201
|
Li L, Liu C, Chen L, Chen L. Hypotonicity modulates tetrodotoxin-sensitive sodium current in trigeminal ganglion neurons. Mol Pain 2011; 7:27. [PMID: 21496300 PMCID: PMC3094255 DOI: 10.1186/1744-8069-7-27] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 04/16/2011] [Indexed: 11/11/2022] Open
Abstract
Voltage-gated sodium channels (VGSCs) play an important role in the control of membrane excitability. We previously reported that the excitability of nociceptor was increased by hypotonic stimulation. The present study tested the effect of hypotonicity on tetrodotoxin-sensitive sodium current (TTX-S current) in cultured trigeminal ganglion (TG) neurons. Our data show that after hypotonic treatment, TTX-S current was increased. In the presence of hypotonicity, voltage-dependent activation curve shifted to the hyperpolarizing direction, while the voltage-dependent inactivation curve was not affected. Transient Receptor Potential Vanilloid 4 receptor (TRPV4) activator increased TTX-S current and hypotonicity-induced increase was markedly attenuated by TRPV4 receptor blockers. We also demonstrate that inhibition of PKC attenuated hypotonicity-induced inhibition, whereas PKA system was not involved in hypotonic-response. We conclude that hypotonic stimulation enhances TTX-S current, which contributes to hypotonicity-induced nociception. TRPV4 receptor and PKC intracellular pathway are involved in the increase of TTX-S current by hypotonicity.
Collapse
Affiliation(s)
- Lin Li
- Department of Physiology, Nanjing Medical University, Nanjing, PR China
| | | | | | | |
Collapse
|
202
|
Kim H, Chung G, Jo H, Kim Y, Bae Y, Jung S, Kim JS, Oh S. Characterization of Dental Nociceptive Neurons. J Dent Res 2011; 90:771-6. [DOI: 10.1177/0022034511399906] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Selective blockade of nociceptive neurons can be achieved by the delivery of permanently charged sodium channel blockers through the pores of nociceptive ion channels. To assess the feasibility of this application in the dental area, we investigated the electrophysiological and neurochemical characteristics of nociceptive dental primary afferent (DPA) neurons. DPA neurons were identified within trigeminal ganglia labeling with a retrograde fluorescent dye applied to the upper molars of adult rats. Electrophysiological studies revealed that the majority of dental primary afferent neurons showed characteristics of nociceptive neurons, such as sensitivity to capsaicin and the presence of a hump in action potential. Immunohistochemical analysis revealed a large proportion of DPA neurons to be IB4-positive and to express TRPV1 and P2X3. Single-cell RT-PCR revealed mRNA expression of various nociceptive channels, including the temperature-sensitive TRPV1, TRPA1, TRPM8 channels, the extracellular ATP receptor channels P2X2 and P2X3, as well as the nociceptor-specific sodium channel, NaV1.8. In conclusion, DPA neurons have the electrophysiological characteristics of nociceptors and express several nociceptor-specific ion channels. Analysis of these data may assist in the search for a new route of entry for the delivery of membrane-impermeant local anesthetics. Abbreviations: AP, action potential; DiI, 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate; DPA, dental primary afferent; FITC, fluorescein 5(6)-isothiocyanate; IB4, isolectin-B4; RT-PCR, reverse-transcription polymerase chain-reaction; TRP, transient receptor potential.
Collapse
Affiliation(s)
- H.Y. Kim
- National Research Laboratory for Pain, Dental Research Institute and Department of Neurobiology and Physiology, School of Dentistry, Seoul National University, 28 Yeongeon-Dong, Jongno-Gu, Seoul 110-749, Republic of Korea
| | - G. Chung
- National Research Laboratory for Pain, Dental Research Institute and Department of Neurobiology and Physiology, School of Dentistry, Seoul National University, 28 Yeongeon-Dong, Jongno-Gu, Seoul 110-749, Republic of Korea
| | - H.J. Jo
- National Research Laboratory for Pain, Dental Research Institute and Department of Neurobiology and Physiology, School of Dentistry, Seoul National University, 28 Yeongeon-Dong, Jongno-Gu, Seoul 110-749, Republic of Korea
| | - Y.S. Kim
- Department of Oral Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu 700-412, Republic of Korea
| | - Y.C. Bae
- Department of Oral Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu 700-412, Republic of Korea
| | - S.J. Jung
- Department of Physiology, School of Medicine, Hanyang University, Seoul 133-791, Republic of Korea
| | - J.-S. Kim
- National Research Laboratory for Pain, Dental Research Institute and Department of Neurobiology and Physiology, School of Dentistry, Seoul National University, 28 Yeongeon-Dong, Jongno-Gu, Seoul 110-749, Republic of Korea
| | - S.B. Oh
- National Research Laboratory for Pain, Dental Research Institute and Department of Neurobiology and Physiology, School of Dentistry, Seoul National University, 28 Yeongeon-Dong, Jongno-Gu, Seoul 110-749, Republic of Korea
| |
Collapse
|
203
|
Gurkiewicz M, Korngreen A, Waxman SG, Lampert A. Kinetic modeling of Nav1.7 provides insight into erythromelalgia-associated F1449V mutation. J Neurophysiol 2011; 105:1546-57. [PMID: 21289137 DOI: 10.1152/jn.00703.2010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Gain-of-function mutations of the voltage-gated sodium channel (VGSC) Na(v)1.7 have been linked to human pain disorders. The mutation F1449V, located at the intracellular end of transmembrane helix S6 of domain III, induces the inherited pain syndrome erythromelalgia. A kinetic model of wild-type (WT) and F1449V Na(v)1.7 may provide a basis for predicting putative intraprotein interactions. We semiautomatically constrained a Markov model using stochastic search algorithms and whole cell patch-clamp recordings from human embryonic kidney cells transfected with Na(v)1.7 and its F1449V mutation. The best models obtained simulated known differences in action potential thresholds and firing patterns in spinal sensory neurons expressing WT and F1449V. The most suitable Markov model consisted of three closed, one open, and two inactivated states. The model predicted that the F1449V mutation shifts occupancy of the closed states closer to the open state, making it easier for the channel pore to open. It also predicted that F1449V's second inactivated state is more than four times more likely to be occupied than the equivalent state in WT at hyperpolarized potentials, although the mutation still lowered the firing threshold of action potentials. The differences between WT and F1449V were not limited to a single transition. Thus a point mutation in position F1449, while phenotypically most probably affecting the activation gate, may also modify channel functions mediated by structures in more distant areas of the channel protein.
Collapse
Affiliation(s)
- Meron Gurkiewicz
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 52900, Israel.
| | | | | | | |
Collapse
|
204
|
Wang F, Zhang Y, Jiang X, Zhang Y, Zhang L, Gong S, Liu C, Zhou L, Tao J. Neuromedin U inhibits T-type Ca2+ channel currents and decreases membrane excitability in small dorsal root ganglia neurons in mice. Cell Calcium 2011; 49:12-22. [DOI: 10.1016/j.ceca.2010.11.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 09/15/2010] [Accepted: 11/01/2010] [Indexed: 10/18/2022]
|
205
|
Ho C, O'Leary ME. Single-cell analysis of sodium channel expression in dorsal root ganglion neurons. Mol Cell Neurosci 2011; 46:159-66. [PMID: 20816971 PMCID: PMC3005531 DOI: 10.1016/j.mcn.2010.08.017] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 08/19/2010] [Accepted: 08/26/2010] [Indexed: 01/08/2023] Open
Abstract
Sensory neurons of the dorsal root ganglia (DRG) express multiple voltage-gated sodium (Na) channels that substantially differ in gating kinetics and pharmacology. Small-diameter (<25 μm) neurons isolated from the rat DRG express a combination of fast tetrodotoxin-sensitive (TTX-S) and slow TTX-resistant (TTX-R) Na currents while large-diameter neurons (>30 μm) predominately express fast TTX-S Na current. Na channel expression was further investigated using single-cell RT-PCR to measure the transcripts present in individually harvested DRG neurons. Consistent with cellular electrophysiology, the small neurons expressed transcripts encoding for both TTX-S (Nav1.1, Nav1.2, Nav1.6, and Nav1.7) and TTX-R (Nav1.8 and Nav1.9) Na channels. Nav1.7, Nav1.8 and Nav1.9 were the predominant Na channels expressed in the small neurons. The large neurons highly expressed TTX-S isoforms (Nav1.1, Nav1.6, and Nav1.7) while TTX-R channels were present at comparatively low levels. A unique subpopulation of the large neurons was identified that expressed TTX-R Na current and high levels of Nav1.8 transcript. DRG neurons also displayed substantial differences in the expression of neurofilaments (NF200, peripherin) and Necl-1, a neuronal adhesion molecule involved in myelination. The preferential expression of NF200 and Necl-1 suggests that large-diameter neurons give rise to thick myelinated axons. Small-diameter neurons expressed peripherin, but reduced levels of NF200 and Necl-1, a pattern more consistent with thin unmyelinated axons. Single-cell analysis of Na channel transcripts indicates that TTX-S and TTX-R Na channels are differentially expressed in large myelinated (Nav1.1, Nav1.6, and Nav1.7) and small unmyelinated (Nav1.7, Nav1.8, and Nav1.9) sensory neurons.
Collapse
Affiliation(s)
- Cojen Ho
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, 1020 Locust Street, JAH 265, Philadelphia, PA 19107, USA
| | | |
Collapse
|
206
|
Binshtok AM. Mechanisms of nociceptive transduction and transmission: a machinery for pain sensation and tools for selective analgesia. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2011; 97:143-77. [PMID: 21708310 DOI: 10.1016/b978-0-12-385198-7.00006-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Many surgical and dental procedures depend on use of local anesthetics to reversibly eliminate pain. By the blockade of voltage-gated sodium channels, local anesthetics prevent the transmission of nociceptive information. However, since all local anesthetics act non-selectively on all types of axons they also cause a loss of innocuous sensation, motor paralysis and autonomic block. Thus, approaches that produce only a selective blockade of pain fibers are of great potential clinical importance. In this chapter we will review the recent findings describing mechanisms of pain transduction and transmission and introduce novel therapeutic approaches to produce pain-selective analgesia.
