 03/28/2018] [Indexed: 01/29/2023] Open
Abstract
Identification of comparable biomarkers in humans and validated animal models will facilitate pre-clinical to clinical therapeutic pipelines to treat neurodevelopmental disorders. Fragile X Syndrome (FXS) is a leading known genetic cause of intellectual disability with symptoms that include increased anxiety, social and sensory processing deficits. Recent EEG studies in humans with FXS have identified neural oscillation deficits that include enhanced resting state gamma power and reduced inter-trial coherence of sound evoked gamma oscillations. To determine if analogous phenotypes are present in an animal model of FXS, we recorded EEGs in awake, freely moving Fmr1 knock out (KO) mice using similar stimuli as in the human studies. We report remarkably similar neural oscillation phenotypes in the Fmr1 KO mouse including enhanced resting state gamma power and reduced evoked gamma synchronization. The gamma band inter-trial coherence of neural response was reduced in both auditory and frontal cortex of Fmr1 KO mice stimulated with a sound whose envelope was modulated from 1 to 100 Hz, similar to that seen in humans with FXS. These deficits suggest a form of enhanced 'resting state noise' that interferes with the ability of the circuit to mount a synchronized response to sensory input, predicting specific sensory and cognitive deficits in FXS. The abnormal gamma oscillations are consistent with parvalbumin neuron and perineuronal net deficits seen in the Fmr1 KO mouse auditory cortex indicating that the EEG biomarkers are not only clinically relevant, but could also be used to probe cellular and circuit mechanisms of sensory hypersensitivity in FXS.
Collapse
Affiliation(s)
| | - Iryna M Ethell
- Neuroscience Graduate Program, University of California, Riverside, USA; Division of Biomedical Sciences, School of Medicine, University of California, Riverside, USA
| | - Devin K Binder
- Neuroscience Graduate Program, University of California, Riverside, USA; Division of Biomedical Sciences, School of Medicine, University of California, Riverside, USA
| | - Khaleel A Razak
- Department of Psychology, University of California, Riverside, USA; Neuroscience Graduate Program, University of California, Riverside, USA.
| |
Collapse
|
235
|
Rapela J, Westerfield M, Townsend J. A New Foreperiod Effect on Intertrial Phase Coherence. Part I: Existence and Behavioral Relevance. Neural Comput 2018; 30:2348-2383. [PMID: 29949462 DOI: 10.1162/neco_a_01109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
This letter makes scientific and methodological contributions. Scientifically, it demonstrates a new and behaviorally relevant effect of temporal expectation on the phase coherence of the electroencephalogram (EEG). Methodologically, it introduces novel methods to characterize EEG recordings at the single-trial level. Expecting events in time can lead to more efficient behavior. A remarkable finding in the study of temporal expectation is the foreperiod effect on reaction time, that is, the influence on reaction time of the delay between a warning signal and a succeeding imperative stimulus to which subjects are instructed to respond as quickly as possible. Here we study a new foreperiod effect in an audiovisual attention-shifting oddball task in which attention-shift cues directed the attention of subjects to impendent deviant stimuli of a given modality and therefore acted as warning signals for these deviants. Standard stimuli, to which subjects did not respond, were interspersed between warning signals and deviants. We hypothesized that foreperiod durations modulated intertrial phase coherence (ITPC, the degree of phase alignment across multiple trials) evoked by behaviorally irrelevant standards and that these modulations are behaviorally meaningful. Using averaged data, we first observed that ITPC evoked by standards closer to the warning signal was significantly different from that evoked by standards further away from it, establishing a new foreperiod effect on ITPC evoked by standards. We call this effect the standard foreperiod (SFP) effect on ITPC. We reasoned that if the SFP influences ITPC evoked by standards, it should be possible to decode the former from the latter on a trial-by-trial basis. We were able to do so showing that this effect can be observed in single trials. We demonstrated the behavioral relevance of the SFP effect on ITPC by showing significant correlations between its strength and subjects' behavioral performance.
