201
|
Erickson MA, Banks WA. Neuroimmune Axes of the Blood-Brain Barriers and Blood-Brain Interfaces: Bases for Physiological Regulation, Disease States, and Pharmacological Interventions. Pharmacol Rev 2018; 70:278-314. [PMID: 29496890 PMCID: PMC5833009 DOI: 10.1124/pr.117.014647] [Citation(s) in RCA: 205] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Central nervous system (CNS) barriers predominantly mediate the immune-privileged status of the brain, and are also important regulators of neuroimmune communication. It is increasingly appreciated that communication between the brain and immune system contributes to physiologic processes, adaptive responses, and disease states. In this review, we discuss the highly specialized features of brain barriers that regulate neuroimmune communication in health and disease. In section I, we discuss the concept of immune privilege, provide working definitions of brain barriers, and outline the historical work that contributed to the understanding of CNS barrier functions. In section II, we discuss the unique anatomic, cellular, and molecular characteristics of the vascular blood-brain barrier (BBB), blood-cerebrospinal fluid barrier, and tanycytic barriers that confer their functions as neuroimmune interfaces. In section III, we consider BBB-mediated neuroimmune functions and interactions categorized as five neuroimmune axes: disruption, responses to immune stimuli, uptake and transport of immunoactive substances, immune cell trafficking, and secretions of immunoactive substances. In section IV, we discuss neuroimmune functions of CNS barriers in physiologic and disease states, as well as pharmacological interventions for CNS diseases. Throughout this review, we highlight many recent advances that have contributed to the modern understanding of CNS barriers and their interface functions.
Collapse
Affiliation(s)
- Michelle A Erickson
- Geriatric Research and Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington; and Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, Washington
| | - William A Banks
- Geriatric Research and Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington; and Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
202
|
Zhang LY, Lin P, Pan J, Ma Y, Wei Z, Jiang L, Wang L, Song Y, Wang Y, Zhang Z, Jin K, Wang Q, Yang GY. CLARITY for High-resolution Imaging and Quantification of Vasculature in the Whole Mouse Brain. Aging Dis 2018; 9:262-272. [PMID: 29896415 PMCID: PMC5963347 DOI: 10.14336/ad.2017.0613] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 06/13/2017] [Indexed: 12/11/2022] Open
Abstract
Elucidating the normal structure and distribution of cerebral vascular system is fundamental for understanding its function. However, studies on visualization and whole-brain quantification of vasculature with cellular resolution are limited. Here, we explored the structure of vasculature at the whole-brain level using the newly developed CLARITY technique. Adult male C57BL/6J mice undergoing transient middle cerebral artery occlusion and Tie2-RFP transgenic mice were used. Whole mouse brains were extracted for CLARITY processing. Immunostaining was performed to label vessels. Customized MATLAB code was used for image processing and quantification. Three-dimensional images were visualized using the Vaa3D software. Our results showed that whole mouse brain became transparent using the CLARITY method. Three-dimensional imaging and visualization of vasculature were achieved at the whole-brain level with a 1-μm voxel resolution. The quantitative results showed that the fractional vascular volume was 0.018 ± 0.004 mm3 per mm3, the normalized vascular length was 0.44 ± 0.04 m per mm3, and the mean diameter of the microvessels was 4.25 ± 0.08 μm. Furthermore, a decrease in the fractional vascular volume and a decrease in the normalized vascular length were found in the penumbra of ischemic mice compared to controls (p < 0.05). In conclusion, CLARITY provides a novel approach for mapping vasculature in the whole mouse brain at cellular resolution. CLARITY-optimized algorithms facilitate the assessment of structural change in vasculature after brain injury.
Collapse
Affiliation(s)
- Lin-Yuan Zhang
- 1Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pan Lin
- 2Medical Image Computing Lab and
| | - Jiaji Pan
- 3Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yuanyuan Ma
- 1Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenyu Wei
- 4Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201999, China
| | - Lu Jiang
- 3Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Liping Wang
- 1Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yaying Song
- 1Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongting Wang
- 3Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Zhijun Zhang
- 3Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Kunlin Jin
- 5Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, TX76107, USA
| | | | - Guo-Yuan Yang
- 1Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,3Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|
203
|
Lücker A, Secomb TW, Weber B, Jenny P. The relative influence of hematocrit and red blood cell velocity on oxygen transport from capillaries to tissue. Microcirculation 2018; 24. [PMID: 27893186 DOI: 10.1111/micc.12337] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 11/24/2016] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Oxygen transport to parenchymal cells occurs mainly at the microvascular level and depends on convective RBC flux, which is proportional in an individual capillary to the product of capillary hematocrit and RBC velocity. This study investigates the relative influence of these two factors on tissue PO2 . METHODS A simple analytical model is used to quantify the respective influences of hematocrit, RBC velocity, and RBC flow on tissue oxygenation around capillaries. Predicted tissue PO2 levels are compared with a detailed computational model. RESULTS Hematocrit is shown to have a larger influence on tissue PO2 than RBC velocity. The effect of RBC velocity increases with distance from the arterioles. Good agreement between analytical and numerical results is obtained, and the discrepancies are explained. Significant dependence of MTCs on RBC velocity at low hematocrit is demonstrated. CONCLUSIONS For a given RBC flux in a capillary, the PO2 in the surrounding tissue increases with increasing hematocrit, as a consequence of decreasing IVR to diffusive oxygen transport from RBCs to tissue. These results contribute to understanding the effects of blood flow changes on oxygen transport, such as those that occur in functional hyperemia in the brain.
Collapse
Affiliation(s)
- Adrien Lücker
- Institute of Fluid Dynamics, ETH Zurich, Zurich, Switzerland
| | - Timothy W Secomb
- Department of Physiology, University of Arizona, Tucson, AZ, USA
| | - Bruno Weber
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Patrick Jenny
- Institute of Fluid Dynamics, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
204
|
Grogan JA, Connor AJ, Pitt-Francis JM, Maini PK, Byrne HM. The importance of geometry in the corneal micropocket angiogenesis assay. PLoS Comput Biol 2018; 14:e1006049. [PMID: 29522527 PMCID: PMC5862519 DOI: 10.1371/journal.pcbi.1006049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 03/21/2018] [Accepted: 02/22/2018] [Indexed: 11/19/2022] Open
Abstract
The corneal micropocket angiogenesis assay is an experimental protocol for studying vessel network formation, or neovascularization, in vivo. The assay is attractive due to the ease with which the developing vessel network can be observed in the same animal over time. Measurements from the assay have been used in combination with mathematical modeling to gain insights into the mechanisms of angiogenesis. While previous modeling studies have adopted planar domains to represent the assay, the hemispherical shape of the cornea and asymmetric positioning of the angiogenic source can be seen to affect vascular patterning in experimental images. As such, we aim to better understand: i) how the geometry of the assay influences vessel network formation and ii) how to relate observations from planar domains to those in the hemispherical cornea. To do so, we develop a three-dimensional, off-lattice mathematical model of neovascularization in the cornea, using a spatially resolved representation of the assay for the first time. Relative to the detailed model, we predict that the adoption of planar geometries has a noticeable impact on vascular patterning, leading to increased vessel 'merging', or anastomosis, in particular when circular geometries are adopted. Significant differences in the dynamics of diffusible aniogenesis simulators are also predicted between different domains. In terms of comparing predictions across domains, the 'distance of the vascular front to the limbus' metric is found to have low sensitivity to domain choice, while metrics such as densities of tip cells and vessels and 'vascularized fraction' are sensitive to domain choice. Given the widespread adoption and attractive simplicity of planar tissue domains, both in silico and in vitro, the differences identified in the present study should prove useful in relating the results of previous and future theoretical studies of neovascularization to in vivo observations in the cornea.
Collapse
Affiliation(s)
- James A. Grogan
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, United Kingdom
| | - Anthony J. Connor
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, United Kingdom
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Joe M. Pitt-Francis
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Philip K. Maini
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, United Kingdom
| | - Helen M. Byrne
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
205
|
Linking brain vascular physiology to hemodynamic response in ultra-high field MRI. Neuroimage 2018; 168:279-295. [DOI: 10.1016/j.neuroimage.2017.02.063] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 02/20/2017] [Accepted: 02/21/2017] [Indexed: 01/05/2023] Open
|
206
|
Hartmann DA, Hyacinth HI, Liao FF, Shih AY. Does pathology of small venules contribute to cerebral microinfarcts and dementia? J Neurochem 2018; 144:517-526. [PMID: 28950410 PMCID: PMC5869083 DOI: 10.1111/jnc.14228] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 09/08/2017] [Accepted: 09/18/2017] [Indexed: 12/28/2022]
Abstract
Microinfarcts are small, but strikingly common, ischemic brain lesions in the aging human brain. There is mounting evidence that microinfarcts contribute to vascular cognitive impairment and dementia, but the origins of microinfarcts are unclear. Understanding the vascular pathologies that cause microinfarcts may yield strategies to prevent their occurrence and reduce their deleterious effects on brain function. Current thinking suggests that cortical microinfarcts arise from the occlusion of penetrating arterioles, which are responsible for delivering oxygenated blood to small volumes of tissue. Unexpectedly, pre-clinical studies have shown that the occlusion of penetrating venules, which drain deoxygenated blood from cortex, lead to microinfarcts that appear identical to those resulting from arteriole occlusion. Here we discuss the idea that cerebral venule pathology could be an overlooked source for brain microinfarcts in humans. This article is part of the Special Issue "Vascular Dementia". Cover Image for this Issue: doi: 10.1111/jnc.14167.
Collapse
Affiliation(s)
- David A. Hartmann
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA
| | - Hyacinth I. Hyacinth
- Aflac Cancer and Blood Disorder Center, Children’s Healthcare of Atlanta and Emory University Department of Pediatrics, Atlanta, USA
| | - Francesca-Fang Liao
- Department of Pharmacology, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Andy Y. Shih
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA
- Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
207
|
Payne SJ, Lucas C. Oxygen delivery from the cerebral microvasculature to tissue is governed by a single time constant of approximately 6 seconds. Microcirculation 2018; 25. [DOI: 10.1111/micc.12428] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 11/02/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Stephen John Payne
- Institute of Biomedical Engineering; Department of Engineering Science; University of Oxford; Oxford UK
| | - Claire Lucas
- School of Engineering; University of Warwick; Coventry UK
| |
Collapse
|
208
|
Yu T, Qi Y, Gong H, Luo Q, Zhu D. Optical clearing for multiscale biological tissues. JOURNAL OF BIOPHOTONICS 2018; 11. [PMID: 29024450 DOI: 10.1002/jbio.201700187] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 10/08/2017] [Indexed: 05/03/2023]
Abstract
Three-dimensional reconstruction of tissue structures is essential for biomedical research. The development of light microscopes and various fluorescent labeling techniques provides powerful tools for this motivation. However, optical imaging depth suffers from strong light scattering due to inherent heterogeneity of biological tissues. Tissue optical clearing technology provides a distinct solution and permits us to image large volumes with high resolution. Until now, various clearing methods have been developed. In this study, from the perspective of the end users, we review in vitro tissue optical clearing techniques based on the sample features in terms of size and age, enumerate the methods suitable for immunostaining and lipophilic dyes and summarize the combinations with various imaging techniques. We hope this review will be helpful for researchers to choose the most suitable clearing method from a variety of protocols to meet their specific needs.
