201
|
Groop P, Cooper ME, Perkovic V, Hocher B, Kanasaki K, Haneda M, Schernthaner G, Sharma K, Stanton RC, Toto R, Cescutti J, Gordat M, Meinicke T, Koitka‐Weber A, Thiemann S, von Eynatten M. Linagliptin and its effects on hyperglycaemia and albuminuria in patients with type 2 diabetes and renal dysfunction: the randomized MARLINA-T2D trial. Diabetes Obes Metab 2017; 19:1610-1619. [PMID: 28636754 PMCID: PMC5655723 DOI: 10.1111/dom.13041] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/16/2017] [Accepted: 06/17/2017] [Indexed: 02/06/2023]
Abstract
AIMS The MARLINA-T2D study (ClinicalTrials.gov, NCT01792518) was designed to investigate the glycaemic and renal effects of linagliptin added to standard-of-care in individuals with type 2 diabetes and albuminuria. METHODS A total of 360 individuals with type 2 diabetes, HbA1c 6.5% to 10.0% (48-86 mmol/mol), estimated glomerular filtration rate (eGFR) ≥30 mL/min/1.73 m2 and urinary albumin-to-creatinine ratio (UACR) 30-3000 mg/g despite single agent renin-angiotensin-system blockade were randomized to double-blind linagliptin (n = 182) or placebo (n = 178) for 24 weeks. The primary and key secondary endpoints were change from baseline in HbA1c at week 24 and time-weighted average of percentage change from baseline in UACR over 24 weeks, respectively. RESULTS Baseline mean HbA1c and geometric mean (gMean) UACR were 7.8% ± 0.9% (62.2 ± 9.6 mmol/mol) and 126 mg/g, respectively; 73.7% and 20.3% of participants had microalbuminuria or macroalbuminuria, respectively. After 24 weeks, the placebo-adjusted mean change in HbA1c from baseline was -0.60% (-6.6 mmol/mol) (95% confidence interval [CI], -0.78 to -0.43 [-8.5 to -4.7 mmol/mol]; P < .0001). The placebo-adjusted gMean for time-weighted average of percentage change in UACR from baseline was -6.0% (95% CI, -15.0 to 3.0; P = .1954). The adverse-event profile, including renal safety and change in eGFR, was similar between the linagliptin and placebo groups. CONCLUSIONS In individuals at early stages of diabetic kidney disease, linagliptin significantly improved glycaemic control but did not significantly lower albuminuria. There was no significant change in placebo-adjusted eGFR. Detection of clinically relevant renal effects of linagliptin may require longer treatment, as its main experimental effects in animal studies have been to reduce interstitial fibrosis rather than alter glomerular haemodynamics.
Collapse
Affiliation(s)
- Per‐Henrik Groop
- Folkhälsan Institute of GeneticsFolkhälsan Research Center, Biomedicum HelsinkiHelsinkiFinland
- Abdominal Center NephrologyUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
- Baker IDI Heart and Diabetes InstituteMelbourneAustralia
| | - Mark E. Cooper
- Baker IDI Heart and Diabetes InstituteMelbourneAustralia
| | - Vlado Perkovic
- The George Institute for Global Health, Faculty of MedicineUniversity of SydneySydneyAustralia
| | - Berthold Hocher
- Institute of Nutritional ScienceUniversity of PotsdamPotsdamGermany
- Department of Histology and EmbryologyMedical College, Jinan UniversityGuangzhouChina
- IFLb, Institut für Laboratoriumsmedizin Berlin GmbHBerlinGermany
| | - Keizo Kanasaki
- Department of Diabetology and EndocrinologyKanazawa Medical UniversityKanazawaJapan
- Division of Anticipatory Molecular Food Science and TechnologyMedical Research Institute, Kanazawa Medical UniversityKanazawaJapan
| | - Masakazu Haneda
- Division of Metabolism and Biosystemic Science, Department of MedicineAsahikawa Medical UniversityAsahikawaJapan
| | | | - Kumar Sharma
- Department of Medicine, Center for Renal Translational MedicineUniversity of CaliforniaSan DiegoCalifornia
| | | | - Robert Toto
- Department of Internal MedicineUniversity of Texas Southwestern Medical CenterDallasTexas
| | | | - Maud Gordat
- Boehringer Ingelheim France S.A.SReimsFrance
| | | | | | | | | |
Collapse
|
202
|
Chang YP, Sun B, Han Z, Han F, Hu SL, Li XY, Xue M, Yang Y, Chen L, Li CJ, Chen LM. Saxagliptin Attenuates Albuminuria by Inhibiting Podocyte Epithelial- to-Mesenchymal Transition via SDF-1α in Diabetic Nephropathy. Front Pharmacol 2017; 8:780. [PMID: 29163166 PMCID: PMC5672017 DOI: 10.3389/fphar.2017.00780] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/16/2017] [Indexed: 12/31/2022] Open
Abstract
The dipeptidyl peptidase-4 (DPP-4) inhibitor saxagliptin has been found to reduce progressive albuminuria, but the exact mechanism of inhibition is unclear. Podocyte epithelial-to-mesenchymal transition (EMT) has emerged as a potential pathway leading to proteinuria in diabetic nephropathy (DN). Stromal cell–derived factor-1α (SDF-1α), one of the substrates of DPP-4, can activate the protein kinase A pathway and subsequently inhibit its downstream effector, transforming growth factor-β1 (TGF-β1), which induces podocyte EMT. Thus, this study was designed to test the hypothesis that saxagliptin reduces progressive albuminuria by preventing podocyte EMT through inhibition of SDF-1α cleavage in DN. The results of a series of assays, including ELISA, western blotting, and immunochemistry/immunofluorescence, showed that saxagliptin treatment obviously ameliorated urinary microalbumin excretion and renal histological changes in high-fat diet/streptozotocin-induced diabetic rats. Furthermore, saxagliptin-treated diabetic rats presented with suppression of DPP-4 activity/protein expression accompanied by restoration of SDF-1α levels, which subsequently hindered NOX2 expression and podocyte EMT. In vitro, we consistently observed that saxagliptin significantly inhibited increased DPP-4 activity/expression, oxidative stress and podocyte EMT. Application of an SDF-1α receptor inhibitor (AMD3100) to cultured podocytes further confirmed the essential role of SDF-1α in podocyte EMT inhibition. In sum, we demonstrated for the first time that saxagliptin treatment plays an essential role in ameliorating progressive DN by preventing podocyte EMT through a SDF-1α-related pathway, suggesting that saxagliptin could offer renoprotection and that SDF-1α might be a potential therapeutic target for DN.
Collapse
Affiliation(s)
- Yun-Peng Chang
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Bei Sun
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Zhe Han
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Fei Han
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Shao-Lan Hu
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Xiao-Yu Li
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Mei Xue
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Yang Yang
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Li Chen
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Chun-Jun Li
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Li-Ming Chen
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| |
Collapse
|
203
|
Hong SK, Choo EH, Ihm SH, Chang K, Seung KB. Dipeptidyl peptidase 4 inhibitor attenuates obesity-induced myocardial fibrosis by inhibiting transforming growth factor-βl and Smad2/3 pathways in high-fat diet-induced obesity rat model. Metabolism 2017; 76:42-55. [PMID: 28987239 DOI: 10.1016/j.metabol.2017.07.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 07/13/2017] [Accepted: 07/19/2017] [Indexed: 12/27/2022]
Abstract
Obesity-induced myocardial fibrosis may lead to diastolic dysfunction and ultimately heart failure. Activation of the transforming growth factor (TGF)-βl and its downstream Smad2/3 pathways may play a pivotal role in the pathogenesis of obesity-induced myocardial fibrosis, and the antidiabetic dipeptidyl peptidase 4 inhibitors (DPP4i) might affect these pathways. We investigated whether DPP4i reduces myocardial fibrosis by inhibiting the TGF-β1 and Smad2/3 pathways in the myocardium of a diet-induced obesity (DIO) rat model. Eight-week-old male spontaneously hypertensive rats (SHRs) were fed either a normal fat diet (chow) or a high-fat diet (HFD) and then the HFD-fed SHRs were randomized to either the DPP4i (MK-0626) or control (distilled water) groups for 12weeks. At 20weeks old, all the rats underwent hemodynamic and metabolic studies and Doppler echocardiography. Compared with the normal fat diet (chow)-fed SHRs, the HFD-fed SHRs developed a more intense degree of hyperglycemia and dyslipidemia and showed a constellation of left ventricular (LV) diastolic dysfunction, and exacerbated myocardial fibrosis, as well as activation of the TGF-β1 and Smad2/3 pathways. DPP4i significantly improved the metabolic and hemodynamic parameters. The echocardiogram showed that DPP4i improved the LV diastolic dysfunction (early to late ventricular filling velocity [E/A] ratio, 1.49±0.21 vs. 1.77±0.09, p<0.05). Furthermore, DPP4i significantly reduced myocardial fibrosis and collagen production by the myocardium and suppressed TGF-β1 and phosphorylation of Smad2/3 in the heart. In addition, DPP4i decreased TGF-β1-induced collagen production and TGF-β1-mediated phosphorylation and nuclear translocation of Smad2/3 in rat cardiac fibroblasts. In conclusion, DPP4 inhibition attenuated myocardial fibrosis and improved LV diastolic dysfunction in a DIO rat model by modulating the TGF-β1 and Smad2/3 pathways.
Collapse
Affiliation(s)
- Seul-Ki Hong
- Division of Cardiology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Eun-Ho Choo
- Division of Cardiology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sang-Hyun Ihm
- Division of Cardiology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| | - Kiyuk Chang
- Division of Cardiology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ki-Bae Seung
- Division of Cardiology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
204
|
Uchii M, Sakai M, Hotta Y, Saeki S, Kimoto N, Hamaguchi A, Kitayama T, Kunori S. The persistent inhibitory properties of saxagliptin on renal dipeptidyl peptidase-4: Studies with HK-2 cells in vitro and normal rats in vivo. J Pharmacol Sci 2017; 135:126-130. [PMID: 29113790 DOI: 10.1016/j.jphs.2017.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 10/06/2017] [Accepted: 10/12/2017] [Indexed: 12/25/2022] Open
Abstract
Saxagliptin, a potent and selective DPP-4 inhibitor, exhibits a slow dissociation from DPP-4. We investigated the sustained effects of saxagliptin on renal DPP-4 activity in a washout study using renal tubular (HK-2) cells, and in a pharmacodynamic study using normal rats. In HK-2 cells, the inhibitory potency of saxagliptin on DPP-4 activity persisted after washout, while that of sitagliptin was clearly reduced. In normal rats, a single treatment of saxagliptin or sitagliptin inhibited the plasma DPP-4 activity to similar levels. The inhibitory action of saxagliptin on the renal DPP-4 activity was retained, even when its inhibitory effect on the plasma DPP-4 activity disappeared. However, the inhibitory action of sitagliptin on the renal DPP-4 activity was abolished in correlation with the inhibition of the plasma DPP-4 activity. In situ staining showed that saxagliptin suppressed the DPP-4 activity in both glomerular and tubular cells and its inhibitory effects were significantly higher than those of sitagliptin. Saxagliptin exerted a sustained inhibitory effect on the renal DPP-4 activity in vitro and in vivo. The long binding action of saxagliptin in renal tubular cells might involve the sustained inhibition of renal DPP-4.
Collapse
Affiliation(s)
- Masako Uchii
- Nephrology Research Laboratories, Nephrology R&D Unit, R&D Division, Kyowa Hakko Kirin Co., Ltd., 1188 Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka 411-8731, Japan
| | - Mariko Sakai
- Nephrology Research Laboratories, Nephrology R&D Unit, R&D Division, Kyowa Hakko Kirin Co., Ltd., 1188 Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka 411-8731, Japan
| | - Yuhei Hotta
- Nephrology Research Laboratories, Nephrology R&D Unit, R&D Division, Kyowa Hakko Kirin Co., Ltd., 1188 Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka 411-8731, Japan
| | - Satoshi Saeki
- Nephrology Research Laboratories, Nephrology R&D Unit, R&D Division, Kyowa Hakko Kirin Co., Ltd., 1188 Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka 411-8731, Japan
| | - Naoya Kimoto
- Translational Research Unit, R&D Division, Kyowa Hakko Kirin Co., Ltd., 1188 Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka 411-8731, Japan
| | - Akinori Hamaguchi
- Research Function Unit, R&D Division, Kyowa Hakko Kirin Co., Ltd., 3-6-6 Asahi-machi, Machida-shi, Tokyo 194-8533, Japan
| | - Tetsuya Kitayama
- Nephrology Research Laboratories, Nephrology R&D Unit, R&D Division, Kyowa Hakko Kirin Co., Ltd., 1188 Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka 411-8731, Japan
| | - Shunji Kunori
- Nephrology Research Laboratories, Nephrology R&D Unit, R&D Division, Kyowa Hakko Kirin Co., Ltd., 1188 Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka 411-8731, Japan.
| |
Collapse
|
205
|
Suzuki T, Tada Y, Gladson S, Nishimura R, Shimomura I, Karasawa S, Tatsumi K, West J. Vildagliptin ameliorates pulmonary fibrosis in lipopolysaccharide-induced lung injury by inhibiting endothelial-to-mesenchymal transition. Respir Res 2017; 18:177. [PMID: 29037205 PMCID: PMC5644255 DOI: 10.1186/s12931-017-0660-4] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 10/06/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Pulmonary fibrosis is a late manifestation of acute respiratory distress syndrome (ARDS). Sepsis is a major cause of ARDS, and its pathogenesis includes endotoxin-induced vascular injury. Recently, endothelial-to-mesenchymal transition (EndMT) was shown to play an important role in pulmonary fibrosis. On the other hand, dipeptidyl peptidase (DPP)-4 was reported to improve vascular dysfunction in an experimental sepsis model, although whether DPP-4 affects EndMT and fibrosis initiation during lipopolysaccharide (LPS)-induced lung injury is unclear. The aim of this study was to investigate the anti-EndMT effects of the DPP-4 inhibitor vildagliptin in pulmonary fibrosis after systemic endotoxemic injury. METHODS A septic lung injury model was established by intraperitoneal injection of lipopolysaccharide (LPS) in eight-week-old male mice (5 mg/kg for five consecutive days). The mice were then treated with vehicle or vildagliptin (intraperitoneally, 10 mg/kg, once daily for 14 consecutive days from 1 day before the first administration of LPS.). Flow cytometry, immunohistochemical staining, and quantitative polymerase chain reaction (qPCR) analysis was used to assess cell dynamics and EndMT function in lung samples from the mice. RESULTS Lung tissue samples from treated mice revealed obvious inflammatory reactions and typical interstitial fibrosis 2 days and 28 days after LPS challenge. Quantitative flow cytometric analysis showed that the number of pulmonary vascular endothelial cells (PVECs) expressing alpha-smooth muscle actin (α-SMA) or S100 calcium-binding protein A4 (S100A4) increased 28 days after LPS challenge. Similar increases in expression were also confirmed by qPCR of mRNA from isolated PVECs. EndMT cells had higher proliferative activity and migration activity than mesenchymal cells. All of these changes were alleviated by intraperitoneal injection of vildagliptin. Interestingly, vildagliptin and linagliptin significantly attenuated EndMT in the absence of immune cells or GLP-1. CONCLUSIONS Inhibiting DPP-4 signaling by vildagliptin could ameliorate pulmonary fibrosis by downregulating EndMT in systemic LPS-induced lung injury.
