201
|
Sane RS, Steinmann GG, Huang Q, Li Y, Podila L, Mease K, Olson S, Taub ME, Stern JO, Nehmiz G, Böcher WO, Asselah T, Tweedie D. Mechanisms underlying benign and reversible unconjugated hyperbilirubinemia observed with faldaprevir administration in hepatitis C virus patients. J Pharmacol Exp Ther 2014; 351:403-12. [PMID: 25204339 DOI: 10.1124/jpet.114.218081] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Faldaprevir, an investigational agent for hepatitis C virus treatment, is well tolerated but associated with rapidly reversible, dose-dependent, clinically benign, unconjugated hyperbilirubinemia. Multidisciplinary preclinical and clinical studies were used to characterize mechanisms underlying this hyperbilirubinemia. In vitro, faldaprevir inhibited key processes involved in bilirubin clearance: UDP glucuronosyltransferase (UGT) 1A1 (UGT1A1) (IC50 0.45 µM), which conjugates bilirubin, and hepatic uptake and efflux transporters, organic anion-transporting polypeptide (OATP) 1B1 (IC50 0.57 µM), OATP1B3 (IC50 0.18 µM), and multidrug resistance-associated protein (MRP) 2 (IC50 6.2 µM), which transport bilirubin and its conjugates. In rat and human hepatocytes, uptake and biliary excretion of [(3)H]bilirubin and/or its glucuronides decreased on coincubation with faldaprevir. In monkeys, faldaprevir (≥20 mg/kg per day) caused reversible unconjugated hyperbilirubinemia, without hemolysis or hepatotoxicity. In clinical studies, faldaprevir-mediated hyperbilirubinemia was predominantly unconjugated, and levels of unconjugated bilirubin correlated with the UGT1A1*28 genotype. The reversible and dose-dependent nature of the clinical hyperbilirubinemia was consistent with competitive inhibition of bilirubin clearance by faldaprevir, and was not associated with liver toxicity or other adverse events. Overall, the reversible, unconjugated hyperbilirubinemia associated with faldaprevir may predominantly result from inhibition of bilirubin conjugation by UGT1A1, with inhibition of hepatic uptake of bilirubin also potentially playing a role. Since OATP1B1/1B3 are known to be involved in hepatic uptake of circulating bilirubin glucuronides, inhibition of OATP1B1/1B3 and MRP2 may underlie isolated increases in conjugated bilirubin. As such, faldaprevir-mediated hyperbilirubinemia is not associated with any liver injury or toxicity, and is considered to result from decreased bilirubin elimination due to a drug-bilirubin interaction.
Collapse
Affiliation(s)
- Rucha S Sane
- Boehringer Ingelheim Pharma Inc., Ridgefield, Connecticut (R.S.S., Q.H., Y.L., L.P., K.M., S.O., M.E.T., J.O.S., D.T.); Boehringer Ingelheim Pharma GmbH&Co. KG, Biberach, Germany (G.G.S., G.N.); Boehringer Ingelheim Pharma GmbH, Ingelheim, Germany (W.O.B.); and Hôpital Beaujon and INSERM UMR773, Université Denis Diderot Paris 7, Paris, France (T.A.)
| | - Gerhard G Steinmann
- Boehringer Ingelheim Pharma Inc., Ridgefield, Connecticut (R.S.S., Q.H., Y.L., L.P., K.M., S.O., M.E.T., J.O.S., D.T.); Boehringer Ingelheim Pharma GmbH&Co. KG, Biberach, Germany (G.G.S., G.N.); Boehringer Ingelheim Pharma GmbH, Ingelheim, Germany (W.O.B.); and Hôpital Beaujon and INSERM UMR773, Université Denis Diderot Paris 7, Paris, France (T.A.)
| | - Qihong Huang
- Boehringer Ingelheim Pharma Inc., Ridgefield, Connecticut (R.S.S., Q.H., Y.L., L.P., K.M., S.O., M.E.T., J.O.S., D.T.); Boehringer Ingelheim Pharma GmbH&Co. KG, Biberach, Germany (G.G.S., G.N.); Boehringer Ingelheim Pharma GmbH, Ingelheim, Germany (W.O.B.); and Hôpital Beaujon and INSERM UMR773, Université Denis Diderot Paris 7, Paris, France (T.A.)
| | - Yongmei Li
- Boehringer Ingelheim Pharma Inc., Ridgefield, Connecticut (R.S.S., Q.H., Y.L., L.P., K.M., S.O., M.E.T., J.O.S., D.T.); Boehringer Ingelheim Pharma GmbH&Co. KG, Biberach, Germany (G.G.S., G.N.); Boehringer Ingelheim Pharma GmbH, Ingelheim, Germany (W.O.B.); and Hôpital Beaujon and INSERM UMR773, Université Denis Diderot Paris 7, Paris, France (T.A.)
| | - Lalitha Podila
- Boehringer Ingelheim Pharma Inc., Ridgefield, Connecticut (R.S.S., Q.H., Y.L., L.P., K.M., S.O., M.E.T., J.O.S., D.T.); Boehringer Ingelheim Pharma GmbH&Co. KG, Biberach, Germany (G.G.S., G.N.); Boehringer Ingelheim Pharma GmbH, Ingelheim, Germany (W.O.B.); and Hôpital Beaujon and INSERM UMR773, Université Denis Diderot Paris 7, Paris, France (T.A.)
| | - Kirsten Mease
- Boehringer Ingelheim Pharma Inc., Ridgefield, Connecticut (R.S.S., Q.H., Y.L., L.P., K.M., S.O., M.E.T., J.O.S., D.T.); Boehringer Ingelheim Pharma GmbH&Co. KG, Biberach, Germany (G.G.S., G.N.); Boehringer Ingelheim Pharma GmbH, Ingelheim, Germany (W.O.B.); and Hôpital Beaujon and INSERM UMR773, Université Denis Diderot Paris 7, Paris, France (T.A.)
| | - Stephen Olson
- Boehringer Ingelheim Pharma Inc., Ridgefield, Connecticut (R.S.S., Q.H., Y.L., L.P., K.M., S.O., M.E.T., J.O.S., D.T.); Boehringer Ingelheim Pharma GmbH&Co. KG, Biberach, Germany (G.G.S., G.N.); Boehringer Ingelheim Pharma GmbH, Ingelheim, Germany (W.O.B.); and Hôpital Beaujon and INSERM UMR773, Université Denis Diderot Paris 7, Paris, France (T.A.)
| | - Mitchell E Taub
- Boehringer Ingelheim Pharma Inc., Ridgefield, Connecticut (R.S.S., Q.H., Y.L., L.P., K.M., S.O., M.E.T., J.O.S., D.T.); Boehringer Ingelheim Pharma GmbH&Co. KG, Biberach, Germany (G.G.S., G.N.); Boehringer Ingelheim Pharma GmbH, Ingelheim, Germany (W.O.B.); and Hôpital Beaujon and INSERM UMR773, Université Denis Diderot Paris 7, Paris, France (T.A.)
| | - Jerry O Stern
- Boehringer Ingelheim Pharma Inc., Ridgefield, Connecticut (R.S.S., Q.H., Y.L., L.P., K.M., S.O., M.E.T., J.O.S., D.T.); Boehringer Ingelheim Pharma GmbH&Co. KG, Biberach, Germany (G.G.S., G.N.); Boehringer Ingelheim Pharma GmbH, Ingelheim, Germany (W.O.B.); and Hôpital Beaujon and INSERM UMR773, Université Denis Diderot Paris 7, Paris, France (T.A.)
| | - Gerhard Nehmiz
- Boehringer Ingelheim Pharma Inc., Ridgefield, Connecticut (R.S.S., Q.H., Y.L., L.P., K.M., S.O., M.E.T., J.O.S., D.T.); Boehringer Ingelheim Pharma GmbH&Co. KG, Biberach, Germany (G.G.S., G.N.); Boehringer Ingelheim Pharma GmbH, Ingelheim, Germany (W.O.B.); and Hôpital Beaujon and INSERM UMR773, Université Denis Diderot Paris 7, Paris, France (T.A.)
| | - Wulf O Böcher
- Boehringer Ingelheim Pharma Inc., Ridgefield, Connecticut (R.S.S., Q.H., Y.L., L.P., K.M., S.O., M.E.T., J.O.S., D.T.); Boehringer Ingelheim Pharma GmbH&Co. KG, Biberach, Germany (G.G.S., G.N.); Boehringer Ingelheim Pharma GmbH, Ingelheim, Germany (W.O.B.); and Hôpital Beaujon and INSERM UMR773, Université Denis Diderot Paris 7, Paris, France (T.A.)
| | - Tarik Asselah
- Boehringer Ingelheim Pharma Inc., Ridgefield, Connecticut (R.S.S., Q.H., Y.L., L.P., K.M., S.O., M.E.T., J.O.S., D.T.); Boehringer Ingelheim Pharma GmbH&Co. KG, Biberach, Germany (G.G.S., G.N.); Boehringer Ingelheim Pharma GmbH, Ingelheim, Germany (W.O.B.); and Hôpital Beaujon and INSERM UMR773, Université Denis Diderot Paris 7, Paris, France (T.A.)
| | - Donald Tweedie
- Boehringer Ingelheim Pharma Inc., Ridgefield, Connecticut (R.S.S., Q.H., Y.L., L.P., K.M., S.O., M.E.T., J.O.S., D.T.); Boehringer Ingelheim Pharma GmbH&Co. KG, Biberach, Germany (G.G.S., G.N.); Boehringer Ingelheim Pharma GmbH, Ingelheim, Germany (W.O.B.); and Hôpital Beaujon and INSERM UMR773, Université Denis Diderot Paris 7, Paris, France (T.A.)
| |
Collapse
|
202
|
Surendradoss J, Chang TKH, Abbott FS. Evaluation of in situ generated valproyl 1-O-β-acyl glucuronide in valproic acid toxicity in sandwich-cultured rat hepatocytes. Drug Metab Dispos 2014; 42:1834-42. [PMID: 25147275 DOI: 10.1124/dmd.114.059352] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Acyl glucuronides are reactive electrophilic metabolites implicated in the toxicity of carboxylic acid drugs. Valproyl 1-O-β-acyl glucuronide (VPA-G), which is a major metabolite of valproic acid (VPA), has been linked to the development of oxidative stress in VPA-treated rats. However, relatively little is known about the toxicity of in situ generated VPA-G and its contribution to VPA hepatotoxicity. Therefore, we investigated the effects of modulating the in situ formation of VPA-G on lactate dehydrogenase (LDH) release (a marker of necrosis), BODIPY 558/568 C12 accumulation (a marker of steatosis), and cellular glutathione (GSH) content in VPA-treated sandwich-cultured rat hepatocytes. VPA increased LDH release and BODIPY 558/568 C12 accumulation, whereas it had little or no effect on total GSH content. Among the various uridine 5'-diphospho-glucuronosyltransferase inducers evaluated, β-naphthoflavone produced the greatest increase in VPA-G formation. This was accompanied by an attenuation of the increase in BODIPY 558/568 C12 accumulation, but did not affect the change in LDH release or total GSH content in VPA-treated hepatocytes. Inhibition of in situ formation of VPA-G by borneol was not accompanied by substantive changes in the effects of VPA on any of the toxicity markers. In a comparative study, in situ generated diclofenac glucuronide was not toxic to rat hepatocytes, as assessed using the same chemical modulators, thereby demonstrating the utility of the sandwich-cultured rat hepatocyte model. Overall, in situ generated VPA-G was not toxic to sandwich-cultured rat hepatocytes, suggesting that VPA glucuronidation per se is not expected to be a contributing mechanism for VPA hepatotoxicity.
Collapse
Affiliation(s)
- Jayakumar Surendradoss
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Thomas K H Chang
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Frank S Abbott
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
203
|
Powell J, Farasyn T, Köck K, Meng X, Pahwa S, Brouwer KLR, Yue W. Novel mechanism of impaired function of organic anion-transporting polypeptide 1B3 in human hepatocytes: post-translational regulation of OATP1B3 by protein kinase C activation. Drug Metab Dispos 2014; 42:1964-70. [PMID: 25200870 PMCID: PMC4201128 DOI: 10.1124/dmd.114.056945] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 09/08/2014] [Indexed: 01/11/2023] Open
Abstract
The organic anion-transporting polypeptide (OATP) 1B3 is a membrane transport protein that mediates hepatic uptake of many drugs and endogenous compounds. Currently, determination of OATP-mediated drug-drug interactions in vitro is focused primarily on direct substrate inhibition. Indirect inhibition of OATP1B3 activity is under-appreciated. OATP1B3 has putative protein kinase C (PKC) phosphorylation sites. Studies were designed to determine the effect of PKC activation on OATP1B3-mediated transport in human hepatocytes using cholecystokinin-8 (CCK-8), a specific OATP1B3 substrate, as the probe. A PKC activator, phorbol-12-myristate-13-acetate (PMA), did not directly inhibit [(3)H]CCK-8 accumulation in human sandwich-cultured hepatocytes (SCH). However, pretreatment with PMA for as little as 10 minutes rapidly decreased [(3)H]CCK-8 accumulation. Treatment with a PKC inhibitor bisindolylmaleimide (BIM) I prior to PMA treatment blocked the inhibitory effect of PMA, indicating PKC activation is essential for downregulating OATP1B3 activity. PMA pretreatment did not affect OATP1B3 mRNA or total protein levels. To determine the mechanism(s) underlying the indirect inhibition of OATP1B3 activity upon PKC activation, adenoviral vectors expressing FLAG-Myc-tagged OATP1B3 (Ad-OATP1B3) were transduced into human hepatocytes; surface expression and phosphorylation of OATP1B3 were determined by biotinylation and by an anti-phosphor-Ser/Thr/Tyr antibody, respectively. PMA pretreatment markedly increased OATP1B3 phosphorylation without affecting surface or total OATP1B3 protein levels. In conclusion, PKC activation rapidly decreases OATP1B3 transport activity by post-translational regulation of OATP1B3. These studies elucidate a novel indirect inhibitory mechanism affecting hepatic uptake mediated by OATP1B3, and provide new insights into predicting OATP-mediated drug interactions between OATP substrates and kinase modulator drugs/endogenous compounds.
