201
|
Vernocchi P, Ristori MV, Guerrera S, Guarrasi V, Conte F, Russo A, Lupi E, Albitar-Nehme S, Gardini S, Paci P, Ianiro G, Vicari S, Gasbarrini A, Putignani L. Gut Microbiota Ecology and Inferred Functions in Children With ASD Compared to Neurotypical Subjects. Front Microbiol 2022; 13:871086. [PMID: 35756062 PMCID: PMC9218677 DOI: 10.3389/fmicb.2022.871086] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/19/2022] [Indexed: 12/28/2022] Open
Abstract
Autism spectrum disorders (ASDs) is a multifactorial neurodevelopmental disorder. The communication between the gastrointestinal (GI) tract and the central nervous system seems driven by gut microbiota (GM). Herein, we provide GM profiling, considering GI functional symptoms, neurological impairment, and dietary habits. Forty-one and 35 fecal samples collected from ASD and neurotypical children (CTRLs), respectively, (age range, 3–15 years) were analyzed by 16S targeted-metagenomics (the V3–V4 region) and inflammation and permeability markers (i.e., sIgA, zonulin lysozyme), and then correlated with subjects’ metadata. Our ASD cohort was characterized as follows: 30/41 (73%) with GI functional symptoms; 24/41 (58%) picky eaters (PEs), with one or more dietary needs, including 10/41 (24%) with food selectivity (FS); 36/41 (88%) presenting high and medium autism severity symptoms (HMASSs). Among the cohort with GI symptoms, 28/30 (93%) showed HMASSs, 17/30 (57%) were picky eaters and only 8/30 (27%) with food selectivity. The remaining 11/41 (27%) ASDs without GI symptoms that were characterized by HMASS for 8/11 (72%) and 7/11 (63%) were picky eaters. GM ecology was investigated for the overall ASD cohort versus CTRLs; ASDs with GI and without GI, respectively, versus CTRLs; ASD with GI versus ASD without GI; ASDs with HMASS versus low ASSs; PEs versus no-PEs; and FS versus absence of FS. In particular, the GM of ASDs, compared to CTRLs, was characterized by the increase of Proteobacteria, Bacteroidetes, Rikenellaceae, Pasteurellaceae, Klebsiella, Bacteroides, Roseburia, Lactobacillus, Prevotella, Sutterella, Staphylococcus, and Haemophilus. Moreover, Sutterella, Roseburia and Fusobacterium were associated to ASD with GI symptoms compared to CTRLs. Interestingly, ASD with GI symptoms showed higher value of zonulin and lower levels of lysozyme, which were also characterized by differentially expressed predicted functional pathways. Multiple machine learning models classified correctly 80% overall ASDs, compared with CTRLs, based on Bacteroides, Lactobacillus, Prevotella, Staphylococcus, Sutterella, and Haemophilus features. In conclusion, in our patient cohort, regardless of the evaluation of many factors potentially modulating the GM profile, the major phenotypic determinant affecting the GM was represented by GI hallmarks and patients’ age.
Collapse
Affiliation(s)
- Pamela Vernocchi
- Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, Bambino Gesù Children's Hospital, Scientific Institute for Research, Hospitalization and Healthcare, Rome, Italy
| | - Maria Vittoria Ristori
- Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, Bambino Gesù Children's Hospital, Scientific Institute for Research, Hospitalization and Healthcare, Rome, Italy
| | - Silvia Guerrera
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, Scientific Institute for Research, Hospitalization and Healthcare, Rome, Italy
| | | | - Federica Conte
- Institute for Systems Analysis and Computer Science "Antonio Ruberti," National Research Council, Rome, Italy
| | - Alessandra Russo
- Department of Diagnostics and Laboratory Medicine, Unit of Microbiology and Diagnostic Immunology, Unit of Microbiomics, Bambino Gesù Children's Hospital, Scientific Institute for Research, Hospitalization and Healthcare, Rome, Italy
| | - Elisabetta Lupi
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, Scientific Institute for Research, Hospitalization and Healthcare, Rome, Italy
| | - Sami Albitar-Nehme
- Department of Diagnostic and Laboratory Medicine, Unit of Microbiology and Diagnostic Immunology, Bambino Gesù Children's Hospital, Scientific Institute for Research, Hospitalization and Healthcare, Rome, Italy
| | | | - Paola Paci
- Department of Computer, Control and Management Engineering, Sapienza University of Rome, Rome, Italy
| | - Gianluca Ianiro
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario "A. Gemelli" Scientific Institute for Research, Hospitalization and Healthcare, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Stefano Vicari
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, Scientific Institute for Research, Hospitalization and Healthcare, Rome, Italy
| | - Antonio Gasbarrini
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario "A. Gemelli" Scientific Institute for Research, Hospitalization and Healthcare, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Lorenza Putignani
- Department of Diagnostics and Laboratory Medicine, Unit of Microbiology and Diagnostic Immunology, Unit of Microbiomics, and Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, Bambino Gesù Children's Hospital, Scientific Institute for Research, Hospitalization and Healthcare, Rome, Italy
| |
Collapse
|
202
|
Ge S, Liao C, Su D, Mula T, Gegen Z, Li Z, Tu Y. Wuwei Qingzhuo San Ameliorates Hyperlipidemia in Mice Fed With HFD by Regulating Metabolomics and Intestinal Flora Composition. Front Pharmacol 2022; 13:842671. [PMID: 35833033 PMCID: PMC9272022 DOI: 10.3389/fphar.2022.842671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Hyperlipidemia is one of the most common metabolic disorders that threaten people's health. Wuwei Qingzhuo San (WQS) is a traditional Mongolian medicine prescription, which is widely used in Mongolia for the treatment of hyperlipidemia. Our previous studies found that it has hypolipidemic and hepatoprotective effects on hyperlipidemic hamsters. However, the underlying lipid-lowering mechanisms of WQS and its relationship with intestinal flora are not yet clear. In this study, 16 S rRNA gene sequencing and metabolomics were performed to investigate the action mechanism of WQS on hyperlipidemic mice induced by a high-fat diet (HFD). As a result, metabolic pathway enrichment analysis revealed that the intervention of WQS had obviously modulated the metabolism of α-linolenic acid and linoleic acid and the biosynthesis of bile acids. 16 S rRNA sequencing showed that WQS had altered the composition of the intestinal microbiota in hyperlipidemic mice fed with HFD and, especially, adjusted the relative abundance ratio of Firmicutes/Bacteroides. These findings provide new evidence that WQS can improve HFD-induced hyperlipidemia by regulating metabolic disorders and intestinal flora imbalance.
Collapse
Affiliation(s)
- Shasha Ge
- Experimental Research Center, China Academy of Chinese medical sciences, Beijing, China
- Development Research Center of TCM, China Academy of Chinese Medical Science, Beijing, China
| | - Cuiping Liao
- Experimental Research Center, China Academy of Chinese medical sciences, Beijing, China
- Development Research Center of TCM, China Academy of Chinese Medical Science, Beijing, China
| | - Duna Su
- Chi Feng an Ding Hospital, Chifeng, China
| | - Tunuo Mula
- College of Mongolian Medicine and Pharmacy, Inner Mongolia Minzu University, Tongliao, China
| | - Zhula Gegen
- College of Mongolian Medicine and Pharmacy, Inner Mongolia Minzu University, Tongliao, China
| | - Zhiyong Li
- Institute of Chinese Materia medica, China Academy of Chinese medical sciences, Beijing, China
| | - Ya Tu
- Experimental Research Center, China Academy of Chinese medical sciences, Beijing, China
- Development Research Center of TCM, China Academy of Chinese Medical Science, Beijing, China
| |
Collapse
|
203
|
Sadoughi B, Schneider D, Daniel R, Schülke O, Ostner J. Aging gut microbiota of wild macaques are equally diverse, less stable, but progressively personalized. MICROBIOME 2022; 10:95. [PMID: 35718778 PMCID: PMC9206754 DOI: 10.1186/s40168-022-01283-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/21/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Pronounced heterogeneity of age trajectories has been identified as a hallmark of the gut microbiota in humans and has been explained by marked changes in lifestyle and health condition. Comparatively, age-related personalization of microbiota is understudied in natural systems limiting our comprehension of patterns observed in humans from ecological and evolutionary perspectives. RESULTS Here, we tested age-related changes in the diversity, stability, and composition of the gut bacterial community using 16S rRNA gene sequencing with dense repeated sampling over three seasons in a cross-sectional age sample of adult female Assamese macaques (Macaca assamensis) living in their natural forest habitat. Gut bacterial composition exhibited a personal signature which became less stable as individuals aged. This lack of stability was not explained by differences in microbiota diversity but rather linked to an increase in the relative abundance of rare bacterial taxa. The lack of age-related changes in core taxa or convergence with age to a common state of the community hampered predicting gut bacterial composition of aged individuals. On the contrary, we found increasing personalization of the gut bacterial composition with age, indicating that composition in older individuals was increasingly divergent from the rest of the population. Reduced direct transmission of bacteria resulting from decreasing social activity may contribute to, but not be sufficient to explain, increasing personalization with age. CONCLUSIONS Together, our results challenge the assumption of a constant microbiota through adult life in a wild primate. Within the limits of this study, the fact that increasing personalization of the aging microbiota is not restricted to humans suggests the underlying process to be evolved instead of provoked only by modern lifestyle of and health care for the elderly. Video abstract.
Collapse
Affiliation(s)
- Baptiste Sadoughi
- Department of Behavioral Ecology, Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, Georg-August-University Göttingen, Kellnerweg 6, D-37077, Göttingen, Germany.
- Research Group Primate Social Evolution, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany.
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany.
- Leibniz ScienceCampus Primate Cognition, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany.
| | - Dominik Schneider
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany
| | - Rolf Daniel
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany
| | - Oliver Schülke
- Department of Behavioral Ecology, Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, Georg-August-University Göttingen, Kellnerweg 6, D-37077, Göttingen, Germany
- Research Group Primate Social Evolution, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
- Leibniz ScienceCampus Primate Cognition, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Julia Ostner
- Department of Behavioral Ecology, Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, Georg-August-University Göttingen, Kellnerweg 6, D-37077, Göttingen, Germany
- Research Group Primate Social Evolution, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
- Leibniz ScienceCampus Primate Cognition, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| |
Collapse
|
204
|
How Diet and Physical Activity Modulate Gut Microbiota: Evidence, and Perspectives. Nutrients 2022; 14:nu14122456. [PMID: 35745186 PMCID: PMC9227967 DOI: 10.3390/nu14122456] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 12/12/2022] Open
Abstract
Gut microbiota plays a significant role in the maintenance of physiological homeostasis, contributing to human health. Nevertheless, some factors (sex, age, lifestyle, physical activity, drug-based therapies, diet, etc.) affect its composition and functionality, linked to pathologies and immunological diseases. Concerning diet, it interacts with microorganisms, leading to beneficial or detrimental outcomes for the health of host. On the other hand, physical activity is known to be useful for preventing and, sometimes, treating several diseases of cardiovascular, neuroendocrine, respiratory, and muscular systems. This paper focuses on diet and physical activity presenting the current knowledge about how different diets (Western, ketogenic, vegan, gluten free, Mediterranean) as well as different types of exercise (intensive, endurance, aerobic) could shape gut microbiota.
Collapse
|
205
|
Zhang Y, Zhang R, Liu P, Wang J, Gao M, Zhang J, Yang J, Yang C, Zhang Y, Sun N. Characteristics and Mediating Effect of Gut Microbiota With Experience of Childhood Maltreatment in Major Depressive Disorder. Front Neurosci 2022; 16:926450. [PMID: 35774560 PMCID: PMC9238290 DOI: 10.3389/fnins.2022.926450] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
Gut microbiota and childhood maltreatment are closely related to depressive symptoms. This study aimed to analyze the characteristics of gut microbiota in major depressive disorder (MDD) patients with childhood maltreatment experience and explore the correlation between gut microbiota, childhood maltreatment, and depressive symptoms. A total of 37 healthy controls (HCs) and 53 patients with MDD were enrolled, including 18 MDD patients without childhood maltreatment experience and 35 MDD patients with childhood maltreatment experience. The Hamilton’s Depression Scale (HAMD-24) and Childhood Trauma Questionnaire-Short Form (CTQ-SF) were used to evaluate their depressive symptoms and childhood maltreatment experience, respectively. The composition of gut microbiota was evaluated using 16S rRNA sequencing. Spearman’s correlation analysis was used to evaluate the correlation between different gut microbiota, depressive symptoms and childhood maltreatment. The mediation analysis was used to evaluate the mediating effect of gut microbiota. In the α-diversity analysis, we found that the Simpson index and Pielou’s Evenness index differed significantly between MDD patients without childhood maltreatment experience and HCs. In the β-diversity analysis, principal coordinate analysis (PCoA) showed significant differences between MDD patients without childhood maltreatment experience, MDD patients with childhood maltreatment experience and HCs. Twenty-seven different bacteria were identified through Linear discriminant analysis effect size (LEfSe) analysis at different levels of classification. The analysis of the correlation showed that Blautia, Bifidobacterium, Bacteroides, Roseburia, and Phascolarctobacterium were significantly correlated with HAMD and CTQ-SF scores. The mediation analysis showed that childhood maltreatment had a significant direct effect on the patients’ depressive symptoms, and Blautia, Bifidobacterium, Roseburia had a significant mediating effect. The findings of this study suggested that MDD patients with childhood maltreatment experience had different gut microbiota, which might have a mediating effect on the influence of childhood maltreatment on depressive symptoms.
Collapse
Affiliation(s)
- Yanyan Zhang
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
- Department of Physiology, Shanxi Medical University, Taiyuan, China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Ruiyu Zhang
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
- First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Penghong Liu
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
- First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Jizhi Wang
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
- First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Mingxue Gao
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
- First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Jie Zhang
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
- First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Jun Yang
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
- First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Chunxia Yang
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yu Zhang
- Department of Physiology, Shanxi Medical University, Taiyuan, China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
- *Correspondence: Yu Zhang,
| | - Ning Sun
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
- First Clinical Medical College of Shanxi Medical University, Taiyuan, China
- Ning Sun,
| |
Collapse
|
206
|
Zhang X, Zhao A, Sandhu AK, Edirisinghe I, Burton-Freeman BM. Red Raspberry and Fructo-Oligosaccharide Supplementation, Metabolic Biomarkers, and the Gut Microbiota in Adults with Prediabetes: A Randomized Crossover Clinical Trial. J Nutr 2022; 152:1438-1449. [PMID: 35421233 DOI: 10.1093/jn/nxac037] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/02/2021] [Accepted: 02/14/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Evidence suggests that the gut microbiota and cardiometabolic status are associated, suggesting dietary interventions that alter the microbiota may affect metabolic health. OBJECTIVES We investigated whether supplementation with (poly)phenol-dense red raspberries (RRB), alone or with a fructo-oligosaccharide (FOS) prebiotic, would improve biomarkers of cardiometabolic risk in individuals with prediabetes (PreDM) and insulin resistance (IR) and whether the effects are related to modulation of the gut microbiota. METHODS Adults with PreDM-IR (n = 26; mean ± SEM age, 35 ± 2 years; fasting glucose, 5.7 ± 0.1 mmol/L; HOMA-IR, 3.3 ± 0.3) or who were metabolically healthy (reference group; n = 10; age, 31 ± 3 years; fasting glucose, 5.1 ± 0.2 mmol/L; HOMA-IR, 1.1 ± 0.1) participated in a randomized crossover trial with two 4-week supplementation periods, in which they consumed either RRB (125 g fresh equivalents) daily or RRB + 8g FOS daily, separated by a 4-week washout. The primary outcome variable was the change in the gut microbiota composition, assessed by shotgun sequencing before (baseline) and at the end of each supplementation period. Secondary outcomes were changes in glucoregulation, lipid metabolism, anti-inflammatory status, and anthropometry. The trial is registered at ClinicalTrials.gov, NCT03049631. RESULTS In PreDM-IR, RRB supplementation reduced hepatic-IR (-30.1% ± 14.6%; P = 0.04) and reduced plasma total and LDL cholesterol [-4.9% ± 1.8% (P = 0.04) and -7.2% ± 2.3% (P = 0.003), respectively] from baseline. Adding FOS (RRB + FOS) improved β-cell function [insulin secretion rate, +70.2% ± 32.8% (P = 0.02); Disposition Index, +94.4% ± 50.2% (P = 0.04)], but had no significant effect on plasma cholesterol compared to baseline. RRB increased Eubacterium eligens (2-fold) and decreased Ruminococcus gnavus (-60% ± 34%), whereas RRB + FOS increased Bifidobacterium spp. (4-fold) and decreased Blautia wexlerae (-23% ± 12%) from baseline (all P values ≤ 0.05). R. gnavus was positively correlated with hepatic-IR, and E. eligens and Bifidobacterium catenulatum were negatively correlated with cholesterol concentrations (P ≤ 0.05). CONCLUSIONS Increased Bifidobacterium spp., concurrently with reduced R. gnavus, was associated with metabolic improvements in adults with PreDM-IR, warranting further research on the mechanisms involved in (poly)phenol/FOS-microbial interactions with host metabolism.
