201
|
Zhu H, Fu W, Mattson MP. The catalytic subunit of telomerase protects neurons against amyloid beta-peptide-induced apoptosis. J Neurochem 2000; 75:117-24. [PMID: 10854254 DOI: 10.1046/j.1471-4159.2000.0750117.x] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The catalytic subunit of telomerase (TERT) is a specialized reverse transcriptase that has been associated with cell immortalization and cancer. It was reported recently that TERT is expressed in neurons throughout the brain in embryonic and early postnatal development, but is absent from neurons in the adult brain. We now report that suppression of TERT levels and function in embryonic mouse hippocampal neurons in culture using antisense technology and the telomerase inhibitor 3' -azido-2' 3' -dideoxythymidine significantly increases their vulnerability to cell death induced by amyloid beta-peptide, a neurotoxic protein believed to promote neuronal degeneration in Alzheimer's disease. Neurons in which TERT levels were reduced exhibited increased levels of oxidative stress and mitochondrial dysfunction following exposure to amyloid beta-peptide. Overexpression of TERT in pheochromocytoma cells resulted in decreased vulnerability to amyloid beta-peptide-induced apoptosis. Our findings demonstrate a neuroprotective function of TERT in an experimental model relevant to Alzheimer's disease, and suggest the possibility that restoration of TERT expression in neurons in the adult brain may protect against age-related neurodegeneration.
Collapse
Affiliation(s)
- H Zhu
- Sanders-Brown Research Center on Aging, University of Kentucky, Lexington, Kentucky. Laboratory of Neurosciences, National Institute on Aging, Baltimore, Maryland, USA
| | | | | |
Collapse
|
202
|
Arafat WO, Gómez-Navarro J, Xiang J, Barnes MN, Mahasreshti P, Alvarez RD, Siegal GP, Badib AO, Buchsbaum D, Curiel DT, Stackhouse MA. An adenovirus encoding proapoptotic Bax induces apoptosis and enhances the radiation effect in human ovarian cancer. Mol Ther 2000; 1:545-54. [PMID: 10933979 DOI: 10.1006/mthe.2000.0071] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Overexpression of proapoptotic Bax favors death in cells resistant to ionizing radiation. We hypothesized that expression of Bax via adenoviral-mediated gene delivery could sensitize radiation-refractory cells to radiotherapy. An inducible Bax recombinant adenovirus (Ad/Bax) had been generated using the Cre/loxp system. Human ovarian cancer cell lines and primary, patient-derived cancer cells from ascites were irradiated and infected with the Ad/Bax and an expression-inducing vector, Ad/Cre. Cell death was evaluated by crystal violet staining, fluorescence-activated cell sorter analysis of Annexin V, and colony formation assay (cell lines only). To further characterize the mechanism of death, cell morphology was examined by nuclear staining with Hoechst 33258. Lastly, to evaluate the capacity of the combined treatment to inhibit tumor growth, mice were injected subcutaneously with ovarian cancer cells exposed to Bax, radiation therapy (RT), or both, and tumor size was measured periodically. Infection of the cancer cell lines and primary cells with both Ad/Bax and Ad/Cre significantly enhanced sensitivity to ionizing radiation, achieving high levels of cell killing in short-term assays. In addition, the combination of Bax and radiotherapy reduced the survival fraction of cell lines 2 logs in standard colony-forming assays. Investigation into the involved mechanism suggests that Bax-mediated radiosensitization occurs through both apoptosis and necrosis pathways. Further, mice subcutaneously injected with ovarian tumor cells previously treated with radiation, or with radiation and irrelevant viruses, consistently developed tumor nodules. In addition, approximately 80% of injections were followed by tumor formation after treatment with Ad/Bax and Ad/Cre alone. In contrast, tumor formation was completely inhibited after combined treatment with Ad/Bax and Ad/Cre and radiation. Augmentation of the effect of radiotherapy on human ovarian cancer cells and primary cancer cells from patients via a recombinant adenovirus encoding Bax is feasible.
Collapse
Affiliation(s)
- W O Arafat
- Department of Medicine, and Gene Therapy Center, University of Alabama at Birmingham, 35233, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
203
|
Doughty ML, De Jager PL, Korsmeyer SJ, Heintz N. Neurodegeneration in Lurcher mice occurs via multiple cell death pathways. J Neurosci 2000; 20:3687-94. [PMID: 10804210 PMCID: PMC6772704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
Lurcher (Lc) is a gain-of-function mutation in the delta2 glutamate receptor (GRID2) that results in the cell-autonomous death of cerebellar Purkinje cells in heterozygous lurcher (+/Lc) mice. This in turn triggers the massive loss of afferent granule cells during the first few postnatal weeks. Evidence suggests that the death of Purkinje cells as a direct consequence of GRID2(Lc) activation and the secondary death of granule cells because of target deprivation occur by apoptosis. We have used mice carrying null mutations of both the Bax and p53 genes to examine the roles of these genes in cell loss in lurcher animals. The absence of Bax delayed Purkinje cell death in response to the GRID2(Lc) mutation and permanently rescued the secondary death of granule cells. In contrast, the p53 deletion had no effect on either cell death pathway. Our results demonstrate that target deprivation induces a Bax-dependent, p53-independent cell death response in cerebellar granule cells in vivo. In contrast, Bax plays a minor role in GRID2(Lc)-mediated Purkinje cell death.
Collapse
Affiliation(s)
- M L Doughty
- Laboratory of Molecular Biology and Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10021, USA
| | | | | | | |
Collapse
|
204
|
Araki N, Morimasa T, Sakai T, Tokuoh H, Yunoue S, Kamo M, Miyazaki K, Abe K, Saya H, Tsugita A. Comparative analysis of brain proteins from p53-deficient mice by two-dimensional electrophoresis. Electrophoresis 2000; 21:1880-9. [PMID: 10870973 DOI: 10.1002/(sici)1522-2683(20000501)21:9<1880::aid-elps1880>3.0.co;2-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
p53 is a tumor suppressor protein that regulates many cellular processes including the cell cycle, DNA repair, and apoptosis. It also serves as a critical regulator of neuronal apoptosis in the central nervous system (CNS). To elucidate the role of p53 in the CNS, brain proteins of p53 knock-out mice (p53-/-) were analyzed by two-dimensional gel electrophoresis (2-DE) and compared with those from p53 wild type (p53+/+) mice. Six types of brain tissue (temporal cortex, cerebellum, hippocampus, striatum, olfactory bulb, and cervical spinal cord) and other control tissues (lung and blood) from 18-week-old non-stress-induced mice were analyzed. The morphology of brains from p53-/- mice appeared to be normal and identical to that of p53+/+ mice, although lungs showed diffuse tumors that may have been caused by p53 deficiency. Comparative 2-D gel analysis showed that, on average, 7 of 886 spots from brain tissue were p53-/- specific, whereas 12 of 1008 spots from lung tissue were p53-/- specific. N-terminal amino acid sequence was determined for p53-/- specific proteins. In all brain tissues from p53-/- mice, a newly identified mouse mitochondrial NADH-ubiquinone oxidoreductase 24 kDa subunit showed decreased expression, and apolipoprotein A1 acidic forms showed increased expression. In addition, brain-type creatine kinase B chain and tubulin beta-5 N-terminal fragment were increased in the p53-/- cerebellum, and a new protein in mouse, hydroxyacylglutathione hydrolase (glyoxalase II) was decreased in the temporal cortex of p53-/- mice. The alterations in protein expression identified in this study may imply a p53-related brain function. This is the first proteomic analysis on the p53-/- mouse brain, and further information based on this study will provide new insights into the p53 function in the CNS.