Collapse
Affiliation(s)
- Tingting Yu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, China
- MOE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yisong Qi
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, China
- MOE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hui Gong
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, China
- MOE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qingming Luo
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, China
- MOE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Dan Zhu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, China
- MOE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
209
|
Peyrounette M, Davit Y, Quintard M, Lorthois S. Multiscale modelling of blood flow in cerebral microcirculation: Details at capillary scale control accuracy at the level of the cortex. PLoS One 2018; 13:e0189474. [PMID: 29324784 PMCID: PMC5764267 DOI: 10.1371/journal.pone.0189474] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 11/28/2017] [Indexed: 11/19/2022] Open
Abstract
Aging or cerebral diseases may induce architectural modifications in human brain microvascular networks, such as capillary rarefaction. Such modifications limit blood and oxygen supply to the cortex, possibly resulting in energy failure and neuronal death. Modelling is key in understanding how these architectural modifications affect blood flow and mass transfers in such complex networks. However, the huge number of vessels in the human brain—tens of billions—prevents any modelling approach with an explicit architectural representation down to the scale of the capillaries. Here, we introduce a hybrid approach to model blood flow at larger scale in the brain microcirculation, based on its multiscale architecture. The capillary bed, which is a space-filling network, is treated as a porous medium and modelled using a homogenized continuum approach. The larger arteriolar and venular trees, which cannot be homogenized because of their fractal-like nature, are treated as a network of interconnected tubes with a detailed representation of their spatial organization. The main contribution of this work is to devise a proper coupling model at the interface between these two components. This model is based on analytical approximations of the pressure field that capture the strong pressure gradients building up in the capillaries connected to arterioles or venules. We evaluate the accuracy of this model for both very simple architectures with one arteriole and/or one venule and for more complex ones, with anatomically realistic tree-like vessels displaying a large number of coupling sites. We show that the hybrid model is very accurate in describing blood flow at large scales and further yields a significant computational gain by comparison with a classical network approach. It is therefore an important step towards large scale simulations of cerebral blood flow and lays the groundwork for introducing additional levels of complexity in the future.
Collapse
Affiliation(s)
- Myriam Peyrounette
- Institut de Mécanique des Fluides de Toulouse, IMFT, Université de Toulouse, CNRS - Toulouse, France
| | - Yohan Davit
- Institut de Mécanique des Fluides de Toulouse, IMFT, Université de Toulouse, CNRS - Toulouse, France
| | - Michel Quintard
- Institut de Mécanique des Fluides de Toulouse, IMFT, Université de Toulouse, CNRS - Toulouse, France
| | - Sylvie Lorthois
- Institut de Mécanique des Fluides de Toulouse, IMFT, Université de Toulouse, CNRS - Toulouse, France
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States of America
- * E-mail:
| |
Collapse
|
210
|
Ando K, Laborde Q, Brion JP, Duyckaerts C. 3D imaging in the postmortem human brain with CLARITY and CUBIC. HANDBOOK OF CLINICAL NEUROLOGY 2018; 150:303-317. [PMID: 29496149 DOI: 10.1016/b978-0-444-63639-3.00021-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Recent innovations in tissue clearing and imaging technologies have enabled us to analyse biological systems directly in three-dimensions using thick samples. In this review, we discuss two of these recently reported tissue-clearing technologies (CLARITY and CUBIC) that are compatible with archival formalin-fixed human brain materials that have been fixed in formalin for a long period of time. We will discuss the pros and cons of these two technologies, examples of visualisation of Alzheimer neuropathological hallmarks and the exact protocols that we regularly use in the laboratory.
Collapse
Affiliation(s)
- Kunie Ando
- Laboratory of Histology, Neuroanatomy and Neuropathology, ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium; Laboratoire de Neuropathologie Escourolle, Hôpital de la Pitié-Salpêtrière, Paris, France.
| | - Quentin Laborde
- Laboratoire de Neuropathologie Escourolle, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Jean-Pierre Brion
- Laboratory of Histology, Neuroanatomy and Neuropathology, ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Charles Duyckaerts
- Laboratoire de Neuropathologie Escourolle, Hôpital de la Pitié-Salpêtrière, Paris, France
| |
Collapse
|
211
|
Xiong B, Li A, Lou Y, Chen S, Long B, Peng J, Yang Z, Xu T, Yang X, Li X, Jiang T, Luo Q, Gong H. Precise Cerebral Vascular Atlas in Stereotaxic Coordinates of Whole Mouse Brain. Front Neuroanat 2017; 11:128. [PMID: 29311856 PMCID: PMC5742197 DOI: 10.3389/fnana.2017.00128] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 12/11/2017] [Indexed: 12/27/2022] Open
Abstract
Understanding amazingly complex brain functions and pathologies requires a complete cerebral vascular atlas in stereotaxic coordinates. Making a precise atlas for cerebral arteries and veins has been a century-old objective in neuroscience and neuropathology. Using micro-optical sectioning tomography (MOST) with a modified Nissl staining method, we acquired five mouse brain data sets containing arteries, veins, and microvessels. Based on the brain-wide vascular spatial structures and brain regions indicated by cytoarchitecture in one and the same mouse brain, we reconstructed and annotated the vascular system atlas of both arteries and veins of the whole mouse brain for the first time. The distributing patterns of the vascular system within the brain regions were acquired and our results show that the patterns of individual vessels are different from each other. Reconstruction and statistical analysis of the microvascular network, including derivation of quantitative vascular densities, indicate significant differences mainly in vessels with diameters less than 8 μm and large than 20 μm across different brain regions. Our precise cerebral vascular atlas provides an important resource and approach for quantitative studies of brain functions and diseases.
Collapse
Affiliation(s)
- Benyi Xiong
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China.,MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Anan Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China.,MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Lou
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China.,MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Shangbin Chen
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China.,MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Ben Long
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China.,MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Peng
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China.,MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Zhongqin Yang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China.,MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Tonghui Xu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China.,MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoquan Yang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China.,MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangning Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China.,MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Jiang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China.,MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Qingming Luo
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China.,MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Gong
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China.,MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
212
|
Uhlirova H, Kılıç K, Tian P, Sakadžić S, Gagnon L, Thunemann M, Desjardins M, Saisan PA, Nizar K, Yaseen MA, Hagler DJ, Vandenberghe M, Djurovic S, Andreassen OA, Silva GA, Masliah E, Kleinfeld D, Vinogradov S, Buxton RB, Einevoll GT, Boas DA, Dale AM, Devor A. The roadmap for estimation of cell-type-specific neuronal activity from non-invasive measurements. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0356. [PMID: 27574309 DOI: 10.1098/rstb.2015.0356] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2016] [Indexed: 12/22/2022] Open
Abstract
The computational properties of the human brain arise from an intricate interplay between billions of neurons connected in complex networks. However, our ability to study these networks in healthy human brain is limited by the necessity to use non-invasive technologies. This is in contrast to animal models where a rich, detailed view of cellular-level brain function with cell-type-specific molecular identity has become available due to recent advances in microscopic optical imaging and genetics. Thus, a central challenge facing neuroscience today is leveraging these mechanistic insights from animal studies to accurately draw physiological inferences from non-invasive signals in humans. On the essential path towards this goal is the development of a detailed 'bottom-up' forward model bridging neuronal activity at the level of cell-type-specific populations to non-invasive imaging signals. The general idea is that specific neuronal cell types have identifiable signatures in the way they drive changes in cerebral blood flow, cerebral metabolic rate of O2 (measurable with quantitative functional Magnetic Resonance Imaging), and electrical currents/potentials (measurable with magneto/electroencephalography). This forward model would then provide the 'ground truth' for the development of new tools for tackling the inverse problem-estimation of neuronal activity from multimodal non-invasive imaging data.This article is part of the themed issue 'Interpreting BOLD: a dialogue between cognitive and cellular neuroscience'.
Collapse
Affiliation(s)
- Hana Uhlirova
- Department of Radiology, UCSD, La Jolla, CA 92093, USA CEITEC-Central European Institute of Technology and Institute of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Brno, Czech Republic
| | - Kıvılcım Kılıç
- Department of Neurosciences, UCSD, La Jolla, CA 92093, USA
| | - Peifang Tian
- Department of Neurosciences, UCSD, La Jolla, CA 92093, USA Department of Physics, John Carroll University, University Heights, OH 44118, USA
| | - Sava Sakadžić
- Martinos Center for Biomedical Imaging, MGH, Harvard Medical School, Charlestown, MA 02129, USA
| | - Louis Gagnon
- Martinos Center for Biomedical Imaging, MGH, Harvard Medical School, Charlestown, MA 02129, USA
| | | | | | - Payam A Saisan
- Department of Neurosciences, UCSD, La Jolla, CA 92093, USA
| | - Krystal Nizar
- Neurosciences Graduate Program, UCSD, La Jolla, CA 92093, USA
| | - Mohammad A Yaseen
- Martinos Center for Biomedical Imaging, MGH, Harvard Medical School, Charlestown, MA 02129, USA
| | | | - Matthieu Vandenberghe
- Department of Radiology, UCSD, La Jolla, CA 92093, USA NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and University of Oslo, 0407 Oslo, Norway
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, 0407 Oslo, Norway NORMENT, KG Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| | - Ole A Andreassen
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and University of Oslo, 0407 Oslo, Norway
| | - Gabriel A Silva
- Department of Bioengineering, UCSD, La Jolla, CA 92093, USA Department of Opthalmology, UCSD, La Jolla, CA 92093, USA
| | | | - David Kleinfeld
- Department of Physics, UCSD, La Jolla, CA 92093, USA Department of Electrical and Computer Engineering, UCSD, La Jolla, CA 92093, USA Section of Neurobiology, UCSD, La Jolla, CA 92093, USA
| | - Sergei Vinogradov
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Gaute T Einevoll
- Department of Mathematical Sciences and Technology, Norwegian University of Life Sciences, 1432 Ås, Norway Department of Physics, University of Oslo, 0316 Oslo, Norway
| | - David A Boas
- Martinos Center for Biomedical Imaging, MGH, Harvard Medical School, Charlestown, MA 02129, USA
| | - Anders M Dale
- Department of Radiology, UCSD, La Jolla, CA 92093, USA Department of Neurosciences, UCSD, La Jolla, CA 92093, USA
| | - Anna Devor
- Department of Radiology, UCSD, La Jolla, CA 92093, USA Department of Neurosciences, UCSD, La Jolla, CA 92093, USA Martinos Center for Biomedical Imaging, MGH, Harvard Medical School, Charlestown, MA 02129, USA
| |
Collapse
|
213
|
Kubíková T, Kochová P, Tomášek P, Witter K, Tonar Z. Numerical and length densities of microvessels in the human brain: Correlation with preferential orientation of microvessels in the cerebral cortex, subcortical grey matter and white matter, pons and cerebellum. J Chem Neuroanat 2017; 88:22-32. [PMID: 29113946 DOI: 10.1016/j.jchemneu.2017.11.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/03/2017] [Accepted: 11/03/2017] [Indexed: 12/19/2022]
Abstract
To provide basic data on the local differences in density of microvessels between various parts of the human brain, including representative grey and white matter structures of the cerebral hemispheres, the brain stem and the cerebellum, we quantified the numerical density NV and the length density LV of microvessels in two human brains. We aimed to correlate the density of microvessels with previously published data on their preferential orientation (anisotropy). Microvessels were identified using immunohistochemistry for laminin in 32 samples harvested from the following brain regions of two adult individuals: the cortex of the telencephalon supplied by the anterior, middle, and posterior cerebral artery; the basal ganglia (putamen and globus pallidus); the thalamus; the subcortical white matter of the telencephalon; the internal capsule; the pons; the cerebellar cortex; and the cerebellar white matter. NV was calculated from the number of vascular branching points and their valence, which were assessed using the optical disector in 20-μm-thick sections. LV was estimated using counting frames applied to routine sections with randomized cutting planes. After correction for shrinkage, NV in the cerebral cortex was 1311±326mm-3 (mean±SD) and LV was 255±119mm-2. Similarly, in subcortical grey matter (which included the basal ganglia and thalamus), NV was 1350±445mm-3 and LV was 328±117mm-2. The vascular networks of cortical and subcortical grey matter were comparable. Their densities were greater than in the white matter, with NV=222±147mm-3 and LV=160±96mm-2. NV was moderately correlated with LV. In parts of brain with greater NV, blood vessels lacked a preferential orientation. Our data were in agreement with other studies on microvessel density focused on specific brain regions, but showed a greater variability, thus mapping the basic differences among various parts of brain. To facilitate the planning of other studies on brain vascularity and to support the development of computational models of human brain circulation based on real microvascular morphology; stereological data in form of continuous variables are made available as supplements.