Collapse
Affiliation(s)
- Xuhuiqun Zhang
- Department of Food Science and Nutrition, Center for Nutrition Research and the Institute for Food Safety and Health, Illinois Institute of Technology, Chicago, IL, USA
| | - Anqi Zhao
- Department of Food Science and Nutrition, Center for Nutrition Research and the Institute for Food Safety and Health, Illinois Institute of Technology, Chicago, IL, USA
| | - Amandeep K Sandhu
- Department of Food Science and Nutrition, Center for Nutrition Research and the Institute for Food Safety and Health, Illinois Institute of Technology, Chicago, IL, USA
| | - Indika Edirisinghe
- Department of Food Science and Nutrition, Center for Nutrition Research and the Institute for Food Safety and Health, Illinois Institute of Technology, Chicago, IL, USA
| | - Britt M Burton-Freeman
- Department of Food Science and Nutrition, Center for Nutrition Research and the Institute for Food Safety and Health, Illinois Institute of Technology, Chicago, IL, USA
| |
Collapse
|
207
|
Gao P, Shen X, Zhang X, Jiang C, Zhang S, Zhou X, Schüssler-Fiorenza Rose SM, Snyder M. Precision environmental health monitoring by longitudinal exposome and multi-omics profiling. Genome Res 2022; 32:1199-1214. [PMID: 35667843 PMCID: PMC9248886 DOI: 10.1101/gr.276521.121] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/18/2022] [Indexed: 11/24/2022]
Abstract
Conventional environmental health studies have primarily focused on limited environmental stressors at the population level, which lacks the power to dissect the complexity and heterogeneity of individualized environmental exposures. Here, as a pilot case study, we integrated deep-profiled longitudinal personal exposome and internal multi-omics to systematically investigate how the exposome shapes a single individual's phenome. We annotated thousands of chemical and biological components in the personal exposome cloud and found they were significantly correlated with thousands of internal biomolecules, which was further cross-validated using corresponding clinical data. Our results showed that agrochemicals and fungi predominated in the highly diverse and dynamic personal exposome, and the biomolecules and pathways related to the individual's immune system, kidney, and liver were highly associated with the personal external exposome. Overall, this data-driven longitudinal monitoring study shows the potential dynamic interactions between the personal exposome and internal multi-omics, as well as the impact of the exposome on precision health by producing abundant testable hypotheses.
Collapse
Affiliation(s)
- Peng Gao
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94304, USA
| | - Xiaotao Shen
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94304, USA
| | - Xinyue Zhang
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94304, USA
| | - Chao Jiang
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Sai Zhang
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94304, USA
| | - Xin Zhou
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94304, USA
| | | | - Michael Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94304, USA
| |
Collapse
|
208
|
Almand AT, Anderson AP, Hitt BD, Sitko JC, Joy RM, Easter BD, Almand EA. The influence of perceived stress on the human microbiome. BMC Res Notes 2022; 15:193. [PMID: 35659718 PMCID: PMC9164568 DOI: 10.1186/s13104-022-06066-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 05/05/2022] [Indexed: 11/10/2022] Open
Abstract
Objective Microbial dysbiosis, a shift from commensal to pathogenic microbiota, is often associated with mental health and the gut–brain axis, where dysbiosis in the gut may be linked to dysfunction in the brain. Many studies focus on dysbiosis induced by clinical events or traumatic incidents; however, many professions in austere or demanding environments may encounter continuously compounded stressors. This study seeks to explore the relationship between microbial populations and stress, both perceived and biochemical. Results Eight individuals enrolled in the study to provide a longitudinal assessment of the impact of stress on gut health, with four individuals providing enough samples for analysis. Eleven core microbial genera were identified, although the relative abundance of these genera and other members of the microbial population shifted over time. Although our results indicate a potential relationship between perceived stress and microbial composition of the gut, no association with biochemical stress was observed. Increases in perceived stress seem to elucidate a change in potentially beneficial Bacteroides, with a loss in Firmicutes phyla. This shift occurred in multiple individuals, whereas using cortisol as a stress biomarker showed contradictory responses. These preliminary data provide a potential mechanism for gut monitoring, while identifying targets for downstream modulation.
Collapse
Affiliation(s)
- Austin T Almand
- University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - Allison P Anderson
- Department of Aerospace Engineering Sciences, University of Colorado, Boulder, CO, USA
| | - Brianna D Hitt
- Department of Mathematical Sciences, United States Air Force Academy, Colorado Springs, CO, 80840, USA
| | - John C Sitko
- Department of Biology, United States Air Force Academy, Colorado Springs, CO, 80840, USA
| | - Rebekah M Joy
- Department of Biology, United States Air Force Academy, Colorado Springs, CO, 80840, USA
| | | | - Erin A Almand
- Department of Biology, United States Air Force Academy, Colorado Springs, CO, 80840, USA.
| |
Collapse
|
209
|
Morelli G, Patuzzi I, Losasso C, Ricci A, Contiero B, Andrighetto I, Ricci R. Characterization of intestinal microbiota in normal weight and overweight Border Collie and Labrador Retriever dogs. Sci Rep 2022; 12:9199. [PMID: 35655089 PMCID: PMC9163050 DOI: 10.1038/s41598-022-13270-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/12/2022] [Indexed: 11/08/2022] Open
Abstract
Obesity in dogs is an emerging issue that affects canine health and well-being. Its development is ascribed to several factors, including genetic predisposition and dietary management, and recent evidence suggests that intestinal microbiota may be involved as well. Previous works have shown obesity to be linked to significant changes in gut microbiota composition in humans and mice, but only limited information is available on the role played by canine gut microbiota. The aim of this exploratory study was to investigate whether composition of canine faecal microbiota may be influenced by overweight condition and breed. All the enrolled companion dogs were young adults, intact, healthy, and fed commercial extruded pet food; none had received antibiotics, probiotics or immunosuppressant drugs in the previous six months. Labrador Retriever (LR) and Border Collie (BC) were chosen as reference breeds and Body Condition Score (BCS) on a 9-point scale as reference method for evaluating body fat. The faecal microbial communities of 15 lean (BCS 4-5/9; 7 LRs and 8 BCs) and 14 overweight (BCS > 5/9; 8 LRs and 6 BCs) family dogs were analysed using 16S rRNA gene sequencing. Moreover, for each dog, the daily intake of energy (kcal/d) and dietary macronutrients (g/d) were calculated according to an accurate feeding history collection. Firmicutes and Bacteroidetes resulted the predominant phyla (51.5 ± 10.0% and 33.4 ± 8.5%, respectively) in all dogs. Bioinformatic and statistical analysis revealed that no bacterial taxon differed significantly based on body condition, except for genus Allisonella (p < 0.05); BC gut microbiota was richer (p < 0.05) in bacteria belonging to phyla Actinobacteria (family Coriobacteriaceae in particular) and Firmicutes (Allobaculum and Roseburia genera). No remarkable differences were recorded either for diversity indices (i.e., alpha diversity, p > 0.10) or for divergence within the sample set (i.e., beta diversity, p > 0.05). PERMANOVA tests performed on single factors demonstrated the tendency of dietary protein to influence the recruited dogs' microbiota beta-diversity at amplicon sequence variant level (p = 0.08). In conclusion, the faecal microbiota of dogs involved in this exploratory study showed no major variations based on body condition. However, our findings suggested that certain bacterial taxa previously acknowledged in obesity-related studies may be detected in dissimilar amounts depending on canine breed.
Collapse
Affiliation(s)
- Giada Morelli
- Department of Animal Medicine, Production and Health, University of Padua, 35020, Legnaro, PD, Italy.
| | - Ilaria Patuzzi
- Laboratory of Microbial Ecology and Genomics, Istituto Zooprofilattico Sperimentale delle Venezie, 35020, Legnaro, PD, Italy
- Research and Development Division, EuBiome S.R.L., 35129, Padua, Italy
| | - Carmen Losasso
- Laboratory of Microbial Ecology and Genomics, Istituto Zooprofilattico Sperimentale delle Venezie, 35020, Legnaro, PD, Italy
| | - Antonia Ricci
- Laboratory of Microbial Ecology and Genomics, Istituto Zooprofilattico Sperimentale delle Venezie, 35020, Legnaro, PD, Italy
| | - Barbara Contiero
- Department of Animal Medicine, Production and Health, University of Padua, 35020, Legnaro, PD, Italy
| | - Igino Andrighetto
- Department of Animal Medicine, Production and Health, University of Padua, 35020, Legnaro, PD, Italy
| | - Rebecca Ricci
- Department of Animal Medicine, Production and Health, University of Padua, 35020, Legnaro, PD, Italy
| |
Collapse
|
210
|
Exercise and Prebiotic Fiber Provide Gut Microbiota-Driven Benefit in a Survivor to Germ-Free Mouse Translational Model of Breast Cancer. Cancers (Basel) 2022; 14:cancers14112722. [PMID: 35681702 PMCID: PMC9179252 DOI: 10.3390/cancers14112722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/16/2022] [Accepted: 05/24/2022] [Indexed: 11/23/2022] Open
Abstract
Simple Summary Breast cancer is the most common cancer in women worldwide. In recent years, the community of microbes that inhabit the intestinal tract, called the gut microbiota, has been shown to influence patient response to several cancer therapies. On the other hand, treatments such as chemotherapy can disrupt the resident gut microbiota and potentially contribute to poor health outcomes. Strategies to improve the composition of the gut microbiota include dietary and exercise interventions. While diet and exercise are already established as important for breast cancer prevention, during treatment, and for reducing recurrence, little is known about the impact of these factors on the gut microbiota in the context of breast cancer. Therefore, our aim was to examine the impact of exercise and diet on the gut microbiota in breast cancer. Our findings indicate that exercise and prebiotic fiber supplementation may provide benefits to individuals with breast cancer through advantageous gut microbial changes. Our findings of a potential adjuvant of exercise and prebiotics should inspire further mechanistic and clinical investigations. Abstract The gut microbiota plays a role in shaping overall host health and response to several cancer treatments. Factors, such as diet, exercise, and chemotherapy, can alter the gut microbiota. In the present study, the Alberta Cancer Exercise (ACE) program was investigated as a strategy to favorably modify the gut microbiota of breast cancer survivors who had received chemotherapy. Subsequently, the ability of post-exercise gut microbiota, alone or with prebiotic fiber supplementation, to influence breast cancer outcomes was interrogated using fecal microbiota transplant (FMT) in germ-free mice. While cancer survivors experienced little gut microbial change following ACE, in the mice, tumor volume trended consistently lower over time in mice colonized with post-exercise compared to pre-exercise microbiota with significant differences on days 16 and 22. Beta diversity analysis revealed that EO771 breast tumor cell injection and Paclitaxel chemotherapy altered the gut microbial communities in mice. Enrichment of potentially protective microbes was found in post-exercise microbiota groups. Tumors of mice colonized with post-exercise microbiota exhibited more favorable cytokine profiles, including decreased vascular endothelial growth factor (VEGF) levels. Beneficial microbial and molecular outcomes were augmented with prebiotic supplementation. Exercise and prebiotic fiber demonstrated adjuvant action, potentially via an enhanced anti-tumor immune response modulated by advantageous gut microbial shifts.
Collapse
|
211
|
Yan X, Zhai Y, Zhou W, Qiao Y, Guan L, Liu H, Jiang J, Peng L. Intestinal Flora Mediates Antiobesity Effect of Rutin in High-Fat-Diet Mice. Mol Nutr Food Res 2022; 66:e2100948. [PMID: 35616308 DOI: 10.1002/mnfr.202100948] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 04/12/2022] [Indexed: 11/09/2022]
Abstract
SCOPE Intestinal flora plays a critical role in the development of . Rutin is a natural flavonoid with potential prebiotic effects on regulating the intestinal flora composition that is beneficial for host health. Therefore, this study hypothesizes that rutin supplementation has beneficial effects on high-fat-diet (HFD)-induced obesity and metabolic disorder through the modulation of intestinal flora in mice. METHODS AND RESULTS The obesity-alleviating property of rutin using 6-week-old C57BL/6J male mice fed on HFD with or without rutin supplementation for 16 weeks is investigated. Rutin supplementation effectively reduces body-weight gain, insulin resistance, and acted favorably on the intestinal barrier, thereby reducing endotoxemia and systemic inflammation. Sequencing of 16S rRNA genes from fecal samples indicate that rutin exerted modulatory effects on HFD-induced intestinal flora disorders (e.g., rutin decreased Firmicutes abundance and increased Bacteroidetes and Verrucomicrobia abundance). Antibiotic treatment and fecal microbiota transplantation further demonstrate that the salutary effects of rutin on obesity control are strongly dependent on the intestinal flora. CONCLUSION Rutin can be considered as a prebiotic agent for improving intestinal flora disorders and obesity-associated metabolic perturbations in obese individuals.