Collapse
Affiliation(s)
- Joaquin Rapela
- Swartz Center for Computational Neuroscience, University of California San Diego, La Jolla, CA 92093, and Instituto de Investigación en Luz, Ambiente y Visión, Universidad Nacional de Tucumán-Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
| | - Marissa Westerfield
- Swartz Center for Computational Neuroscience, University of California, San Diego, La Jolla, CA 92093, U.S.A., Research on Autism and Development Laboratory, University of California, San Diego, La Jolla, CA 92037
| | - Jeanne Townsend
- Research on Autism and Development Laboratory, University of California, San Diego, La Jolla, CA 92037
| |
Collapse
|
236
|
Mary A, Wens V, Op de Beeck M, Leproult R, De Tiège X, Peigneux P. Resting-state Functional Connectivity is an Age-dependent Predictor of Motor Learning Abilities. Cereb Cortex 2018; 27:4923-4932. [PMID: 27655931 DOI: 10.1093/cercor/bhw286] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 08/22/2016] [Indexed: 11/14/2022] Open
Abstract
This magnetoencephalography study investigates how ageing modulates the relationship between pre-learning resting-state functional connectivity (rsFC) and subsequent learning. Neuromagnetic resting-state activity was recorded 5 min before motor sequence learning in 14 young (19-30 years) and 14 old (66-70 years) participants. We used a seed-based beta-band power envelope correlation approach to estimate rsFC maps, with the seed located in the right primary sensorimotor cortex. In each age group, the relation between individual rsFC and learning performance was investigated using Pearson's correlation analyses. Our results show that rsFC is predictive of subsequent motor sequence learning but involves different cross-network interactions in the two age groups. In young adults, decreased coupling between the sensorimotor network and the cortico-striato-cerebellar network is associated with better motor learning, whereas a similar relation is found in old adults between the sensorimotor, the dorsal-attentional and the DMNs. Additionally, age-related correlational differences were found in the dorsolateral prefrontal cortex, known to subtend attentional and controlled processes. These findings suggest that motor skill learning depends-in an age-dependent manner-on subtle interactions between resting-state networks subtending motor activity on the one hand, and controlled and attentional processes on the other hand.
Collapse
Affiliation(s)
- Alison Mary
- UR2NF - Neuropsychology and Functional Neuroimaging Research Unit at CRCN - Center for Research in Cognition and Neurosciences, Université libre de Bruxelles (ULB), Brussels 1050, Belgium.,UNI - ULB Neurosciences Institute, Université libre de Bruxelles (ULB), Brussels 1070, Belgium
| | - Vincent Wens
- UNI - ULB Neurosciences Institute, Université libre de Bruxelles (ULB), Brussels 1070, Belgium.,LCFC - Laboratoire de Cartographie fonctionnelle du Cerveau and MEG Unit, ULB-Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels 1070, Belgium
| | - Marc Op de Beeck
- UNI - ULB Neurosciences Institute, Université libre de Bruxelles (ULB), Brussels 1070, Belgium.,LCFC - Laboratoire de Cartographie fonctionnelle du Cerveau and MEG Unit, ULB-Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels 1070, Belgium
| | - Rachel Leproult
- UR2NF - Neuropsychology and Functional Neuroimaging Research Unit at CRCN - Center for Research in Cognition and Neurosciences, Université libre de Bruxelles (ULB), Brussels 1050, Belgium.,UNI - ULB Neurosciences Institute, Université libre de Bruxelles (ULB), Brussels 1070, Belgium
| | - Xavier De Tiège
- UNI - ULB Neurosciences Institute, Université libre de Bruxelles (ULB), Brussels 1070, Belgium.,LCFC - Laboratoire de Cartographie fonctionnelle du Cerveau and MEG Unit, ULB-Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels 1070, Belgium
| | - Philippe Peigneux
- UR2NF - Neuropsychology and Functional Neuroimaging Research Unit at CRCN - Center for Research in Cognition and Neurosciences, Université libre de Bruxelles (ULB), Brussels 1050, Belgium.,UNI - ULB Neurosciences Institute, Université libre de Bruxelles (ULB), Brussels 1070, Belgium
| |
Collapse
|
237
|
Rocchi L, Ibáñez J, Benussi A, Hannah R, Rawji V, Casula E, Rothwell J. Variability and Predictors of Response to Continuous Theta Burst Stimulation: A TMS-EEG Study. Front Neurosci 2018; 12:400. [PMID: 29946234 PMCID: PMC6006718 DOI: 10.3389/fnins.2018.00400] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 05/24/2018] [Indexed: 12/23/2022] Open
Abstract
Continuous theta-burst stimulation (cTBS) is a repetitive transcranial magnetic stimulation paradigm reported to decrease the excitability of the stimulated cortical area and which is thought to reflect a form of inhibitory synaptic plasticity. However, since its introduction, the effect of cTBS has shown a remarkable variability in its effects, which are often quantified by measuring the amplitude of motor evoked potentials (MEPs). Part of this inconsistency in experimental results might be due to an intrinsic variability of TMS effects caused by genetic or neurophysiologic factors. However, it is also possible that MEP only reflect the excitability of a sub-population of output neurons; resting EEG power and measures combining TMS and electroencephalography (TMS-EEG) might represent a more thorough reflection of cortical excitability. The aim of the present study was to verify the robustness of several predictors of cTBS response, such as I wave recruitment and baseline MEP amplitude, and to test cTBS after-effects on multiple neurophysiologic measurements such as MEP, resting EEG power, local mean field power (LMFP), TMS-related spectral perturbation (TRSP), and inter-trial phase clustering (ITPC). As a result, we were not able to confirm either the expected decrease of MEP amplitude after cTBS or the ability of I wave recruitment and MEP amplitude to predict the response to cTBS. Resting EEG power, LMFP, TRSP, and ITPC showed a more consistent trend toward a decrease after cTBS. Overall, our data suggest that the effect of cTBS on corticospinal excitability is variable and difficult to predict with common electrophysiologic markers, while its effect might be clearer when probed with combined TMS and EEG.
