201
|
Porcine deltacoronavirus (PDCoV) modulates calcium influx to favor viral replication. Virology 2019; 539:38-48. [PMID: 31670218 PMCID: PMC7112098 DOI: 10.1016/j.virol.2019.10.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 12/12/2022]
Abstract
Ionic calcium (Ca2+) is a versatile intracellular second messenger that plays important roles in cellular physiological and pathological processes. Porcine deltacoronavirus (PDCoV) is an emerging enteropathogenic coronavirus that causes serious vomiting and diarrhea in suckling piglets. In this study, the role of Ca2+ to PDCoV infection was investigated. PDCoV infection was found to upregulate intracellular Ca2+ concentrations of IPI-2I cells. Chelating extracellular Ca2+ by EGTA inhibited PDCoV replication, and this inhibitory effect was overcome by replenishment with CaCl2. Treatment with Ca2+ channel blockers, particularly the L-type Ca2+ channel blocker diltiazem hydrochloride, inhibited PDCoV infection significantly. Mechanistically, diltiazem hydrochloride reduces PDCoV infection by inhibiting the replication step of the viral replication cycle. Additionally, knockdown of CACNA1S, the L-type Ca2+ voltage-gated channel subunit, inhibited PDCoV replication. The combined results demonstrate that PDCoV modulates calcium influx to favor its replication.
Collapse
|
202
|
Trevisan G, Linhares LCM, Crim B, Dubey P, Schwartz KJ, Burrough ER, Main RG, Sundberg P, Thurn M, Lages PTF, Corzo CA, Torrison J, Henningson J, Herrman E, Hanzlicek GA, Raghavan R, Marthaler D, Greseth J, Clement T, Christopher-Hennings J, Linhares DCL. Macroepidemiological aspects of porcine reproductive and respiratory syndrome virus detection by major United States veterinary diagnostic laboratories over time, age group, and specimen. PLoS One 2019; 14:e0223544. [PMID: 31618236 PMCID: PMC6795434 DOI: 10.1371/journal.pone.0223544] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 09/23/2019] [Indexed: 11/18/2022] Open
Abstract
This project investigates the macroepidemiological aspects of porcine reproductive and respiratory syndrome virus (PRRSV) RNA detection by veterinary diagnostic laboratories (VDLs) for the period 2007 through 2018. Standardized submission data and PRRSV real-time reverse-transcriptase polymerase chain reaction (RT-qPCR) test results from porcine samples were retrieved from four VDLs representing 95% of all swine samples tested in NAHLN laboratories in the US. Anonymized data were retrieved and organized at the case level using SAS (SAS® Version 9.4, SAS® Institute, Inc., Cary, NC) with the use of PROC DATA, PROC MERGE, and PROC SQL scripts. The final aggregated and anonymized dataset comprised of 547,873 unique cases was uploaded to Power Business Intelligence-Power BI® (Microsoft Corporation, Redmond, Washington) to construct dynamic charts. The number of cases tested for PRRSV doubled from 2010 to 2018, with that increase mainly driven by samples typically used for monitoring purposes rather than diagnosis of disease. Apparent seasonal trends for the frequency of PRRSV detection were consistently observed with a higher percentage of positive cases occurring during fall or winter months and lower during summer months, perhaps due to increased testing associated with well-known seasonal occurrence of swine respiratory disease. PRRSV type 2, also known as North American genotype, accounted for 94.76% of all positive cases and was distributed across the US. PRRSV type 1, also known as European genotype, was geographically restricted and accounted for 2.15% of all positive cases. Co-detection of both strains accounted for 3.09% of the positive cases. Both oral fluid and processing fluid samples, had a rapid increase in the number of submissions soon after they were described in 2008 and 2017, respectively, suggesting rapid adoption of these specimens by the US swine industry for PRRSV monitoring in swine populations. As part of this project, a bio-informatics tool defined as Swine Disease Reporting System (SDRS) was developed. This tool has real-time capability to inform the US swine industry on the macroepidemiological aspects of PRRSV detection, and is easily adaptable for other analytes relevant to the swine industry.
