201
|
Ziehn MO, Avedisian AA, Dervin SM, O’Dell TJ, Voskuhl RR. Estriol preserves synaptic transmission in the hippocampus during autoimmune demyelinating disease. J Transl Med 2012; 92:1234-45. [PMID: 22525427 PMCID: PMC4343001 DOI: 10.1038/labinvest.2012.76] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Cognitive deficits occur in over half of multiple sclerosis patients, with hippocampal-dependent learning and memory commonly impaired. Data from in vivo MRI and post-mortem studies in MS indicate that the hippocampus is targeted. However, the relationship between structural pathology and dysfunction of the hippocampus in MS remains unclear. Hippocampal neuropathology also occurs in experimental autoimmune encephalomyelitis (EAE), the most commonly used animal model of MS. Although estrogen treatment of EAE has been shown to be anti-inflammatory and neuroprotective in the spinal cord, it is unknown if estrogen treatment may prevent hippocampal pathology and dysfunction. In the current study we examined excitatory synaptic transmission during EAE and focused on pathological changes in synaptic protein complexes known to orchestrate functional synaptic transmission in the hippocampus. We then determined if estriol, a candidate hormone treatment, was capable of preventing functional changes in synaptic transmission and corresponding hippocampal synaptic pathology. Electrophysiological studies revealed altered excitatory synaptic transmission and paired-pulse facilitation (PPF) during EAE. Neuropathological experiments demonstrated that there were decreased levels of pre- and post-synaptic proteins in the hippocampus, diffuse loss of myelin staining and atrophy of the pyramidal layers of hippocampal cornu ammonis 1 (CA1). Estriol treatment prevented decreases in excitatory synaptic transmission and lessened the effect of EAE on PPF. In addition, estriol treatment prevented several neuropathological alterations that occurred in the hippocampus during EAE. Cross-modality correlations revealed that deficits in excitatory synaptic transmission were significantly correlated with reductions in trans-synaptic protein binding partners known to modulate excitatory synaptic transmission. To our knowledge, this is the first report describing a functional correlate to hippocampal neuropathology in any MS model. Furthermore, a treatment was identified that prevented both deficits in synaptic function and hippocampal neuropathology.
Collapse
Affiliation(s)
- Marina O. Ziehn
- Interdepartmental Program of Neuroscience, University of California, Los Angeles
- Multiple Sclerosis Program, Department of Neurology, University of California, Los Angeles
| | - Andrea A. Avedisian
- Multiple Sclerosis Program, Department of Neurology, University of California, Los Angeles
| | - Shannon M. Dervin
- Multiple Sclerosis Program, Department of Neurology, University of California, Los Angeles
| | - Thomas J. O’Dell
- Department of Physiology, David Geffen School of Medicine at the University of California, Los Angeles
| | - Rhonda R. Voskuhl
- Multiple Sclerosis Program, Department of Neurology, University of California, Los Angeles
| |
Collapse
|
202
|
Srivastava DP. Two-step wiring plasticity--a mechanism for estrogen-induced rewiring of cortical circuits. J Steroid Biochem Mol Biol 2012; 131:17-23. [PMID: 22349412 DOI: 10.1016/j.jsbmb.2012.01.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 10/20/2011] [Accepted: 01/15/2012] [Indexed: 12/18/2022]
Abstract
Estrogens have been shown to exert powerful effects on cognitive behaviors mediated by several areas of the brain including the cortex. Remodeling of spiny synapses is a key step in the rewiring of neuronal circuitry thought to underlie the processing and storage of information in the forebrain. Whereas estrogen has been shown to regulate synapse structure and function, we are only just starting to understand the molecular and cellular underpinnings of how estrogens can modulate neuronal circuits. Here I will review recent molecular and cellular work that offers a potential mechanism of how estrogen may modulate synapse structure and function of cortical neurons. This mechanism allows cortical neurons to respond to activity-dependent stimuli with greater efficacy in a cellular model termed "Two-Step Wiring Plasticity". This novel form of spine plasticity thus provides insight into how estrogens may modulate the rewiring of neuronal circuits, underlying its ability to influencing cortically based behaviors. This article is part of a Special Issue entitled 'Neurosteroids'.
Collapse
Affiliation(s)
- Deepak P Srivastava
- Department of Neuroscience & Centre for the Cellular Basis of Behaviour, The James Black Centre, King's College London, Institute of Psychiatry, London, UK.
| |
Collapse
|
203
|
Mild exercise increases dihydrotestosterone in hippocampus providing evidence for androgenic mediation of neurogenesis. Proc Natl Acad Sci U S A 2012; 109:13100-5. [PMID: 22807478 DOI: 10.1073/pnas.1210023109] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mild exercise activates hippocampal neurons through the glutamatergic pathway and also promotes adult hippocampal neurogenesis (AHN). We hypothesized that such exercise could enhance local androgen synthesis and cause AHN because hippocampal steroid synthesis is facilitated by activated neurons via N-methyl-D-aspartate receptors. Here we addressed this question using a mild-intense treadmill running model that has been shown to be a potent AHN stimulator. A mass-spectrometric analysis demonstrated that hippocampal dihydrotestosterone increased significantly, whereas testosterone levels did not increase significantly after 2 wk of treadmill running in both orchidectomized (ORX) and sham castrated (Sham) male rats. Furthermore, analysis of mRNA expression for the two isoforms of 5α-reductases (srd5a1, srd5a2) and for androgen receptor (AR) revealed that both increased in the hippocampus after exercise, even in ORX rats. All rats were injected twice with 5'-bromo-2'deoxyuridine (50 mg/kg body weight, i.p.) on the day before training. Mild exercise significantly increased AHN in both ORX and Sham rats. Moreover, the increase of doublecortin or 5'-bromo-2'deoxyuridine/NeuN-positive cells in ORX rats was blocked by s.c. flutamide, an AR antagonist. It was also found that application of an estrogen receptor antagonist, tamoxifen, did not suppress exercise-induced AHN. These results support the hypothesis that, in male animals, mild exercise enhances hippocampal synthesis of dihydrotestosterone and increases AHN via androgenenic mediation.
Collapse
|
204
|
Xiao X, Yang Y, Zhang Y, Zhang XM, Zhao ZQ, Zhang YQ. Estrogen in the Anterior Cingulate Cortex Contributes to Pain-Related Aversion. Cereb Cortex 2012; 23:2190-203. [DOI: 10.1093/cercor/bhs201] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
205
|
Bian C, Zhu K, Yang L, Lin S, Li S, Su B, Zhang J. Gonadectomy differentially regulates steroid receptor coactivator-1 and synaptic proteins in the hippocampus of adult female and male C57BL/6 mice. Synapse 2012; 66:849-57. [PMID: 22623226 DOI: 10.1002/syn.21574] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 05/14/2012] [Indexed: 02/06/2023]
Abstract
Hippocampus is one of the most important structures that mediates learning and memory, cognition, and mental behaviors and profoundly regulated by sex hormones in a sex-specific manner, but the mechanism of underlying sex differences regulation is still unclear. We have previously reported that in the male and female mice, steroid receptor coactivator-1 (SRC-1) and some key synaptic proteins share similar developmental profile in the hippocampus, but how circulating sex hormones affect hippocampal SRC-1 as well as these synaptic proteins remain unclear. In this study, we examined how gonad sex hormones regulate hippocampal SRC-1, synaptophysin, PSD-95, and AMPA receptor subtype GluR1 by using immunohistochemistry and Western blot. The results showed that in the female mice, ovariectomy affected hippocampal SRC-1 and GluR1 were only detected at 2 weeks post operation, then it recovered to sham level; synaptophysin was unaffected at any timepoint examined; significant decrease of PSD-95 was only detected at 4 weeks post operation. However, in the male hippocampus, SRC-1 and PSD-95 were decreased from one week and lasted to 4 weeks after orchidectomy, GluR1 decreased from 2 weeks after orchidectomy, but synaptophysin remained unchanged as in the females. Correlation analysis showed the profiles of SRC-1 were positively correlated with GluR1 of the females, PSD-95 and GluR1 of the males, respectively. The above results suggested a distinct regulatory mode between female and male gonad hormones in the regulation of hippocampal SRC-1 and synaptic proteins, which may be one of the mechanisms contributing to the dimorphism of hippocampus during development and ageing.
Collapse
Affiliation(s)
- Chen Bian
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, China
| | | | | | | | | | | | | |
Collapse
|
206
|
Frick KM. Building a better hormone therapy? How understanding the rapid effects of sex steroid hormones could lead to new therapeutics for age-related memory decline. Behav Neurosci 2012; 126:29-53. [PMID: 22289043 DOI: 10.1037/a0026660] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A wealth of data collected in recent decades has demonstrated that ovarian sex-steroid hormones, particularly 17β-estradiol (E2), are important trophic factors that regulate the function of cognitive regions of the brain such as the hippocampus. The loss of hormone cycling at menopause is associated with cognitive decline and dementia in women, and the onset of memory decline in animal models. However, hormone therapy is not currently recommended to prevent or treat cognitive decline, in part because of its detrimental side effects. In this article, it is proposed that investigations of the rapid effects of E2 on hippocampal function be used to further the design of new drugs that mimic the beneficial effects of E2 on memory without the side effects of current therapies. A conceptual model is presented for elucidating the molecular and biochemical mechanisms through which sex-steroid hormones modulate memory, and a specific hypothesis is proposed to account for the rapid memory-enhancing effects of E2. Empirical support for this hypothesis is discussed as a means of stimulating the consideration of new directions for the development of hormone-based therapies to preserve memory function in menopausal women.