Collapse
Affiliation(s)
- N Araki
- Department of Tumor Genetics and Biology, Kumamoto University School of Medicine, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
205
|
Wu A, Ren T, Hu Q, Liu Y. Deltamethrin induces altered expression of P53, Bax and Bcl-2 in rat brain. Neurosci Lett 2000; 284:29-32. [PMID: 10771154 DOI: 10.1016/s0304-3940(00)00952-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
In this study we investigated the effects of deltamethrin on the expression of P53, Bax and Bcl-2 in rat brain. Immunohistochemical analysis demonstrated that the immunoreactivity for P53 was markedly increased in the cerebral cortex and hippocampus at 5 h after deltamethrin treatment, and maintained at an increased level at 24 and 48 h, whereas little immunoreactivity for P53 was seen in the same brain regions of control rats. The immunostaining for Bax was also elevated in the same brain regions, showing the same time course of P53 expression after deltamethrin treatment. However, the immunolabeling for Bcl-2 was markedly decreased at 24 h after a transient increase at 5 h following deltamethrin treatment. These results indicate that deltamethrin leads to the persistent increase of P53 and Bax expression and transient elevation of Bcl-2 expression, resulting in an increased ratio of Bax to Bcl-2, which may contribute to apoptotic cell death in rat brain following deltamethrin treatment.
Collapse
Affiliation(s)
- A Wu
- Department of Environmental Toxicology, Tongji Medical University, Wuhan, Hubei, China.
| | | | | | | |
Collapse
|
206
|
Tanaka T, Tatsuno I, Uchida D, Moroo I, Morio H, Nakamura S, Noguchi Y, Yasuda T, Kitagawa M, Saito Y, Hirai A. Geranylgeranyl-pyrophosphate, an isoprenoid of mevalonate cascade, is a critical compound for rat primary cultured cortical neurons to protect the cell death induced by 3-hydroxy-3-methylglutaryl-CoA reductase inhibition. J Neurosci 2000; 20:2852-9. [PMID: 10751437 PMCID: PMC6772198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
We investigated the role of the intrinsic mevalonate cascade in the neuronal cell death (NCD) induced by the inhibition of 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase in rat primary cortical neurons cultured from the brains of 17-d-old fetal SD rats. HMG-CoA reductase inhibitors induced NCD [HMG-CoA reductase inhibitor-induced NCD (H-NCD)] in time- and dose-dependent manners. The apoptotic characteristics were revealed by the formation of the DNA ladder and by the electron microscopical observation. During the progression of H-NCD, p53 was induced followed by the expression of Bax. Although the mevalonate completely inhibited H-NCD, the cholesterol did not. Thus, we examined two major metabolites of mevalonate, geranylgeranyl-pyrophosphate (GGPP) and farnesyl-pyrophosphate (FPP), using a novel liposome system for uptake into the cells. GGPP, not FPP, prohibited H-NCD with inhibition of the induction of p53 and Bax. The inhibition of HMG-CoA reductase decreased the amount of membrane-associated Rho small GTPase families, but not Ras small GTPase, and GGPP restored the blockage by HMG-CoA reductase inhibitor in the translocation or redistribution of Rho small GTPase families to membrane. These data indicated that (1) the inhibition of the intrinsic mevalonate cascade induces the apoptotic NCD with the induction of p53 followed by that of Bax, (2) the inhibition of HMG-CoA reductase concomitantly causes blockage of the translocation or redistribution of Rho small GTPase families, not Ras small GTPase, to membrane, and (3) GGPP, not FPP, is one of the essential metabolites in the mevalonate cascade for protecting neurons from H-NCD.
Collapse
Affiliation(s)
- T Tanaka
- Second Department of Internal Medicine, Chiba University School of Medicine, Chiba, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
207
|
Almeida OF, Condé GL, Crochemore C, Demeneix BA, Fischer D, Hassan AH, Meyer M, Holsboer F, Michaelidis TM. Subtle shifts in the ratio between pro- and antiapoptotic molecules after activation of corticosteroid receptors decide neuronal fate. FASEB J 2000; 14:779-90. [PMID: 10744634 DOI: 10.1096/fasebj.14.5.779] [Citation(s) in RCA: 231] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Glucocorticoid receptor (GR) activation induces apoptosis of granule cells in the hippocampus. In contrast, neuroprotection is seen after mineralocorticoid receptor (MR) activation. To date there is no in vivo evidence for direct interactions between corticosteroids and any of the key regulatory molecules of programmed cell death. In this report, we show that the opposing actions of MR and GR on neuronal survival result from their ability to differentially influence the expression of members of the bcl-2 gene family; specifically, in the rat hippocampus, activation of GR induces cell death by increasing the ratio of the proapoptotic molecule Bax relative to the antiapoptotic molecules Bcl-2 or Bcl-x(L); the opposite effect is observed after stimulation of MR. The same results were obtained in both young and aged animals; however, older subjects (which were more susceptible to GR-mediated apoptosis) tended to express the antiapoptotic genes more robustly. Using a loss-of-function mouse model, we corroborated the observations made in the rat, demonstrating Bax to be essential in the GR-mediated cell death-signaling cascade. In addition, we show that GR activation increases and MR activation decreases levels of the tumor suppressor protein p53 (a direct transcriptional regulator of bax and bcl-2 genes), thus providing new information on the early genetic events linking corticosteroid receptors with apoptosis in the nervous system.