Collapse
Affiliation(s)
- Alexander M Binshtok
- Department of Medical Neurobiology, Institute for Medical Research Israel Canada and Center for Research on Pain, The Hebrew University Medical School, Jerusalem, Israel
| |
Collapse
|
207
|
Sodium-calcium exchanger and multiple sodium channel isoforms in intra-epidermal nerve terminals. Mol Pain 2010; 6:84. [PMID: 21118538 PMCID: PMC3002896 DOI: 10.1186/1744-8069-6-84] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 11/30/2010] [Indexed: 11/18/2022] Open
Abstract
Background Nociception requires transduction and impulse electrogenesis in nerve fibers which innervate the body surface, including the skin. However, the molecular substrates for transduction and action potential initiation in nociceptors are incompletely understood. In this study, we examined the expression and distribution of Na+/Ca2+ exchanger (NCX) and voltage-gated sodium channel isoforms in intra-epidermal free nerve terminals. Results Small diameter DRG neurons exhibited robust NCX2, but not NCX1 or NCX3 immunolabeling, and virtually all PGP 9.5-positive intra-epidermal free nerve terminals displayed NCX2 immunoreactivity. Sodium channel NaV1.1 was not detectable in free nerve endings. In contrast, the majority of nerve terminals displayed detectable levels of expression of NaV1.6, NaV1.7, NaV1.8 and NaV1.9. Sodium channel immunoreactivity in the free nerve endings extended from the dermal boundary to the terminal tip. A similar pattern of NCX and sodium channel immunolabeling was observed in DRG neurons in vitro. Conclusions NCX2, as well as NaV1.6, NaV1.7, NaV1.8 and NaV1.9, are present in most intra-epidermal free nerve endings. The presence of NCX2, together with multiple sodium channel isoforms, in free nerve endings may have important functional implications.
Collapse
|
208
|
Baumgart M, Feller C, Natura G, Dahse T, Schaible HG, Dahse I. Blockade of TTX-resistant and TTX-sensitive Na+ currents in cultured dorsal root ganglion neurons by fomocaine and the fomocaine derivative Oe 9000. Brain Res 2010; 1358:54-63. [PMID: 20727863 DOI: 10.1016/j.brainres.2010.08.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 08/03/2010] [Accepted: 08/11/2010] [Indexed: 11/29/2022]
Abstract
Fomocaine and its new derivative Oe 9000 are local anesthetics in which the inner aromatic moiety carries a phenoxymethyl substituent and is linked to the tertiary amine by an alkylene chain, rendering these compounds considerably lipophilic and increasing their chemical and metabolic stability. Although fomocaine was used for surface anesthesia, the presumed mode of action of fomocaine and Oe 9000, the blockade of voltage-gated Na(+) currents in neurons, has not been investigated. In the present experiments we used the whole-cell mode of the patch-clamp technique and studied the effect of both drugs on voltage-gated Na(+) currents in isolated and cultured dorsal root ganglion (DRG) neurons from adult rats. Both drugs reversibly reduced slowly activating and inactivating tetrodotoxin-resistant (TTX-R) Na(+) currents as well as rapidly activating and inactivating TTX-sensitive (TTX-S) Na(+) currents at low micromolar concentrations. For the reduction of TTX-R Na(+) currents the IC(50) of fomocaine was 10.3μM, and the IC(50) for the more hydrophilic Oe 9000 was 4.5μM. These IC(50) values are more than one order of magnitude lower than the corresponding IC(50) of other local anesthetics such as lidocaine. Similar as for other local anesthetics, the effects showed a frequency dependence indicating that the compounds preferentially bind to the open and/or inactivated state of the channel. These data establish for the first time the functional suppression of TTX-R and TTX-S Na(+) currents by fomocaine and Oe 9000 in neurons. They support the further research into the use of Oe 9000 as a novel local anesthetic.
Collapse
Affiliation(s)
- Marcus Baumgart
- Institut für Biochemie und Biophysik, Biologisch-Pharmazeutische Fakultät, Friedrich-Schiller-Universität Jena, Philosophenweg 12, D-07743 Jena, Germany
| | | | | | | | | | | |
Collapse
|
209
|
Blanchard MG, Kellenberger S. Effect of a temperature increase in the non-noxious range on proton-evoked ASIC and TRPV1 activity. Pflugers Arch 2010; 461:123-39. [PMID: 20924599 DOI: 10.1007/s00424-010-0884-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 09/15/2010] [Accepted: 09/15/2010] [Indexed: 02/08/2023]
Abstract
Acid-sensing ion channels (ASICs) are neuronal H(+)-gated cation channels, and the transient receptor potential vanilloid 1 channel (TRPV1) is a multimodal cation channel activated by low pH, noxious heat, capsaicin, and voltage. ASICs and TRPV1 are present in sensory neurons. It has been shown that raising the temperature increases TRPV1 and decreases ASIC H(+)-gated current amplitudes. To understand the underlying mechanisms, we have analyzed ASIC and TRPV1 function in a recombinant expression system and in dorsal root ganglion (DRG) neurons at room and physiological temperature. We show that temperature in the range studied does not affect the pH dependence of ASIC and TRPV1 activation. A temperature increase induces, however, a small alkaline shift of the pH dependence of steady-state inactivation of ASIC1a, ASIC1b, and ASIC2a. The decrease in ASIC peak current amplitudes at higher temperatures is likely in part due to the observed accelerated open channel inactivation kinetics and for some ASIC types to the changed pH dependence of steady-state inactivation. The increase in H(+)-activated TRPV1 current at the higher temperature is at least in part due to a hyperpolarizing shift in its voltage dependence. The contribution of TRPV1 relative to ASICs to H(+)-gated currents in DRG neurons increases with higher temperature and acidity. Still, ASICs remain the principal pH sensors of DRG neurons at 35°C in the pH range ≥6.
Collapse
Affiliation(s)
- Maxime G Blanchard
- Département de Pharmacologie et de Toxicologie, Université de Lausanne, Rue du Bugnon 27, Lausanne, Switzerland
| | | |
Collapse
|
210
|
Lu SG, Zhang XL, Luo DZ, Gold MS. Persistent inflammation alters the density and distribution of voltage-activated calcium channels in subpopulations of rat cutaneous DRG neurons. Pain 2010; 151:633-643. [PMID: 20884119 DOI: 10.1016/j.pain.2010.08.030] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 07/09/2010] [Accepted: 08/16/2010] [Indexed: 01/16/2023]
Abstract
The impact of persistent inflammation on voltage-activated Ca(2+) channels in cutaneous DRG neurons from adult rats was assessed with whole cell patch clamp techniques, sqRT-PCR and Western blot analysis. Inflammation was induced with a subcutaneous injection of complete Freund's adjuvant (CFA). DiI was used to identify DRG neurons innervating the site of inflammation. Three days after CFA injection, high threshold Ca(2+) current (HVA) density was significantly reduced in small and medium, but not large diameter neurons, reflecting a decrease in N-, L- and P/Q-type currents. This decrease in HVA current was associated with an increase in mRNA encoding the α2δ1-subunit complex, but no detectable change in N-type subunit (Ca(V)2.2) mRNA. An increase in both α2δ1 and Ca(V)2.2 protein was detected in the central nerves arising from L4 and L5 ganglia ipsilateral to the site of inflammation. In current clamp experiments on small and medium diameter cutaneous DRG neurons from naïve rats, blocking ∼40% of HVA current with Cd(2+) (5μM), had opposite effects on subpopulations of cutaneous DRG neurons (increasing excitability and action potential duration in some and decreasing excitability in others). The alterations in the density and distribution of voltage-activated Ca(2+) channels in subpopulations of cutaneous DRG neurons that develop following CFA injection should contribute to changes in sensory transmission observed in the presence of inflammation.
Collapse
Affiliation(s)
- Shao-Gang Lu
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh, Pittsburgh, PA 15213, USA Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15213, USA The Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA 15213, USA Department of Anesthesiology & Perioperative Care, School of Medicine, University of California, Irvine, CA 92697, USA
| | | | | | | |
Collapse
|
211
|
Miao XR, Gao XF, Wu JX, Lu ZJ, Huang ZX, Li XQ, He C, Yu WF. Bilateral downregulation of Nav1.8 in dorsal root ganglia of rats with bone cancer pain induced by inoculation with Walker 256 breast tumor cells. BMC Cancer 2010; 10:216. [PMID: 20482896 PMCID: PMC2894792 DOI: 10.1186/1471-2407-10-216] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Accepted: 05/20/2010] [Indexed: 12/19/2022] Open
Abstract
Background Rapid and effective treatment of cancer-induced bone pain remains a clinical challenge and patients with bone metastasis are more likely to experience severe pain. The voltage-gated sodium channel Nav1.8 plays a critical role in many aspects of nociceptor function. Therefore, we characterized a rat model of cancer pain and investigated the potential role of Nav1.8. Methods Adult female Wistar rats were used for the study. Cancer pain was induced by inoculation of Walker 256 breast carcinosarcoma cells into the tibia. After surgery, mechanical and thermal hyperalgesia and ambulation scores were evaluated to identify pain-related behavior. We used real-time RT-PCR to determine Nav1.8 mRNA expression in bilateral L4/L5 dorsal root ganglia (DRG) at 16-19 days after surgery. Western blotting and immunofluorescence were used to compare the expression and distribution of Nav1.8 in L4/L5 DRG between tumor-bearing and sham rats. Antisense oligodeoxynucleotides (ODNs) against Nav1.8 were administered intrathecally at 14-16 days after surgery to knock down Nav1.8 protein expression and changes in pain-related behavior were observed. Results Tumor-bearing rats exhibited mechanical hyperalgesia and ambulatory-evoked pain from day 7 after inoculation of Walker 256 cells. In the advanced stage of cancer pain (days 16-19 after surgery), normalized Nav1.8 mRNA levels assessed by real-time RT-PCR were significantly lower in ipsilateral L4/L5 DRG of tumor-bearing rats compared with the sham group. Western-blot showed that the total expression of Nav1.8 protein significantly decreased bilaterally in DRG of tumor-bearing rats. Furthermore, as revealed by immunofluorescence, only the expression of Nav1.8 protein in small neurons down regulated significantly in bilateral DRG of cancer pain rats. After administration of antisense ODNs against Nav1.8, Nav1.8 protein expression decreased significantly and tumor-bearing rats showed alleviated mechanical hyperalgesia and ambulatory-evoked pain. Conclusions These findings suggest that Nav1.8 plays a role in the development and maintenance of bone cancer pain.