Collapse
Affiliation(s)
- Karyn M Frick
- Department of Psychology, University of Wisconsin-Milwaukee, 2441 East Hartford Avenue, Milwaukee, WI 53211, USA.
| |
Collapse
|
207
|
Azizi-Malekabadi H, Hosseini M, Soukhtanloo M, Sadeghian R, Fereidoni M, Khodabandehloo F. Different effects of scopolamine on learning, memory, and nitric oxide metabolite levels in hippocampal tissues of ovariectomized and Sham-operated rats. ARQUIVOS DE NEURO-PSIQUIATRIA 2012; 70:447-52. [DOI: 10.1590/s0004-282x2012000600012] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2011] [Accepted: 02/07/2012] [Indexed: 11/21/2022]
Abstract
Different effects of scopolamine on learning, memory, and nitric oxide (NO) metabolites in hippocampal tissues of ovariectomized (OVX) and sham-operated rats were investigated. The animals in the Sham-Scopolamine (Sham-Sco) and OVX-Scopolamine (OVX-Sco) Groups were treated with 2 mg/kg scopolamine before undergoing the Morris water maze, while the animals in the Sham and OVX Groups received saline. The time latency and path length were significantly higher in both the Sham-Sco and the OVX-Sco Groups, in comparison with the Sham and OVX Groups, respectively (p<0.001). Significantly lower NO metabolite levels in the hippocampi of the Sham-Sco Group were observed, compared with the Sham Group (p<0.001), while there was no significant difference between the OVX-Sco and OVX Groups. The decreased NO level in the hippocampus may play a role in the learning and memory deficits induced by scopolamine. However, it seems that the effect of scopolamine on hippocampal NO differs between situations of presence and absence of ovarian hormones.
Collapse
|
208
|
Harish G, Venkateshappa C, Mahadevan A, Pruthi N, Srinivas Bharath M, Shankar S. Effect of Premortem and Postmortem Factors on the Distribution and Preservation of Antioxidant Activities in the Cytosol and Synaptosomes of Human Brains. Biopreserv Biobank 2012; 10:253-65. [DOI: 10.1089/bio.2012.0001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- G. Harish
- Department of Neurochemistry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - C. Venkateshappa
- Department of Neurochemistry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Anita Mahadevan
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Nupur Pruthi
- Department of Neurosurgery, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - M.M. Srinivas Bharath
- Department of Neurochemistry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - S.K. Shankar
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| |
Collapse
|
209
|
Ladurelle N, Gabriel C, Viggiano A, Mocaër E, Baulieu EE, Bianchi M. Agomelatine (S20098) modulates the expression of cytoskeletal microtubular proteins, synaptic markers and BDNF in the rat hippocampus, amygdala and PFC. Psychopharmacology (Berl) 2012; 221:493-509. [PMID: 22160164 DOI: 10.1007/s00213-011-2597-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 11/18/2011] [Indexed: 11/25/2022]
Abstract
RATIONALE Agomelatine is described as a novel and clinical effective antidepressant drug with melatonergic (MT(1)/MT(2)) agonist and 5-HT(2C) receptor antagonist properties. Previous studies suggest that modulation of neuronal plasticity and microtubule dynamics may be involved in the treatment of depression. OBJECTIVE The present study investigated the effects of agomelatine on microtubular, synaptic and brain-derived neurotrophic factor (BDNF) proteins in selected rat brain regions. METHODS Adult male rats received agomelatine (40 mg/kg i.p.) once a day for 22 days. The pro-cognitive effect of agomelatine was tested in the novel object recognition task and antidepressant activity in the forced swimming test. Microtubule dynamics markers, microtubule-associated protein type 2 (MAP-2), phosphorylated MAP-2, synaptic markers [synaptophysin, postsynaptic density-95 (PSD-95) and spinophilin] and BDNF were measured by Western blot in the hippocampus, amygdala and prefrontal cortex (PFC). RESULTS Agomelatine exerted pro-cognitive and antidepressant activity and induced molecular changes in the brain areas examined. Agomelatine enhanced microtubule dynamics in the hippocampus and to a higher magnitude in the amygdala. By contrast, in the PFC, a decrease in microtubule dynamics was observed. Spinophilin (dendritic spines marker) was decreased, and BDNF increased in the hippocampus. Synaptophysin (presynaptic) and spinophilin were increased in the PFC and amygdala, while PSD-95 (postsynaptic marker) was increased in the amygdala, consistent with the phenomena of synaptic remodelling. CONCLUSIONS Agomelatine modulates cytoskeletal microtubule dynamics and synaptic markers. This may play a role in its pharmacological behavioural effects and may result from the melatonergic agonist and 5-HT(2C) antagonist properties of the compound.
Collapse
Affiliation(s)
- Nataly Ladurelle
- Institut National de la Santé et de la Recherche Médicale-UMR788, Le Kremlin-Bicêtre, France
| | | | | | | | | | | |
Collapse
|
210
|
Fang C, Bolivar VJ, Gu J, Yang W, Zeitlin SO, Ding X. Neurobehavioral abnormalities in a brain-specific NADPH-cytochrome P450 reductase knockout mouse model. Neuroscience 2012; 218:170-80. [PMID: 22626646 DOI: 10.1016/j.neuroscience.2012.05.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 05/10/2012] [Accepted: 05/10/2012] [Indexed: 11/25/2022]
Abstract
The aim of the present study was to test a new hypothesis that brain cytochrome P450 reductase (CPR) and CPR-dependent enzymes play important roles in behavioral performance. A mouse model with brain neuron-specific deletion of the Cpr gene (brain-Cpr-null) was recently generated. Brain-Cpr-null mice and wild-type (WT) littermates were compared in a variety of behavioral assays. Notable differences were found in the exploratory behavior assay: for both males and females, activity in the center of the chamber was significantly higher for brain-Cpr-null than for WT mice on days 2 and 3 of the assay, although no significant difference was found between the two groups in anxiety-like behavior in the elevated zero maze. Furthermore, in the fear-conditioning assay, brain-Cpr-null mice exhibited significantly less activity suppression than did WT controls. This deficit in activity suppression was not accompanied by any difference between WT and brain-Cpr-null mice in nociceptive responses to foot shocks. Abnormal activity suppression was also observed in both male and female brain-Cpr-null mice during the contextual memory test. However, in the Morris water maze assay, the brain-Cpr-null and WT mice were indistinguishable, indicating normal spatial memory in the mutant mice. These data collectively indicate a novel role of the Cpr gene in fear conditioning and memory.
Collapse
Affiliation(s)
- C Fang
- Wadsworth Center, New York State Department of Health, Albany, NY 12201, United States
| | | | | | | | | | | |
Collapse
|
211
|
Li L, Xiao N, Yang X, Gao J, Ding J, Wang T, Hu G, Xiao M. A high cholesterol diet ameliorates hippocampus-related cognitive and pathological deficits in ovariectomized mice. Behav Brain Res 2012; 230:251-8. [DOI: 10.1016/j.bbr.2012.02.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 02/07/2012] [Accepted: 02/11/2012] [Indexed: 12/12/2022]
|
212
|
Foster TC. Role of estrogen receptor alpha and beta expression and signaling on cognitive function during aging. Hippocampus 2012; 22:656-69. [PMID: 21538657 PMCID: PMC3704216 DOI: 10.1002/hipo.20935] [Citation(s) in RCA: 182] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2011] [Indexed: 12/24/2022]
Abstract
This review presents evidence for the idea that the expression of estrogen receptor alpha and beta (ERα and ERβ) interacts with the level of estradiol (E2) to influence the etiology of age-related cognitive decline and responsiveness to E2 treatments. There is a nonmonotonic dose response curve for E2 influences on behavior and transcription. Evidence is mounting to indicate that the dose response curve is shifted according to the relative expression of ERα and ERβ. Recent work characterizing age-related changes in the expression of ERα and ERβ in the hippocampus, as well as studies using mutant mice, and viral mediated delivery of estrogen receptors indicate that an age-related shift in ERα/ERβ expression, combined with declining gonadal E2 can impact transcription, cell signaling, neuroprotection, and neuronal growth. Finally, the role of ERα/ERβ on rapid E2 signaling and synaptogenesis as it relates to hippocampal aging is discussed.
Collapse
Affiliation(s)
- Thomas C Foster
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, Florida 32610-0244, USA.
| |
Collapse
|
213
|
Takuma K, Mizoguchi H, Funatsu Y, Hoshina Y, Himeno Y, Fukuzaki E, Kitahara Y, Arai S, Ibi D, Kamei H, Matsuda T, Koike K, Inoue M, Nagai T, Yamada K. Combination of chronic stress and ovariectomy causes conditioned fear memory deficits and hippocampal cholinergic neuronal loss in mice. Neuroscience 2012; 207:261-73. [DOI: 10.1016/j.neuroscience.2012.01.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 12/28/2011] [Accepted: 01/17/2012] [Indexed: 11/28/2022]
|
214
|
Palmeira CCDA, Ashmawi HA, Posso IDP. Sex and pain perception and analgesia. Rev Bras Anestesiol 2012; 61:814-28. [PMID: 22063383 DOI: 10.1016/s0034-7094(11)70091-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Accepted: 02/21/2011] [Indexed: 10/26/2022] Open
Abstract
Sex is an important factor in painful experience modulation. Large volume of evidence shows that experience is different for males and females, as well as the answer to some classes of analgesics. Laboratory experiments suggest that women have a lower pain threshold than men related to pain from noxious stimuli such as heat, cold, pressure and electrical stimulation. Pain is a dynamic phenomenon under the influence of various mechanisms of excitatory and inhibitory control. The differences in pain perception related to sex may be associated with hyperalgesia in women, but also to the hypoactivity of the inhibitory system of pain in females. The purpose of this review besides showing some relationship for gonadal hormones, central nervous system and pain is to provide reference points for the discussion of one of the most intriguing aspects of the pathophysiology of pain: the differences in the presence of painful stimuli related to gender.