Collapse
Affiliation(s)
- O F Almeida
- Department of Neuroendocrinology, Max Planck Institute of Psychiatry, 80804 Munich, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
208
|
Keramaris E, Stefanis L, MacLaurin J, Harada N, Takaku K, Ishikawa T, Taketo MM, Robertson GS, Nicholson DW, Slack RS, Park DS. Involvement of caspase 3 in apoptotic death of cortical neurons evoked by DNA damage. Mol Cell Neurosci 2000; 15:368-79. [PMID: 10845773 DOI: 10.1006/mcne.2000.0838] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previous reports have shown that DNA-damage-evoked death of embryonic cortical neurons is delayed by general caspase inhibitors and is accompanied by an increase in DEVD-AFC cleavage activity. We show here that this cleavage activity is lacking in camptothecin-treated caspase 3-deficient neurons. Moreover, we report that death of camptothecin-treated caspase 3-deficient neurons cultured from E16 embryos is delayed and that no significant increase in survival is observed with cotreatment with the general caspase inhibitor BAF. These results indicate that caspase-dependent death of camptothecin-treated cortical neurons requires caspase 3 activity. The delay in death is accompanied by impairment of DNA fragmentation. However, Bax-dependent cytochrome c release still occurs in camptothecin-treated caspase 3-deficient cortical neurons. Accordingly, we hypothesize that the delayed death which occurs in the absence of caspase 3 activity may be due to mitochondrial dysfunction. Finally, we show that the delay in death observed with E16 caspase 3-deficient neurons does not occur in neurons cultured from E19 embryos. This suggests that the requirement for caspase 3 in death of neurons evoked by DNA damage may differ depending upon the developmental state of the cell.
Collapse
Affiliation(s)
- E Keramaris
- Neuroscience Research Institute, University of Ottawa, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
209
|
Xiang J, Gómez-Navarro J, Arafat W, Liu B, Barker SD, Alvarez RD, Siegal GP, Curiel DT. Pro-apoptotic treatment with an adenovirus encoding Bax enhances the effect of chemotherapy in ovarian cancer. J Gene Med 2000; 2:97-106. [PMID: 10809143 DOI: 10.1002/(sici)1521-2254(200003/04)2:2<97::aid-jgm99>3.0.co;2-s] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Tumor cell heterogeneity and resistance to chemotherapy-mediated cell death are major obstacles in cancer therapy. It has been reported that expression of the pro-apoptotic molecule Bax can induce cell death or sensitize tumor cells to chemotherapy in stable cell clones derived from tumor cells. However, these studies are limited in that they cannot represent the heterogeneity of cancer cells observed in vivo. In this study, we have further explored the therapeutic potential of Bax. METHODS Using an inducible recombinant Bax adenovirus, we screened a panel of ovarian cancer cell lines and primary patient-derived ovarian tumor cells for their sensitivity to Bax-mediated cytotoxicity. Apoptotic cell death was evaluated qualitatively with Hoechst staining and quantitatively with MTS and Annexin V-based assays. Endogenous levels of both Bcl-2 and Bax protein and p53 status were evaluated. The potential of bax to sensitize ovarian cancer lines to chemotherapy was also tested. Dose-response curves were generated to evaluate cell death. RESULTS Overexpression of Bax directly induced apoptosis in both ovarian cancer cell lines and the patient-derived primary cancer cells. However, the sensitivity of these cells to Bax varied and appeared to be independent of both the status of p53 and the endogenous levels of bcl-2 or Bax, critical molecules in the apoptotic pathway. Importantly, overexpression of Bax significantly enhanced chemotherapy-induced cytotoxicity in both established cell lines and primary ovarian carcinoma cells. CONCLUSIONS These studies suggest that overexpression of Bax alone or in combination with chemotherapy may provide a means to overcome the problems imposed by the heterogeneous nature of tumors, ultimately augmenting the efficacy of chemotherapy in patients suffering from ovarian cancer.
Collapse
Affiliation(s)
- J Xiang
- Gene Therapy Center, University of Alabama at Birmingham, 35233, USA
| | | | | | | | | | | | | | | |
Collapse
|
210
|
Wu A, Liu Y. Deltamethrin induces delayed apoptosis and altered expression of p53 and bax in rat brain. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2000; 8:183-189. [PMID: 10925071 DOI: 10.1016/s1382-6689(00)00039-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Our previous work indicates that deltamethrin induces degeneration and apoptosis in rat brain at 24 and 48 h after treatment. To determine whether molecular characteristics of apoptosis is involved in neurodegeneration in rat brain after deltamethrin treatment, we investigated the effects of deltamethrin on the mRNA expression of p53 and bax and their correlation with deltamethrin-induced apoptotic cell death in rat brain. Hematoxylin-eosin and cresyl violet staining revealed numerous degenerative cells in cortex and hippocampus at 5 and 24 h after deltamethrin treatment. Apoptotic cells were detected in cortex and hippocampus of treated rats at 24 h by in situ end labeling, whereas no apoptotic cells were observed in the same brain regions at 5 h after treatment. By using in situ hybridization, it was demonstrated that the increase of p53 and bax mRNA levels appeared at 5 and also at 24 h after treatment. The alterations in mRNA expression of p53 and bax preceded the occurrence of delayed apoptotic cell death in the same brain regions after deltamethrin treatment. These results indicate that (1) deltamethrin induces delayed apoptotic cell death, which may play an important role in deltamethrin-elicited neurodegeneration; (2) deltamethrin leads to the persistent increase of p53 and bax mRNA levels, which may contribute to delayed apoptosis in rat brain following deltamethrin treatment.
Collapse
Affiliation(s)
- A Wu
- Experimental Neurology Laboratory, UCLA VA Medical Center, 16111 Plummer Street (151 B4), 91343, Sepulveda, CA, USA
| | | |
Collapse
|
211
|
Shinoura N, Satou R, Yoshida Y, Asai A, Kirino T, Hamada H. Adenovirus-mediated transfer of Bcl-X(L) protects neuronal cells from Bax-induced apoptosis. Exp Cell Res 2000; 254:221-31. [PMID: 10640420 DOI: 10.1006/excr.1999.4751] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Bax-mediated apoptosis in neurons is involved in many pathologic conditions affecting the central nervous system, including degenerative diseases, stroke, and trauma. Two molecules belonging to the Bcl-2 family, Bcl-2 and Bcl-X(L), protect cells from Bax-induced apoptosis and show distinct expression patterns in adult neurons, with downregulated Bcl-2 and highly upregulated Bcl-X(L) expression. To investigate the biological functions of these two molecules in Bax-mediated apoptosis in neurons, we transduced various levels of Bcl-X(L) or Bcl-2 via adenoviral vectors into nerve growth factor (NGF)-treated PC12 cells. Overexpression of Bax induced drastic apoptosis in NGF-treated PC12 cells. Bcl-X(L) expressed at a wide range of levels conferred a high level of protection against Bax-mediated apoptosis. In contrast, Bcl-2 at various levels conferred far less protection against apoptosis. Moreover, Bcl-X(L) protected PC12 cells from apoptosis induced by NGF withdrawal. These data indicate that Bcl-X(L)-mediated protection is the major pathway that suppresses apoptosis in NGF-treated PC12 cells and that Bcl-X(L) would be a more relevant target of manipulation in future treatment strategies, including gene therapies.