Collapse
Affiliation(s)
- John Powell
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center (J.P., T.F., X.M., S.P., W.Y.); Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.K., K.L.R.B.)
| | - Taleah Farasyn
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center (J.P., T.F., X.M., S.P., W.Y.); Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.K., K.L.R.B.)
| | - Kathleen Köck
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center (J.P., T.F., X.M., S.P., W.Y.); Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.K., K.L.R.B.)
| | - Xiaojie Meng
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center (J.P., T.F., X.M., S.P., W.Y.); Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.K., K.L.R.B.)
| | - Sonia Pahwa
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center (J.P., T.F., X.M., S.P., W.Y.); Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.K., K.L.R.B.)
| | - Kim L R Brouwer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center (J.P., T.F., X.M., S.P., W.Y.); Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.K., K.L.R.B.)
| | - Wei Yue
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center (J.P., T.F., X.M., S.P., W.Y.); Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.K., K.L.R.B.)
| |
Collapse
|
204
|
Wilk-Zasadna I, Bernasconi C, Pelkonen O, Coecke S. Biotransformation in vitro: An essential consideration in the quantitative in vitro-to-in vivo extrapolation (QIVIVE) of toxicity data. Toxicology 2014; 332:8-19. [PMID: 25456264 DOI: 10.1016/j.tox.2014.10.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 06/11/2014] [Accepted: 10/11/2014] [Indexed: 12/14/2022]
Abstract
Early consideration of the multiplicity of factors that govern the biological fate of foreign compounds in living systems is a necessary prerequisite for the quantitative in vitro-in vivo extrapolation (QIVIVE) of toxicity data. Substantial technological advances in in vitro methodologies have facilitated the study of in vitro metabolism and the further use of such data for in vivo prediction. However, extrapolation to in vivo with a comfortable degree of confidence, requires continuous progress in the field to address challenges such as e.g., in vitro evaluation of chemical-chemical interactions, accounting for individual variability but also analytical challenges for ensuring sensitive measurement technologies. This paper discusses the current status of in vitro metabolism studies for QIVIVE extrapolation, serving today's hazard and risk assessment needs. A short overview of the methodologies for in vitro metabolism studies is given. Furthermore, recommendations for priority research and other activities are provided to ensure further widespread uptake of in vitro metabolism methods in 21st century toxicology. The need for more streamlined and explicitly described integrated approaches to reflect the physiology and the related dynamic and kinetic processes of the human body is highlighted i.e., using in vitro data in combination with in silico approaches.
Collapse
Affiliation(s)
- Iwona Wilk-Zasadna
- Systems Toxicology Unit/EURL ECVAM, Institute for Health and Consumer Protection, European Commission Joint Research Centre, Ispra, Varese I-21027, Italy
| | - Camilla Bernasconi
- Systems Toxicology Unit/EURL ECVAM, Institute for Health and Consumer Protection, European Commission Joint Research Centre, Ispra, Varese I-21027, Italy
| | - Olavi Pelkonen
- Department of Pharmacology and Toxicology, Institute of Biomedicine, University of Oulu, Oulu, Finland
| | - Sandra Coecke
- Systems Toxicology Unit/EURL ECVAM, Institute for Health and Consumer Protection, European Commission Joint Research Centre, Ispra, Varese I-21027, Italy.
| |
Collapse
|
205
|
Mass balance, metabolite profile, and in vitro-in vivo comparison of clearance pathways of deleobuvir, a hepatitis C virus polymerase inhibitor. Antimicrob Agents Chemother 2014; 59:25-37. [PMID: 25313217 DOI: 10.1128/aac.03861-14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The pharmacokinetics, mass balance, and metabolism of deleobuvir, a hepatitis C virus (HCV) polymerase inhibitor, were assessed in healthy subjects following a single oral dose of 800 mg of [(14)C]deleobuvir (100 μCi). The overall recovery of radioactivity was 95.2%, with 95.1% recovered from feces. Deleobuvir had moderate to high clearance, and the half-life of deleobuvir and radioactivity in plasma were ∼ 3 h, indicating that there were no metabolites with half-lives significantly longer than that of the parent. The most frequently reported adverse events (in 6 of 12 subjects) were gastrointestinal disorders. Two major metabolites of deleobuvir were identified in plasma: an acyl glucuronide and an alkene reduction metabolite formed in the gastrointestinal (GI) tract by gut bacteria (CD 6168), representing ∼ 20% and 15% of the total drug-related material, respectively. Deleobuvir and CD 6168 were the main components in the fecal samples, each representing ∼ 30 to 35% of the dose. The majority of the remaining radioactivity found in the fecal samples (∼ 21% of the dose) was accounted for by three metabolites in which deleobuvir underwent both alkene reduction and monohydroxylation. In fresh human hepatocytes that form biliary canaliculi in sandwich cultures, the biliary excretion for these excretory metabolites was markedly higher than that for deleobuvir and CD 6168, implying that rapid biliary elimination upon hepatic formation may underlie the absence of these metabolites in circulation. The low in vitro clearance was not predictive of the observed in vivo clearance, likely because major deleobuvir biotransformation occurred by non-CYP450-mediated enzymes that are not well represented in hepatocyte-based in vitro models.
Collapse
|
206
|
Fahrmayr C, König J, Auge D, Mieth M, Münch K, Segrestaa J, Pfeifer T, Treiber A, Fromm M. Phase I and II metabolism and MRP2-mediated export of bosentan in a MDCKII-OATP1B1-CYP3A4-UGT1A1-MRP2 quadruple-transfected cell line. Br J Pharmacol 2014; 169:21-33. [PMID: 23387445 DOI: 10.1111/bph.12126] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 12/05/2012] [Accepted: 12/16/2012] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Hepatic uptake (e.g. by OATP1B1), phase I and II metabolism (e.g. by CYP3A4, UGT1A1) and subsequent biliary excretion (e.g. by MRP2) are key determinants for the pharmacokinetics of numerous drugs. However, stably transfected cell models for the simultaneous investigation of transport and phase I and II metabolism of drugs are lacking. EXPERIMENTAL APPROACH A newly established quadruple-transfected MDCKII-OATP1B1-CYP3A4-UGT1A1-MRP2 cell line was used to investigate metabolism and transcellular transport of the endothelin receptor antagonist bosentan. KEY RESULTS Intracellular accumulation of bosentan equivalents (i.e. parent compound and metabolites) was significantly lower in all cell lines expressing MRP2 compared to cell lines lacking this transporter (P < 0.001). Accordingly, considerably higher amounts of bosentan equivalents were detectable in the apical compartments of cell lines with MRP2 expression (P < 0.001). HPLC and LC-MS measurements revealed that mainly unchanged bosentan accumulated in intracellular and apical compartments. Furthermore, the phase I metabolites Ro 48-5033 and Ro 47-8634 were detected intracellularly in cell lines expressing CYP3A4. Additionally, a direct glucuronide of bosentan could be identified intracellularly in cell lines expressing UGT1A1 and in the apical compartments of cell lines expressing UGT1A1 and MRP2. CONCLUSIONS AND IMPLICATIONS These in vitro data indicate that bosentan is a substrate of UGT1A1. Moreover, the efflux transporter MRP2 mediates export of bosentan and most likely also of bosentan glucuronide in the cell system. Taken together, cell lines simultaneously expressing transport proteins and metabolizing enzymes represent additional useful tools for the investigation of the interplay of transport and metabolism of drugs.
Collapse
Affiliation(s)
- C Fahrmayr
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
207
|
Wu ZT, Qi XM, Sheng JJ, Ma LL, Ni X, Ren J, Huang CG, Pan GY. Timosaponin A3 induces hepatotoxicity in rats through inducing oxidative stress and down-regulating bile acid transporters. Acta Pharmacol Sin 2014; 35:1188-98. [PMID: 25087997 PMCID: PMC4155534 DOI: 10.1038/aps.2014.65] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 05/20/2014] [Indexed: 12/16/2022]
Abstract
Aim: To investigate the mechanisms underlying the hepatotoxicity of timosaponin A3 (TA3), a steroidal saponin from Anemarrhena asphodeloides, in rats. Methods: Male SD rats were administered TA3 (100 mg·kg−1·d−1, po) for 14 d, and the blood and bile samples were collected after the final administration. The viability of a sandwich configuration of cultured rat hepatocytes (SCRHs) was assessed using WST-1. Accumulation and biliary excretion index (BEI) of d8-TCA in SCRHs were determined with LC-MS/MS. RT-PCR and Western blot were used to analyze the expression of relevant genes and proteins. ROS and ATP levels, and mitochondrial membrane potential (MMP) were measured. F-actin cytoskeletal integrity was assessed under confocal microscopy. Results: TA3 administration in rats significantly elevated the total bile acid in serum, and decreased bile acid (BA) component concentrations in bile. TA3 inhibited the viability of the SCRHs with an IC50 value of 15.21±1.73 μmol/L. Treatment of the SCRHs with TA3 (1–10 μmol/L) for 2 and 24 h dose-dependently decreased the accumulation and BEI of d8-TCA. The TA3 treatment dose-dependently decreased the expression of BA transporters Ntcp, Bsep and Mrp2, and BA biosynthesis related Cyp7a1 in hepatocytes. Furthermore, the TA3 treatment dose-dependently increased ROS generation and HO-1 expression, decreased the ATP level and MMP, and disrupted F-actin in the SCRHs. NAC (5 mmol/L) significantly ameliorated TA3-induced effects in the SCRHs, whereas mangiferin (10–200 μg/mL) almost blocked TA3-induced ROS generation. Conclusion: TA3 triggers liver injury through inducing ROS generation and suppressing the expression of BA transporters. Mangiferin, an active component in Anemarrhena, may protect hepatocytes from TA3-induced hepatotoxicity.
Collapse
|
208
|
Ferslew BC, Köck K, Bridges AS, Brouwer KLR. Role of multidrug resistance-associated protein 4 in the basolateral efflux of hepatically derived enalaprilat. Drug Metab Dispos 2014; 42:1567-74. [PMID: 24958844 PMCID: PMC4152871 DOI: 10.1124/dmd.114.057554] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 06/23/2014] [Indexed: 01/01/2023] Open
Abstract
Hepatic uptake and efflux transporters govern the systemic and hepatic exposure of many drugs and metabolites. Enalapril is a pharmacologically inactive prodrug of enalaprilat. Following oral administration, enalapril is converted to enalaprilat in hepatocytes and undergoes translocation into the systemic circulation to exert its pharmacologic effect by inhibiting angiotensin-converting enzyme. Although the transport proteins governing hepatic uptake of enalapril and the biliary excretion of enalapril and enalaprilat are well established, it remains unknown how hepatically derived enalaprilat translocates across the basolateral membrane into the systemic circulation. In this study, the role of ATP-binding cassette transporters in the hepatic basolateral efflux of enalaprilat was investigated using membrane vesicles. ATP-dependent uptake of enalaprilat into vesicles expressing multidrug resistance-associated protein (MRP) 4 was significantly greater (∼3.8-fold) than in control vesicles. In contrast, enalaprilat was not transported to a significant extent by MRP3, and enalapril was not transported by either MRP3 or MRP4. The functional importance of MRP4 in the basolateral excretion of derived enalaprilat was evaluated using a novel basolateral efflux protocol developed in human sandwich-cultured hepatocytes. Under normal culture conditions, the mean intrinsic basolateral efflux clearance (CLint ,basolateral) of enalaprilat was 0.026 ± 0.012 µl/min; enalaprilat CLint,basolateral was significantly reduced to 0.009 ± 0.009 µl/min by pretreatment with the pan-MRP inhibitor MK-571. Results suggest that hepatically derived enalaprilat is excreted across the hepatic basolateral membrane by MRP4. Changes in MRP4-mediated basolateral efflux may alter the systemic concentrations of this active metabolite, and potentially the efficacy of enalapril.
Collapse
Affiliation(s)
- Brian C Ferslew
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy (B.C.F., K.K., K.L.R.B.) and Department of Pathology, UNC School of Medicine (A.S.B.), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Kathleen Köck
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy (B.C.F., K.K., K.L.R.B.) and Department of Pathology, UNC School of Medicine (A.S.B.), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Arlene S Bridges
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy (B.C.F., K.K., K.L.R.B.) and Department of Pathology, UNC School of Medicine (A.S.B.), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Kim L R Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy (B.C.F., K.K., K.L.R.B.) and Department of Pathology, UNC School of Medicine (A.S.B.), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
209
|
Vellonen KS, Malinen M, Mannermaa E, Subrizi A, Toropainen E, Lou YR, Kidron H, Yliperttula M, Urtti A. A critical assessment of in vitro tissue models for ADME and drug delivery. J Control Release 2014; 190:94-114. [DOI: 10.1016/j.jconrel.2014.06.044] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/22/2014] [Accepted: 06/23/2014] [Indexed: 12/22/2022]
|
210
|
Abstract
Numerous drugs have been shown to inhibit the activity of the Bile Salt Export Pump (BSEP in humans, Bsep in animals), and this is now considered to be one of several mechanisms by which idiosyncratic drug-induced liver injury (DILI) may be initiated in susceptible patients. The potential importance of BSEP inhibition by drugs has been recognized by the European Medicines Agency and the International Transporter Consortium, who have recommended that it should be evaluated during drug development when evidence of cholestatic liver injury has been observed in nonclinical safety studies or in human clinical trials. In addition, some pharmaceutical companies have proposed evaluation and minimization of BSEP inhibition during drug discovery, when there is a chemical choice, to help reduce DILI risk. The methods that can be used to assess and quantify BSEP inhibition, and key gaps in our current understanding of the relationship between this process and DILI, are discussed.