Collapse
|
215
|
Characterization of the "sporadically lurking HAP1-immunoreactive (SLH) cells" in the hippocampus, with special reference to the expression of steroid receptors, GABA, and progenitor cell markers. Neuroscience 2012; 210:67-81. [PMID: 22421101 DOI: 10.1016/j.neuroscience.2012.02.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 01/29/2012] [Accepted: 02/14/2012] [Indexed: 02/02/2023]
Abstract
Huntingtin-associated protein 1 (HAP1) is a neural huntingtin interactor that is widely expressed as a core molecule of the stigmoid body (a neurocytoplasmic inclusion) in the limbic and hypothalamic regions and has putative protective functions against some neurodegenerative diseases (HAP1 protection hypothesis). Although HAP1 has been reported to be intimately associated with several steroid receptors, HAP1-immunoreactive (HAP1-ir) cells remain to be identified in the hippocampus, which is one of the major steroidal targets. In this study, we determined the distribution of hippocampal HAP1-ir cells in light and fluorescence microscopy and characterized their morphological relationships with steroid receptors, markers of adult neurogenesis, and the GABAergic system in adult male and female Wistar rats. HAP1-ir cells, which were sporadically distributed particularly in the subgranular zone (SGZ) of the dentate gyrus and in the interface between the stratum lacunosum-moleculare and stratum radiatum of Ammon's horn, were identified as the "sporadically lurking HAP1-ir (SLH)" cells. The SLH cells showed no clear association with neural progenitor/proliferating or migrating cell markers of adult neurogenesis, such as Ki-67, proliferating cell nuclear antigen, doublecortin, and glial fibrillary acidic protein in the SGZ, whereas all the SLH cells expressed a neuronal specific nuclear protein (NeuN). More than 90% of the SLH cells expressed nuclear estrogen receptor (ER) α but neither ERβ nor the androgen receptor, whereas glucocorticoid receptor was differently stained in the SLH cells depending on the antibodies. More than 60% of them exhibited GABA immunoreactivity in the SGZ, suggestive of basket cells, but they were distinct from the ones expressing cholecystokinin or parvalbumin. We conclude that SLH cells, which should be stable against apoptosis due to putative HAP1 protectivity, might be involved in estrogen-dependent maturation, remodeling and activation of hippocampal memory and learning functions via ERα and partly through GABAergic regulation.
Collapse
|
216
|
Tanaka M, Sokabe M. Continuous de novo synthesis of neurosteroids is required for normal synaptic transmission and plasticity in the dentate gyrus of the rat hippocampus. Neuropharmacology 2012; 62:2373-87. [PMID: 22365983 DOI: 10.1016/j.neuropharm.2012.02.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 02/07/2012] [Accepted: 02/08/2012] [Indexed: 11/28/2022]
Abstract
Both in vivo and in vitro studies have shown that neurosteroids promote learning and memory by modulating synaptic functions in the hippocampus. However, we do not know to what degree endogenously synthesized neurosteroids contribute to the hippocampal synaptic functions. Cytochrome P450scc is the enzyme that converts cholesterol to pregnenolone (PREG), which is required for the biosynthesis of all other neurosteroids. To investigate the physiological roles of endogenous neurosteroids in synaptic functions, we electrophysiologically examined the effects of aminoglutethimide (AG), a selective inhibitor of P450scc, on the synaptic transmission and plasticity in the dentate gyrus of rat hippocampal slices. The application of AG (100 μM) decreased the slope of the field excitatory postsynaptic potentials (fEPSPs) in granule cells by 20-30% in 20 min through the modulation of postsynaptic AMPA receptors, while it did not affect the presynaptic properties, including the paired-pulse ratio and the probability of glutamate release from presynaptic terminals. The AG-induced depression was nearly completely rescued by exogenously applied 500 nM PREG or by 1 nM dehydroepiandrosterone sulfate (DHEAS), one of the neurosteroids synthesized from PREG, suggesting that the AG-induced depression was caused by the loss of DHEAS. AG also reduced NMDA receptor activity, and suppressed high-frequency stimulation (HFS)-induced long-term potentiation (LTP). These findings provide novel evidence that the endogenous neurosteroids locally synthesized in the brain are required to maintain the normal excitatory synaptic transmission and plasticity in the dentate gyrus of the rat hippocampus.
Collapse
Affiliation(s)
- Motoki Tanaka
- Department of Physiology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya 466-8550, Japan.
| | | |
Collapse
|
217
|
Morphine protects against intracellular amyloid toxicity by inducing estradiol release and upregulation of Hsp70. J Neurosci 2012; 31:16227-40. [PMID: 22072674 DOI: 10.1523/jneurosci.3915-11.2011] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Certain experimental models support morphine can play a beneficial role against damage in the neuronal system. In this study, we find morphine as well as endomorphin-1 and endomorphin-2 can protect against intracellular amyloid β (iAβ) toxicity in human and rat primary neuronal cultures and in rat brains in vivo. Morphine reverses the electrophysiological changes induced by iAβ, including current density, resting membrane potential and capacitance. Also morphine improves the spatial memory performance in rats infected by iAβ packaged virus and in APP/PS1 mice in Morris water maze tests. Morphine protection is mediated through inducing estradiol release in hippocampal neurons measured by ELISA and liquid chromatography-mass spectrometry, possibly by increasing P450 cytochrome aromatase activity. Released estradiol induces upregulation of heat shock protein 70 (Hsp70). Hsp70 protects against intracellular amyloid toxicity by rescuing proteasomal activity which is impaired by iAβ. This is the first time, to our knowledge, that induction of estradiol release in hippocampal neurons by morphine is reported. Our data may contribute to both Alzheimer's disease therapy and pain clinics where morphine is widely used.
Collapse
|
218
|
Abstract
The long-held dogma that the brain is a target of steroids produced by peripheral organs has delayed the widespread acceptance of the functional importance of neurosteroidogenesis. Comparative studies have been vital for establishing the key actions of gonadal and adrenal hormones on brain and behaviour. No doubt, studies across diverse phyla will continue to be crucial for revealing the true significance of neurosteroidogenesis to proper function of the vertebrate brain. Here, we review work carried out in our laboratory, as well as in others, highlighting advances to our understanding of brain steroid synthesis and action using songbirds as animal models. These studies show that steroidogenic transporters and enzymes are present in the songbird brain and that their expression and/or activities are subject to developmental, seasonal or short-term regulation. Our work in a songbird points to synaptic synthesis of neuroactive steroids and fast, perisynaptic membrane actions. Combined with evidence for rapid steroidal control of behaviour, these studies firmly establish a neuromodulatory role for avian neurosteroids. We hope this work will join with that of other species to embolden the acceptance of neurosteroidal signalling as a core property of vertebrate neurobiology.
Collapse
Affiliation(s)
- B A Schlinger
- Laboratory of Neuroendocrinology, Department of Integrative Biology and Physiology, Brain Research Institute, UCLA, Los Angeles, CA 90095, USA.
| | | |
Collapse
|
219
|
Abstract
17β-Oestradiol (E(2)) is an important hormone signal that regulates multiple tissues and functions in the body. This review focuses on the neuroprotective actions of E(2) in the brain against cerebral ischaemia and the potential underlying mechanisms. A particular focus of the review will be on the role of E(2) to attenuate NADPH oxidase activation, superoxide and reactive oxygen species generation and reduce oxidative stress in the ischaemic brain as a potentially key neuroprotective mechanism. Evidence of a potential novel role of extranuclear oestrogen receptors in mediating E(2) signalling and neuroprotective actions is also discussed. An additional subject is the growing evidence indicating that periods of long-term oestrogen deprivation, such as those occurring after menopause or surgical menopause, may lead to loss or attenuation of E(2) signalling and neuroprotective actions in the brain, as well as enhanced sensitivity of the hippocampus to ischaemic stress damage. These findings have important implications with respect to the 'critical period hypothesis', which proposes that oestrogen replacement must be initiated at peri-menopause in humans to exert its beneficial cardiovascular and neural effects. The insights gained from these various studies will prove valuable for guiding future directions in the field.
Collapse
Affiliation(s)
- Darrell Brann
- Institute of Molecular Medicine and Genetics, Georgia Health Sciences University Augusta, GA USA 30912
- Corresponding author: Dr. Darrell W. Brann, Institute of Molecular Medicine and Genetics, Georgia Health Sciences University, 1120 15th Street, Augusta, GA 30912, USA, Phone: 706-721-7771,
| | - Limor Raz
- Institute of Molecular Medicine and Genetics, Georgia Health Sciences University Augusta, GA USA 30912
| | - Ruimin Wang
- Hebei United University, Experimental and Research Center, Hebei United University, 57 South Jian-she Road, Tangshan, Hebei, 063600, PR China
| | - Ratna Vadlamudi
- Department of Obstetrics & Gynecology, University of Texas Health Science Center at San Antonio, Floyd Curl Drive, San Antonio TX 78229
| | - Quanguang Zhang
- Institute of Molecular Medicine and Genetics, Georgia Health Sciences University Augusta, GA USA 30912
- Co-Corresponding author: Dr. Quanguang Zhang, Institute of Molecular Medicine and Genetics, Georgia Health Sciences University, 1120 15th Street, Augusta, GA 30912, USA, Phone: 706-721-7771,
| |
Collapse
|
220
|
Bian C, Zhu K, Guo Q, Xiong Y, Cai W, Zhang J. Sex differences and synchronous development of steroid receptor coactivator-1 and synaptic proteins in the hippocampus of postnatal female and male C57BL/6 mice. Steroids 2012; 77:149-56. [PMID: 22085911 DOI: 10.1016/j.steroids.2011.11.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Revised: 10/25/2011] [Accepted: 11/02/2011] [Indexed: 12/13/2022]
Abstract
The structure and function including synaptic plasticity of the hippocampus are deeply affected by steroids in a sex-dependant manner, these processes are believed to be mediated by steroid receptors though their coactivators. Our previous studies have reported the developmental profiles of steroid receptor coactivator-1 (SRC-1) and PSD-95 in the hippocampus of postnatal female rats and the sex-differences of SRC-1 immunoreactivities in the brain of adult mice. However, whether there are any sex differences about postnatal development of SRC-1 and synaptic proteins in the hippocampus remain unclear. In this study, we investigated the postnatal profile of SRC-1 and key synaptic protein synaptophysin (SYN), PSD-95 and GluR1 in the hippocampus of female and male mice using immunohistochemistry and Western blot. The results showed that in the female hippocampus, the highest levels of SRC-1 were detected at P14, SYN and GluR1 at P30 and PSD-95 at P60; while in the males, the highest levels of SRC-1, SYN and GluR1 were detected at P30, and PSD-95 at P60. Female hippocampus tended to have higher levels of SRC-1, SYN and GluR1 before P30 and PSD-95 before P14; while male hippocampus have higher levels of PSD-95 at P14, P60 and GluR1 at P0. Correlation analysis showed the profiles of SRC-1 were highly correlated with each synaptic protein. The above results showed that in the hippocampus, except some minor sex differences detected at some time-point examined, females and males shared similar postnatal developmental profile and SRC-1 may be deeply involved in the regulation of hippocampal synaptogenesis.