Collapse
Affiliation(s)
- Giovani Trevisan
- Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Leticia C. M. Linhares
- Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Bret Crim
- Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Poonam Dubey
- Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Kent J. Schwartz
- Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Eric R. Burrough
- Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Rodger G. Main
- Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Paul Sundberg
- Swine Health Information Center, Ames, Iowa, United States of America
| | - Mary Thurn
- Veterinary Population Medicine, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Paulo T. F. Lages
- Veterinary Population Medicine, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Cesar A. Corzo
- Veterinary Population Medicine, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Jerry Torrison
- Veterinary Population Medicine, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Jamie Henningson
- College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
| | - Eric Herrman
- College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
| | - Gregg A. Hanzlicek
- College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
| | - Ram Raghavan
- College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
| | - Douglas Marthaler
- College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
| | - Jon Greseth
- Veterinary & Biomedical Sciences Department, South Dakota State University, Brookings, South Dakota, United States of America
| | - Travis Clement
- Veterinary & Biomedical Sciences Department, South Dakota State University, Brookings, South Dakota, United States of America
| | - Jane Christopher-Hennings
- Veterinary & Biomedical Sciences Department, South Dakota State University, Brookings, South Dakota, United States of America
| | - Daniel C. L. Linhares
- Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, Iowa, United States of America
| |
Collapse
|
203
|
Transcriptome analysis of PK-15 cells in innate immune response to porcine deltacoronavirus infection. PLoS One 2019; 14:e0223177. [PMID: 31574122 PMCID: PMC6773216 DOI: 10.1371/journal.pone.0223177] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/16/2019] [Indexed: 11/19/2022] Open
Abstract
Porcine deltacoronavirus (PDCoV) is a newly emerged swine enteropathogenic coronavirus affecting pigs of all ages and causing diarrhea problems. Research findings indicate that PDCoV has evolved strategies to escape innate immune response in host cells, but mechanism of PDCoV in innate immune modulation is not well understood. In this study, we report our findings on identifying the alterations of host cell innate immune response affected by PDCoV infection and exploring the gene expression profiles of PK-15 cells at 0, 24, and 36 h PDCoV post infection by RNA sequencing. A total of 3,762 and 560 differentially expressed genes (DEGs) were screened by comparison of uninfected PK-15 cells and infected PK-15 cells at 24 h post infection (hpi) (INF_24h versus NC), and also comparison of infected PK-15 cells between 24 and 36 hpi (INF_36h versus INF_24h), which included 156 and 23 porcine innate immune-related genes in the DEGs of INF_24h versus NC and INF_36h versus INF_24h, respectively. Gene Ontology function classification and Kyoto Encyclopedia of Genes and Genomes signaling pathway enrichment analysis were performed based on the DEGs that exhibited the same expression tendencies with most of the innate immune-associated genes among these PK-15 cell samples described above. The enrichment results indicated that extensive gene functions and signaling pathways including innate immune-associated functions and pathways were affected by PDCoV infection. Particularly, 4 of 5 innate immune signaling pathways, which were primarily affected by PDCoV, played important roles in I-IFN’s antiviral function in innate immune response. Additionally, 16 of the host cell endogenous miRNAs were predicted as potential contributors to the modulation of innate immune response affected by PDCoV. Our research findings indicated that the innate immune-associated genes and signaling pathways in PK-15 cells could be modified by the infection of PDCoV, which provides a fundamental foundation for further studies to better understand the mechanism of PDCoV infections, so as to effectively control and prevent PDCoV-induced swine diarrheal disease outbreaks.
Collapse
|
204
|
Zhang J, Chen J, Liu Y, Da S, Shi H, Zhang X, Liu J, Cao L, Zhu X, Wang X, Ji Z, Feng L. Pathogenicity of porcine deltacoronavirus (PDCoV) strain NH and immunization of pregnant sows with an inactivated PDCoV vaccine protects 5-day-old neonatal piglets from virulent challenge. Transbound Emerg Dis 2019; 67:572-583. [PMID: 31541590 PMCID: PMC7168751 DOI: 10.1111/tbed.13369] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 09/05/2019] [Accepted: 09/17/2019] [Indexed: 01/14/2023]
Abstract
In this study, the pathogenicity of porcine deltacoronavirus (PDCoV) strain NH (passage 10, P10) was evaluated. We found that PDCoV strain NH is enteropathogenic in 5-day-old pigs. Pathogenicity experiments provided a challenge model for studying the protection efficiency of passive immunity. In order to investigate the protective efficacy of passive immunity in newborn piglets, pregnant sows were vaccinated with either a PDCoV-inactivated vaccine at the Houhai acupoint (n = 5) or DMEM as a negative control (n = 2) using a prime/boost strategy 20 and 40 days before delivery. PDCoV spike (S)-specific IgG and neutralizing antibody (NA) responses were detected in immunized sows and piglets born to immunized sows. PDCoV spike (S)-specific sIgA was also detected in the colostrum and milk of immunized sows. Five days post-farrowing, piglets were orally challenged with PDCoV strain NH (105 TCID50 /piglet). Severe diarrhoea, high levels of viral RNA copies and substantial intestinal villus atrophy were detected in piglets born to unimmunized sows. Only 4 of 31 piglets (12.9%) born to immunized sows in the challenge group displayed mild to moderate diarrhoea, lower viral RNA copies and minor intestinal villi damage compared to piglets born to unimmunized sows post-challenge. Mock piglets exhibited no typical clinical symptoms. The challenge experiment results indicated that the inactivated PDCoV vaccine exhibited 87.1% protective efficacy in the piglets. These findings suggest that the inactivated PDCoV vaccine has the potential to be an effective vaccine, providing protection against virulent PDCoV.