Collapse
Affiliation(s)
- Xu Yan
- College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China.,Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Medical Science, China-Japan Friendship Hospital, No. 2 Yinghua East Street, Chaoyang District, Beijing, 100029, China
| | - Yuanyuan Zhai
- College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China.,Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Medical Science, China-Japan Friendship Hospital, No. 2 Yinghua East Street, Chaoyang District, Beijing, 100029, China
| | - Wenling Zhou
- College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China.,Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Medical Science, China-Japan Friendship Hospital, No. 2 Yinghua East Street, Chaoyang District, Beijing, 100029, China
| | - Yuan Qiao
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Medical Science, China-Japan Friendship Hospital, No. 2 Yinghua East Street, Chaoyang District, Beijing, 100029, China
| | - Lingling Guan
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Medical Science, China-Japan Friendship Hospital, No. 2 Yinghua East Street, Chaoyang District, Beijing, 100029, China
| | - Hao Liu
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Medical Science, China-Japan Friendship Hospital, No. 2 Yinghua East Street, Chaoyang District, Beijing, 100029, China
| | - Jizhi Jiang
- College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Liang Peng
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Medical Science, China-Japan Friendship Hospital, No. 2 Yinghua East Street, Chaoyang District, Beijing, 100029, China
| |
Collapse
|
212
|
Ren S, Wang C, Chen A, Lv W, Gao R. The Probiotic Lactobacillus paracasei Ameliorates Diarrhea Cause by Escherichia coli O8via Gut Microbiota Modulation1. Front Nutr 2022; 9:878808. [PMID: 35662940 PMCID: PMC9159302 DOI: 10.3389/fnut.2022.878808] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/30/2022] [Indexed: 12/26/2022] Open
Abstract
Introduction Koumiss is a fermented horse milk food containing abundant probiotics. Lactobacillus paracasei is a bacterial strain isolated from koumiss that helps regulate the intestinal microbiota. One of the major cause of diarrhea is an imbalance of the intestinal flora. The aim of this study was to investigate whether Lactobacillus paracasei can ameliorate E. coli-induced diarrhea and modulate the gut microbiota. Methods Mouse models of diarrhea were established via intragastric E. coli O8 administration. We then attempted to prevent or treat diarrhea in the mice via intragastric administration of a 3 × 108 CFU/mL L. paracasei cell suspension. The severity of diarrhea was evaluated based on the body weight, diarrhea rate, and index, fecal diameter, ileum injury, hematoxylin-eosin (H&E) staining, and diamine oxidase (DAO) and zonulin expression. Expression of the tight junction (TJ) proteins claudin-1, occludin, and zona occludens (ZO-)1 were detected by immunohistochemistry (IHC). Gastrointestinal mRNA expression levels of interleukin (IL)-6, IL-1β, and tumor necrosis factor (TNF)-α were detected by real-time polymerase chain reaction (RT-PCR). The microbial composition was analyzed by 16s rRNA sequencing. Results The L. paracasei demonstrated excellent therapeutic efficacy against diarrhea. It elevated the TJ protein levels and downregulated proinflammatory cytokines IL-6, IL-1β, TNF-α, and p65, myosin light chain 2 (MLC2), myosin light chain kinase (MLCK). Moreover L. paracasei increased those bacteria, which can product short-chain fatty acid (SCFA) such Alistipes, Odoribacter, Roseburia, and Oscillibacter. Conclusion L. paracasei ameliorated diarrhea by inhibiting activation of the nuclear factor kappa B (NF-κB)-MLCK pathway and increasing the abundance of gut microbiota that produce SCFA.
Collapse
Affiliation(s)
- Shunan Ren
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Chunjie Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
- *Correspondence: Chunjie Wang,
| | - Aorigele Chen
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Wenting Lv
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Ruijuan Gao
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
213
|
Xiong LL, Mao ML, Shu QL. A preliminary study on the diversity of butyrate-producing bacteria in response to the treatment of depression with Xiaoyaosan. Lett Appl Microbiol 2022; 75:844-856. [PMID: 35575477 DOI: 10.1111/lam.13737] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/24/2022] [Accepted: 05/12/2022] [Indexed: 11/29/2022]
Abstract
Butyrate-producing bacteria generate butyrate, which has antidepressant effects. Xiaoyaosan (XYS), a traditional Chinese medicine (TCM) used to treat depression, may improve depression-like behaviour by modulating the gut microbiota. However, the functional groups and mechanisms of action in the XYS treatment of depression remain unknown. This study aimed to analyse with clone sequencing the changes in intestinal butyrate-producing bacteria in XYS-treated chronic unpredictable mild stress (CUMS) rats. We successfully established the XYS-treated CUMS rat model of depression. Rat faecal samples were collected before, during, and after the experiment, and butyryl-CoA:acetate CoA-transferase gene primers were selected for PCR amplification to determine the diversity of butyrate-producing bacteria. The results showed that XYS increased intestinal butyrate-producing bacterial diversity in CUMS rats regarding phylum and genus numbers; the number of phyla increased to two, distributed in Firmicutes and Bacteroides, and four genera were distributed in Eubacterium sp., Roseburia sp., Clostridium sp. and Bacteroides sp. Only one phylum and two genera were present in the model group without XYS treatment. Our findings indicate that XYS can improve depression-like behaviour by regulating intestinal butyrate-producing bacteria diversity, particularly Roseburia sp. and Eubacterium sp., thus providing new insights into the targeted regulation of the intestinal flora to treat depression.
Collapse
Affiliation(s)
- L L Xiong
- Jiangxi University of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Nanchang City, China
| | - M L Mao
- Jiangxi University of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Nanchang City, China
| | - Q L Shu
- Jiangxi University of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Nanchang City, China
| |
Collapse
|
214
|
Kadyan S, Sharma A, Arjmandi BH, Singh P, Nagpal R. Prebiotic Potential of Dietary Beans and Pulses and Their Resistant Starch for Aging-Associated Gut and Metabolic Health. Nutrients 2022; 14:nu14091726. [PMID: 35565693 PMCID: PMC9100130 DOI: 10.3390/nu14091726] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 01/27/2023] Open
Abstract
Dietary pulses, including dry beans, lentils, chickpeas, and dry peas, have the highest proportion of fiber among different legume cultivars and are inexpensive, easily accessible, and have a long shelf-life. The inclusion of pulses in regular dietary patterns is an easy and effective solution for achieving recommended fiber intake and maintaining a healthier gut and overall health. Dietary pulses-derived resistant starch (RS) is a relatively less explored prebiotic ingredient. Several in vitro and preclinical studies have elucidated the crucial role of RS in fostering and shaping the gut microbiota composition towards homeostasis thereby improving host metabolic health. However, in humans and aged animal models, the effect of only the cereals and tubers derived RS has been studied. In this context, this review collates literature pertaining to the beneficial effects of dietary pulses and their RS on gut microbiome-metabolome signatures in preclinical and clinical studies while contemplating their potential and prospects for better aging-associated gut health. In a nutshell, the incorporation of dietary pulses and their RS in diet fosters the growth of beneficial gut bacteria and significantly enhances the production of short-chain fatty acids in the colon.
Collapse
|
215
|
Dai X, Chen L, Liu M, Liu Y, Jiang S, Xu T, Wang A, Yang S, Wei W. Effect of 6-Methoxybenzoxazolinone on the Cecal Microbiota of Adult Male Brandt's Vole. Front Microbiol 2022; 13:847073. [PMID: 35422782 PMCID: PMC9002351 DOI: 10.3389/fmicb.2022.847073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 02/28/2022] [Indexed: 11/28/2022] Open
Abstract
The anti-microbial effects of plant secondary metabolite (PSM) 6-methoxybenzoxazolinone (6-MBOA) have been overlooked. This study investigated the effect of 6-MBOA on the cecal microbiota of adult male Brandt’s voles (Lasiopodomys brandtii), to evaluate its effect on the physiology of mammalian herbivores. The growth of voles was inhibited by 6-MBOA. A low dose of 6-MBOA enhanced the observed species, as well as the Chao1 and abundance-based coverage estimator (ACE) indices and introduced changes in the structure of cecal microbiota. The abundance of the phylum Tenericutes, classes Mollicutes and Negativicutes, order Selenomonadales, families Ruminococcaceae and Veillonellaceae, genera Quinella, Caproiciproducens, Anaerofilum, Harryflintia, and unidentified Spirochaetaceae in the cecal microbiota was enhanced upon administration of a low dose of 6-MBOA, which also inhibited glucose metabolism and protein digestion and absorption in the cecal microbiota. 6-MBOA treatment also stimulated butyrate production and dose-dependently enhanced the metabolism of xenobiotics in the cecal microbiome. Our findings indicate that 6-MBOA can affect Brandt’s voles by inducing changes in the abundance of cecal bacteria, thereby, altering the contents of short-chain fatty acids (SCFAs) and pathway intermediates, ultimately inhibiting the growth of voles. Our research suggests that 6-MBOA could potentially act as a digestion-inhibiting PSM in the interaction between mammalian herbivores and plants.
Collapse
Affiliation(s)
- Xin Dai
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Lin Chen
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Mengyue Liu
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Ying Liu
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Siqi Jiang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Tingting Xu
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Aiqin Wang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Shengmei Yang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Wanhong Wei
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
216
|
Gut microbiome responses to dietary intervention with hypocholesterolemic vegetable oils. NPJ Biofilms Microbiomes 2022; 8:24. [PMID: 35411007 PMCID: PMC9001705 DOI: 10.1038/s41522-022-00287-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 03/10/2022] [Indexed: 12/13/2022] Open
Abstract
Hypercholesterolemia is becoming a problem with increasing significance. Dietary vegetable oils may help to improve this condition due to presence of phytonutrients with potentially synergistic cholesterol-lowering effects. The objective of this 8-week double-blinded randomized clinical trial was to investigate the effects of consuming 30 g of two different blended cooking oils, rich in omega-3 alpha-linolenic acid and phytonutrients, or refined olive oil on the intestinal microbiota in 126 volunteers with borderline hypercholesterolemia. Multi-factor analysis of relationships between the gut microbiota composition at various taxonomic ranks and the clinical trial parameters revealed the association between beneficial effects of the dietary intervention on the blood lipid profile with abundance of Clostridia class of the gut microbiota. This microbiota feature was upregulated in the course of the dietary intervention and associated with various plasma markers of metabolic health status, such as Triglycerides, Apolipoprotein B and Total Cholesterol to HDL ratio in a beneficial way. The relative abundance of a single species—Clostridium leptum—highly increased during the dietary intervention in all the three study groups. The oil blend with the highest concentration of omega-3 PUFA is associated with faster and more robust responses of the intestinal microbiota, including elevation of alpha-diversity. Butyrate production is being discussed as a plausible process mediating the observed beneficial influence on the plasma lipid profile. Causal mediation analysis suggested that Clostridium genus rather than the higher rank of the phylogeny—Clostridia class—may be involved in the diet-induced improvements of the blood lipid profile.
Collapse
|
217
|
Cao Y, Kan H, Wang X, Zhi Y. Gut microbiome alterations in hereditary angioedema. Ann Allergy Asthma Immunol 2022; 128:451-458.e6. [PMID: 35093554 DOI: 10.1016/j.anai.2022.01.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/05/2021] [Accepted: 01/14/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND Hereditary angioedema (HAE) is a rare disease with wide intra- and interindividual clinical variation. There are no reliable indicators available in clinical practice to predict the onset and severity of HAE. Uncovering the changes in the gut microbiota in HAE patients may offer insight into a missing piece of the pathogenesis and help explain the clinical heterogeneity. OBJECTIVE Explore whether dysbiosis exists in patients with HAE and whether there are biomarkers to indicate the episodes. METHODS Fecal samples and clinical data were collected from patients with C1-inhibitor-related HAE and their healthy family members. Patients were grouped on the basis of the most recent conditions of HAE episodes and major clinical manifestations. The gut microbiota was evaluated by sequencing the 16S ribosomal RNA gene and analyzed for diversity. RESULTS Microbial richness and diversity were significantly reduced among patients who had recent HAE attacks, especially for those presenting with abdominal symptoms (P = .003 and P = .048 compared with healthy controls and patients with no recent episodes, respectively). Decreased Firmicutes and increased Proteobacteria were found among the individuals with a recent episode, along with a marked increase of pathogenic bacteria on the basis of the predictive functional profiling. Dysbiosis was restored after regular use of danazol or tranexamic acid. A combined biomarker composed of Bifidobacterium, Lachnospira, Paraprevotella, Desulfovibrio, and Staphylococcus was proposed to detect the recent edema episodes. CONCLUSION We reported alterations of the gut microbiome in patients with HAE and explored the possible role of bacteria in the etiology of edema episodes, which may provide new clues for the prediction of disease course, clinical treatment, and therapeutic evaluation.
Collapse
Affiliation(s)
- Yang Cao
- Department of Allergy and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Immunologic Diseases, Beijing, People's Republic of China; School of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Haoxuan Kan
- School of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Xue Wang
- Department of Allergy and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Immunologic Diseases, Beijing, People's Republic of China; School of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Yuxiang Zhi
- Department of Allergy and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Immunologic Diseases, Beijing, People's Republic of China.
| |
Collapse
|
218
|
Bodnar TS, Lee C, Wong A, Rubin I, Parfrey LW, Weinberg J. Evidence for long-lasting alterations in the fecal microbiota following prenatal alcohol exposure. Alcohol Clin Exp Res 2022; 46:542-555. [PMID: 35102585 PMCID: PMC9238389 DOI: 10.1111/acer.14784] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/23/2022] [Accepted: 01/26/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND There is growing evidence that the gut microbiota can be shaped by early-life experiences/exposures, with long-term consequences for brain, behavior, and health. Changes in the gut microbiota have also been identified in neurodevelopmental disorders including Autism Spectrum Disorder and schizophrenia. In contrast, no studies to date have investigated whether the gut microbiota is altered in individuals with Fetal Alcohol Spectrum Disorder (FASD), the neurodevelopmental disorder that results from prenatal alcohol exposure (PAE). The current study was designed to assess the impact of PAE on the fecal microbiota. METHODS We used a rodent model in which pregnant Sprague-Dawley rats were provided with an EtOH-containing diet or a control diet throughout gestation. Fecal samples were collected from adult male and female animals and 16s rRNA sequencing was performed. RESULTS Overall, PAE rats showed greater richness of bacterial species, with community structure investigations demonstrating distinct clustering by prenatal treatment. In addition, prenatal treatment and sex-specific alterations were observed for many specific microbes. For example, in males, Bacteroides and Bifidobacterium, and in females, Faecalitalea and Proteus, differed in abundance between PAE and control rats. CONCLUSIONS Taken together, these results show for the first time that PAE has a long-lasting and sex-specific impact on the fecal microbiota. Further research is needed that considers fetal microbiota in the development of new interventions in FASD.
Collapse
Affiliation(s)
- Tamara S. Bodnar
- Department of Cellular and Physiological Sciences, 2350 Health Sciences Mall, University of British Columbia, Vancouver, BC, Canada, V6T 1Z3
| | - Christopher Lee
- Department of Microbiology and Immunology, 2185 E Mall, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - Athena Wong
- Department of Biology, 6270 University Blvd, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - Ilan Rubin
- Department of Zoology, 6270 University Blvd, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - Laura Wegener Parfrey
- Department of Botany and Biodiversity Research Centre, University of British Columbia, 109 – 2212 Main Mall, Vancouver, BC, Canada, V6T 1Z4
| | - Joanne Weinberg
- Department of Cellular and Physiological Sciences, 2350 Health Sciences Mall, University of British Columbia, Vancouver, BC, Canada, V6T 1Z3
| |
Collapse
|
219
|
Vijay A, Valdes AM. Role of the gut microbiome in chronic diseases: a narrative review. Eur J Clin Nutr 2022; 76:489-501. [PMID: 34584224 PMCID: PMC8477631 DOI: 10.1038/s41430-021-00991-6] [Citation(s) in RCA: 179] [Impact Index Per Article: 89.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 06/29/2021] [Accepted: 07/27/2021] [Indexed: 02/07/2023]
Affiliation(s)
- Amrita Vijay
- Division of Rheumatology, Orthopaedics and Dermatology, School of Medicine, The University of Nottingham, Nottingham, UK.
| | - Ana M Valdes
- Division of Rheumatology, Orthopaedics and Dermatology, School of Medicine, The University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, UK
| |
Collapse
|
220
|
Host phenotype classification from human microbiome data is mainly driven by the presence of microbial taxa. PLoS Comput Biol 2022; 18:e1010066. [PMID: 35446845 PMCID: PMC9064115 DOI: 10.1371/journal.pcbi.1010066] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 05/03/2022] [Accepted: 03/29/2022] [Indexed: 12/14/2022] Open
Abstract
Machine learning-based classification approaches are widely used to predict host phenotypes from microbiome data. Classifiers are typically employed by considering operational taxonomic units or relative abundance profiles as input features. Such types of data are intrinsically sparse, which opens the opportunity to make predictions from the presence/absence rather than the relative abundance of microbial taxa. This also poses the question whether it is the presence rather than the abundance of particular taxa to be relevant for discrimination purposes, an aspect that has been so far overlooked in the literature. In this paper, we aim at filling this gap by performing a meta-analysis on 4,128 publicly available metagenomes associated with multiple case-control studies. At species-level taxonomic resolution, we show that it is the presence rather than the relative abundance of specific microbial taxa to be important when building classification models. Such findings are robust to the choice of the classifier and confirmed by statistical tests applied to identifying differentially abundant/present taxa. Results are further confirmed at coarser taxonomic resolutions and validated on 4,026 additional 16S rRNA samples coming from 30 public case-control studies. The composition of the human microbiome has been linked to a large number of different diseases. In this context, classification methodologies based on machine learning approaches have represented a promising tool for diagnostic purposes from metagenomics data. The link between microbial population composition and host phenotypes has been usually performed by considering taxonomic profiles represented by relative abundances of microbial species. In this study, we show that it is more the presence rather than the relative abundance of microbial taxa to be relevant to maximize classification accuracy. This is accomplished by conducting a meta-analysis on more than 4,000 shotgun metagenomes coming from 25 case-control studies and in which original relative abundance data are degraded to presence/absence profiles. Findings are also extended to 16S rRNA data and advance the research field in building prediction models directly from human microbiome data.