Collapse
Affiliation(s)
- Chen Bian
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing, China
| | | | | | | | | | | |
Collapse
|
221
|
Spencer-Segal JL, Tsuda MC, Mattei L, Waters EM, Romeo RD, Milner TA, McEwen BS, Ogawa S. Estradiol acts via estrogen receptors alpha and beta on pathways important for synaptic plasticity in the mouse hippocampal formation. Neuroscience 2011; 202:131-46. [PMID: 22133892 DOI: 10.1016/j.neuroscience.2011.11.035] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 10/25/2011] [Accepted: 11/15/2011] [Indexed: 01/07/2023]
Abstract
Estradiol affects hippocampal-dependent spatial memory and underlying structural and electrical synaptic plasticity in female mice and rats. Using estrogen receptor (ER) alpha and beta knockout mice and wild-type littermates, we investigated the role of ERs in estradiol effects on multiple pathways important for hippocampal plasticity and learning. Six hours of estradiol administration increased immunoreactivity for phosphorylated Akt throughout the hippocampal formation, whereas 48 h of estradiol increased immunoreactivity for phosphorylated TrkB receptor. Estradiol effects on phosphorylated Akt and TrkB immunoreactivities were abolished in ER alpha and ER beta knockout mice. Estradiol also had distinct effects on immunoreactivity for post-synaptic density 95 (PSD-95) and brain derived-neurotrophic factor (BDNF) mRNA in ER alpha and beta knockout mice. Thus, estradiol acts through both ERs alpha and beta in several subregions of the hippocampal formation. The different effects of estradiol at 6 and 48 h indicate that several mechanisms of estrogen receptor signaling contribute to this female hormone's influence on hippocampal synaptic plasticity. By further delineating these mechanisms, we will better understand and predict the effects of endogenous and exogenous ovarian steroids on mood, cognition, and other hippocampal-dependent behaviors.
Collapse
Affiliation(s)
- J L Spencer-Segal
- Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, USA.
| | | | | | | | | | | | | | | |
Collapse
|
222
|
Fester L, Prange-Kiel J, Jarry H, Rune GM. Estrogen synthesis in the hippocampus. Cell Tissue Res 2011; 345:285-94. [DOI: 10.1007/s00441-011-1221-7] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 07/17/2011] [Indexed: 12/31/2022]
|
223
|
Sorwell KG, Kohama SG, Urbanski HF. Perimenopausal regulation of steroidogenesis in the nonhuman primate. Neurobiol Aging 2011; 33:1487.e1-13. [PMID: 21683476 DOI: 10.1016/j.neurobiolaging.2011.05.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 05/03/2011] [Accepted: 05/08/2011] [Indexed: 10/18/2022]
Abstract
Human aging is characterized by a marked decrease in circulating levels of dehydroepiandrosterone (DHEA) and DHEA-sulfate (DHEAS), hormonal changes associated with cognitive decline. Despite beneficial effects of DHEA supplementation in rodents, studies in elderly humans have generally failed to show cognitive improvement after treatment. In the present study we evaluate the effects of age and estradiol supplementation on expression of genes involved in the de novo synthesis of DHEA and its conversion to estradiol in the rhesus macaque hippocampus. Using reverse transcription polymerase chain reaction (RT-PCR) we demonstrate the expression of genes associated with this synthesis in several areas of the rhesus brain. Furthermore, real-time PCR reveals an age-related attenuation of hippocampal expression level of the genes CYP17A1, STS, and 3BHSD1/2. Additionally, short-term administration of estradiol is associated with decreased expression of CYP17A1, STS, SULT2B1, and AROMATASE, consistent with a downregulation not only of estrogen synthesis from circulating DHEA, but also of de novo DHEA synthesis within the hippocampus. These findings suggest a decline in neurosteroidogenesis may account for the inefficacy of DHEA supplementation in elderly humans, and that central steroidogenesis may be a function of circulating hormones and menopausal status.
Collapse
Affiliation(s)
- Krystina G Sorwell
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, USA
| | | | | |
Collapse
|
224
|
Frick KM, Zhao Z, Fan L. The epigenetics of estrogen: epigenetic regulation of hormone-induced memory enhancement. Epigenetics 2011; 6:675-80. [PMID: 21593594 DOI: 10.4161/epi.6.6.16177] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Epigenetic processes have been implicated in everything from cell proliferation to maternal behavior. Epigenetic alterations, including histone alterations and DNA methylation, have also been shown to play critical roles in the formation of some types of memory, and in the modulatory effects that factors, such as stress, drugs of abuse and environmental stimulation, have on the brain and memory function. Recently, we demonstrated that the ability of the sex-steroid hormone 17β-estradiol (E(2)) to enhance memory formation is dependent on histone acetylation and DNA methylation, a finding that has important implications for understanding how hormones influence cognition in adulthood and aging. In this article, we provide an overview of the literature demonstrating that epigenetic processes and E(2) influence memory, describe our findings indicating that epigenetic alterations regulate E(2)-induced memory enhancement, and discuss directions for future work on the epigenetics of estrogen.
Collapse
Affiliation(s)
- Karyn M Frick
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, USA.
| | | | | |
Collapse
|
225
|
Wu H, Wang J, Deng R, Xing K, Xiong Y, Huang J, He X, Wang X. Benefits of random-priming: exhaustive survey of a cDNA library from lung tissue of a SARS patient. J Med Virol 2011; 83:574-86. [PMID: 21328370 PMCID: PMC7166665 DOI: 10.1002/jmv.22012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The severe acute respiratory syndrome (SARS) leads to severe injury in the lungs with multiple factors, though the pathogenesis is still largely unclear. This paper describes the particular analyses of the transcriptome of human lung tissue that was infected by SARS‐associated coronavirus (SARS‐CoV). Random primers were used to produce ESTs from total RNA samples of the lung tissue. The result showed a high diversity of the transcripts, covering much of the human genome, including loci which do not contain protein coding sequences. 10,801 ESTs were generated and assembled into 267 contigs plus 7,659 singletons. Sequences matching to SARS‐CoV RNAs and other pneumonia‐related microbes were found. The transcripts were well classified by functional annotation. Among the 7,872 assembled sequences that were identified as from human genome, 578 non‐coding genes were revealed by BLAST search. The transcripts were mapped to the human genome with the restriction of identity = 100%, which found a candidate pool of 448 novel transcriptional loci where EST transcriptional signal was never found before. Among these, 13 loci were never reported to be transcriptional by other detection methods such as gene chips, tiling arrays, and paired‐end ditags (PETs). The result showed that random‐priming cDNA library is valid for the investigation of transcript diversity in the virus‐infected tissue. The EST data could be a useful supplemental source for SARS pathology researches. J. Med. Virol. 83:574–586, 2011. © 2011 Wiley‐Liss, Inc.
Collapse
Affiliation(s)
- Hongkai Wu
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Xingangxi Road, Guangzhou, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
226
|
Mukai H, Hatanaka Y, Mitsuhashi K, Hojo Y, Komatsuzaki Y, Sato R, Murakami G, Kimoto T, Kawato S. Automated analysis of spines from confocal laser microscopy images: application to the discrimination of androgen and estrogen effects on spinogenesis. ACTA ACUST UNITED AC 2011; 21:2704-11. [PMID: 21527787 PMCID: PMC3209797 DOI: 10.1093/cercor/bhr059] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Accurate 3D determination of postsynaptic structures is essential to our understanding memory-related function and pathology in neurons. However, current methods of spine analysis require time-consuming and labor-intensive manual spine identification in large image data sets. Therefore, a realistic implementation of algorithm is necessary to replace manual identification. Here, we describe a new method for the automated detection of spines and dendrites based on analysis of geometrical features. Our “Spiso-3D” software carries out automated dendrite reconstruction and spine detection using both eigenvalue images and information of brightness, avoiding detection of pseudo-spines. To demonstrate the potential application of Spiso-3D automated analysis, we distinguished the rapid effects of androgen and estrogen on rapid modulation of spine head diameter in the hippocampus. These findings advance our understanding of neurotrophic function of brain sex steroids. Our method is expected to be valuable to analyze vast amounts of dendritic spines in neurons in the mammalian cerebral cortex.