Collapse
Affiliation(s)
- Lorenzo Rocchi
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, United Kingdom
| | - Jaime Ibáñez
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, United Kingdom
| | - Alberto Benussi
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Ricci Hannah
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, United Kingdom
| | - Vishal Rawji
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, United Kingdom
| | - Elias Casula
- Non-invasive Brain Stimulation Unit, IRCCS Santa Lucia Foundation, Rome, Italy
| | - John Rothwell
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
238
|
Roeder L, Boonstra TW, Smith SS, Kerr GK. Dynamics of corticospinal motor control during overground and treadmill walking in humans. J Neurophysiol 2018; 120:1017-1031. [PMID: 29847229 DOI: 10.1152/jn.00613.2017] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Increasing evidence suggests cortical involvement in the control of human gait. However, the nature of corticospinal interactions remains poorly understood. We performed time-frequency analysis of electrophysiological activity acquired during treadmill and overground walking in 22 healthy, young adults. Participants walked at their preferred speed (4.2, SD 0.4 km/h), which was matched across both gait conditions. Event-related power, corticomuscular coherence (CMC), and intertrial coherence (ITC) were assessed for EEG from bilateral sensorimotor cortices and EMG from the bilateral tibialis anterior (TA) muscles. Cortical power, CMC, and ITC at theta, alpha, beta, and gamma frequencies (4-45 Hz) increased during the double support phase of the gait cycle for both overground and treadmill walking. High beta (21-30 Hz) CMC and ITC of EMG was significantly increased during overground compared with treadmill walking, as well as EEG power in theta band (4-7 Hz). The phase spectra revealed positive time lags at alpha, beta, and gamma frequencies, indicating that the EEG response preceded the EMG response. The parallel increases in power, CMC, and ITC during double support suggest evoked responses at spinal and cortical populations rather than a modulation of ongoing corticospinal oscillatory interactions. The evoked responses are not consistent with the idea of synchronization of ongoing corticospinal oscillations but instead suggest coordinated cortical and spinal inputs during the double support phase. Frequency-band dependent differences in power, CMC, and ITC between overground and treadmill walking suggest differing neural control for the two gait modalities, emphasizing the task-dependent nature of neural processes during human walking. NEW & NOTEWORTHY We investigated cortical and spinal activity during overground and treadmill walking in healthy adults. Parallel increases in power, corticomuscular coherence, and intertrial coherence during double support suggest evoked responses at spinal and cortical populations rather than a modulation of ongoing corticospinal oscillatory interactions. These findings identify neurophysiological mechanisms that are important for understanding cortical control of human gait in health and disease.
Collapse
Affiliation(s)
- Luisa Roeder
- Movement Neuroscience Group, Institute of Health and Biomedical Innovation, Queensland University of Technology , Brisbane , Australia.,School of Exercise and Nutrition Sciences, Queensland University of Technology , Brisbane , Australia
| | - Tjeerd W Boonstra
- Black Dog Institute, University of New South Wales , Sydney , Australia.,Systems Neuroscience Group, QIMR Berghofer Medical Research Institute, Brisbane , Australia
| | - Simon S Smith
- Institute of Social Science Research, University of Queensland , Brisbane , Australia
| | - Graham K Kerr
- Movement Neuroscience Group, Institute of Health and Biomedical Innovation, Queensland University of Technology , Brisbane , Australia.,School of Exercise and Nutrition Sciences, Queensland University of Technology , Brisbane , Australia
| |
Collapse
|
239
|
Assessing the utility of frequency tagging for tracking memory-based reactivation of word representations. Sci Rep 2018; 8:7897. [PMID: 29785037 PMCID: PMC5962640 DOI: 10.1038/s41598-018-26091-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 04/30/2018] [Indexed: 11/08/2022] Open
Abstract
Reinstatement of memory-related neural activity measured with high temporal precision potentially provides a useful index for real-time monitoring of the timing of activation of memory content during cognitive processing. The utility of such an index extends to any situation where one is interested in the (relative) timing of activation of different sources of information in memory, a paradigm case of which is tracking lexical activation during language processing. Essential for this approach is that memory reinstatement effects are robust, so that their absence (in the average) definitively indicates that no lexical activation is present. We used electroencephalography to test the robustness of a reported subsequent memory finding involving reinstatement of frequency-specific entrained oscillatory brain activity during subsequent recognition. Participants learned lists of words presented on a background flickering at either 6 or 15 Hz to entrain a steady-state brain response. Target words subsequently presented on a non-flickering background that were correctly identified as previously seen exhibited reinstatement effects at both entrainment frequencies. Reliability of these statistical inferences was however critically dependent on the approach used for multiple comparisons correction. We conclude that effects are not robust enough to be used as a reliable index of lexical activation during language processing.