Collapse
Affiliation(s)
- Tereza Kubíková
- NTIS, European Centre of Excellence, Faculty of Applied Sciences, University of West Bohemia, Univerzitni 8, 306 14 Pilsen, Czech Republic
| | - Petra Kochová
- NTIS, European Centre of Excellence, Faculty of Applied Sciences, University of West Bohemia, Univerzitni 8, 306 14 Pilsen, Czech Republic
| | - Petr Tomášek
- NTIS, European Centre of Excellence, Faculty of Applied Sciences, University of West Bohemia, Univerzitni 8, 306 14 Pilsen, Czech Republic; Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Karlovarska 48, 301 66 Pilsen, Czech Republic; Department of Forensic Medicine, Second Faculty of Medicine, Charles University, Budinova 2, 180 81 Prague 8, Prague, Czech Republic
| | - Kirsti Witter
- Institute of Anatomy, Histology and Embryology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, A-1210 Vienna, Austria
| | - Zbyněk Tonar
- NTIS, European Centre of Excellence, Faculty of Applied Sciences, University of West Bohemia, Univerzitni 8, 306 14 Pilsen, Czech Republic.
| |
Collapse
|
214
|
Zhou H, Xiong Y, Wang Y, Wang X, Li P, Gang Y, Liu X, Zeng S. High-refractive index of acrylate embedding resin clarifies mouse brain tissue. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:1-4. [PMID: 29148271 DOI: 10.1117/1.jbo.22.11.110503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/06/2017] [Indexed: 06/07/2023]
Abstract
Biological tissue transparency combined with light-sheet fluorescence microscopy is a useful method for studying the neural structure of biological tissues. The development of light-sheet fluorescence microscopy also promotes progress in biological tissue clearing methods. The current clarifying methods mostly use liquid reagent to denature protein or remove lipids first, to eliminate or reduce the scattering index or refractive index of the biological tissue. However, denaturing protein and removing lipids require complex procedures or an extended time period. Therefore, here we have developed acrylate resin with a high refractive index, which causes clearing of biological tissue directly after polymerization. This method can improve endogenous fluorescence retention by adjusting the pH value of the resin monomer.
Collapse
Affiliation(s)
- Hongfu Zhou
- Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Britton, China
- Huazhong University of Science and Technology, Ministry of Education Key Laboratory for Biomedical P, China
| | - Yumiao Xiong
- Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Britton, China
- Huazhong University of Science and Technology, Ministry of Education Key Laboratory for Biomedical P, China
| | - Yu Wang
- Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Britton, China
- Huazhong University of Science and Technology, Ministry of Education Key Laboratory for Biomedical P, China
| | - Xiaojun Wang
- Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Britton, China
- Huazhong University of Science and Technology, Ministry of Education Key Laboratory for Biomedical P, China
| | - Pei Li
- Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Britton, China
- Huazhong University of Science and Technology, Ministry of Education Key Laboratory for Biomedical P, China
| | - Yadong Gang
- Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Britton, China
- Huazhong University of Science and Technology, Ministry of Education Key Laboratory for Biomedical P, China
| | - Xiuli Liu
- Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Britton, China
- Huazhong University of Science and Technology, Ministry of Education Key Laboratory for Biomedical P, China
| | - Shaoqun Zeng
- Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Britton, China
- Huazhong University of Science and Technology, Ministry of Education Key Laboratory for Biomedical P, China
| |
Collapse
|
215
|
Kennel P, Fonta C, Guibert R, Plouraboué F. Analysis of vascular homogeneity and anisotropy on high-resolution primate brain imaging. Hum Brain Mapp 2017; 38:5756-5777. [PMID: 28845885 PMCID: PMC6866716 DOI: 10.1002/hbm.23766] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 07/28/2017] [Accepted: 08/02/2017] [Indexed: 12/30/2022] Open
Abstract
Using a systematic investigation of brain blood volume, in high-resolution synchrotron 3D images of microvascular structures within cortical regions of a primate brain, we challenge several basic questions regarding possible vascular bias in high-resolution functional neuroimaging. We present a bilateral comparison of cortical regions, where we analyze relative vascular volume in voxels from 150 to 1000 μm side lengths in the white and grey matter. We show that, if voxel size reaches a scale smaller than 300 µm, the vascular volume can no longer be considered homogeneous, either within one hemisphere or in bilateral comparison between samples. We demonstrate that voxel size influences the comparison between vessel-relative volume distributions depending on the scale considered (i.e., hemisphere, lobe, or sample). Furthermore, we also investigate how voxel anisotropy and orientation can affect the apparent vascular volume, in accordance with actual fMRI voxel sizes. These findings are discussed from the various perspectives of high-resolution brain functional imaging. Hum Brain Mapp 38:5756-5777, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Pol Kennel
- Institut de Mécanique des Fluides de Toulouse (IMFT)Université de Toulouse, CNRS, INPT, UPSToulouseFrance
| | - Caroline Fonta
- Brain and Cognition Research Center (CerCo)CNRS‐University of Toulouse UPSF‐31052 Toulouse CedexFrance
| | - Romain Guibert
- Institut de Mécanique des Fluides de Toulouse (IMFT)Université de Toulouse, CNRS, INPT, UPSToulouseFrance
| | - Franck Plouraboué
- Institut de Mécanique des Fluides de Toulouse (IMFT)Université de Toulouse, CNRS, INPT, UPSToulouseFrance
| |
Collapse
|
216
|
Zhang C, Yan C, Ren M, Li A, Quan T, Gong H, Yuan J. A platform for stereological quantitative analysis of the brain-wide distribution of type-specific neurons. Sci Rep 2017; 7:14334. [PMID: 29085023 PMCID: PMC5662727 DOI: 10.1038/s41598-017-14699-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 10/16/2017] [Indexed: 01/15/2023] Open
Abstract
Quantifying the distribution of specific neurons throughout the whole brain is crucial for understanding physiological actions, pathological alterations and pharmacological treatments. However, the precise cell number and density of specific neurons in the entire brain remain unknown because of a lack of suitable research tools. Here, we propose a pipeline to automatically acquire and analyse the brain-wide distribution of type-specific neurons in a mouse brain. We employed a Brain-wide Positioning System to collect high-throughput anatomical information with the co-localized cytoarchitecture of the whole brain at subcellular resolution and utilized the NeuroGPS algorithm to locate and count cells in the whole brain. We evaluated the data continuity of the 3D dataset and the accuracy of stereological cell counting in 3D. To apply this pipeline, we acquired and quantified the brain-wide distributions and somatic morphology of somatostatin-expressing neurons in transgenic mouse brains. The results indicated that this whole-brain cell counting pipeline has the potential to become a routine tool for cell type neuroscience studies.
Collapse
Affiliation(s)
- Chen Zhang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.,MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Cheng Yan
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.,MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Miao Ren
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.,MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Anan Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.,MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Tingwei Quan
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.,MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Hui Gong
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.,MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Jing Yuan
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China. .,MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.
| |
Collapse
|
217
|
3D morphological analysis of the mouse cerebral vasculature: Comparison of in vivo and ex vivo methods. PLoS One 2017; 12:e0186676. [PMID: 29053753 PMCID: PMC5650181 DOI: 10.1371/journal.pone.0186676] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 10/05/2017] [Indexed: 02/06/2023] Open
Abstract
Ex vivo 2-photon fluorescence microscopy (2PFM) with optical clearing enables vascular imaging deep into tissue. However, optical clearing may also produce spherical aberrations if the objective lens is not index-matched to the clearing material, while the perfusion, clearing, and fixation procedure may alter vascular morphology. We compared in vivo and ex vivo 2PFM in mice, focusing on apparent differences in microvascular signal and morphology. Following in vivo imaging, the mice (four total) were perfused with a fluorescent gel and their brains fructose-cleared. The brain regions imaged in vivo were imaged ex vivo. Vessels were segmented in both images using an automated tracing algorithm that accounts for the spatially varying PSF in the ex vivo images. This spatial variance is induced by spherical aberrations caused by imaging fructose-cleared tissue with a water-immersion objective. Alignment of the ex vivo image to the in vivo image through a non-linear warping algorithm enabled comparison of apparent vessel diameter, as well as differences in signal. Shrinkage varied as a function of diameter, with capillaries rendered smaller ex vivo by 13%, while penetrating vessels shrunk by 34%. The pial vasculature attenuated in vivo microvascular signal by 40% 300 μm below the tissue surface, but this effect was absent ex vivo. On the whole, ex vivo imaging was found to be valuable for studying deep cortical vasculature.
Collapse
|
218
|
Abstract
Magnetic resonance imaging, positron emission tomography, and optical imaging have emerged as key tools to understand brain function and neurological disorders in preclinical mouse models. They offer the unique advantage of monitoring individual structural and functional changes over time. What remained unsolved until recently was to generate whole-brain microscopy data which can be correlated to the 3D in vivo neuroimaging data. Conventional histological sections are inappropriate especially for neuronal tracing or the unbiased screening for molecular targets through the whole brain. As part of the European Society for Molecular Imaging (ESMI) meeting 2016 in Utrecht, the Netherlands, we addressed this issue in the Molecular Neuroimaging study group meeting. Presentations covered new brain clearing methods, light sheet microscopes for large samples, and automatic registration of microscopy to in vivo imaging data. In this article, we summarize the discussion; give an overview of the novel techniques; and discuss the practical needs, benefits, and limitations.
Collapse
|
219
|
Lugo-Hernandez E, Squire A, Hagemann N, Brenzel A, Sardari M, Schlechter J, Sanchez-Mendoza EH, Gunzer M, Faissner A, Hermann DM. 3D visualization and quantification of microvessels in the whole ischemic mouse brain using solvent-based clearing and light sheet microscopy. J Cereb Blood Flow Metab 2017; 37:3355-3367. [PMID: 28350253 PMCID: PMC5624395 DOI: 10.1177/0271678x17698970] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The visualization of cerebral microvessels is essential for understanding brain remodeling after stroke. Injection of dyes allows for the evaluation of perfused vessels, but has limitations related either to incomplete microvascular filling or leakage. In conventional histochemistry, the analysis of microvessels is limited to 2D structures, with apparent limitations regarding the interpretation of vascular circuits. Herein, we developed a straight-forward technique to visualize microvessels in the whole ischemic mouse brain, combining the injection of a fluorescent-labeled low viscosity hydrogel conjugate with 3D solvent clearing followed by automated light sheet microscopy. We performed transient middle cerebral artery occlusion in C57Bl/6j mice and acquired detailed 3D vasculature images from whole brains. Subsequent image processing, rendering and fitting of blood vessels to a filament model was employed to calculate vessel length density, resulting in 0.922 ± 0.176 m/mm3 in healthy tissue and 0.329 ± 0.131 m/mm3 in ischemic tissue. This analysis showed a marked loss of capillaries with a diameter ≤ 10 µm and a more moderate loss of microvessels in the range > 10 and ≤ 20 µm, whereas vessels > 20 µm were unaffected by focal cerebral ischemia. We propose that this protocol is highly suitable for studying microvascular injury and remodeling post-stroke.
Collapse
Affiliation(s)
- Erlen Lugo-Hernandez
- 1 Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,2 Department of Cell Morphology and Molecular Neurobiology, Ruhr University Bochum, Bochum, Germany.,3 Department of Physiology and Biochemistry, School of Medicine, Faculty of Health Sciences, University of Carabobo, La Morita, Venezuela
| | - Anthony Squire
- 4 Institute for Experimental Immunology and Imaging and Imaging Center Essen (IMCES), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Nina Hagemann
- 1 Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Alexandra Brenzel
- 4 Institute for Experimental Immunology and Imaging and Imaging Center Essen (IMCES), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Maryam Sardari
- 1 Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Jana Schlechter
- 1 Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | | | - Matthias Gunzer
- 4 Institute for Experimental Immunology and Imaging and Imaging Center Essen (IMCES), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Andreas Faissner
- 2 Department of Cell Morphology and Molecular Neurobiology, Ruhr University Bochum, Bochum, Germany
| | - Dirk M Hermann
- 1 Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
220
|
von Bartheld CS. Myths and truths about the cellular composition of the human brain: A review of influential concepts. J Chem Neuroanat 2017; 93:2-15. [PMID: 28873338 DOI: 10.1016/j.jchemneu.2017.08.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 08/16/2017] [Accepted: 08/17/2017] [Indexed: 11/17/2022]
Abstract
Over the last 50 years, quantitative methodology has made important contributions to our understanding of the cellular composition of the human brain. Not all of the concepts that emerged from quantitative studies have turned out to be true. Here, I examine the history and current status of some of the most influential notions. This includes claims of how many cells compose the human brain, and how different cell types contribute and in what ratios. Additional concepts entail whether we lose significant numbers of neurons with normal aging, whether chronic alcohol abuse contributes to cortical neuron loss, whether there are significant differences in the quantitative composition of cerebral cortex between male and female brains, whether superior intelligence in humans correlates with larger numbers of brain cells, and whether there are secular (generational) changes in neuron number. Do changes in cell number or changes in ratios of cell types accompany certain diseases, and should all counting methods, even the theoretically unbiased ones, be validated and calibrated? I here examine the origin and the current status of major influential concepts, and I review the evidence and arguments that have led to either confirmation or refutation of such concepts. I discuss the circumstances, assumptions and mindsets that perpetuated erroneous views, and the types of technological advances that have, in some cases, challenged longstanding ideas. I will acknowledge the roles of key proponents of influential concepts in the sometimes convoluted path towards recognition of the true cellular composition of the human brain.