Collapse
Affiliation(s)
- J Gerry Kenna
- Safety Science Consultant, Macclesfield, Cheshire, United Kingdom
| |
Collapse
|
211
|
He J, Yu Y, Prasad B, Link J, Miyaoka RS, Chen X, Unadkat JD. PET Imaging of Oatp-Mediated Hepatobiliary Transport of [11C] Rosuvastatin in the Rat. Mol Pharm 2014; 11:2745-54. [DOI: 10.1021/mp500027c] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jiake He
- Department
of Pharmaceutics, University of Washington, Seattle, Washington 98195, United States
- Center
of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, Jiangsu 210009, People’s Republic of China
| | - Yang Yu
- Department
of Pharmaceutics, University of Washington, Seattle, Washington 98195, United States
| | - Bhagwat Prasad
- Department
of Pharmaceutics, University of Washington, Seattle, Washington 98195, United States
| | - Jeanne Link
- Department
of Radiology, University of Washington, Seattle, Washington 98195, United States
| | - Robert S. Miyaoka
- Department
of Radiology, University of Washington, Seattle, Washington 98195, United States
| | - Xijing Chen
- Center
of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, Jiangsu 210009, People’s Republic of China
| | - Jashvant D. Unadkat
- Department
of Pharmaceutics, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
212
|
Yang K, Brouwer KLR. Hepatocellular exposure of troglitazone metabolites in rat sandwich-cultured hepatocytes lacking Bcrp and Mrp2: interplay between formation and excretion. Drug Metab Dispos 2014; 42:1219-26. [PMID: 24799397 PMCID: PMC4053994 DOI: 10.1124/dmd.114.057190] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Accepted: 05/05/2014] [Indexed: 11/22/2022] Open
Abstract
Inhibition of bile acid transport by troglitazone (TGZ) and its major metabolite, TGZ sulfate (TS), may lead to hepatocellular accumulation of toxic bile acids; TS accumulation and hepatotoxicity may be associated with impaired TS biliary excretion. This study evaluated the impact of impaired transport of breast cancer resistance protein (Bcrp) and multidrug resistance-associated protein 2 (Mrp2) on the hepatobiliary disposition of generated metabolites, TS and TGZ glucuronide (TG). Sandwich-cultured hepatocytes (SCH) from Mrp2-deficient (TR(-)) rats in combination with Bcrp knockdown using RNA interference were employed. The biliary excretion index (BEI) of generated TS was not significantly altered by impaired Bcrp (20.9 to 21.1%) and/or Mrp2 function (24.4% and 17.5% in WT and TR(-) rat SCH, respectively). Thus, loss-of-function of Mrp2 and/or Bcrp do not appear to be risk factors for increased hepatocellular TS accumulation in rats, potentially because of a compensatory transporter(s) that excretes TS into bile. Further investigations revealed that the compensatory TS biliary transporter was not the bile salt export pump (Bsep) or P-glycoprotein (P-gp). Interestingly, TGZ sulfation was significantly decreased in TR(-) compared with WT rat SCH (total recovery: 2.8 versus 5.0% of TGZ dose), resulting in decreased hepatocellular TS accumulation, even though sulfotransferase activity in TR(-) rat hepatocyte S9 fraction was similar. Hepatocellular TG accumulation was significantly increased in TR(-) compared with WT rat SCH due to increased glucuronidation and negligible TG biliary excretion. These data emphasize that the interplay between metabolite formation and excretion determines hepatocellular exposure to generated metabolites such as TS and TG.
Collapse
Affiliation(s)
- Kyunghee Yang
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Kim L R Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
213
|
Miszczuk GS, Barosso IR, Zucchetti AE, Boaglio AC, Pellegrino JM, Sánchez Pozzi EJ, Roma MG, Crocenzi FA. Sandwich-cultured rat hepatocytes as an in vitro model to study canalicular transport alterations in cholestasis. Arch Toxicol 2014; 89:979-90. [PMID: 24912783 DOI: 10.1007/s00204-014-1283-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 05/20/2014] [Indexed: 12/28/2022]
Abstract
At present, it has not been systematically evaluated whether the functional alterations induced by cholestatic compounds in canalicular transporters involved in bile formation can be reproduced in sandwich-cultured rat hepatocytes (SCRHs). Here, we focused on two clinically relevant cholestatic agents, such as estradiol 17β-D-glucuronide (E17G) and taurolithocholate (TLC), also testing the ability of dibutyryl cyclic AMP (DBcAMP) to prevent their effects. SCRHs were incubated with E17G (200 µM) or TLC (2.5 µM) for 30 min, with or without pre-incubation with DBcAMP (10 µM) for 15 min. Then, the increase in glutathione methyl fluorescein (GS-MF)-associated fluorescence inside the canaliculi was monitored by quantitative time-lapse imaging, and Mrp2 transport activity was calculated by measuring the slope of the time-course fluorescence curves during the initial linear phase, which was considered to be the Mrp2-mediated initial transport rate (ITR). E17G and TLC impaired canalicular bile formation, as evidenced by a decrease in both the bile canaliculus volume and the bile canaliculus width, estimated from 3D and 2D confocal images, respectively. These compounds decreased ITR and induced retrieval of Mrp2, a main pathomechanism involved in their cholestatic effects. Finally, DBcAMP prevented these effects, and its well-known choleretic effect was evident from the increase in the canalicular volume/width values; this choleretic effect is associated in part with its capability to increase Mrp2 activity, evidenced here by the increase in ITR of GS-MF. Our study supports the use of SCRHs as an in vitro model useful to quantify canalicular transport function under conditions of cholestasis and choleresis.
Collapse
Affiliation(s)
- Gisel S Miszczuk
- Instituto de Fisiología Experimental (IFISE) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas - Universidad Nacional de Rosario (UNR), Suipacha 570, S2002LRL, Rosario, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
214
|
Buck LD, Inman SW, Rusyn I, Griffith LG. Co-regulation of primary mouse hepatocyte viability and function by oxygen and matrix. Biotechnol Bioeng 2014; 111:1018-27. [PMID: 24222008 PMCID: PMC4110975 DOI: 10.1002/bit.25152] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 09/18/2013] [Accepted: 11/06/2013] [Indexed: 01/02/2023]
Abstract
Although oxygen and extracellular matrix cues both influence differentiation state and metabolic function of primary rat and human hepatocytes, relatively little is known about how these factors together regulate behaviors of primary mouse hepatocytes in culture. To determine the effects of pericellular oxygen tension on hepatocellular function, we employed two methods of altering oxygen concentration in the local cellular microenvironment of cells cultured in the presence or absence of an extracellular matrix (Matrigel) supplement. By systematically altering medium depth and gas phase oxygen tension, we created multiple oxygen regimes (hypoxic, normoxic, and hyperoxic) and measured the local oxygen concentrations in the pericellular environment using custom-designed oxygen microprobes. From these measurements of oxygen concentrations, we derived values of oxygen consumption rates under a spectrum of environmental contexts, thus providing the first reported estimates of these values for primary mouse hepatocytes. Oxygen tension and matrix microenvironment were found to synergistically regulate hepatocellular survival and function as assessed using quantitative image analysis for cells stained with vital dyes, and assessment of secretion of albumin. Hepatocellular viability was affected only at strongly hypoxic conditions. Surprisingly, albumin secretion rates were greatest at a moderately supra-physiological oxygen concentration, and this effect was mitigated at still greater supra-physiological concentrations. Matrigel enhanced the effects of oxygen on retention of function. This study underscores the importance of carefully controlling cell density, medium depth, and gas phase oxygen, as the effects of these parameters on local pericellular oxygen tension and subsequent hepatocellular function are profound.
Collapse
Affiliation(s)
- Lorenna D. Buck
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, USA
| | - S. Walker Inman
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, USA
| | - Ivan Rusyn
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC, USA
| | - Linda G. Griffith
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, USA
| |
Collapse
|
215
|
Roth A, Singer T. The application of 3D cell models to support drug safety assessment: opportunities & challenges. Adv Drug Deliv Rev 2014; 69-70:179-89. [PMID: 24378580 DOI: 10.1016/j.addr.2013.12.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 12/13/2013] [Accepted: 12/17/2013] [Indexed: 12/29/2022]
Abstract
The selection of drug candidates early in development has become increasingly important to minimize the use of animals and to avoid costly failures of drugs later in development. In vitro systems to predict and assess organ toxicity have so far been of limited value due to difficulties in demonstrating in vivo-relevant toxicity at a cell culture level. To overcome the limitations of single-cell type monolayer cultures and short-lived primary cell preparations, researchers have created novel 3-dimensional culture systems which appear to more closely resemble in vivo biology. These could become a key for the pharmaceutical industry in the evaluation of drug candidates. However, the value and acceptance of those new models in standard drug safety applications have yet to be demonstrated. This review aims to provide an overview of the different approaches undertaken in the field of pre-clinical safety assessment, organ toxicity, in particular, with an emphasis on examples and technical challenges.
Collapse
Affiliation(s)
- Adrian Roth
- F. Hoffmann-La Roche Ltd., Pharma Research, 4070 Basel, Switzerland
| | - Thomas Singer
- F. Hoffmann-La Roche Ltd., Pharma Research, 4070 Basel, Switzerland
| |
Collapse
|
216
|
Tetsuka K, Gerst N, Tamura K, Masters JN. Species differences in sinusoidal and canalicular efflux transport of mycophenolic acid 7-O-glucuronide in sandwich-cultured hepatocytes. Pharmacol Res Perspect 2014; 2:e00035. [PMID: 25505584 PMCID: PMC4184707 DOI: 10.1002/prp2.35] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 02/22/2014] [Indexed: 01/30/2023] Open
Abstract
Metabolism and sinusoidal/canalicular efflux of mycophenolic acid (MPA) was investigated using sandwich-cultured hepatocytes (SCHs). After applying MPA to SCHs from humans, wild-type rats, and multidrug resistance-associated protein (Mrp) 2-deficient rats, the MPA metabolites 7-O-glucuronide (MPAG) and acyl glucuronide (AcMPAG) were detected in the intracellular compartment of the SCHs. Sinusoidal efflux of MPAG was detected in all SCH preparations including Mrp2-deficient rat SCHs, whereas canalicular efflux of MPAG was observed in wild-type rat and human SCHs but not in Mrp2-deficient rat SCHs. The ratio of canalicular efflux to net (canalicular plus sinusoidal) efflux was 37 ± 8% in wild-type rat SCHs, while the ratio in human SCHs was significantly lower (20 ± 2%, P < 0.05), indicating species differences in the direction of hepatic MPAG transport. This 20% ratio in human SCHs corresponds to a high sinusoidal MPAG efflux (80%) that can in part account for the urine-dominated recovery of MPAG in humans. Both sinusoidal and canalicular MPAG efflux in rat SCHs shows a good correspondence to urinary and biliary recovery of MPAG after MPA dosing. The sinusoidal efflux of AcMPAG in human SCHs was detected from one out of three donors, suggesting donor-to-donor variation. In conclusion, this study demonstrates the predictive value of SCHs for elucidating the interplay of metabolism and efflux transport, in addition to demonstrating a species difference between rat and human in sinusoidal and canalicular efflux of MPAG.
Collapse
Affiliation(s)
- Kazuhiro Tetsuka
- Astellas Research Institute of America LLC 8045 Lamon Ave., Skokie, Illinois, 60077
| | - Nicolas Gerst
- Astellas Research Institute of America LLC 8045 Lamon Ave., Skokie, Illinois, 60077
| | - Kouichi Tamura
- Astellas Research Institute of America LLC 8045 Lamon Ave., Skokie, Illinois, 60077
| | - Jeffrey N Masters
- Astellas Research Institute of America LLC 8045 Lamon Ave., Skokie, Illinois, 60077
| |
Collapse
|
217
|
De Bruyn T, Sempels W, Snoeys J, Holmstock N, Chatterjee S, Stieger B, Augustijns P, Hofkens J, Mizuno H, Annaert P. Confocal imaging with a fluorescent bile acid analogue closely mimicking hepatic taurocholate disposition. J Pharm Sci 2014; 103:1872-81. [PMID: 24652646 DOI: 10.1002/jps.23933] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 02/18/2014] [Accepted: 02/18/2014] [Indexed: 11/07/2022]
Abstract
This study aimed to characterize the in vitro hepatic transport mechanisms in primary rat and human hepatocytes of the fluorescent bile acid derivative N-(24-[7-(4-N,N-dimethylaminosulfonyl-2,1,3-benzoxadiazole)]amino-3α,7α,12α-trihydroxy-27-nor-5β-cholestan-26-oyl)-2'-aminoethanesulfonate (tauro-nor-THCA-24-DBD), previously synthesized to study the activity of the bile salt export pump (BSEP). The fluorescent bile acid derivative exhibited saturable uptake kinetics in suspended rat hepatocytes. Hepatic uptake was inhibited in the presence of substrates/inhibitors of the organic anion transporting polypeptide (Oatp) family and Na(+) -taurocholate cotransporting peptide (Ntcp). Concentration-dependent uptake of the fluorescent bile acid was also saturable in Chinese hamster ovary cells transfected with rNtcp, hNTCP, OATP1B1, or OATP1B3. The fluorescent bile acid derivative was actively excreted in the bile canaliculi of sandwich-cultured rat and human hepatocytes (SCRH and SCHH), with a biliary excretion index (BEI) of 26% and 32%, respectively. In SCRH, cyclosporin A significantly decreased the BEI to 5%. Quantification by real-time confocal imaging further confirmed canalicular transport of the fluorescent bile acid derivative (BEI = 75%). We conclude that tauro-nor-THCA-24-DBD is a useful probe to study interference of drugs with NTCP/Ntcp- and BSEP/Bsep-mediated transport in fluorescence-based in vitro assays.