Collapse
|
240
|
Railo H, Tuominen J, Kaasinen V, Pesonen H. Dynamic Changes in Cortical Effective Connectivity Underlie Transsaccadic Integration in Humans. Cereb Cortex 2018; 27:3609-3617. [PMID: 27365299 DOI: 10.1093/cercor/bhw182] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Accepted: 05/18/2016] [Indexed: 02/05/2023] Open
Abstract
Due to saccadic eye movements the retinal image is abruptly displaced 2-4 times a second, yet we experience a stable and continuous stream of vision. It is known that saccades modulate neural processing in various local brain areas, but the question of how saccades influence neural communication between different areas in the thalamo-cortical system has remained unanswered. By combining transcranial magnetic stimulation with electroencephalography, we found that saccades were accompanied by dynamic changes in causal communication between different brain areas in humans. These changes were anticipatory; they began before the actual eye movement. Compared with fixation, communication between posterior cortical areas was first briefly enhanced during saccades, but subsequently peri-saccadic information did not ignite sustained activity in fronto-parietal cortices. This suggests that the brain constructs a spatially stable and temporally continuous stream of conscious vision from discrete fixations by restricting the access of peri-saccadic visual information to sustained processing in fronto-parietal cortices.
Collapse
Affiliation(s)
- Henry Railo
- Department of Psychology, University of Turku, FI-20014 Turku, Finland.,Centre for Cognitive Neuroscience, University of Turku, FI-20014 Turku, Finland.,Brain and Mind Centre, University of Turku, FI-20014 Turku, Finland
| | - Jarno Tuominen
- Department of Psychology, University of Turku, FI-20014 Turku, Finland.,Centre for Cognitive Neuroscience, University of Turku, FI-20014 Turku, Finland.,Brain and Mind Centre, University of Turku, FI-20014 Turku, Finland
| | - Valtteri Kaasinen
- Brain and Mind Centre, University of Turku, FI-20014 Turku, Finland.,Division of Clinical Neurosciences, University of Turku and Turku University Hospital, FI-20521 Turku, Finland.,Turku PET Centre, University of Turku and Turku University Hospital, FI-20521 Turku, Finland
| | - Henri Pesonen
- Brain and Mind Centre, University of Turku, FI-20014 Turku, Finland.,Department of Mathematics and Statistics, University of Turku, 20014 Turku, Finland
| |
Collapse
|
241
|
Solís-Vivanco R, Jensen O, Bonnefond M. Top-Down Control of Alpha Phase Adjustment in Anticipation of Temporally Predictable Visual Stimuli. J Cogn Neurosci 2018; 30:1157-1169. [PMID: 29762100 DOI: 10.1162/jocn_a_01280] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Alpha oscillations (8-14 Hz) are proposed to represent an active mechanism of functional inhibition of neuronal processing. Specifically, alpha oscillations are associated with pulses of inhibition repeating every ∼100 msec. Whether alpha phase, similar to alpha power, is under top-down control remains unclear. Moreover, the sources of such putative top-down phase control are unknown. We designed a cross-modal (visual/auditory) attention study in which we used magnetoencephalography to record the brain activity from 34 healthy participants. In each trial, a somatosensory cue indicated whether to attend to either the visual or auditory domain. The timing of the stimulus onset was predictable across trials. We found that, when visual information was attended, anticipatory alpha power was reduced in visual areas, whereas the phase adjusted just before the stimulus onset. Performance in each modality was predicted by the phase of the alpha oscillations previous to stimulus onset. Alpha oscillations in the left pFC appeared to lead the adjustment of alpha phase in visual areas. Finally, alpha phase modulated stimulus-induced gamma activity. Our results confirm that alpha phase can be top-down adjusted in anticipation of predictable stimuli and improve performance. Phase adjustment of the alpha rhythm might serve as a neurophysiological resource for optimizing visual processing when temporal predictions are possible and there is considerable competition between target and distracting stimuli.