Collapse
Affiliation(s)
- Christopher S von Bartheld
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Mailstop 352, Reno, NV 89557, USA.
| |
Collapse
|
221
|
Dyer EL, Gray Roncal W, Prasad JA, Fernandes HL, Gürsoy D, De Andrade V, Fezzaa K, Xiao X, Vogelstein JT, Jacobsen C, Körding KP, Kasthuri N. Quantifying Mesoscale Neuroanatomy Using X-Ray Microtomography. eNeuro 2017; 4:ENEURO.0195-17.2017. [PMID: 29085899 PMCID: PMC5659258 DOI: 10.1523/eneuro.0195-17.2017] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/02/2017] [Accepted: 08/23/2017] [Indexed: 11/21/2022] Open
Abstract
Methods for resolving the three-dimensional (3D) microstructure of the brain typically start by thinly slicing and staining the brain, followed by imaging numerous individual sections with visible light photons or electrons. In contrast, X-rays can be used to image thick samples, providing a rapid approach for producing large 3D brain maps without sectioning. Here we demonstrate the use of synchrotron X-ray microtomography (µCT) for producing mesoscale (∼1 µm 3 resolution) brain maps from millimeter-scale volumes of mouse brain. We introduce a pipeline for µCT-based brain mapping that develops and integrates methods for sample preparation, imaging, and automated segmentation of cells, blood vessels, and myelinated axons, in addition to statistical analyses of these brain structures. Our results demonstrate that X-ray tomography achieves rapid quantification of large brain volumes, complementing other brain mapping and connectomics efforts.
Collapse
Affiliation(s)
- Eva L. Dyer
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332
| | - William Gray Roncal
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD, 20723
- Dept. of Computer Science, The Johns Hopkins University, Baltimore, MD, 21218
| | - Judy A. Prasad
- Dept. of Neurobiology, University of Chicago, Chicago, IL, 60637
| | - Hugo L. Fernandes
- Dept. of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, 60611
- Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, IL, 60611
| | - Doga Gürsoy
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL, 60439
| | | | - Kamel Fezzaa
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL, 60439
| | - Xianghui Xiao
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL, 60439
| | - Joshua T. Vogelstein
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, 21205
- Institute of Computational Medicine, The Johns Hopkins University, Baltimore, MD, 21218
| | - Chris Jacobsen
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL, 60439
- Department of Physics and Astronomy, Northwestern University, Chicago, IL, 60208
| | - Konrad P. Körding
- Department of Biomedical Engineering, University of Pennsylvania, Philadelphia, PA, 19104
| | - Narayanan Kasthuri
- Dept. of Neurobiology, University of Chicago, Chicago, IL, 60637
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL, 60439
| |
Collapse
|
222
|
Aum DJ, Vellimana AK, Singh I, Milner E, Nelson JW, Han BH, Zipfel GJ. A novel fluorescent imaging technique for assessment of cerebral vasospasm after experimental subarachnoid hemorrhage. Sci Rep 2017; 7:9126. [PMID: 28831103 PMCID: PMC5567362 DOI: 10.1038/s41598-017-09070-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 07/21/2017] [Indexed: 12/22/2022] Open
Abstract
Various techniques have been developed to study changes in the cerebral vasculature in numerous neuropathological processes including subarachnoid hemorrhage (SAH). One of the most widely employed techniques uses India ink-gelatin casting, which presents numerous challenges due to its high viscosity, rapid solidification, and its impact on immunohistochemical analysis. To overcome these limitations, we developed a novel technique for assessing cerebral vasospasm using cerebrovascular perfusion with ROX, SE (5-Carboxy-X-Rhodamine, Succinimidyl Ester), a fluorescent labeling dye. We found that ROX SE perfusion achieves excellent delineation of the cerebral vasculature, was qualitatively and quantitatively superior to India ink-gelatin casting for the assessment of cerebral vasospasm, permits outstanding immunohistochemical examination of non-vasospasm components of secondary brain injury, and is a more efficient and cost-effective experimental technique. ROX SE perfusion is therefore a novel and highly useful technique for studying cerebrovascular pathology following experimental SAH.
Collapse
Affiliation(s)
- Diane J Aum
- Department of Neurological Surgery, Washington University School of Medicine, St Louis, MO, USA
| | - Ananth K Vellimana
- Department of Neurological Surgery, Washington University School of Medicine, St Louis, MO, USA
| | - Itender Singh
- Department of Neurological Surgery, Washington University School of Medicine, St Louis, MO, USA
| | - Eric Milner
- Department of Neurological Surgery, Washington University School of Medicine, St Louis, MO, USA
| | - James W Nelson
- Department of Neurological Surgery, Washington University School of Medicine, St Louis, MO, USA
| | - Byung Hee Han
- Department of Neurological Surgery, Washington University School of Medicine, St Louis, MO, USA.,Department of Pharmacology, A.T. Still University of Health Sciences, Kirksville, MO, USA
| | - Gregory J Zipfel
- Department of Neurological Surgery, Washington University School of Medicine, St Louis, MO, USA. .,Department of Neurology, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
223
|
Nicholson C, Hrabětová S. Brain Extracellular Space: The Final Frontier of Neuroscience. Biophys J 2017; 113:2133-2142. [PMID: 28755756 DOI: 10.1016/j.bpj.2017.06.052] [Citation(s) in RCA: 178] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 05/31/2017] [Accepted: 06/07/2017] [Indexed: 01/15/2023] Open
Abstract
Brain extracellular space is the narrow microenvironment that surrounds every cell of the central nervous system. It contains a solution that closely resembles cerebrospinal fluid with the addition of extracellular matrix molecules. The space provides a reservoir for ions essential to the electrical activity of neurons and forms an intercellular chemical communication channel. Attempts to reveal the size and structure of the extracellular space using electron microscopy have had limited success; however, a biophysical approach based on diffusion of selected probe molecules has proved useful. A point-source paradigm, realized in the real-time iontophoresis method using tetramethylammonium, as well as earlier radiotracer methods, have shown that the extracellular space occupies ∼20% of brain tissue and small molecules have an effective diffusion coefficient that is two-fifths that in a free solution. Monte Carlo modeling indicates that geometrical constraints, including dead-space microdomains, contribute to the hindrance to diffusion. Imaging the spread of macromolecules shows them increasingly hindered as a function of size and suggests that the gaps between cells are predominantly ∼40 nm with wider local expansions that may represent dead-spaces. Diffusion measurements also characterize interactions of ions and proteins with the chondroitin and heparan sulfate components of the extracellular matrix; however, the many roles of the matrix are only starting to become apparent. The existence and magnitude of bulk flow and the so-called glymphatic system are topics of current interest and controversy. The extracellular space is an exciting area for research that will be propelled by emerging technologies.
Collapse
Affiliation(s)
- Charles Nicholson
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, New York; Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, New York.
| | - Sabina Hrabětová
- Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, New York; The Robert Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Medical Center, Brooklyn, New York
| |
Collapse
|
224
|
Petridou N, Siero JCW. Laminar fMRI: What can the time domain tell us? Neuroimage 2017; 197:761-771. [PMID: 28736308 DOI: 10.1016/j.neuroimage.2017.07.040] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 07/06/2017] [Accepted: 07/19/2017] [Indexed: 01/30/2023] Open
Abstract
The rapid developments in functional MRI (fMRI) acquisition methods and hardware technologies in recent years, particularly at high field (≥7 T), have enabled unparalleled visualization of functional detail at a laminar or columnar level, bringing fMRI close to the intrinsic resolution of brain function. These advances highlight the potential of high resolution fMRI to be a valuable tool to study the fundamental processing performed in cortical micro-circuits, and their interactions such as feedforward and feedback processes. Notably, because fMRI measures neuronal activity via hemodynamics, the ultimate resolution it affords depends on the spatial specificity of hemodynamics to neuronal activity at a detailed spatial scale, and by the evolution of this specificity over time. Several laminar (≤1 mm spatial resolution) fMRI studies have examined spatial characteristics of the measured hemodynamic signals across cortical depth, in light of understanding or improving the spatial specificity of laminar fMRI. Few studies have examined temporal features of the hemodynamic response across cortical depth. Temporal features of the hemodynamic response offer an additional means to improve the specificity of fMRI, and could help target neuronal processes and neurovascular coupling relationships across laminae, for example by differences in the onset times of the response across cortical depth. In this review, we discuss factors that affect the timing of neuronal and hemodynamic responses across laminae, touching on the neuronal laminar organization, and focusing on the laminar vascular organization. We provide an overview of hemodynamics across the cortical vascular tree based on optical imaging studies, and review temporal aspects of hemodynamics that have been examined across cortical depth in high spatiotemporal resolution fMRI studies. Last, we discuss the limits and potential of high spatiotemporal resolution fMRI to study laminar neurovascular coupling and neuronal processes.
Collapse
Affiliation(s)
- Natalia Petridou
- Radiology, University Medical Centre Utrecht, Utrecht, The Netherlands.
| | - Jeroen C W Siero
- Radiology, University Medical Centre Utrecht, Utrecht, The Netherlands; Spinoza Centre for Neuroimaging, Amsterdam, The Netherlands
| |
Collapse
|
225
|
Radu BM, Osculati AMM, Suku E, Banciu A, Tsenov G, Merigo F, Di Chio M, Banciu DD, Tognoli C, Kacer P, Giorgetti A, Radu M, Bertini G, Fabene PF. All muscarinic acetylcholine receptors (M 1-M 5) are expressed in murine brain microvascular endothelium. Sci Rep 2017; 7:5083. [PMID: 28698560 PMCID: PMC5506046 DOI: 10.1038/s41598-017-05384-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 05/30/2017] [Indexed: 12/25/2022] Open
Abstract
Clinical and experimental studies indicate that muscarinic acetylcholine receptors are potential pharmacological targets for the treatment of neurological diseases. Although these receptors have been described in human, bovine and rat cerebral microvascular tissue, a subtype functional characterization in mouse brain endothelium is lacking. Here, we show that all muscarinic acetylcholine receptors (M1-M5) are expressed in mouse brain microvascular endothelial cells. The mRNA expression of M2, M3, and M5 correlates with their respective protein abundance, but a mismatch exists for M1 and M4 mRNA versus protein levels. Acetylcholine activates calcium transients in brain endothelium via muscarinic, but not nicotinic, receptors. Moreover, although M1 and M3 are the most abundant receptors, only a small fraction of M1 is present in the plasma membrane and functions in ACh-induced Ca2+ signaling. Bioinformatic analyses performed on eukaryotic muscarinic receptors demonstrate a high degree of conservation of the orthosteric binding site and a great variability of the allosteric site. In line with previous studies, this result indicates muscarinic acetylcholine receptors as potential pharmacological targets in future translational studies. We argue that research on drug development should especially focus on the allosteric binding sites of the M1 and M3 receptors.