Collapse
Affiliation(s)
- Toshio Suzuki
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA. .,Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan.
| | - Yuji Tada
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Santhi Gladson
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Rintaro Nishimura
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan.,Department of Advanced Medicine in Pulmonary Hypertension, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Iwao Shimomura
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Satoshi Karasawa
- Department of Emergency and Critical Care Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Koichiro Tatsumi
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - James West
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| |
Collapse
|
206
|
Tosaki T, Kamiya H, Yamamoto Y, Himeno T, Kato Y, Kondo M, Yamada Y, Inagaki A, Tsubonaka K, Oshiro C, Katayama T, Hayasaki T, Nakaya Y, Fujiyoshi H, Nakamura J. Efficacy and Patient Satisfaction of the Weekly DPP-4 Inhibitors Trelagliptin and Omarigliptin in 80 Japanese Patients with Type 2 Diabetes. Intern Med 2017; 56:2563-2569. [PMID: 28883229 PMCID: PMC5658520 DOI: 10.2169/internalmedicine.8184-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Objective We investigated the efficacy, safety, and patient satisfaction of once-weekly DPP-4 inhibitors (DPP-4Is). Methods Either of two once-weekly DPP-4Is, trelagliptin or omarigliptin, was administered alone or in combination with other antidiabetic drugs in 80 outpatients with type 2 diabetes mellitus for 3 months. The HbA1c, glycoalbumin (GA), body weight, and the Diabetes Treatment Satisfaction Questionnaire (DTSQ) scores were evaluated. Results Patients switching from other daily DPP-4Is (n=29) showed no significant changes in the HbA1c or GA levels. However, the HbA1c and GA levels of patients who had been naïve to DPP-4Is (n=37) significantly improved from 9.31±2.53% to 7.02±1.20% (p<0.001) and 26.7±11.8% to 17.3±5.7% (p<0.001), respectively. Several non-serious adverse events were reported, including nausea (n=1), abdominal distension (n=1), and constipation (n=1). In the DTSQs, the total score for six questions on the primary factors representing patient treatment satisfaction was not markedly changed in patients switching from daily to weekly DPP-4Is but was significantly improved from 21.0 to 28.0 (p<0.001) in patients naïve to DPP-4Is. Conclusion These findings suggest that the use of a once-weekly DPP-4I is effective and well-tolerated in diabetes treatment and improves treatment satisfaction.
Collapse
Affiliation(s)
- Takahiro Tosaki
- TDE Healthcare Corporation TOSAKI Clinic for Diabetes and Endocrinology, Japan
| | - Hideki Kamiya
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, Japan
| | - Yuka Yamamoto
- Department of Diabetes and Endocrinology, Meieki East Clinic, Japan
| | - Tatsuhito Himeno
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, Japan
| | - Yoshiro Kato
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, Japan
| | - Masaki Kondo
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, Japan
| | - Yuichiro Yamada
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, Japan
| | - Akemi Inagaki
- Department of Diabetes and Endocrinology, Japanese Red Cross Nagoya Daini Hospital, Japan
| | - Kaori Tsubonaka
- TDE Healthcare Corporation TOSAKI Clinic for Diabetes and Endocrinology, Japan
| | - Chie Oshiro
- TDE Healthcare Corporation TOSAKI Clinic for Diabetes and Endocrinology, Japan
| | - Takami Katayama
- TDE Healthcare Corporation TOSAKI Clinic for Diabetes and Endocrinology, Japan
| | - Tomoyo Hayasaki
- TDE Healthcare Corporation TOSAKI Clinic for Diabetes and Endocrinology, Japan
| | - Yuki Nakaya
- TDE Healthcare Corporation TOSAKI Clinic for Diabetes and Endocrinology, Japan
| | - Haruna Fujiyoshi
- TDE Healthcare Corporation TOSAKI Clinic for Diabetes and Endocrinology, Japan
| | - Jiro Nakamura
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, Japan
| |
Collapse
|
207
|
MicroRNA Profiling Reveals Distinct Profiles for Tissue-Derived and Cultured Endothelial Cells. Sci Rep 2017; 7:10943. [PMID: 28887500 PMCID: PMC5591252 DOI: 10.1038/s41598-017-11487-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 08/25/2017] [Indexed: 12/19/2022] Open
Abstract
Endothelial plasticity enables the cells to switch their phenotype according to the surrounding vascular microenvironment. MicroRNAs (miRNAs) are small noncoding RNAs that control endothelial plasticity. The objective of this study was to investigate the differences in miRNA profiles of tissue-derived cells and cultured endothelial cells. To this end, miRNA expression was profiled from freshly isolated tissue-derived human vascular endothelial cells and endothelial cells cultured until cellular senescence using miRNA sequencing. In addition, the data was searched for putative novel endothelial miRNAs and miRNA isoforms. The data analysis revealed a striking change in endothelial miRNA profile as the cells adapted from tissue to cell culture environment and the overall miRNA expression decreased significantly in cultured compared to tissue-derived endothelial cells. In addition to changes in mechanosensitive miRNA expression, alterations in senescence-associated and endothelial-to-mesenchymal-transition-associated miRNAs were observed in aging cells. Collectively, the data illustrates the adaptability of endothelial cell miRNA expression that mirrors prevailing cellular environment.
Collapse
|
208
|
Abstract
The gastrointestinal tract - the largest endocrine network in human physiology - orchestrates signals from the external environment to maintain neural and hormonal control of homeostasis. Advances in understanding entero-endocrine cell biology in health and disease have important translational relevance. The gut-derived incretin hormone glucagon-like peptide 1 (GLP-1) is secreted upon meal ingestion and controls glucose metabolism by modulating pancreatic islet cell function, food intake and gastrointestinal motility, amongst other effects. The observation that the insulinotropic actions of GLP-1 are reduced in type 2 diabetes mellitus (T2DM) led to the development of incretin-based therapies - GLP-1 receptor agonists and dipeptidyl peptidase 4 (DPP-4) inhibitors - for the treatment of hyperglycaemia in these patients. Considerable interest exists in identifying effects of these drugs beyond glucose-lowering, possibly resulting in improved macrovascular and microvascular outcomes, including in diabetic kidney disease. As GLP-1 has been implicated as a mediator in the putative gut-renal axis (a rapid-acting feed-forward loop that regulates postprandial fluid and electrolyte homeostasis), direct actions on the kidney have been proposed. Here, we review the role of GLP-1 and the actions of associated therapies on glucose metabolism, the gut-renal axis, classical renal risk factors, and renal end points in randomized controlled trials of GLP-1 receptor agonists and DPP-4 inhibitors in patients with T2DM.
Collapse
|
209
|
Juillerat-Jeanneret L, Tafelmeyer P, Golshayan D. Fibroblast activation protein-α in fibrogenic disorders and cancer: more than a prolyl-specific peptidase? Expert Opin Ther Targets 2017; 21:977-991. [DOI: 10.1080/14728222.2017.1370455] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Lucienne Juillerat-Jeanneret
- Transplantation Center and Transplantation Immunopathology Laboratory, Department of Medicine, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- CHUV and UNIL, University Institute of Pathology, Lausanne, Switzerland
| | - Petra Tafelmeyer
- Hybrigenics Services, Laboratories and Headquarters, Paris, France
- Hybrigenics Corporation, Cambridge Innovation Center, Cambridge, MA, USA
| | - Dela Golshayan
- Transplantation Center and Transplantation Immunopathology Laboratory, Department of Medicine, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| |
Collapse
|
210
|
Hasan AA, Hocher B. Role of soluble and membrane-bound dipeptidyl peptidase-4 in diabetic nephropathy. J Mol Endocrinol 2017; 59:R1-R10. [PMID: 28420715 DOI: 10.1530/jme-17-0005] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 04/18/2017] [Indexed: 01/17/2023]
Abstract
Diabetic nephropathy is one of the most frequent, devastating and costly complications of diabetes. The available therapeutic approaches are limited. Dipeptidyl peptidase type 4 (DPP-4) inhibitors represent a new class of glucose-lowering drugs that might also have reno-protective properties. DPP-4 exists in two forms: a plasma membrane-bound form and a soluble form, and can exert many biological actions mainly through its peptidase activity and interaction with extracellular matrix components. The kidneys have the highest DPP-4 expression level in mammalians. DPP-4 expression and urinary activity are up-regulated in diabetic nephropathy, highlighting its role as a potential target to manage diabetic nephropathy. Preclinical animal studies and some clinical data suggest that DPP-4 inhibitors decrease the progression of diabetic nephropathy in a blood pressure- and glucose-independent manner. Many studies reported that these reno-protective effects could be due to increased half-life of DPP-4 substrates such as glucagon-like peptide-1 (GLP-1) and stromal derived factor-1 alpha (SDF-1a). However, the underlying mechanisms are far from being completely understood and clearly need further investigations.
Collapse
Affiliation(s)
- Ahmed A Hasan
- Institute of Nutritional ScienceUniversity of Potsdam, Potsdam, Germany
- Department of BiochemistryFaculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Berthold Hocher
- Institute of Nutritional ScienceUniversity of Potsdam, Potsdam, Germany
- Institut für Laboriatorumsmedizin IFLbBerlin, Germany
- Departments of Embryology and NephrologyBasic Medical College, Jinan University, Guangzhou, China
| |
Collapse
|
211
|
Kim MK. Treatment of diabetic kidney disease: current and future targets. Korean J Intern Med 2017; 32:622-630. [PMID: 28704915 PMCID: PMC5511942 DOI: 10.3904/kjim.2016.219] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Accepted: 06/14/2017] [Indexed: 12/19/2022] Open
Abstract
Diabetic kidney disease (DKD) is a leading cause of end-stage renal disease in Korea and worldwide, and is a risk factor for the development of cardiovascular complications. The conventional treatments for DKD are control of blood glucose and blood pressure levels by inhibiting the renin-angiotensin system. However, the prevalence of DKD continues to increase and additional therapies are required to prevent or ameliorate the condition. Many drugs have been, or are being, developed to target the molecular mechanisms in play in DKD. This review focuses on DVD treatment, considering current and emerging therapeutic targets and the clinical trial-based evidence.
Collapse
Affiliation(s)
- Mi-Kyung Kim
- Correspondence to Mi-Kyung Kim, M.D. Division of Endocrinology and Metabolism, Department of Internal Medicine, Keimyung University School of Medicine, 56 Dalseong-ro, Jung-gu, Daegu 41931, Korea Tel: +82-53-250-7486 Fax: +82-53-250-7982 E-mail:
| |
Collapse
|
212
|
Kamyshova ES, Bobkova IN, Kutyrina IM. New insights on microRNAs in diabetic nephropathy: potential biomarkers for diagnosis and therapeutic targets. DIABETES MELLITUS 2017. [DOI: 10.14341/dm8237] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Diabetic nephropathy (DN) is a severe complication of diabetes mellitus associated with the progressive deterioration of renal function. Although microalbuminuria is considered as a gold standard for DN diagnosis, it has limited predictive powers and specificity as a diagnostic tool for the early stage of DN. Therefore, new biomarkers are required for the early detection of DN. Studies using in vitro and in vivo models of DN have revealed an important role of microRNAs (miRNAs), short non-coding RNAs that modulate physiological and pathological processes by inhibiting target gene expression, in DN development. Recent studies have shown that the dysregulation of miRNAs, which is associated with the key features of DN, such as the mesangial expansion and accumulation of extracellular matrix proteins, is related to fibrosis and glomerular dysfunction. Thus, the up- and downregulation of miRNA expression in the renal tissue or biological fluids, including urine, may represent new biomarkers for the diagnosis and monitoring of DN progression. In this review, we highlight the significance of miRNAs as biomarkers for the early detection of DN and emphasise their potential role as a therapeutic target.