Collapse
Affiliation(s)
- Tom De Bruyn
- Drug Delivery and Disposition, KU Leuven Department of Pharmaceutical and Pharmacological Sciences, O&N2, Leuven, 3000, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
218
|
de Lima Toccafondo Vieira M, Tagliati CA. Hepatobiliary transporters in drug-induced cholestasis: a perspective on the current identifying tools. Expert Opin Drug Metab Toxicol 2014; 10:581-97. [PMID: 24588537 DOI: 10.1517/17425255.2014.884069] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Impaired bile formation leads to the accumulation of cytotoxic bile salts in hepatocytes and, consequently, cholestasis and severe liver disease. Knowledge of the role of hepatobiliary transporters, especially the bile salt export pump (BSEP), in the pathogenesis of cholestasis is continuously increasing. AREAS COVERED This review provides an introduction into the role of these transport proteins in bile formation. It addresses the clinical relevance and pathophysiologic consequences of altered functions of these transporters by genetic mutations and drugs. In particular, the current practical aspects of identification and mitigation of drug candidates with liver liabilities employed during drug development, with an emphasis on preclinical screening for BSEP interaction, are discussed. EXPERT OPINION Within the potential pathogenetic mechanisms of acquired cholestasis, the inhibition of BSEP by drugs is well established. Interference of a new compound with BSEP transport activity should raise a warning sign to conduct follow-up experiments and to monitor liver function during clinical development. A combination of in vitro screening for transport interaction, in silico predicting models, and consideration of physicochemical and metabolic properties should lead to a more efficient screening of potential liver liability.
Collapse
Affiliation(s)
- Manuela de Lima Toccafondo Vieira
- Faculdade de Farmácia - UFMG, Departamento de Análises Clínicas e Toxicológicas, Av. Antônio Carlos, 6.627 - Pampulha, 31270-901 - Belo Horizonte - MG , Brazil +55 31 3547 3462 ;
| | | |
Collapse
|
219
|
Ramsden D, Tweedie DJ, Chan TS, Taub ME, Li Y. Bridging in vitro and in vivo metabolism and transport of faldaprevir in human using a novel cocultured human hepatocyte system, HepatoPac. Drug Metab Dispos 2014; 42:394-406. [PMID: 24366904 DOI: 10.1124/dmd.113.055897] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
An increased appreciation of the importance of transporter and enzyme interplay in drug clearance and a desire to delineate these mechanisms necessitates the utilization of models that contain a full complement of enzymes and transporters at physiologically relevant activities. Additionally, the development of drugs with longer half-lives requires in vitro systems with extended incubation times that allow characterization of metabolic pathways for low-clearance drugs. A recently developed coculture hepatocyte model, HepatoPac, has been applied to meet these challenges. Faldaprevir is a drug in late-stage development for the treatment of hepatitis C. Faldaprevir is a low-clearance drug with the somewhat unique characteristic of being slowly metabolized, producing two abundant hydroxylated metabolites (M2a and M2b) in feces (∼40% of the dose) without exhibiting significant levels of circulating metabolites in humans. The human HepatoPac model was investigated to characterize the metabolism and transport of faldaprevir. In human HepatoPac cultures, M2a and M2b were the predominant metabolites formed, with extents of formation comparable to in vivo. Direct glucuronidation of faldaprevir was shown to be a minor metabolic pathway. HepatoPac studies also demonstrated that faldaprevir is concentrated in liver with active uptake by multiple transporters (including OATP1B1 and Na(+)-dependent transporters). Overall, human HepatoPac cultures provided valuable insights into the metabolism and disposition of faldaprevir in humans and demonstrated the importance of enzyme and transporter interplay in the clearance of the drug.
Collapse
Affiliation(s)
- Diane Ramsden
- Drug Metabolism & Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut
| | | | | | | | | |
Collapse
|
220
|
Ramsden D, Tweedie DJ, St George R, Chen LZ, Li Y. Generating an in vitro-in vivo correlation for metabolism and liver enrichment of a hepatitis C virus drug, faldaprevir, using a rat hepatocyte model (HepatoPac). Drug Metab Dispos 2014; 42:407-14. [PMID: 24366905 DOI: 10.1124/dmd.113.055947] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Hepatocytes provide an integrated model to study drug metabolism and disposition. As a result of a loss of polarity or a significant decrease in the expression of enzymes and transporters, suspended and sandwich-cultured hepatocytes have limitations in determining hepatocellular drug concentrations. Underprediction of the extent of glucuronidation is also a concern for these hepatocyte models. Faldaprevir is a hepatitis C virus protease inhibitor in late-stage development that has demonstrated significant liver enrichment in in vivo rat models based on quantitative whole-body autoradiography (QWBA) and liver-to-plasma area under-the-curve ratio. In bile duct cannulated rats, the primary biliary metabolite was a glucuronide. Owing to ethical concerns, it is difficult to assess liver enrichment in humans, and a lack of in vitro and in vivo correlation of glucuronidation has been reported. The current study was conducted to verify whether a hepatocyte model, rat HepatoPac, could overcome some of these limitations and provide validity for follow-up studies with human HepatoPac. With rat HepatoPac, liver enrichment values averaged 34-fold and were consistent with rat QWBA (26.8-fold) and in vivo data (42-fold). In contrast, liver enrichment in suspended hepatocytes was only 2.8-fold. Furthermore, the extent of faldaprevir glucuronidation in HepatoPac studies was in agreement with in vivo results, with glucuronidation as the major pathway (96%). Suspended rat hepatocytes did not generate the glucuronide or two key hydroxylated metabolites that were observed in vivo. Overall, our studies suggest that HepatoPac is a promising in vitro model to predict in vivo liver enrichment and metabolism, especially for glucuronidation, and has demonstrated superiority over suspended hepatocytes.
Collapse
Affiliation(s)
- Diane Ramsden
- Drug Metabolism & Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut
| | | | | | | | | |
Collapse
|
221
|
Garzel B, Yang H, Zhang L, Huang SM, Polli JE, Wang H. The role of bile salt export pump gene repression in drug-induced cholestatic liver toxicity. Drug Metab Dispos 2014; 42:318-22. [PMID: 24335466 PMCID: PMC3935137 DOI: 10.1124/dmd.113.054189] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 12/11/2013] [Indexed: 11/22/2022] Open
Abstract
The bile salt export pump (BSEP, ABCB11) is predominantly responsible for the efflux of bile salts, and disruption of BSEP function is often associated with altered hepatic homeostasis of bile acids and cholestatic liver injury. Accumulating evidence suggests that many drugs can cause cholestasis through interaction with hepatic transporters. To date, a relatively strong association between drug-induced cholestasis and attenuated BSEP activity has been proposed. However, whether repression of BSEP transcription would contribute to drug-induced cholestasis is largely unknown. In this study, we selected 30 drugs previously reported as BSEP inhibitors to evaluate their effects on BSEP expression, farnesoid X receptor (FXR) activation, and correlations to clinically reported liver toxicity. Our results indicate that of the 30 BSEP inhibitors, five exhibited potent repression of BSEP expression (≥60% repression), ten were moderate repressors (20-60% repression), whereas others had negligible effects (≤20% repression). Of importance, two drugs (troglitazone and benzbromarone), previously withdrawn from the market because of liver injury, are among the potent repressors. Further investigation of the five potent repressors revealed that transcriptional repression of BSEP by lopinavir and troglitazone may occur through their interaction with FXR, whereas others are via FXR-independent yet unidentified pathways. Our data suggest that in addition to functional inhibition, repression of BSEP expression may play an important role in drug-induced cholestatic liver toxicity. Thus, a combination of the two would reveal a more accurate prediction of drug-induced cholestasis than does either repression or inhibition alone.
Collapse
Affiliation(s)
- Brandy Garzel
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore Maryland (B.G., H.Y., J.E.P., H.W.) and Office of Clinical Pharmacology, Office of Translational Sciences, CDER, Food and Drug Administration, Silver Spring, Maryland (L.Z., S.H.)
| | | | | | | | | | | |
Collapse
|
222
|
Ferslew BC, Brouwer KLR. Identification of hepatic phospholipidosis inducers in sandwich-cultured rat hepatocytes, a physiologically relevant model, reveals altered basolateral uptake and biliary excretion of anionic probe substrates. Toxicol Sci 2014; 139:99-107. [PMID: 24563379 DOI: 10.1093/toxsci/kfu033] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Drug-induced phospholipidosis (PLD) is characterized by phospholipid accumulation within the lysosomes of affected tissues, resulting in lysosomal enlargement and laminar body inclusions. Numerous adverse effects and toxicities have been linked to PLD-inducing drugs, but it remains unknown whether drug-induced PLD represents a distinct toxicity or cellular adaptation. In silico and immortalized cellular models have been used to evaluate the PLD potential of new drugs, but these systems have some limitations. The aims of this study were to determine whether primary sandwich-cultured hepatocytes (SCH) can serve as a sensitive and selective model to evaluate hepatic drug-induced PLD, and to evaluate the impact of PLD on the uptake and biliary excretion of probe substrates, taurocholate (TC) and rosuvastatin (RSV). Rat SCH were cultured for 48 h with prototypic hepatic PLD-inducing drugs, amiodarone (AMD), chloroquine (CHQ), desipramine (DES), and azithromycin (AZI), as well as the renal PLD inducer gentamicin (GTM). LysoTracker Red localization and transmission electron microscopy indicated enlarged lysosomal compartments and laminar body inclusions in SCH treated with AMD, CHQ, DES, and AZI, but not GTM, relative to control. PLD resulted in a 51-92% decrease in the in vitro biliary clearance of both TC and RSV; the biliary excretion index significantly decreased for TC from 88 to 35-73%. These data suggested that PLD significantly reduced both organic anion transporting polypeptide-mediated uptake, and bile salt export pump-mediated biliary transport processes. The current study demonstrates that the rat SCH system is a promising model to study hepatic PLD in vitro. Altered hepatic transport of anionic substrates secondary to drug-induced PLD is a novel finding.
Collapse
Affiliation(s)
- Brian C Ferslew
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill
| | | |
Collapse
|
223
|
He L, Yang Y, Guo C, Yao D, Liu HH, Sheng JJ, Zhou WP, Ren J, Liu XD, Pan GY. Opposite regulation of hepatic breast cancer resistance protein in type 1 and 2 diabetes mellitus. Eur J Pharmacol 2014; 724:185-92. [DOI: 10.1016/j.ejphar.2013.12.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 12/04/2013] [Accepted: 12/04/2013] [Indexed: 12/23/2022]
|
224
|
Yang K, Pfeifer ND, Hardwick RN, Yue W, Stewart PW, Brouwer KLR. An experimental approach to evaluate the impact of impaired transport function on hepatobiliary drug disposition using Mrp2-deficient TR- rat sandwich-cultured hepatocytes in combination with Bcrp knockdown. Mol Pharm 2014; 11:766-75. [PMID: 24410402 PMCID: PMC3993909 DOI: 10.1021/mp400471e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Breast cancer resistance protein (BCRP) and multidrug resistance-associated protein 2 (MRP2) are members of the ATP binding cassette (ABC) transporter family located in the canalicular membrane of hepatocytes that mediate biliary excretion of many drugs and endogenous compounds. BCRP and MRP2 have overlapping substrate profiles. Predicting drug disposition in the setting of altered transport function has important clinical significance. This investigation was designed to establish an in vitro model system to evaluate the impact of impaired Mrp2 and Bcrp function on hepatobiliary drug disposition. To achieve Bcrp knockdown by RNA interference (RNAi), sandwich-cultured hepatocytes (SCH) from Mrp2-deficient (TR(-)) and wild-type (WT) rats were infected with adenoviral vectors to express shRNA targeting Bcrp (Ad-siBcrp) at multiplicity of infection (MOI) of 1-10. MOI of 5 was identified as optimal. At MOI of 5, viral infection as well as WT or TR(-) status was statistically significant predictors of the rosuvastatin (RSV) biliary excretion index (BEI), consistent with the known role of Bcrp and Mrp2 in the biliary excretion of RSV in vivo in rats. Relative to WT rat SCH, marginal mean BEI (%) of RSV in TR(-) rat SCH decreased by 28.6 (95% CI: 5.8-51.3). Ad-siBcrp decreased marginal mean BEI (%) of RSV by 13.3 (7.5-9.1) relative to SCH infected with adenoviral vectors expressing a nontargeting shRNA (Ad-siNT). The BEI of RSV was almost ablated in TR(-) rat SCH with Bcrp knockdown (5.9 ± 3.0%) compared to Ad-siNT-infected WT rat SCH (45.4 ± 6.6%). These results demonstrated the feasibility of Bcrp knockdown in TR(-) rat SCH as an in vitro system to assess the impact of impaired Bcrp and Mrp2 function. At MOI of 5, viral infection had minimal effects on RSV total accumulation, but significantly decreased marginal mean taurocholate total accumulation (pmol/mg of protein) and BEI (%) by 9.9 (7.0-12.8) and 7.5 (3.7-11.3), respectively, relative to noninfected SCH. These findings may be due to off-target effects on hepatic bile acid transporters, even though no changes in protein expression levels of the hepatic bile acid transporters were observed. This study established a strategy for optimization of the knockdown system, and demonstrated the potential use of RNAi in SCH as an in vitro tool to predict altered hepatobiliary drug disposition when canalicular transporters are impaired.