Collapse
Affiliation(s)
- Beatrice Mihaela Radu
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, 37134, Italy.,Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Bucharest, 050095, Romania
| | | | - Eda Suku
- Department of Biotechnology, University of Verona, Verona, 37134, Italy
| | - Adela Banciu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Bucharest, 050095, Romania.,Engineering Faculty, Constantin Brancusi' University, Calea Eroilor 30, Targu Jiu, 210135, Romania
| | - Grygoriy Tsenov
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, 37134, Italy
| | - Flavia Merigo
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, 37134, Italy
| | - Marzia Di Chio
- Department of Public Health and Community Medicine, University of Verona, Verona, 37134, Italy
| | - Daniel Dumitru Banciu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Bucharest, 050095, Romania
| | - Cristina Tognoli
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, 37134, Italy
| | - Petr Kacer
- National Institute of Mental Health, Klecany, 25067, Czech Republic
| | | | - Mihai Radu
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, 37134, Italy. .,Department of Life and Environmental Physics, Horia Hulubei National Institute for Physics and Nuclear Engineering, PO Box MG-6, Reactorului 30, Magurele, 077125, Romania.
| | - Giuseppe Bertini
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, 37134, Italy
| | - Paolo Francesco Fabene
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, 37134, Italy
| |
Collapse
|
226
|
Miller DR, Hassan AM, Jarrett JW, Medina FA, Perillo EP, Hagan K, Shams Kazmi SM, Clark TA, Sullender CT, Jones TA, Zemelman BV, Dunn AK. In vivo multiphoton imaging of a diverse array of fluorophores to investigate deep neurovascular structure. BIOMEDICAL OPTICS EXPRESS 2017; 8:3470-3481. [PMID: 28717582 PMCID: PMC5508843 DOI: 10.1364/boe.8.003470] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/15/2017] [Accepted: 06/20/2017] [Indexed: 05/05/2023]
Abstract
We perform high-resolution, non-invasive, in vivo deep-tissue imaging of the mouse neocortex using multiphoton microscopy with a high repetition rate optical parametric amplifier laser source tunable between λ=1,100 and 1,400 nm. By combining the high repetition rate (511 kHz) and high pulse energy (400 nJ) of our amplifier laser system, we demonstrate imaging of vasculature labeled with Texas Red and Indocyanine Green, and neurons expressing tdTomato and yellow fluorescent protein. We measure the blood flow speed of a single capillary at a depth of 1.2 mm, and image vasculature to a depth of 1.53 mm with fine axial steps (5 μm) and reasonable acquisition times. The high image quality enabled analysis of vascular morphology at depths to 1.45 mm.
Collapse
Affiliation(s)
- David R. Miller
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton C0800, Austin, TX 78712,
USA
| | - Ahmed M. Hassan
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton C0800, Austin, TX 78712,
USA
| | - Jeremy W. Jarrett
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton C0800, Austin, TX 78712,
USA
| | - Flor A. Medina
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton C0800, Austin, TX 78712,
USA
| | - Evan P. Perillo
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton C0800, Austin, TX 78712,
USA
| | - Kristen Hagan
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton C0800, Austin, TX 78712,
USA
| | - S. M. Shams Kazmi
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton C0800, Austin, TX 78712,
USA
| | - Taylor A. Clark
- Department of Neuroscience, The University of Texas at Austin, 2415 Speedway, Austin, TX 78712,
USA
| | - Colin T. Sullender
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton C0800, Austin, TX 78712,
USA
| | - Theresa A. Jones
- Department of Neuroscience, The University of Texas at Austin, 2415 Speedway, Austin, TX 78712,
USA
| | - Boris V. Zemelman
- Department of Neuroscience, The University of Texas at Austin, 2415 Speedway, Austin, TX 78712,
USA
| | - Andrew K. Dunn
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton C0800, Austin, TX 78712,
USA
| |
Collapse
|
227
|
Schwenninger D, Priebe HJ, Schneider M, Runck H, Guttmann J. Optical clearing: impact of optical and dielectric properties of clearing solutions on pulmonary tissue mechanics. J Appl Physiol (1985) 2017; 123:27-37. [DOI: 10.1152/japplphysiol.00234.2016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 03/20/2017] [Accepted: 03/21/2017] [Indexed: 11/22/2022] Open
Abstract
Optical clearing allows tissue visualization under preservation of organ integrity. Optical clearing of organs with a physiological change in three-dimensional geometry (such as the lung) would additionally allow visualization of macroscopic and microscopic tissue geometry. A prerequisite, however, is the preservation of the native tissue mechanics of the optically cleared lung tissue. We investigated the impact of optical and dielectric properties of clearing solutions on biomechanics and clearing potency in porcine tissue strips of healthy lungs. After fixation, bleaching, and rehydration, four methods of optical clearing were investigated using eight different protocols. The mechanical and optical properties of the cleared lung tissue strips were investigated by uniaxial tensile testing and by analyzing optical transparency and translucency for red, green, and blue light before, during, and after the biochemical optical clearing process. Fresh tissue strips were used as controls. Best balance between efficient clearing and preserved mechanics was found for clearing with a 1:1 mixture of dimethyl sulfoxide (DMSO) and aniline. Our findings show that 1) the degree of tissue transparency and translucency correlated with the refractive index of the clearing solution index ( r = 0.976, P = 0.0004; and r = 0.91, P = 0.0046, respectively), 2) tissue mechanics were affected by dehydration and the type of clearing solution, and 3) tissue biomechanics and geometry correlated with the dielectric constant of the clearing solution ( r = −0.98, P < 0.00001; and r = 0.69, P = 0.013, respectively). We show that the lower the dielectric constant of the clearing solutions, the larger the effect on tissue stiffness. This suggests that the dielectric constant is an important measure in determining the effect of a clearing solution on lung tissue biomechanics. Optimal tissue transparency requires complete tissue dehydration and a refractive index of 1.55 of the clearing solution. NEW & NOTEWORTHY Investigating optical clearing in porcine lung tissue strips, we found that refractive index and dielectric constant of the clearing solution affected tissue clearing and biomechanics. By documenting the impact of the composition of the clearing solution on clearing potency and preservation of tissue mechanics, our results help to compose optimal clearing solutions. In addition, the results allow conclusions on the molecular interaction of solvents with collagen fibers in tissue, thereby consolidating existing theories about the functionality of collagen.
Collapse
Affiliation(s)
- David Schwenninger
- Department of Anesthesiology, Division for Experimental Anesthesiology, University Medical Center Freiburg, Freiburg, Germany; and
| | | | - Matthias Schneider
- Department of Anesthesiology, Division for Experimental Anesthesiology, University Medical Center Freiburg, Freiburg, Germany; and
| | - Hanna Runck
- Department of Anesthesiology, Division for Experimental Anesthesiology, University Medical Center Freiburg, Freiburg, Germany; and
| | - Josef Guttmann
- Department of Anesthesiology, Division for Experimental Anesthesiology, University Medical Center Freiburg, Freiburg, Germany; and
| |
Collapse
|
228
|
Schmid F, Barrett MJP, Jenny P, Weber B. Vascular density and distribution in neocortex. Neuroimage 2017; 197:792-805. [PMID: 28669910 DOI: 10.1016/j.neuroimage.2017.06.046] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/09/2017] [Accepted: 06/20/2017] [Indexed: 12/22/2022] Open
Abstract
An amazingly wide range of complex behavior emerges from the cerebral cortex. Much of the information processing that leads to these behaviors is performed in neocortical circuits that span throughout the six layers of the cortex. Maintaining this circuit activity requires substantial quantities of oxygen and energy substrates, which are delivered by the complex yet well-organized and tightly-regulated vascular system. In this review, we provide a detailed characterization of the most relevant anatomical and functional features of the cortical vasculature. This includes a compilation of the available data on laminar variation of vascular density and the topological aspects of the microvascular system. We also review the spatio-temporal dynamics of cortical blood flow regulation and oxygenation, many aspects of which remain poorly understood. Finally, we discuss some of the important implications of vascular density, distribution, oxygenation and blood flow regulation for (laminar) fMRI.
Collapse
Affiliation(s)
- Franca Schmid
- Institute of Fluid Dynamics, ETH Zurich, Sonneggstrasse 3, 8092, Zurich, Switzerland.
| | - Matthew J P Barrett
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland; Neuroscience Center, University and ETH Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Patrick Jenny
- Institute of Fluid Dynamics, ETH Zurich, Sonneggstrasse 3, 8092, Zurich, Switzerland
| | - Bruno Weber
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland; Neuroscience Center, University and ETH Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| |
Collapse
|
229
|
Ngwenya A, Nahirney J, Brinkman B, Williams L, Iwaniuk AN. Comparison of estimates of neuronal number obtained using the isotropic fractionator method and unbiased stereology in day old chicks (Gallus domesticus). J Neurosci Methods 2017; 287:39-46. [PMID: 28587893 DOI: 10.1016/j.jneumeth.2017.05.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 05/28/2017] [Accepted: 05/30/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND The relative size and neuronal density of brain regions are important metrics in both comparative and experimental studies in neuroscience. Consequently, it is imperative to have accurate, reliable and reproducible methods of quantifying cell number. NEW METHOD The isotropic fractionator (IF) method estimates the number of neurons and non-neurons in the central nervous system by homogenizing tissue into discrete nuclei and determining the proportion of neurons from non-neurons using immunohistochemistry (Herculano- Herculano-Houzel and Lent, 2005). COMPARISON WITH EXISTING METHOD One of the advantages of IF is that it is considerably faster than stereology. However, as the method is relatively new, concerns about its accuracy remain, particularly whether homogenization results in underestimation of cell number. In this study, we compared estimates of neuronal number in the telencephalon and 'rest of brain' (i.e. the diencephalon and brainstem excluding the optic lobes) of day old chicks using the IF method and stereology. RESULTS In the telencephalon, there was a significant difference in estimates of neuronal number between the 2 methods, but not estimates of neuronal density (neurons/mg of tissue). Whereas in the 'rest of brain', there was a significant difference in estimates of neuronal density, but not neuronal number. In all cases, stereological estimates were lower than those obtained using the IF method. CONCLUSION Despite the statistically significant differences, there was considerable overlap (all estimates were within 16% of one another) between estimates obtained using the two methods suggesting that the two methods provide comparable estimates of neuronal number in birds.
Collapse
Affiliation(s)
- Ayanda Ngwenya
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada.
| | - Janae Nahirney
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Ben Brinkman
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Lauren Williams
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Andrew N Iwaniuk
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
230
|
Poplawsky AJ, Fukuda M, Kim SG. Foundations of layer-specific fMRI and investigations of neurophysiological activity in the laminarized neocortex and olfactory bulb of animal models. Neuroimage 2017; 199:718-729. [PMID: 28502845 DOI: 10.1016/j.neuroimage.2017.05.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/02/2017] [Accepted: 05/11/2017] [Indexed: 12/25/2022] Open
Abstract
Laminar organization of neuronal circuits is a recurring feature of how the brain processes information. For instance, different layers compartmentalize different cell types, synaptic activities, and have unique intrinsic and extrinsic connections that serve as units for specialized signal processing. Functional MRI is an invaluable tool to investigate laminar processing in the in vivo human brain, but it measures neuronal activity indirectly by way of the hemodynamic response. Therefore, the accuracy of high-resolution laminar fMRI depends on how precisely it can measure localized microvascular changes nearest to the site of evoked activity. To determine the specificity of fMRI responses to the true neurophysiological responses across layers, the flexibility to invasive procedures in animal models has been necessary. In this review, we will examine different fMRI contrasts and their appropriate uses for layer-specific fMRI, and how localized laminar processing was examined in the neocortex and olfactory bulb. Through collective efforts, it was determined that microvessels, including capillaries, are regulated within single layers and that several endogenous and contrast-enhanced fMRI contrast mechanisms can separate these neural-specific vascular changes from the nonspecific, especially cerebral blood volume-weighted fMRI with intravenous contrast agent injection. We will also propose some open questions that are relevant for the successful implementation of layer-specific fMRI and its potential future directions to study laminar processing when combined with optogenetics.
Collapse
Affiliation(s)
- Alexander John Poplawsky
- Neuroimaging Laboratory, Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Mitsuhiro Fukuda
- Neuroimaging Laboratory, Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Seong-Gi Kim
- Center for Neuroscience Imaging Research, Institute of Basic Science, Suwon 440-746, Republic of Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| |
Collapse
|
231
|
Obenaus A, Ng M, Orantes AM, Kinney-Lang E, Rashid F, Hamer M, DeFazio RA, Tang J, Zhang JH, Pearce WJ. Traumatic brain injury results in acute rarefication of the vascular network. Sci Rep 2017; 7:239. [PMID: 28331228 PMCID: PMC5427893 DOI: 10.1038/s41598-017-00161-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 02/13/2017] [Indexed: 01/04/2023] Open
Abstract
The role of the cerebrovascular network and its acute response to TBI is poorly defined and emerging evidence suggests that cerebrovascular reactivity is altered. We explored how cortical vessels are physically altered following TBI using a newly developed technique, vessel painting. We tested our hypothesis that a focal moderate TBI results in global decrements to structural aspects of the vasculature. Rats (naïve, sham-operated, TBI) underwent a moderate controlled cortical impact. Animals underwent vessel painting perfusion to label the entire cortex at 1 day post TBI followed by whole brain axial and coronal images using a wide-field fluorescence microscope. Cortical vessel network characteristics were analyzed for classical angiographic features (junctions, lengths) wherein we observed significant global (both hemispheres) reductions in vessel junctions and vessel lengths of 33% and 22%, respectively. Biological complexity can be quantified using fractal geometric features where we observed that fractal measures were also reduced significantly by 33%, 16% and 13% for kurtosis, peak value frequency and skewness, respectively. Acutely after TBI there is a reduction in vascular network and vascular complexity that are exacerbated at the lesion site and provide structural evidence for the bilateral hemodynamic alterations that have been reported in patients after TBI.