Collapse
|
221
|
Yao W, Gong Y, Li L, Hu X, You L. The effects of dietary fibers from rice bran and wheat bran on gut microbiota: An overview. Food Chem X 2022; 13:100252. [PMID: 35498986 PMCID: PMC9040006 DOI: 10.1016/j.fochx.2022.100252] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 12/19/2022] Open
Abstract
The physicochemical properties of DFs are related to their digestive behaviors. DFs are degraded in the intestines due to the fermentation of gut microbiota. DFs and their metabolites exert beneficial effects on gut microbiota. The fermentation of DFs improve gut barrier function and immune function.
Whole grain is the primary food providing abundant dietary fibers (DFs) in the human diet. DFs from rice bran and wheat bran have been well documented in modulating gut microbiota. This review aims to summarize the physicochemical properties and digestive behaviors of DFs from rice bran and wheat bran and their effects on host gut microbiota. The physicochemical properties of DFs are closely related to their fermentability and digestive behaviors. DFs from rice bran and wheat bran modulate specific bacteria and promote SAFCs-producing bacteria to maintain host health. Moreover, their metabolites stimulate the production of mucus-associated bacteria to enhance the intestinal barrier and regulate the immune system. They also reduce the level of related inflammatory cytokines and regulate Tregs activation. Therefore, DFs from rice bran and wheat bran will serve as prebiotics, and diets rich in whole grain will be a biotherapeutic strategy for human health.
Collapse
Affiliation(s)
- Wanzi Yao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Yufeng Gong
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Laihao Li
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Xiao Hu
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Lijun You
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| |
Collapse
|
222
|
The Relationship between Physical Activity, Physical Exercise, and Human Gut Microbiota in Healthy and Unhealthy Subjects: A Systematic Review. BIOLOGY 2022; 11:biology11030479. [PMID: 35336852 PMCID: PMC8945171 DOI: 10.3390/biology11030479] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/18/2022] [Accepted: 03/20/2022] [Indexed: 02/06/2023]
Abstract
Simple Summary To date, the influence that physical activity (PA)/physical exercise (PE) can exert on the human gut microbiota (GM) is still poorly understood. Several issues arise in structuring research in this area, starting from the association between PA/PE and diet. Indeed, the diet of an individual is a key factor for the composition of the GM and those who regularly practice PA/PE, generally, have dietary patterns favorable to the creation of an ideal environment for the proliferation of a GM capable of contributing to the host’s health. It is therefore difficult to establish with certainty whether the effects generated on the GM are due to a PA protocol, the type of diet followed, or to both. In addition, most of the available studies use animal models to investigate a possible correlation between PA/PE and changes in the GM, which may be not necessarily applied to humans. Evidence suggests that aerobic PA/PE seems capable of producing significant changes in GM; training parameters, likewise, can differentially influence the GM in young or elderly people and these changes appear to be transient and reversible. Abstract Several studies have been conducted to find at least an association between physical activity (PA)/ physical exercise (PE) and the possibility to modulate the gut microbiome (GM). However, the specific effects produced on the human GM by different types of PA/PE, different training modalities, and their age-related effects are not yet fully understood. Therefore, this systematic review aims to evaluate and summarize the current scientific evidence investigating the bi-directional relationship between PA/PE and the human GM, with a specific focus on the different types/variables of PA/PE and age-related effects, in healthy and unhealthy people. A systematic search was conducted across four databases (Web of Science, Medline (PubMed), Google Scholar, and Cochrane Library). Information was extracted using the populations, exposure, intervention, comparison, outcomes (PICOS) format. The Oxford Quality Scoring System Scale, the Risk of Bias in Non-Randomized Studies of Interventions (ROBINS-I) tool, and the JBI Critical Appraisal Checklist for Analytical Cross-Sectional Studies were used as a qualitative measure of the review. The protocol was registered in PROSPERO (code: CRD42022302725). The following data items were extracted: author, year of publication, study design, number and age of participants, type of PA/PE carried out, protocol/workload and diet assessment, duration of intervention, measurement tools used, and main outcomes. Two team authors reviewed 694 abstracts for inclusion and at the end of the screening process, only 76 full texts were analyzed. Lastly, only 25 research articles met the eligibility criteria. The synthesis of these findings suggests that GM diversity is associated with aerobic exercise contrary to resistance training; abundance of Prevotella genus seems to be correlated with training duration; no significant change in GM richness and diversity are detected when exercising according to the minimum dose recommended by the World Health Organizations; intense and prolonged PE can induce a higher abundance of pro-inflammatory bacteria; PA does not lead to significant GM α/β-diversity in elderly people (60+ years). The heterogeneity of the training parameters used in the studies, diet control, and different sequencing methods are the main confounders. Thus, this systematic review can provide an in-depth overview of the relationship between PA/PE and the human intestinal microbiota and, at the same time, provide indications from the athletic and health perspective.
Collapse
|
223
|
Terrisse S, Goubet AG, Ueda K, Thomas AM, Quiniou V, Thelemaque C, Dunsmore G, Clave E, Gamat-Huber M, Yonekura S, Ferrere G, Rauber C, Pham HP, Fahrner JE, Pizzato E, Ly P, Fidelle M, Mazzenga M, Costa Silva CA, Armanini F, Pinto F, Asnicar F, Daillère R, Derosa L, Richard C, Blanchard P, Routy B, Culine S, Opolon P, Silvin A, Ginhoux F, Toubert A, Segata N, McNeel DG, Fizazi K, Kroemer G, Zitvogel L. Immune system and intestinal microbiota determine efficacy of androgen deprivation therapy against prostate cancer. J Immunother Cancer 2022; 10:jitc-2021-004191. [PMID: 35296557 PMCID: PMC8928383 DOI: 10.1136/jitc-2021-004191] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2022] [Indexed: 12/12/2022] Open
Abstract
Background Prostate cancer (PC) responds to androgen deprivation therapy (ADT) usually in a transient fashion, progressing from hormone-sensitive PC (HSPC) to castration-resistant PC (CRPC). We investigated a mouse model of PC as well as specimens from PC patients to unravel an unsuspected contribution of thymus-derived T lymphocytes and the intestinal microbiota in the efficacy of ADT. Methods Preclinical experiments were performed in PC-bearing mice, immunocompetent or immunodeficient. In parallel, we prospectively included 65 HSPC and CRPC patients (Oncobiotic trial) to analyze their feces and blood specimens. Results In PC-bearing mice, ADT increased thymic cellularity and output. PC implanted in T lymphocyte-depleted or athymic mice responded less efficiently to ADT than in immunocompetent mice. Moreover, depletion of the intestinal microbiota by oral antibiotics reduced the efficacy of ADT. PC reduced the relative abundance of Akkermansia muciniphila in the gut, and this effect was reversed by ADT. Moreover, cohousing of PC-bearing mice with tumor-free mice or oral gavage with Akkermansia improved the efficacy of ADT. This appears to be applicable to PC patients because long-term ADT resulted in an increase of thymic output, as demonstrated by an increase in circulating recent thymic emigrant cells (sjTRECs). Moreover, as compared with HSPC controls, CRPC patients demonstrated a shift in their intestinal microbiota that significantly correlated with sjTRECs. While feces from healthy volunteers restored ADT efficacy, feces from PC patients failed to do so. Conclusions These findings suggest the potential clinical utility of reversing intestinal dysbiosis and repairing acquired immune defects in PC patients.
Collapse
Affiliation(s)
- Safae Terrisse
- INSERM U1015, Gustave Roussy, Villejuif, France.,Medical Oncology, Hôpital Saint-Louis, Paris, France
| | | | - Kousuke Ueda
- Department of Urology, Kurume University School of Medicine, Kurume, Japan
| | | | | | | | | | - Emmanuel Clave
- Institut de Recherche de Paris, INSERM UMRS-1160, Université de Paris, Paris, France
| | | | | | | | | | | | - Jean-Eudes Fahrner
- INSERM U1015, Gustave Roussy, Villejuif, France.,Université Paris-Saclay, Saint-Aubin, France
| | | | - Pierre Ly
- INSERM U1015, Gustave Roussy, Villejuif, France
| | | | | | | | | | | | | | - Romain Daillère
- Gustave Roussy, Villejuif, France.,EverImmune Gustave Roussy Cancer Center, Villejuif, France
| | - Lisa Derosa
- INSERM U1015, Gustave Roussy, Villejuif, France.,Center of Clinical Investistigations in Biotherapies of Cancer (CICBT), Villejuif, France
| | | | - Pierre Blanchard
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
| | - Bertrand Routy
- Département de Médicine, CHUM, Montreal, Québec, Canada.,CRCHUM, Montreal, Québec, Canada
| | - Stéphane Culine
- Medical Oncology, Hôpital Saint-Louis, Paris, France.,Université de Paris, Paris, France
| | - Paule Opolon
- Department of Biology and Medical Pathology, Gustave Roussy, Villejuif, France
| | | | | | - Antoine Toubert
- Institut de Recherche Saint Louis, INSERM U1160, Université de Paris, Paris, France.,Laboratoire d'immunologie et d'histocompatibilité, Hôpital Saint-Louis, Paris, France
| | - Nicola Segata
- Department CIBIO, University of Trento, Trento, Italy
| | - Douglas G McNeel
- Medicine, University of Wisconsin Madison, Madison, Wisconsin, USA
| | - Karim Fizazi
- Université Paris-Saclay, Saint-Aubin, France.,Department of Medical Oncology, Gustave Roussy, Villejuif, France
| | - Guido Kroemer
- Gustave Roussy, Villejuif, France .,Sorbonne Université INSERM U1138, Université de Paris, Paris, France
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus, Villejuif, France .,Université Paris-Saclay Faculté de Médecine, Le Kremlin-Bicetre, France
| |
Collapse
|
224
|
Puccetti M, Pariano M, Costantini C, Giovagnoli S, Ricci M. Pharmaceutically Active Microbial AhR Agonists as Innovative Biodrugs in Inflammation. Pharmaceuticals (Basel) 2022; 15:ph15030336. [PMID: 35337134 PMCID: PMC8949935 DOI: 10.3390/ph15030336] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 12/11/2022] Open
Abstract
Alterations of the microbiome occur in inflammatory and autoimmune diseases, a finding consistent with the role of the microbiome in the maintenance of the immune system homeostasis. In this regard, L-tryptophan (Trp) metabolites, of both host and microbial origin, act as important regulators of host–microbial symbiosis by acting as aryl hydrocarbon receptor (AhR) ligands. The intestinal and respiratory barriers are very sensitive to AhR activity, suggesting that AhR modulation could be a therapeutic option to maintain the integrity of the epithelial barrier, which has substantial implications for health even beyond the mucosal site. A number of studies have highlighted the capacity of AhR to respond to indoles and indolyl metabolites, thus positioning AhR as a candidate indole receptor. However, the context-and ligand-dependent activity of AhR requires one to resort to suitable biopharmaceutical formulations to enable site-specific drug delivery in order to achieve therapeutic effectiveness, decrease unwanted toxicities and prevent off-target effects. In this review, we highlight the dual activity of the microbial metabolite indole-3-aldehyde at the host–microbe interface and its ability to orchestrate host pathophysiology and microbial symbiosis and discuss how its proper clinical development may turn into a valuable therapeutic strategy in local and distant inflammatory diseases.
Collapse
Affiliation(s)
- Matteo Puccetti
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy; (S.G.); (M.R.)
- Correspondence: ; Tel.: +39-075-585-5162
| | - Marilena Pariano
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (M.P.); (C.C.)
| | - Claudio Costantini
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (M.P.); (C.C.)
| | - Stefano Giovagnoli
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy; (S.G.); (M.R.)
| | - Maurizio Ricci
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy; (S.G.); (M.R.)
| |
Collapse
|
225
|
Renga G, Nunzi E, Pariano M, Puccetti M, Bellet MM, Pieraccini G, D'Onofrio F, Santarelli I, Stincardini C, Aversa F, Riuzzi F, Antognelli C, Gargaro M, Bereshchenko O, Ricci M, Giovagnoli S, Romani L, Costantini C. Optimizing therapeutic outcomes of immune checkpoint blockade by a microbial tryptophan metabolite. J Immunother Cancer 2022; 10:jitc-2021-003725. [PMID: 35236743 PMCID: PMC8896050 DOI: 10.1136/jitc-2021-003725] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/01/2022] [Indexed: 12/11/2022] Open
Abstract
Background Despite the great success, the therapeutic benefits of immune checkpoint inhibitors (ICIs) in cancer immunotherapy are limited by either various resistance mechanisms or ICI-associated toxic effects including gastrointestinal toxicity. Thus, novel therapeutic strategies that provide manageable side effects to existing ICIs would enhance and expand their therapeutic efficacy and application. Due to its proven role in cancer development and immune regulation, gut microbiome has gained increasing expectation as a potential armamentarium to optimize immunotherapy with ICI. However, much has to be learned to fully harness gut microbiome for clinical applicability. Here we have assessed whether microbial metabolites working at the interface between microbes and the host immune system may optimize ICI therapy. Methods To this purpose, we have tested indole-3-carboxaldehyde (3-IAld), a microbial tryptophan catabolite known to contribute to epithelial barrier function and immune homeostasis in the gut via the aryl hydrocarbon receptor (AhR), in different murine models of ICI-induced colitis. Epithelial barrier integrity, inflammation and changes in gut microbiome composition and function were analyzed. AhR, indoleamine 2,3-dioxygenase 1, interleukin (IL)-10 and IL-22 knockout mice were used to investigate the mechanism of 3-IAld activity. The function of the microbiome changes induced by 3-IAld was evaluated on fecal microbiome transplantation (FMT). Finally, murine tumor models were used to assess the effect of 3-IAld treatment on the antitumor activity of ICI. Results On administration to mice with ICI-induced colitis, 3-IAld protected mice from intestinal damage via a dual action on both the host and the microbes. Indeed, paralleling the activation of the host AhR/IL-22-dependent pathway, 3-IAld also affected the composition and function of the microbiota such that FMT from 3-IAld-treated mice protected against ICI-induced colitis with the contribution of butyrate-producing bacteria. Importantly, while preventing intestinal damage, 3-IAld did not impair the antitumor activity of ICI. Conclusions This study provides a proof-of-concept demonstration that moving past bacterial phylogeny and focusing on bacterial metabolome may lead to a new class of discrete molecules, and that working at the interface between microbes and the host immune system may optimize ICI therapy.