Collapse
Affiliation(s)
- Xue-Rong Miao
- Department of Anesthesiology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
212
|
Choi JS, Cheng X, Foster E, Leffler A, Tyrrell L, te Morsche RHM, Eastman EM, Jansen HJ, Huehne K, Nau C, Dib-Hajj SD, Drenth JPH, Waxman SG. Alternative splicing may contribute to time-dependent manifestation of inherited erythromelalgia. Brain 2010; 133:1823-35. [DOI: 10.1093/brain/awq114] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
213
|
Abstract
Nociception is essential for survival whereas pathological pain is maladaptive and often unresponsive to pharmacotherapy. Voltage-gated sodium channels, Na(v)1.1-Na(v)1.9, are essential for generation and conduction of electrical impulses in excitable cells. Human and animal studies have identified several channels as pivotal for signal transmission along the pain axis, including Na(v)1.3, Na(v)1.7, Na(v)1.8, and Na(v)1.9, with the latter three preferentially expressed in peripheral sensory neurons and Na(v)1.3 being upregulated along pain-signaling pathways after nervous system injuries. Na(v)1.7 is of special interest because it has been linked to a spectrum of inherited human pain disorders. Here we review the contribution of these sodium channel isoforms to pain.
Collapse
Affiliation(s)
- Sulayman D Dib-Hajj
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | |
Collapse
|
214
|
Abstract
Drugs inhibiting voltage-gated sodium channels have long been used as analgesics, beginning with the use of local anaesthetics for sensory blockade and then with the discovery that Nav-blocking anticonvulsants also have benefit for pain therapy. These drugs were discovered without knowledge of their molecular target, using traditional pharmacological methods, and their clinical utility is limited by relatively narrow therapeutic windows. Until recently, attempts to develop improved inhibitors using modern molecular-targeted screening approaches have met with limited success. However, in the last few years there has been renewed activity following the discovery of human Nav1.7 mutations that cause striking insensitivity to pain. Together with recent advances in the technologies required to prosecute ion channels as drug targets, this has led to significant progress being made. This article reviews these developments and summarises current findings with these emerging new Nav inhibitors, highlighting some of the unanswered questions and the challenges that remain before they can be developed for clinical use.
Collapse
Affiliation(s)
- Jeffrey J Clare
- Cell-Based Assays Group, Millipore Corporation, St Charles, Missouri 63304, USA.
| |
Collapse
|
215
|
Grishko V, Xu M, Wilson G, Pearsall AW. Apoptosis and mitochondrial dysfunction in human chondrocytes following exposure to lidocaine, bupivacaine, and ropivacaine. J Bone Joint Surg Am 2010; 92:609-18. [PMID: 20194319 DOI: 10.2106/jbjs.h.01847] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Several mechanisms have been proposed to explain toxicity of local anesthetics to chondrocytes, including the blockade of potassium channels and mitochondrial injury. The purposes of this investigation were to study the effects of lidocaine, bupivacaine, and ropivacaine on human chondrocyte viability and mitochondrial function in vitro and to characterize the type of cell death elicited following exposure. METHODS Primary chondrocyte cultures from patients with osteoarthritis undergoing knee replacement were treated with saline solution and the following concentrations of local anesthetics: 2%, 1%, and 0.5% lidocaine, 0.5% and 0.25% bupivacaine, and 0.5% and 0.2% ropivacaine for one hour. Cell viability and apoptosis were measured by flow cytometry at twenty-four hours and 120 hours after treatment. Nuclear staining and caspase 3 and 9 cleavage assays (Western blot) were used to further establish the induction of apoptosis. Mitochondrial dysfunction was evaluated by the accumulation of mitochondrial DNA damage (quantitative Southern blot), changes in adenosine triphosphate production (bioluminescence kit), and mitochondrial protein levels (Western blot analysis). RESULTS Exposure of primary human chondrocytes to a 2% concentration of lidocaine caused massive necrosis of chondrocytes after twenty-four hours, 1% lidocaine and 0.5% bupivacaine caused a detectable, but not significant, decrease in viability after twenty-four hours, while 0.5% lidocaine, 0.25% bupivacaine, and both concentrations of ropivacaine (0.5% and 0.2%) did not affect chondrocyte viability. Flow cytometry analysis of chondrocytes 120 hours after drug treatment revealed a significant decrease in viability (p < 0.05) with a concomitant increase in the number of apoptotic cells at all concentrations of lidocaine, bupivacaine, and ropivacaine analyzed, except 0.2% ropivacaine. Apoptosis was verified by observation of condensed and fragmented nuclei and a decrease in procaspase 3 and 9 levels. Local anesthetics induced mitochondrial DNA damage and a decrease in adenosine triphosphate and mitochondrial protein levels. CONCLUSIONS Lidocaine, bupivacaine, and ropivacaine cause delayed mitochondrial dysfunction and apoptosis in cultured human chondrocytes.
Collapse
Affiliation(s)
- Valentina Grishko
- Department of Orthopaedic Surgery, University of South Alabama, 3421 Medical Park Drive, Mobile, AL 36693, USA.
| | | | | | | |
Collapse
|
216
|
Kistner K, Zimmermann K, Ehnert C, Reeh PW, Leffler A. The tetrodotoxin-resistant Na+ channel Nav1.8 reduces the potency of local anesthetics in blocking C-fiber nociceptors. Pflugers Arch 2010; 459:751-63. [DOI: 10.1007/s00424-010-0785-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Revised: 01/03/2010] [Accepted: 01/07/2010] [Indexed: 10/19/2022]
|
217
|
Wang Y, Duan JH, Hingtgen CM, Nicol GD. Augmented sodium currents contribute to the enhanced excitability of small diameter capsaicin-sensitive sensory neurons isolated from Nf1+/⁻ mice. J Neurophysiol 2010; 103:2085-94. [PMID: 20164394 DOI: 10.1152/jn.01010.2009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neurofibromin, the product of the Nf1 gene, is a guanosine triphosphatase activating protein (GAP) for p21ras (Ras) that accelerates conversion of active Ras-GTP to inactive Ras-GDP. Sensory neurons with reduced levels of neurofibromin likely have augmented Ras-GTP activity. We reported previously that sensory neurons isolated from a mouse model with a heterozygous mutation of the Nf1 gene (Nf1+/⁻) exhibited greater excitability compared with wild-type mice. To determine the mechanism giving rise to the augmented excitability, differences in specific membrane currents were examined. Consistent with the enhanced excitability of Nf1+/⁻ neurons, peak current densities of both tetrodotoxin-resistant sodium current (TTX-R I(Na)) and TTX-sensitive (TTX-S) I(Na) were significantly larger in Nf1+/⁻ than in wild-type neurons. Although the voltages for half-maximal activation (V(0.5)) were not different, there was a significant depolarizing shift in the V(0.5) for steady-state inactivation of both TTX-R and TTX-S I(Na) in Nf1+/⁻ neurons. In addition, levels of persistent I(Na) were significantly larger in Nf1+/⁻ neurons. Neither delayed rectifier nor A-type potassium currents were altered in Nf1+/⁻ neurons. These results demonstrate that enhanced production of action potentials in Nf1+/⁻ neurons results, in part, from larger current densities and a depolarized voltage dependence of steady-state inactivation for I(Na) that potentially leads to a greater availability of sodium channels at voltages near the firing threshold for the action potential.
Collapse
Affiliation(s)
- Yue Wang
- Dept. of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | |
Collapse
|
218
|
Novel strategies for the treatment of inflammatory hyperalgesia. Eur J Clin Pharmacol 2010; 66:429-44. [DOI: 10.1007/s00228-010-0784-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2009] [Accepted: 01/11/2010] [Indexed: 12/24/2022]
|
219
|
Lampert A, O'Reilly AO, Reeh P, Leffler A. Sodium channelopathies and pain. Pflugers Arch 2010; 460:249-63. [PMID: 20101409 DOI: 10.1007/s00424-009-0779-3] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 12/13/2009] [Accepted: 12/18/2009] [Indexed: 12/19/2022]
Abstract
Chronic pain often represents a severe, debilitating condition. Up to 10% of the worldwide population are affected, and many patients are poorly responsive to current treatment strategies. Nociceptors detect noxious conditions to produce the sensation of pain, and this signal is conveyed to the CNS by means of action potentials. The fast upstroke of action potentials is mediated by voltage-gated sodium channels, of which nine pore-forming alpha-subunits (Nav1.1-1.9) have been identified. Heterogeneous functional properties and distinct expression patterns denote specialized functions of each subunit. The Nav1.7 and Nav1.8 subunits have emerged as key molecules involved in peripheral pain processing and in the development of an increased pain sensitivity associated with inflammation and tissue injury. Several mutations in the SCN9A gene encoding for Nav1.7 have been identified as important cellular substrates for different heritable pain syndromes. This review aims to cover recent progress on our understanding of how biophysical properties of mutant Nav1.7 translate into an aberrant electrogenesis of nociceptors. We also recapitulate the role of Nav1.8 for peripheral pain processing and of additional sodium channelopathies which have been linked to disorders with pain as a significant component.
Collapse
Affiliation(s)
- Angelika Lampert
- Department of Physiology and Pathophysiology, Friedrich-Alexander University Erlangen-Nuremberg, Universitätsstrasse 17, 91054, Erlangen, Germany.
| | | | | | | |
Collapse
|
220
|
Block of sensory neuronal Na+ channels by the secreolytic ambroxol is associated with an interaction with local anesthetic binding sites. Eur J Pharmacol 2010; 630:19-28. [PMID: 20044988 DOI: 10.1016/j.ejphar.2009.12.027] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 12/05/2009] [Accepted: 12/18/2009] [Indexed: 10/20/2022]
Abstract
Voltage-gated Na(+) channels (Na(v)) regulate the excitability of sensory neurons and are potential targets for novel analgesics. The secreolytic ambroxol reduces pain-related behavior in rodents and alleviates pain in humans. With properties resembling those of local anesthetics, ambroxol has been reported to block Na(+) currents in sensory neurons with a preference for tetrodotoxin-resistant (TTXr) Na(+) currents encoded by Na(v)1.8. However, the molecular determinants for ambroxol-induced block of Na(+) channels and a preferential block of Na(v)1.8 opposed to tetrodotoxin-sensitive (TTXs) Na(v) alpha-subunits have not been studied in detail. By means of whole-cell voltage clamp recordings, we studied the effects of ambroxol and local anesthetics on the recombinant TTXr subunit Na(v)1.8, on TTXs Na(v) alpha-subunits and on mutants of Na(v)1.4 that are insensitive to local anesthetics. Tonic and use-dependent block by ambroxol was strongly alleviated in local anesthetic-insensitive Na(v)1.4 mutants. Use-dependent block, but not tonic block was significantly stronger on Na(v)1.8 than on TTXs channels. The TTXs subunit Na(v)1.3 displayed the least degree of use-dependent block by ambroxol. The local anesthetics mepivacaine and S(-)-bupivacaine also blocked Na(v)1.8 and TTXs channels differentially. While mepivacaine displayed a preferential use-dependent block of Na(v)1.8, S(-)-bupivacaine displayed a preference for TTXs Na(+) channels. Our data show that ambroxol acts as a typical local anesthetic on Na(+) channels interacting with specific residues in the S6 segments. This property probably meditates the analgesic effect of ambroxol. Ambroxol preferentially blocks Na(v)1.8, however shares this property with established local anesthetics like mepivacaine.