Collapse
Affiliation(s)
- Hideo Mukai
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Tokyo 153-8902, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
227
|
Lepore G, Gadau S, Peruffo A, Mura A, Mura E, Floris A, Balzano F, Zedda M, Farina V. Aromatase expression in cultured fetal sheep astrocytes after nitrosative/oxidative damage. Cell Tissue Res 2011; 344:407-13. [PMID: 21509460 DOI: 10.1007/s00441-011-1160-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 03/01/2011] [Indexed: 10/18/2022]
Abstract
Aromatase, the enzyme converting androgens into estrogens, is involved in many brain processes such as neural differentiation and plasticity or the prevention of cell death. We have previously observed an increase in aromatase immunoreactivity in sheep neurons exposed in vitro to the oxidant 3-nitro-L: -tyrosine. However, little is known regarding the way that sheep astrocytes cope with nitrosative stress, a condition occurring in sheep in the pathogenesis of neurodegenerative disorders such as scrapie and Maedi-Visna. Our aim has been to evaluate the effects of 3-nitro-L-tyrosine on astrocyte primary cultures from 90-day-old fetal sheep brain. Living cells were observed and characterized by immunofluorescence with a GFAP antibody, which indicated that the majority of the cells were astrocytes. A viability assay was performed on both untreated and treated cells. Reverse transcription with the polymerase chain reaction was undertaken to monitor time- and dose-dependent variations in aromatase gene expression. Stressed astrocytes showed signs of deterioration, were reduced in number, and appeared round with few short processes; the cell death rate was ∼30%. Aromatase expression was detected starting from a 24-h exposure to 1 mM 3-nitro-L-tyrosine and reached the highest levels at 72 h. Thus, oxidative damage probably results in the local production of neuroprotective estradiol by reactive astrocytes via the aromatization of testosterone.
Collapse
Affiliation(s)
- Gianluca Lepore
- Department of Animal Biology, University of Sassari, Via Vienna 2, 07100, Sassari, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
228
|
Tau-induced defects in synaptic plasticity, learning, and memory are reversible in transgenic mice after switching off the toxic Tau mutant. J Neurosci 2011; 31:2511-25. [PMID: 21325519 DOI: 10.1523/jneurosci.5245-10.2011] [Citation(s) in RCA: 226] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
This report describes the behavioral and electrophysiological analysis of regulatable transgenic mice expressing mutant repeat domains of human Tau (Tau(RD)). Mice were generated to express Tau(RD) in two forms, differing in their propensity for β-structure and thus in their tendency for aggregation ("pro-aggregant" or "anti-aggregant") (Mocanu et al., 2008). Only pro-aggregant mice show pronounced changes typical for Tau pathology in Alzheimer's disease (aggregation, missorting, hyperphosphorylation, synaptic and neuronal loss), indicating that the β-propensity and hence the ability to aggregate is a key factor in the disease. We now tested the mice with regard to neuromotor parameters, behavior, learning and memory, and synaptic plasticity and correlated this with histological and biochemical parameters in different stages of switching Tau(RD) on or off. The mice are normal in neuromotor tests. However, pro-aggregant Tau(RD) mice are strongly impaired in memory and show pronounced loss of long-term potentiation (LTP), suggesting that Tau aggregation specifically perturbs these brain functions. Remarkably, when the expression of human pro-aggregant Tau(RD) is switched on for ∼ 10 months and off for ∼ 4 months, memory and LTP recover, whereas aggregates decrease moderately and change their composition from mixed human plus mouse Tau to mouse Tau only. Neuronal loss persists, but synapses are partially rescued. This argues that continuous presence of amyloidogenic pro-aggregant Tau(RD) constitutes the main toxic insult for memory and LTP, rather than the aggregates as such.
Collapse
|
229
|
Lagunas N, Calmarza-Font I, Grassi D, Garcia-Segura LM. Estrogen receptor ligands counteract cognitive deficits caused by androgen deprivation in male rats. Horm Behav 2011; 59:581-4. [PMID: 21376723 DOI: 10.1016/j.yhbeh.2011.02.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2010] [Revised: 02/12/2011] [Accepted: 02/26/2011] [Indexed: 11/15/2022]
Abstract
Androgen deprivation causes impairment of cognitive tasks in rodents and humans, and this deficit can be reverted by androgen replacement therapy. Part of the effects of androgens in the male may be mediated by their local metabolism to estradiol or 3-alpha androstanediol within the brain and the consequent activation of estrogen receptors. In this study we have assessed whether the administration of estradiol benzoate, the estrogen receptor β selective agonist diarylpropionitrile or the estrogen receptor α selective agonist propyl pyrazole triol affect performance of androgen-deprived male Wistar rats in the cross-maze test. In addition, we tested the effect of raloxifene and tamoxifen, two selective estrogen receptor modulators used in clinical practice. The behavior of the rats was assessed 2 weeks after orchidectomy or sham surgery. Orchidectomy impaired acquisition in the cross-maze test. Estradiol benzoate and the selective estrogen receptor β agonist significantly improved acquisition in the cross-maze test compared to orchidectomized animals injected with vehicle. Raloxifene and tamoxifen at a dose of 1mg/kg, but not at doses of 0.5 or 2mg/kg, also improved acquisition of orchidectomized animals. Our findings suggest that estrogenic compounds with affinity for estrogen receptor β and selective estrogen receptor modulators, such as raloxifene and tamoxifen, may represent good candidates to promote cognitive performance in androgen-deprived males.
Collapse
|
230
|
Azcoitia I, Yague JG, Garcia-Segura LM. Estradiol synthesis within the human brain. Neuroscience 2011; 191:139-47. [PMID: 21320576 DOI: 10.1016/j.neuroscience.2011.02.012] [Citation(s) in RCA: 159] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 02/02/2011] [Accepted: 02/05/2011] [Indexed: 12/21/2022]
Abstract
Estradiol biosynthesis is catalyzed by the enzyme aromatase, the product of the CYP19A1 gene. Aromatase is expressed in the brain, where it is involved not only in the control of neuroendocrine events and reproduction, but also in the regulation of neural development, synaptic plasticity and cell survival. In this review we summarize the existing data related with the detection of aromatase in human brain, with particular emphasis in the so-called "non-primary reproductive" areas. Besides hypothalamus, amygdala and preoptic/septal areas, aromatase is expressed in certain regions of basal forebrain, cerebral cortex, hippocampus, thalamus, cerebellum and brainstem of the human brain. Aromatase in human brain is produced by neurons, but there is also an astrocyte subpopulation that constitutively expresses the enzyme. The use of different methodological approaches, including the in vivo analysis by positron emission tomography of human subjects, has permitted to draw a general map of human brain aromatase, but the detailed distribution map is still far to be completed. On the other hand, despite the fact that there is only one aromatase protein, there are multiple mRNA transcripts that differ in the 5'-untranslated region, where regulatory elements reside. To date, some of the aromatase transcripts characteristic of cerebral cortex, as well as of human cell lines of neural origin, have been identified. This characteristic may confer tissue or even region-specific regulation of the expression and therefore it is conceivable to develop selective aromatase modulators to regulate the expression of the enzyme in the human brain. This article is part of a Special Issue entitled: Neuroactive Steroids: Focus on Human Brain.
Collapse
Affiliation(s)
- I Azcoitia
- Biología Celular, Facultad de Biología, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| | | | | |
Collapse
|
231
|
Barron AM, Hojo Y, Mukai H, Higo S, Ooishi Y, Hatanaka Y, Ogiue-Ikeda M, Murakami G, Kimoto T, Kawato S. Regulation of synaptic plasticity by hippocampus synthesized estradiol. Horm Mol Biol Clin Investig 2011; 7:361-75. [PMID: 25961274 DOI: 10.1515/hmbci.2011.118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 07/21/2011] [Indexed: 01/29/2023]
Abstract
Estradiol is synthesized from cholesterol in hippocampal neurons of adult rats by cytochrome P450 and hydroxysteroid dehydrogenase enzymes. These enzymes are expressed in the glutamatergic neurons of the hippocampus. Surprisingly, the concentration of estradiol and androgen in the hippocampus is significantly higher than that in circulation. Locally synthesized estradiol rapidly and potently modulates synaptic plasticity within the hippocampus. E2 rapidly potentiates long-term depression and induces spinogenesis through synaptic estrogen receptors and kinases. The rapid effects of estradiol are followed by slow genomic effects mediated by both estrogen receptors located at the synapse and nucleus, modulating long-term potentiation and promoting the formation of new functional synaptic contacts. Age-related changes in hippocampally derived estradiol synthesis and distribution of estrogen receptors may alter synaptic plasticity, and could potentially contribute to age-related cognitive decline. Understanding factors which regulate hippocampal estradiol synthesis could lead to the identification of alternatives to conventional hormone therapy to protect against age-related cognitive decline.
Collapse
|
232
|
Houser A, McNair C, Piccinini R, Luxhoj A, Bell WE, Turner JE. Effects of estrogen on the neuromuscular system in the embryonic zebrafish (Danio rerio). Brain Res 2011; 1381:106-16. [PMID: 21255558 DOI: 10.1016/j.brainres.2011.01.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 12/28/2010] [Accepted: 01/11/2011] [Indexed: 02/05/2023]
Abstract
Estrogen (E₂) has been shown to play an important role in maintaining central nervous system (CNS) axonal growth, synapse formation, and neurotransmitter release; however, there is less direct evidence for a similar role in the peripheral nervous system (PNS). In a previous study we have shown that when E₂ was removed from embryonic zebrafish (Danio rerio) system using the aromatase inhibiter (AI) 4-hydroxyandrostenedione (4-OH-A) fish did not developmentally express normal sensory-motor (S-M) functions such as tactile, vestibular, and swimming behaviors, creating a condition called 'listless.' These findings led to speculation that E₂ deprivation, under these conditions, caused a neuromuscular-like "denervation" resulting in the 'listless' condition. Morphometric data analysis reported in this study indicated that there was an absence of vesicular acetylcholine transporter (VAChT) staining in the primary motor neurons as a result of AI treatment compared to controls. In contrast, E₂ co-treatment with AI (E₂+AI) rescued a significant number of VAChT stained nerve endings and treatment of fish with E₂ alone exhibited a significantly higher number of VAChT profiles than in control fish. In addition, in the AI treated group znp-1 antibody staining of the primary motor neurons demonstrated: 1) diminished axon branching; 2) shorter primary axons; and 3) an absence in the posterior trunk regions of fish. In turn, trunk muscles were significantly diminished in size and less organized when treated with AI when compared to controls and E₂+AI treatment restored myotome width and height accompanied by some dramatic changes in the α-bungarotoxin-labeled ACh post-synaptic receptor elements of the trunk skeletal muscles. Data from this study suggest that treatment with the AI 4-OH-A essentially denervates the zebrafish trunk skeletal muscles, most likely by compromising the development of the vesicular transport system for ACh preventing it from acting at the synaptic terminals. These findings begin to demonstrate the prominent role that E₂ plays in the developing zebrafish PNS, particularly at the neuromuscular level.