Collapse
|
213
|
Shi Y, Vanhoutte PM. Macro- and microvascular endothelial dysfunction in diabetes. J Diabetes 2017; 9:434-449. [PMID: 28044409 DOI: 10.1111/1753-0407.12521] [Citation(s) in RCA: 363] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/06/2016] [Accepted: 12/29/2016] [Indexed: 12/12/2022] Open
Abstract
Endothelial cells, as well as their major products nitric oxide (NO) and prostacyclin, play a key role in the regulation of vascular homeostasis. Diabetes mellitus is an important risk factor for cardiovascular disease. Diabetes-induced endothelial dysfunction is a critical and initiating factor in the genesis of diabetic vascular complications. The present review focuses on both large blood vessels and the microvasculature. The endothelial dysfunction in diabetic macrovascular complications is characterized by reduced NO bioavailability, poorly compensated for by increased production of prostacyclin and/or endothelium-dependent hyperpolarizations, and increased production or action of endothelium-derived vasoconstrictors. The endothelial dysfunction of microvascular complications is primarily characterized by decreased release of NO, enhanced oxidative stress, increased production of inflammatory factors, abnormal angiogenesis, and impaired endothelial repair. In addition, non-coding RNAs (microRNAs) have emerged as participating in numerous cellular processes. Thus, this reviews pays special attention to microRNAs and their modulatory role in diabetes-induced vascular dysfunction. Some therapeutic strategies for preventing and restoring diabetic endothelial dysfunction are also highlighted.
Collapse
Affiliation(s)
- Yi Shi
- Biomedical Research Centre, Shanghai Key Laboratory of organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Paul M Vanhoutte
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR China
| |
Collapse
|
214
|
Diabetic nephropathy: Time to withhold development and progression - A review. J Adv Res 2017; 8:363-373. [PMID: 28540086 PMCID: PMC5430158 DOI: 10.1016/j.jare.2017.04.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/19/2017] [Accepted: 04/20/2017] [Indexed: 12/18/2022] Open
Abstract
The recent discoveries in the fields of pathogenesis and management of diabetic nephropathy have revolutionized the knowledge about this disease. Little was added to the management of diabetic nephropathy after the introduction of renin angiotensin system blockers. The ineffective role of the renin- angiotensin system blockers in primary prevention of diabetic nephropathy in type 1 diabetes mellitus necessitated the search for other early therapeutic interventions that target alternative pathogenic mechanisms. Among the different classes of oral hypoglycemic agents, recent studies highlighted the distinguished mechanisms of sodium glucose transporter 2 blockers and dipeptidyl peptidase-4 inhibitors that settle their renoprotective actions beyond the hypoglycemic effects. The introduction of antioxidant and anti-inflammatory agents to this field had also added wealth of knowledge. However, many of these agents are still waiting well-designed clinical studies in order to prove their beneficial therapeutic role. The aim of this review of literature is to highlight the recent advances in understanding the pathogenesis, diagnosis, the established and the potential renoprotective therapeutic agents that would prevent the development or the progression of diabetic nephropathy.
Collapse
|
215
|
Yoon SA, Han BG, Kim SG, Han SY, Jo YI, Jeong KH, Oh KH, Park HC, Park SH, Kang SW, Na KR, Kang SW, Kim NH, Jang YH, Shin SH, Cha DR. Efficacy, safety and albuminuria-reducing effect of gemigliptin in Korean type 2 diabetes patients with moderate to severe renal impairment: A 12-week, double-blind randomized study (the GUARD Study). Diabetes Obes Metab 2017; 19:590-598. [PMID: 28019072 DOI: 10.1111/dom.12863] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 12/20/2016] [Accepted: 12/21/2016] [Indexed: 01/12/2023]
Abstract
AIMS This multicentre, randomized, double-blind study investigated the efficacy and safety of gemigliptin in Korean type 2 diabetes mellitus (T2DM) patients with moderate to severe renal impairment (RI). METHODS The study comprised a 12-week main part and a 40-week extension. We report here the results from the main part. In total, 132 patients were randomized to receive gemigliptin (n = 66) or placebo (n = 66). Changes in glycated haemoglobin (HbA1c; primary endpoint), other glycaemic control parameters (fasting plasma glucose, glycated albumin and fructosamine), lipid profiles, renal function parameters and safety profiles were evaluated. RESULTS Baseline characteristics were comparable between the groups (mean HbA1c, 8.4% [68 mmol/mol]; age, 62.0 years; duration of type 2 diabetes, 16.3 years; estimated glomerular filtration rate, 33.3 mL/min/1.73 m2 ). At Week 12, the adjusted mean change ± standard error in HbA1c with gemigliptin was -0.82% ± 0.14% (-8.9 ± 1.5 mmol/mol), whereas it was 0.38% ± 0.14% (4.2 ± 1.5 mmol/mol) with placebo (significant between-group difference, P < .001). Other glycaemic control parameters showed beneficial changes as well. Body weight change (gemigliptin, -0.3 kg; placebo, -0.2 kg) was not significant. In the gemigliptin group, the mean decrease in urinary albumin creatinine ratio (UACR) was significant, both in patients with microalbuminuria (-41.9 mg/g creatinine, P = .03) and macroalbuminuria (-528.9 mg/g creatinine, P < .001). Drug-related adverse events were similar with gemigliptin and placebo (15% and 12%, respectively). CONCLUSIONS A 12-week treatment with gemigliptin improved glycaemic control and provided UACR reduction in T2DM patients with moderate to severe RI. Gemigliptin was well tolerated, with no additional risk of hypoglycaemia and change in body weight.
Collapse
Affiliation(s)
- Sun A Yoon
- Department of Internal Medicine, Catholic University Uijeongbu St. Mary's Hospital, Uijeongbu, Republic of Korea
| | - Byoung G Han
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Sung G Kim
- Department of Internal Medicine, Hallym University Sacred Heart Hospital, Anyang, Republic of Korea
| | - Sang Y Han
- Department of Internal Medicine, Inje University, Ilsan Paik Hospital, Goyang, Republic of Korea
| | - Young I Jo
- Department of Internal Medicine, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Kyung H Jeong
- Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, Republic of Korea
| | - Kook H Oh
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyeong C Park
- Department of Internal Medicine, Gangnam Severance Hospital, Seoul, Republic of Korea
| | - Sun H Park
- Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | | | - Ki R Na
- Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Sun W Kang
- Department of Internal Medicine, Busan Paik Hospital, Busan, Republic of Korea
| | - Nam H Kim
- Department of Internal Medicine, Chonnam National University College of Medicine, Gwangju, Republic of Korea
| | | | | | - Dae R Cha
- Korea University Ansan-Hospital, Ansan, Republic of Korea
| |
Collapse
|
216
|
Ren X, Liu G, Wang Y, Zhang W, Xue F, Li R, Yu W. Influence of Dipeptidyl Peptidase-IV Inhibitor Sitagliptin on Extracellular Signal-Regulated Kinases 1/2 Signaling in Rats with Diabetic Nephropathy. Pharmacology 2017; 100:1-13. [PMID: 28329747 DOI: 10.1159/000455874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 01/05/2017] [Indexed: 12/31/2022]
Abstract
The protective effects of sitagliptin on the kidneys of rats with diabetic nephropathy (DN) and its influence on extracellular signal-regulated kinases 1/2 (ERK1/2) signaling were investigated. Male Wistar rats (n = 40) were randomly assigned to normal control, DN, low-dose sitagliptin intervention (ST1), or high-dose sitagliptin intervention (ST2) groups. Animals were euthanized after a 16-week treatment, and blood glucose (BG), glycosylated hemoglobin (HbA1c), urinary albumin excretion rate (AER), serum creatinine (Scr), creatinine clearance rate (Ccr), active glucagon-like peptide-1 (GLP-1) levels, kidney hypertrophy index, and renal pathohistology were determined. Immunohistochemical methods and real-time polymerase chain reaction (PCR) were used to detect protein and mRNA expression of podocalyxin, ERK1/2, GLP-1 receptor (GLP-1R) and transforming growth factor-β (TGF-β). After 16 weeks, BG, AER, Scr, HbA1c and the kidney hypertrophy index were all significantly decreased (p < 0.05) in ST1 and ST2 groups, while Ccr and active GLP-1 levels were increased (p < 0.05), with changes more pronounced in ST2 (p < 0.05). Glomerular pathological lesions were also improved following sitagliptin treatment, especially in ST2. Immunohistochemical and real-time PCR revealed that protein and mRNA expression levels of podocalyxin and GLP-1R were increased significantly in ST1 and ST2, while expression of ERK1/2 and TGF-β was decreased (p < 0.05). Sitagliptin therefore delayed DN progression, possibly via the inhibition of ERK1/2 signaling and promotion of the interaction between GLP-1 and the GLP-1R.
Collapse
Affiliation(s)
- Xiaojun Ren
- Department of Nephrology, Shanxi Dayi Hospital (Shanxi Academy of Medical Sciences), Taiyuan, China
| | | | | | | | | | | | | |
Collapse
|
217
|
Kabel AM, Abd Elmaaboud MA, Atef A, Baali MH. RETRACTED: Ameliorative potential of linagliptin and/or calcipotriol on bleomycin-induced lung fibrosis: In vivo and in vitro study. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 50:216-226. [PMID: 28192751 DOI: 10.1016/j.etap.2017.02.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 02/02/2017] [Accepted: 02/03/2017] [Indexed: 06/06/2023]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal). This article has been retracted due to the authors’ plagiarism of text and images from the work of Eman Said Abd-Elkhalek, Hatem Abdel-Rahman Salem, Ghada Mohamed SuddeK, Marwa Ahmed Zaghloul and Ramy Ahmed Abdel-Salam, Faculties of Pharmacy and Medicine, Mansoura University, Mansoura, Egypt.
Collapse
Affiliation(s)
- Ahmed M Kabel
- Pharmacology Department, Faculty of Medicine, Tanta University, Tanta, Egypt; Department of Clinical Pharmacy, College of Pharmacy, Taif University, Taif, Saudi Arabia.
| | | | - Aliaa Atef
- Pathology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Mohammed H Baali
- Senior Medical Student, Faculty of Medicine, Taif University, Taif, Saudi Arabia
| |
Collapse
|
218
|
Asakura M, Fukami T, Nakajima M, Fujii H, Atsuda K, Itoh T, Fujiwara R. Hepatic Dipeptidyl Peptidase-4 Controls Pharmacokinetics of Vildagliptin In Vivo. Drug Metab Dispos 2017; 45:237-245. [PMID: 27895112 DOI: 10.1124/dmd.116.073866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 11/23/2016] [Indexed: 12/24/2022] Open
Abstract
The main route of elimination of vildagliptin, which is an inhibitor of dipeptidyl peptidase-4 (DPP-4), in humans is cyano group hydrolysis to produce a carboxylic acid metabolite M20.7. Our in vitro study previously demonstrated that DPP-4 itself greatly contributed to the hydrolysis of vildagliptin in mouse, rat, and human livers. To investigate whether hepatic DPP-4 contributes to the hydrolysis of vildagliptin in vivo, in the present study, we conducted in vivo pharmacokinetics studies of vildagliptin in mice coadministered with vildagliptin and sitagliptin, which is another DPP-4 inhibitor, and also in streptozotocin (STZ)-induced diabetic mice. The area under the plasma concentration-time curve (AUC) value of M20.7 in mice coadministered with vildagliptin and sitagliptin was significantly lower than that in mice administered vildagliptin alone (P < 0.01). Although plasma DPP-4 expression level was increased 1.9-fold, hepatic DPP-4 activity was decreased in STZ-induced diabetic mice. The AUC values of M20.7 in STZ-induced diabetic mice were lower than those in control mice (P < 0.01). Additionally, the AUC values of M20.7 significantly positively correlated with hepatic DPP-4 activities in the individual mice (Rs = 0.943, P < 0.05). These findings indicated that DPP-4 greatly contributed to the hydrolysis of vildagliptin in vivo and that not plasma, but hepatic DPP-4 controlled pharmacokinetics of vildagliptin. Furthermore, enzyme assays of 23 individual human liver samples showed that there was a 3.6-fold interindividual variability in vildagliptin-hydrolyzing activities. Predetermination of the interindividual variability of hepatic vildagliptin-hydrolyzing activity might be useful for the prediction of blood vildagliptin concentrations in vivo.