Collapse
|
221
|
Inoue T, Bryant BP. Multiple cation channels mediate increases in intracellular calcium induced by the volatile irritant, trans-2-pentenal in rat trigeminal neurons. Cell Mol Neurobiol 2010; 30:35-41. [PMID: 19568926 DOI: 10.1007/s10571-009-9428-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2009] [Accepted: 06/15/2009] [Indexed: 10/20/2022]
Abstract
Trans-2-Pentenal (pentenal), an alpha,beta-unsaturated aldehyde, induces increases in [Ca(2+)](i) in cultured neonatal rat trigeminal ganglion (TG) neurons. Since all pentenal-sensitive neurons responded to a specific TRPA1 agonist, allyl isothiocyanate (AITC) and neurons from TRPA1 knockouts failed to respond to pentenal, TRPA1 appears to be sole initial transduction site for pentenal-evoked trigeminal response, as reported for the structurally related irritant, acrolein. Furthermore, because the neuronal sensitivity to pentenal is strictly dependent upon the presence of extracellular Na(+)/Ca(2+), as we showed previously, we investigated which types of voltage-gated sodium/calcium channels (VGSCs/VGCCs) are involved in pentenal-induced [Ca(2+)](i) increases as a downstream mechanisms. The application of tetrodotoxin (TTX) significantly suppressed the pentenal-induced increase in [Ca(2+)](i) in a portion of TG neurons, suggesting that TTX-sensitive (TTXs) VGSCs contribute to the pentenal response in those neurons. Diltiazem and omega-agatoxin IVA, antagonists of L- and P/Q-type VGCCs, respectively, both caused significant reductions of the pentenal-induced responses. omega-Conotoxin GVIA, on the other hand, caused only a small decrease in the size of pentenal-induced [Ca(2+)](i) rise. These indicate that both L- and P/Q-type VGCCs are involved in the increase in [Ca(2+)](i) produced by pentenal, while N-type calcium channels play only a minor role. This study demonstrates that TTXs VGSCs, L- and P/Q-type VGCCs play a significant role in the pentenal-induced trigeminal neuronal responses as downstream mechanisms following TRPA1 activation.
Collapse
Affiliation(s)
- Takashi Inoue
- Tobacco Science Research Center, Japan Tobacco Inc., Yokohama, Kanagawa, 227-8512, Japan.
| | | |
Collapse
|
222
|
Zhang H, Verkman AS. Aquaporin-1 tunes pain perception by interaction with Na(v)1.8 Na+ channels in dorsal root ganglion neurons. J Biol Chem 2009; 285:5896-906. [PMID: 20018876 DOI: 10.1074/jbc.m109.090233] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Aquaporin-1 (AQP1) water channels are expressed in the plasma membrane of dorsal root ganglion (DRG) neurons. We found reduced osmotic water permeability in freshly isolated DRG neurons from AQP1(-/-) versus AQP1(+/+) mice. Behavioral studies showed greatly reduced thermal inflammatory pain perception in AQP1(-/-) mice evoked by bradykinin, prostaglandin E(2), and capsaicin as well as reduced cold pain perception. Patch clamp of freshly isolated DRG neurons showed reduced action potential firing in response to current injections. Single action potentials after pulse current injections showed reduced maximum inward current, suggesting impaired Na(v)1.8 Na(+) function. Whole-cell Na(v)1.8 Na(+) currents in Na(v)1.8-expressing ND7-23 cells showed slowed frequency-dependent inactivation after AQP1 transfection. Immunoprecipitation studies showed AQP1- Na(v)1.8 Na(+) interaction, which was verified in live cells by single-particle tracking of quantum dot-labeled AQP1. Our results implicate the involvement of AQP1 in DRG neurons for the perception of inflammatory thermal pain and cold pain, whose molecular basis is accounted for, in part, by reduced Na(v)1.8-dependent membrane Na(+) current. AQP1 is, thus, a novel target for pain management.
Collapse
Affiliation(s)
- Hua Zhang
- Department of Medicine, University of California, San Francisco, California 94143-0521, USA
| | | |
Collapse
|
223
|
Smith ESJ, Lewin GR. Nociceptors: a phylogenetic view. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2009; 195:1089-106. [PMID: 19830434 PMCID: PMC2780683 DOI: 10.1007/s00359-009-0482-z] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 09/15/2009] [Accepted: 09/20/2009] [Indexed: 02/07/2023]
Abstract
The ability to react to environmental change is crucial for the survival of an organism and an essential prerequisite is the capacity to detect and respond to aversive stimuli. The importance of having an inbuilt "detect and protect" system is illustrated by the fact that most animals have dedicated sensory afferents which respond to noxious stimuli called nociceptors. Should injury occur there is often sensitization, whereby increased nociceptor sensitivity and/or plasticity of nociceptor-related neural circuits acts as a protection mechanism for the afflicted body part. Studying nociception and nociceptors in different model organisms has demonstrated that there are similarities from invertebrates right through to humans. The development of technology to genetically manipulate organisms, especially mice, has led to an understanding of some of the key molecular players in nociceptor function. This review will focus on what is known about nociceptors throughout the Animalia kingdom and what similarities exist across phyla; especially at the molecular level of ion channels.
Collapse
Affiliation(s)
- Ewan St John Smith
- Department of Neuroscience, Max-Delbrück Center for Molecular Medicine, 13125 Berlin-Buch, Germany.
| | | |
Collapse
|
224
|
Scroggs RS. Serotonin upregulates low- and high-threshold tetrodotoxin-resistant sodium channels in the same subpopulation of rat nociceptors. Neuroscience 2009; 165:1293-300. [PMID: 19932889 DOI: 10.1016/j.neuroscience.2009.11.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Revised: 10/27/2009] [Accepted: 11/16/2009] [Indexed: 10/20/2022]
Abstract
The modulation by serotonin (5-HT) of low- and high-threshold tetrodotoxin- (TTX) resistant Na(+) currents was studied in small-diameter (approximately 25 microm) acutely-isolated rat dorsal root ganglion (DRG) cells. Each DRG cell included in the study was classified as type 2 or non-type 2, based on expression of a low-threshold A-type K(+) current. When cells of either type were recorded from using a CsF based internal solution and a holding potential (HP) of -80 mV, the apparent threshold for activation of TTX-resistant Na(+) currents ranged from -75 to -60 mV. A 500 ms prepulse to -60 mV greatly suppressed currents evoked by test potentials (TPs) to -75 through -35 mV. A similar scenario was observed when the CsF based internal solution was changed for one that contained CsCl, except that the apparent threshold of activation was shifted by about +25 mV, and currents evoked by TPs to -55 to -35 mV in the absence of a prepulse were much smaller than their counterparts observed with the CsF internal. These data suggest two types of TTX-resistant Na(+) currents; one with a low-threshold for activation that is enhanced by the presence of fluoride inside the cell and is inactivated by holding at -60 mV, and one with a higher threshold for activation that is not inactivated by holding at -60 mV. In type 2 DRG cells, 10 microM 5-HT upregulated low-threshold currents evoked by TPs to -55 to -35 mV from HP -80 mV, as well as high-threshold currents evoked by more depolarized TPs from HP -60 mV. However, when cells were held at -60 mV, 5-HT did not upregulate currents evoked by TPs to -35 or -30 mV, suggesting that the low-threshold current was nearly completely inactivated. Previous studies have suggested that type 2 DRG cells are nociceptor cell bodies. If 5-HT produces similar effects in type 2 DRG cell peripheral receptors, the upregulation of the low-threshold currents may serve to lower the threshold for nociception, while the upregulation of the high-threshold current may strengthen nociceptive signals.
Collapse
Affiliation(s)
- R S Scroggs
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38139, USA.
| |
Collapse
|
225
|
Snape A, Pittaway JF, Baker MD. Excitability parameters and sensitivity to anemone toxin ATX-II in rat small diameter primary sensory neurones discriminated by Griffonia simplicifolia isolectin IB4. J Physiol 2009; 588:125-37. [PMID: 19900960 DOI: 10.1113/jphysiol.2009.181107] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Sensory neurone subtypes (< or = 25 microm apparent diameter) express a variety of Na(+) channels, where expression is linked to action potential duration, and associated with differential IB4-lectin binding. We hypothesized that sensitivity to ATX-II might also discriminate neurones and report that 1 microm has negligible or small effects on action potentials in IB4 +ve, but dramatically increased action potential duration in IB4 ve, neurones. The toxin did not act on tetrodotoxin-resistant (TTX-r) Na(V)1.8 currents; discrimination was based on tetrodotoxin-sensitive (TTX-s) Na(+) channel expression. We also explored the effects of varying the holding potential on current threshold, and the effect of repetitive activation on action currents in IB4 +ve and ve neurones. IB4 +ve neurones became more excitable with depolarization over the range 100 to 20 mV, but IB4 ve neurones exhibited peak excitability near 55 mV, and were inexcitable at 20 mV. Eliciting action potentials at 2 Hz, we found that peak inward action current in IB4 +ve neurones was reduced, whereas changes in the current amplitude were negligible in most IB4 ve neurones. Our findings are consistent with relatively toxin-insensitive channels including Na(V)1.7 being expressed in IB4 +ve neurones, whereas toxin sensitivity indicates that IB4 ve neurones may express Na(V)1.1 or Na(V)1.2, or both. The retention of excitability at low membrane potentials, and the responses to repetitive stimulation are explained by the known preferential expression of Na(V)1.8 in IB4 +ve neurones, and the reduction in action current in IB4 +ve neurones with repetitive stimulation supports a novel hypothesis explaining the slowing of conduction velocity in C-fibres by the build-up of Na(+) channel inactivation.