Collapse
Affiliation(s)
- N Shinoura
- Department of Molecular Biotherapy Research, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 1-37-1 Kami-Ikebukuro, Toshima-ku, Tokyo, 170-8455
| | | | | | | | | | | |
Collapse
|
212
|
Chong MJ, Murray MR, Gosink EC, Russell HR, Srinivasan A, Kapsetaki M, Korsmeyer SJ, McKinnon PJ. Atm and Bax cooperate in ionizing radiation-induced apoptosis in the central nervous system. Proc Natl Acad Sci U S A 2000; 97:889-94. [PMID: 10639175 PMCID: PMC15426 DOI: 10.1073/pnas.97.2.889] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Ataxia-telangiectasia is a hereditary multisystemic disease resulting from mutations of ataxia telangiectasia, mutated (ATM) and is characterized by neurodegeneration, cancer, immune defects, and hypersensitivity to ionizing radiation. The molecular details of ATM function in the nervous system are unclear, although the neurological lesion in ataxia-telangiectasia becomes apparent early in life, suggesting a developmental origin. The central nervous system (CNS) of Atm-null mice shows a pronounced defect in apoptosis induced by genotoxic stress, suggesting ATM functions to eliminate neurons with excessive genomic damage. Here, we report that the death effector Bax is required for a large proportion of Atm-dependent apoptosis in the developing CNS after ionizing radiation (IR). Although many of the same regions of the CNS in both Bax-/- and Atm-/- mice were radioresistant, mice nullizygous for both Bax and Atm showed additional reduction in IR-induced apoptosis in the CNS. Therefore, although the major IR-induced apoptotic pathway in the CNS requires Atm and Bax, a p53-dependent collateral pathway exists that has both Atm- and Bax-independent branches. Further, Atm- and Bax-dependent apoptosis in the CNS also required caspase-3 activation. These data implicate Bax and caspase-3 as death effectors in neurodegenerative pathways.
Collapse
Affiliation(s)
- M J Chong
- Department of Genetics, St. Jude Children's Research Hospital, 332 North Lauderdale, Memphis, TN 38101, USA
| | | | | | | | | | | | | | | |
Collapse
|
213
|
Abstract
Mitochondria play a central role in the survival and death of neurons. The detailed bioenergetic mechanisms by which isolated mitochondria generate ATP, sequester Ca(2+), generate reactive oxygen species, and undergo Ca(2+)-dependent permeabilization of their inner membrane are currently being applied to the function of mitochondria in situ within neurons under physiological and pathophysiological conditions. Here we review the functional bioenergetics of isolated mitochondria, with emphasis on the chemiosmotic proton circuit and the application (and occasional misapplication) of these principles to intact neurons. Mitochondria play an integral role in both necrotic and apoptotic neuronal cell death, and the bioenergetic principles underlying current studies are reviewed.
Collapse
Affiliation(s)
- D G Nicholls
- Department of Pharmacology, University of Dundee, Dundee, Scotland.
| | | |
Collapse
|
214
|
Mazzoni IE, Saïd FA, Aloyz R, Miller FD, Kaplan D. Ras regulates sympathetic neuron survival by suppressing the p53-mediated cell death pathway. J Neurosci 1999; 19:9716-27. [PMID: 10559381 PMCID: PMC6782948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023] Open
Abstract
In this report, we examine how the Ras protein regulates neuronal survival, focusing on sympathetic neurons. Adenovirus-expressed constitutively activated Ras (RasV12) enhanced survival and the phosphorylation of Akt (protein kinase B) and MAP kinase (MAPK), two targets of Ras activity. Functional inhibition of endogenous Ras by adenovirus-expressed dominant-inhibitory Ras (N17Ras) decreased nerve growth factor (NGF)-dependent survival and both Akt and MAPK phosphorylation as well. To determine the signaling pathways through which Ras mediates survival, we used Ras effector mutants and pharmacological inhibitors that selectively suppress phosphatidylinositol 3-kinase (PI3-K)/Akt or MAP kinase kinase (MEK)/MAPK pathways. The Ras effector mutant Ras(V12)Y40C, which selectively stimulates PI3-K and Akt, rescued survival in the absence of NGF, and the PI3-K inhibitor LY 294002 inhibited both Ras- and NGF-dependent survival. Ras(V12)T(35)S, which activates MEK/MAPK but not PI3-K/Akt, was less effective at rescuing survival, whereas the MEK inhibitor PD 098059 also partially suppressed Ras-dependent survival. To investigate the mechanisms by which Ras suppresses neuronal death, we examined whether Ras functions by inhibiting the proapoptotic p53 pathway (Jun-N-terminal kinase/p53/BAX) that is necessary for neuronal death after NGF withdrawal and p75NTR activation. We found that RasV12 suppressed c-jun, BAX, and p53 levels, whereas inhibition of NGF-induced Ras-survival activity via N17Ras increased the levels of these proteins. Furthermore, the E1B55K protein, which suppresses p53 activity, blocked N17Ras-induced neuronal death. Together, these results indicate that Ras is, in part, both necessary and sufficient for survival of sympathetic neurons and that this effect is mediated by activation of both the PI3-K- and MEK-signaling cascades, which in turn suppress a proapoptotic p53 pathway.
Collapse
Affiliation(s)
- I E Mazzoni
- Center for Neuronal Survival, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada H3A 2B4
| | | | | | | | | |
Collapse
|
215
|
Chen RW, Saunders PA, Wei H, Li Z, Seth P, Chuang DM. Involvement of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and p53 in neuronal apoptosis: evidence that GAPDH is upregulated by p53. J Neurosci 1999; 19:9654-62. [PMID: 10531467 PMCID: PMC6782921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023] Open
Abstract
We recently reported that cytosine arabinoside (AraC)-induced apoptosis of cerebellar neurons involves the overexpression of glyceraldehyde-3-phosphate dehydrogenase (GAPDH). The present study was undertaken to investigate whether p53 and/or Bax overexpression participates in the AraC-induced apoptosis of cerebellar granule cells and, if so, the relationship between p53 induction and GAPDH overexpression in these cells. AraC-induced apoptosis of cerebellar granule cells was preceded by an increase in levels of p53 mRNA and protein detected between 1 and 8 hr after treatment. The mRNA level for a p53 target gene, Bax, was also increased. The increase in GAPDH mRNA lasted longer than that of either p53 or Bax, and the level of GAPDH protein in the particulate fraction increased after induction of GAPDH mRNA. The antisense oligonucleotide to p53 protected granule cells from AraC-induced chromatin condensation, internucleosomal cleavage, and apoptotic death. The inhibition of p53 expression by the p53 antisense oligonucleotide not only blocked the expression of Bax but also partially suppressed the increased GAPDH mRNA and protein levels. Conversely, the suppression of GAPDH expression and subsequent attenuation of apoptosis of granule cells by GAPDH antisense oligonucleotide did not influence the expression of p53 or Bax. Cerebellar granule cells prepared from p53 knock-out mice were resistant to AraC toxicity, and the p53 gene knock-out suppressed AraC-upregulated GAPDH expression. Moreover, infection of PC12 cells with an adenoviral vector containing p53 gene dramatically increased GAPDH expression and triggered cell apoptosis. These results suggest that AraC-induced apoptosis of cerebellar granule cells involves the expression of both GAPDH and p53 and that, similar to Bax, GAPDH is upregulated by p53 after exposure to the apoptotic insult.