Collapse
Affiliation(s)
- Mitsutoshi Asakura
- Graduate School of Pharmaceutical Sciences (M.A.), Medicinal Research Laboratories (H.F.), Center for Clinical Pharmacy and Clinical Sciences (M.A., K.A.), Laboratory of Medicinal Chemistry (H.F.), and Department of Pharmaceutics (T.I., R.F.), School of Pharmacy, Kitasato University, Tokyo, Japan; Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan (T.F., M.N.)
| | - Tatsuki Fukami
- Graduate School of Pharmaceutical Sciences (M.A.), Medicinal Research Laboratories (H.F.), Center for Clinical Pharmacy and Clinical Sciences (M.A., K.A.), Laboratory of Medicinal Chemistry (H.F.), and Department of Pharmaceutics (T.I., R.F.), School of Pharmacy, Kitasato University, Tokyo, Japan; Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan (T.F., M.N.)
| | - Miki Nakajima
- Graduate School of Pharmaceutical Sciences (M.A.), Medicinal Research Laboratories (H.F.), Center for Clinical Pharmacy and Clinical Sciences (M.A., K.A.), Laboratory of Medicinal Chemistry (H.F.), and Department of Pharmaceutics (T.I., R.F.), School of Pharmacy, Kitasato University, Tokyo, Japan; Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan (T.F., M.N.)
| | - Hideaki Fujii
- Graduate School of Pharmaceutical Sciences (M.A.), Medicinal Research Laboratories (H.F.), Center for Clinical Pharmacy and Clinical Sciences (M.A., K.A.), Laboratory of Medicinal Chemistry (H.F.), and Department of Pharmaceutics (T.I., R.F.), School of Pharmacy, Kitasato University, Tokyo, Japan; Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan (T.F., M.N.)
| | - Koichiro Atsuda
- Graduate School of Pharmaceutical Sciences (M.A.), Medicinal Research Laboratories (H.F.), Center for Clinical Pharmacy and Clinical Sciences (M.A., K.A.), Laboratory of Medicinal Chemistry (H.F.), and Department of Pharmaceutics (T.I., R.F.), School of Pharmacy, Kitasato University, Tokyo, Japan; Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan (T.F., M.N.)
| | - Tomoo Itoh
- Graduate School of Pharmaceutical Sciences (M.A.), Medicinal Research Laboratories (H.F.), Center for Clinical Pharmacy and Clinical Sciences (M.A., K.A.), Laboratory of Medicinal Chemistry (H.F.), and Department of Pharmaceutics (T.I., R.F.), School of Pharmacy, Kitasato University, Tokyo, Japan; Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan (T.F., M.N.)
| | - Ryoichi Fujiwara
- Graduate School of Pharmaceutical Sciences (M.A.), Medicinal Research Laboratories (H.F.), Center for Clinical Pharmacy and Clinical Sciences (M.A., K.A.), Laboratory of Medicinal Chemistry (H.F.), and Department of Pharmaceutics (T.I., R.F.), School of Pharmacy, Kitasato University, Tokyo, Japan; Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan (T.F., M.N.)
| |
Collapse
|
219
|
Nistala R, Savin V. Diabetes, hypertension, and chronic kidney disease progression: role of DPP4. Am J Physiol Renal Physiol 2017; 312:F661-F670. [PMID: 28122713 DOI: 10.1152/ajprenal.00316.2016] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 01/18/2017] [Accepted: 01/20/2017] [Indexed: 12/11/2022] Open
Abstract
The protein dipeptidyl peptidase 4 (DPP4) is a target in diabetes management and reduction of associated cardiovascular risk. Inhibition of the enzymatic function and genetic deletion of DPP4 is associated with tremendous benefits to the heart, vasculature, adipose tissue, and the kidney in rodent models of obesity, diabetes and hypertension, and associated complications. The recently concluded, "Saxagliptin Assessment of Vascular Outcomes Recorded in Patients with Diabetes Mellitus-Thrombolysis in Myocardial Infarction 53" trial revealed a reduction in proteinuria in chronic kidney disease patients (stages 1-3). These results have spurred immense interest in the nonenzymatic and enzymatic role of DPP4 in the kidney. DPP4 is expressed predominantly in the glomeruli and S1-S3 segments of the nephron and to a lesser extent in other segments. DPP4 is known to facilitate absorption of cleaved dipeptides and regulate the function of the sodium/hydrogen exchanger-3 in the proximal tubules. DPP4, also known as CD26, has an important role in costimulation of lymphocytes via caveolin-1 on antigen-presenting cells in peripheral blood. Herein, we present our perspectives for the ongoing interest in the role of DPP4 in the kidney.
Collapse
Affiliation(s)
- Ravi Nistala
- Division of Nephrology and Hypertension, Department of Medicine, University of Missouri-Columbia School of Medicine, Columbia, Missouri; and
| | - Virginia Savin
- Department of Nephrology, Kansas City Veterans Affairs Medical Center, Kansas City, Missouri
| |
Collapse
|
220
|
Cruz-Solbes AS, Youker K. Epithelial to Mesenchymal Transition (EMT) and Endothelial to Mesenchymal Transition (EndMT): Role and Implications in Kidney Fibrosis. Results Probl Cell Differ 2017; 60:345-372. [PMID: 28409352 DOI: 10.1007/978-3-319-51436-9_13] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Tubulointerstitial injury is one of the hallmarks of renal disease. In particular, interstitial fibrosis has a prominent role in the development and progression of kidney injury. Collagen-producing fibroblasts are responsible for the ECM deposition. However, the origin of those activated fibroblasts is not clear. This chapter will discuss in detail the concept of epithelial to mesenchymal transition (EMT) and endothelial to mesenchymal transition (EndMT) in the context of fibrosis and kidney disease. In short, EMT and EndMT involve a change in cell shape, loss of polarity and increased motility associated with increased collagen production. Thus, providing a new source of fibroblasts. However, many controversies exist regarding the existence of EMT and EndMT in kidney disease, as well as its burden and role in disease development. The aim of this chapter is to provide an overview of the concepts and profibrotic pathways and to present the evidence that has been published in favor and against EMT and EndMT.
Collapse
|
221
|
Zheng G, Cai J, Chen X, Chen L, Ge W, Zhou X, Zhou H. Relaxin Ameliorates Renal Fibrosis and Expression of Endothelial Cell Transition Markers in Rats of Isoproterenol-Induced Heart Failure. Biol Pharm Bull 2017; 40:960-966. [DOI: 10.1248/bpb.b16-00882] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Gaoshu Zheng
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University
| | - Jiejie Cai
- Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University
| | - Xingxing Chen
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University
| | - Lingzhi Chen
- Department of Clinical Laboratory, Wenzhou Central Hospital
| | - Wenhua Ge
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University
| | - Xi Zhou
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University
| | - Hao Zhou
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University
| |
Collapse
|
222
|
Abstract
Studies investigating diabetic nephropathy (DN) have mostly focused on interpreting the pathologic molecular mechanisms of DN, which may provide valuable tools for early diagnosis and prevention of disease onset and progression. Currently, there are few therapeutic drugs for DN, which mainly consist of antihypertensive and antiproteinuric measures that arise from strict renin-angiotensin-aldosterone system inactivation. However, these traditional therapies are suboptimal and there is a clear, unmet need for treatments that offer effective schemes beyond glucose control. The complexity and heterogeneity of the DN entity, along with ambiguous renal endpoints that may deter accurate appraisal of new drug potency, contribute to a worsening of the situation. To address these issues, current research into original therapies to treat DN is focusing on the intrinsic renal pathways that intervene with intracellular signaling of anti-inflammatory, antifibrotic, and metabolic pathways. Mounting evidence in support of the favorable metabolic effects of these novel agents with respect to the renal aspects of DN supports the likelihood of systemic beneficial effects as well. Thus, when translated into clinical use, these novel agents would also address the comorbid factors associated with diabetes, such as obesity and risk of cardiovascular disease. This review will provide a discussion of the promising and effective therapeutic agents for the management of DN.
Collapse
Affiliation(s)
- Yaeni Kim
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Cheol Whee Park
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Correspondence to Cheol Whee Park, M.D. Division of Nephrology, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Korea Tel: +82-2-2258-6038 Fax: +82-2-599-3589 E-mail:
| |
Collapse
|
223
|
Duvnjak L, Perković MN, Blaslov K. Dipeptidyl peptidase-4 activity is associated with urine albumin excretion in type 1 diabetes. J Diabetes Complications 2017; 31:218-222. [PMID: 27625045 DOI: 10.1016/j.jdiacomp.2016.08.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/14/2016] [Accepted: 08/22/2016] [Indexed: 02/09/2023]
Abstract
AIMS The inability of kidneys to prevent urinary protein leakage represents the earliest sign of renal damage in diabetic kidney disease (DKD). Recent data suggest the possible nephroprotective role of the dipeptidyl peptidase-4 (DPP-4) inhibitors. We aimed to investigate whether serum DPP-4 activity is associated with urine albumin excretion (UAE) in patients with type 1 diabetes (type 1 DM). METHODS DPP-4 activity and UAE measurement were performed in 113 patients with type 1 DM and glomerular filtration rate (GFR) within normal range. They were divided into three groups according to UAE tertiles. RESULTS Worse lipid profile and higher waist circumference were observed in the group with highest DPP-4 activity. Patients within lowest UAE tertile group had lowest DPP-4 activity value (p<0.001) compared to group within second and third tertile of UAE. DPP-4 activity correlated with systolic blood pressure (ρ=0.142; p=0.001), HbA1c (ρ=0.133; p=0.013) and UAE (ρ=0.349; p<0.001). In the linear regression analysis when DPP-4 activity was adjusted for age, gender, disease duration, HbA1c, waist circumference, the use of ACEI and hypolipemic agents the association remained significant; UAE increased for 8.136mg/24h by each increase of DPP-4 activity of 1U/L (p<0.008). CONCLUSION Our results indicate that serum DPP-4 activity is associated with albuminuria in type 1 diabetes. This arises the question whether the use of DPP-4 inhibitors might serve as an additional therapeutic strategy to prevent proteinuria in patients with DKD.
Collapse
Affiliation(s)
- Lea Duvnjak
- Vuk Vrhovac Clinic for Diabetes, Endocrinology and Metabolic Diseases, University Hospital Merkur, 10000 Zagreb, Croatia; University of Zagreb, School of Medicine, 10000 Zagreb, Croatia
| | - Matea Nikolac Perković
- Rudjer Boskovic Institute, Division of Molecular Medicine, Laboratory for Molecular Neuropsychiatry, 10000 Zagreb, Croatia
| | - Kristina Blaslov
- Vuk Vrhovac Clinic for Diabetes, Endocrinology and Metabolic Diseases, University Hospital Merkur, 10000 Zagreb, Croatia.
| |
Collapse
|
224
|
Kitada M, Tsuda SI, Konishi K, Takeda-Watanabe A, Fujii M, Kanasaki K, Nishizawa M, Nakagawa A, Koya D. Anagliptin ameliorates albuminuria and urinary liver-type fatty acid-binding protein excretion in patients with type 2 diabetes with nephropathy in a glucose-lowering-independent manner. BMJ Open Diabetes Res Care 2017; 5:e000391. [PMID: 28761658 PMCID: PMC5530236 DOI: 10.1136/bmjdrc-2017-000391] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 04/21/2017] [Accepted: 05/15/2017] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE The objective of this study is to elucidate the effect of anagliptin on glucose/lipid metabolism and renoprotection in patients with type 2 diabetic nephropathy. METHODS Twenty-five patients with type 2 diabetic nephropathy received anagliptin 200 mg/day for 24 weeks, and 20 patients who were switched to anagliptin from other dipeptidyl peptidase-4 (DPP-4) inhibitors were analyzed regarding primary and secondary endpoints. The primary endpoint was change in hemoglobin A1c (HbA1c) during treatment with anagliptin. Additionally, we evaluated changes in lipid data (low-density lipoprotein-cholesterol, high-density lipoprotein-cholesterol and triglyceride), blood pressure (BP), urinary albumin to creatinine ratio (UACR), liver-type fatty acid-binding protein to creatinine ratio (ULFABP) and renal function (estimated glomerular filtration rate and serum cystatin C) as secondary endpoints. RESULTS After switching to anagliptin from other DPP-4 inhibitors, the levels of HbA1c in the 20 participants showed no significant change, 7.5%±1.2% at 24 weeks compared with 7.3%±0.9% at baseline. The levels of the log10-transformed UACR were significantly reduced from 1.95±0.51 mg/g creatinine (Cr) at baseline to 1.76±0.53 mg/g Cr at 24 weeks after anagliptin treatment (p<0.01). The percentage change in the UACR (Δ%UACR) from baseline to 24 weeks was also significantly lower by -10.6% (p<0.001). Lipid data, systolic BP and renal function were not changed during anagliptin treatment. Additionally, ULFABP in eight participants, who had ≥5 µg/g Cr at baseline, was significantly decreased from baseline (8.5±2.8 µg/g Cr) to 24 weeks (3.1±1.7 µg/g Cr, p<0.01) after anagliptin treatment, and the percentage change in the ULFABP during anagliptin treatment was -58.1% (p<0.001). CONCLUSIONS Anagliptin induced no significant change in HbA1c, lipid data, systolic BP and renal function. However, anagliptin reduced the UACR and ULFABP, although without a corresponding change in HbA1c, indicating direct action of anagliptin on renoprotection in patients with type 2 diabetic nephropathy.
Collapse
Affiliation(s)
- Munehiro Kitada
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Ishikawa, Japan
- Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Shin-ichi Tsuda
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Ishikawa, Japan
| | - Kazunori Konishi
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Ishikawa, Japan
| | - Ai Takeda-Watanabe
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Ishikawa, Japan
| | - Mizue Fujii
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Ishikawa, Japan
| | - Keizo Kanasaki
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Ishikawa, Japan
- Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Makoto Nishizawa
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Ishikawa, Japan
| | - Atsushi Nakagawa
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Ishikawa, Japan
| | - Daisuke Koya
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Ishikawa, Japan
- Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| |
Collapse
|
225
|
Paulini J, Higuti E, Bastos RMC, Gomes SA, Rangel ÉB. Mesenchymal Stem Cells as Therapeutic Candidates for Halting the Progression of Diabetic Nephropathy. Stem Cells Int 2016; 2016:9521629. [PMID: 28058051 PMCID: PMC5187468 DOI: 10.1155/2016/9521629] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 11/08/2016] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cells (MSCs) possess pleiotropic properties that include immunomodulation, inhibition of apoptosis, fibrosis and oxidative stress, secretion of trophic factors, and enhancement of angiogenesis. These properties provide a broad spectrum for their potential in a wide range of injuries and diseases, including diabetic nephropathy (DN). MSCs are characterized by adherence to plastic, expression of the surface molecules CD73, CD90, and CD105 in the absence of CD34, CD45, HLA-DR, and CD14 or CD11b and CD79a or CD19 surface molecules, and multidifferentiation capacity in vitro. MSCs can be derived from many tissue sources, consistent with their broad, possibly ubiquitous distribution. This article reviews the existing literature and knowledge of MSC therapy in DN, as well as the most appropriate rodent models to verify the therapeutic potential of MSCs in DN setting. Some preclinical relevant studies are highlighted and new perspectives of combined therapies for decreasing DN progression are discussed. Hence, improved comprehension and interpretation of experimental data will accelerate the progress towards clinical trials that should assess the feasibility and safety of this therapeutic approach in humans. Therefore, MSC-based therapies may bring substantial benefit for patients suffering from DN.