Collapse
Affiliation(s)
- Andre Obenaus
- Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA.
| | - Michelle Ng
- Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Amanda M Orantes
- Molecular and Integrative Physiology, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Eli Kinney-Lang
- Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Faisal Rashid
- Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Mary Hamer
- Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | | | - Jiping Tang
- Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - John H Zhang
- Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA.,Anesthesiology, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA.,Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - William J Pearce
- Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA.,Center for Perinatal Biology, Loma Linda University, Loma Linda, CA, 92350, USA
| |
Collapse
|
232
|
Capillary K +-sensing initiates retrograde hyperpolarization to increase local cerebral blood flow. Nat Neurosci 2017; 20:717-726. [PMID: 28319610 PMCID: PMC5404963 DOI: 10.1038/nn.4533] [Citation(s) in RCA: 343] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 02/19/2017] [Indexed: 12/21/2022]
Abstract
Blood flow into the brain is dynamically regulated to satisfy the changing metabolic requirements of neurons, but how this is accomplished has remained unclear. Here, we demonstrate a central role for capillary endothelial cells in sensing neural activity and communicating it to upstream arterioles in the form of an electrical vasodilatory signal. We further demonstrate that this signal is initiated by extracellular potassium (K+)—a byproduct of neural activity—which activates capillary endothelial cell inward-rectifier K+ (KIR2.1) channels to produce a rapidly propagating retrograde hyperpolarization that causes upstream arteriolar dilation, increasing blood flow into the capillary bed. Our results establish brain capillaries as an active sensory web that converts changes in external K+ into rapid, ‘inside-out’ electrical signaling to direct blood flow to active brain regions.
Collapse
|
233
|
Kelly JG, Hawken MJ. Quantification of neuronal density across cortical depth using automated 3D analysis of confocal image stacks. Brain Struct Funct 2017; 222:3333-3353. [PMID: 28243763 DOI: 10.1007/s00429-017-1382-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 01/31/2017] [Indexed: 10/20/2022]
Abstract
A new framework for measuring densities of immunolabeled neurons across cortical layers was implemented that combines a confocal microscopy sampling strategy with automated analysis of 3D image stacks. Its utility was demonstrated by quantifying neuronal density in macaque cortical areas V1 and V2. A series of overlapping confocal image stacks were acquired, each spanning from the pial surface to the white matter. DAPI channel images were automatically thresholded, and contiguous regions that included multiple clumped nuclear profiles were split using k-means clustering of image pixels for a set of candidate k values determined based on the clump's area; the most likely candidate segmentation was selected based on criteria that capture expected nuclear profile shape and size. The centroids of putative nuclear profiles estimated from 2D images were then grouped across z planes in an image stack to identify the positions of nuclei in x-y-z. 3D centroids falling outside user-specified exclusion boundaries were deleted, nuclei were classified by the presence or absence of signal in a channel corresponding to an immunolabeled antigen (e.g., the pan-neuronal marker NeuN) at the nuclear centroid location, and the set of classified cells was combined across image stacks to estimate density across cortical depth. The method was validated by comparison with conventional stereological methods. The average neuronal density across cortical layers was 230 × 103 neurons per mm3 in V1 and 130 × 103 neurons per mm3 in V2. The method is accurate, flexible, and general enough to measure densities of neurons of various molecularly identified types.
Collapse
Affiliation(s)
- Jenna G Kelly
- Center for Neural Science, New York University, 4 Washington Place, New York, NY, 10003, USA
| | - Michael J Hawken
- Center for Neural Science, New York University, 4 Washington Place, New York, NY, 10003, USA.
| |
Collapse
|
234
|
Lasser J, Katifori E. NET: a new framework for the vectorization and examination of network data. SOURCE CODE FOR BIOLOGY AND MEDICINE 2017; 12:4. [PMID: 28194225 PMCID: PMC5299731 DOI: 10.1186/s13029-017-0064-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 01/31/2017] [Indexed: 11/10/2022]
Abstract
Background The analysis of complex networks both in general and in particular as pertaining to real biological systems has been the focus of intense scientific attention in the past and present. In this paper we introduce two tools that provide fast and efficient means for the processing and quantification of biological networks like Drosophila tracheoles or leaf venation patterns: the Network Extraction Tool (NET) to extract data and the Graph-edit-GUI (GeGUI) to visualize and modify networks. Results NET is especially designed for high-throughput semi-automated analysis of biological datasets containing digital images of networks. The framework starts with the segmentation of the image and then proceeds to vectorization using methodologies from optical character recognition. After a series of steps to clean and improve the quality of the extracted data the framework produces a graph in which the network is represented only by its nodes and neighborhood-relations. The final output contains information about the adjacency matrix of the graph, the width of the edges and the positions of the nodes in space. NET also provides tools for statistical analysis of the network properties, such as the number of nodes or total network length. Other, more complex metrics can be calculated by importing the vectorized network to specialized network analysis packages. GeGUI is designed to facilitate manual correction of non-planar networks as these may contain artifacts or spurious junctions due to branches crossing each other. It is tailored for but not limited to the processing of networks from microscopy images of Drosophila tracheoles. Conclusion The networks extracted by NET closely approximate the network depicted in the original image. NET is fast, yields reproducible results and is able to capture the full geometry of the network, including curved branches. Additionally GeGUI allows easy handling and visualization of the networks. Electronic supplementary material The online version of this article (doi:10.1186/s13029-017-0064-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jana Lasser
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Am Fassberg 17, Göttingen, 37077 Germany
| | - Eleni Katifori
- Department of Physics & Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, 19104-6396 PA USA
| |
Collapse
|
235
|
Schmid F, Tsai PS, Kleinfeld D, Jenny P, Weber B. Depth-dependent flow and pressure characteristics in cortical microvascular networks. PLoS Comput Biol 2017; 13:e1005392. [PMID: 28196095 PMCID: PMC5347440 DOI: 10.1371/journal.pcbi.1005392] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 03/01/2017] [Accepted: 01/31/2017] [Indexed: 01/21/2023] Open
Abstract
A better knowledge of the flow and pressure distribution in realistic microvascular networks is needed for improving our understanding of neurovascular coupling mechanisms and the related measurement techniques. Here, numerical simulations with discrete tracking of red blood cells (RBCs) are performed in three realistic microvascular networks from the mouse cerebral cortex. Our analysis is based on trajectories of individual RBCs and focuses on layer-specific flow phenomena until a cortical depth of 1 mm. The individual RBC trajectories reveal that in the capillary bed RBCs preferentially move in plane. Hence, the capillary flow field shows laminar patterns and a layer-specific analysis is valid. We demonstrate that for RBCs entering the capillary bed close to the cortical surface (< 400 μm) the largest pressure drop takes place in the capillaries (37%), while for deeper regions arterioles are responsible for 61% of the total pressure drop. Further flow characteristics, such as capillary transit time or RBC velocity, also vary significantly over cortical depth. Comparison of purely topological characteristics with flow-based ones shows that a combined interpretation of topology and flow is indispensable. Our results provide evidence that it is crucial to consider layer-specific differences for all investigations related to the flow and pressure distribution in the cortical vasculature. These findings support the hypothesis that for an efficient oxygen up-regulation at least two regulation mechanisms must be playing hand in hand, namely cerebral blood flow increase and microvascular flow homogenization. However, the contribution of both regulation mechanisms to oxygen up-regulation likely varies over depth.
Collapse
Affiliation(s)
- Franca Schmid
- Institute of Fluid Dynamics, ETH Zurich, Zurich, Switzerland
| | - Philbert S. Tsai
- Department of Physics, University of California at San Diego, La Jolla, California, United States of America
| | - David Kleinfeld
- Department of Physics, University of California at San Diego, La Jolla, California, United States of America
- Section of Neurobiology, University of California, La Jolla, California, United States of America
| | - Patrick Jenny
- Institute of Fluid Dynamics, ETH Zurich, Zurich, Switzerland
| | - Bruno Weber
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
236
|
Wälchli T, Ulmann-Schuler A, Hintermüller C, Meyer E, Stampanoni M, Carmeliet P, Emmert MY, Bozinov O, Regli L, Schwab ME, Vogel J, Hoerstrup SP. Nogo-A regulates vascular network architecture in the postnatal brain. J Cereb Blood Flow Metab 2017; 37:614-631. [PMID: 27927704 PMCID: PMC5381465 DOI: 10.1177/0271678x16675182] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Recently, we discovered a new role for the well-known axonal growth inhibitory molecule Nogo-A as a negative regulator of angiogenesis in the developing central nervous system. However, how Nogo-A affected the three-dimensional (3D) central nervous system (CNS) vascular network architecture remained unknown. Here, using vascular corrosion casting, hierarchical, synchrotron radiation μCT-based network imaging and computer-aided network analysis, we found that genetic ablation of Nogo-A significantly increased the three-dimensional vascular volume fraction in the postnatal day 10 (P10) mouse brain. More detailed analysis of the cerebral cortex revealed that this effect was mainly due to an increased number of capillaries and capillary branchpoints. Interestingly, other vascular parameters such as vessel diameter, -length, -tortuosity, and -volume were comparable between both genotypes for non-capillary vessels and capillaries. Taken together, our three-dimensional data showing more vessel segments and branchpoints at unchanged vessel morphology suggest that stimulated angiogenesis upon Nogo-A gene deletion results in the insertion of complete capillary micro-networks and not just single vessels into existing vascular networks. These findings significantly enhance our understanding of how angiogenesis, vascular remodeling, and three-dimensional vessel network architecture are regulated during central nervous system development. Nogo-A may therefore be a potential novel target for angiogenesis-dependent central nervous system pathologies such as brain tumors or stroke.
Collapse
Affiliation(s)
- Thomas Wälchli
- 1 Group of CNS Angiogenesis and Neurovascular Link, and Physician-Scientist Program, Institute for Regenerative Medicine, Neuroscience Center Zurich, and Division of Neurosurgery, University and University Hospital Zurich, Switzerland, and Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.,2 Division of Neurosurgery and Laboratory of Molecular Neuro-Oncology, University Hospital Zurich, Zurich, Switzerland.,3 Brain Research Institute, University of Zurich and Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | | | | | - Eric Meyer
- 3 Brain Research Institute, University of Zurich and Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Marco Stampanoni
- 6 Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland.,7 Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Peter Carmeliet
- 8 Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, Leuven, Belgium.,9 Department of Oncology, Laboratory of Angiogenesis and Neurovascular Link, Leuven, Belgium
| | - Maximilian Y Emmert
- 10 Institute for Regenerative Medicine and Clinic for Cardiovascular Surgery, University Hospital Zurich.,11 Wyss Translational Center Zurich, University of Zurich and Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Oliver Bozinov
- 2 Division of Neurosurgery and Laboratory of Molecular Neuro-Oncology, University Hospital Zurich, Zurich, Switzerland
| | - Luca Regli
- 2 Division of Neurosurgery and Laboratory of Molecular Neuro-Oncology, University Hospital Zurich, Zurich, Switzerland
| | - Martin E Schwab
- 3 Brain Research Institute, University of Zurich and Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Johannes Vogel
- 12 Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Simon P Hoerstrup
- 10 Institute for Regenerative Medicine and Clinic for Cardiovascular Surgery, University Hospital Zurich.,11 Wyss Translational Center Zurich, University of Zurich and Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| |
Collapse
|
237
|
Pericyte degeneration leads to neurovascular uncoupling and limits oxygen supply to brain. Nat Neurosci 2017; 20:406-416. [PMID: 28135240 PMCID: PMC5323291 DOI: 10.1038/nn.4489] [Citation(s) in RCA: 344] [Impact Index Per Article: 49.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 12/30/2016] [Indexed: 12/11/2022]
Abstract
Pericytes are perivascular mural cells of brain capillaries that are positioned centrally within the neurovascular unit between endothelial cells, astrocytes and neurons. This unique position allows them to play a major role in regulating key neurovascular functions of the brain. The role of pericytes in the regulation of cerebral blood flow (CBF) and neurovascular coupling remains, however, debatable. Using loss-of-function pericyte-deficient mice, here we show that pericyte degeneration diminishes global and individual capillary CBF responses to neuronal stimulus resulting in neurovascular uncoupling, reduced oxygen supply to brain and metabolic stress. We show that these neurovascular deficits lead over time to impaired neuronal excitability and neurodegenerative changes. Thus, pericyte degeneration as seen in neurological disorders such as Alzheimer’s disease may contribute to neurovascular dysfunction and neurodegeneration associated with human disease.