Collapse
Affiliation(s)
- R W Chen
- Section on Molecular Neurobiology, Biological Psychiatry Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
216
|
Asker C, Wiman KG, Selivanova G. p53-induced apoptosis as a safeguard against cancer. Biochem Biophys Res Commun 1999; 265:1-6. [PMID: 10548481 DOI: 10.1006/bbrc.1999.1446] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
p53 acts as a potent tumor suppressor largely through its ability to induce cell death by apoptosis. Diverse cellular stress conditions, e.g., DNA damage, hypoxia, and oncogene activation, trigger p53-dependent apoptosis. ARF is a 14-kDa protein encoded by an alternative reading frame within the human INK4a locus that also encodes the p16 protein. ARF induces p53 in response to oncogene activation by preventing its degradation. This ensures the elimination of emerging tumor cells by p53-dependent apoptosis. p53 promotes apoptosis through multiple mechanisms, including transactivation of specific target genes, down-regulation of a distinct set of genes, and transcription-independent mechanisms. This may explain the frequent inactivation of ARF/p53 rather than downstream effectors during tumor development.
Collapse
Affiliation(s)
- C Asker
- Cancer Center Karolinska, Karolinska Institute, Stockholm, SE-171 77, Sweden
| | | | | |
Collapse
|
217
|
Abstract
Peripheral neurotoxicity is a dose-limiting side-effect for a number of effective chemotherapeutic agents, including platinum compounds, taxanes, and vinca alkaloids. New experimental chemotherapy drugs that cause neuropathy include suramin and Dolostatin-10. A better understanding of cellular mechanisms will lead to novel treatment strategies that will protect neurons without decreasing therapeutic efficacy.
Collapse
|
218
|
Muir JK, Raghupathi R, Emery DL, Bareyre FM, McIntosh TK. Postinjury magnesium treatment attenuates traumatic brain injury-induced cortical induction of p53 mRNA in rats. Exp Neurol 1999; 159:584-93. [PMID: 10506531 DOI: 10.1006/exnr.1999.7187] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Administration of magnesium has been shown to be neuroprotective in experimental models of traumatic brain injury (TBI). The present study examined the effect of magnesium on posttraumatic regional induction of p53, a gene associated with induction of cell death. Male Sprague-Dawley rats (350-400 g, n = 26) were anesthetized with sodium pentobarbital and subjected to either lateral fluid percussion brain injury of moderate severity (2.4-2.6 atm; n = 22) or sham surgery (n = 4). At 15 min postinjury, animals randomly received an intravenous bolus of either 125 micromol magnesium chloride (n = 12) or saline vehicle (n = 10). Expression of p53 mRNA was not observed in any uninjured animal. By 6 h postinjury in vehicle-treated, brain-injured animals, p53 mRNA was induced in the cortex, dentate hilus, and CA3 regions of the hippocampus and geniculate nuclei of the thalamus, ipsilateral to the impact site. Posttraumatic magnesium treatment significantly reduced the number of labeled cells in the injured cortex (P < 0.05), but not in the hippocampus or thalamus. p53 mRNA expression returned to near baseline in all animals by 24 h postinjury. These data suggest that the neuroprotective effects of magnesium treatment may be related, in part, to a downregulation in expression of a gene associated with induction of cell death and further support the utility of magnesium as a pharmacotherapy for TBI.
Collapse
Affiliation(s)
- J K Muir
- School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | | | | | | | | |
Collapse
|
219
|
Mattson MP, Duan W. “Apoptotic” biochemical cascades in synaptic compartments: Roles in adaptive plasticity and neurodegenerative disorders. J Neurosci Res 1999. [DOI: 10.1002/(sici)1097-4547(19991001)58:1<152::aid-jnr15>3.0.co;2-v] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
220
|
Cregan SP, MacLaurin JG, Craig CG, Robertson GS, Nicholson DW, Park DS, Slack RS. Bax-dependent caspase-3 activation is a key determinant in p53-induced apoptosis in neurons. J Neurosci 1999; 19:7860-9. [PMID: 10479688 PMCID: PMC6782440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023] Open
Abstract
p53 is a pivotal molecule regulating the death of neurons both after acute injury and during development. The molecular mechanisms by which p53 induces apoptosis in neuronal cells, however, are not well understood. We have shown previously that adenovirus-mediated p53 gene delivery to neurons was sufficient to induce apoptosis. In the present study we have examined the molecular mechanism by which p53 evokes neuronal cell death. Adenovirus-mediated delivery of p53 to cerebellar granule neurons resulted in caspase-3 (CPP32) activation followed by terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick end labeling (TUNEL) staining and loss of viability as determined by an MTT survival assay. To determine whether Bax is essential for caspase-3 activation, p53 was expressed in Bax-deficient cells. Bax null neurons did not exhibit caspase-3 activation in response to p53 and were protected from apoptosis. To determine whether Bax-dependent caspase-3 activation was required in p53-mediated neuronal cell death, caspase-3-deficient neurons were examined. Our results indicate that caspase-3-deficient neurons exhibit a remarkable delay in apoptosis and a dramatic decrease in TUNEL-positive cells. These studies demonstrate that p53-induced cell death in postmitotic neurons involves a Bax-dependent caspase-3 activation, suggesting that these molecules are important determinants in neuronal cell death after injury.
Collapse
Affiliation(s)
- S P Cregan
- Neuroscience Research Institute, University of Ottawa, Ottawa, Ontario, K1H-8M5, Canada
| | | | | | | | | | | | | |
Collapse
|
221
|
Abstract
In view of a large and growing literature, this overview emphasizes recent advances in neuronal caspases and their role in cell death. To provide historical perspective, morphology and methods are surveyed with emphasis on early studies on interleukin converting enzyme (ICE) as a prototype for identifying zymogen subunits. The unexpected homology of ICE (caspase-1) to Caenorhabditis elegans death gene CED-3 provided early clues linking caspases to programmed cell death, and led later to discovery of bcl-2 proteins (CED-9 homologs) and 'apoptosis associated factors' (Apafs). Availability of substrates, inhibitors, and cDNAs led to identification of up to 16 caspases as a new superfamily of unique cysteine proteinases targeting Asp groups. Those acting as putative death effectors dismantle neurons by catabolism of proteins essential for survival. Caspases degrade amyloid precursor protein (APP), presenilins (PS1, PS2), tau, and huntingtin, raising questions on their role in neurodegeneration. Brain contains 'inhibitors of apoptosis proteins' (IAPs) survivin and NAIP associated also with some neuronal disorders. Apoptotic stress in neurons initiates a chain of events leading to activation of distal caspases by pathways that remain to be fully mapped. Neuronal caspases play multiple roles for initiation and execution of cell death, for morphogenesis, and in non-mitotic neurons for homeostasis. Recent studies focus on cytochrome c as pivotal in mediating conversion of procaspase-9 as a major initiator for apoptosis. Identifying signaling pathways and related events paves the way to design useful therapeutic remedies to prevent neuronal loss in disease or aging.