Collapse
Affiliation(s)
- Janaina Paulini
- Sociedade Beneficente Albert Einstein, Albert Einstein Hospital, 05652 São Paulo, SP, Brazil
| | - Eliza Higuti
- Sociedade Beneficente Albert Einstein, Albert Einstein Hospital, 05652 São Paulo, SP, Brazil
| | - Rosana M. C. Bastos
- Sociedade Beneficente Albert Einstein, Albert Einstein Hospital, 05652 São Paulo, SP, Brazil
| | - Samirah A. Gomes
- Sociedade Beneficente Albert Einstein, Albert Einstein Hospital, 05652 São Paulo, SP, Brazil
- University of São Paulo, 01246 São Paulo, SP, Brazil
| | - Érika B. Rangel
- Sociedade Beneficente Albert Einstein, Albert Einstein Hospital, 05652 São Paulo, SP, Brazil
- Federal University of São Paulo, 04023 São Paulo, SP, Brazil
| |
Collapse
|
226
|
Kuwagata S, Kume S, Chin-Kanasaki M, Araki H, Araki S, Nakazawa J, Sugaya T, Koya D, Haneda M, Maegawa H, Uzu T. MicroRNA148b-3p inhibits mTORC1-dependent apoptosis in diabetes by repressing TNFR2 in proximal tubular cells. Kidney Int 2016; 90:1211-1225. [DOI: 10.1016/j.kint.2016.06.036] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 06/26/2016] [Accepted: 06/30/2016] [Indexed: 11/24/2022]
|
227
|
Microvascular effects of the inhibition of dipeptidylpeptidase IV by linagliptin in nondiabetic hypertensive patients. J Hypertens 2016; 34:345-50. [PMID: 26599219 DOI: 10.1097/hjh.0000000000000776] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Recent studies suggest vascular benefits of dipeptidylpeptidase IV (DPP-IV) inhibition in patients with diabetes mellitus. Only little is known about potential vascular effects of DPP-IV inhibitors in nondiabetic individuals. The aim of this study was to investigate the effect of DPP-IV inhibition in a nondiabetic hypertensive population. METHOD This was a double-blinded, randomized, placebo-controlled, mechanistic study, comparing microvascular effects of the DPP-IV inhibitor linagliptin with placebo in nondiabetic individuals with a history of arterial hypertension. Twenty-one patients received 5 mg linagliptin (5 women; age 67.6 ± 6.0 years; mean ± SD), whereas 22 patients were randomized to placebo (5 women; age 64.8 ± 7.1 years). RESULTS At baseline, after 6 and 12 weeks, retinal microcirculation and arterial blood pressure profiles were assessed. Moreover, blood samples were taken for the measurement of HbA1c, asymmetric dimethylarginine, C-reactive peptide, cyclic guanosinmonophosphate, transforming growth factor beta (TGF-ß1) and cystatin C. Retinal capillary perfusion increased by 23.7 ± 10.3% (mean ± SEM; P < 0.05), retinal arterial flow by 7.6 ± 0.6 (P < 0.05) and the retinal hyperemic response by 290 ± 263% (P < 0.05) during treatment with linagliptin. No change in retinal blood flow was found in the placebo group. Although blood pressure declined in both groups, a significant decline in TGF-ß1 by 9.3 ± 4.5% (P < 0.05) could only be observed in the linagliptin group. No significant change in other laboratory parameters could be observed in both groups. CONCLUSION Our study suggests microvascular and antifibrotic effects of linagliptin in a nondiabetic, hypertensive population.
Collapse
|
228
|
Zhuge F, Ni Y, Nagashimada M, Nagata N, Xu L, Mukaida N, Kaneko S, Ota T. DPP-4 Inhibition by Linagliptin Attenuates Obesity-Related Inflammation and Insulin Resistance by Regulating M1/M2 Macrophage Polarization. Diabetes 2016; 65:2966-2979. [PMID: 27445264 DOI: 10.2337/db16-0317] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 07/06/2016] [Indexed: 12/17/2022]
Abstract
Dipeptidyl peptidase 4 (DPP-4) cleaves a large number of chemokine and peptide hormones involved in the regulation of the immune system. Additionally, DPP-4 may also be involved in macrophage-mediated inflammation and insulin resistance. Thus, the current study investigated the effect of linagliptin, an inhibitor of DPP-4, on macrophage migration and polarization in white adipose tissue (WAT) and liver of high-fat diet-induced obese (DIO) mice. DPP-4(+) macrophages in lean and obese mice were quantified by fluorescence-activated cell sorting (FACS) analysis. DPP-4 was predominantly expressed in F4/80(+) macrophages in crown-like structures compared with adipocytes in WAT of DIO mice. FACS analysis also revealed that, compared with chow-fed mice, DIO mice exhibited a significant increase in DPP-4(+) expression in cells within adipose tissue macrophages (ATMs), particularly M1 ATMs. Linagliptin showed a greater DPP-4 inhibition and antioxidative capacity than sitagliptin and reduced M1-polarized macrophage migration while inducing an M2-dominant shift of macrophages within WAT and liver, thereby attenuating obesity-induced inflammation and insulin resistance. Loss of macrophage inflammatory protein-1α, a chemokine and DPP-4 substrate, in DIO mice abrogated M2 macrophage-polarizing and insulin-sensitizing effects of linagliptin. Therefore, the inhibition of DPP-4 by linagliptin reduced obesity-related insulin resistance and inflammation by regulating M1/M2 macrophage status.
Collapse
Affiliation(s)
- Fen Zhuge
- Department of Cell Metabolism and Nutrition, Brain/Liver Interface Medicine Research Center, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Yinhua Ni
- Department of Cell Metabolism and Nutrition, Brain/Liver Interface Medicine Research Center, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Mayumi Nagashimada
- Department of Cell Metabolism and Nutrition, Brain/Liver Interface Medicine Research Center, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Naoto Nagata
- Department of Cell Metabolism and Nutrition, Brain/Liver Interface Medicine Research Center, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Liang Xu
- Department of Cell Metabolism and Nutrition, Brain/Liver Interface Medicine Research Center, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Naofumi Mukaida
- Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Shuichi Kaneko
- Department of Disease Control and Homeostasis, Kanazawa University Graduate School of Medical Science, Kanazawa, Ishikawa, Japan
| | - Tsuguhito Ota
- Department of Cell Metabolism and Nutrition, Brain/Liver Interface Medicine Research Center, Kanazawa University, Kanazawa, Ishikawa, Japan Department of Disease Control and Homeostasis, Kanazawa University Graduate School of Medical Science, Kanazawa, Ishikawa, Japan
| |
Collapse
|
229
|
Aono M, Sato Y. Dipeptidyl peptidase 4 inhibitor linagliptin can decrease the dosage of erythropoiesis-stimulating agents in patients on hemodialysis. RENAL REPLACEMENT THERAPY 2016. [DOI: 10.1186/s41100-016-0058-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
230
|
Extrapancreatic contribution to glucose regulation by dipeptidyl peptidase 4 inhibition. Cardiovasc Endocrinol 2016. [DOI: 10.1097/xce.0000000000000088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
231
|
Zhao L, Zhao J, Wang X, Chen Z, Peng K, Lu X, Meng L, Liu G, Guan G, Wang F. Serum response factor induces endothelial-mesenchymal transition in glomerular endothelial cells to aggravate proteinuria in diabetic nephropathy. Physiol Genomics 2016; 48:711-718. [PMID: 27565710 DOI: 10.1152/physiolgenomics.00082.2016] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 08/19/2016] [Indexed: 12/25/2022] Open
Abstract
We investigated the expression and function of serum response factor (SRF) in endothelial-mesenchymal transition (EndMT) in glomerular endothelial cells (GEnCs) of diabetic nephropathy (DN). The expression of SRF, endothelial markers (VE-cadherin, CD31), and mesenchymal markers (α-SMA, FSP-1, fibronectin) was examined in GEnCs following high glucose or in renal cortex tissues of DN rats. SRF was upregulated by SRF plasmids and downregulated by CCG-1423 (a small molecule inhibitor of SRF) to investigate how SRF influenced EndMT in GEnCs of DN. Streptozocin (STZ) was used to generate diabetes mellitus DM in rats. In GEnCs after high glucose treatment and in renal cortex tissues of diabetic rats, SRF, α-SMA, FSP-1, and fibronectin increased, while VE-cadherin and CD31 declined. SRF overexpression in GEnCs induced expression of Snail, an important transcription factor mediating EndMT. Blockade of SRF reduced Snail induction, protected GEnCs from EndMT, and ameliorated proteinuria. Together, increased SRF activity provokes EndMT and barrier dysfunction of GEnCs in DN. Targeting SRF by small molecule inhibitor may be an attractive therapeutic strategy for DN.
Collapse
Affiliation(s)
- Long Zhao
- Nephrology Research Institute of Shandong University, The Second Hospital of Shandong University, Shandong University, Jinan, People's Republic of China
| | - Jun Zhao
- Department of Nephrology, Shandong Weifang People's Hospital, Weifang, People's Republic of China; and
| | - Xueling Wang
- Nephrology Research Institute of Shandong University, The Second Hospital of Shandong University, Shandong University, Jinan, People's Republic of China
| | - Zhixin Chen
- Nephrology Research Institute of Shandong University, The Second Hospital of Shandong University, Shandong University, Jinan, People's Republic of China
| | - Kexin Peng
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah
| | - Xiaohan Lu
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah
| | - Linghang Meng
- Nephrology Research Institute of Shandong University, The Second Hospital of Shandong University, Shandong University, Jinan, People's Republic of China
| | - Gang Liu
- Nephrology Research Institute of Shandong University, The Second Hospital of Shandong University, Shandong University, Jinan, People's Republic of China
| | - Guangju Guan
- Nephrology Research Institute of Shandong University, The Second Hospital of Shandong University, Shandong University, Jinan, People's Republic of China;
| | - Fei Wang
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah
| |
Collapse
|
232
|
Liu W, Yang Y, Liu Y, Lu X, Guo S, Wu M, Wang M, Yan L, Wang Q, Zhao X, Tong X, Hu J, Li Y, Hu R, Stanton RC, Zhang Z. Exogenous kallikrein protects against diabetic nephropathy. Kidney Int 2016; 90:1023-1036. [PMID: 27546607 DOI: 10.1016/j.kint.2016.06.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 06/13/2016] [Accepted: 06/16/2016] [Indexed: 01/06/2023]
Abstract
The kallikrein-kinin system has been shown to be involved in the development of diabetic nephropathy, but specific mechanisms are not fully understood. Here, we determined the renal-protective role of exogenous pancreatic kallikrein in diabetic mice and studied potential mechanisms in db/db type 2 diabetic and streptozotocin-induced type 1 diabetic mice. After the onset of diabetes, mice were treated with either pancreatic kallikrein (db/db+kallikrein, streptozotocin+kallikrein) or saline (db/db+saline, streptozotocin+saline) for 16 weeks, while another group of streptozotocin-induced diabetic mice received the same treatment after onset of albuminuria (streptozotocin'+kallikrein, streptozotocin'+saline). Db/m littermates or wild type mice were used as non-diabetic controls. Pancreatic kallikrein had no effects on body weight, blood glucose and blood pressure, but significantly reduced albuminuria among all three groups. Pathological analysis showed that exogenous kallikrein decreased the thickness of the glomerular basement membrane, protected against the effacement of foot process, the loss of endothelial fenestrae, and prevented the loss of podocytes in diabetic mice. Renal fibrosis, inflammation and oxidative stress were reduced in kallikrein-treated mice compared to diabetic controls. The expression of kininogen1, tissue kallikrein, kinin B1 and B2 receptors were all increased in the kallikrein-treated compared to saline-treated mice. Thus, exogenous pancreatic kallikrein both prevented and ameliorated diabetic nephropathy, which may be mediated by activating the kallikrein-kinin system.
Collapse
Affiliation(s)
- Wenjuan Liu
- Division of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Yeping Yang
- Division of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Yemei Liu
- Division of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China; Department of Endocrinology, The Second People's Hospital, Wuhu, Anhui, China
| | - Xiaolan Lu
- Department of Endocrinology, High-tech District People's Hospital, Suzhou, Jiangsu, China
| | - Shizhe Guo
- Division of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Meng Wu
- Department of Endocrinology, The Second Affiliated Hospital, Soochow University, Suzhou, Jiangsu, China
| | - Meng Wang
- Department of Endocrinology, The Second Affiliated Hospital, Soochow University, Suzhou, Jiangsu, China
| | - Linling Yan
- Department of Endocrinology, The First People's Hospital of Taichang, Jiangsu, China
| | - Qinghua Wang
- Division of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China; Institute of Endocrinology and Diabetology, Fudan University, Shanghai, China; Division of Endocrinology and Metabolism, Keenan Research Centre at the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada; Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Xiaolong Zhao
- Division of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Xian Tong
- Jiangsu (Qianhong) Engineering Research Center for Innovative Biological Drugs, Changzhou, Jiangsu, China
| | - Ji Hu
- Department of Endocrinology, The Second Affiliated Hospital, Soochow University, Suzhou, Jiangsu, China
| | - Yiming Li
- Division of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China; Institute of Endocrinology and Diabetology, Fudan University, Shanghai, China
| | - Renming Hu
- Division of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China; Institute of Endocrinology and Diabetology, Fudan University, Shanghai, China
| | - Robert C Stanton
- Renal Division, Joslin Diabetes Center, Boston, Massachusetts, USA
| | - Zhaoyun Zhang
- Division of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China; Institute of Endocrinology and Diabetology, Fudan University, Shanghai, China.
| |
Collapse
|
233
|
Nagai T, Doi S, Nakashima A, Irifuku T, Sasaki K, Ueno T, Masaki T. Linagliptin Ameliorates Methylglyoxal-Induced Peritoneal Fibrosis in Mice. PLoS One 2016; 11:e0160993. [PMID: 27513960 PMCID: PMC4981421 DOI: 10.1371/journal.pone.0160993] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 07/28/2016] [Indexed: 12/14/2022] Open
Abstract
Recent studies have reported increases of methylglyoxal (MGO) in peritoneal dialysis patients, and that MGO-mediated inflammation plays an important role in the development of peritoneal fibrosis through production of transforming growth factor-β1 (TGF-β1). Linagliptin, a dipeptidyl peptidase-4 inhibitor, exerts anti-inflammatory effects independent of blood glucose levels. In this study, we examined whether linagliptin suppresses MGO-induced peritoneal fibrosis in mice. Male C57/BL6 mice were divided into three groups: control, MGO injection plus saline, and MGO injection plus linagliptin (n = 6 per group). Peritoneal fibrosis was induced by daily intraperitoneal injection of saline containing 40 mmol/L MGO for 21 days. Saline was administered intraperitoneally to the control group. Linagliptin (10 mg/kg) or saline were administrated by once-daily oral gavage from 3 weeks before starting MGO injections. Immunohistochemical staining revealed that linagliptin suppressed expression of α-smooth muscle actin and fibroblast-specific protein-1, deposition of type I and III collagen, and macrophage (F4/80) infiltration. Peritoneal equilibration testing showed improved peritoneal functions in mice treated with linagliptin. Peritoneal injection of MGO increased plasma levels of glucagon-like peptide-1 (GLP-1) in mice, and a further increase was observed in linagliptin-treated mice. Although MGO increased plasma glucose levels, linagliptin did not decrease plasma glucose levels. Moreover, linagliptin reduced the TGF-β1 concentration in the peritoneal fluid of MGO-treated mice. GLP-1 receptor (GLP-1R) was expressed in monocytes/macrophages and linagliptin suppressed GLP-1R expression in MGO-injected mice. These results suggest that oral administration of linagliptin ameliorates MGO-induced peritoneal fibrosis.