Collapse
Affiliation(s)
- Giorgia Renga
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Emilia Nunzi
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Marilena Pariano
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Matteo Puccetti
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | | | | | - Fiorella D'Onofrio
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Ilaria Santarelli
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | - Franco Aversa
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Francesca Riuzzi
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Cinzia Antognelli
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Marco Gargaro
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Oxana Bereshchenko
- Department of Philosophy, Social Sciences and Education, University of Perugia, Perugia, Italy
| | - Maurizio Ricci
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Stefano Giovagnoli
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Luigina Romani
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Claudio Costantini
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
226
|
Falduto M, Smedile F, Zhang M, Zheng T, Zhu J, Huang Q, Weeks R, Ermakov AM, Chikindas ML. Anti-obesity effects of Chenpi: an artificial gastrointestinal system study. Microb Biotechnol 2022; 15:874-885. [PMID: 35170866 PMCID: PMC8913872 DOI: 10.1111/1751-7915.14005] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 01/03/2022] [Accepted: 01/06/2022] [Indexed: 01/19/2023] Open
Abstract
The gut microbiota plays a significant role in human health; however, the complex relationship between gut microbial communities and host health is still to be thoroughly studied and understood. Microbes in the distal gut contribute to host health through the biosynthesis of vitamins and essential amino acids and the generation of important metabolic by-products from dietary components that are left undigested by the small intestine. Aged citrus peel (Chenpi) is used in traditional Chinese medicine to lower cholesterol, promote weight loss and treat various gastrointestinal symptoms. This study investigated how the microbial community changes during treatment with Chenpi using the Simulator of the Human Intestinal Microbial Ecosystem (SHIME). Two preparations of Chenpi extract were tested: Chenpi suspended in oil only and Chenpi in a viscoelastic emulsion. Short-chain fatty acids (SCFAs) were measured during treatment to monitor changes in the microbial community of the colon presenting a decrease in production for acetic, propionic and butyric acid (ANOVA (P < 0.001) during the 15 days of treatment. 16S rRNA sequencing of microbial samples showed a clear difference between the two treatments at the different sampling times (ANOSIM P < 0.003; ADOSIM P < 0.002 [R2 = 69%]). Beta diversity analysis by PcoA showed differences between the two Chenpi formulations for treatment day 6. These differences were no longer detectable as soon as the Chenpi treatment was stopped, showing a reversible effect of Chenpi on the human microbiome. 16S rRNA sequencing of microbial samples from the descending colon showed an increase in Firmicutes for the treatment with the viscoelastic emulsion. At the genus level, Roseburia, Blautia, Subdoligranulum and Eubacterium increased in numbers during the viscoelastic emulsion treatment. This study sheds light on the anti-obesity effect of a polymethoxyflavone (PMFs)-enriched Chenpi extract and creates a foundation for the identification of 'obesity-prevention' biomarkers in the gut microbiota.
Collapse
Affiliation(s)
- Maria Falduto
- New Jersey Institute for Food, Nutrition and Health, Rutgers State University, New Brunswick, NJ, USA
| | - Francesco Smedile
- Department of Marine and Coastal Sciences, Rutgers State University, New Brunswick, NJ, USA.,Institute of Polar Science, Italian National Research Council, Messina, Italy
| | - Man Zhang
- Department of Food Science, Rutgers State University, New Brunswick, NJ, USA
| | - Ting Zheng
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, New Brunswick, NJ, USA
| | - Jieyu Zhu
- Department of Food Science, Rutgers State University, New Brunswick, NJ, USA
| | - Qingrong Huang
- Department of Food Science, Rutgers State University, New Brunswick, NJ, USA
| | - Richard Weeks
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, New Brunswick, NJ, USA
| | - Alexey M Ermakov
- Agrobiotechnology Center, Don State Technical University, Rostov-on-Don, Russia
| | - Michael L Chikindas
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, New Brunswick, NJ, USA.,Agrobiotechnology Center, Don State Technical University, Rostov-on-Don, Russia.,I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
227
|
Soriano-Lerma A, García-Burgos M, Alférez MJM, Pérez-Carrasco V, Sanchez-Martin V, Linde-Rodríguez Á, Ortiz-González M, Soriano M, García-Salcedo JA, López-Aliaga I. Gut microbiome-short-chain fatty acids interplay in the context of iron deficiency anaemia. Eur J Nutr 2022; 61:399-412. [PMID: 34383140 DOI: 10.1007/s00394-021-02645-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 07/19/2021] [Indexed: 01/09/2023]
Abstract
PURPOSE Anaemia is a global health concern, with iron deficiency anaemia (IDA) causing approximately 50% of cases. Affecting mostly the elderly, pregnant and adult women and children, physiopathology of IDA in relation to the gut microbiome is poorly understood. Therefore, the objective of this study is to analyse, in an animal model, the effect of IDA on the gut microbiome along the gastrointestinal tract, as well as to relate intestinal dysbiosis to changes in microbial metabolites such as short chain fatty acids (SCFA). METHODS IDA was experimentally induced through an iron deficient diet for a period of 40 days, with twenty weaned male Wistar rats being randomly divided into control or anaemic groups. Blood samples were collected to control haematological parameters, and so were faecal and intestinal content samples to study gut microbial communities and SCFA, using 16S rRNA sequencing and HPLC-UV respectively. RESULTS An intestinal dysbiosis was observed as a consequence of IDA, especially towards the distal segments of the gastrointestinal tract and the colon. An increase in SCFA was also noticed during IDA, with the major difference appearing in the colon and correlating with changes in the composition of the gut microbiome. Clostridium_sensu_stricto_1 and Clostridium_sensu_stricto_4 showed the greatest correlation with variations in butyric and propionic concentrations in the colon of anaemic animals. CONCLUSIONS Composition of intestinal microbial communities was affected by the generation of IDA. An enrichment in certain SCFA-producing genera and SCFA concentrations was found in the colon of anaemic animals, suggesting a trade-off mechanism against disease.
Collapse
Affiliation(s)
- Ana Soriano-Lerma
- Department of Physiology (Faculty of Pharmacy, Cartuja University Campus), Institute of Nutrition and Food Technology "José Mataix", University of Granada, 18071, Granada, Spain
- GENYO. Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, 18016, Granada, Spain
| | - María García-Burgos
- Department of Physiology (Faculty of Pharmacy, Cartuja University Campus), Institute of Nutrition and Food Technology "José Mataix", University of Granada, 18071, Granada, Spain
| | - María J M Alférez
- Department of Physiology (Faculty of Pharmacy, Cartuja University Campus), Institute of Nutrition and Food Technology "José Mataix", University of Granada, 18071, Granada, Spain
| | - Virginia Pérez-Carrasco
- GENYO. Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, 18016, Granada, Spain
- Microbiology Unit, Biosanitary Research Institute Ibs. GRANADA, University Hospital Virgen de las Nieves, 18014, Granada, Spain
| | - Victoria Sanchez-Martin
- GENYO. Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, 18016, Granada, Spain
- Microbiology Unit, Biosanitary Research Institute Ibs. GRANADA, University Hospital Virgen de las Nieves, 18014, Granada, Spain
| | - Ángel Linde-Rodríguez
- GENYO. Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, 18016, Granada, Spain
- Microbiology Unit, Biosanitary Research Institute Ibs. GRANADA, University Hospital Virgen de las Nieves, 18014, Granada, Spain
| | - Matilde Ortiz-González
- Center for Intensive Mediterranean Agrosystems and Agri-Food Biotechnology (CIAIMBITAL), University of Almeria, 04001, Almería, Spain
| | - Miguel Soriano
- Center for Intensive Mediterranean Agrosystems and Agri-Food Biotechnology (CIAIMBITAL), University of Almeria, 04001, Almería, Spain.
| | - José Antonio García-Salcedo
- GENYO. Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, 18016, Granada, Spain.
- Microbiology Unit, Biosanitary Research Institute Ibs. GRANADA, University Hospital Virgen de las Nieves, 18014, Granada, Spain.
| | - Inmaculada López-Aliaga
- Department of Physiology (Faculty of Pharmacy, Cartuja University Campus), Institute of Nutrition and Food Technology "José Mataix", University of Granada, 18071, Granada, Spain
| |
Collapse
|
228
|
Zhang X, Yoshihara K, Miyata N, Hata T, Altaisaikhan A, Takakura S, Asano Y, Izuno S, Sudo N. Dietary tryptophan, tyrosine, and phenylalanine depletion induce reduced food intake and behavioral alterations in mice. Physiol Behav 2022; 244:113653. [PMID: 34800493 DOI: 10.1016/j.physbeh.2021.113653] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 12/20/2022]
Abstract
Important precursors of monoaminergic neurotransmitters, dietary tryptophan (TRP), tyrosine, and phenylalanine (all referred to as TTP), play crucial roles in a wide range of behavioral and emotional functions. In the current study, we investigated whether diets devoid of TTP or diets deficient in TRP alone can affect body weight, behavioral characteristics, and gut microbiota, by comparing mice fed on these amino acids-depleted diets to mice fed on diets containing regular levels of amino acids. Both dietary TTP- and TRP-deprived animals showed a reduction in food intake and body weight. In behavioral analyses, the mice fed TTP-deprived diets were more active than mice fed diets containing regular levels of amino acids. The TRP-deprived group exhibited a reduction in serum TRP levels, concomitant with a decrease in serotonin and 5-hydroxyindoleacetic acid levels in some regions of the brain. The TTP-deprived group showed a reduction in TTP levels in the serum, concomitant with decreases in both phenylalanine and tyrosine levels in the hippocampus, as well as serotonin, norepinephrine, and dopamine concentrations in some regions of the brain. Regarding the effects of TRP or TTP deprivation on gut microbial ecology, the relative abundance of genus Roseburia was significantly reduced in the TTP-deprived group than in the dietary restriction control group. Interestingly, TTP was found even in the feces of mice fed TTP- and TRP-deficient diets, suggesting that TTP is produced by microbial or enzymatic digestion of the host-derived proteins. However, microbe generated TTP did not compensate for the systemic TTP deficiency induced by the lack of dietary TTP intake. Collectively, these results indicate that chronic dietary TTP deprivation induces decreased monoamines and their metabolites in a brain region-specific manner. The altered activities of the monoaminergic systems may contribute to increased locomotor activity.
Collapse
Affiliation(s)
- Xueting Zhang
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazufumi Yoshihara
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Noriyuki Miyata
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomokazu Hata
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Altanzul Altaisaikhan
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shu Takakura
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yasunari Asano
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Satoshi Izuno
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Nobuyuki Sudo
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
229
|
Azad MAK, Gao Q, Ma C, Wang K, Kong X. Betaine hydrochloride addition in Bama mini-pig's diets during gestation and lactation enhances immunity and alters intestine microbiota of suckling piglets. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:607-616. [PMID: 34151432 DOI: 10.1002/jsfa.11389] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/11/2021] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Maternal nutrition during gestation and lactation is essential for offspring's health. The present study aimed to investigate the effects of betaine hydrochloride addition to sow diets during gestation and lactation on suckling piglet's immunity and intestine microbiota composition. Forty Bama mini-pigs were randomly allocated into two groups and fed a basal diet (control group) and a basal diet supplemented with 3.50 kg ton-1 betaine hydrochloride (betaine group) from day 3 after mating to day 21 of lactation. After 21 days of the delivery, 12 suckling piglets from each group with similar body weight were selected for sample collection. RESULTS The results showed that maternal betaine hydrochloride addition decreased (P < 0.05) the plasma levels of interleukin (IL)-1β, IL-2, IL-6, and tumor necrosis factor-α in suckling piglets. Furthermore, dietary betaine hydrochloride addition in sow diets increased (P < 0.05) the villus height (VH) and VH to crypt depth ratio in the jejunum and ileum of suckling piglets. In the piglets' intestinal microbiota community, the relative abundances of Roseburia (P < 0.05) and Clostridium (P = 0.059) were lower in the betaine group compared to those in the control group. Moreover, betaine hydrochloride addition in sow diets decreased the colonic tyramine (P = 0.091) and skatole (P = 0.070) concentrations in suckling piglets. CONCLUSION Betaine hydrochloride addition in sow diets enhanced the intestinal morphology, improved immunity, and altered intestinal microbiota of suckling piglets. These findings indicated that betaine hydrochloride addition in sow diets during gestation and lactation will impact suckling piglets' health. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Md Abul Kalam Azad
- Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, CAS Key Laboratory of Agro-ecological Process in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qiankun Gao
- Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, CAS Key Laboratory of Agro-ecological Process in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Cui Ma
- Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, CAS Key Laboratory of Agro-ecological Process in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Kai Wang
- Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, CAS Key Laboratory of Agro-ecological Process in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Xiangfeng Kong
- Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, CAS Key Laboratory of Agro-ecological Process in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| |
Collapse
|
230
|
Geng Q, Chen S, Sun Y, Zhao Y, Li Z, Wang F, Yu G, Yan X, Zhang J. Correlation between gut microbiota diversity and psychogenic erectile dysfunction. Transl Androl Urol 2022; 10:4412-4421. [PMID: 35070823 PMCID: PMC8749073 DOI: 10.21037/tau-21-915] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/10/2021] [Indexed: 12/14/2022] Open
Abstract
Background To analyze the distribution of gut microbiota in erectile dysfunction (ED) patients and explore the relationship between the diversity of gut microbiota and psychogenic ED. Methods Stool specimen were collected from 30 patients with ED and 30 healthy persons (healthy donors, HDs) and analyzed Paired end (PE) 300 sequencing on V3-V4 region sequences of bacterial 16S rRNA gene by using Illumina's Miseq platform, whereby sequencing results were analyzed to assess differences in species composition and diversity. The analysis comprised five modules: sequencing data quality control, operational taxonomic units (OTU) species clustering and annotation, alpha diversity, beta diversity and the use of t-tests and analysis of linear discriminant analysis effect size (LEfSe) differences. Results The International Index of Erectile Function (IIEF-5) score ranged between 8 and 21. The scores of ED patients were ≥11 and ≤20, and the mean value was 15.67±2.94. The flora diversity in the group of ED patients was significantly different from that of HDs (P<0.01), with the ED group having low bacterial diversity. There were no significant differences in the genus level between the ED and HD group, and abundant bacteria (TOP10) and core flora (90%). Comparison of total flora (the abundance >1%) display, Alloprevotella genera showed differences, whereby Alloprevotella was only be identified in the HD group. Erectile dysfunction and HD showed good separation and clustering respectively in principal component analysis, showing significant differences in two kinds of microflora. T-tests showed that six species were significantly different, and that in the ED group, streptococci and Subdoligranulum were significantly increasing, and Prevotella sp.9, Blautia, Lachnospiraceae NK4A136 groups and Roseburia were significantly lower. Analysis using LEfSe analysis revealed 24 species were significantly different between ED and HD groups. Conclusions When gene sequencing was performed of ED and HD specimens, the microbial community structure and diversity showed significant differences, suggesting that ED specimen had lower gut microbiota diversity.