Collapse
Affiliation(s)
- Jialin Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jianfei Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Ye Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Shi Da
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hongyan Shi
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xin Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jianbo Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Liyan Cao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xiangdong Zhu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xiaobo Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhaoyang Ji
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Li Feng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
205
|
Porcine deltacoronavirus causes diarrhea in various ages of field-infected pigs in China. Biosci Rep 2019; 39:BSR20190676. [PMID: 31488617 PMCID: PMC6746998 DOI: 10.1042/bsr20190676] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 08/25/2019] [Accepted: 09/04/2019] [Indexed: 01/16/2023] Open
Abstract
Porcine deltacoronavirus (PDCoV) is a novel coronavirus that causes acute diarrhea in suckling piglets. In Henan province of China, three swine farms broke out diarrhea in different ages of pigs during June of 2017, March of 2018 and January of 2019, respectively. PCR method, Taqman real-time RT-PCR method, sequencing, histopathology and immunohistochemistry (IHC) were conducted with the collected samples, and the results showed that PDCoV was detected among the suckling piglets, commercial fattening pigs and sows with diarrhea. PDCoV-infected suckling piglets were characterized with thin and transparent intestinal walls from colon to caecum, spot hemorrhage at mesentery and intestinal bleeding. PDCoV RNA was detected in multiple organs and tissues by Taqman real-time RT-PCR, which had high copies in ileum, inguinal lymph node, rectum and spleen. PDCoV antigen was detected in the basal layer of jejunum and ileum by IHC. In this research, we found that PDCoV could infect various ages of farmed pigs with watery diarrhea and anorexia in different seasons in a year.
Collapse
|
206
|
He W, Wang N, Tan J, Wang R, Yang Y, Li G, Guan H, Zheng Y, Shi X, Ye R, Su S, Zhou J. Comprehensive codon usage analysis of porcine deltacoronavirus. Mol Phylogenet Evol 2019; 141:106618. [PMID: 31536759 PMCID: PMC7111727 DOI: 10.1016/j.ympev.2019.106618] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 09/05/2019] [Accepted: 09/11/2019] [Indexed: 12/13/2022]
Abstract
Porcine deltacoronavirus (PDCoV) is a newly identified coronavirus of pigs that was first reported in Hong Kong in 2012. Since then, many PDCoV isolates have been identified worldwide. In this study, we analyzed the codon usage pattern of the S gene using complete coding sequences and complete PDCoV genomes to gain a deeper understanding of their genetic relationships and evolutionary history. We found that during evolution three groups evolved with a relatively low codon usage bias (effective number of codons (ENC) of 52). The factors driving bias were complex. However, the primary element influencing the codon bias of PDCoVs was natural selection. Our results revealed that different natural environments may have a significant impact on the genetic characteristics of the strains. In the future, more epidemiological surveys are required to examine the factors that resulted in the emergence and outbreak of this virus.