Collapse
Affiliation(s)
- Takuo Nagai
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Shigehiro Doi
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
- * E-mail:
| | - Ayumu Nakashima
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Taisuke Irifuku
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Kensuke Sasaki
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Toshinori Ueno
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Takao Masaki
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| |
Collapse
|
234
|
DPP-4 inhibitors in diabetic complications: role of DPP-4 beyond glucose control. Arch Pharm Res 2016; 39:1114-28. [PMID: 27502601 DOI: 10.1007/s12272-016-0813-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 08/04/2016] [Indexed: 12/12/2022]
Abstract
Dipeptidyl peptidase-4 (DPP-4) inhibitors (gliptins) are an emerging class of antidiabetic drugs that constitutes approximately fifty percent of the market share of the oral hypoglycemic drugs. Its mechanism of action for lowering blood glucose is essentially via inhibition of the rapid degradation of incretin hormones, such as glucagon-like peptide (GLP)-1 and gastric inhibitory polypeptide (GIP), thus the plasma concentration of GLP-1 increases, which promotes insulin secretion from the pancreatic β cells and suppresses glucagon secretion from the α cells. In addition to the direct actions on the pancreas, GLP-1 exhibits diverse actions on different tissues through its action on GLP-1 receptor, which is expressed ubiquitously. Moreover, DPP-4 has multiple substrates besides GLP-1 and GIP, including cytokines, chemokines, neuropeptides, and growth factors, which are involved in many pathophysiological conditions. Recently, it was suggested that DPP-4 is a new adipokine secreted from the adipose tissue, which plays an important role in the regulation of the endocrine function in obesity-associated type 2 diabetes. Consequently, DPP-4 inhibitors have been reported to exhibit cytoprotective functions against various diabetic complications affecting the liver, heart, kidneys, retina, and neurons. This review outlines the current understanding of the effect of DPP-4 inhibitors on the complications associated with type 2 diabetes, such as liver steatosis and inflammation, dysfunction of the adipose tissue and pancreas, cardiovascular diseases, nephropathy, and neuropathy in preclinical and clinical studies.
Collapse
|
235
|
Incretin-Based Therapies for Diabetic Complications: Basic Mechanisms and Clinical Evidence. Int J Mol Sci 2016; 17:ijms17081223. [PMID: 27483245 PMCID: PMC5000621 DOI: 10.3390/ijms17081223] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 07/16/2016] [Accepted: 07/25/2016] [Indexed: 02/07/2023] Open
Abstract
An increase in the rates of morbidity and mortality associated with diabetic complications is a global concern. Glycemic control is important to prevent the development and progression of diabetic complications. Various classes of anti-diabetic agents are currently available, and their pleiotropic effects on diabetic complications have been investigated. Incretin-based therapies such as dipeptidyl peptidase (DPP)-4 inhibitors and glucagon-like peptide-1 receptor agonists (GLP-1RA) are now widely used in the treatment of patients with type 2 diabetes. A series of experimental studies showed that incretin-based therapies have beneficial effects on diabetic complications, independent of their glucose-lowering abilities, which are mediated by anti-inflammatory and anti-oxidative stress properties. Based on these findings, clinical studies to assess the effects of DPP-4 inhibitors and GLP-1RA on diabetic microvascular and macrovascular complications have been performed. Several but not all studies have provided evidence to support the beneficial effects of incretin-based therapies on diabetic complications in patients with type 2 diabetes. We herein discuss the experimental and clinical evidence of incretin-based therapy for diabetic complications.
Collapse
|
236
|
Takashima S, Fujita H, Fujishima H, Shimizu T, Sato T, Morii T, Tsukiyama K, Narita T, Takahashi T, Drucker DJ, Seino Y, Yamada Y. Stromal cell-derived factor-1 is upregulated by dipeptidyl peptidase-4 inhibition and has protective roles in progressive diabetic nephropathy. Kidney Int 2016; 90:783-96. [PMID: 27475229 DOI: 10.1016/j.kint.2016.06.012] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 05/31/2016] [Accepted: 06/02/2016] [Indexed: 12/20/2022]
Abstract
The role of stromal cell-derived factor-1 (SDF-1) in the pathogenesis of diabetic nephropathy and its modification by dipeptidyl peptidase-4 (DPP-4) inhibition are uncertain. Therefore, we studied this independent of glucagon-like peptide-1 receptor (GLP-1R) signaling using two Akita diabetic mouse models, the diabetic-resistant C57BL/6-Akita and diabetic-prone KK/Ta-Akita. Increased SDF-1 expression was found in glomerular podocytes and distal nephrons in the diabetic-prone mice, but not in kidneys from diabetic-resistant mice. The DPP-4 inhibitor linagliptin, but not the GLP-1R agonist liraglutide, further augmented renal SDF-1 expression in both Glp1r(+/+) and Glp1r(-/-) diabetic-prone mice. Along with upregulation of renal SDF-1 expression, the progression of albuminuria, glomerulosclerosis, periglomerular fibrosis, podocyte loss, and renal oxidative stress was suppressed in linagliptin-treated Glp1r(+/+) diabetic-prone mice. Linagliptin treatment increased urinary sodium excretion and attenuated the increase in glomerular filtration rate which reflects glomerular hypertension and hyperfiltration. In contrast, selective SDF-1 receptor blockade with AMD3100 reduced urinary sodium excretion and aggravated glomerular hypertension in the Glp1r(+/+) diabetic-prone mice. Thus, DPP-4 inhibition, independent of GLP-1R signaling, contributes to protection of the diabetic kidney through SDF-1-dependent antioxidative and antifibrotic effects and amelioration of adverse renal hemodynamics.
Collapse
Affiliation(s)
- Satoru Takashima
- Division of Endocrinology, Metabolism and Geriatric Medicine, Akita University Graduate School of Medicine, Akita, Japan
| | - Hiroki Fujita
- Division of Endocrinology, Metabolism and Geriatric Medicine, Akita University Graduate School of Medicine, Akita, Japan.
| | - Hiromi Fujishima
- Division of Endocrinology, Metabolism and Geriatric Medicine, Akita University Graduate School of Medicine, Akita, Japan
| | - Tatsunori Shimizu
- Division of Endocrinology, Metabolism and Geriatric Medicine, Akita University Graduate School of Medicine, Akita, Japan
| | - Takehiro Sato
- Division of Endocrinology, Metabolism and Geriatric Medicine, Akita University Graduate School of Medicine, Akita, Japan
| | - Tsukasa Morii
- Division of Endocrinology, Metabolism and Geriatric Medicine, Akita University Graduate School of Medicine, Akita, Japan
| | - Katsushi Tsukiyama
- Division of Metabolism and Clinical Nutrition Science, Akita University Graduate School of Medicine, Akita, Japan
| | - Takuma Narita
- Division of Endocrinology, Metabolism and Geriatric Medicine, Akita University Graduate School of Medicine, Akita, Japan
| | - Takamune Takahashi
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Daniel J Drucker
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada; The Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada
| | - Yutaka Seino
- Kansai Electric Power Medical Research Institute, Osaka, Japan
| | - Yuichiro Yamada
- Division of Endocrinology, Metabolism and Geriatric Medicine, Akita University Graduate School of Medicine, Akita, Japan
| |
Collapse
|
237
|
Srivastava SP, Shi S, Kanasaki M, Nagai T, Kitada M, He J, Nakamura Y, Ishigaki Y, Kanasaki K, Koya D. Effect of Antifibrotic MicroRNAs Crosstalk on the Action of N-acetyl-seryl-aspartyl-lysyl-proline in Diabetes-related Kidney Fibrosis. Sci Rep 2016; 6:29884. [PMID: 27425816 PMCID: PMC4947922 DOI: 10.1038/srep29884] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 06/23/2016] [Indexed: 12/15/2022] Open
Abstract
N-acetyl-seryl-aspartyl-lysyl-proline (AcSDKP) is an endogenous antifibrotic peptide. We found that suppression of AcSDKP and induction of dipeptidyl peptidase-4 (DPP-4), which is associated with insufficient levels of antifibrotic microRNA (miR)s in kidneys, were imperative to understand the mechanisms of fibrosis in the diabetic kidneys. Analyzing streptozotocin (STZ)-induced diabetic mouse strains, diabetic CD-1 mice with fibrotic kidneys could be differentiated from less-fibrotic diabetic 129Sv mice by suppressing AcSDKP and antifibrotic miRs (miR-29s and miR-let-7s), as well as by the prominent induction of DPP-4 protein expression/activity and endothelial to mesenchymal transition. In diabetic CD-1 mice, these alterations were all reversed by AcSDKP treatment. Transfection studies in culture endothelial cells demonstrated crosstalk regulation of miR-29s and miR-let-7s against mesenchymal activation program; such bidirectional regulation could play an essential role in maintaining the antifibrotic program of AcSDKP. Finally, we observed that AcSDKP suppression in fibrotic mice was associated with induction of both interferon-γ and transforming growth factor-β signaling, crucial molecular pathways that disrupt antifibrotic miRs crosstalk. The present study provides insight into the physiologically relevant antifibrotic actions of AcSDKP via antifibrotic miRs; restoring such antifibrotic programs could demonstrate potential utility in combating kidney fibrosis in diabetes.
Collapse
Affiliation(s)
- Swayam Prakash Srivastava
- Department of Diabetology &Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
| | - Sen Shi
- Department of Diabetology &Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
| | - Megumi Kanasaki
- Department of Diabetology &Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
| | - Takako Nagai
- Department of Diabetology &Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
| | - Munehiro Kitada
- Department of Diabetology &Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan.,Division of Anticipatory Molecular Food Science and Technology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
| | - Jianhua He
- Department of Diabetology &Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
| | - Yuka Nakamura
- Medical Research Institute, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
| | - Yasuhito Ishigaki
- Medical Research Institute, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
| | - Keizo Kanasaki
- Department of Diabetology &Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan.,Division of Anticipatory Molecular Food Science and Technology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
| | - Daisuke Koya
- Department of Diabetology &Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan.,Division of Anticipatory Molecular Food Science and Technology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
| |
Collapse
|
238
|
Song L, Sen S, Sun Y, Zhou J, Mo L, He Y. Ketamine Inhalation Ameliorates Ovalbumin-Induced Murine Asthma by Suppressing the Epithelial-Mesenchymal Transition. Med Sci Monit 2016; 22:2471-83. [PMID: 27418244 PMCID: PMC4958373 DOI: 10.12659/msm.899955] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Asthma accounts for 0.4% of all deaths worldwide, a figure that increases annually. Ketamine induces bronchial smooth muscle relaxation, and increasing evidence suggests that its anti-inflammatory properties might protect against lung injury and ameliorate asthma. However, there is a lack of evidence of the usefulness and mechanism of ketamine in acute asthma exacerbation. This study aimed to analyze the therapeutic effects and mechanism of action of ketamine on acute ovalbumin (OVA)-induced murine asthma. MATERIAL AND METHODS In vivo, BALB/c mice with OVA-induced asthma were treated with or without ketamine (25 or 50 mg/mL). Serum, lung sections, and mononuclear cell suspensions from the lung were collected for histological, morphometric, immunofluorescence, microRNA, quantitative polymerase chain reaction, regulatory T cell identification, cytokine, and Western blotting analyses. In vitro, bronchial epithelial cells were cultured to analyze the effect and mechanism of ketamine on epithelial-mesenchymal transition (EMT) and transforming growth factor-β (TGF-β) signaling. RESULTS The inhalation of ketamine 25 or 50 mg/mL markedly suppressed OVA-induced airway hyper-responsiveness and airway inflammation, significantly increased the percentage of CD4+CD25+ T cells, and significantly decreased OVA-induced up-regulation of TGF-β1 and the EMT. MiR-106a was present at higher amounts in OVA-induced lung samples and was suppressed by ketamine treatment. The in vitro results showed that TGF-β1-induced EMT was suppressed by ketamine via miR-106a level regulation. CONCLUSIONS Ketamine ameliorates lung fibrosis in OVA-induced asthmatic mice by suppressing EMT and regulating miR-106a level, while ketamine inhalation might be a new therapeutic approach to the treatment of allergic asthma.