Collapse
Affiliation(s)
- Qiang Geng
- Department of Andrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Department of Andrology, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Shaofeng Chen
- Department of Andrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Department of Andrology, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yuan Sun
- Department of Andrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Department of Andrology, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yu Zhao
- Department of Andrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Department of Andrology, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Zhong Li
- Department of Andrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Department of Andrology, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Fu Wang
- Department of Andrology, Xiyuan Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, China
| | - Guojin Yu
- Department of Andrology, Xiyuan Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, China
| | | | - Jiwei Zhang
- Department of Andrology, Xiyuan Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
231
|
Sawicka-Śmiarowska E, Moniuszko-Malinowska A, Kamiński KA. Why Do These Microbes Like Me and How Could There Be a Link with Cardiovascular Risk Factors? J Clin Med 2022; 11:jcm11030599. [PMID: 35160056 PMCID: PMC8836897 DOI: 10.3390/jcm11030599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/15/2022] [Accepted: 01/21/2022] [Indexed: 02/04/2023] Open
Abstract
Cardiovascular diseases are the most common causes of hospitalization, death, and disability in Europe. Due to high prevalence and ensuing clinical complications, they lead to very high social and economic costs. Despite the knowledge of classical cardiovascular risk factors, there is an urgent need for discovering new factors that may play a role in the development of cardiovascular diseases or potentially influence prognosis. Recently, particular attention has been drawn to the endogenous microflora of the human body, mostly those inhabiting the digestive system. It has been shown that bacteria, along with their host cells, create an interactive ecosystem of interdependencies and relationships. This interplay could influence both the metabolic homeostasis and the immune processes of the host, hence leading to cardiovascular disease development. In this review, we attempt to describe, in the context of cardiovascular risk factors, why particular microbes occur in individuals and how they might influence the host’s cardiovascular system in health and disease.
Collapse
Affiliation(s)
- Emilia Sawicka-Śmiarowska
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, 15-269 Bialystok, Poland;
- Department of Cardiology, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Anna Moniuszko-Malinowska
- Department of Infectious Diseases and Neuroinfection, Medical University of Bialystok, 15-540 Bialystok, Poland;
| | - Karol Adam Kamiński
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, 15-269 Bialystok, Poland;
- Correspondence: ; Tel.: +48-85-8318-656
| |
Collapse
|
232
|
Huang J, Lin B, Zhang Y, Xie Z, Zheng Y, Wang Q, Xiao H. Bamboo shavings derived O-acetylated xylan alleviates loperamide-induced constipation in mice. Carbohydr Polym 2022; 276:118761. [PMID: 34823784 DOI: 10.1016/j.carbpol.2021.118761] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 09/15/2021] [Accepted: 10/10/2021] [Indexed: 12/22/2022]
Abstract
BSH-1 is an O-acetylated xylan obtained from bamboo shavings. This study determined the protective effects of BSH-1 against loperamide (Lop)-induced constipation in mice. Mice received BSH-1 by gavage daily for 14 days. In constipated mice, BSH-1 significantly shortened the defecation time and raised the gastrointestinal (GI) transit rate, stool production, and cecal concentration of short-chain fatty acids (SCFAs). BSH-1 regulated the serum levels of gut hormones and neurotransmitters. BSH-1 also significantly altered the cecal microbiota of the constipated mice by increasing the abundance of potentially beneficial bacteria (e.g., Lactobacillus, Roseburia, and Bacteroidales_S24-7) and decreasing potentially pathogenic bacteria (e.g., Alloprevotella and Staphylococcus). Furthermore, colonic transcriptome analysis revealed that BSH-1 significantly reversed the expression changes of genes related to intestinal motility, water and ion transport, inflammation and cancer in constipated mice. Our findings indicated that BSH-1 effectively relieved Lop-induced constipation in mice and could be potentially used for constipation treatment.
Collapse
Affiliation(s)
- Juqing Huang
- Institute of Agricultural Engineering, Fujian Academy of Agricultural Sciences, Fuzhou 350003, PR China; Department of Food Science, University of Massachusetts Amherst, Amherst, USA
| | - Bin Lin
- Institute of Agricultural Engineering, Fujian Academy of Agricultural Sciences, Fuzhou 350003, PR China
| | - Ying Zhang
- Department of Food Science and Nutrition, School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, PR China
| | - Zhenglu Xie
- Jinshan College of Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Yi Zheng
- Institute of Agricultural Engineering, Fujian Academy of Agricultural Sciences, Fuzhou 350003, PR China
| | - Qi Wang
- Department of Food Science, University of Massachusetts Amherst, Amherst, USA
| | - Hang Xiao
- Department of Food Science, University of Massachusetts Amherst, Amherst, USA.
| |
Collapse
|
233
|
Li N, Bai C, Zhao L, Sun Z, Ge Y, Li X. The Relationship Between Gut Microbiome Features and Chemotherapy Response in Gastrointestinal Cancer. Front Oncol 2022; 11:781697. [PMID: 35004303 PMCID: PMC8733568 DOI: 10.3389/fonc.2021.781697] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/29/2021] [Indexed: 12/13/2022] Open
Abstract
Objective The prognosis of advanced gastrointestinal cancer is poor. There are studies indicating that gut microbes might have the predictive ability to evaluate the outcome of cancer therapy, especially immunotherapy. There is limited evidence to date on the influence of microbes on chemotherapeutic response. Design In total, 130 patients with advanced or metastatic esophageal (n=40), gastric (n=46), and colorectal cancer (n=44) were enrolled. We included 147 healthy people as controls and used 16S rRNA sequencing to analyze the fecal microbiota. Results Significant differences in the abundance of fecal microbiota between patients with gastrointestinal cancer and controls were identified. The abundance of Bacteroides fragilis, Escherichia coli, Akkermansia muciniphila, Clostridium hathewayi, and Alistipes finegoldii were significantly increased in the patient group. Faecalibacterium prausnitzii, Roseburia faecis, Clostridium clostridioforme, Blautia producta, Bifidobacterium adolescent, and Butyricicoccus pullicaecorum taxa were significantly more abundant in the controls. The amount of R. faecis in non-responders (NR) was more likely to decrease significantly after chemotherapy, while the amount mostly increased in responders (R) (P=0.040). The optimal abundance variation of R. faecis may be a predictor for distinguishing patients with PD from those with non-PD in all patients with gastrointestinal cancer, with a sensitivity of 75.0% and a specificity of 93.9%. Conclusion The gut microbiome of patients with esophageal cancer, gastric cancer, and colorectal cancer differs from those of healthy people. The abundance alteration of R. faecis in patients with GI cancer might be a predictor of chemotherapy efficacy.
Collapse
Affiliation(s)
- Ningning Li
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chunmei Bai
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lin Zhao
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhao Sun
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuping Ge
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoyuan Li
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
234
|
Zhao L, Cho WC, Nicolls MR. Colorectal Cancer-Associated Microbiome Patterns and Signatures. Front Genet 2022; 12:787176. [PMID: 35003221 PMCID: PMC8729777 DOI: 10.3389/fgene.2021.787176] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/07/2021] [Indexed: 01/02/2023] Open
Abstract
The gut microbiome is dynamic and shaped by diet, age, geography, and environment. The disruption of normal gut microbiota (dysbiosis) is closely related to colorectal cancer (CRC) risk and progression. To better identify and characterize CRC-associated dysbiosis, we collected six independent cohorts with matched normal pairs (when available) for comparison and exploration of the microbiota and their interactions with the host. Comparing the microbial community compositions between cancerous and adjacent noncancerous tissues, we found that more microbes were depleted than enriched in tumors. Despite taxonomic variations among cohorts, consistent depletion of normal microbiota (members of Clostridia and Bacteroidia) and significant enrichment of oral-originated pathogens (such as Fusobacterium nucleatum and Parvimonas micra) were observed in CRC compared to normal tissues. Sets of hub and hub-connecting microbes were subsequently identified to infer microbe-microbe interaction networks in CRC. Furthermore, biclustering was used for identifying coherent patterns between patients and microbes. Two patient-microbe interaction patterns, named P0 and P1, can be consistently identified among the investigated six CRC cohorts. Characterization of the microbial community composition of the two patterns revealed that patients in P0 and P1 differed significantly in microbial alpha and beta diversity, and CRC‐associated microbiota changes consist of continuous populations of widespread taxa rather than discrete enterotypes. In contrast to the P0, the patients in P1 have reduced microbial alpha diversity compared to the adjacent normal tissues, and P1 possesses more oral-related pathogens than P0 and controls. Collectively, our study investigated the CRC-associated microbiome changes, and identified reproducible microbial signatures across multiple independent cohorts. More importantly, we revealed that the CRC heterogeneity can be partially attributed to the variety and compositional differences of microbes and their interactions to humans.
Collapse
Affiliation(s)
- Lan Zhao
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States.,VA Palo Alto Health Care System, Palo Alto, CA, United States
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China
| | - Mark R Nicolls
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States.,VA Palo Alto Health Care System, Palo Alto, CA, United States
| |
Collapse
|
235
|
Exploring the universal healthy human gut microbiota around the World. Comput Struct Biotechnol J 2022; 20:421-433. [PMID: 35035791 PMCID: PMC8749183 DOI: 10.1016/j.csbj.2021.12.035] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 12/28/2021] [Accepted: 12/28/2021] [Indexed: 02/08/2023] Open
Abstract
The human gut holds a special place in the study of different microbial environments due to growing evidence that the gut microbiota is related to host health. However, despite extensive research, there is still a lack of knowledge about the core taxa forming the gut microbiota and, moreover, available information is biased towards western microbiomes in both genome databases and most core taxa studies. To tackle these limitations, we tested a database enrichment strategy and analyzed public datasets of whole-genome shotgun data, generated from 545 fecal samples, comprising three gradients of westernization. The NT database was selected as a baseline of biological diversity, subsequently being combined with various studies of interest related to the human microbiota. This enrichment strategy made it possible to improve classification capacity, compared to the original unenriched database, regarding the various lifestyles and populations studied. The effects of incomplete-taxonomy metagenome-assembled genomes on genome database enrichment were also examined, revealing that, while they are helpful, they should be used with caution depending on the taxonomic level of interest. Moreover, in terms of high prevalence, the core analysis revealed a conserved set of bacterial taxa in the healthy human gut microbiota worldwide, despite apparent lifestyle differences. Such taxa show a set of traits, metabolic roles, and ancestral status, making them suitable candidates for a hypothetical phylogenetic core of mutualistic microorganisms co-evolving with the human species.
Collapse
|
236
|
Comparing Published Gut Microbiome Taxonomic Data Across Multinational Studies. Nurs Res 2022; 71:43-53. [PMID: 34985847 PMCID: PMC8740627 DOI: 10.1097/nnr.0000000000000557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Nurse researchers are well poised to study the connection of the microbiome to health and disease. Evaluating published microbiome results can assist with study design and hypothesis generation. OBJECTIVES This article aims to present and define important analysis considerations in microbiome study planning and to identify genera shared across studies despite methodological differences. This methods article will highlight a workflow that the nurse scientist can use to combine and evaluate taxonomy tables for microbiome study or research proposal planning. METHODS We compiled taxonomy tables from 13 published gut microbiome studies that had used Ion Torrent sequencing technology. We searched for studies that had amplified multiple hypervariable (V) regions of the 16S rRNA gene when sequencing the bacteria from healthy gut samples. RESULTS We obtained 15 taxonomy tables from the 13 studies, comprised of samples from four continents and eight V regions. Methodology among studies was highly variable, including differences in V regions amplified, geographic location, and population demographics. Nevertheless, of the 354 total genera identified from the 15 data sets, 25 were shared in all V regions and the four continents. When relative abundance differences across the V regions were compared, Dorea and Roseburia were statistically different. Taxonomy tables from Asian subjects had increased average abundances of Prevotella and lowered abundances of Bacteroides compared with the European, North American, and South American study subjects. DISCUSSION Evaluating taxonomy tables from previously published literature is essential for study planning. The genera found from different V regions and continents highlight geography and V region as important variables to consider in microbiome study design. The 25 shared genera across the various studies may represent genera commonly found in healthy gut microbiomes. Understanding the factors that may affect the results from a variety of microbiome studies will allow nurse scientists to plan research proposals in an informed manner. This work presents a valuable framework for future cross-study comparisons conducted across the globe.
Collapse
|
237
|
Kini A, Zhao B, Basic M, Roy U, Iljazovic A, Odak I, Ye Z, Riederer B, Di Stefano G, Römermann D, Koenecke C, Bleich A, Strowig T, Seidler U. Upregulation of antimicrobial peptide expression in slc26a3-/- mice with colonic dysbiosis and barrier defect. Gut Microbes 2022; 14:2041943. [PMID: 35230892 PMCID: PMC8890434 DOI: 10.1080/19490976.2022.2041943] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 02/09/2022] [Indexed: 02/04/2023] Open
Abstract
Genetic defects in SLC26A3 (DRA), an intestinal Cl-/HCO3- exchanger, result in congenital chloride diarrhea (CLD), marked by lifelong acidic diarrhea and a high risk of inflammatory bowel disease. Slc26a3-/- mice serve as a model to understand the pathophysiology of CLD and search for treatment options. This study investigates the microbiota changes in slc26a3-/- colon, the genotype-related causes for the observed microbiota alterations, its inflammatory potential, as well as the corresponding host responses. The luminal and the mucosa-adherent cecal and colonic microbiota of cohoused slc26a3-/- and wt littermates were analyzed by 16S rRNA gene sequencing. Fecal microbiota transfer from cohoused slc26a3-/- and wt littermates to germ-free wt mice was performed to analyze the stability and the inflammatory potential of the communities.The cecal and colonic luminal and mucosa-adherent microbiota of slc26a3-/- mice was abnormal from an early age, with a loss of diversity, of short-chain fatty acid producers, and an increase of pathobionts. The transfer of slc26a3-/- microbiota did not result in intestinal inflammation and the microbial diversity in the recipient mice normalized over time. A strong increase in the expression of Il22, Reg3β/γ, Relmβ, and other proteins with antimicrobial functions was observed in slc26a3-/- colon from juvenile age, while the mucosal and systemic inflammatory signature was surprisingly mild. The dysbiotic microbiota, low mucosal pH, and mucus barrier defect in slc26a3-/- colon are accompanied by a stark upregulation of the expression of a panel of antimicrobial proteins. This may explain the low inflammatory burden in the gut of these mice.
Collapse
Affiliation(s)
| | - Bei Zhao
- Microbial Immune Regulation Research Group, Helmholtz Center for Infection Research, Braunschweig, Germany
| | | | - Urmi Roy
- Microbial Immune Regulation Research Group, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Aida Iljazovic
- Microbial Immune Regulation Research Group, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Ivan Odak
- Institute of Immunology Hannover Medical School Hannover, Germany
| | | | | | | | | | | | | | - Till Strowig
- Microbial Immune Regulation Research Group, Helmholtz Center for Infection Research, Braunschweig, Germany
| | | |
Collapse
|
238
|
Yang WY, Chou CH, Wang C. The Effects of Feed Supplementing Akkemansia muciniphila on Incidence, Severity, and Gut Microbiota of Necrotic Enteritis in Chickens. Poult Sci 2022; 101:101751. [PMID: 35240353 PMCID: PMC8889413 DOI: 10.1016/j.psj.2022.101751] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 01/06/2022] [Accepted: 01/25/2022] [Indexed: 01/07/2023] Open
Abstract
Akkermansia muciniphila (AM) is a mucin-degrading anaerobe, exerting beneficial effects on gut integrity improvement, inflammatory alleviation, and metabolic regulations in humans. Excess amounts of mucin and mucogenesis in the gut facilitate the development of necrotic enteritis (NE) in chickens. The study aimed to evaluate the effects of oral inoculation of AM on NE prevention and gut modulation in a NE-reproduced model coinfecting with Clostridium perfringens (CP) and Eimeria parasites. A total of 105 commercial 1-day-old broilers were randomly allocated into 5 groups, respectively challenged with Eimeria (Eimeria group), Eimeria and CP (Eimeria+CP group), Eimeria and CP with AM (Eimeria+CP+AM group), Eimeria and AM (Eimeria+AM group), and a placebo (Noninfected group). The treatment of AM exhibited a low degree of amelioration on NE severity. The application neither protected broilers from NE by decreasing NE-positive numbers nor reached a significant reduction in lesion scores in the small intestines. The development of NE reduced species diversity in jejunal microbiota; the pretreatments of AM exacerbated the consequence by losing species richness and promoted the similarity of the jejunal microbial community presented in the Eimeria+CP group. The participation of AM enhanced the increments of genera Clostridium sensu stricto 1 and Escherichia_Shigella and decreased the number of Lactobacillus. The significant variations of genera Clostridium sensu stricto 1 and Lactobacillus in jejunal microbiota were associated with NE development and promotion. In conclusion, oral inoculation of AM promoted the development of NE and modulated the jejunal microbiota favorable for CP overgrowth in broilers. The application of AM as a probiotic in broilers should be cautious on account of the effects to predispose NE.