Collapse
Affiliation(s)
- Rodolfo Solís-Vivanco
- Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City, Mexico.,Donders Institute for Brain, Cognition, & Behaviour, Center for Cognitive Neuroimaging, Radboud University Nijmegen
| | - Ole Jensen
- Center for Human Brain Health, University of Birmingham
| | - Mathilde Bonnefond
- Donders Institute for Brain, Cognition, & Behaviour, Center for Cognitive Neuroimaging, Radboud University Nijmegen.,INSERM UMRS 1028, CNRS UMR 5292, Université de Lyon
| |
Collapse
|
242
|
Zeitler M, Tass PA. Computationally Developed Sham Stimulation Protocol for Multichannel Desynchronizing Stimulation. Front Physiol 2018; 9:512. [PMID: 29867556 PMCID: PMC5952302 DOI: 10.3389/fphys.2018.00512] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 04/20/2018] [Indexed: 12/12/2022] Open
Abstract
A characteristic pattern of abnormal brain activity is abnormally strong neuronal synchronization, as found in several brain disorders, such as tinnitus, Parkinson's disease, and epilepsy. As observed in several diseases, different therapeutic interventions may induce a placebo effect that may be strong and hinder reliable clinical evaluations. Hence, to distinguish between specific, neuromodulation-induced effects and unspecific, placebo effects, it is important to mimic the therapeutic procedure as precisely as possibly, thereby providing controls that actually lack specific effects. Coordinated Reset (CR) stimulation has been developed to specifically counteract abnormally strong synchronization by desynchronization. CR is a spatio-temporally patterned multichannel stimulation which reduces the extent of coincident neuronal activity and aims at an anti-kindling, i.e., an unlearning of both synaptic connectivity and neuronal synchrony. Apart from acute desynchronizing effects, CR may cause sustained, long-lasting desynchronizing effects, as already demonstrated in pre-clinical and clinical proof of concept studies. In this computational study, we set out to computationally develop a sham stimulation protocol for multichannel desynchronizing stimulation. To this end, we compare acute effects and long-lasting effects of six different spatio-temporally patterned stimulation protocols, including three variants of CR, using a no-stimulation condition as additional control. This is to provide an inventory of different stimulation algorithms with similar fundamental stimulation parameters (e.g., mean stimulation rates) but qualitatively different acute and/or long-lasting effects. Stimulation protocols sharing basic parameters, but inducing nevertheless completely different or even no acute effects and/or after-effects, might serve as controls to validate the specific effects of particular desynchronizing protocols such as CR. In particular, based on our computational findings we propose a multichannel sham (i.e., inactive) stimulation protocol as control condition for phase 2 and phase 3 studies with desynchronizing multichannel stimulation techniques.
Collapse
Affiliation(s)
- Magteld Zeitler
- Research Center Jülich, Institute for Neuroscience and Medicine, Brain and Behaviour (INM-7), Jülich, Germany
| | - Peter A Tass
- Department of Neurosurgery, Stanford University, Stanford, CA, United States
| |
Collapse
|
243
|
Wen Y, Filik R, van Heuven WJB. Electrophysiological dynamics of Chinese phonology during visual word recognition in Chinese-English bilinguals. Sci Rep 2018; 8:6869. [PMID: 29720729 PMCID: PMC5931991 DOI: 10.1038/s41598-018-25072-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 03/23/2018] [Indexed: 11/24/2022] Open
Abstract
Silent word reading leads to the activation of orthographic (spelling), semantic (meaning), as well as phonological (sound) information. For bilinguals, native language information can also be activated automatically when they read words in their second language. For example, when Chinese-English bilinguals read words in their second language (English), the phonology of the Chinese translations is automatically activated. Chinese phonology, however, consists of consonants and vowels (segmental) and tonal information. To what extent these two aspects of Chinese phonology are activated is yet unclear. Here, we used behavioural measures, event-related potentials and oscillatory EEG to investigate Chinese segmental and tonal activation during word recognition. Evidence of Chinese segmental activation was found when bilinguals read English words (faster responses, reduced N400, gamma-band power reduction) and when they read Chinese words (increased LPC, gamma-band power reduction). In contrast, evidence for Chinese tonal activation was only found when bilinguals read Chinese words (gamma-band power increase). Together, our converging behavioural and electrophysiological evidence indicates that Chinese segmental information is activated during English word reading, whereas both segmental and tonal information are activated during Chinese word reading. Importantly, gamma-band oscillations are modulated differently by tonal and segmental activation, suggesting independent processing of Chinese tones and segments.
Collapse
Affiliation(s)
- Yun Wen
- School of Psychology, University of Nottingham, Nottingham, UK. .,Laboratoire de Psychologie Cognitive, Aix-Marseille Université and Centre National de la Recherche Scientifique, Marseille, France.