Collapse
Affiliation(s)
- Li Song
- Department of Anesthesiology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China (mainland)
| | - Shi Sen
- Department of Vascular and Thyroid Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China (mainland)
| | - Yuhong Sun
- Department of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China (mainland)
| | - Jun Zhou
- Department of Anesthesiology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China (mainland)
| | - Liqun Mo
- Department of Anesthesiology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China (mainland)
| | - Yanzheng He
- Department of Vascular and Thyroid Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China (mainland)
| |
Collapse
|
239
|
Arruda-Junior DF, Martins FL, Dariolli R, Jensen L, Antonio EL, Dos Santos L, Tucci PJF, Girardi ACC. Dipeptidyl Peptidase IV Inhibition Exerts Renoprotective Effects in Rats with Established Heart Failure. Front Physiol 2016; 7:293. [PMID: 27462276 PMCID: PMC4941796 DOI: 10.3389/fphys.2016.00293] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 06/27/2016] [Indexed: 12/14/2022] Open
Abstract
Circulating dipeptidyl peptidase IV (DPPIV) activity is associated with worse cardiovascular outcomes in humans and experimental heart failure (HF) models, suggesting that DPPIV may play a role in the pathophysiology of this syndrome. Renal dysfunction is one of the key features of HF, but it remains to be determined whether DPPIV inhibitors are capable of improving cardiorenal function after the onset of HF. Therefore, the present study aimed to test the hypothesis that DPPIV inhibition by vildagliptin improves renal water and salt handling and exerts anti-proteinuric effects in rats with established HF. To this end, male Wistar rats were subjected to left ventricle (LV) radiofrequency ablation or sham operation. Six weeks after surgery, radiofrequency-ablated rats who developed HF were randomly divided into two groups and treated for 4 weeks with vildagliptin (120 mg/kg/day) or vehicle by oral gavage. Echocardiography was performed before (pretreatment) and at the end of treatment (post-treatment) to evaluate cardiac function. The fractional area change (FAC) increased (34 ± 5 vs. 45 ± 3%, p < 0.05), and the isovolumic relaxation time decreased (33 ± 2 vs. 27 ± 1 ms; p < 0.05) in HF rats treated with vildagliptin (post-treatment vs. pretreatment). On the other hand, cardiac dysfunction deteriorated further in vehicle-treated HF rats. Renal function was impaired in vehicle-treated HF rats as evidenced by fluid retention, low glomerular filtration rate (GFR) and high levels of urinary protein excretion. Vildagliptin treatment restored urinary flow, GFR, urinary sodium and urinary protein excretion to sham levels. Restoration of renal function in HF rats by DPPIV inhibition was associated with increased active glucagon-like peptide-1 (GLP-1) serum concentration, reduced DPPIV activity and increased activity of protein kinase A in the renal cortex. Furthermore, the anti-proteinuric effect of vildagliptin treatment in rats with established HF was associated with upregulation of the apical proximal tubule endocytic receptor megalin and of the podocyte main slit diaphragm proteins nephrin and podocin. Collectively, these findings demonstrate that DPPIV inhibition exerts renoprotective effects and ameliorates cardiorenal function in rats with established HF. Long-term studies with DPPIV inhibitors are needed to ascertain whether these effects ultimately translate into improved clinical outcomes.
Collapse
Affiliation(s)
| | - Flavia L Martins
- Heart Institute (InCor), University of São Paulo Medical School São Paulo, Brazil
| | - Rafael Dariolli
- Heart Institute (InCor), University of São Paulo Medical School São Paulo, Brazil
| | - Leonardo Jensen
- Heart Institute (InCor), University of São Paulo Medical School São Paulo, Brazil
| | - Ednei L Antonio
- Cardiology Division, Department of Medicine, Federal University of São Paulo São Paulo, Brazil
| | - Leonardo Dos Santos
- Department of Physiological Sciences, Federal University of Espírito Santo Vitória, Brazil
| | - Paulo J F Tucci
- Cardiology Division, Department of Medicine, Federal University of São Paulo São Paulo, Brazil
| | - Adriana C C Girardi
- Heart Institute (InCor), University of São Paulo Medical School São Paulo, Brazil
| |
Collapse
|
240
|
Dipeptidyl peptidase-4 inhibition with linagliptin prevents western diet-induced vascular abnormalities in female mice. Cardiovasc Diabetol 2016; 15:94. [PMID: 27391040 PMCID: PMC4938903 DOI: 10.1186/s12933-016-0414-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 06/23/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Vascular stiffening, a risk factor for cardiovascular disease, is accelerated, particularly in women with obesity and type 2 diabetes. Preclinical evidence suggests that dipeptidylpeptidase-4 (DPP-4) inhibitors may have cardiovascular benefits independent of glycemic lowering effects. Recent studies show that consumption of a western diet (WD) high in fat and simple sugars induces aortic stiffening in female C57BL/6J mice in advance of increasing blood pressure. The aims of this study were to determine whether administration of the DPP-4 inhibitor, linagliptin (LGT), prevents the development of aortic and endothelial stiffness induced by a WD in female mice. METHODS C56Bl6/J female mice were fed a WD for 4 months. Aortic stiffness and ex vivo endothelial stiffness were evaluated by Doppler pulse wave velocity (PWV) and atomic force microscopy (AFM), respectively. In addition, we examined aortic vasomotor responses and remodeling markers via immunohistochemistry. Results were analyzed via 2-way ANOVA, p < 0.05 was considered as statistically significant. RESULTS Compared to mice fed a control diet (CD), WD-fed mice exhibited a 24 % increase in aortic PWV, a five-fold increase in aortic endothelial stiffness, and impaired endothelium-dependent vasodilation. In aorta, these findings were accompanied by medial wall thickening, adventitial fibrosis, increased fibroblast growth factor 23 (FGF-23), decreased Klotho, enhanced oxidative stress, and endothelial cell ultrastructural changes, all of which were prevented with administration of LGT. CONCLUSIONS The present findings support the notion that DPP-4 plays a role in development of WD-induced aortic stiffening, vascular oxidative stress, endothelial dysfunction, and vascular remodeling. Whether, DPP-4 inhibition could be a therapeutic tool used to prevent the development of aortic stiffening and the associated cardiovascular complications in obese and diabetic females remains to be elucidated.
Collapse
|
241
|
Uchii M, Kimoto N, Sakai M, Kitayama T, Kunori S. Glucose-independent renoprotective mechanisms of the tissue dipeptidyl peptidase-4 inhibitor, saxagliptin, in Dahl salt-sensitive hypertensive rats. Eur J Pharmacol 2016; 783:56-63. [DOI: 10.1016/j.ejphar.2016.04.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 04/04/2016] [Accepted: 04/04/2016] [Indexed: 12/25/2022]
|
242
|
Jung GS, Jeon JH, Choe MS, Kim SW, Lee IK, Kim MK, Park KG. Renoprotective Effect of Gemigliptin, a Dipeptidyl Peptidase-4 Inhibitor, in Streptozotocin-Induced Type 1 Diabetic Mice. Diabetes Metab J 2016; 40:211-21. [PMID: 27098503 PMCID: PMC4929225 DOI: 10.4093/dmj.2016.40.3.211] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 09/22/2015] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Dipeptidyl peptidase-4 (DPP-4) inhibitors are widely used in the treatment of patients with type 2 diabetes and have proven protective effects on diabetic kidney disease (DKD). Whether DPP-4 inhibitors have renoprotective effects on insulin-deficient type 1 diabetes has not been comprehensively examined. The aim of this study was to determine whether gemigliptin, a new DPP-4 inhibitor, has renoprotective effects in streptozotocin (STZ)-induced type 1 diabetic mice. METHODS Diabetes was induced by intraperitoneal administration of a single dose of STZ. Mice with diabetes were treated without or with gemigliptin (300 mg/kg) for 8 weeks. Morphological changes of the glomerular basement membrane (GBM) were observed by electron microscopy and periodic-acid Schiff staining. In addition, we measured blood glucose and urinary albumin excretion and evaluated fibrotic markers using immunohistochemical staining, quantitative reverse transcription polymerase chain reaction analysis, and Western blot analysis. RESULTS Gemigliptin did not reduce the blood glucose levels of STZ-treated mice. In gemigliptin-treated mice with STZ, a significant reduction in urinary albumin excretion and GBM thickness was observed. Immunohistological examination revealed that gemigliptin attenuated renal fibrosis induced by STZ and decreased extracellular matrix protein levels, including those of type I collagen and fibronectin, and Smad3 phosphorylation. In cultured rat renal cells, gemigliptin inhibited transforming growth factor β-stimulated type I collagen and fibronectin mRNA and protein levels via down-regulation of Smad3 phosphorylation. CONCLUSION Our data demonstrate that gemigliptin has renoprotective effects on DKD, regardless of its glucose-lowering effect, suggesting that it could be used to prevent DKD, including in patients with type 1 diabetes.
Collapse
Affiliation(s)
- Gwon Soo Jung
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, Korea
| | - Jae Han Jeon
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, Korea
| | - Mi Sun Choe
- Department of Pathology, Keimyung University School of Medicine, Daegu, Korea
| | - Sung Woo Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, Korea
| | - In Kyu Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, Korea
| | - Mi Kyung Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Keimyung University School of Medicine, Daegu, Korea.
| | - Keun Gyu Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, Korea.
| |
Collapse
|
243
|
Characterization of Micro-RNA Changes during the Progression of Type 2 Diabetes in Zucker Diabetic Fatty Rats. Int J Mol Sci 2016; 17:ijms17050665. [PMID: 27153060 PMCID: PMC4881491 DOI: 10.3390/ijms17050665] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 04/08/2016] [Accepted: 04/26/2016] [Indexed: 11/21/2022] Open
Abstract
The aim of the present pilot study was the identification of micro-RNA changes over time during the development and progression of type 2 diabetes (T2D) in Zucker diabetic fatty rats (ZDF rats). T2D is a complex metabolic disorder that is characterized, inter alia, by progressive failure of pancreatic β cells to produce insulin, but also by functional or morphological modifications of others organ, such as liver, adipose tissue and the cardiovascular system. Micro-RNAs are a novel class of biomarkers that have the potential to represent biomarkers of disease progression. In this study, the onset and progression of diabetes was followed in ZDF rats from six weeks until 17 weeks of age. After an initial phase of hyperinsulinemia, the animals developed T2D and lost the capacity to produce sufficient insulin. Circulating miRNAs were measured from plasma samples at four time points: pre-diabetes (six weeks of age), hyperinsulinemia (eight weeks), β cell failure (11 weeks) and late-stage diabetes (17 weeks) using TaqMan miRNA arrays. Bioinformatic analysis revealed distinct changes of circulating miRNAs over time. Several miRNAs were found to be increased over the course of the disease progression, such as miR-122, miR-133, miR-210 and miR-375. The most significantly decreased miRNAs were miR-140, miR-151-3p, miR-185, miR-203, miR-434-3p and miR-450a. Some of the miRNAs have also been identified in type 2 diabetic patients recently and, therefore, may have the potential to be useful biomarkers for the disease progression of T2D and/or the treatment response for anti-diabetic medications.
Collapse
|
244
|
DA-1229, a dipeptidyl peptidase IV inhibitor, protects against renal injury by preventing podocyte damage in an animal model of progressive renal injury. J Transl Med 2016; 96:547-60. [PMID: 26878135 DOI: 10.1038/labinvest.2016.34] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 12/17/2015] [Accepted: 01/17/2016] [Indexed: 11/09/2022] Open
Abstract
Although dipeptidyl peptidase IV (DPPIV) inhibitors are known to have renoprotective effects, the mechanism underlying these effects has remained elusive. Here we investigated the effects of DA-1229, a novel DPPIV inhibitor, in two animal models of renal injury including db/db mice and the adriamycin nephropathy rodent model of chronic renal disease characterized by podocyte injury. For both models, DA-1229 was administered at 300 mg/kg/day. DPPIV activity in the kidney was significantly higher in diabetic mice compared with their nondiabetic controls. Although DA-1229 did not affect glycemic control or insulin resistance, DA-1229 did improve lipid profiles, albuminuria and renal fibrosis. Moreover, DA-1229 treatment resulted in decreased urinary excretion of nephrin, decreased circulating and kidney DPPIV activity, and decreased macrophage infiltration in the kidney. In adriamycin-treated mice, DPPIV activity in the kidney and urinary nephrin loss were both increased, whereas glucagon-like peptide-1 concentrations were unchanged. Moreover, DA-1229 treatment significantly improved proteinuria, renal fibrosis and inflammation associated with decreased urinary nephrin loss, and kidney DPP4 activity. In cultured podocytes, DA-1229 restored the high glucose/angiotensin II-induced increase of DPPIV activity and preserved the nephrin levels in podocytes. These findings suggest that activation of DPPIV in the kidney has a role in the progression of renal disease, and that DA-1229 may exert its renoprotective effects by preventing podocyte injury.