Collapse
Affiliation(s)
- Wen-Yuan Yang
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei City 106, Taiwan; Zoonoses Research Center and School of Veterinary Medicine, National Taiwan University, Taipei City, 106, Taiwan
| | - Chung-Hsi Chou
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei City 106, Taiwan; Zoonoses Research Center and School of Veterinary Medicine, National Taiwan University, Taipei City, 106, Taiwan
| | - Chinling Wang
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, MS 39762, USA.
| |
Collapse
|
239
|
Chen L, Zheng T, Yang Y, Chaudhary PP, Teh JPY, Cheon BK, Moses D, Schuster SC, Schlundt J, Li J, Conway PL. Integrative multiomics analysis reveals host-microbe-metabolite interplays associated with the aging process in Singaporeans. Gut Microbes 2022; 14:2070392. [PMID: 35549618 PMCID: PMC9116421 DOI: 10.1080/19490976.2022.2070392] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 04/18/2022] [Indexed: 02/04/2023] Open
Abstract
The age-associated alterations in microbiomes vary across populations due to the influence of genetics and lifestyles. To the best of our knowledge, the microbial changes associated with aging have not yet been investigated in Singapore adults. We conducted shotgun metagenomic sequencing of fecal and saliva samples, as well as fecal metabolomics to characterize the gut and oral microbial communities of 62 healthy adult male Singaporeans, including 32 young subjects (age, 23.1 ± 1.4 years) and 30 elderly subjects (age, 69.0 ± 3.5 years). We identified 8 gut and 13 oral species that were differentially abundant in elderly compared to young subjects. By combining the gut and oral microbiomes, 25 age-associated oral-gut species connections were identified. Moreover, oral bacteria Acidaminococcus intestine and Flavonifractor plautii were less prevalent/abundant in elderly gut samples than in young gut samples, whereas Collinsella aerofaciens and Roseburia hominis showed the opposite trends. These results indicate the varied gut-oral communications with aging. Subsequently, we expanded the association studies on microbiome, metabolome and host phenotypic parameters. In particular, Eubacterium eligens increased in elderly compared to young subjects, and was positively correlated with triglycerides, which implies that the potential role of E. eligens in lipid metabolism is altered during the aging process. Our results demonstrated aging-associated changes in the gut and oral microbiomes, as well as the connections between metabolites and host-microbe interactions, thereby deepening the understanding of alterations in the human microbiome during the aging process in a Singapore population.
Collapse
Affiliation(s)
- Liwei Chen
- School of Chemical and Biomedical Engineering, College of Engineering, Nanyang Technological University, Singapore
- Nanyang Technological University Food Technology Centre (NAFTEC), College of Engineering, Nanyang Technological University, Singapore
| | - Tingting Zheng
- Department of Infectious Diseases and Public Health, The Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Yifan Yang
- Office of Education Research, and Physical Education and Sports Science, National Institute of Education, Nanyang Technological University, Singapore
| | - Prem Prashant Chaudhary
- School of Chemical and Biomedical Engineering, College of Engineering, Nanyang Technological University, Singapore
- Nanyang Technological University Food Technology Centre (NAFTEC), College of Engineering, Nanyang Technological University, Singapore
- Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, USA
| | - Jean Pui Yi Teh
- School of Chemical and Biomedical Engineering, College of Engineering, Nanyang Technological University, Singapore
- Nanyang Technological University Food Technology Centre (NAFTEC), College of Engineering, Nanyang Technological University, Singapore
| | - Bobby K. Cheon
- School of Social Sciences, Nanyang Technological University, Singapore
- Singapore Institute for Clinical Sciences, Agency for Science Technology and Research (A*STAR), Singapore
- Eunice Kenndy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Daniela Moses
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
| | - Stephan C. Schuster
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
| | - Joergen Schlundt
- School of Chemical and Biomedical Engineering, College of Engineering, Nanyang Technological University, Singapore
- Nanyang Technological University Food Technology Centre (NAFTEC), College of Engineering, Nanyang Technological University, Singapore
| | - Jun Li
- Department of Infectious Diseases and Public Health, The Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
- School of Data Science, City University of Hong Kong, Hong Kong, China
| | - Patricia L. Conway
- School of Chemical and Biomedical Engineering, College of Engineering, Nanyang Technological University, Singapore
- Nanyang Technological University Food Technology Centre (NAFTEC), College of Engineering, Nanyang Technological University, Singapore
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences,The University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
240
|
Sun X, Chi X, Zhao Y, Liu S, Xing H. Characteristics and Clinical Significance of Intestinal Microbiota in Patients with Chronic Hepatitis B Cirrhosis and Type 2 Diabetes Mellitus. J Diabetes Res 2022; 2022:1826181. [PMID: 35601017 PMCID: PMC9122699 DOI: 10.1155/2022/1826181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/24/2022] [Accepted: 04/15/2022] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Chronic hepatitis B cirrhosis is often accompanied by glucose metabolism disorder, and intestinal microbiota was closely related to both cirrhosis and diabetes. There are few studies on the role of intestinal microbiota in hepatitis B liver cirrhosis and diabetes mellitus (LCDM). The purpose of this study was to investigate the characteristics of intestinal microbiota in patients with LCDM and to evaluate the relationship between the severity of intestinal microbiota imbalance and clinical significance. METHODS A case-controlled study was conducted. People who met the inclusion and exclusion criteria of chronic HBV-related liver cirrhosis (LC), LCDM, and healthy controls (HC) were enrolled in, and their fecal and blood samples were collected. The V3-V4 region of 16s rDNA gene of fecal microbiota was sequenced; the bioinformatics analysis including α-diversity, β-diversity, and linear discriminant analysis (LDA) effect size (LEfSe) was performed; and the correlation between bacteria and clinical indexes was analyzed. RESULTS A total of 70 participants completed fecal and blood tests, including 20 HC, 20 LCDM, and 30 LC. The α diversity of intestinal microbiota in the LCDM decreased than that in the HC. The abundance of Proteobacteria, Streptococcus, Escherichia-Shigella, and Lactobacillus increased, while the abundance of Bacteroidota, Bacteroides, Prevotella, Faecalibacterium, and Lachnospira decreased in the LCDM compared with the HC. The abundance of Lactobacillus, Roseburia, and Veillonella and the degree of hepatitis B cirrhosis dysbiosis indicator (HBCDI) increased in the LCDM than in the LC. The abundance of Escherichia-Shigella, Veillonella, and Lactobacillus positively correlated with liver injury and fasting blood glucose (FBG) level. The abundance of Escherichia-Shigella, Veillonella, Streptococcus, and Lactobacillus increased more significantly when FBG and glycosylated hemoglobin level increased. CONCLUSION Intestinal microbiota of patients with LCDM was significantly disordered, and the degree was more serious than that cirrhosis patients without diabetes.
Collapse
Affiliation(s)
- Xiu Sun
- Center of Liver Diseases Division 3, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xin Chi
- Center of Liver Diseases Division 3, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yingying Zhao
- Center of Liver Diseases Division 3, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- National Center for Infectious Diseases, Beijing, China
| | - Shunai Liu
- National Center for Infectious Diseases, Beijing, China
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Huichun Xing
- Center of Liver Diseases Division 3, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- National Center for Infectious Diseases, Beijing, China
- Peking University Ditan Teaching Hospital, Beijing, China
| |
Collapse
|
241
|
Su J, Fu X, Huang Q, Liu G, Li C. Phytochemical profile, bioactivity and prebiotic potential of bound polyphenols released from Rosa Roxburghii fruit pomace dietary fiber during in vitro digestion and fermentation. Food Funct 2022; 13:8880-8891. [DOI: 10.1039/d2fo00823h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The aim of this study was to elucidate liberation and phytochemical profile of bound polyphenols existed in dietary fiber (RPDF) isolated from Rosa roxburghii fruit pomace during in vitro simulated...
Collapse
|
242
|
Bicknell B, Laakso EL, Liebert A, Kiat H. Modifying the Microbiome as a Potential Mechanism of Photobiomodulation: A Case Report. Photobiomodul Photomed Laser Surg 2021; 40:88-97. [PMID: 34962422 DOI: 10.1089/photob.2021.0057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Objective: The objective of this case study was to elucidate the effect of photobiomodulation (PBM) on the microbiome. Background: The gut microbiome has been identified as a key component of health, with gut dysbiosis, characterized by decreased microbial diversity and an altered microbial composition, being recognized as instrumental in many diseases and disorders. Previous research has suggested that the gut microbiome can be favorably altered in animal models using PBM. Materials and methods: The participant had their microbiome tested on nine occasions, three times before any treatment, three times after radiotherapy and commencement of immunotherapy for breast cancer, and three times after PBM treatment. The PBM treatment consisted of infrared laser treatment (904 nm; 700 Hz pulse frequency, 861.3 total joules) to the abdomen three times per week for 11 weeks. Results: The microbiome of the participant showed significant changes in diversity after PBM treatment, but not after cancer therapy, with an increase in the number of known beneficial bacteria (Akkermansia, Faecalibacterium, and Roseburia) and decrease in the number of potentially pathogenic genera. Conclusions: The results suggested the possibility that PBM may alter the microbiome and thus it represents a therapeutic avenue for chronic diseases with otherwise limited treatment options.
Collapse
Affiliation(s)
- Brian Bicknell
- Faculty of Health Sciences, Australian Catholic University, North Sydney, Australia
| | - E-Liisa Laakso
- Mater Research Institute, University of Queensland, South Brisbane, Australia.,Menzies Health Institute, Queensland, Griffith University, Gold Coast, Australia
| | - Ann Liebert
- School of Medical Sciences, Sydney University, Camperdown, Australia.,Office of Research and Governance, Adventist Hospital, Wahroonga, Australia
| | - Hosen Kiat
- Cardiac Health Institute, Epping, Australia.,Department of Clinical Medicine, Macquarie University, Macquarie Park, Australia
| |
Collapse
|
243
|
Song L, He M, Sun Q, Wang Y, Zhang J, Fang Y, Liu S, Duan L. Roseburia hominis Increases Intestinal Melatonin Level by Activating p-CREB-AANAT Pathway. Nutrients 2021; 14:nu14010117. [PMID: 35010992 PMCID: PMC8746519 DOI: 10.3390/nu14010117] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 02/06/2023] Open
Abstract
Intestinal melatonin exerts diverse biological effects on the body. Our previous research showed that the abundance of the butyrate-producing bacteria, Roseburia, is positively related to the expression of colonic mucosal melatonin. However, the detailed relationship is unclear. Therefore, we aimed to explore whether Roseburia regulates intestinal melatonin and its underlying mechanisms. Male Sprague–Dawley germfree rats were orally administered with or without Roseburia hominis. R. hominis treatment significantly increased the intestinal melatonin level. The concentrations of propionate and butyrate in the intestinal contents were significantly elevated after gavage of R. hominis. Propionate or butyrate treatment increased melatonin, 5-hydroxytryptamine (5-HT), arylalkylamine N-acetyltransferase (AANAT), and phosphorylated cAMP-response element-binding protein (p-CREB) levels. When pretreated with telotristat ethyl, the inhibitor of tryptophan hydroxylase (TPH), or siRNA of Aanat, or 666-15, i.e., an inhibitor of CREB, propionate, or butyrate, could not promote melatonin production in the pheochromocytoma cell line BON-1. Metabolomics analysis showed that propionate and butyrate stimulation regulated levels of some metabolites and some metabolic pathways in BON-1 cell supernatants. In conclusion, propionate and butyrate, i.e., metabolites of R. hominis, can promote intestinal melatonin synthesis by increasing 5-HT levels and promoting p-CREB-mediated Aanat transcription, thereby offering a potential target for ameliorating intestinal diseases.
Collapse
Affiliation(s)
- Lijin Song
- Department of Gastroenterology, Peking University Third Hospital, Beijing 100191, China; (L.S.); (Q.S.); (J.Z.); (Y.F.)
| | - Meibo He
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China;
| | - Qinghua Sun
- Department of Gastroenterology, Peking University Third Hospital, Beijing 100191, China; (L.S.); (Q.S.); (J.Z.); (Y.F.)
| | - Yujing Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (Y.W.); (S.L.)
| | - Jindong Zhang
- Department of Gastroenterology, Peking University Third Hospital, Beijing 100191, China; (L.S.); (Q.S.); (J.Z.); (Y.F.)
| | - Yuan Fang
- Department of Gastroenterology, Peking University Third Hospital, Beijing 100191, China; (L.S.); (Q.S.); (J.Z.); (Y.F.)
| | - Shuangjiang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (Y.W.); (S.L.)
| | - Liping Duan
- Department of Gastroenterology, Peking University Third Hospital, Beijing 100191, China; (L.S.); (Q.S.); (J.Z.); (Y.F.)
- Correspondence: ; Tel.: +86-10-82806003
| |
Collapse
|
244
|
Developmental Change of Yolk Microbiota and Its Role on Early Colonization of Intestinal Microbiota in Chicken Embryo. Animals (Basel) 2021; 12:ani12010016. [PMID: 35011123 PMCID: PMC8749561 DOI: 10.3390/ani12010016] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/14/2021] [Accepted: 12/20/2021] [Indexed: 01/22/2023] Open
Abstract
Although the fertilized eggs were found to contain microbes in early studies, the detailed composition of yolk microbiota and its influence on embryo intestinal microbiota have not been satisfactorily examined yet. In this study, the yolk microbiota was explored by using 16s rRNA sequencing at different developmental stages of the broiler embryo. The results showed that the relative abundance of yolk microbiota was barely changed during embryogenesis. According to the KEGG analysis, the yolk microbiota were functionally related to amino acid, carbohydrate, and lipid metabolisms during chicken embryogenesis. The yolk microbiota influences the embryonic intestinal microbiota through increasing the colonization of Proteobacteria, Firmicutes, and Bacteroidetes in the intestine, particularly. The intestinal microbes of neonatal chicks showed higher proportions of Faecalibacterium, Blautia, Coprococcus, Dorea, and Roseburia compared to the embryonic intestinal microbiota. Our findings might give a better understanding of the composition and developmental change of yolk microbiota and its roles in shaping the intestinal microbiota.
Collapse
|
245
|
da Silva CA, Bentin LAT, Dias CP, Callegari MA, Facina VB, Dias FTF, Passos A, da Silva Martins CC, Costa MC. Impact of zinc oxide, benzoic acid and probiotics on the performance and cecal microbiota of piglets. Anim Microbiome 2021; 3:86. [PMID: 34930490 PMCID: PMC8686666 DOI: 10.1186/s42523-021-00151-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/07/2021] [Indexed: 11/22/2022] Open
Abstract
Background Intestinal health remains a key factor in animal production because it is essential for digestion, absorption and bacterial fermentation. Feed additives have been used to attenuate the weaning stress such as Zinc Oxide (ZnO) and benzoic acid (C7H6O2). The objective of this study was to evaluate the impact of of benzoic acid and probiotics (BA + P) on performance, diarrhea and cecal microbiota of piglets in the nursery phase (23 to 65 days).