Collapse
Affiliation(s)
- Alexander Houser
- Department of Biology, Center for Molecular, Cellular, and Biological Chemistry, Virginia Military Institute, Lexington, VA 24450, USA
| | | | | | | | | | | |
Collapse
|
233
|
Arevalo MA, Ruiz-Palmero I, Simon-Areces J, Acaz-Fonseca E, Azcoitia I, Garcia-Segura LM. Estradiol meets notch signaling in developing neurons. Front Endocrinol (Lausanne) 2011; 2:21. [PMID: 22654797 PMCID: PMC3356013 DOI: 10.3389/fendo.2011.00021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 07/31/2011] [Indexed: 01/04/2023] Open
Abstract
The transmembrane receptor Notch, a master developmental regulator, controls gliogenesis, neurogenesis, and neurite development in the nervous system. Estradiol, acting as a hormonal signal or as a neurosteroid, also regulates these developmental processes. Here we review recent evidence indicating that estradiol and Notch signaling interact in developing hippocampal neurons by a mechanism involving the putative membrane receptor G protein-coupled receptor 30. This interaction is relevant for the control of neuronal differentiation, since the downregulation of Notch signaling by estradiol results in the upregulation of neurogenin 3, which in turn promotes dendritogenesis.
Collapse
Affiliation(s)
| | - Isabel Ruiz-Palmero
- Instituto Cajal, Consejo Superior de Investigaciones CientíficasMadrid, Spain
| | - Julia Simon-Areces
- Instituto Cajal, Consejo Superior de Investigaciones CientíficasMadrid, Spain
| | | | - Iñigo Azcoitia
- Facultad de Biología, Biología Celular, Universidad Complutense de MadridMadrid, Spain
| | - Luis Miguel Garcia-Segura
- Instituto Cajal, Consejo Superior de Investigaciones CientíficasMadrid, Spain
- *Correspondence: Luis Miguel Garcia-Segura, Instituto Cajal, Consejo Superior de Investigaciones Científicas, Avenida Doctor Arce 37, E-28002 Madrid, Spain. e-mail:
| |
Collapse
|
234
|
Taves MD, Ma C, Heimovics SA, Saldanha CJ, Soma KK. Measurement of steroid concentrations in brain tissue: methodological considerations. Front Endocrinol (Lausanne) 2011; 2:39. [PMID: 22654806 PMCID: PMC3356067 DOI: 10.3389/fendo.2011.00039] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2011] [Accepted: 09/06/2011] [Indexed: 12/17/2022] Open
Abstract
It is well recognized that steroids are synthesized de novo in the brain (neurosteroids). In addition, steroids circulating in the blood enter the brain. Steroids play numerous roles in the brain, such as influencing neural development, adult neuroplasticity, behavior, neuroinflammation, and neurodegenerative diseases such as Alzheimer's disease. In order to understand the regulation and functions of steroids in the brain, it is important to directly measure steroid concentrations in brain tissue. In this brief review, we discuss methods for the detection and quantification of steroids in the brain. We concisely present the major advantages and disadvantages of different technical approaches at various experimental stages: euthanasia, tissue collection, steroid extraction, steroid separation, and steroid measurement. We discuss, among other topics, the potential effects of anesthesia and saline perfusion prior to tissue collection; microdissection via Palkovits punch; solid phase extraction; chromatographic separation of steroids; and immunoassays and mass spectrometry for steroid quantification, particularly the use of mass spectrometry for "steroid profiling." Finally, we discuss the interpretation of local steroid concentrations, such as comparing steroid levels in brain tissue with those in the circulation (plasma vs. whole blood samples; total vs. free steroid levels). We also present reference values for a variety of steroids in different brain regions of adult rats. This brief review highlights some of the major methodological considerations at multiple experimental stages and provides a broad framework for designing studies that examine local steroid levels in the brain as well as other steroidogenic tissues, such as thymus, breast, and prostate.
Collapse
Affiliation(s)
- Matthew D. Taves
- Department of Psychology, University of British ColumbiaVancouver, BC, Canada
- Department of Zoology, University of British ColumbiaVancouver, BC, Canada
- *Correspondence: Matthew D. Taves, Department of Psychology, University of British Columbia, 2136 West Mall, Vancouver, BC, Canada V6T 1Z4. e-mail:
| | - Chunqi Ma
- Department of Psychology, University of British ColumbiaVancouver, BC, Canada
| | - Sarah A. Heimovics
- Department of Psychology, University of British ColumbiaVancouver, BC, Canada
| | - Colin J. Saldanha
- Department of Biological Sciences, Lehigh UniversityBethlehem, PA, USA
- Program in Cognitive Science, Lehigh UniversityBethlehem, PA, USA
| | - Kiran K. Soma
- Department of Psychology, University of British ColumbiaVancouver, BC, Canada
- Department of Zoology, University of British ColumbiaVancouver, BC, Canada
- Graduate Program in Neuroscience, University of British ColumbiaVancouver, BC, Canada
| |
Collapse
|
235
|
Boulware MI, Kent BA, Frick KM. The impact of age-related ovarian hormone loss on cognitive and neural function. Curr Top Behav Neurosci 2011; 10:165-84. [PMID: 21533680 DOI: 10.1007/7854_2011_122] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
On average, women now live one-third of their lives after menopause. Because menopause has been associated with an elevated risk of dementia, an increasing body of research has studied the effects of reproductive senescence on cognitive function. Compelling evidence from humans, nonhuman primates, and rodents suggests that ovarian sex-steroid hormones can have rapid and profound effects on memory, attention, and executive function, and on regions of the brain that mediate these processes, such as the hippocampus and prefrontal cortex. This chapter will provide an overview of studies in humans, nonhuman primates, and rodents that examine the effects of ovarian hormone loss and hormone replacement on cognitive functions mediated by the hippocampus and prefrontal cortex. For humans and each animal model, we outline the effects of aging on reproductive function, describe how ovarian hormones (primarily estrogens) modulate hippocampal and prefrontal physiology, and discuss the effects of both reproductive aging and hormone treatment on cognitive function. Although this review will show that much has been learned about the effects of reproductive senescence on cognition, many critical questions remain for future investigation.
Collapse
Affiliation(s)
- Marissa I Boulware
- Department of Psychology, University of Wisconsin-Milwaukee, 2441 E. Hartford Ave, Milwaukee, WI 53211, USA
| | | | | |
Collapse
|
236
|
Remage-Healey L, Saldanha CJ, Schlinger BA. Estradiol synthesis and action at the synapse: evidence for "synaptocrine" signaling. Front Endocrinol (Lausanne) 2011; 2:28. [PMID: 22654800 PMCID: PMC3356004 DOI: 10.3389/fendo.2011.00028] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 08/26/2011] [Indexed: 02/01/2023] Open
Abstract
Classically, the modulation of brain function and behavior by steroid hormones was linked exclusively to secretion by peripheral endocrine glands. Subsequently, steroid actions within the brain were shown dependent upon either synthesis and secretion by peripheral organs or by production within the CNS itself using peripheral sources of precursors. Discovery of the estrogen-synthetic enzyme aromatase in brain further bolstered the latter view and served as a catalyst for expanding concepts of neurosteroidogenesis. In parallel research, several steroids, including estradiol, were found to have rapid effects on neuronal excitability, partially explained by novel actions at neuronal membranes. Recent findings from multiple levels of analysis and labs necessitate an updated view on how steroids are delivered to neural circuits. There is now considerable evidence for expression of the aromatase enzyme within synaptic boutons in the vertebrate CNS. Furthermore, additional work now directly couples rapid regulation of neuroestrogen synthesis with neurophysiological and behavioral outcomes. In this review we summarize evidence for targeted and acute synaptic estrogen synthesis and perisynaptic estrogen actions in the CNS of songbirds. We evaluate these findings in the context of criteria associated with classic neuromodulatory signaling. We term this novel form of signaling "synaptocrine," and discuss its implications.