| | - Ruth Filik
- School of Psychology, University of Nottingham, Nottingham, UK
| | | |
Collapse
|
244
|
Zhou B, Feng G, Chen W, Zhou W. Olfaction Warps Visual Time Perception. Cereb Cortex 2018; 28:1718-1728. [PMID: 28334302 DOI: 10.1093/cercor/bhx068] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 03/01/2017] [Indexed: 11/12/2022] Open
Abstract
Our perception of the world builds upon dynamic inputs from multiple senses with different temporal resolutions, and is threaded with the passing of subjective time. How time is extracted from multisensory inputs is scantly known. Utilizing psychophysical testing and electroencephalography, we show in healthy human adults that odors modulate object visibility around critical flicker-fusion frequency (CFF)-the limit at which chromatic flickers become perceived as a stable color-and effectively alter CFF in a congruency-based manner, despite that they afford no clear environmental temporal information. The behavioral gain produced by a congruent relative to an incongruent odor is accompanied by elevated neural oscillatory power around the object's flicker frequency in the right temporal region ~150-300 ms after object onset, and is not mediated by visual awareness. In parallel, odors bias the subjective duration of visual objects without affecting one's temporal sensitivity. These findings point to a neuronal network in the right temporal cortex that executes flexible temporal filtering of upstream visual inputs based on olfactory information. Moreover, they collectively indicate that the very process of sensory integration at the stage of object processing twists time perception, hence casting new insights into the neural timing of multisensory events.
Collapse
Affiliation(s)
- Bin Zhou
- Institute of Psychology, CAS Key Laboratory of Behavioral Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Beijing 100101, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guo Feng
- Institute of Psychology, CAS Key Laboratory of Behavioral Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Beijing 100101, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Chen
- Institute of Psychology, CAS Key Laboratory of Behavioral Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Beijing 100101, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wen Zhou
- Institute of Psychology, CAS Key Laboratory of Behavioral Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Beijing 100101, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
245
|
Karawani H, Jenkins KA, Anderson S. Neural and behavioral changes after the use of hearing aids. Clin Neurophysiol 2018; 129:1254-1267. [PMID: 29677689 DOI: 10.1016/j.clinph.2018.03.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 03/08/2018] [Accepted: 03/23/2018] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Individuals with age-related hearing loss (ARHL) can restore some loss of the auditory function with the use of hearing aids (HAs). However, what remains unknown are the physiological mechanisms that underlie how the brain changes with exposure to amplified sounds though the use of HAs. We aimed to examine behavioral and physiological changes induced by HAs. METHODS Thirty-five older-adults with moderate ARHL with no history of hearing aid use were fit with HAs tested in aided and unaided conditions, and divided into experimental and control groups. The experimental group used HAs during a period of six months. The control group did not use HAs during this period, but were given the opportunity to use them after the completion of the study. Both groups underwent testing protocols six months apart. Outcome measures included behavioral (speech-in-noise measures, self-assessment questionnaires) and electrophysiological brainstem recordings (frequency-following responses) to the speech syllable /ga/ in two quiet conditions and in six-talker babble noise. RESULTS The experimental group reported subjective benefits on self-assessment questionnaires. Significant physiological changes were observed in the experimental group, specifically a reduction in fundamental frequency magnitude, while no change was observed in controls, yielding a significant time × group interaction. Furthermore, peak latencies remained stable in the experimental group but were significantly delayed in the control group after six months. Significant correlations between behavioral and physiological changes were also observed. CONCLUSIONS The findings suggest that HAs may alter subcortical processing and offset neural timing delay; however, further investigation is needed to understand cortical changes and HA effects on cognitive processing. SIGNIFICANCE The findings of the current study provide evidence for clinicians that the use of HAs may prevent further loss of auditory function resulting from sensory deprivation.
Collapse
Affiliation(s)
- Hanin Karawani
- Department of Hearing and Speech Sciences, University of Maryland, College Park, MD, USA.
| | - Kimberly A Jenkins
- Department of Hearing and Speech Sciences, University of Maryland, College Park, MD, USA; Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Samira Anderson
- Department of Hearing and Speech Sciences, University of Maryland, College Park, MD, USA; Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD, USA
| |
Collapse
|
246
|
Tanaka Y, Kanakogi Y, Kawasaki M, Myowa M. The integration of audio-tactile information is modulated by multimodal social interaction with physical contact in infancy. Dev Cogn Neurosci 2018; 30:31-40. [PMID: 29253738 PMCID: PMC6969118 DOI: 10.1016/j.dcn.2017.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/04/2017] [Accepted: 12/04/2017] [Indexed: 11/19/2022] Open
Abstract
Interaction between caregivers and infants is multimodal in nature. To react interactively and smoothly to such multimodal signals, infants must integrate all these signals. However, few empirical infant studies have investigated how multimodal social interaction with physical contact facilitates multimodal integration, especially regarding audio - tactile (A-T) information. By using electroencephalogram (EEG) and event-related potentials (ERPs), the present study investigated how neural processing involved in A-T integration is modulated by tactile interaction. Seven- to 8-months-old infants heard one pseudoword both whilst being tickled (multimodal 'A-T' condition), and not being tickled (unimodal 'A' condition). Thereafter, their EEG was measured during the perception of the same words. Compared to the A condition, the A-T condition resulted in enhanced ERPs and higher beta-band activity within the left temporal regions, indicating neural processing of A-T integration. Additionally, theta-band activity within the middle frontal region was enhanced, which may reflect enhanced attention to social information. Furthermore, differential ERPs correlated with the degree of engagement in the tickling interaction. We provide neural evidence that the integration of A-T information in infants' brains is facilitated through tactile interaction with others. Such plastic changes in neural processing may promote harmonious social interaction and effective learning in infancy.