Collapse
Affiliation(s)
- Kyunghee Yang
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, §Curriculum in Toxicology, and ⊥Department of Biostatistics, UNC Gillings School of Public Health, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina, 27599-7569, United States
| | | | | | | | | | | |
Collapse
|
225
|
La Marca M, Beffy P, Pugliese A, Longo V. Fermented wheat powder induces the antioxidant and detoxifying system in primary rat hepatocytes. PLoS One 2013; 8:e83538. [PMID: 24391783 PMCID: PMC3877042 DOI: 10.1371/journal.pone.0083538] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 11/05/2013] [Indexed: 12/30/2022] Open
Abstract
Many plants exhibit antioxidant properties which may be useful in the prevention of oxidative stress reactions, such as those mediated by the formation of free radical species in different pathological situations. In recent years a number of studies have shown that whole grain products in particular have strong antioxidant activity. Primary cultures of rat hepatocytes were used to investigate whether and how a fermented powder of wheat (Lisosan G) is able to modulate antioxidant and detoxifying enzymes, and whether or not it can activate Nrf2 transcription factor or inhibit NF-kB activation. All of the antioxidant and detoxifying enzymes studied were significantly up-regulated by 0.7 mg/ml Lisosan G treatment. In particular, NAD(P)H quinone oxidoreductase and heme oxygenase-1 were induced, although to different degrees, at the transcriptional, protein and/or activity levels by the treatment. As for the Nrf2 transcription factor, a partial translocation of its protein from the cytosol to the nucleus after 1 h of Lisosan G treatment was revealed by immunoblotting. Lisosan G was also observed to decrease H2O2-induced toxicity Taken together, these results show that this powder of wheat is an effective inducer of ARE/Nrf2-regulated antioxidant and detoxifying genes and has the potential to inhibit the translocation of NF-kB into the nucleus.
Collapse
Affiliation(s)
| | | | | | - Vincenzo Longo
- Istituto di Biologia e Biotecnologia Agraria, CNR, Pisa, Italy
| |
Collapse
|
226
|
Pfeifer ND, Yang K, Brouwer KLR. Hepatic basolateral efflux contributes significantly to rosuvastatin disposition I: characterization of basolateral versus biliary clearance using a novel protocol in sandwich-cultured hepatocytes. J Pharmacol Exp Ther 2013; 347:727-36. [PMID: 24023367 PMCID: PMC3836307 DOI: 10.1124/jpet.113.207472] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 09/03/2013] [Indexed: 12/19/2022] Open
Abstract
Transporters responsible for hepatic uptake and biliary clearance (CLBile) of rosuvastatin (RSV) have been well characterized. However, the contribution of basolateral efflux clearance (CLBL) to hepatic and systemic exposure of RSV is unknown. Additionally, the appropriate design of in vitro hepatocyte efflux experiments to estimate CLBile versus CLBL remains to be established. A novel uptake and efflux protocol was developed in sandwich-cultured hepatocytes (SCH) to achieve desired tight junction modulation while maintaining cell viability. Subsequently, studies were conducted to determine the role of CLBL in the hepatic disposition of RSV using SCH from wild-type (WT) and multidrug resistance-associated protein 2 (Mrp2)-deficient (TR(-)) rats in the absence and presence of the P-glycoprotein and breast cancer resistance protein (Bcrp) inhibitor elacridar (GF120918). RSV CLBile was nearly ablated by GF120918 in TR(-) SCH, confirming that Mrp2 and Bcrp are responsible for the majority of RSV CLBile. Pharmacokinetic modeling revealed that CLBL and CLBile represent alternative elimination routes with quantitatively similar contributions to the overall hepatocellular excretion of RSV in rat SCH under baseline conditions (WT SCH in the absence of GF120918) and also in human SCH. Membrane vesicle experiments revealed that RSV is a substrate of MRP4 (Km = 21 ± 7 µM, Vmax = 1140 ± 210 pmol/min per milligram of protein). Alterations in MRP4-mediated RSV CLBL due to drug-drug interactions, genetic polymorphisms, or disease states may lead to changes in hepatic and systemic exposure of RSV, with implications for the safety and efficacy of this commonly used medication.
Collapse
Affiliation(s)
- Nathan D Pfeifer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | | | |
Collapse
|
227
|
Zhuang XM, Shen GL, Xiao WB, Tan Y, Lu C, Li H. Assessment of the roles of P-glycoprotein and cytochrome P450 in triptolide-induced liver toxicity in sandwich-cultured rat hepatocyte model. Drug Metab Dispos 2013; 41:2158-65. [PMID: 24065861 DOI: 10.1124/dmd.113.054056] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Triptolide (TP), a main bioactive component of Tripterygium wilfordii Hook F., is a promising agent for treatment of autoimmune diseases. However, a high incidence of dose-limiting hepatotoxicity was observed in the clinic. Sandwich-cultured rat hepatocyte model was used in this study to identify the involvement of P-glycoprotein (P-gp) in TP disposition and to evaluate TP-induced hepatotoxicity after modulation of P-gp by the known inhibitors, ritonavir and tariquidar, and known inducers, phenobarbital, quercetin, and H(2)O(2). Our data showed that biliary clearance of TP reduced 73.7% and 84.2% upon treatment of ritonavir (25 µM) and tariquidar (5 µM), respectively. In contrast, increases of 346%, 280%, and 273% in biliary clearance of TP were observed with treatment of phenobarbital (1.0 mM), quercetin (20 µM), and H(2)O(2) (0.5 mM), respectively. The TP-induced hepatotoxicity increased by twofold when CYP activity was blocked by 1-aminobenzotriazole, suggesting that CYP and P-gp may both contribute to the detoxification of TP in the SCRH model. In addition, hepatotoxicity and the expression of apoptosis proteins Bax and Bcl-2 were correlated qualitatively with the TP exposure duration and its intracellular concentration, which, in turn, can be modulated by P-gp inhibitors or inducers. Our results for the first time demonstrated that in addition to CYP-mediated metabolism, P-gp also plays an important role in the disposition of TP and TP-induced hepatotoxicity. Thus, the modulation of canalicular P-gp has a potential to cause drug-drug interaction between TP and the coadministered P-gp inhibitors or inducers in the clinic.
Collapse
Affiliation(s)
- Xiao-Mei Zhuang
- The Key Laboratory of Drug Metabolism and Pharmacokinetics, Beijing Institute of Pharmacology and Toxicology, Beijing, China (X.-M.Z., G.-L.S., W.-B.X., Y.T., H.L.); and Millennium, The Takeda Oncology Company, Cambridge, Massachusetts (C.L.)
| | | | | | | | | | | |
Collapse
|
228
|
Pfeifer ND, Bridges AS, Ferslew BC, Hardwick RN, Brouwer KLR. Hepatic basolateral efflux contributes significantly to rosuvastatin disposition II: characterization of hepatic elimination by basolateral, biliary, and metabolic clearance pathways in rat isolated perfused liver. J Pharmacol Exp Ther 2013; 347:737-45. [PMID: 24080682 PMCID: PMC3836312 DOI: 10.1124/jpet.113.208314] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 09/30/2013] [Indexed: 01/07/2023] Open
Abstract
Basolateral efflux clearance (CLBL) contributes significantly to rosuvastatin (RSV) elimination in sandwich-cultured hepatocytes (SCH). The contribution of CLBL to RSV hepatic elimination was determined in single-pass isolated perfused livers (IPLs) from wild-type (WT) and multidrug resistance-associated protein 2 (Mrp2)-deficient (TR(-)) rats in the absence and presence of the P-glycoprotein and breast cancer resistance protein (Bcrp) inhibitor, elacridar (GF120918); clearance values were compared with SCH. RSV biliary clearance (CLBile) was ablated almost completely by GF120918 in TR(-) IPLs, confirming that Mrp2 and Bcrp primarily are responsible for RSV CLBile. RSV appearance in outflow perfusate was attributed primarily to CLBL, which was impaired in TR(-) IPLs. CLBL was ≈ 6-fold greater than CLBile in the linear range in WT IPLs in the absence of GF120918. Recovery of unchanged RSV in liver tissue increased in TR(-) compared with WT (≈ 25 versus 6% of the administered dose) due to impaired CLBL and CLBile. RSV pentanoic acid, identified by high-resolution liquid chromatography-tandem mass spectroscopy, comprised ≈ 40% of total liver content and ≈ 16% of the administered dose in TR(-) livers at the end of perfusion, compared with ≈ 30 and 3% in WT livers, consistent with impaired RSV excretion and "shunting" to the metabolic pathway. In vitro-ex vivo extrapolation between WT SCH and IPLs (without GF120918) revealed that uptake clearance and CLBL were 4.2- and 6.4-fold lower, respectively, in rat SCH compared with IPLs; CLBile translated almost directly (1.1-fold). The present IPL data confirmed the significant role of CLBL in RSV hepatic elimination, and demonstrated that both CLBL and CLBile influence RSV hepatic and systemic exposure.
Collapse
Affiliation(s)
- Nathan D Pfeifer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, Chapel Hill, North Carolina (N.D.P., B.C.F., K.L.R.B.); and Department of Pathology (A.S.B.) and Curriculum in Toxicology (R.N.H., K.L.R.B.), School of Medicine, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | | | | | | | |
Collapse
|
229
|
Probert PME, Chung GW, Cockell SJ, Agius L, Mosesso P, White SA, Oakley F, Brown CDA, Wright MC. Utility of B-13 progenitor-derived hepatocytes in hepatotoxicity and genotoxicity studies. Toxicol Sci 2013; 137:350-70. [PMID: 24235770 PMCID: PMC3908725 DOI: 10.1093/toxsci/kft258] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
AR42J-B-13 (B-13) cells form hepatocyte-like (B-13/H) cells in response to glucocorticoid treatment. To establish its utility in toxicity and genotoxicity screening, cytochrome P450 (CYP) induction, susceptibility to toxins, and transporter gene expression were examined. Conversion to B-13/H cells resulted in expression of male-specific CYP2C11 and sensitivity to methapyrilene. B-13/H cells constitutively expressed CYP1A, induced expression in response to an aryl hydrocarbon receptor agonist, and activated benzo[α]pyrene to a DNA-damaging species. Functional CYP1A2 was not expressed due to deletions in the Cyp1a2 gene. A B-13 cell line stably expressing the human CYP1A2 was therefore engineered (B-13−TR/h1A2) and the derived B-13/H cells expressed metabolically functional CYP1A2. Treatment with the cooked food mutagen 2-amino-1-methyl-6-phenylimidazo(4,5-b)pyridine resulted in a dose-dependent increase in DNA damage. B-13/H cells expressed constitutive androstane receptor (CAR) and induced CYP2B1 mRNA levels in response to classical CAR activators. However, translation to functional CYP2B1 protein was low and increased minimally by CAR activator treatment. B-13/H cells expressed high levels of pregnane X-receptor (PXR) and induced CYP3A1 in response to classical PXR activators. CYP3A genes were inducible, functional, and activated aflatoxin B1 to a DNA-damaging species. All 23 major hepatic transporters were induced when B-13 cells were converted to B-13/H cells, although in many cases, levels remained below those present in adult rat liver. However, bile salt export pump, Abcb1b, multidrug resistance-associated protein, and breast cancer resistance protein transporters were functional in B-13/H cells. These data demonstrate that the B-13 cell generates hepatocyte-like cells with functional drug metabolism and transporter activities, which can alone—or in a humanized form—be used to screen for hepatotoxic and genotoxic endpoints in vitro.
Collapse
|
230
|
Pfeifer ND, Harris KB, Yan GZ, Brouwer KLR. Determination of intracellular unbound concentrations and subcellular localization of drugs in rat sandwich-cultured hepatocytes compared with liver tissue. Drug Metab Dispos 2013; 41:1949-56. [PMID: 23990525 PMCID: PMC3807053 DOI: 10.1124/dmd.113.052134] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 08/29/2013] [Indexed: 12/14/2022] Open
Abstract
Prediction of clinical efficacy, toxicity, and drug-drug interactions may be improved by accounting for the intracellular unbound drug concentration (C(unbound)) in vitro and in vivo. Furthermore, subcellular drug distribution may aid in predicting efficacy, toxicity, and risk assessment. The present study was designed to quantify the intracellular C(unbound) and subcellular localization of drugs in rat sandwich-cultured hepatocytes (SCH) compared with rat isolated perfused liver (IPL) tissue. Probe drugs with distinct mechanisms of hepatocellular uptake and accumulation were selected for investigation. Following drug treatment, SCH and IPL tissues were homogenized and fractionated by differential centrifugation to enrich for subcellular compartments. Binding in crude lysate and cytosol was determined by equilibrium dialysis; the C(unbound) and intracellular-to-extracellular C(unbound) ratio (K(pu,u)) were used to describe accumulation of unbound drug. Total accumulation (K(pobserved)) in whole tissue was well predicted by the SCH model (within 2- to 3-fold) for the selected drugs. Ritonavir (K(pu,u) ∼1) was evenly distributed among cellular compartments, but highly bound, which explained the observed accumulation within liver tissue. Rosuvastatin was recovered primarily in the cytosolic fraction, but did not exhibit extensive binding, resulting in a K(pu,u) >1 in liver tissue and SCH, consistent with efficient hepatic uptake. Despite extensive binding and sequestration of furamidine within liver tissue, a significant portion of cellular accumulation was attributed to unbound drug (K(pu,u) >16), as expected for a charged, hepatically derived metabolite. Data demonstrate the utility of SCH to predict quantitatively total tissue accumulation and elucidate mechanisms of hepatocellular drug accumulation such as active uptake versus binding/sequestration.