Collapse
Affiliation(s)
- Alistair Snape
- Queen Mary University of London, Barts and The London School of Medicine and Dentistry, Neuroscience and Trauma Centre, Blizard Institute of Cell and Molecular Science, London E1 2AT, UK
| | | | | |
Collapse
|
226
|
Fricker D, Dinocourt C, Eugène E, Wood JN, Wood J, Miles R. Pyramidal cells of rodent presubiculum express a tetrodotoxin-insensitive Na+ current. J Physiol 2009; 587:4249-64. [PMID: 19596892 DOI: 10.1113/jphysiol.2009.175349] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Presubicular neurons are activated physiologically by a specific preferred head direction. Here we show that firing in these neurones is characterized by action potentials with a large overshoot and a reduced firing frequency adaptation during repetitive firing. We found that a component of the sodium current of presubicular cells was not abolished by tetrodotoxin (TTX, 10 mum) and was activated at more depolarized voltages than TTX-sensitive currents. This inward current was completely abolished by the removal of external sodium, suggesting that sodium is the charge carrier of this TTX-insensitive (TTX-I) current. The channels responsible for the TTX-I sodium current seemed to be expressed at sites distant from the soma, giving rise to a voltage-dependent delay in current activation. The voltage required for half-maximal activation was 21 mV, and 36 mV for inactivation, which is similar to that reported for Na(V)1.8 sodium channels. However, the kinetics were considerably slower, with a time constant of current decay of 1.4 s. The current was not abolished in pyramidal cells from animals lacking either the Na(V)1.8 or the Na(V)1.9 subunit. This, possibly novel, TTX-I sodium current could contribute to the coding functions of presubicular neurons, specifically the maintained firing associated with signalling of a stable head position.
Collapse
Affiliation(s)
- Desdemona Fricker
- CRICM - CNRS UMR7225, CHU Pitié-Salpêtrière, 105 Bd de l'Hôpital, 75013 Paris, France.
| | | | | | | | | | | |
Collapse
|
227
|
Rodger IW. Analgesic targets: today and tomorrow. Inflammopharmacology 2009; 17:151-61. [PMID: 19507000 DOI: 10.1007/s10787-009-0006-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Accepted: 05/12/2009] [Indexed: 02/06/2023]
Abstract
Pain is recognized as a multifactorial sensory experience that is wholly unpleasant. It can vary in intensity from mild to severe and its duration can be anything from transient to persistent. Today we know so much more about the peripheral nociceptor as the primary detection apparatus for painful stimuli. We also understand in far greater detail the neurochemical mechanisms that occur at the level of the spinal cord and the complex interplay that exists between excitatory and inhibitory neural pathways. As a consequence of the assembly of this new body of evidence there are clear pointers that direct our attention to receptors, signaling pathways, enzymes and ion channels that all have the potential to be targets for novel, effective analgesics. The purpose of this review is to highlight some of the knowledge that has been assembled on this subject in recent years.
Collapse
Affiliation(s)
- Ian W Rodger
- St Joseph's Healthcare Hamilton, Department of Medicine, McMaster University, ON, Canada.
| |
Collapse
|
228
|
Park CK, Kim K, Jung SJ, Kim MJ, Ahn DK, Hong SD, Kim JS, Oh SB. Molecular mechanism for local anesthetic action of eugenol in the rat trigeminal system. Pain 2009; 144:84-94. [PMID: 19376653 DOI: 10.1016/j.pain.2009.03.016] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Revised: 02/04/2009] [Accepted: 03/16/2009] [Indexed: 11/26/2022]
Abstract
Eugenol is widely used in dentistry as a local analgesic agent, because of its ability to allay tooth pain. Interestingly, eugenol shares several pharmacological actions with local anesthetics which include inhibition of voltage-gated sodium channel (VGSC) and activation of transient receptor potential vanilloid subtype 1 (TRPV1). In the present study, we investigated the effects of eugenol on pain behaviors in orofacial area, and as an attempt to elucidate its mechanism we characterized inhibitory effects of eugenol on VGSCs in trigeminal ganglion (TG) neurons. TG neurons were classified into four types on the basis of their neurochemical and electrophysiological properties such as cell size, shapes of action potential (AP), isolectin-B(4) (IB(4)) binding, and were analyzed for the association of their distinctive electrophysiological properties and mRNA expression of Na(v)1.8 and TRPV1 by using single-cell RT-PCR following whole-cell recordings. Subcutaneous injection of eugenol reduced the thermal nociception and capsaicin-induced thermal hyperalgesia in a dose-dependent manner. Eugenol also diminished digastric electromyogram evoked by noxious electrical stimulation to anterior tooth pulp, which was attributable to the blockade of AP conduction on inferior alveolar nerve. At cellular level, eugenol reversibly inhibited APs and VGSCs in IB(4)+/TRPV1+/Na(v)1.8+ nociceptive TG neurons (Type I-Type III) and IB(4)-/TRPV1-/Na(v)1.8- nociceptive TG neurons (Type IV). Both TTX-resistant I(Na) in Type I-Type III neurons and TTX-sensitive I(Na) in Type IV neurons were sensitive to eugenol. Taken together, these results suggest that eugenol may serve as local anesthetics for other pathological pain conditions in addition to its wide use in dental clinic.
Collapse
Affiliation(s)
- Chul-Kyu Park
- National Research Laboratory for Pain, Dental Research Institute and Department of Physiology, School of Dentistry, Seoul National University, 28-2 Yeongeon-Dong, Chongno-Ku, Seoul 110-749, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
229
|
Browne LE, Clare JJ, Wray D. Functional and pharmacological properties of human and rat NaV1.8 channels. Neuropharmacology 2009; 56:905-14. [DOI: 10.1016/j.neuropharm.2009.01.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Revised: 01/21/2009] [Accepted: 01/21/2009] [Indexed: 10/21/2022]
|
230
|
Dib-Hajj SD, Binshtok AM, Cummins TR, Jarvis MF, Samad T, Zimmermann K. Voltage-gated sodium channels in pain states: Role in pathophysiology and targets for treatment. ACTA ACUST UNITED AC 2009; 60:65-83. [DOI: 10.1016/j.brainresrev.2008.12.005] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2008] [Indexed: 12/19/2022]
|
231
|
Ma X, Mao YK, Wang B, Huizinga JD, Bienenstock J, Kunze W. Lactobacillus reuteri ingestion prevents hyperexcitability of colonic DRG neurons induced by noxious stimuli. Am J Physiol Gastrointest Liver Physiol 2009; 296:G868-75. [PMID: 19179624 DOI: 10.1152/ajpgi.90511.2008] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Lactobacillus species ingestion can decrease autonomic responses and spinal fiber discharge to nociceptive colorectal distension (CRD), even in the absence of inflammation. The present study aimed to determine whether dorsal root ganglion (DRG) somas could be a locus where the antinociceptive probiotic may have an effect. Healthy rats were fed with Lactobacillus reuteri or vehicle control for 9 days whereupon they were anesthetized, and intermittent distal colonic CRD at 80 mmHg distension was either performed for 1 h or not. The animals were immediately euthanized and patch-clamp recordings taken after isolation and overnight culture from those DRG that projected to the distal colon. CRD decreased the threshold for action potential generation and increased the number of spikes discharged during a standard depolarizing test stimulus, and this effect was blocked by prior probiotic ingestion. The increase in excitability was paralleled by an increase in DRG capacitance, which was not altered by Lactobacillus reuteri ingestion. CRD did not increase tissue weight or myeloperoxidase activity. We suggest that the effects of CRD may have been caused by activity-dependent neurotransmission between DRG somas. CRD evoked increases in action potential upstroke speed, which suggests that it may also have led to augmentation of sodium channel conductances. Probiotic ingestion may have interfered with this hypothetical mechanism since it blocked the effect of CRD on the action potential.
Collapse
Affiliation(s)
- Xuelian Ma
- Institute of Physiology, School of Medicine, Shandong University, Shandong, China
| | | | | | | | | | | |
Collapse
|
232
|
Thakor DK, Lin A, Matsuka Y, Meyer EM, Ruangsri S, Nishimura I, Spigelman I. Increased peripheral nerve excitability and local NaV1.8 mRNA up-regulation in painful neuropathy. Mol Pain 2009; 5:14. [PMID: 19320998 PMCID: PMC2667430 DOI: 10.1186/1744-8069-5-14] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Accepted: 03/25/2009] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Neuropathic pain caused by peripheral nerve injury is a chronic disorder that represents a significant clinical challenge because the pathological mechanisms have not been fully elucidated. Several studies have suggested the involvement of various sodium channels, including tetrodotoxin-resistant NaV1.8, in affected dorsal root ganglion (DRG) neurons. We have hypothesized that altered local expression of NaV1.8 in the peripheral axons of DRG neurons could facilitate nociceptive signal generation and propagation after neuropathic injury. RESULTS After unilateral sciatic nerve entrapment injury in rats, compound action potential amplitudes were increased in both myelinated and unmyelinated fibers of the ipsilateral sciatic nerve. Tetrodotoxin resistance of both fiber populations and sciatic nerve NaV1.8 immunoreactivity were also increased. Further analysis of NaV1.8 distribution revealed that immunoreactivity and mRNA levels were decreased and unaffected, respectively, in the ipsilateral L4 and L5 DRG; however sciatic nerve NaV1.8 mRNA showed nearly an 11-fold ipsilateral increase. Nav1.8 mRNA observed in the sciatic nerve was likely of axonal origin since it was not detected in non-neuronal cells cultured from nerve tissue. Absence of changes in NaV1.8 mRNA polyadenylation suggests that increased mRNA stability was not responsible for the selective peripheral mRNA increase. Furthermore, mRNA levels of NaV1.3, NaV1.5, NaV1.6, NaV1.7, and NaV1.9 were not significantly different between ipsilateral and contralateral nerves. We therefore propose that selective NaV1.8 mRNA axonal transport and local up-regulation could contribute to the hyperexcitability of peripheral nerves in some neuropathic pain states. CONCLUSION Cuff entrapment injury resulted in significantly elevated axonal excitability and increased NaV1.8 immunoreactivity in rat sciatic nerves. The concomitant axonal accumulation of NaV1.8 mRNA may play a role in the pathogenesis of this model of neuropathic pain.