Collapse
Affiliation(s)
- Yukari Tanaka
- Graduate school of Education, Kyoto University, Kyoto, Japan.
| | - Yasuhiro Kanakogi
- NTT Communication Science Laboratories, Nippon Telegraph and Telephone Corporation, 2-4 Hikaridai, Seika-cho, Souraku-gun, Kyoto 619-0237, Japan; Japan Society for Promotion Science, Kojimachi Business Center Building, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan
| | - Masahiro Kawasaki
- Rhythm-based Brain Information Processing Unit, RIKEN BSI-TOYOTA Collaboration Center, Saitama, Japan; Department of Intelligent Interaction Technology, Graduate School of Systems and Information Engineering, University of Tsukuba, Ibaraki, Japan
| | - Masako Myowa
- Graduate school of Education, Kyoto University, Kyoto, Japan
| |
Collapse
|
247
|
Solís-Vivanco R, Rodríguez-Violante M, Cervantes-Arriaga A, Justo-Guillén E, Ricardo-Garcell J. Brain oscillations reveal impaired novelty detection from early stages of Parkinson's disease. Neuroimage Clin 2018; 18:923-931. [PMID: 29876277 PMCID: PMC5988040 DOI: 10.1016/j.nicl.2018.03.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/02/2018] [Accepted: 03/20/2018] [Indexed: 11/16/2022]
Abstract
The identification of reliable biomarkers for early diagnosis and progression tracking of neurodegenerative diseases has become an important objective in clinical neuroscience in the last years. The P3a event-related potential, considered as the neurophysiological hallmark of novelty detection, has been shown to be reduced in Parkinson's disease (PD) and proposed as a sensitive measure for illness duration and severity. Our aim for this study was to explore for the first time whether impaired novelty detection could be observed through phase- and time-locked brain oscillatory activity at early PD. Twenty-seven patients with idiopathic PD at early stages (disease duration <5 years and Hoehn and Yahr stage <3) were included. A healthy control group (n = 24) was included as well. All participants performed an auditory involuntary attention task including frequent and deviant tones while a digital EEG was obtained. A neuropsychological battery was administered as well. Time-frequency representations of power and phase-locked oscillations and P3a amplitudes were compared between groups. We found a significant reduction of power and phase locking of slow oscillations (3-7 Hz) for deviant tones in the PD group compared to controls in the P3a time range (300-550 ms). Also, reduced modulation of late induced (not phase locked) alpha-beta oscillations (400-650 ms, 8-25 Hz) was observed in the PD group after deviant tones onset. The P3a amplitude was predicted by years of evolution in the PD group. Finally, while phase-locked slow oscillations were associated with task behavioral distraction effects, induced alpha-beta activity was related to cognitive flexibility performance. Our results show that novelty detection impairment can be identified in neurophysiological terms from very early stages of PD, and such impairment increases linearly as the disease progresses. Also, induced alpha-beta oscillations underlying novelty detection are related to executive functioning.
Collapse
Affiliation(s)
- Rodolfo Solís-Vivanco
- Neuropsychology Department, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez (INNNMVS), Mexico; School of Psychology, Universidad Nacional Autónoma de México (UNAM), Mexico.