Collapse
|
238
|
Seymour JP, Wu F, Wise KD, Yoon E. State-of-the-art MEMS and microsystem tools for brain research. MICROSYSTEMS & NANOENGINEERING 2017; 3:16066. [PMID: 31057845 PMCID: PMC6445015 DOI: 10.1038/micronano.2016.66] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 07/01/2016] [Accepted: 08/23/2016] [Indexed: 05/02/2023]
Abstract
Mapping brain activity has received growing worldwide interest because it is expected to improve disease treatment and allow for the development of important neuromorphic computational methods. MEMS and microsystems are expected to continue to offer new and exciting solutions to meet the need for high-density, high-fidelity neural interfaces. Herein, the state-of-the-art in recording and stimulation tools for brain research is reviewed, and some of the most significant technology trends shaping the field of neurotechnology are discussed.
Collapse
Affiliation(s)
- John P. Seymour
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48105, USA
| | - Fan Wu
- Diagnostic Biochips, Inc., Glen Burnie, MD 21061, USA
| | - Kensall D. Wise
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48105, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48105, USA
| | - Euisik Yoon
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48105, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48105, USA
| |
Collapse
|
239
|
Gould IG, Tsai P, Kleinfeld D, Linninger A. The capillary bed offers the largest hemodynamic resistance to the cortical blood supply. J Cereb Blood Flow Metab 2017; 37:52-68. [PMID: 27780904 PMCID: PMC5363755 DOI: 10.1177/0271678x16671146] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 06/15/2016] [Accepted: 07/30/2016] [Indexed: 01/09/2023]
Abstract
The cortical angioarchitecture is a key factor in controlling cerebral blood flow and oxygen metabolism. Difficulties in imaging the complex microanatomy of the cortex have so far restricted insight about blood flow distribution in the microcirculation. A new methodology combining advanced microscopy data with large scale hemodynamic simulations enabled us to quantify the effect of the angioarchitecture on the cerebral microcirculation. High-resolution images of the mouse primary somatosensory cortex were input into with a comprehensive computational model of cerebral perfusion and oxygen supply ranging from the pial vessels to individual brain cells. Simulations of blood flow, hematocrit and oxygen tension show that the wide variation of hemodynamic states in the tortuous, randomly organized capillary bed is responsible for relatively uniform cortical tissue perfusion and oxygenation. Computational analysis of microcirculatory blood flow and pressure drops further indicates that the capillary bed, including capillaries adjacent to feeding arterioles (d < 10 µm), are the largest contributors to hydraulic resistance.
Collapse
Affiliation(s)
- Ian Gopal Gould
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Philbert Tsai
- Department of Physics, University of California at San Diego, San Diego, CA, USA
| | - David Kleinfeld
- Department of Physics, University of California at San Diego, San Diego, CA, USA
| | - Andreas Linninger
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
240
|
von Bartheld CS, Bahney J, Herculano-Houzel S. The search for true numbers of neurons and glial cells in the human brain: A review of 150 years of cell counting. J Comp Neurol 2016; 524:3865-3895. [PMID: 27187682 PMCID: PMC5063692 DOI: 10.1002/cne.24040] [Citation(s) in RCA: 587] [Impact Index Per Article: 73.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 05/13/2016] [Accepted: 05/16/2016] [Indexed: 12/13/2022]
Abstract
For half a century, the human brain was believed to contain about 100 billion neurons and one trillion glial cells, with a glia:neuron ratio of 10:1. A new counting method, the isotropic fractionator, has challenged the notion that glia outnumber neurons and revived a question that was widely thought to have been resolved. The recently validated isotropic fractionator demonstrates a glia:neuron ratio of less than 1:1 and a total number of less than 100 billion glial cells in the human brain. A survey of original evidence shows that histological data always supported a 1:1 ratio of glia to neurons in the entire human brain, and a range of 40-130 billion glial cells. We review how the claim of one trillion glial cells originated, was perpetuated, and eventually refuted. We compile how numbers of neurons and glial cells in the adult human brain were reported and we examine the reasons for an erroneous consensus about the relative abundance of glial cells in human brains that persisted for half a century. Our review includes a brief history of cell counting in human brains, types of counting methods that were and are employed, ranges of previous estimates, and the current status of knowledge about the number of cells. We also discuss implications and consequences of the new insights into true numbers of glial cells in the human brain, and the promise and potential impact of the newly validated isotropic fractionator for reliable quantification of glia and neurons in neurological and psychiatric diseases. J. Comp. Neurol. 524:3865-3895, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Jami Bahney
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, USA
| | - Suzana Herculano-Houzel
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, and Instituto Nacional de Neurociência Translacional, CNPq/MCT, Brasil
| |
Collapse
|
241
|
von Bartheld CS, Bahney J, Herculano-Houzel S. The search for true numbers of neurons and glial cells in the human brain: A review of 150 years of cell counting. J Comp Neurol 2016; 524:3865-3895. [PMID: 27187682 DOI: 10.1002/cne.2404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 05/13/2016] [Accepted: 05/16/2016] [Indexed: 05/25/2023]
Abstract
For half a century, the human brain was believed to contain about 100 billion neurons and one trillion glial cells, with a glia:neuron ratio of 10:1. A new counting method, the isotropic fractionator, has challenged the notion that glia outnumber neurons and revived a question that was widely thought to have been resolved. The recently validated isotropic fractionator demonstrates a glia:neuron ratio of less than 1:1 and a total number of less than 100 billion glial cells in the human brain. A survey of original evidence shows that histological data always supported a 1:1 ratio of glia to neurons in the entire human brain, and a range of 40-130 billion glial cells. We review how the claim of one trillion glial cells originated, was perpetuated, and eventually refuted. We compile how numbers of neurons and glial cells in the adult human brain were reported and we examine the reasons for an erroneous consensus about the relative abundance of glial cells in human brains that persisted for half a century. Our review includes a brief history of cell counting in human brains, types of counting methods that were and are employed, ranges of previous estimates, and the current status of knowledge about the number of cells. We also discuss implications and consequences of the new insights into true numbers of glial cells in the human brain, and the promise and potential impact of the newly validated isotropic fractionator for reliable quantification of glia and neurons in neurological and psychiatric diseases. J. Comp. Neurol. 524:3865-3895, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Jami Bahney
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, USA
| | - Suzana Herculano-Houzel
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, and Instituto Nacional de Neurociência Translacional, CNPq/MCT, Brasil
| |
Collapse
|
242
|
Glymphatic solute transport does not require bulk flow. Sci Rep 2016; 6:38635. [PMID: 27929105 PMCID: PMC5144134 DOI: 10.1038/srep38635] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 11/10/2016] [Indexed: 12/31/2022] Open
Abstract
Observations of fast transport of fluorescent tracers in mouse brains have led to the hypothesis of bulk water flow directed from arterial to venous paravascular spaces (PVS) through the cortical interstitium. At the same time, there is evidence for interstitial solute transport by diffusion rather than by directed bulk fluid motion. It has been shown that the two views may be consolidated by intracellular water flow through astrocyte networks combined with mainly diffusive extracellular transport of solutes. This requires the presence of a driving force that has not been determined to date, but for which arterial pulsation has been suggested as the origin. Here we show that arterial pulsation caused by pulse wave propagation is an unlikely origin of this hypothetical driving force. However, we further show that such pulsation may still lead to fast para-arterial solute transport through dispersion, that is, through the combined effect of local mixing and diffusion in the para-arterial space.
Collapse
|
243
|
Desai M, Slusarczyk AL, Chapin A, Barch M, Jasanoff A. Molecular imaging with engineered physiology. Nat Commun 2016; 7:13607. [PMID: 27910951 PMCID: PMC5146284 DOI: 10.1038/ncomms13607] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 10/19/2016] [Indexed: 12/30/2022] Open
Abstract
In vivo imaging techniques are powerful tools for evaluating biological systems. Relating image signals to precise molecular phenomena can be challenging, however, due to limitations of the existing optical, magnetic and radioactive imaging probe mechanisms. Here we demonstrate a concept for molecular imaging which bypasses the need for conventional imaging agents by perturbing the endogenous multimodal contrast provided by the vasculature. Variants of the calcitonin gene-related peptide artificially activate vasodilation pathways in rat brain and induce contrast changes that are readily measured by optical and magnetic resonance imaging. CGRP-based agents induce effects at nanomolar concentrations in deep tissue and can be engineered into switchable analyte-dependent forms and genetically encoded reporters suitable for molecular imaging or cell tracking. Such artificially engineered physiological changes, therefore, provide a highly versatile means for sensitive analysis of molecular events in living organisms.
Collapse
Affiliation(s)
- Mitul Desai
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 16-561, Cambridge, Massachusetts 02139, USA
| | - Adrian L. Slusarczyk
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 16-561, Cambridge, Massachusetts 02139, USA
| | - Ashley Chapin
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 16-561, Cambridge, Massachusetts 02139, USA
| | - Mariya Barch
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 16-561, Cambridge, Massachusetts 02139, USA
| | - Alan Jasanoff
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 16-561, Cambridge, Massachusetts 02139, USA
- Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 16-561, Cambridge, Massachusetts 02139, USA
- Department of Nuclear Science & Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 16-561, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
244
|
Abstract
Optogenetic methods have been highly effective for suppressing neural activity and modulating behavior in rodents, but effects have been much smaller in primates, which have much larger brains. Here, we present a suite of technologies to use optogenetics effectively in primates and apply these tools to a classic question in oculomotor control. First, we measured light absorption and heat propagation in vivo, optimized the conditions for using the red-light-shifted halorhodopsin Jaws in primates, and developed a large-volume illuminator to maximize light delivery with minimal heating and tissue displacement. Together, these advances allowed for nearly universal neuronal inactivation across more than 10 mm3 of the cortex. Using these tools, we demonstrated large behavioral changes (i.e., up to several fold increases in error rate) with relatively low light power densities (≤100 mW/mm2) in the frontal eye field (FEF). Pharmacological inactivation studies have shown that the FEF is critical for executing saccades to remembered locations. FEF neurons increase their firing rate during the three epochs of the memory-guided saccade task: visual stimulus presentation, the delay interval, and motor preparation. It is unclear from earlier work, however, whether FEF activity during each epoch is necessary for memory-guided saccade execution. By harnessing the temporal specificity of optogenetics, we found that FEF contributes to memory-guided eye movements during every epoch of the memory-guided saccade task (the visual, delay, and motor periods).
Collapse
|
245
|
Sakadžić S, Yaseen MA, Jaswal R, Roussakis E, Dale AM, Buxton RB, Vinogradov SA, Boas DA, Devor A. Two-photon microscopy measurement of cerebral metabolic rate of oxygen using periarteriolar oxygen concentration gradients. NEUROPHOTONICS 2016; 3:045005. [PMID: 27774493 PMCID: PMC5066455 DOI: 10.1117/1.nph.3.4.045005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 09/16/2016] [Indexed: 05/05/2023]
Abstract
The cerebral metabolic rate of oxygen ([Formula: see text]) is an essential parameter for evaluating brain function and pathophysiology. However, the currently available approaches for quantifying [Formula: see text] rely on complex multimodal imaging and mathematical modeling. Here, we introduce a method that allows estimation of [Formula: see text] based on a single measurement modality-two-photon imaging of the partial pressure of oxygen ([Formula: see text]) in cortical tissue. We employed two-photon phosphorescence lifetime microscopy (2PLM) and the oxygen-sensitive nanoprobe PtP-C343 to map the tissue [Formula: see text] distribution around cortical penetrating arterioles. [Formula: see text] is subsequently estimated by fitting the changes of tissue [Formula: see text] around arterioles with the Krogh cylinder model of oxygen diffusion. We measured the baseline [Formula: see text] in anesthetized rats and modulated tissue [Formula: see text] levels by manipulating the depth of anesthesia. This method provides [Formula: see text] measurements localized within [Formula: see text] and it may provide oxygen consumption measurements in individual cortical layers or within confined cortical regions, such as in ischemic penumbra and the foci of functional activation.