Collapse
Affiliation(s)
- N Marks
- Nathan S. Kline Institute for Psychiatric Research, and New York University, Division of Neurochemistry, Orangeburg 10962, USA.
| | | |
Collapse
|
222
|
Halterman MW, Miller CC, Federoff HJ. Hypoxia-inducible factor-1alpha mediates hypoxia-induced delayed neuronal death that involves p53. J Neurosci 1999; 19:6818-24. [PMID: 10436039 PMCID: PMC6782875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023] Open
Abstract
Hypoxia-induced delayed neuronal death is known to require de novo gene expression; however, the molecular mediators that are involved remain undefined. The transcription factor hypoxia-inducible factor-1alpha (HIF-1alpha), in addition to promoting the expression of adaptive genes under conditions of hypoxia, has been implicated as being a necessary component in p53-mediated cell death in tumors. Using herpes amplicon-mediated gene transfer in cortical neuronal cultures, we demonstrate that delivery of a dominant-negative form of HIF-1alpha (HIFdn), capable of disrupting hypoxia-dependent transcription, reduces delayed neuronal death that follows hypoxic stress. In contrast, hypoxia-resistant p53-null primary cultures are not protected by HIFdn expression. These data indicate that, in hypoxic neurons, HIF-1alpha and p53 conspire to promote a pathological sequence resulting in cell death.
Collapse
Affiliation(s)
- M W Halterman
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | | | |
Collapse
|
223
|
Stefanis L, Park DS, Friedman WJ, Greene LA. Caspase-dependent and -independent death of camptothecin-treated embryonic cortical neurons. J Neurosci 1999; 19:6235-47. [PMID: 10414953 PMCID: PMC6782831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023] Open
Abstract
This study investigates the mechanisms underlying death of cultured embryonic cortical neurons exposed to the DNA-damaging agent camptothecin and in particular the interdependence of the roles of cyclin-dependent kinases (Cdks), caspases, and mitochondrial function. Camptothecin evokes rapid neuronal death that exhibits nuclear features of apoptosis. This death is accompanied by loss of cytochrome c and mitochondrial transmembrane potential as well as by induction of caspase-3-like activity and caspase-2 processing. The Cdk inhibitor flavopiridol provides long-term rescue from death and prevents loss of cytochrome c and mitochondrial transmembrane potential as well as caspase activation and processing. General caspase inhibitors rescue neurons from this rapid apoptotic death but do not prevent them from undergoing delayed death in which nuclear features of apoptosis are absent. Moreover, the caspase inhibitors do not affect early cytochrome c release and delay but do not prevent the loss of transmembrane potential. Agents that directly disrupt mitochondrial function without inducing cytochrome c release lead to a caspase-independent death. These observations favor a model in which (1) DNA damage leads to Cdk activation, which lies upstream of release of cytochrome c and caspase activation; (2) cytochrome c release is caspase-independent and may occur upstream of caspase activation; (3) early apoptotic death requires caspases; and (4) delayed nonapoptotic death that occurs in the presence of caspase inhibitors is a consequence of prolonged loss of mitochondrial function. These findings shed light on the mechanisms by which DNA damage kills neurons and raise questions regarding the general utility of caspase inhibitors as neurotherapeutic agents.
Collapse
Affiliation(s)
- L Stefanis
- Department of Pathology, Taub Center for Alzheimer's Disease Research, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | | | |
Collapse
|
224
|
Taniura H, Matsumoto K, Yoshikawa K. Physical and functional interactions of neuronal growth suppressor necdin with p53. J Biol Chem 1999; 274:16242-8. [PMID: 10347180 DOI: 10.1074/jbc.274.23.16242] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Necdin is expressed in virtually all postmitotic neurons, and ectopic expression of this protein suppresses cell proliferation. Necdin, like the retinoblastoma protein, interacts with cell cycle promoting proteins such as simian virus 40 large T antigen, adenovirus E1A, and the transcription factor E2F1. Here we demonstrate that necdin interacts with the tumor suppressor protein p53 as well. The yeast two-hybrid and in vitro binding analyses revealed that necdin bound to a narrow region (amino acids 35-62) located between the MDM2-binding site and the proline-rich region in the amino-terminal domain of p53. The electrophoretic mobility shift assay showed that necdin supershifted a complex between p53 and its binding DNA, implying that the p53-necdin complex is competent for DNA binding. In p53-deficient osteosarcoma SAOS-2 cells, necdin markedly suppressed p53-dependent activation of the p21/WAF promoter. Necdin and p53 inhibited cell growth in an additive manner as assessed by the colony formation of SAOS-2 cells, suggesting that necdin does not affect p53-mediated growth suppression. On the other hand, necdin inhibited p53-induced apoptosis of osteosarcoma U2OS cells. Thus, necdin can be a growth suppressor that targets p53 and modulates its biological functions in postmitotic neurons.
Collapse
Affiliation(s)
- H Taniura
- Division of Regulation of Macromolecular Functions, Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan.
| | | | | |
Collapse
|
225
|
Nickells RW. Apoptosis of retinal ganglion cells in glaucoma: an update of the molecular pathways involved in cell death. Surv Ophthalmol 1999; 43 Suppl 1:S151-61. [PMID: 10416758 DOI: 10.1016/s0039-6257(99)00029-6] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Apoptosis is a genetically controlled form of cell death that ganglion cells undergo during normal development of the retina and in diseases affecting the optic nerve, such as glaucoma. This mechanism of cell death is controlled by specific genes and their products that are activated in the dying cell. To date, the mechanism of ganglion cell apoptosis is poorly understood, but research on cell death in other areas has provided a blueprint for the study of dying ganglion cells in animal models. Extensive research of the genetic pathways of apoptosis of neurons, in general, has yielded new information about the principal genes that are involved in this process. This review is meant to survey the major genetic players that are active in neuronal cell death and discuss their possible roles in retinal ganglion cells. One of the primary regulatory steps is the activation of the tumor-suppressor protein, p53. This protein functions as a transcription factor that can up-regulate the expression of the proapoptotic gene bax and down-regulate the expression of the antiapoptotic gene brl-2. Changes in the concentrations of these gene products can further stimulate apoptotic events, including changes in mitochondria that ultimately lead to the activation of a family of cysteine proteases called caspases that digest the dying cell from within. An understanding of the genetic pathways of apoptosis may lead to the design of new treatments that could prevent its activation or arrest the process when started.