Collapse
Affiliation(s)
- Nathan D Pfeifer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | | | | | |
Collapse
|
231
|
Pfeifer ND, Hardwick RN, Brouwer KLR. Role of hepatic efflux transporters in regulating systemic and hepatocyte exposure to xenobiotics. Annu Rev Pharmacol Toxicol 2013; 54:509-35. [PMID: 24160696 DOI: 10.1146/annurev-pharmtox-011613-140021] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Hepatic efflux transporters include numerous well-known and emerging proteins localized to the canalicular or basolateral membrane of the hepatocyte that are responsible for the excretion of drugs into the bile or blood, respectively. Altered function of hepatic efflux transporters due to drug-drug interactions, genetic variation, and/or disease states may lead to changes in xenobiotic exposure in the hepatocyte and/or systemic circulation. This review focuses on transport proteins involved in the hepatocellular efflux of drugs and metabolites, discusses mechanisms of altered transporter function as well as the interplay between multiple transport pathways, and highlights the importance of considering intracellular unbound concentrations of transporter substrates and/or inhibitors. Methods to evaluate hepatic efflux transport and predict the effects of impaired transporter function on systemic and hepatocyte exposure are discussed, and the sandwich-cultured hepatocyte model to evaluate comprehensively the role of hepatic efflux in the hepatobiliary disposition of xenobiotics is characterized.
Collapse
Affiliation(s)
- Nathan D Pfeifer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599; ,
| | | | | |
Collapse
|
232
|
Mohamed LA, Kaddoumi A. In vitro investigation of amyloid-β hepatobiliary disposition in sandwich-cultured primary rat hepatocytes. Drug Metab Dispos 2013; 41:1787-96. [PMID: 23852717 DOI: 10.1124/dmd.113.052514] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Failure in amyloid-β (Aβ) systemic clearance across the liver has been suggested to play a role in Aβ brain accumulation and thus to contribute largely to the pathology of Alzheimer's disease (AD). The purpose of this study was to characterize in vitro the transport mechanisms of Aβ₄₀ across the liver using sandwich-cultured primary rat hepatocytes (SCHs) and to determine its biliary clearance (CL(bile)) and biliary excretion index (BEI%). ¹²⁵I-Aβ₄₀ BEI% was time dependent and reached steady state at 30 minutes, with an average value of 29.8% and a CL(bile) of 1.47 ml/min per kilogram of body weight. The role of low-density lipoprotein receptor-related protein-1 (LRP1) in mediating the basolateral uptake of ¹²⁵I-Aβ₄₀ in SCHs was assessed using receptor-associated protein (RAP, 2 µM). A significant reduction in ¹²⁵I-Aβ₄₀ BEI% and CL(bile) with RAP was observed, demonstrating a major contribution of LRP1 in mediating hepatic uptake of intact ¹²⁵I-Aβ₄₀ via transcytosis. Furthermore, activity studies suggested a lower role of receptor for advanced glycation end products (RAGE) in ¹²⁵I-Aβ₄₀ hepatic uptake. Verapamil (50 µM) and valspodar (20 µM) significantly reduced ¹²⁵I-Aβ₄₀ BEI%, indicating a role for P-glycoprotein (P-gp) in the biliary excretion of ¹²⁵I-Aβ₄₀ in SCHs. LRP1- and P-gp-mediated ¹²⁵I-Aβ₄₀ biliary excretion was inducible and increased BEI% by 26% after rifampicin pretreatment. In conclusion, our findings demonstrated that besides LRP1, P-gp and, to a lesser extent, RAGE are involved in ¹²⁵I-Aβ₄₀ hepatobiliary disposition and support the use of enhancement of Aβ hepatic clearance via LRP1 and P-gp induction as a novel therapeutic approach for the prevention and treatment of AD.
Collapse
Affiliation(s)
- Loqman A Mohamed
- Department of Basic Pharmaceutical Science, College of Pharmacy, University of Louisiana at Monroe, Monroe, Louisiana
| | | |
Collapse
|
233
|
Godoy P, Hewitt NJ, Albrecht U, Andersen ME, Ansari N, Bhattacharya S, Bode JG, Bolleyn J, Borner C, Böttger J, Braeuning A, Budinsky RA, Burkhardt B, Cameron NR, Camussi G, Cho CS, Choi YJ, Craig Rowlands J, Dahmen U, Damm G, Dirsch O, Donato MT, Dong J, Dooley S, Drasdo D, Eakins R, Ferreira KS, Fonsato V, Fraczek J, Gebhardt R, Gibson A, Glanemann M, Goldring CEP, Gómez-Lechón MJ, Groothuis GMM, Gustavsson L, Guyot C, Hallifax D, Hammad S, Hayward A, Häussinger D, Hellerbrand C, Hewitt P, Hoehme S, Holzhütter HG, Houston JB, Hrach J, Ito K, Jaeschke H, Keitel V, Kelm JM, Kevin Park B, Kordes C, Kullak-Ublick GA, LeCluyse EL, Lu P, Luebke-Wheeler J, Lutz A, Maltman DJ, Matz-Soja M, McMullen P, Merfort I, Messner S, Meyer C, Mwinyi J, Naisbitt DJ, Nussler AK, Olinga P, Pampaloni F, Pi J, Pluta L, Przyborski SA, Ramachandran A, Rogiers V, Rowe C, Schelcher C, Schmich K, Schwarz M, Singh B, Stelzer EHK, Stieger B, Stöber R, Sugiyama Y, Tetta C, Thasler WE, Vanhaecke T, Vinken M, Weiss TS, Widera A, Woods CG, Xu JJ, Yarborough KM, Hengstler JG. Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME. Arch Toxicol 2013; 87:1315-1530. [PMID: 23974980 PMCID: PMC3753504 DOI: 10.1007/s00204-013-1078-5] [Citation(s) in RCA: 967] [Impact Index Per Article: 80.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 05/06/2013] [Indexed: 12/15/2022]
Abstract
This review encompasses the most important advances in liver functions and hepatotoxicity and analyzes which mechanisms can be studied in vitro. In a complex architecture of nested, zonated lobules, the liver consists of approximately 80 % hepatocytes and 20 % non-parenchymal cells, the latter being involved in a secondary phase that may dramatically aggravate the initial damage. Hepatotoxicity, as well as hepatic metabolism, is controlled by a set of nuclear receptors (including PXR, CAR, HNF-4α, FXR, LXR, SHP, VDR and PPAR) and signaling pathways. When isolating liver cells, some pathways are activated, e.g., the RAS/MEK/ERK pathway, whereas others are silenced (e.g. HNF-4α), resulting in up- and downregulation of hundreds of genes. An understanding of these changes is crucial for a correct interpretation of in vitro data. The possibilities and limitations of the most useful liver in vitro systems are summarized, including three-dimensional culture techniques, co-cultures with non-parenchymal cells, hepatospheres, precision cut liver slices and the isolated perfused liver. Also discussed is how closely hepatoma, stem cell and iPS cell-derived hepatocyte-like-cells resemble real hepatocytes. Finally, a summary is given of the state of the art of liver in vitro and mathematical modeling systems that are currently used in the pharmaceutical industry with an emphasis on drug metabolism, prediction of clearance, drug interaction, transporter studies and hepatotoxicity. One key message is that despite our enthusiasm for in vitro systems, we must never lose sight of the in vivo situation. Although hepatocytes have been isolated for decades, the hunt for relevant alternative systems has only just begun.
Collapse
Affiliation(s)
- Patricio Godoy
- Leibniz Research Centre for Working Environment and Human Factors (IFADO), 44139 Dortmund, Germany
| | | | - Ute Albrecht
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Melvin E. Andersen
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Nariman Ansari
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Sudin Bhattacharya
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Johannes Georg Bode
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Jennifer Bolleyn
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Christoph Borner
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany
| | - Jan Böttger
- Institute of Biochemistry, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Albert Braeuning
- Department of Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Wilhelmstr. 56, 72074 Tübingen, Germany
| | - Robert A. Budinsky
- Toxicology and Environmental Research and Consulting, The Dow Chemical Company, Midland, MI USA
| | - Britta Burkhardt
- BG Trauma Center, Siegfried Weller Institut, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Neil R. Cameron
- Department of Chemistry, Durham University, Durham, DH1 3LE UK
| | - Giovanni Camussi
- Department of Medical Sciences, University of Torino, 10126 Turin, Italy
| | - Chong-Su Cho
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921 Korea
| | - Yun-Jaie Choi
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921 Korea
| | - J. Craig Rowlands
- Toxicology and Environmental Research and Consulting, The Dow Chemical Company, Midland, MI USA
| | - Uta Dahmen
- Experimental Transplantation Surgery, Department of General Visceral, and Vascular Surgery, Friedrich-Schiller-University Jena, 07745 Jena, Germany
| | - Georg Damm
- Department of General-, Visceral- and Transplantation Surgery, Charité University Medicine Berlin, 13353 Berlin, Germany
| | - Olaf Dirsch
- Institute of Pathology, Friedrich-Schiller-University Jena, 07745 Jena, Germany
| | - María Teresa Donato
- Unidad de Hepatología Experimental, IIS Hospital La Fe Avda Campanar 21, 46009 Valencia, Spain
- CIBERehd, Fondo de Investigaciones Sanitarias, Barcelona, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - Jian Dong
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Steven Dooley
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Dirk Drasdo
- Interdisciplinary Center for Bioinformatics (IZBI), University of Leipzig, 04107 Leipzig, Germany
- INRIA (French National Institute for Research in Computer Science and Control), Domaine de Voluceau-Rocquencourt, B.P. 105, 78153 Le Chesnay Cedex, France
- UPMC University of Paris 06, CNRS UMR 7598, Laboratoire Jacques-Louis Lions, 4, pl. Jussieu, 75252 Paris cedex 05, France
| | - Rowena Eakins
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Karine Sá Ferreira
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany
- GRK 1104 From Cells to Organs, Molecular Mechanisms of Organogenesis, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Valentina Fonsato
- Department of Medical Sciences, University of Torino, 10126 Turin, Italy
| | - Joanna Fraczek
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Rolf Gebhardt
- Institute of Biochemistry, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Andrew Gibson
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Matthias Glanemann
- Department of General-, Visceral- and Transplantation Surgery, Charité University Medicine Berlin, 13353 Berlin, Germany
| | - Chris E. P. Goldring
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - María José Gómez-Lechón
- Unidad de Hepatología Experimental, IIS Hospital La Fe Avda Campanar 21, 46009 Valencia, Spain
- CIBERehd, Fondo de Investigaciones Sanitarias, Barcelona, Spain
| | - Geny M. M. Groothuis
- Department of Pharmacy, Pharmacokinetics Toxicology and Targeting, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Lena Gustavsson
- Department of Laboratory Medicine (Malmö), Center for Molecular Pathology, Lund University, Jan Waldenströms gata 59, 205 02 Malmö, Sweden
| | - Christelle Guyot
- Department of Clinical Pharmacology and Toxicology, University Hospital, 8091 Zurich, Switzerland
| | - David Hallifax
- Centre for Applied Pharmacokinetic Research (CAPKR), School of Pharmacy and Pharmaceutical Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT UK
| | - Seddik Hammad
- Department of Forensic Medicine and Veterinary Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Adam Hayward
- Biological and Biomedical Sciences, Durham University, Durham, DH13LE UK
| | - Dieter Häussinger
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Claus Hellerbrand
- Department of Medicine I, University Hospital Regensburg, 93053 Regensburg, Germany
| | | | - Stefan Hoehme
- Interdisciplinary Center for Bioinformatics (IZBI), University of Leipzig, 04107 Leipzig, Germany
| | - Hermann-Georg Holzhütter
- Institut für Biochemie Abteilung Mathematische Systembiochemie, Universitätsmedizin Berlin (Charité), Charitéplatz 1, 10117 Berlin, Germany
| | - J. Brian Houston
- Centre for Applied Pharmacokinetic Research (CAPKR), School of Pharmacy and Pharmaceutical Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT UK
| | | | - Kiyomi Ito
- Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo, 202-8585 Japan
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160 USA
| | - Verena Keitel
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | | | - B. Kevin Park
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Claus Kordes
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Gerd A. Kullak-Ublick
- Department of Clinical Pharmacology and Toxicology, University Hospital, 8091 Zurich, Switzerland
| | - Edward L. LeCluyse
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Peng Lu
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | | | - Anna Lutz
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, Freiburg, Germany
| | - Daniel J. Maltman
- Reinnervate Limited, NETPark Incubator, Thomas Wright Way, Sedgefield, TS21 3FD UK
| | - Madlen Matz-Soja
- Institute of Biochemistry, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Patrick McMullen
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Irmgard Merfort
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, Freiburg, Germany
| | | | - Christoph Meyer
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jessica Mwinyi
- Department of Clinical Pharmacology and Toxicology, University Hospital, 8091 Zurich, Switzerland
| | - Dean J. Naisbitt
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Andreas K. Nussler
- BG Trauma Center, Siegfried Weller Institut, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Peter Olinga
- Division of Pharmaceutical Technology and Biopharmacy, Department of Pharmacy, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Francesco Pampaloni
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Jingbo Pi
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Linda Pluta
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Stefan A. Przyborski
- Reinnervate Limited, NETPark Incubator, Thomas Wright Way, Sedgefield, TS21 3FD UK
- Biological and Biomedical Sciences, Durham University, Durham, DH13LE UK
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160 USA
| | - Vera Rogiers
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Cliff Rowe
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Celine Schelcher
- Department of Surgery, Liver Regeneration, Core Facility, Human in Vitro Models of the Liver, Ludwig Maximilians University of Munich, Munich, Germany
| | - Kathrin Schmich
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, Freiburg, Germany
| | - Michael Schwarz
- Department of Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Wilhelmstr. 56, 72074 Tübingen, Germany
| | - Bijay Singh
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921 Korea
| | - Ernst H. K. Stelzer
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Bruno Stieger
- Department of Clinical Pharmacology and Toxicology, University Hospital, 8091 Zurich, Switzerland
| | - Regina Stöber
- Leibniz Research Centre for Working Environment and Human Factors (IFADO), 44139 Dortmund, Germany
| | - Yuichi Sugiyama
- Sugiyama Laboratory, RIKEN Innovation Center, RIKEN, Yokohama Biopharmaceutical R&D Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045 Japan
| | - Ciro Tetta
- Fresenius Medical Care, Bad Homburg, Germany
| | - Wolfgang E. Thasler
- Department of Surgery, Ludwig-Maximilians-University of Munich Hospital Grosshadern, Munich, Germany
| | - Tamara Vanhaecke
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Mathieu Vinken
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Thomas S. Weiss
- Department of Pediatrics and Juvenile Medicine, University of Regensburg Hospital, Regensburg, Germany
| | - Agata Widera
- Leibniz Research Centre for Working Environment and Human Factors (IFADO), 44139 Dortmund, Germany
| | - Courtney G. Woods
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | | | | | - Jan G. Hengstler
- Leibniz Research Centre for Working Environment and Human Factors (IFADO), 44139 Dortmund, Germany
| |
Collapse
|
234
|
Zou P, Liu X, Wong S, Feng MR, Liederer BM. Comparison of In Vitro-In Vivo Extrapolation of Biliary Clearance Using an Empirical Scaling Factor Versus Transport-Based Scaling Factors in Sandwich-Cultured Rat Hepatocytes. J Pharm Sci 2013; 102:2837-50. [DOI: 10.1002/jps.23620] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Revised: 05/03/2013] [Accepted: 05/06/2013] [Indexed: 02/05/2023]
|
235
|
Le Vee M, Noel G, Jouan E, Stieger B, Fardel O. Polarized expression of drug transporters in differentiated human hepatoma HepaRG cells. Toxicol In Vitro 2013; 27:1979-86. [PMID: 23850984 DOI: 10.1016/j.tiv.2013.07.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Revised: 07/02/2013] [Accepted: 07/03/2013] [Indexed: 11/28/2022]
Abstract
The HepaRG cell line is a well-differentiated human hepatoma cell line proposed as a surrogate for human hepatocytes, especially for hepatic detoxification studies. Polarized status of drug transporters, i.e., their coordinated location at sinusoidal or canalicular membranes, which represents a key hallmark of hepato-biliary drug transport, remains however incompletely documented in HepaRG cells. The present study was therefore designed to analyze transporter location in HepaRG cells, which exhibit mRNA expressions of most of hepatic transporters. HepaRG cells were demonstrated, through immunofluorescence staining, to express several drug transporters at their sinusoidal pole, especially the influx transporters organic anion transporting polypeptide (OATP) 1B1, OATP2B1 and organic cation transporter (OCT) 1 and the efflux transporter multidrug resistance-associated protein (MRP) 3. In addition, the efflux transporters P-glycoprotein and MRP2 were detected at the canalicular pole of HepaRG cells. Moreover, saturable uptake of reference substrates for the sinusoidal transporters sodium-taurocholate cotransporting polypeptide, OATPs and OCT1 and canalicular secretion of reference substrates for the efflux transporters bile salt export pump and MRP2 were observed. This polarized and functional expression of various sinusoidal and canalicular transporters in HepaRG cells highlights the interest of using these hepatoma cells in xenobiotic transport studies.