Collapse
Affiliation(s)
- Sava Sakadžić
- Massachusetts General Hospital and Harvard Medical School, Optics Division, MGH/HMS/MIT Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, 149 13th Street, Charlestown, Massachusetts 02129, United States
- Address all correspondence to: Sava Sakadžić, E-mail:
| | - Mohammad A. Yaseen
- Massachusetts General Hospital and Harvard Medical School, Optics Division, MGH/HMS/MIT Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, 149 13th Street, Charlestown, Massachusetts 02129, United States
| | - Rajeshwer Jaswal
- Massachusetts General Hospital and Harvard Medical School, Optics Division, MGH/HMS/MIT Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, 149 13th Street, Charlestown, Massachusetts 02129, United States
| | - Emmanuel Roussakis
- University of Pennsylvania, Departments of Biochemistry and Biophysics and Chemistry, 422 Curie Boulevard, Philadelphia, Pennsylvania 19104, United States
| | - Anders M. Dale
- University of California San Diego, Department of Neurosciences, 9500 Gilman Drive, La Jolla, California 92093, United States
- University of California San Diego, Department of Radiology, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Richard B. Buxton
- University of California San Diego, Department of Radiology, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Sergei A. Vinogradov
- University of Pennsylvania, Departments of Biochemistry and Biophysics and Chemistry, 422 Curie Boulevard, Philadelphia, Pennsylvania 19104, United States
| | - David A. Boas
- Massachusetts General Hospital and Harvard Medical School, Optics Division, MGH/HMS/MIT Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, 149 13th Street, Charlestown, Massachusetts 02129, United States
| | - Anna Devor
- Massachusetts General Hospital and Harvard Medical School, Optics Division, MGH/HMS/MIT Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, 149 13th Street, Charlestown, Massachusetts 02129, United States
- University of California San Diego, Department of Neurosciences, 9500 Gilman Drive, La Jolla, California 92093, United States
- University of California San Diego, Department of Radiology, 9500 Gilman Drive, La Jolla, California 92093, United States
| |
Collapse
|
246
|
Puckett AM, Aquino KM, Robinson P, Breakspear M, Schira MM. The spatiotemporal hemodynamic response function for depth-dependent functional imaging of human cortex. Neuroimage 2016; 139:240-248. [DOI: 10.1016/j.neuroimage.2016.06.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 05/27/2016] [Accepted: 06/10/2016] [Indexed: 11/15/2022] Open
|
247
|
Sanganahalli BG, Herman P, Rothman DL, Blumenfeld H, Hyder F. Metabolic demands of neural-hemodynamic associated and disassociated areas in brain. J Cereb Blood Flow Metab 2016; 36:1695-1707. [PMID: 27562867 PMCID: PMC5076793 DOI: 10.1177/0271678x16664531] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 07/04/2016] [Accepted: 07/19/2016] [Indexed: 12/31/2022]
Abstract
Interpretation of regional blood oxygenation level-dependent (BOLD) responses in functional magnetic resonance imaging (fMRI) is contingent on whether local field potential (LFP) and multi-unit activity (MUA) is either dissociated or associated. To examine whether neural-hemodynamic associated and dissociated areas have different metabolic demands, we recorded sensory-evoked responses of BOLD signal, blood flow (CBF), and blood volume (CBV), which with calibrated fMRI provided oxidative metabolism (CMRO2) from rat's ventral posterolateral thalamic nucleus (VPL) and somatosensory forelimb cortex (S1FL) and compared these neuroimaging signals to neurophysiological recordings. MUA faithfully recorded evoked latency differences between VPL and S1FL because evoked MUA in these regions were similar in magnitude. Since evoked LFP was significantly attenuated in VPL, we extracted the time courses of the weaker thalamic LFP to compare with the stronger cortical LFP using wavelet transform. BOLD and CBV responses were greater in S1FL than in VPL, similar to LFP regional differences. CBF and CMRO2 responses were both comparably larger in S1FL and VPL. Despite different levels of CBF-CMRO2 and LFP-MUA couplings in VPL and S1FL, the CMRO2 was well matched with MUA in both regions. These results suggest that neural-hemodynamic associated and dissociated areas in VPL and S1FL can have similar metabolic demands.
Collapse
Affiliation(s)
- Basavaraju G Sanganahalli
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, USA Quantitative Neuroscience with Magnetic Resonance (QNMR) Core Center, Yale University, New Haven, USA Department of Radiology and Biomedical Imaging, Yale University, New Haven, USA
| | - Peter Herman
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, USA Quantitative Neuroscience with Magnetic Resonance (QNMR) Core Center, Yale University, New Haven, USA Department of Radiology and Biomedical Imaging, Yale University, New Haven, USA
| | - Douglas L Rothman
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, USA Quantitative Neuroscience with Magnetic Resonance (QNMR) Core Center, Yale University, New Haven, USA Department of Radiology and Biomedical Imaging, Yale University, New Haven, USA Department of Biomedical Engineering, Yale University, New Haven, USA
| | - Hal Blumenfeld
- Quantitative Neuroscience with Magnetic Resonance (QNMR) Core Center, Yale University, New Haven, USA Department of Neurology, Yale University, New Haven, USA Department of Neurobiology, Yale University, New Haven, USA
| | - Fahmeed Hyder
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, USA Quantitative Neuroscience with Magnetic Resonance (QNMR) Core Center, Yale University, New Haven, USA Department of Radiology and Biomedical Imaging, Yale University, New Haven, USA Department of Biomedical Engineering, Yale University, New Haven, USA
| |
Collapse
|
248
|
Gagnon L, Smith AF, Boas DA, Devor A, Secomb TW, Sakadžić S. Modeling of Cerebral Oxygen Transport Based on In vivo Microscopic Imaging of Microvascular Network Structure, Blood Flow, and Oxygenation. Front Comput Neurosci 2016; 10:82. [PMID: 27630556 PMCID: PMC5006088 DOI: 10.3389/fncom.2016.00082] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 07/25/2016] [Indexed: 01/09/2023] Open
Abstract
Oxygen is delivered to brain tissue by a dense network of microvessels, which actively control cerebral blood flow (CBF) through vasodilation and contraction in response to changing levels of neural activity. Understanding these network-level processes is immediately relevant for (1) interpretation of functional Magnetic Resonance Imaging (fMRI) signals, and (2) investigation of neurological diseases in which a deterioration of neurovascular and neuro-metabolic physiology contributes to motor and cognitive decline. Experimental data on the structure, flow and oxygen levels of microvascular networks are needed, together with theoretical methods to integrate this information and predict physiologically relevant properties that are not directly measurable. Recent progress in optical imaging technologies for high-resolution in vivo measurement of the cerebral microvascular architecture, blood flow, and oxygenation enables construction of detailed computational models of cerebral hemodynamics and oxygen transport based on realistic three-dimensional microvascular networks. In this article, we review state-of-the-art optical microscopy technologies for quantitative in vivo imaging of cerebral microvascular structure, blood flow and oxygenation, and theoretical methods that utilize such data to generate spatially resolved models for blood flow and oxygen transport. These “bottom-up” models are essential for the understanding of the processes governing brain oxygenation in normal and disease states and for eventual translation of the lessons learned from animal studies to humans.
Collapse
Affiliation(s)
- Louis Gagnon
- Optics Division, Department of Radiology, MHG/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School Charlestown, MA, USA
| | - Amy F Smith
- Institut de Mécanique des Fluides de ToulouseToulouse, France; Department of Physiology, University of ArizonaTucson, AZ, USA
| | - David A Boas
- Optics Division, Department of Radiology, MHG/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School Charlestown, MA, USA
| | - Anna Devor
- Optics Division, Department of Radiology, MHG/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical SchoolCharlestown, MA, USA; Departments of Neurosciences and Radiology, University of California, San DiegoLa Jolla, CA, USA
| | | | - Sava Sakadžić
- Optics Division, Department of Radiology, MHG/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School Charlestown, MA, USA
| |
Collapse
|
249
|
Nowak MR. Automated neurovascular tracing and analysis of the knife-edge scanning microscope Rat Nissl data set using a computing cluster. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2016:6445-6448. [PMID: 28269722 DOI: 10.1109/embc.2016.7592204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We present a novel, parallelizable algorithm capable of automatically reconstructing and calculating anatomical statistics of cerebral vascular networks embedded in large volumes of Rat Nissl-stained data. In this paper, we report the results of our method using Rattus somatosensory cortical data acquired using Knife-Edge Scanning Microscopy. Our algorithm performs the reconstruction task with averaged precision, recall, and F2-score of 0.978, 0.892, and 0.902 respectively. Calculated anatomical statistics show some conformance to values previously reported. The results that can be obtained from our method are expected to help explicate the relationship between the structural organization of the microcirculation and normal (and abnormal) cerebral functioning.
Collapse
|
250
|
Yu T, Qi Y, Wang J, Feng W, Xu J, Zhu J, Yao Y, Gong H, Luo Q, Zhu D. Rapid and prodium iodide-compatible optical clearing method for brain tissue based on sugar/sugar-alcohol. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:081203. [PMID: 26968577 DOI: 10.1117/1.jbo.21.8.081203] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 02/19/2016] [Indexed: 05/03/2023]
Abstract
The developed optical clearing methods show great potential for imaging of large-volume tissues, but these methods present some nonnegligible limitations such as complexity of implementation and long incubation times. In this study, we tried to screen out rapid optical clearing agents by means of molecular dynamical simulation and experimental demonstration. According to the optical clearing potential of sugar and sugar-alcohol,we further evaluated the improvement in the optical clearing efficacy of mouse brain samples, imaging depth, fluorescence preservation, and linear deformation. The results showed that drops of sorbitol, sucrose, and fructose could quickly make the mouse brain sample transparent within 1 to 2 min, and induce about threefold enhancement in imaging depth. The former two could evidently enhance the fluorescence intensity of green fluorescent protein (GFP) and prodium iodide (PI) nuclear dye. Fructose could significantly increase the fluorescence intensity of PI, but slightly decrease the fluorescence intensity of GFP. Even though the three agents caused some shrinkage in samples, the contraction in horizontal and longitudinal directions are almost the same.
Collapse
Affiliation(s)
- Tingting Yu
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, 1037 Luoyu Road, Wuhan, Hubei 430074, ChinabHuazhong University of Science and Technology, MoE Key Laboratory for
| | - Yisong Qi
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, 1037 Luoyu Road, Wuhan, Hubei 430074, ChinabHuazhong University of Science and Technology, MoE Key Laboratory for
| | - Jianru Wang
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, 1037 Luoyu Road, Wuhan, Hubei 430074, ChinabHuazhong University of Science and Technology, MoE Key Laboratory for
| | - Wei Feng
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, 1037 Luoyu Road, Wuhan, Hubei 430074, ChinabHuazhong University of Science and Technology, MoE Key Laboratory for
| | - Jianyi Xu
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, 1037 Luoyu Road, Wuhan, Hubei 430074, ChinabHuazhong University of Science and Technology, MoE Key Laboratory for
| | - Jingtan Zhu
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, 1037 Luoyu Road, Wuhan, Hubei 430074, ChinabHuazhong University of Science and Technology, MoE Key Laboratory for
| | - Yingtao Yao
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, 1037 Luoyu Road, Wuhan, Hubei 430074, ChinabHuazhong University of Science and Technology, MoE Key Laboratory for
| | - Hui Gong
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, 1037 Luoyu Road, Wuhan, Hubei 430074, ChinabHuazhong University of Science and Technology, MoE Key Laboratory for
| | - Qingming Luo
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, 1037 Luoyu Road, Wuhan, Hubei 430074, ChinabHuazhong University of Science and Technology, MoE Key Laboratory for
| | - Dan Zhu
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, 1037 Luoyu Road, Wuhan, Hubei 430074, ChinabHuazhong University of Science and Technology, MoE Key Laboratory for
| |
Collapse
|