Collapse
Affiliation(s)
- R W Nickells
- Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison 53792, USA
| |
Collapse
|
226
|
Abstract
The neurotrophins are a diverse family of peptides which activate specific tyrosine kinase-linked receptors. Over the past five decades, since the pioneering work of Levi-Montalcini and colleagues, the critical role that neurotrophins play in shaping the developing nervous system has become increasingly established. These molecules, which include the nerve growth factor (NGF)-related peptides, NGF, brain-derived neurotrophic factor (BDNF), NT-4/5 and NT-3, promote differentiation and survival in the developing nervous system, and to a lesser extent in the adult nervous system. As survival-promoting molecules, neurotrophins have been studied as potential neuroprotective agents, and have shown beneficial effects in many model systems. However, a surprising "dark side" to neurotrophin behavior has emerged from some of these studies implying that, under certain pathological conditions, neurotrophins may exacerbate, rather than alleviate, injury. How neurotrophins cause these deleterious consequences is a question which is only beginning to be answered, but initial work supports altered free radical handling or modification of glutamate receptor expression as possible mechanisms underlying these effects. This review will focus on evidence suggesting that neurotrophins may enhance injury under certain circumstances and on the mechanisms behind these injury-promoting aspects.
Collapse
Affiliation(s)
- M M Behrens
- Center for the Study of the Nervous System Injury and Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | | | | | |
Collapse
|
227
|
Johnson MD, Kinoshita Y, Xiang H, Ghatan S, Morrison RS. Contribution of p53-dependent caspase activation to neuronal cell death declines with neuronal maturation. J Neurosci 1999; 19:2996-3006. [PMID: 10191317 PMCID: PMC6782293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Caspases play a pivotal role in neuronal cell death during development and after trophic factor withdrawal. However, the mechanisms regulating caspase activity and the role played by caspase activation in response to neuronal injury is poorly understood. The tumor suppressor gene p53 has been implicated in the loss of neuronal viability caused by excitotoxic and DNA damaging agents. In the present study we determined if p53-mediated neuronal cell death required caspase activation. DNA damage increased caspase activity in both cultured embryonic telencephalic and postnatal cortical neurons in a p53-dependent manner. Caspase inhibitors protected embryonic telencephalic neurons, but not postnatal cortical neurons, from DNA damage-induced cell death as measured by direct cell counting and annexin V staining. In marked contrast to the caspase inhibitors, an inhibitor of the DNA repair enzyme, poly(ADP-ribose) polymerase, conferred significant protection from genotoxic and excitotoxic cell death on postnatal cortical neurons but had no effect on embryonic neurons. Glutamate-mediated excitotoxicity in postnatal neurons was not associated with measurable changes in caspase activity, consistent with the failure of caspase inhibitors to prevent cell death under these conditions. Moreover, adenovirus-mediated overexpression of p53 killed embryonic and postnatal neurons without activating caspases. Thus, p53-mediated neuronal cell death may occur via both caspase-dependent and caspase-independent pathways. These results demonstrate that p53 is required for caspase activation in response to some forms of neuronal injury. However, the relative importance of caspase activation in neurons depends on the developmental status of the cell and the specific nature of the death stimulus.
Collapse
Affiliation(s)
- M D Johnson
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, Washington 98195-6470, USA
| | | | | | | | | |
Collapse
|
228
|
Abstract
Caspase recruitment and oligomerization mediated by adaptor proteins constitute a basic mechanism of caspase activation. The complex phenotypes of the caspase knockout mice indicate that multiple mechanisms of caspase activation operate in parallel and that death signal transduction pathways are both cell-type and stimulus specific. The BH3-domain- containing pro-apototic members of Bcl-2 family may be one of the critical links between the initial death signals and the central machinery of apoptosis.
Collapse
Affiliation(s)
- H Li
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | | |
Collapse
|
229
|
Abstract
Apoptosis plays a major role in motor neuron survival during developmental cell death, after axotomy, and in motor neuron diseases. Bax is the first member of the bcl-2 family shown to promote apoptosis. In the present study, we used the bax-deficient mouse model to determine the role of bax in motor neuron survival in vitro by using dissociated spinal cord cultures. This system enables the maturation of individual motor neurons in a controlled in vitro environment. Motor neurons were identified by using the antineurofilament antibody SMI-32 and the antitranscription factor antibody Islet1. Both antibodies labeled large motor neurons in wild-type and bax-null cultures. Differentiated wild-type cultures exhibited a reduction in long-term cultures of two- and fivefold in the number of SMI-32- and Islet1-positive cells, respectively. The reduction in the number of motor neurons was attenuated in bax -/- cultures. Bax deficiency also attenuated serum withdrawal- and kainate-induced apoptosis in motor neurons. For comparison, necrotic cell death led to significant motor neuron cell death in both wild-type and bax -/- cultures. In addition, bax deficiency did not induce proliferation of motor neuron precursors in vitro. This study indicates for the first time that bax has a dominant role in the survival of long-term cultured motor neurons.
Collapse
Affiliation(s)
- O Bar-Peled
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland 21287-7519, USA
| | | | | | | |
Collapse
|
230
|
Tomasevic G, Kamme F, Stubberöd P, Wieloch M, Wieloch T. The tumor suppressor p53 and its response gene p21WAF1/Cip1 are not markers of neuronal death following transient global cerebral ischemia. Neuroscience 1999; 90:781-92. [PMID: 10218779 DOI: 10.1016/s0306-4522(98)00484-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The tumor suppressor protein p53 is implicated in cell cycle arrest and DNA repair as well as in apoptosis. In the CNS, p53 has been associated with neuronal cell death following various insults, including cerebral ischemia. We investigated the expression of p53 messenger RNA and protein, and the messenger RNA expression of the p53-responsive gene p21(WAF1/CiP1, in specific hippocampal regions following 15 min of normothermic and neuroprotective hypothermic (33 degrees C) global forebrain ischemia in the rat. Both p53 and p21WAF1/Cip1 messenger RNAs were transiently induced in ischemia resistant regions following normo- and hypothermic ischemia. In the ischemia sensitive CA1 region, p53 and p21WAF1/Cip1 messenger RNAs were up-regulated throughout reperfusion following the normothermic insult. The p53 protein levels increased following the insult, most markedly in ischemia-resistant CA3 neurons after normothermic ischemia, and in the CA1 neurons following hypothermic ischemia. Concomitantly, the protein was translocated to nuclei. These findings indicate that p53 and p21WAF1/Cip1 are not markers of neuronal death following global cerebral ischemia. Their rapid and transient induction correlates with cell survival, and suggests a possible role in DNA repair.