Collapse
|
245
|
Menon MC, He JC. Prostaglandin I2 Receptor Agonism for Proteinuria and Diabetes: Good for the Goose and Good for the Gander? Diabetes 2016; 65:1149-51. [PMID: 27208182 PMCID: PMC4839201 DOI: 10.2337/dbi16-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Madhav C Menon
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - John C He
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
246
|
Batchu SN, Majumder S, Bowskill BB, White KE, Advani SL, Brijmohan AS, Liu Y, Thai K, Azizi PM, Lee WL, Advani A. Prostaglandin I2 Receptor Agonism Preserves β-Cell Function and Attenuates Albuminuria Through Nephrin-Dependent Mechanisms. Diabetes 2016; 65:1398-409. [PMID: 26868296 DOI: 10.2337/db15-0783] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 02/01/2016] [Indexed: 11/13/2022]
Abstract
Discovery of common pathways that mediate both pancreatic β-cell function and end-organ function offers the opportunity to develop therapies that modulate glucose homeostasis and separately slow the development of diabetes complications. Here, we investigated the in vitro and in vivo effects of pharmacological agonism of the prostaglandin I2 (IP) receptor in pancreatic β-cells and in glomerular podocytes. The IP receptor agonist MRE-269 increased intracellular 3',5'-cyclic adenosine monophosphate (cAMP), augmented glucose-stimulated insulin secretion (GSIS), and increased viability in MIN6 β-cells. Its prodrug form, selexipag, augmented GSIS and preserved islet β-cell mass in diabetic mice. Determining that this preservation of β-cell function is mediated through cAMP/protein kinase A (PKA)/nephrin-dependent pathways, we found that PKA inhibition, nephrin knockdown, or targeted mutation of phosphorylated nephrin tyrosine residues 1176 and 1193 abrogated the actions of MRE-269 in MIN6 cells. Because nephrin is important to glomerular permselectivity, we next set out to determine whether IP receptor agonism similarly affects nephrin phosphorylation in podocytes. Expression of the IP receptor in podocytes was confirmed in cultured cells by immunoblotting and quantitative real-time PCR and in mouse kidneys by immunogold electron microscopy, and its agonism 1) increased cAMP, 2) activated PKA, 3) phosphorylated nephrin, and 4) attenuated albumin transcytosis. Finally, treatment of diabetic endothelial nitric oxide synthase knockout mice with selexipag augmented renal nephrin phosphorylation and attenuated albuminuria development independently of glucose change. Collectively, these observations describe a pharmacological strategy that posttranslationally modifies nephrin and the effects of this strategy in the pancreas and in the kidney.
Collapse
MESH Headings
- Acetamides/therapeutic use
- Acetates/pharmacology
- Animals
- Cell Line
- Cell Survival/drug effects
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Diabetic Nephropathies/metabolism
- Diabetic Nephropathies/pathology
- Diabetic Nephropathies/physiopathology
- Diabetic Nephropathies/prevention & control
- Humans
- Hypoglycemic Agents/pharmacology
- Hypoglycemic Agents/therapeutic use
- Insulin/agonists
- Insulin/metabolism
- Insulin Secretion
- Insulin-Secreting Cells/drug effects
- Insulin-Secreting Cells/metabolism
- Membrane Proteins/antagonists & inhibitors
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice, Inbred C57BL
- Mice, Knockout
- Mutation
- Phosphorylation/drug effects
- Podocytes/drug effects
- Podocytes/metabolism
- Podocytes/pathology
- Podocytes/ultrastructure
- Prodrugs/therapeutic use
- Protein Processing, Post-Translational/drug effects
- Pyrazines/pharmacology
- Pyrazines/therapeutic use
- RNA Interference
- Receptors, Epoprostenol/agonists
- Receptors, Epoprostenol/genetics
- Receptors, Epoprostenol/metabolism
- Renal Insufficiency/complications
- Renal Insufficiency/metabolism
- Renal Insufficiency/pathology
- Renal Insufficiency/prevention & control
Collapse
Affiliation(s)
- Sri N Batchu
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Syamantak Majumder
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Bridgit B Bowskill
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Kathryn E White
- Electron Microscopy Research Services, Newcastle University, Newcastle upon Tyne, U.K
| | - Suzanne L Advani
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Angela S Brijmohan
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Youan Liu
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Kerri Thai
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Paymon M Azizi
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Warren L Lee
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Andrew Advani
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada
| |
Collapse
|
247
|
Piera-Velazquez S, Mendoza FA, Jimenez SA. Endothelial to Mesenchymal Transition (EndoMT) in the Pathogenesis of Human Fibrotic Diseases. J Clin Med 2016; 5:jcm5040045. [PMID: 27077889 PMCID: PMC4850468 DOI: 10.3390/jcm5040045] [Citation(s) in RCA: 205] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/18/2016] [Accepted: 04/06/2016] [Indexed: 02/08/2023] Open
Abstract
Fibrotic diseases encompass a wide spectrum of clinical entities including systemic fibrotic diseases such as systemic sclerosis, sclerodermatous graft versus host disease, nephrogenic systemic fibrosis, and IgG₄-associated sclerosing disease, as well as numerous organ-specific disorders including radiation-induced fibrosis, and cardiac, pulmonary, liver, and kidney fibrosis. Although their causative mechanisms are quite diverse, these diseases share the common feature of an uncontrolled and progressive accumulation of fibrous tissue macromolecules in affected organs leading to their dysfunction and ultimate failure. The pathogenesis of fibrotic diseases is complex and despite extensive investigation has remained elusive. Numerous studies have identified myofibroblasts as the cells responsible for the establishment and progression of the fibrotic process. Tissue myofibroblasts in fibrotic diseases originate from several sources including quiescent tissue fibroblasts, circulating CD34+ fibrocytes, and the phenotypic conversion of various cell types including epithelial and endothelial cells into activated myofibroblasts. However, the role of the phenotypic transition of endothelial cells into mesenchymal cells (Endothelial to Mesenchymal Transition or EndoMT) in the pathogenesis of fibrotic disorders has not been fully elucidated. Here, we review the evidence supporting EndoMT's contribution to human fibrotic disease pathogenesis.
Collapse
Affiliation(s)
- Sonsoles Piera-Velazquez
- Jefferson Institute of Molecular Medicine, Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, 233 S. 10th Street, Suite 509 BLSB, Philadelphia, PA 19107, USA.
| | - Fabian A Mendoza
- Rheumatology Division, Department of Medicine, Thomas Jefferson University, 233 S. 10th Street, Suite 509 BLSB, Philadelphia, PA 19107, USA.
| | - Sergio A Jimenez
- Jefferson Institute of Molecular Medicine, Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, 233 S. 10th Street, Suite 509 BLSB, Philadelphia, PA 19107, USA.
| |
Collapse
|
248
|
Medici D. Endothelial-Mesenchymal Transition in Regenerative Medicine. Stem Cells Int 2016; 2016:6962801. [PMID: 27143978 PMCID: PMC4838799 DOI: 10.1155/2016/6962801] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 03/12/2016] [Accepted: 03/22/2016] [Indexed: 12/29/2022] Open
Abstract
Endothelial-mesenchymal transition (EndMT) is a fundamental cellular mechanism that regulates embryonic development and diseases such as cancer and fibrosis. Recent developments in biomedical research have shown remarkable potential to harness the EndMT process for tissue engineering and regeneration. As an alternative to traditional or artificial stem cell therapies, EndMT may represent a safe method for engineering new tissues to treat degenerative diseases by mimicking a process that occurs in nature. This review discusses the signaling mechanisms and therapeutic inhibitors of EndMT, as well as the role of EndMT in development, disease, acquiring stem cell properties and generating connective tissues, and its potential as a novel mechanism for tissue regeneration.
Collapse
Affiliation(s)
- Damian Medici
- Department of Orthopaedics, The Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
- Division of Hematology/Oncology, Department of Medicine, The Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
- Center for Regenerative Medicine, The Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
- Cardiovascular Research Center, The Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| |
Collapse
|
249
|
Dave LA, Hayes M, Mora L, Montoya CA, Moughan PJ, Rutherfurd SM. Gastrointestinal Endogenous Protein-Derived Bioactive Peptides: An in Vitro Study of Their Gut Modulatory Potential. Int J Mol Sci 2016; 17:482. [PMID: 27043546 PMCID: PMC4848938 DOI: 10.3390/ijms17040482] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/15/2016] [Accepted: 03/15/2016] [Indexed: 02/07/2023] Open
Abstract
A recently proposed paradigm suggests that, like their dietary counterparts, digestion of gastrointestinal endogenous proteins (GEP) may also produce bioactive peptides. With an aim to test this hypothesis, in vitro digests of four GEP namely; trypsin (TRYP), lysozyme (LYS), mucin (MUC), serum albumin (SA) and a dietary protein chicken albumin (CA) were screened for their angiotensin-I converting (ACE-I), renin, platelet-activating factor-acetylhydrolase (PAF-AH) and dipeptidyl peptidase-IV inhibitory (DPP-IV) and antioxidant potential following simulated in vitro gastrointestinal digestion. Further, the resultant small intestinal digests were enriched to obtain peptides between 3-10 kDa in size. All in vitro digests of the four GEP were found to inhibit ACE-I compared to the positive control captopril when assayed at a concentration of 1 mg/mL, while the LYS < 3-kDa permeate fraction inhibited renin by 40% (±1.79%). The LYS < 10-kDa fraction inhibited PAF-AH by 39% (±4.34%), and the SA < 3-kDa fraction inhibited DPP-IV by 45% (±1.24%). The MUC < 3-kDa fraction had an ABTS-inhibition antioxidant activity of 150 (±24.79) µM trolox equivalent and the LYS < 10-kDa fraction inhibited 2,2-Diphenyl-1-picrylhydrazyl (DPPH) by 54% (±1.62%). Moreover, over 190 peptide-sequences were identified from the bioactive GEP fractions. The findings of the present study indicate that GEP are a significant source of bioactive peptides which may influence gut function.
Collapse
Affiliation(s)
- Lakshmi A Dave
- The Riddet Institute, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand.
- Teagasc, The Irish Agricultural and Food Development Authority, Food BioSciences Department, Ashtown, Dublin 15, Ireland.
| | - Maria Hayes
- Teagasc, The Irish Agricultural and Food Development Authority, Food BioSciences Department, Ashtown, Dublin 15, Ireland.
| | - Leticia Mora
- Instituto de Agroquı́mica y Tecnologı́a de Alimentos (CSIC), Avenida Agustín Escardino 7, 46980 Paterna, Valencia 46002, Spain.
| | - Carlos A Montoya
- The Riddet Institute, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand.
| | - Paul J Moughan
- The Riddet Institute, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand.
| | - Shane M Rutherfurd
- The Riddet Institute, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand.
| |
Collapse
|
250
|
Tsuprykov O, Ando R, Reichetzeder C, von Websky K, Antonenko V, Sharkovska Y, Chaykovska L, Rahnenführer J, Hasan AA, Tammen H, Alter M, Klein T, Ueda S, Yamagishi SI, Okuda S, Hocher B. The dipeptidyl peptidase inhibitor linagliptin and the angiotensin II receptor blocker telmisartan show renal benefit by different pathways in rats with 5/6 nephrectomy. Kidney Int 2016; 89:1049-1061. [PMID: 27083282 DOI: 10.1016/j.kint.2016.01.016] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 01/12/2016] [Accepted: 01/14/2016] [Indexed: 12/17/2022]
Abstract
Dipeptidyl peptidase (DPP)-4 inhibitors delay chronic kidney disease (CKD) progression in experimental diabetic nephropathy in a glucose-independent manner. Here we compared the effects of the DPP-4 inhibitor linagliptin versus telmisartan in preventing CKD progression in non-diabetic rats with 5/6 nephrectomy. Animals were allocated to 1 of 4 groups: sham operated plus placebo; 5/6 nephrectomy plus placebo; 5/6 nephrectomy plus linagliptin; and 5/6 nephrectomy plus telmisartan. Interstitial fibrosis was significantly decreased by 48% with linagliptin but a non-significant 24% with telmisartan versus placebo. The urine albumin-to-creatinine ratio was significantly decreased by 66% with linagliptin and 92% with telmisartan versus placebo. Blood pressure was significantly lowered by telmisartan, but it was not affected by linagliptin. As shown by mass spectrometry, the number of altered peptide signals for linagliptin in plasma was 552 and 320 in the kidney. For telmisartan, there were 108 peptide changes in plasma and 363 in the kidney versus placebo. Linagliptin up-regulated peptides derived from collagen type I, apolipoprotein C1, and heterogeneous nuclear ribonucleoproteins A2/B1, a potential downstream target of atrial natriuretic peptide, whereas telmisartan up-regulated angiotensin II. A second study was conducted to confirm these findings in 5/6 nephrectomy wild-type and genetically deficient DPP-4 rats treated with linagliptin or placebo. Linagliptin therapy in wild-type rats was as effective as DPP-4 genetic deficiency in terms of albuminuria reduction. Thus, linagliptin showed comparable efficacy to telmisartan in preventing CKD progression in non-diabetic rats with 5/6 nephrectomy. However, the underlying pathways seem to be different.
Collapse
Affiliation(s)
- Oleg Tsuprykov
- Institute of Nutritional Sciences, University of Potsdam, Potsdam, Germany; Center for Cardiovascular Research, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ryotaro Ando
- Division of Nephrology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan; Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, Kurume, Japan
| | - Christoph Reichetzeder
- Institute of Nutritional Sciences, University of Potsdam, Potsdam, Germany; Center for Cardiovascular Research, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Karoline von Websky
- Institute of Nutritional Sciences, University of Potsdam, Potsdam, Germany; Center for Cardiovascular Research, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Viktoriia Antonenko
- Institute of Nutritional Sciences, University of Potsdam, Potsdam, Germany; Center for Cardiovascular Research, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Yuliya Sharkovska
- Institute of Vegetative Anatomy, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Lyubov Chaykovska
- Department of Cardiovascular Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Jan Rahnenführer
- Institute of Nutritional Sciences, University of Potsdam, Potsdam, Germany; Center for Cardiovascular Research, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ahmed A Hasan
- Institute of Nutritional Sciences, University of Potsdam, Potsdam, Germany
| | | | - Markus Alter
- Center for Cardiovascular Research, Charité - Universitätsmedizin Berlin, Berlin, Germany; Department of Nephrology and Endocrinology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Thomas Klein
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Seiji Ueda
- Division of Nephrology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Sho-Ichi Yamagishi
- Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, Kurume, Japan
| | - Seiya Okuda
- Division of Nephrology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan; Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, Kurume, Japan
| | - Berthold Hocher
- Institute of Nutritional Sciences, University of Potsdam, Potsdam, Germany; Institute for Laboratory Medicine, IFLB, Berlin, Germany; Department of Basic Medicine, Medical college of Hunan Normal University, Changsha, China.
| |
Collapse
|