Collapse
Affiliation(s)
- Devang Kashyap Thakor
- Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, 10833 Le Conte Avenue Los Angeles, CA 90095-1668, USA
- Jane and Jerry Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, Biomaterials, and Hospital Dentistry, School of Dentistry, University of California, Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095-1668, USA
- Neuroengineering Training Program, Biomedical Engineering Interdepartmental Program, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, CA 90095, USA
- Departments of Neurosurgery and Physical Medicine & Rehabilitation, Harvard Medical School, Boston, MA, USA
| | - Audrey Lin
- Jane and Jerry Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, Biomaterials, and Hospital Dentistry, School of Dentistry, University of California, Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095-1668, USA
| | - Yoshizo Matsuka
- Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, 10833 Le Conte Avenue Los Angeles, CA 90095-1668, USA
| | - Edward M Meyer
- Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, 10833 Le Conte Avenue Los Angeles, CA 90095-1668, USA
| | - Supanigar Ruangsri
- Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, 10833 Le Conte Avenue Los Angeles, CA 90095-1668, USA
- Jane and Jerry Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, Biomaterials, and Hospital Dentistry, School of Dentistry, University of California, Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095-1668, USA
| | - Ichiro Nishimura
- Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, 10833 Le Conte Avenue Los Angeles, CA 90095-1668, USA
- Jane and Jerry Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, Biomaterials, and Hospital Dentistry, School of Dentistry, University of California, Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095-1668, USA
- Neuroengineering Training Program, Biomedical Engineering Interdepartmental Program, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, CA 90095, USA
| | - Igor Spigelman
- Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, 10833 Le Conte Avenue Los Angeles, CA 90095-1668, USA
- Neuroengineering Training Program, Biomedical Engineering Interdepartmental Program, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
233
|
Ritter AM, Martin WJ, Thorneloe KS. The voltage-gated sodium channel Nav1.9 is required for inflammation-based urinary bladder dysfunction. Neurosci Lett 2009; 452:28-32. [DOI: 10.1016/j.neulet.2008.12.051] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Revised: 12/19/2008] [Accepted: 12/26/2008] [Indexed: 11/29/2022]
|
234
|
Functional tetrodotoxin-resistant Na(+) channels are expressed presynaptically in rat dorsal root ganglia neurons. Neuroscience 2008; 159:559-69. [PMID: 19162133 DOI: 10.1016/j.neuroscience.2008.12.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 11/21/2008] [Accepted: 12/16/2008] [Indexed: 11/20/2022]
Abstract
The tetrodotoxin-resistant (TTX-R) voltage-gated Na(+) channels Na(v)1.8 and Na(v)1.9 are expressed by a subset of primary sensory neurons and have been implicated in various pain states. Although recent studies suggest involvement of TTX-R Na(+) channels in sensory synaptic transmission and spinal pain processing, it remains unknown whether TTX-R Na(+) channels are expressed and function presynaptically. We examined expression of TTX-R channels at sensory synapses formed between rat dorsal root ganglion (DRG) and spinal cord (SC) neurons in a DRG/SC co-culture system. Immunostaining showed extensive labeling of presynaptic axonal boutons with Na(v)1.8- and Na(v)1.9-specific antibodies. Measurements using the fluorescent Na(+) indicator SBFI demonstrated action potential-induced presynaptic Na(+) entry that was resistant to tetrodotoxin (TTX) but was blocked by lidocaine. Furthermore, presynaptic [Ca(2+)](i) elevation in response to a single action potential was not affected by TTX in TTX-resistant DRG neurons. Finally, glutamatergic synaptic transmission was not inhibited by TTX in more than 50% of synaptic pairs examined; subsequent treatment with lidocaine completely blocked these TTX-resistant excitatory postsynaptic currents. Taken together, these results provide evidence for presynaptic expression of functional TTX-R Na(+) channels that may be important for shaping presynaptic action potentials and regulating transmitter release at the first sensory synapse.
Collapse
|
235
|
Ozaki Y, Kitamura N, Tsutsumi A, Dayanithi G, Shibuya I. NGF-induced hyperexcitability causes spontaneous fluctuations of intracellular Ca2+ in rat nociceptive dorsal root ganglion neurons. Cell Calcium 2008; 45:209-15. [PMID: 19027951 DOI: 10.1016/j.ceca.2008.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Revised: 10/09/2008] [Accepted: 10/14/2008] [Indexed: 10/21/2022]
Abstract
NGF is a candidate for a pathogenic mediator of neuropathic pain after nerve injury and inflammation. It has been reported that adult rat dorsal root ganglion (DRG) neurons cultured in the presence of NGF at 100 ng/ml generate spontaneous action potentials. However, it is unclear what types of subpopulation of DRG neurons are affected by NGF and how the intracellular Ca(2+) concentration ([Ca(2+)](i)) changes in such neurons. To elucidate these points, we measured [Ca(2+)](i) in adult rat DRG neurons cultured with or without NGF. [Ca(2+)](i) fluctuated spontaneously in the absence of any stimuli in subpopulations of NGF-treated neurons, but such fluctuations were not observed in all NGF-untreated neurons. NGF-induced [Ca(2+)](i) fluctuations were inhibited by decreases in extracellular Na(+) concentration, TTX and Lidocaine, suggesting that spontaneous action potentials provoked the [Ca(2+)](i) fluctuation. NGF-induced [Ca(2+)](i) fluctuation was observed in small and medium sized neurons and in Capsaicin-sensitive neurons more frequently than in Capsaicin-non-responsive neurons. These results suggest that NGF acted on the nociceptive neurons and made them hyperexcitable to generate spontaneous action potentials and spontaneous [Ca(2+)](i) fluctuations. The [Ca(2+)](i) fluctuation induced by NGF may play some role in the regulation of membrane excitability of nociceptive sensory neurons and neuropathic pain.
Collapse
Affiliation(s)
- Yui Ozaki
- Department of Veterinary Physiology, Faculty of Agriculture, Tottori University, 101, South 4th, Koyama, Tottori 6808553, Japan
| | | | | | | | | |
Collapse
|
236
|
Abstract
PURPOSE OF REVIEW To review key mechanisms underlying the transmission of nociceptive information from the periphery to the central nervous system implicated in different acute pain states. RECENT FINDINGS Advances in molecular and transgenic approaches have helped to identify novel therapeutic targets for the treatment of pain from tissue and nerve damage such as acid-sensing ion channels, transient receptor potential and NaV channels. The subsequent development of selective pharmacological ligands has also strengthened the role of other receptors such as hyperpolarization-activated cyclic nucleotide-gated channels and the further development of subunit specific antagonists, such as those available for NR2B, will further advance our understanding of the mechanisms involved in nociceptive transmission. SUMMARY Inflammatory and neuropathic pain differ considerably in their peripheral mechanisms but certain central spinal and brain mechanisms are common to both. The mechanisms of pain are not fully established but are thought to be underpinned by changes in the expression of receptors (nociceptive plasticity), central spinal hyperexcitability (central sensitization) and alterations in descending control from the midbrain. This review considers these mechanisms and highlights recent advances in the understanding of pain perception.
Collapse
|
237
|
England S. Voltage-gated sodium channels: the search for subtype-selective analgesics. Expert Opin Investig Drugs 2008; 17:1849-64. [DOI: 10.1517/13543780802514559] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
238
|
Schmalhofer WA, Calhoun J, Burrows R, Bailey T, Kohler MG, Weinglass AB, Kaczorowski GJ, Garcia ML, Koltzenburg M, Priest BT. ProTx-II, a selective inhibitor of NaV1.7 sodium channels, blocks action potential propagation in nociceptors. Mol Pharmacol 2008; 74:1476-84. [PMID: 18728100 DOI: 10.1124/mol.108.047670] [Citation(s) in RCA: 241] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Voltage-gated sodium (Na(V)1) channels play a critical role in modulating the excitability of sensory neurons, and human genetic evidence points to Na(V)1.7 as an essential contributor to pain signaling. Human loss-of-function mutations in SCN9A, the gene encoding Na(V)1.7, cause channelopathy-associated indifference to pain (CIP), whereas gain-of-function mutations are associated with two inherited painful neuropathies. Although the human genetic data make Na(V)1.7 an attractive target for the development of analgesics, pharmacological proof-of-concept in experimental pain models requires Na(V)1.7-selective channel blockers. Here, we show that the tarantula venom peptide ProTx-II selectively interacts with Na(V)1.7 channels, inhibiting Na(V)1.7 with an IC(50) value of 0.3 nM, compared with IC(50) values of 30 to 150 nM for other heterologously expressed Na(V)1 subtypes. This subtype selectivity was abolished by a point mutation in DIIS3. It is interesting that application of ProTx-II to desheathed cutaneous nerves completely blocked the C-fiber compound action potential at concentrations that had little effect on Abeta-fiber conduction. ProTx-II application had little effect on action potential propagation of the intact nerve, which may explain why ProTx-II was not efficacious in rodent models of acute and inflammatory pain. Mono-iodo-ProTx-II ((125)I-ProTx-II) binds with high affinity (K(d) = 0.3 nM) to recombinant hNa(V)1.7 channels. Binding of (125)I-ProTx-II is insensitive to the presence of other well characterized Na(V)1 channel modulators, suggesting that ProTx-II binds to a novel site, which may be more conducive to conferring subtype selectivity than the site occupied by traditional local anesthetics and anticonvulsants. Thus, the (125)I-ProTx-II binding assay, described here, offers a new tool in the search for novel Na(V)1.7-selective blockers.
Collapse
|
239
|
Lirk P, Poroli M, Rigaud M, Fuchs A, Fillip P, Huang CY, Ljubkovic M, Sapunar D, Hogan Q. Modulators of calcium influx regulate membrane excitability in rat dorsal root ganglion neurons. Anesth Analg 2008; 107:673-85. [PMID: 18633052 DOI: 10.1213/ane.0b013e31817b7a73] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Chronic neuropathic pain resulting from neuronal damage remains difficult to treat, in part, because of incomplete understanding of underlying cellular mechanisms. We have previously shown that inward Ca2+ flux (I(Ca)) across the sensory neuron plasmalemma is decreased in a rodent model of chronic neuropathic pain, but the direct consequence of this loss of I(Ca) on function of the sensory neuron has not been defined. We therefore examined the extent to which altered membrane properties after nerve injury, especially increased excitability that may contribute to chronic pain, are attributable to diminished Ca2+ entry. METHODS Intracellular microelectrode measurements were obtained from A-type neurons of dorsal root ganglia excised from uninjured rats. Recording conditions were varied to suppress or promote I(Ca) while biophysical variables and excitability were determined. RESULTS Both lowered external bath Ca2+ concentration and blockade of I(Ca) with bath cadmium diminished the duration and area of the after-hyperpolarization (AHP), accompanied by decreased current threshold for action potential (AP) initiation and increased repetitive firing during sustained depolarization. Reciprocally, elevated bath Ca2+ increased the AHP and suppressed repetitive firing. Voltage sag during neuronal hyperpolarization, indicative of the cation-nonselective H-current, diminished with decreased bath Ca2+, cadmium application, or chelation of intracellular Ca2+. Additional recordings with selective blockers of I(Ca) subtypes showed that N-, P/Q, L-, and R-type currents each contribute to generation of the AHP and that blockade of any of these, and the T-type current, slows the AP upstroke, prolongs the AP duration, and (except for L-type current) decreases the current threshold for AP initiation. CONCLUSIONS Taken together, our findings show that suppression of I(Ca) decreases the AHP, reduces the hyperpolarization-induced voltage sag, and increases excitability in sensory neurons, replicating changes that follow peripheral nerve trauma. This suggests that the loss of I(Ca) previously demonstrated in injured sensory neurons contributes to their dysfunction and hyperexcitability, and may lead to neuropathic pain.