| | | | | | - Edith Justo-Guillén
- School of Psychology, Universidad Nacional Autónoma de México (UNAM), Mexico
| | | |
Collapse
|
248
|
Casula EP, Mayer IMS, Desikan M, Tabrizi SJ, Rothwell JC, Orth M. Motor cortex synchronization influences the rhythm of motor performance in premanifest huntington's disease. Mov Disord 2018; 33:440-448. [PMID: 29356133 DOI: 10.1002/mds.27285] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/17/2017] [Accepted: 12/10/2017] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND In Huntington's disease there is evidence of structural damage in the motor system, but it is still unclear how to link this to the behavioral disorder of movement. One feature of choreic movement is variable timing and coordination between sequences of actions. We postulate this results from desynchronization of neural activity in cortical motor areas. OBJECTIVES The objective of this study was to explore the ability to synchronize activity in a motor network using transcranial magnetic stimulation and to relate this to timing of motor performance. METHODS We examined synchronization in oscillatory activity of cortical motor areas in response to an external input produced by a pulse of transcranial magnetic stimulation. We combined this with EEG to compare the response of 16 presymptomatic Huntington's disease participants with 16 age-matched healthy volunteers to test whether the strength of synchronization relates to the variability of motor performance at the following 2 tasks: a grip force task and a speeded-tapping task. RESULTS Phase synchronization in response to M1 stimulation was lower in Huntington's disease than healthy volunteers (P < .01), resulting in a reduced cortical activity at global (P < .02) and local levels (P < .01). Participants who showed better timed motor performance also showed stronger oscillatory synchronization (r = -0.356; P < .05) and higher cortical activity (r = -0.393; P < .05). CONCLUSIONS Our data may model the ability of the motor command to respond to more subtle, physiological inputs from other brain areas. This novel insight indicates that impairments of the timing accuracy of synchronization and desynchronization could be a physiological basis for some key clinical features of Huntington's disease. © 2018 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Elias P Casula
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, UK
| | - Isabella M S Mayer
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, UK
- Department of Neurology, Ulm University Hospital, Ulm, Germany
| | - Mahalekshmi Desikan
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, UK
| | - Sarah J Tabrizi
- Huntington's Disease Research Centre, University College London Institute of Neurology, London, UK
| | - John C Rothwell
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, UK
| | - Michael Orth
- Department of Neurology, Ulm University Hospital, Ulm, Germany
| |
Collapse
|
249
|
Kaiser M, Senkowski D, Roa Romero Y, Riecke L, Keil J. Reduced low-frequency power and phase locking reflect restoration in the auditory continuity illusion. Eur J Neurosci 2018; 48:2849-2856. [PMID: 29430753 DOI: 10.1111/ejn.13861] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 01/03/2018] [Accepted: 02/01/2018] [Indexed: 11/28/2022]
Abstract
Interruptions in auditory input can be perceptually restored if they coincide with a masking sound, resulting in a continuity illusion. Previous studies have shown that this continuity illusion is associated with reduced low-frequency neural oscillations in the auditory cortex. However, the precise contribution of oscillatory amplitude changes and phase alignment to auditory restoration remains unclear. Using electroencephalography, we investigated induced power changes and phase locking in response to 3 Hz amplitude-modulated tones during the interval of an interrupting noise. We experimentally manipulated both the physical continuity of the tone (continuous vs. interrupted) and the masking potential of the noise (notched vs. full). We observed an attenuation of 3 Hz power during continuity illusions in comparison with both continuous tones and veridically perceived interrupted tones. This illusion-related suppression of low-frequency oscillations likely reflects a blurring of auditory object boundaries that supports continuity perception. We further observed increased 3 Hz phase locking during fully masked continuous tones compared with the other conditions. This low-frequency phase alignment may reflect the neural registration of the interrupting noise as a newly appearing object, whereas during continuity illusions, a spectral portion of this noise is delegated to filling the interruption. Taken together, our findings suggest that the suppression of slow cortical oscillations in both the power and phase domains supports perceptual restoration of interruptions in auditory input.
Collapse
Affiliation(s)
- Mathis Kaiser
- Department of Psychiatry and Psychotherapy, St. Hedwig Hospital, Charité - Universitätsmedizin Berlin, Große Hamburger Str. 5-11, 10115 Berlin, Germany.,Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Daniel Senkowski
- Department of Psychiatry and Psychotherapy, St. Hedwig Hospital, Charité - Universitätsmedizin Berlin, Große Hamburger Str. 5-11, 10115 Berlin, Germany
| | - Yadira Roa Romero
- Department of Psychiatry and Psychotherapy, St. Hedwig Hospital, Charité - Universitätsmedizin Berlin, Große Hamburger Str. 5-11, 10115 Berlin, Germany
| | - Lars Riecke
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Julian Keil
- Department of Psychiatry and Psychotherapy, St. Hedwig Hospital, Charité - Universitätsmedizin Berlin, Große Hamburger Str. 5-11, 10115 Berlin, Germany.,Biological Psychology, Christian-Albrechts-University Kiel, Kiel, Germany
| |
Collapse
|
250
|
The Caveats of observing Inter-Trial Phase-Coherence in Cognitive Neuroscience. Sci Rep 2018; 8:2990. [PMID: 29445210 PMCID: PMC5813180 DOI: 10.1038/s41598-018-20423-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 01/15/2018] [Indexed: 11/08/2022] Open
Abstract
Many studies have now consistently reported that the phase angle of ongoing oscillatory activity (measured using EEG/MEG), at time of stimulus presentation influences detection when stimuli are near-threshold. However, studies examining whether the adjustment of the phase angle of oscillations is under top-down attentional control have thus far yielded conflicting results. A possible source for the discrepancy could be that the estimation of the phase of ongoing oscillations as well as its uniformity across trials could be affected by task induced changes in the power of oscillations or concurrent evoked responses. One measure, Inter-Trial Phase-Locking (ITPC), or the uniformity of phase angles across trials, is particularly vulnerable to these factors. Here, using various simulations modelling the common task induced changes in the EEG reported in the literature, we demonstrate that apparent changes in Inter-Trial Phase-Locking of oscillatory activity can occur independent of any actual change in the phase of the ongoing activity.
Collapse
|