Collapse
Affiliation(s)
- Marc Le Vee
- Institut de Recherches en Santé, Environnement et Travail (IRSET), UMR INSERM U1085, Faculté de Pharmacie, 2 Avenue du Pr Léon Bernard, 35043 Rennes, France
| | | | | | | | | |
Collapse
|
236
|
Weiss M, Liu X, Thorling CA, Roberts MS. Functional characterization of hepatic transporters using intravital microscopy. Eur J Pharm Sci 2013; 49:845-9. [PMID: 23791640 DOI: 10.1016/j.ejps.2013.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 04/09/2013] [Accepted: 06/02/2013] [Indexed: 11/28/2022]
Abstract
A better understanding of the role of hepatic transporters in drug elimination is of crucial importance for drug development and therapy. This study examined the usefulness of intravital microscopy to quantitatively evaluate the function of hepatic transporters in the exposed liver of anesthetized rats. In one experiment the function of the organic anion transporting polypeptide (Oatp) in sinusoidal uptake was investigated by administering an Oatp inhibitor, rifampicin, prior to the probe substrate Na-fluorescein. In another experiment, rhodamine 123 was used to quantify the biliary canalicular transporter P-glycoprotein (P-gp, Abcb1a/b) with cyclosporin A as an inhibitor of P-gp activity. Calibrated fluorescence intensity time curves measured in sinusoids and hepatocytes together with cumulative biliary excretion data from control and inhibitor treated animals were analyzed with a three-compartment model. A robust parameter estimation was achieved using nonlinear mixed effects modeling. Rifampicin reduced the hepatic uptake clearance of Na-fluorescein to 25% of the control (p<0.05) without affecting other parameters. In the presence of cyclosporin A, biliary excretion of rhodamine 123 decreased to 7% of the control (p<0.01). The novelty of this approach is that it allows a quantitative evaluation of transporter function in the in vivo rat liver.
Collapse
Affiliation(s)
- Michael Weiss
- Therapeutics Research Centre, School of Medicine, University of Queensland, Princess Alexandra Hospital, Woolloongabba, QLD 4102, Australia.
| | | | | | | |
Collapse
|
237
|
Ginai M, Elsby R, Hewitt CJ, Surry D, Fenner K, Coopman K. The use of bioreactors as in vitro models in pharmaceutical research. Drug Discov Today 2013; 18:922-35. [PMID: 23748137 DOI: 10.1016/j.drudis.2013.05.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 04/24/2013] [Accepted: 05/22/2013] [Indexed: 12/23/2022]
Abstract
Bringing a new drug to market is costly in terms of capital and time investments, and any development issues encountered during late-stage clinical trials can often be the result of in vitro-in vivo extrapolations (IVIVE) not accurately reflecting clinical outcome. In the discipline of drug metabolism and pharmacokinetics (DMPK), current in vitro cellular methods do not provide the 3D structure and function of organs found in vivo; therefore, new dynamic methods need to be established to aid improvement of IVIVE. In this review, we highlight the importance of model progression into dynamic systems for use within drug development, focusing on devices developed currently in the areas of the liver and blood-brain barrier (BBB), and the potential to develop models for other organ systems, such as the kidney. We discuss the development of dynamic 3D bioreactor-based systems as in vitro models for use in DMPK studies.
Collapse
Affiliation(s)
- Maaria Ginai
- Centre for Biological Engineering, Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, UK
| | | | | | | | | | | |
Collapse
|
238
|
Alqahtani S, Mohamed LA, Kaddoumi A. Experimental models for predicting drug absorption and metabolism. Expert Opin Drug Metab Toxicol 2013; 9:1241-54. [DOI: 10.1517/17425255.2013.802772] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
239
|
Clotworthy M, Archibald K. Advances in the development and use of human tissue-based techniques for drug toxicity testing. Expert Opin Drug Metab Toxicol 2013; 9:1155-69. [PMID: 23687950 DOI: 10.1517/17425255.2013.802770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
INTRODUCTION Unacceptable failure rates in clinical trials are largely responsible for the high costs of bringing successful drugs to market - costs that are passed on to patients, insurers or healthcare providers. Furthermore, failures in clinical trials deny patients much-needed new drugs and potentially expose them to unnecessary risk. With so many medicines reaching their patent expiry date, pressure is on the pharmaceutical industry to not only increase its output of effective medicines but also improve its ability to minimise safety issues. AREAS COVERED This review focuses on the availability and use of human tissues and their derivatives to explore potential toxicity problems of new drugs. The growth in the number and quality of human material-based assays and enabling technologies is reviewed, followed by a discussion of the application of such assays to identify specific toxicities, using specific examples. EXPERT OPINION Although human tissues are now beginning to be seen as playing an important role in evaluating the potential for toxicity of new drugs in the clinic, their importance deserves to be more widely recognised and their use in the identification of toxicity issues as early as possible in the drug development life cycle should be significantly increased.
Collapse
Affiliation(s)
- Margaret Clotworthy
- Human Focused Testing, 50 the Barns, Littleport, Cambs CB6 1GG, England, UK.
| | | |
Collapse
|
240
|
Döring B, Lütteke T, Geyer J, Petzinger E. The SLC10 carrier family: transport functions and molecular structure. CURRENT TOPICS IN MEMBRANES 2013. [PMID: 23177985 DOI: 10.1016/b978-0-12-394316-3.00004-1] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The SLC10 family represents seven genes containing 1-12 exons that encode proteins in humans with sequence lengths of 348-477 amino acids. Although termed solute carriers (SLCs), only three out of seven (i.e. SLC10A1, SLC10A2, and SLC10A6) show sodium-dependent uptake of organic substrates across the cell membrane. These include the uptake of bile salts, sulfated steroids, sulfated thyroidal hormones, and certain statin drugs by SLC10A1 (Na(+)-taurocholate cotransporting polypeptide (NTCP)), the uptake of bile salts by SLC10A2 (apical sodium-dependent bile acid transporter (ASBT)), and uptake of sulfated steroids and sulfated taurolithocholate by SLC10A6 (sodium-dependent organic anion transporter (SOAT)). The other members of the family are orphan carriers not all localized in the cell membrane. The name "bile acid transporter family" arose because the first two SLC10 members (NTCP and ASBT) are carriers for bile salts that establish their enterohepatic circulation. In recent years, information has been obtained on their 2D and 3D membrane topology, structure-transport relationships, and on the ligand and sodium-binding sites. For SLC10A2, the putative 3D morphology was deduced from the crystal structure of a bacterial SLC10A2 analog, ASBT(NM). This information was used in this chapter to calculate the putative 3D structure of NTCP. This review provides first an introduction to recent knowledge about bile acid synthesis and newly found bile acid hormonal functions, and then describes step-by-step each individual member of the family in terms of expression, localization, substrate pattern, as well as protein topology with emphasis on the three functional SLC10 carrier members.
Collapse
Affiliation(s)
- Barbara Döring
- SLC10 family research group, Institute of Pharmacology and Toxicology, Justus Liebig University Giessen, Biomedical Research Center (BFS), Giessen, Germany
| | | | | | | |
Collapse
|
241
|
Herédi-Szabó K, Kis E, Krajcsi P. The vesicular transport assay: validated in vitro methods to study drug-mediated inhibition of canalicular efflux transporters ABCB11/BSEP and ABCC2/MRP2. ACTA ACUST UNITED AC 2013; Chapter 23:Unit 23.4. [PMID: 23169269 DOI: 10.1002/0471140856.tx2304s54] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The canalicular membrane of hepatocytes contains several transport proteins that use the energy of ATP to efflux potentially toxic molecules to the bile. Probably the two most important proteins at this location are MRP2 and BSEP, which transport phase II conjugates of xenobiotics and endobiotics and conjugated bile salts, respectively. The impaired function of either of these transporter proteins reduces the clearance of the toxic conjugates, resulting in their accumulation in the hepatocytes and eventually the plasma. Conjugated bile salts and phase II metabolites are compounds with low passive permeability; therefore, the most commonly used test system to investigate MRP2- and BSEP-mediated transport processes is the vesicular transport assay. The concentration of probe substrates and inhibitors used in the experiment is close to their free concentration in the hepatocytes, providing an advantage when calculating kinetic parameters (K(m), K(i), V(max)). The protocols aim to assist scientists to set up a transport assay for a known or potential substrate and test small molecule inhibition of the transporters.
Collapse
|
242
|
Brouwer KLR, Keppler D, Hoffmaster KA, Bow DAJ, Cheng Y, Lai Y, Palm JE, Stieger B, Evers R. In Vitro Methods to Support Transporter Evaluation in Drug Discovery and Development. Clin Pharmacol Ther 2013; 94:95-112. [DOI: 10.1038/clpt.2013.81] [Citation(s) in RCA: 194] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
243
|
Emerging transporters of clinical importance: an update from the International Transporter Consortium. Clin Pharmacol Ther 2013; 94:52-63. [PMID: 23588305 DOI: 10.1038/clpt.2013.74] [Citation(s) in RCA: 269] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The International Transporter Consortium (ITC) has recently described seven transporters of particular relevance to drug development. Based on the second ITC transporter workshop in 2012, we have identified additional transporters of emerging importance in pharmacokinetics, interference of drugs with transport of endogenous compounds, and drug-drug interactions (DDIs) in humans. The multidrug and toxin extrusion proteins (MATEs, gene symbol SLC47A) mediate excretion of organic cations into bile and urine. MATEs are important in renal DDIs. Multidrug resistance proteins (MRPs or ABCCs) are drug and conjugate efflux pumps, and impaired activity of MRP2 results in conjugated hyperbilirubinemia. The bile salt export pump (BSEP or ABCB11) prevents accumulation of toxic bile salt concentrations in hepatocytes, and BSEP inhibition or deficiency may cause cholestasis and liver injury. In addition, examples are presented on the roles of nucleoside and peptide transporters in drug targeting and disposition.