Collapse
Affiliation(s)
- Philipp Lirk
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
240
|
Huang ZJ, Song XJ. Differing alterations of sodium currents in small dorsal root ganglion neurons after ganglion compression and peripheral nerve injury. Mol Pain 2008; 4:20. [PMID: 18513405 PMCID: PMC2427019 DOI: 10.1186/1744-8069-4-20] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Accepted: 05/30/2008] [Indexed: 12/17/2022] Open
Abstract
Voltage-gated sodium channels play important roles in modulating dorsal root ganglion (DRG) neuron hyperexcitability and hyperalgesia after peripheral nerve injury or inflammation. We report that chronic compression of DRG (CCD) produces profound effect on tetrodotoxin-resistant (TTX-R) and tetrodotoxin-sensitive (TTX-S) sodium currents, which are different from that by chronic constriction injury (CCI) of the sciatic nerve in small DRG neurons. Whole cell patch-clamp recordings were obtained in vitro from L4 and/or L5 dissociated, small DRG neurons following in vivo DRG compression or nerve injury. The small DRG neurons were classified into slow and fast subtype neurons based on expression of the slow-inactivating TTX-R and fast-inactivating TTX-S Na+ currents. CCD treatment significantly reduced TTX-R and TTX-S current densities in the slow and fast neurons, but CCI selectively reduced the TTX-R and TTX-S current densities in the slow neurons. Changes in half-maximal potential (V1/2) and curve slope (k) of steady-state inactivation of Na+ currents were different in the slow and fast neurons after CCD and CCI treatment. The window current of TTX-R and TTX-S currents in fast neurons were enlarged by CCD and CCI, while only that of TTX-S currents in slow neurons was increased by CCI. The decay rate of TTX-S and both TTX-R and TTX-S currents in fast neurons were reduced by CCD and CCI, respectively. These findings provide a possible sodium channel mechanism underlying CCD-induced DRG neuron hyperexcitability and hyperalgesia and demonstrate a differential effect in the Na+ currents of small DRG neurons after somata compression and peripheral nerve injury. This study also points to a complexity of hyperexcitability mechanisms contributing to CCD and CCI hyperexcitability in small DRG neurons.
Collapse
Affiliation(s)
- Zhi-Jiang Huang
- Department of Neurobiology, Parker University Research Institute, Dallas, TX 75229, USA.
| | | |
Collapse
|
241
|
Jagodic MM, Pathirathna S, Joksovic PM, Lee W, Nelson MT, Naik AK, Su P, Jevtovic-Todorovic V, Todorovic SM. Upregulation of the T-type calcium current in small rat sensory neurons after chronic constrictive injury of the sciatic nerve. J Neurophysiol 2008; 99:3151-6. [PMID: 18417624 DOI: 10.1152/jn.01031.2007] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recent data indicate that peripheral T-type Ca2+ channels are instrumental in supporting acute pain transmission. However, the function of these channels in chronic pain processing is less clear. To address this issue, we studied the expression of T-type Ca2+ currents in small nociceptive dorsal root ganglion (DRG) cells from L4-5 spinal ganglia of adult rats with neuropathic pain due to chronic constrictive injury (CCI) of the sciatic nerve. In control rats, whole cell recordings revealed that T-type currents, measured in 10 mM Ba2+ as a charge carrier, were present in moderate density (20 +/- 2 pA/pF). In rats with CCI, T-type current density (30 +/- 3 pA/pF) was significantly increased, but voltage- and time-dependent activation and inactivation kinetics were not significantly different from those in controls. CCI-induced neuropathy did not significantly change the pharmacological sensitivity of T-type current in these cells to nickel. Collectively, our results indicate that CCI-induced neuropathy significantly increases T-type current expression in small DRG neurons. Our finding that T-type currents are upregulated in a CCI model of peripheral neuropathy and earlier pharmacological and molecular studies suggest that T-type channels may be potentially useful therapeutic targets for the treatment of neuropathic pain associated with partial mechanical injury to the sciatic nerve.
Collapse
Affiliation(s)
- Miljen M Jagodic
- Department of Anesthesiology, University of Virginia Health System, Mail Box 800710, Charlottesville, VA 22908-0710, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
242
|
Wu ZZ, Chen SR, Pan HL. Distinct inhibition of voltage-activated Ca2+ channels by delta-opioid agonists in dorsal root ganglion neurons devoid of functional T-type Ca2+ currents. Neuroscience 2008; 153:1256-67. [PMID: 18434033 DOI: 10.1016/j.neuroscience.2008.03.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Revised: 02/27/2008] [Accepted: 03/13/2008] [Indexed: 02/01/2023]
Abstract
Both mu- and delta-opioid agonists selectively inhibit nociception but have little effect on other sensory modalities. Voltage-activated Ca(2+) channels in the primary sensory neurons are important for the regulation of nociceptive transmission. In this study, we determined the effect of delta-opioid agonists on voltage-activated Ca(2+) channel currents (I(Ca)) in small-diameter rat dorsal root ganglion (DRG) neurons that do and do not bind isolectin B(4) (IB(4)). The delta-opioid agonists [d-Pen(2),d-Pen(5)]-enkephalin (DPDPE) and deltorphin II produced a greater inhibition of high voltage-activated I(Ca) in IB(4)-negative than IB(4)-positive neurons. Furthermore, DPDPE produced a greater inhibition of N-, P/Q-, and L-type I(Ca) in IB(4)-negative than IB(4)-positive neurons. However, DPDPE had no significant effect on the R-type I(Ca) in either type of cells. We were surprised to find that DPDPE failed to inhibit either the T-type or high voltage-activated I(Ca) in all the DRG neurons with T-type I(Ca). Double immunofluorescence labeling showed that the majority of the delta-opioid receptor-immunoreactive DRG neurons had IB(4) labeling, while all DRG neurons immunoreactive to delta-opioid receptors exhibited Cav(3.2) immunoreactivity. Additionally, DPDPE significantly inhibited high voltage-activated I(Ca) in Tyrode's or N-methyl-d-glucamine solution but not in tetraethylammonium solution. This study provides new information that delta-opioid agonists have a distinct effect on voltage-activated Ca(2+) channels in different phenotypes of primary sensory neurons. High voltage-activated Ca(2+) channels are more sensitive to inhibition by delta-opioid agonists in IB(4)-negative than IB(4)-positive neurons, and this opioid effect is restricted to DRG neurons devoid of functional T-type Ca(2+) currents.
Collapse
MESH Headings
- Analgesics, Opioid/pharmacology
- Animals
- Calcium Channel Blockers/pharmacology
- Calcium Channels, T-Type/physiology
- Dose-Response Relationship, Radiation
- Drug Interactions
- Electric Stimulation/methods
- Enkephalin, D-Penicillamine (2,5)-/pharmacology
- Ganglia, Spinal/cytology
- Glycoproteins/metabolism
- Lectins/metabolism
- Male
- Membrane Potentials/drug effects
- Membrane Potentials/radiation effects
- Naltrexone/analogs & derivatives
- Naltrexone/pharmacology
- Narcotic Antagonists/pharmacology
- Neural Inhibition/drug effects
- Neurons, Afferent/drug effects
- Oligopeptides/pharmacology
- Patch-Clamp Techniques/methods
- Rats
- Rats, Sprague-Dawley
- Receptors, Opioid, delta/metabolism
- Versicans
- omega-Conotoxin GVIA/pharmacology
Collapse
Affiliation(s)
- Z-Z Wu
- Department of Anesthesiology and Pain Medicine, Unit 110, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | | | | |
Collapse
|
243
|
Gold MS. Na(+) channel blockers for the treatment of pain: context is everything, almost. Exp Neurol 2008; 210:1-6. [PMID: 18234194 PMCID: PMC2312090 DOI: 10.1016/j.expneurol.2007.12.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Revised: 11/30/2007] [Accepted: 12/03/2007] [Indexed: 12/17/2022]
Affiliation(s)
- Michael S Gold
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
244
|
Maingret F, Coste B, Padilla F, Clerc N, Crest M, Korogod SM, Delmas P. Inflammatory mediators increase Nav1.9 current and excitability in nociceptors through a coincident detection mechanism. ACTA ACUST UNITED AC 2008; 131:211-25. [PMID: 18270172 PMCID: PMC2248717 DOI: 10.1085/jgp.200709935] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Altered function of Na+ channels is responsible for increased hyperexcitability of primary afferent neurons that may underlie pathological pain states. Recent evidence suggests that the Nav1.9 subunit is implicated in inflammatory but not acute pain. However, the contribution of Nav1.9 channels to the cellular events underlying nociceptor hyperexcitability is still unknown, and there remains much uncertainty as to the biophysical properties of Nav1.9 current and its modulation by inflammatory mediators. Here, we use gene targeting strategy and computer modeling to identify Nav1.9 channel current signature and its impact on nociceptors' firing patterns. Recordings using internal fluoride in small DRG neurons from wild-type and Nav1.9-null mutant mice demonstrated that Nav1.9 subunits carry the TTX-resistant “persistent” Na+ current called NaN. Nav1.9−/− nociceptors showed no significant change in the properties of the slowly inactivating TTX-resistant SNS/Nav1.8 current. The loss in Nav1.9-mediated Na+ currents was associated with the inability of small DRG neurons to generate a large variety of electrophysiological behaviors, including subthreshold regenerative depolarizations, plateau potentials, active hyperpolarizing responses, oscillatory bursting discharges, and bistable membrane behaviors. We further investigated, using CsCl- and KCl-based pipette solutions, whether G-protein signaling pathways and inflammatory mediators upregulate the NaN/Nav1.9 current. Bradykinin, ATP, histamine, prostaglandin-E2, and norepinephrine, applied separately at maximal concentrations, all failed to modulate the Nav1.9 current. However, when applied conjointly as a soup of inflammatory mediators they rapidly potentiated Nav1.9 channel activity, generating subthreshold amplification and increased excitability. We conclude that Nav1.9 channel, the molecular correlate of the NaN current, is potentiated by the concerted action of inflammatory mediators that may contribute to nociceptors' hyperexcitability during peripheral inflammation.