Collapse
Affiliation(s)
- Luke Remage-Healey
- Neuroscience and Behavior Program, Center for Neuroendocrine Studies, University of MassachusettsAmherst, MA, USA
| | | | - Barney A. Schlinger
- Department of Integrative Biology and Physiology, University of California at Los AngelesLos Angeles, CA, USA
- Ecology and Evolutionary Biology, University of California at Los AngelesLos Angeles, CA, USA
- Laboratory for Neuroendocrinology, University of California at Los AngelesLos Angeles, CA, USA
- *Correspondence: Barney A. Schlinger, Department of Integrative Biology and Physiology and Ecology and Evolutionary Biology, University of California at Los Angeles, 621 Charles E Young Drive South, Los Angeles, CA 90095, USA. e-mail:
| |
Collapse
|
237
|
Hojo Y, Higo S, Kawato S, Hatanaka Y, Ooishi Y, Murakami G, Ishii H, Komatsuzaki Y, Ogiue-Ikeda M, Mukai H, Kimoto T. Hippocampal synthesis of sex steroids and corticosteroids: essential for modulation of synaptic plasticity. Front Endocrinol (Lausanne) 2011; 2:43. [PMID: 22701110 PMCID: PMC3356120 DOI: 10.3389/fendo.2011.00043] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 09/13/2011] [Indexed: 11/13/2022] Open
Abstract
Sex steroids play essential roles in the modulation of synaptic plasticity and neuroprotection in the hippocampus. Accumulating evidence shows that hippocampal neurons synthesize both estrogen and androgen. Recently, we also revealed the hippocampal synthesis of corticosteroids. The accurate concentrations of these hippocampus-synthesized steroids are determined by liquid chromatography-tandem mass-spectrometry in combination with novel derivatization. The hippocampal levels of 17β-estradiol (E2), testosterone (T), dihydrotestosterone (DHT), and corticosterone (CORT), are 5-15 nM, and these levels are sufficient to modulate synaptic plasticity. Hippocampal E2 modulates memory-related synaptic plasticity not only slowly/genomically but also rapidly/non-genomically. Slow actions of E2 occur via classical nuclear receptors (ERα or ERβ), while rapid E2 actions occur via synapse-localized or extranuclear ERα or ERβ. Nanomolar concentrations of E2 change rapidly the density and morphology of spines in hippocampal neurons. ERα, but not ERβ, drives this enhancement/suppression of spinogenesis in adult animals. Nanomolar concentrations of androgens (T and DHT) and CORT also increase the spine density. Kinase networks are involved downstream of ERα and androgen receptor. Newly developed Spiso-3D mathematical analysis is useful to distinguish these complex effects by sex steroids and kinases. Significant advance has been achieved in investigations of rapid modulation by E2 of the long-term depression or the long-term potentiation.
Collapse
Affiliation(s)
- Yasushi Hojo
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, The University of TokyoTokyo, Japan
- Core Research for Evolutional Science and Technology Project of Japan Science and Technology Agency, The University of TokyoTokyo, Japan
- Bioinformatics Project of Japan Science and Technology Agency, The University of TokyoTokyo, Japan
| | - Shimpei Higo
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, The University of TokyoTokyo, Japan
| | - Suguru Kawato
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, The University of TokyoTokyo, Japan
- Core Research for Evolutional Science and Technology Project of Japan Science and Technology Agency, The University of TokyoTokyo, Japan
- Bioinformatics Project of Japan Science and Technology Agency, The University of TokyoTokyo, Japan
- *Correspondence: Suguru Kawato, Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan. e-mail:
| | - Yusuke Hatanaka
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, The University of TokyoTokyo, Japan
| | - Yuuki Ooishi
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, The University of TokyoTokyo, Japan
| | - Gen Murakami
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, The University of TokyoTokyo, Japan
- Bioinformatics Project of Japan Science and Technology Agency, The University of TokyoTokyo, Japan
| | - Hirotaka Ishii
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, The University of TokyoTokyo, Japan
| | - Yoshimasa Komatsuzaki
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, The University of TokyoTokyo, Japan
| | - Mari Ogiue-Ikeda
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, The University of TokyoTokyo, Japan
- Project of Special Coordinate Funds for Promoting Science and Technology, The University of TokyoJapan
| | - Hideo Mukai
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, The University of TokyoTokyo, Japan
- Core Research for Evolutional Science and Technology Project of Japan Science and Technology Agency, The University of TokyoTokyo, Japan
- Bioinformatics Project of Japan Science and Technology Agency, The University of TokyoTokyo, Japan
| | - Tetsuya Kimoto
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, The University of TokyoTokyo, Japan
- Core Research for Evolutional Science and Technology Project of Japan Science and Technology Agency, The University of TokyoTokyo, Japan
- Bioinformatics Project of Japan Science and Technology Agency, The University of TokyoTokyo, Japan
| |
Collapse
|
238
|
Kimoto T, Ishii H, Higo S, Hojo Y, Kawato S. Semicomprehensive analysis of the postnatal age-related changes in the mRNA expression of sex steroidogenic enzymes and sex steroid receptors in the male rat hippocampus. Endocrinology 2010; 151:5795-806. [PMID: 21047951 DOI: 10.1210/en.2010-0581] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Although sex steroids play a crucial role in the postnatal brain development, the age-related changes in the hippocampal steroidogenesis remain largely unknown. We performed comprehensive investigations for the mRNA expressions of 26 sex steroidogenic enzymes/proteins and three sex steroid receptors in the male rat hippocampus, at the ages of postnatal day (PD) 1, PD4, PD7, PD10, PD14, 4 wk, and 12 wk (adult), by RT-PCR/Southern blotting analysis. The relative expression levels of these enzymes/receptors at PD1 were Srd5a1 > Star > Ar ∼ Hsd17b4 ∼ Hsd17b1 ∼ Hsd17b7 ∼ Esr1 ∼ Srd5a2 > Hsd17b3 > Esr2 > Cyp11a1 > Cyp17a1 > Cyp19a1 ∼ Hsd17b2 > 3β-hydroxysteroid dehydrogenase I. The mRNA levels of essential enzymes for progesterone/testosterone/estradiol metabolisms (Cyp17a1, Hsd17b7, and Cyp19a1) were approximately constant between PD1 and PD14 and then declined toward the adult levels. Cyp11a1 increased during PD4-PD14 and then considerably decreased toward the adult level (∼8% of PD1). Hsd17b1, Hsd17b2, and 3β-hydroxysteroid dehydrogenase I mRNA decreased approximately monotonously. Hsd17b3 increased to approximately 200% of PD1 during PD4-PD14 and was maintained at this high level. The 5α-reductase mRNA was maintained constant (Srd5a1) or decreased monotonically (Srd5a2) toward the adult level. The Esr1 level peaked at PD4 and decreased toward the adult level, whereas Ar greatly increased during PD1-PD14 and was maintained at this high level. The Star and Hsd17b4 levels were maintained constant from neonate to adult. These results suggest that the hippocampal sex steroidogenic properties are substantially altered during the postnatal development processes, which might contribute to brain sexual maturation.
Collapse
Affiliation(s)
- Tetsuya Kimoto
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | | | | | | | | |
Collapse
|
239
|
Abstract
Brain-synthesized estrogen has been shown to influence synaptic structure, function, and cognitive processes. However, the molecular mechanisms underlying the rapid effects of estrogen on the dendritic spines of cortical neurons are not clear. Estrogen receptor β (ERβ) is expressed in cortical neurons, and ERβ knock-out mice display impaired performance in cortically mediated processes, suggesting that signaling via this receptor has profound effects on cortical neuron function. However, the effect of rapid signaling via ERβ on dendritic spines and the signaling pathways initiated by this receptor in cortical neurons are unknown. Here, we show that activation of ERβ with the specific agonist WAY-200070 results in increased spine density and PSD-95 (postsynaptic density-95) accumulation in membrane regions. Activation of ERβ by WAY-200070 also resulted in the phosphorylation of p21-activated kinase (PAK) and extracellular signal-regulated kinase 1/2 (ERK1/2) in cultured cortical neurons, suggesting a mechanism for the regulation of the actin cytoskeleton. Moreover, we found that aromatase, an enzyme critical for estrogen production, is present at presynaptic termini, supporting a role for brain-synthesized estrogen as a neuromodulator in the cortex. These results implicate ERβ signaling in controlling dendritic spine morphology, in part via a PAK/ERK1/2-dependent pathway, and provide mechanistic insight into the rapid cellular effects of estrogen on brain function.
Collapse
|
240
|
Duration of estrogen deprivation, not chronological age, prevents estrogen's ability to enhance hippocampal synaptic physiology. Proc Natl Acad Sci U S A 2010; 107:19543-8. [PMID: 20974957 DOI: 10.1073/pnas.1009307107] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Whether estrogen replacement is beneficial to cognitive health is controversial. Some studies have shown that estrogen replacement therapy (ERT) relieves memory impairment associated with menopause in women, whereas others suggest that estrogen not only is incapable of providing a benefit, but actually can be detrimental. One possible explanation for this discrepancy in study findings could be the varying time after menopause at which ERT is initiated. It has been proposed that a critical period exists during which ERT must be administered to enhance cognitive function. This idea has yet to be tested directly using functional synaptic studies, however. Here we investigated whether prolonged hormone deprivation caused by ovariectomy (OVX) in young adult rats prevents the ability of estrogen replacement to increase synaptic function in the hippocampus to a degree necessary for estrogen-induced improvement in learning and memory. Remarkably, estrogen replacement was found to increase long-term potentiation, the current mediated by NR2B-containing NMDA receptors, and the dendritic spine density at CA3-CA1 synapses up to 15 months post-OVX. However, by 19 months post-OVX, the same estrogen replacement was unable to induce these changes. Importantly, this loss of estrogen's effectiveness was seen to be a consequence of the duration of deprivation. In female rats aged with their ovaries intact and examined at the same chronological age as the 19-month post-OVX group, estrogen replacement significantly increased synaptic function and spine density. These data clearly demonstrate that a critical period exists during which ERT must be administered, and that once this period passes, the beneficial effects are lost.