Collapse
|
244
|
Anthérieu S, Bachour-El Azzi P, Dumont J, Abdel-Razzak Z, Guguen-Guillouzo C, Fromenty B, Robin MA, Guillouzo A. Oxidative stress plays a major role in chlorpromazine-induced cholestasis in human HepaRG cells. Hepatology 2013; 57:1518-29. [PMID: 23175273 DOI: 10.1002/hep.26160] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 10/24/2012] [Indexed: 01/20/2023]
Abstract
UNLABELLED Drugs induce cholestasis by diverse and still poorly understood mechanisms in humans. Early hepatic effects of chlorpromazine (CPZ), a neuroleptic drug known for years to induce intrahepatic cholestasis, were investigated using the differentiated human hepatoma HepaRG cells. Generation of reactive oxygen species (ROS) was detected as early as 15 minutes after CPZ treatment and was associated with an altered mitochondrial membrane potential and disruption of the pericanalicular distribution of F-actin. Inhibition of [3H]-taurocholic acid efflux was observed after 30 minutes and was mostly prevented by N-acetyl cysteine (NAC) cotreatment, indicating a major role of oxidative stress in CPZ-induced bile acid (BA) accumulation. Moreover, 24-hour treatment with CPZ decreased messenger RNA (mRNA) expression of the two main canalicular bile transporters, bile salt export pump (BSEP) and multidrug resistance protein 3 (MDR3). Additional CPZ effects included inhibition of Na+ -dependent taurocholic cotransporting polypeptide (NTCP) expression and activity, multidrug resistance-associated protein 4 (MRP4) overexpression and CYP8B1 inhibition that are involved in BA uptake, basolateral transport, and BA synthesis, respectively. These latter events likely represent hepatoprotective responses which aim to reduce intrahepatic accumulation of toxic BA. Compared to CPZ effects, overloading of HepaRG cells with high concentrations of cholic and chenodeoxycholic acids induced a delayed oxidative stress and, similarly, after 24 hours it down-regulated BSEP and MDR3 in parallel to a decrease of NTCP and CYP8B1 and an increase of MRP4. By contrast, low BA concentrations up-regulated BSEP and MDR3 in the absence of oxidative stress. CONCLUSION These data provide evidence that, among other mechanisms, oxidative stress plays a major role as both a primary causal and an aggravating factor in the early CPZ-induced intrahepatic cholestasis in human hepatocytes.
Collapse
|
245
|
De Bruyn T, Chatterjee S, Fattah S, Keemink J, Nicolaï J, Augustijns P, Annaert P. Sandwich-cultured hepatocytes: utility for in vitro exploration of hepatobiliary drug disposition and drug-induced hepatotoxicity. Expert Opin Drug Metab Toxicol 2013; 9:589-616. [PMID: 23452081 DOI: 10.1517/17425255.2013.773973] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION The sandwich-cultured hepatocyte (SCH) model has become an invaluable in vitro tool for studying hepatic drug transport, metabolism, biliary excretion and toxicity. The relevant expression of many hepatocyte-specific functions together with the in vivo-like morphology favor SCHs over other preclinical models for evaluating hepatobiliary drug disposition and drug-induced hepatotoxicity. AREAS COVERED In this review, the authors highlight recommended procedures required for reproducibly culturing hepatocytes in sandwich configuration. It also provides an overview of the SCH model characteristics as a function of culture time. Lastly, the article presents a summary of the most prominent applications of the SCH model, including hepatic drug clearance prediction, drug-drug interaction potential and drug-induced hepatotoxicity. EXPERT OPINION When human (cryopreserved) hepatocytes are used to establish sandwich cultures, the model appears particularly valuable to quantitatively investigate clinically relevant mechanisms related to in vivo hepatobiliary drug disposition and hepatotoxicity. Nonetheless, the SCH model would largely benefit from better insight into the fundamental cell signaling mechanisms that are critical for long-term in vitro maintenance of the hepatocytic phenotype. Studies systematically exploring improved cell culture conditions (e.g., co-cultures or extracellular matrix modifications), as well as in vitro work identifying key transcription factors involved in hepatocyte differentiation are currently emerging.
Collapse
Affiliation(s)
- Tom De Bruyn
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, O&N2, Herestraat 49-bus-921, 3000 Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
246
|
Noel G, Le Vee M, Moreau A, Stieger B, Parmentier Y, Fardel O. Functional expression and regulation of drug transporters in monolayer- and sandwich-cultured mouse hepatocytes. Eur J Pharm Sci 2013; 49:39-50. [PMID: 23396053 DOI: 10.1016/j.ejps.2013.01.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 01/12/2013] [Accepted: 01/13/2013] [Indexed: 01/13/2023]
Abstract
Primary hepatocyte cultures are now considered as convenient models for in vitro analyzing liver drug transport. However, if primary human and rat hepatocytes have been well-characterized with respect to drug transporter expression and regulation, much less is known for primary mouse hepatocytes. The present study was therefore designed to gain insights about this point. The profile of sinusoidal and canalicular drug transporter mRNA expression in short time (4h)-cultured mouse hepatocytes was found to be highly correlated with that of freshly isolated hepatocytes; by contrast, those of counterparts cultured for a longer time (until 4 days) either in monolayer configurations on plastic or collagen or in sandwich configuration with matrigel were profoundly altered: uptake drug transporters such as Oct1, Oatps and Oat2 were thus down-regulated, whereas most of efflux transporters such as Mdr1a/b, Mrp3, Mrp4 and Bcrp were induced. Moreover, short time-cultured hepatocytes exhibited the highest levels of sinusoidal influx transporter activities. Transporter-mediated drug secretion into canalicular networks was however only observed in sandwich-cultured hepatocytes. Mouse hepatocytes cultured either in monolayer or sandwich configurations were finally shown to exhibit up-regulation of referent transporters in response to exposure to prototypical activators of the drug sensing receptors pregnane X receptor, aryl hydrocarbon receptor or constitutive androstane receptor. Taken together, these data demonstrate the feasibility of using primary mouse hepatocytes for investigating potential interactions of xenobiotics with hepatic transporter activity or regulation, provided that adequate culture conditions are retained.
Collapse
Affiliation(s)
- Gregory Noel
- Institut de Recherches en Santé, Environnement et Travail (IRSET), UMR INSERM U1085, Faculté de Pharmacie, 2 Avenue du Pr Léon Bernard, 35043 Rennes, France
| | - Marc Le Vee
- Institut de Recherches en Santé, Environnement et Travail (IRSET), UMR INSERM U1085, Faculté de Pharmacie, 2 Avenue du Pr Léon Bernard, 35043 Rennes, France
| | - Amélie Moreau
- Technologie Servier, 25-27 rue Eugène Vignat, 45000 Orléans, France
| | - Bruno Stieger
- Department of Clinical Pharmacology and Toxicology, University Hospital, 8091 Zurich, Switzerland
| | | | - Olivier Fardel
- Institut de Recherches en Santé, Environnement et Travail (IRSET), UMR INSERM U1085, Faculté de Pharmacie, 2 Avenue du Pr Léon Bernard, 35043 Rennes, France; Pôle Biologie, Centre Hospitalier Universitaire, 2 rue Henri Le Guilloux, 35033 Rennes, France.
| |
Collapse
|
247
|
Ramboer E, Vanhaecke T, Rogiers V, Vinken M. Primary hepatocyte cultures as prominent in vitro tools to study hepatic drug transporters. Drug Metab Rev 2013; 45:196-217. [PMID: 23368091 DOI: 10.3109/03602532.2012.756010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Before any drug can be placed on the market, drug efficacy and safety must be ensured through rigorous testing. Animal models are used for this purpose, though currently increasing attention goes to the use of alternative in vitro systems. In particular, liver-based testing platforms that allow the prediction of pharmacokinetic (PK) and pharmacotoxicological properties during the early phase of drug development are of interest. They also enable the screening of potential effects on hepatic drug transporters. The latter are known to affect drug metabolism and disposition, thereby possibly underlying drug-drug interactions, which, in turn, may result in liver toxicity. Clearly, stable in vivo-like functional expression of drug transporters in hepatic in vitro settings is a prerequisite to be applicable in routine PK and pharmacotoxicological testing. In the first part of the article, an updated overview of hepatic drug transporters is provided, followed by a state-of-the-art review of drug-transporter production and activity in primary hepatocyte cultures (PHCs), being the gold-standard in vitro system. Specific focus is hereby put on strategies to maintain long-term functional expression, in casu of drug transporters, in these systems. In the second part, the use of PHCs to assess hepatobiliary transport and transporter-mediated interactions is outlined.
Collapse
Affiliation(s)
- Eva Ramboer
- Department of Toxicology, Center for Pharmaceutical Research, Vrije Universiteit Brussel, Brussels, Belgium.
| | | | | | | |
Collapse
|
248
|
Effect of Ritonavir on (99m)Technetium-Mebrofenin Disposition in Humans: A Semi-PBPK Modeling and In Vitro Approach to Predict Transporter-Mediated DDIs. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2013; 2:e20. [PMID: 23887590 PMCID: PMC3600725 DOI: 10.1038/psp.2012.21] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 11/13/2012] [Indexed: 11/15/2022]
Abstract
A semiphysiologically based pharmacokinetic (semi-PBPK) model was developed to describe a unique blood, liver, and bile clinical data set for the hepatobiliary imaging agent 99mTechnetium–mebrofenin (99mTc–mebrofenin), and to simulate sites/mechanisms of a 99mTc–mebrofenin–ritonavir drug–drug interaction (DDI). The transport inhibitor ritonavir (multiple-dose: 2 × 300 mg) significantly increased systemic 99mTc–mebrofenin exposure as compared with control (4,464 ± 1,861 vs. 1,970 ± 311 nCi min/ml; mean ± SD), without affecting overall hepatic exposure or biliary recovery. A novel extrahepatic distribution compartment was required to characterize 99mTc–mebrofenin disposition. Ritonavir inhibited 99mTc–mebrofenin accumulation in human sandwich-cultured hepatocytes (SCH) (half maximal inhibitory concentration (IC50) = 3.46 ± 1.53 µmol/l). Despite ritonavir accumulation in hepatocytes, intracellular binding was extensive (97. 6%), which limited interactions with multidrug resistance protein 2 (MRP2)-mediated biliary excretion. These in vitro data supported conclusions from modeling/simulation that ritonavir inhibited 99mTc–mebrofenin hepatic uptake, but not biliary excretion, at clinically relevant concentrations. This integrated approach, utilizing modeling, clinical, and in vitro data, emphasizes the importance of hepatic and extrahepatic distribution, assessment of inhibitory potential in relevant in vitro systems, and intracellular unbound concentrations to assess transporter-mediated hepatic DDIs.
Collapse
|
249
|
Griffin LM, Watkins PB, Perry CH, St Claire RL, Brouwer KLR. Combination lopinavir and ritonavir alter exogenous and endogenous bile acid disposition in sandwich-cultured rat hepatocytes. Drug Metab Dispos 2013; 41:188-96. [PMID: 23091188 PMCID: PMC3533430 DOI: 10.1124/dmd.112.047225] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 10/22/2012] [Indexed: 02/06/2023] Open
Abstract
Inhibition of the bile salt export pump (BSEP) can cause intracellular accumulation of bile acids and is a risk factor for drug-induced liver injury in humans. Antiretroviral protease inhibitors lopinavir (LPV) and ritonavir (RTV) are reported BSEP inhibitors. However, the consequences of LPV and RTV, alone and combined (LPV/r), on hepatocyte viability, bile acid transport, and endogenous bile acid disposition in rat hepatocytes have not been examined. The effect of LPV, RTV, and LPV/r on cellular viability and the disposition of [(3)H]taurocholic acid (TCA) and [(14)C]chenodeoxycholic acid (CDCA) was determined in sandwich-cultured rat hepatocytes (SCRH) and suspended rat hepatocytes. Lactate dehydrogenase and ATP assays revealed a concentration-dependent effect of LPV and RTV on cellular viability. LPV (5 µM), alone and combined with 5 µM RTV, significantly decreased [(3)H]TCA accumulation in cells + bile of SCRHs compared with control. LPV/r significantly increased [(3)H]TCA cellular accumulation (7.7 ± 0.1 pmol/mg of protein) compared with vehicle and 5 µM LPV alone (5.1 ± 0.7 and 5.0 ± 0.5 pmol/mg of protein). The [(3)H]TCA biliary clearance was reduced significantly by LPV and RTV and further reduced by LPV/r. LPV and RTV did not affect the initial uptake rates of [(3)H]TCA or [(14)C]CDCA in suspended rat hepatocytes. LPV (50 µM), RTV (5 µM), and LPV/r (5 and 50 µM/5 µM) significantly decreased the accumulation of total measured endogenous bile acids (TCA, glycocholic acid, taurochenodeoxycholic acid, glycochenodeoxycholic acid, and α/β-tauromuricholic acid) in SCRH. Quantification of endogenous bile acids in SCRH may reveal important adaptive responses associated with exposure to known BSEP inhibitors.
Collapse
Affiliation(s)
- LaToya M Griffin
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | | | | | |
Collapse
|
250
|
Hepatocyte function within a stacked double sandwich culture plate cylindrical bioreactor for bioartificial liver system. Biomaterials 2012; 33:7925-32. [DOI: 10.1016/j.biomaterials.2012.06.078] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2012] [Accepted: 06/26/2012] [Indexed: 11/23/2022]
|