Results One hundred and sixty weaned piglets with an initial weight of 6.335 ± 0.698 kg and 23 days of age were submitted to four treatments: supplementation with 2500 ppm of Zinc oxide (ZnO), supplementation with a commercial blend of benzoic acid and probiotics (Bacillus licheniformis, Bacillus subtilis and Enterococcus faecium NCIMB 10415; Vevogut P®) (BA + P), supplementation with Zinc oxide plus benzoic acid and probiotics (ZnO + BA + P), and controls receiving only the basal diet without any supplementation. At 65 days of age, 32 piglets (n = 8 per treatment) were slaughtered for the evaluation of the cecal microbiota. Supplementation with ZnO and BA + P were associated with better feed conversion (P < 0.05) in the early stage (23 to 49 days) and with an improvement in all performance parameters over the entire experimental period. The occurrence of diarrhea was lower (P < 0.05) in the BA + P group. The 4 most abundant phyla along with unclassified bacteria represented 93% of all sequences. Firmicutes dominated the cecal microbiota of all groups, followed by Bacteroidetes. Richness represented by the observed number of genera and by the Chao index were statistically lower in ZnO and ZnO + BA + P supplemented animals compared to controls. The beta diversity analysis that compares similarities between bacterial communities demonstrated formation of two distinct clusters containing samples with and without supplementation with ZnO, confirming a strong influence of ZnO on the intestinal microbiota.
Conclusion The use of Benzoic acid with probiotics yields similar performance results with lower impact on the gut microbiota compared to ZnO, and it should be considered as a potential alternative in swine production. Supplementary Information The online version contains supplementary material available at 10.1186/s42523-021-00151-y.
Collapse
Affiliation(s)
- Caio Abercio da Silva
- Department of Animal Science, Universidade Estadual de Londrina, Londrina, Paraná, Brazil.
| | - Leonardo Aparecido Teixeira Bentin
- Department of Clinics, Surgery and Animal Reproduction, São Paulo State University (Unesp), Araçatuba, São Paulo, Brazil.,Department of Veterinary Biomedical Sciences, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | | | | | | | | | - Adsos Passos
- DSM Nutritional Products Ltd., Jaguaré, São Paulo, Brazil
| | | | - Marcio Carvalho Costa
- Department of Veterinary Biomedical Sciences, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| |
Collapse
|
246
|
Nie K, Ma K, Luo W, Shen Z, Yang Z, Xiao M, Tong T, Yang Y, Wang X. Roseburia intestinalis: A Beneficial Gut Organism From the Discoveries in Genus and Species. Front Cell Infect Microbiol 2021; 11:757718. [PMID: 34881193 PMCID: PMC8647967 DOI: 10.3389/fcimb.2021.757718] [Citation(s) in RCA: 181] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/29/2021] [Indexed: 12/12/2022] Open
Abstract
Roseburia intestinalis is an anaerobic, Gram-positive, slightly curved rod-shaped flagellated bacterium that produces butyrate in the colon. R. intestinalis has been shown to prevent intestinal inflammation and maintain energy homeostasis by producing metabolites. Evidence shows that this bacterium contributes to various diseases, such as inflammatory bowel disease, type 2 diabetes mellitus, antiphospholipid syndrome, and atherosclerosis. This review reveals the potential therapeutic role of R. intestinalis in human diseases. Patients with inflammatory bowel disease exhibit significant changes in R. intestinalis abundance, and they may benefit a lot from modulations targeting R. intestinalis. The data reviewed here demonstrate that R. intestinalis plays its role in regulating barrier homeostasis, immune cells, and cytokine release through its metabolite butyrate, flagellin and other. Recent advancements in the application of primary culture technology, culture omics, single-cell sequencing, and metabonomics technology have improved research on Roseburia and revealed the benefits of this bacterium in human health and disease treatment.
Collapse
Affiliation(s)
- Kai Nie
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Cancer Research Institute, Central South University, Changsha, China
| | - Kejia Ma
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Cancer Research Institute, Central South University, Changsha, China
| | - Weiwei Luo
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Cancer Research Institute, Central South University, Changsha, China
| | - Zhaohua Shen
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Cancer Research Institute, Central South University, Changsha, China
| | - Zhenyu Yang
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Cancer Research Institute, Central South University, Changsha, China
| | - Mengwei Xiao
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Cancer Research Institute, Central South University, Changsha, China
| | - Ting Tong
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Cancer Research Institute, Central South University, Changsha, China
| | - Yuanyuan Yang
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Cancer Research Institute, Central South University, Changsha, China
| | - Xiaoyan Wang
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Cancer Research Institute, Central South University, Changsha, China
| |
Collapse
|
247
|
Wang Z, Usyk M, Vázquez-Baeza Y, Chen GC, Isasi CR, Williams-Nguyen JS, Hua S, McDonald D, Thyagarajan B, Daviglus ML, Cai J, North KE, Wang T, Knight R, Burk RD, Kaplan RC, Qi Q. Microbial co-occurrence complicates associations of gut microbiome with US immigration, dietary intake and obesity. Genome Biol 2021; 22:336. [PMID: 34893089 PMCID: PMC8665519 DOI: 10.1186/s13059-021-02559-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 11/23/2021] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Obesity and related comorbidities are major health concerns among many US immigrant populations. Emerging evidence suggests a potential involvement of the gut microbiome. Here, we evaluated gut microbiome features and their associations with immigration, dietary intake, and obesity in 2640 individuals from a population-based study of US Hispanics/Latinos. RESULTS The fecal shotgun metagenomics data indicate that greater US exposure is associated with reduced ɑ-diversity, reduced functions of fiber degradation, and alterations in individual taxa, potentially related to a westernized diet. However, a majority of gut bacterial genera show paradoxical associations, being reduced with US exposure and increased with fiber intake, but increased with obesity. The observed paradoxical associations are not explained by host characteristics or variation in bacterial species but might be related to potential microbial co-occurrence, as seen by positive correlations among Roseburia, Prevotella, Dorea, and Coprococcus. In the conditional analysis with mutual adjustment, including all genera associated with both obesity and US exposure in the same model, the positive associations of Roseburia and Prevotella with obesity did not persist, suggesting that their positive associations with obesity might be due to their co-occurrence and correlations with obesity-related taxa, such as Dorea and Coprococcus. CONCLUSIONS Among US Hispanics/Latinos, US exposure is associated with unfavorable gut microbiome profiles for obesity risk, potentially related to westernized diet during acculturation. Microbial co-occurrence could be an important factor to consider in future studies relating individual gut microbiome taxa to environmental factors and host health and disease.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 USA
| | - Mykhaylo Usyk
- Departments of Pediatrics, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Yoshiki Vázquez-Baeza
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA USA
- Jacobs School of Engineering, University of California, San Diego, La Jolla, CA USA
| | - Guo-Chong Chen
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 USA
| | - Carmen R. Isasi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 USA
| | | | - Simin Hua
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 USA
| | - Daniel McDonald
- Department of Pediatrics, University of California, San Diego, La Jolla, CA USA
| | | | | | - Jianwen Cai
- University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Kari E. North
- University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Tao Wang
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 USA
| | - Rob Knight
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA USA
- Department of Pediatrics, University of California, San Diego, La Jolla, CA USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA USA
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA USA
| | - Robert D. Burk
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 USA
- Department of Obstetrics & Gynecology and Women’s Health, Albert Einstein College of Medicine, Bronx, NY USA
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY USA
| | - Robert C. Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 USA
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA USA
| | - Qibin Qi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA USA
| |
Collapse
|
248
|
Wang XH, Yang YN, Liang Y, Lang R, Zeng Q, Yan L, Yu RH, Wu CM. Structural modulation of gut microbiota during alleviation of experimental passive Heymann nephritis in rats by a traditional Chinese herbal formula. Biomed Pharmacother 2021; 145:112475. [PMID: 34861636 DOI: 10.1016/j.biopha.2021.112475] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 11/02/2022] Open
Abstract
BACKGROUND Jianpi-Qushi-Heluo formula (JQHF) has been used to treat idiopathic membranous nephropathy (IMN) in hospitals for many years. PURPOSE Elucidating the protective effect and exploring the potential mechanism of JQHF against IMN. METHODS Passive Heymann nephritis (PHN) was induced in rats by a single tail vein injection of anti-Fx1A antiserum. Then, the animals were treated with JQHF at 16.2 g/kg or 32.4 g/kg, with benzepril (10 mg/kg) as a positive control. Renal function was evaluated by biochemical measurements and pathological testing. Fecal samples were collected before and after treatment to analyze the gut microbiota composition by shotgun whole metagenome sequencing. RESULTS JQHF exhibited potent efficacy in ameliorating PHN at both doses, as revealed by decreasing the deposition of IgG and C5b-9, relieving podocyte injury, and reducing glomerular and tubular cell apoptosis. The lower dose was corresponding to the clinical dosage and showed better therapeutic effects than the higher dose. Metagenomic analysis showed that gavage with 16.2 g/kg of JQHF shifted the structure of the gut microbiota in PHN rats and significantly increased the relative abundances of Prevotella copri, Lactobacillus vaginalis and Subdoligranulum variabile. Particularly, S. variabile was strongly negatively correlated with serum levels of TC and TG, the deposition of IgG and C5b-9, and apoptosis of glomerular cells. CONCLUSIONS The JQHF is an effective agent for the treatment of experimental PHN. The PHN-allevating effect of JQHF is associated with specific alternation of gut microbiota.
Collapse
Affiliation(s)
- Xin-Hui Wang
- Department of Nephrology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, China.
| | - Ya-Nan Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Ying Liang
- Department of Nephrology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, China.
| | - Rui Lang
- Department of Nephrology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, China.
| | - Qin Zeng
- Graduate School of Chinese Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Lei Yan
- Graduate School of Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Ren-Huan Yu
- Department of Nephrology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, China.
| | - Chong-Ming Wu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| |
Collapse
|
249
|
Oh JK, Vasquez R, Kim SH, Hwang IC, Song JH, Park JH, Kim IH, Kang DK. Multispecies probiotics alter fecal short-chain fatty acids and lactate levels in weaned pigs by modulating gut microbiota. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2021; 63:1142-1158. [PMID: 34796353 PMCID: PMC8564300 DOI: 10.5187/jast.2021.e94] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/20/2021] [Accepted: 07/27/2021] [Indexed: 12/18/2022]
Abstract
Short-chain fatty acids (SCFAs) are metabolic products produced during the
microbial fermentation of non-digestible fibers and play an important role in
metabolic homeostasis and overall gut health. In this study, we investigated the
effects of supplementation with multispecies probiotics (MSPs) containing
Bacillus amyloliquefaciens, Limosilactobacillus
reuteri, and Levilactobacillus brevis on the gut
microbiota, and fecal SCFAs and lactate levels of weaned pigs. A total of 38
pigs weaned at 4 weeks of age were fed either a basal diet or a diet
supplemented with MSPs for 6 weeks. MSP administration significantly increased
the fecal concentrations of lactate (2.3-fold; p <
0.01), acetate (1.8-fold; p < 0.05), and formate
(1.4-fold; p < 0.05). Moreover, MSP supplementation
altered the gut microbiota of the pigs by significantly increasing the
population of potentially beneficial bacteria such as
Olsenella, Catonella,
Catenibacterium, Acidaminococcus, and
Ruminococcaceae. MSP supplementation also decreased the
abundance of pathogenic bacteria such as Escherichia and
Chlamydia. The modulation of the gut microbiota was
observed to be strongly correlated with the changes in fecal SCFAs and lactate
levels. Furthermore, we found changes in the functional pathways present within
the gut, which supports our findings that MSP modulates the gut microbiota and
SCFAs levels in pigs. The results support the potential use of MSPs to improve
the gut health of animals by modulating SCFAs production.
Collapse
Affiliation(s)
- Ju Kyoung Oh
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Research (CTMR), Karolinska Institutet, Stockholm 17177, Sweden
| | - Robie Vasquez
- Department of Animal Resources Science, Dankook University, Cheonan 31116, Korea
| | - Sang Hoon Kim
- Department of Animal Resources Science, Dankook University, Cheonan 31116, Korea
| | - In-Chan Hwang
- Department of Animal Resources Science, Dankook University, Cheonan 31116, Korea
| | - Ji Hoon Song
- Department of Animal Resources Science, Dankook University, Cheonan 31116, Korea
| | - Jae Hong Park
- Department of Animal Resources Science, Dankook University, Cheonan 31116, Korea
| | - In Ho Kim
- Department of Animal Resources Science, Dankook University, Cheonan 31116, Korea
| | - Dae-Kyung Kang
- Department of Animal Resources Science, Dankook University, Cheonan 31116, Korea
| |
Collapse
|
250
|
Zhu L, Wu Y, Lin C, Tang L, Yu B, Wan W, Xuan J, Du Y, Chen Z, Liang W. Dynamic Microbial Shifts and Signatures of Long-Term Remission in Allergic Rhinitis After an Herbal Formula Treatment. Front Immunol 2021; 12:774966. [PMID: 34745150 PMCID: PMC8569905 DOI: 10.3389/fimmu.2021.774966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/04/2021] [Indexed: 11/23/2022] Open
Abstract
A mixed Chinese herbal formula, Xiao-Qing-Long-Decoction (XQLD), may contribute to sustained remission in allergic rhinitis (AR), but it is unknown which factors determine such long-term effect. Here, we aimed to identify bacterial signatures associated with sustained remission. To this end, samples from AR patients at four different times were analyzed to compare the dynamic bacterial community and structure shifts. Diversity indices Chao1 showed significant difference across different time (p<0.05), and the Kruskal-Wallis test identified that Dialister (OTU_31), Roseburia (OTU_36), Bacteroides (OTU_22), Bacteroides (OTU_2040), and Prevotella_9 (OTU_5) were the significant differential bacterial taxa (p<0.05). These distinctive genera were significantly associated with the change of AR clinical indices and the predicted functional pathways such as PPAR signaling pathway, peroxisome, and citrate cycle (TCA cycle) (p<0.05), indicating that they may be important bacterial signatures involving in the sustained remission in AR (p<0.05). Besides, lower Firmicutes/Bacteroidetes (F/B) ratio at 6 months follow-up may also contribute to the long-term remission of AR. No seriously adverse events and safety concerns were observed in this study. In conclusion, XQLD is a meaningful, long-term efficient and safe medication for AR treatment. The underlying mechanisms of sustained remission in AR after XQLD treatment may be associated with the dynamic alteration of featured gut bacteria taxa.
Collapse
Affiliation(s)
- Libing Zhu
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen, China.,Department of Traditional Chinese Medicine, Xiamen University Hospital, Xiamen, China
| | - Yuning Wu
- School of Mathematical Sciences, Xiamen University, Xiamen, China
| | - Chenglong Lin
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen, China
| | - Lin Tang
- Department of Otorhinolaryngology, Xiamen Hospital of Traditional Chinese Medicine, Xiamen, China
| | - Bin Yu
- Department of Otorhinolaryngology, Xiamen Hospital of Traditional Chinese Medicine, Xiamen, China
| | - Wenrong Wan
- Internal Medicine Department of Traditional Chinese Medicine, Xiamen Hospital of Traditional Chinese Medicine, Xiamen, China
| | - Jingxiu Xuan
- Laboratory of Rheumatology and Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Yanling Du
- Department of Acupuncture and Tuina, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Zhangran Chen
- Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, China
| | - Wei Liang
- School of Mathematical Sciences, Xiamen University, Xiamen, China
| |
Collapse
|