Collapse
|
241
|
Ekimova IV, Nitsinskaya LE, Romanova IV, Pastukhov YF, Margulis BA, Guzhova IV. Exogenous protein Hsp70/Hsc70 can penetrate into brain structures and attenuate the severity of chemically-induced seizures. J Neurochem 2010; 115:1035-44. [DOI: 10.1111/j.1471-4159.2010.06989.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
242
|
Mendez P, Garcia-Segura LM, Muller D. Estradiol promotes spine growth and synapse formation without affecting pre-established networks. Hippocampus 2010; 21:1263-7. [PMID: 20928832 DOI: 10.1002/hipo.20875] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2010] [Indexed: 01/28/2023]
Abstract
Estrogens regulate dendritic spine density, but the mechanism and significance of this effect for brain networks remain unknown. We used repetitive imaging over several days to investigate how 17β-estradiol affected the turnover and long-term behavior of dendritic spines in CA1 cells of hippocampal slice cultures. We find that 17β-estradiol and serum in the culture medium tightly regulated spine density by promoting an increase in the rate of new spine formation and their transformation into synapses, without affecting spine elimination or stability. New spines formed during a transient 17β-estradiol application were preferentially eliminated upon removal of the hormone, in contrast with pre-existing spines that remained unaffected. Our results reveal that 17β-estradiol transiently regulates the complexity of hippocampal circuits without causing major alterations of pre-existing networks.
Collapse
Affiliation(s)
- Pablo Mendez
- Department of Neuroscience, School of Medicine, University of Geneva, 1211 Geneva 4, Switzerland
| | | | | |
Collapse
|
243
|
Mukai H, Kimoto T, Hojo Y, Kawato S, Murakami G, Higo S, Hatanaka Y, Ogiue-Ikeda M. Modulation of synaptic plasticity by brain estrogen in the hippocampus. Biochim Biophys Acta Gen Subj 2010; 1800:1030-44. [DOI: 10.1016/j.bbagen.2009.11.002] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Revised: 10/15/2009] [Accepted: 11/02/2009] [Indexed: 12/31/2022]
|
244
|
BDNF upregulation rescues synaptic plasticity in middle-aged ovariectomized rats. Neurobiol Aging 2010; 33:708-19. [PMID: 20674095 DOI: 10.1016/j.neurobiolaging.2010.06.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 04/30/2010] [Accepted: 06/12/2010] [Indexed: 01/31/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) has emerged as a possible broad-spectrum treatment for the plasticity losses found in rodent models of human conditions associated with memory and cognitive deficits. We have tested this strategy in the particular case of ovariectomy. The actin polymerization in spines normally found after patterned afferent stimulation was greatly reduced, along with the stabilization of long-term potentiation, in hippocampal slices prepared from middle-aged ovariectomized rats. Both effects were fully restored by a 60-minute infusion of 2 nM BDNF. Comparable rescue results were obtained after elevating endogenous BDNF protein levels in hippocampus with 4 daily injections of a short half-life ampakine (positive modulator of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate [AMPA]-type glutamate receptors). These results provide the first evidence that minimally invasive, mechanism-based drug treatments can ameliorate defects in spine plasticity caused by depressed estrogen levels.
Collapse
|
245
|
Cornil CA, Charlier TD. Rapid behavioural effects of oestrogens and fast regulation of their local synthesis by brain aromatase. J Neuroendocrinol 2010; 22:664-73. [PMID: 20456609 PMCID: PMC3518857 DOI: 10.1111/j.1365-2826.2010.02023.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Besides their genomic effects, oestrogens, 17beta-oestradiol in particular, also activate cellular effects that may be too rapid (seconds to minutes) to result from de novo protein synthesis. Although the existence of such nongenomic actions has been extensively demonstrated in vitro, the understanding of their behavioural significance is only emerging. Recent findings provide evidence that acute oestrogen treatments significantly affect a variety of behavioural processes, including sexual behaviour, social communication and cognition. One question arising from these results concerns the source of the oestrogens mediating nongenomic effects in vivo. In this review, data collected in vitro and in vivo are presented supporting the notion that fast modulations of local testosterone aromatisation can rapidly control the local oestrogen concentration in a time frame compatible with their rapid actions. Taken together, these data provide compelling evidence of how rapid changes in the local production and action of oestrogens can shape complex behaviours.
Collapse
Affiliation(s)
- C A Cornil
- Behavioral Neuroendocrinology Research Group, GIGA Neurosciences, University of Liège, Liège, Belgium.
| | | |
Collapse
|
246
|
Blanc F, Poisbeau P, Sellal F, Tranchant C, de Seze J, André G. [Alzheimer disease, memory and estrogen]. Rev Neurol (Paris) 2010; 166:377-88. [PMID: 19836813 DOI: 10.1016/j.neurol.2009.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2008] [Revised: 04/18/2009] [Accepted: 07/15/2009] [Indexed: 11/19/2022]
Abstract
Epidemiological studies of Alzheimer disease have shown a higher prevalence of women. Some data argue for a link between Alzheimer disease and the decrease of estrogen in post-menopausal women. Animal studies have shown a beneficial effect of estrogen on memory with a decrease of amyloid deposition in models of AD, whereas estrogen has a positive effect on BDNF. Six studies have shown a positive effect of estrogen therapy on memory and studies on structural and functional imaging have shown a beneficial effect of estrogens but the largest study on prevention of dementia with estrogens (WHI) showed a deleterious effect. To better understand this paradoxical situation, we reviewed the literature on estrogens, memory and Alzheimer disease. We first discuss the promnesic effect of estrogen on mice and rats, second the neuroprotector effect of estrogen on animal models of Alzheimer disease, and third the available human studies. We hypothesize a link with the time of instauration of the estrogen treatment. Nevertheless this hypothesis remains to be demonstrated.
Collapse
Affiliation(s)
- F Blanc
- Service de Neuropsychologie, Département de Neurologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | | | | | | | | | | |
Collapse
|
247
|
Cardoso CC, Ricardo VP, Frussa-Filho R, Porto CS, Abdalla FMF. Effects of 17β-estradiol on expression of muscarinic acetylcholine receptor subtypes and estrogen receptor α in rat hippocampus. Eur J Pharmacol 2010; 634:192-200. [DOI: 10.1016/j.ejphar.2010.02.032] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Revised: 02/01/2010] [Accepted: 02/15/2010] [Indexed: 12/01/2022]
|
248
|
Bender RA, Zhou L, Wilkars W, Fester L, Lanowski JS, Paysen D, Konig A, Rune GM. Roles of 17 -Estradiol Involve Regulation of Reelin Expression and Synaptogenesis in the Dentate Gyrus. Cereb Cortex 2010; 20:2985-95. [DOI: 10.1093/cercor/bhq047] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
249
|
Sorwell KG, Urbanski HF. Dehydroepiandrosterone and age-related cognitive decline. AGE (DORDRECHT, NETHERLANDS) 2010; 32:61-7. [PMID: 19711196 PMCID: PMC2829637 DOI: 10.1007/s11357-009-9113-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Accepted: 08/03/2009] [Indexed: 05/15/2023]
Abstract
In humans the circulating concentrations of dehydroepiandrosterone (DHEA) and DHEA sulfate (DHEAS) decrease markedly during aging, and have been implicated in age-associated cognitive decline. This has led to the hypothesis that DHEA supplementation during aging may improve memory. In rodents, a cognitive anti-aging effect of DHEA and DHEAS has been observed but it is unclear whether this effect is mediated indirectly through conversion of these steroids to estradiol. Moreover, despite the demonstration of correlations between endogenous DHEA concentrations and cognitive ability in certain human patient populations, such correlations have yet to be convincingly demonstrated during normal human aging. This review highlights important differences between rodents and primates in terms of their circulating DHEA and DHEAS concentrations, and suggests that age-related changes within the human DHEA metabolic pathway may contribute to the relative inefficacy of DHEA replacement therapies in humans. The review also highlights the value of using nonhuman primates as a pragmatic animal model for testing the therapeutic potential of DHEA for age-associate cognitive decline in humans.
Collapse
Affiliation(s)
- Krystina G. Sorwell
- Division of Neuroscience, Oregon National Primate Research Center, 505 NW 185th Avenue, Beaverton, OR 97006 USA
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239 USA
| | - Henryk F. Urbanski
- Division of Neuroscience, Oregon National Primate Research Center, 505 NW 185th Avenue, Beaverton, OR 97006 USA
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239 USA
| |
Collapse
|
250
|
Rodgers SP, Bohacek J, Daniel JM. Transient estradiol exposure during middle age in ovariectomized rats exerts lasting effects on cognitive function and the hippocampus. Endocrinology 2010; 151:1194-203. [PMID: 20068005 DOI: 10.1210/en.2009-1245] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We determined whether transient exposure to estradiol during middle age in ovariectomized rats would exert lasting effects on cognition and the brain beyond the period of exposure. Two experiments were conducted. Rats 10-11 months of age were ovariectomized and received vehicle control treatment throughout the experiment, continuous estradiol treatment throughout the experiment, or 40 d of transient exposure to estradiol that ended 3 d before behavioral training. In the first experiment, rats were trained on a radial-maze working memory task and killed 2 months after the termination of transient exposure to estradiol. The hippocampus was immunostained for choline acetyltransferase and estrogen receptors alpha (ER alpha) and beta (ER beta) by Western blotting. In a second experiment to determine the durability of treatment effects, rats were behaviorally tested every other month until brains were collected for Western blotting 8 months after the termination of transient exposure to estradiol. Maze testing included delay trials and scopolamine trials, in which dose-effect curves for the muscarinic receptor antagonist were determined. Transient exposure to estradiol enhanced working memory and attenuated amnestic effects of scopolamine as effectively as continuous estradiol exposure. Enhancements persisted for up to 7 months. Transient exposure to estradiol increased hippocampal levels of ER alpha and choline acetyltransferase 2 months and ER alpha 8 months after termination of the exposure. Neither estradiol treatment altered estrogen receptor beta levels. Results demonstrate that short-term treatment with estradiol during middle age enhances working memory well beyond the duration of treatment and suggest ER alpha as a potential mechanism for this effect.
Collapse
Affiliation(s)
- Shaefali P Rodgers
- Department of Psychology and Neuroscience Program, Tulane University, New Orleans, Louisiana 70118, USA
| | | | | |
Collapse
|