Collapse
Affiliation(s)
- G Tomasevic
- Laboratory for Experimental Brain Research, Wallenberg Neuroscience Center, University of Lund, Lund University Hospital, Sweden
| | | | | | | | | |
Collapse
|
231
|
Behrens A, Sibilia M, Wagner EF. Amino-terminal phosphorylation of c-Jun regulates stress-induced apoptosis and cellular proliferation. Nat Genet 1999; 21:326-9. [PMID: 10080190 DOI: 10.1038/6854] [Citation(s) in RCA: 553] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
c-Jun is a major component of the heterodimeric transcription factor AP-1 and is essential for embryonic development, as fetuses lacking Jun die at mid-gestation with impaired hepatogenesis and primary Jun-/- fibroblasts have a severe proliferation defect and undergo premature senescence in vitro. c-Jun and AP-1 activities are regulated by c-Jun N-terminal phosphorylation (JNP) at serines 63 and 73 through Jun N-terminal kinases(JNKs). JNP is thought to be required for the anti-apoptotic function of c-Jun during hepatogenesis, as mice lacking the JNK kinase SEK1 exhibit liver defects similar to those seen in Jun-/- fetuses. To investigate the physiological relevance of JNP, we replaced endogenous Jun by a mutant Jun allele with serines 63 and 73 mutated to alanines (Jun(tm1wag); hereafter referred to as JunAA). Here we show that primary JunAA fibroblasts have proliferation- and stress-induced apoptotic defects, accompanied by reduced AP-1 activity. JunAA mice are viable and fertile, smaller than controls and resistant to epileptic seizures and neuronal apoptosis induced by the excitatory amino acid kainate. Primary mutant neurons are also protected from apoptosis and exhibit unaltered JNK activity. Our results provide evidence that JNP is dispensable for mouse development, and identify c-Jun as the essential substrate of JNK signalling during kainate-induced neuronal apoptosis.
Collapse
Affiliation(s)
- A Behrens
- Research Institute of Molecular Pathology, Vienna, Austria
| | | | | |
Collapse
|
232
|
Tatton WG, Olanow CW. Apoptosis in neurodegenerative diseases: the role of mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1410:195-213. [PMID: 10076027 DOI: 10.1016/s0005-2728(98)00167-4] [Citation(s) in RCA: 174] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Nerve cell death is the central feature of the human neurodegenerative diseases. It has long been thought that nerve cell death in these disorders occurs by way of necrosis, a process characterized by massive transmembrane ion currents, compromise of mitochondrial ATP production, and the formation of high levels of reactive oxygen species combining to induce rapid disruption of organelles, cell swelling, and plasma membrane rupture with a secondary inflammatory response. Nuclear DNA is relatively preserved. Recent evidence now indicates that the process of apoptosis rather than necrosis primarily contributes to nerve cell death in neurodegeneration. This has opened up new avenues for understanding the pathogenesis of neurodegeneration and may lead to new and more effective therapeutic approaches to these diseases.
Collapse
Affiliation(s)
- W G Tatton
- Department of Neurology, Mount Sinai School of Medicine, 1 Gustave Levy Place, Annenberg 14-94, New York, NY 10029, USA
| | | |
Collapse
|
233
|
Affiliation(s)
- P Nicotera
- Faculty of Biology, University of Konstanz, Germany
| | | | | |
Collapse
|
234
|
Kitamura Y, Ota T, Matsuoka Y, Tooyama I, Kimura H, Shimohama S, Nomura Y, Gebicke-Haerter PJ, Taniguchi T. Hydrogen peroxide-induced apoptosis mediated by p53 protein in glial cells. Glia 1999. [DOI: 10.1002/(sici)1098-1136(19990115)25:2<154::aid-glia6>3.0.co;2-s] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
235
|
Liu W, Rong Y, Baudry M, Schreiber SS. Status epilepticus induces p53 sequence-specific DNA binding in mature rat brain. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1999; 63:248-53. [PMID: 9878766 DOI: 10.1016/s0169-328x(98)00285-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Previous studies have implicated the tumor suppressor gene, p53, in neuronal apoptosis due to excitotoxin treatment. To test whether p53 protein functions as a transcription factor during excitotoxic cell death, we used electrophoretic mobility shift assays to measure p53 sequence-specific DNA-binding activity following kainic acid (KA)-induced seizures. A rapid and significant increase in p53 DNA-binding activity was observed in extracts from kainate-vulnerable brain regions at 2.5 h after seizure onset, an effect which lasted up to 16 h after seizure-onset. DNA binding activity returned to normal by 30 h after KA injection. Pre-treatment with the protein synthesis inhibitor cycloheximide, as well as pre-incubation with PAb421, a p53 monoclonal antibody, significantly attenuated p53 DNA-binding activity induced by KA treatment. These results indicate that p53 protein may function as a transcription factor, following KA treatment, to regulate the expression of p53-responsive genes involved in neuronal apoptosis.
Collapse
Affiliation(s)
- W Liu
- Program in Neurobiology, University of Southern California, Los Angeles, CA 90089-2520, USA
| | | | | | | |
Collapse
|
236
|
Aloyz RS, Bamji SX, Pozniak CD, Toma JG, Atwal J, Kaplan DR, Miller FD. p53 is essential for developmental neuron death as regulated by the TrkA and p75 neurotrophin receptors. J Cell Biol 1998; 143:1691-703. [PMID: 9852160 PMCID: PMC2132983 DOI: 10.1083/jcb.143.6.1691] [Citation(s) in RCA: 238] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/1998] [Revised: 10/27/1998] [Indexed: 11/22/2022] Open
Abstract
Naturally occurring sympathetic neuron death is the result of two apoptotic signaling events: one normally suppressed by NGF/TrkA survival signals, and a second activated by the p75 neurotrophin receptor. Here we demonstrate that the p53 tumor suppressor protein, likely as induced by the MEKK-JNK pathway, is an essential component of both of these apoptotic signaling cascades. In cultured neonatal sympathetic neurons, p53 protein levels are elevated in response to both NGF withdrawal and p75NTR activation. NGF withdrawal also results in elevation of a known p53 target, the apoptotic protein Bax. Functional ablation of p53 using the adenovirus E1B55K protein inhibits neuronal apoptosis as induced by either NGF withdrawal or p75 activation. Direct stimulation of the MEKK-JNK pathway using activated MEKK1 has similar effects; p53 and Bax are increased and the subsequent neuronal apoptosis can be rescued by E1B55K. Expression of p53 in sympathetic neurons indicates that p53 functions downstream of JNK and upstream of Bax. Finally, when p53 levels are reduced or absent in p53+/- or p53-/- mice, naturally occurring sympathetic neuron death is inhibited. Thus, p53 is an essential common component of two receptor-mediated signal transduction cascades that converge on the MEKK-JNK pathway to regulate the developmental death of sympathetic neurons.
Collapse
Affiliation(s)
- R S Aloyz
- Center for Neuronal Survival, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada H3A 2B4
| | | | | | | | | | | | | |
Collapse
|
237
|
Morrison RS, Kinoshita Y, Xiang H, Johnson MD, Kuntz C, Ghatan S, Ho JT, Schwartzkroin PA. Mechanisms of neuronal cell death. ACTA ACUST UNITED AC 1998. [DOI: 10.1002/(sici)1098-2779(1998)4:3<157::aid-mrdd3>3.0.co;2-l] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|