Collapse
Affiliation(s)
- François Maingret
- CRN2M, CNRS, Universit é de la M é diterran é e, 13916 Marseille Cedex 20, France
| | | | | | | | | | | | | |
Collapse
|
245
|
Pinto V, Derkach VA, Safronov BV. Role of TTX-Sensitive and TTX-Resistant Sodium Channels in Aδ- and C-Fiber Conduction and Synaptic Transmission. J Neurophysiol 2008; 99:617-28. [DOI: 10.1152/jn.00944.2007] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Thin afferent axons conduct nociceptive signals from the periphery to the spinal cord. Their somata express two classes of Na+ channels, TTX-sensitive (TTX-S) and TTX-resistant (TTX-R), but their relative contribution to axonal conduction and synaptic transmission is not well understood. We studied this contribution by comparing effects of nanomolar TTX concentrations on currents associated with compound action potentials in the peripheral and central branches of Aδ- and C-fiber axons as well as on the Aδ- and C-fiber-mediated excitatory postsynaptic currents (EPSCs) in spinal dorsal horn neurons of rat. At room temperature, TTX completely blocked Aδ-fibers (IC50, 5–7 nM) in dorsal roots (central branch) and spinal, sciatic, and sural nerves (peripheral branch). The C-fiber responses were blocked by 85–89% in the peripheral branch and by 65–66% in dorsal roots (IC50, 14–33 nM) with simultaneous threefold reduction in their conduction velocity. At physiological temperature, the degree of TTX block in dorsal roots increased to 93%. The Aδ- and C-fiber-mediated EPSCs in dorsal horn neurons were also sensitive to TTX. At room temperature, 30 nM blocked completely Aδ-input and 84% of the C-fiber input, which was completely suppressed at 300 nM TTX. We conclude that in mammals, the TTX-S Na+ channels dominate conduction in all thin primary afferents. It is the only type of functional Na+ channel in Aδ-fibers. In C-fibers, the TTX-S Na+ channels determine the physiological conduction velocity and control synaptic transmission. TTX-R Na+ channels could not provide propagation of full-amplitude spikes able to trigger synaptic release in the spinal cord.
Collapse
|
246
|
Dussor G, Zylka MJ, Anderson DJ, McCleskey EW. Cutaneous sensory neurons expressing the Mrgprd receptor sense extracellular ATP and are putative nociceptors. J Neurophysiol 2008; 99:1581-9. [PMID: 18234974 DOI: 10.1152/jn.01396.2007] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sensory neurons expressing the Mrgprd receptor are known to innervate the outermost living layer of the epidermis, the stratum granulosum. The sensory modality that these neurons signal and the stimulus that they respond to are not established, although immunocytochemical data suggest they could be nonpeptidergic nociceptors. Using patch clamp of dissociated mouse dorsal root ganglion (DRG) neurons, the present study demonstrates that Mrgprd+ neurons have several properties typical of nociceptors: long-duration action potentials, TTX-resistant Na(+) current, and Ca(2+) currents that are inhibited by mu opioids. Remarkably, Mrgprd+ neurons respond almost exclusively to extracellular ATP with currents similar to homomeric P2X3 receptors. They show little or no sensitivity to other putative nociceptive agonists, including capsaicin, cinnamaldehyde, menthol, pH 6.0, or glutamate. These properties, together with selective innervation of the stratum granulosum, indicate that Mrgprd+ neurons are nociceptors in the outer epidermis and may respond indirectly to external stimuli by detecting ATP release in the skin.
Collapse
Affiliation(s)
- G Dussor
- Vollum Institute L474, Oregon Health and Science University, Portland, Oregon, USA.
| | | | | | | |
Collapse
|
247
|
De Col R, Messlinger K, Carr RW. Conduction velocity is regulated by sodium channel inactivation in unmyelinated axons innervating the rat cranial meninges. J Physiol 2007; 586:1089-103. [PMID: 18096592 DOI: 10.1113/jphysiol.2007.145383] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Axonal conduction velocity varies according to the level of preceding impulse activity. In unmyelinated axons this typically results in a slowing of conduction velocity and a parallel increase in threshold. It is currently held that Na(+)-K(+)-ATPase-dependent axonal hyperpolarization is responsible for this slowing but this has long been equivocal. We therefore examined conduction velocity changes during repetitive activation of single unmyelinated axons innervating the rat cranial meninges. In direct contradiction to the currently accepted postulate, Na(+)-K(+)-ATPase blockade actually enhanced activity-induced conduction velocity slowing, while the degree of velocity slowing was curtailed in the presence of lidocaine (10-300 microm) and carbamazepine (30-500 microm) but not tetrodotoxin (TTX, 10-80 nm). This suggests that a change in the number of available sodium channels is the most prominent factor responsible for activity-induced changes in conduction velocity in unmyelinated axons. At moderate stimulus frequencies, axonal conduction velocity is determined by an interaction between residual sodium channel inactivation following each impulse and the retrieval of channels from inactivation by a concomitant Na(+)-K(+)-ATPase-mediated hyperpolarization. Since the process is primarily dependent upon sodium channel availability, tracking conduction velocity provides a means of accessing relative changes in the excitability of nociceptive neurons.
Collapse
Affiliation(s)
- Roberto De Col
- Institute for Physiology and Pathophysiology, University of Erlangen-Nuremberg, Erlangen, Germany
| | | | | |
Collapse
|
248
|
Lin YW, Min MY, Lin CC, Chen WN, Wu WL, Yu HM, Chen CC. Identification and characterization of a subset of mouse sensory neurons that express acid-sensing ion channel 3. Neuroscience 2007; 151:544-57. [PMID: 18082972 DOI: 10.1016/j.neuroscience.2007.10.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Revised: 10/17/2007] [Accepted: 10/30/2007] [Indexed: 12/13/2022]
Abstract
Acid-sensing ion channel 3 (ASIC3) is the most sensitive acid sensor in sensory neurons that innervate into skin, muscle, heart, and visceral tissues. ASIC3 is involved in ischemia sensing, nociception, mechanosensation, and hearing, but how ASIC3-expressing neurons differ in their firing properties is still unknown. We hypothesized that ASIC3-expressing neurons have specialized firing properties, which, coupled with the heterogeneity of acid-sensing properties, accounts for various physiological roles. Here, we successfully identified ASIC3-expressing lumbar dorsal root ganglion (DRG) neurons whose transient proton-gated currents were blocked by salicylic acid (SA). The salicylic acid-sensitive (SAS) neurons did not exist in DRG neurons of mice lacking ASIC3. SAS neurons expressed distinct electrophysiological properties as compared with other DRG neurons. Especially, SAS neurons fired action potentials (APs) with large overshoot and long afterhyperpolarization duration, which suggests that they belong to nociceptors. SAS neurons also exhibited multiple nociceptor markers such as capsaicin response (38%), action potential (AP) with inflection (35%), or tetrodotoxin resistance (31%). Only in SAS neurons but not other DRG neurons was afterhyperpolarization duration correlated with resting membrane potential and AP duration. Our studies reveal a unique feature of ASIC3-expressing DRG neurons and a basis for their heterogeneous functions.
Collapse
Affiliation(s)
- Y-W Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan, Republic of China
| | | | | | | | | | | | | |
Collapse
|
249
|
Dib-Hajj SD, Cummins TR, Black JA, Waxman SG. From genes to pain: Nav1.7 and human pain disorders. Trends Neurosci 2007; 30:555-63. [DOI: 10.1016/j.tins.2007.08.004] [Citation(s) in RCA: 206] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2007] [Revised: 06/22/2007] [Accepted: 08/08/2007] [Indexed: 12/19/2022]
|
250
|
Kang SH, Carl A, McHugh JM, Goff HR, Kenyon JL. Roles of mitochondria and temperature in the control of intracellular calcium in adult rat sensory neurons. Cell Calcium 2007; 43:388-404. [PMID: 17716728 PMCID: PMC2409216 DOI: 10.1016/j.ceca.2007.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Revised: 07/08/2007] [Accepted: 07/15/2007] [Indexed: 11/17/2022]
Abstract
We recorded Ca2+ current and intracellular Ca2+ ([Ca2+](i)) in isolated adult rat dorsal root ganglion (DRG) neurons at 20 and 30 degrees C. In neurons bathed in tetraethylammonium and dialyzed with cesium, warming reduced resting [Ca2+](i) from 87 to 49 nM and the time constant of the decay of [Ca2+](i) transients (tau(r)) from 1.3 to 0.99s (Q(10)=1.4). The Buffer Index, the ratio between Ca2+ influx and Delta[Ca2+](i) (f I(ca)d(t)/Delta[Ca2+]i) , increased two- to threefold with warming. Neither inhibition of the plasma membrane Ca2+ -ATPase by intracellular sodium orthovanadate nor inhibition of Ca2+ uptake by the endoplasmic reticulum by thapsigargin plus ryanodine were necessary for the effects of warming on these parameters. In contrast, inhibition of the mitochondrial Ca2+ uniporter by intracellular ruthenium red largely reversed the effects of warming. Carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP, 500 nM) increased resting [Ca2+](i) at 30 degrees C. Ten millimolar intracellular sodium prolonged the recovery of [Ca2+](i) transients to 10-40s. This effect was reversed by an inhibitor of mitochondrial Na(+)/Ca2+ -exchange (CGP 37157, 10 microM). Thus, mitochondrial Ca2+ uptake is necessary for the temperature-dependent increase in Ca2+ buffering and mitochondrial Ca2+ fluxes contribute to the control of [Ca2+](i) between 50 and 150 nM at 30 degrees C.
Collapse
Affiliation(s)
- S H Kang
- Department of Physiology & Cell Biology/MS 352, University of Nevada School of Medicine, Reno, NV 89557, USA
| | | | | | | | | |
Collapse
|