Collapse
Affiliation(s)
- Wei He
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Ningning Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jimin Tan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruyi Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yichen Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Gairu Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Haifei Guan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuna Zheng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinze Shi
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Rui Ye
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuo Su
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jiyong Zhou
- MOA Key Laboratory of Animal Virology, Department of Veterinary Medicine and Veterinary Medical Research Center, Zhejiang University, Hangzhou 310058, China; Institute of Preventive Veterinary Sciences, Zhejiang University, Hangzhou 310058, China; Collaborative Innovation Center and State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University, Hangzhou 310003, China.
| |
Collapse
|
207
|
Gu WY, Li Y, Liu BJ, Wang J, Yuan GF, Chen SJ, Zuo YZ, Fan JH. Short hairpin RNAs targeting M and N genes reduce replication of porcine deltacoronavirus in ST cells. Virus Genes 2019; 55:795-801. [PMID: 31463771 PMCID: PMC7088929 DOI: 10.1007/s11262-019-01701-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 08/14/2019] [Indexed: 12/22/2022]
Abstract
Porcine deltacoronavirus (PDCoV) is a recently identified coronavirus that causes intestinal diseases in neonatal piglets with diarrhea, vomiting, dehydration, and post-infection mortality of 50–100%. Currently, there are no effective treatments or vaccines available to control PDCoV. To study the potential of RNA interference (RNAi) as a strategy against PDCoV infection, two short hairpin RNA (shRNA)-expressing plasmids (pGenesil-M and pGenesil-N) that targeted the M and N genes of PDCoV were constructed and transfected separately into swine testicular (ST) cells, which were then infected with PDCoV strain HB-BD. The potential of the plasmids to inhibit PDCoV replication was evaluated by cytopathic effect, virus titers, and real-time quantitative RT-PCR assay. The cytopathogenicity assays demonstrated that pGenesil-M and pGenesil-N protected ST cells against pathological changes with high specificity and efficacy. The 50% tissue culture infective dose showed that the PDCoV titers in ST cells treated with pGenesil-M and pGenesil-N were reduced 13.2- and 32.4-fold, respectively. Real-time quantitative RT-PCR also confirmed that the amount of viral RNA in cell cultures pre-transfected with pGenesil-M and pGenesil-N was reduced by 45.8 and 56.1%, respectively. This is believed to be the first report to show that shRNAs targeting the M and N genes of PDCoV exert antiviral effects in vitro, which suggests that RNAi is a promising new strategy against PDCoV infection.
Collapse
Affiliation(s)
- Wen-yuan Gu
- College of Veterinary Medicine, Agricultural University of Hebei, Baoding, 071001 People’s Republic of China
- Animal Diseases Control Center of Hebei, Shijiazhuang, 050053 China
| | - Yan Li
- College of Veterinary Medicine, Agricultural University of Hebei, Baoding, 071001 People’s Republic of China
| | - Bao-jing Liu
- College of Veterinary Medicine, Agricultural University of Hebei, Baoding, 071001 People’s Republic of China
| | - Jing Wang
- College of Veterinary Medicine, Agricultural University of Hebei, Baoding, 071001 People’s Republic of China
| | - Guang-fu Yuan
- College of Veterinary Medicine, Agricultural University of Hebei, Baoding, 071001 People’s Republic of China
| | - Shao-jie Chen
- College of Veterinary Medicine, Agricultural University of Hebei, Baoding, 071001 People’s Republic of China
| | - Yu-Zhu Zuo
- College of Veterinary Medicine, Agricultural University of Hebei, Baoding, 071001 People’s Republic of China
| | - Jing-Hui Fan
- College of Veterinary Medicine, Agricultural University of Hebei, Baoding, 071001 People’s Republic of China
| |
Collapse
|
208
|
Jia S, Feng B, Wang Z, Ma Y, Gao X, Jiang Y, Cui W, Qiao X, Tang L, Li Y, Wang L, Xu Y. Dual priming oligonucleotide (DPO)-based real-time RT-PCR assay for accurate differentiation of four major viruses causing porcine viral diarrhea. Mol Cell Probes 2019; 47:101435. [PMID: 31415867 PMCID: PMC7127266 DOI: 10.1016/j.mcp.2019.101435] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/28/2019] [Accepted: 08/12/2019] [Indexed: 01/25/2023]
Abstract
Currently in China, porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis virus (TGEV), porcine rotavirus (PoRV), and porcine deltacoronavirus (PDCoV) are the major causes of porcine viral diarrhea, and mixed infections in clinics are common, resulting in significant economic losses in pig industry. Here, a dual priming oligonucleotide (DPO)-based multiplex real-time SYBR Green RT-PCR assay were developed for accurately differentiating PEDV, TGEV, PoRV, and PDCoV in clinical specimens targeting the N gene of TGEV, PEDV, and PDCoV, and the VP7 gene of PoRV. Results showed that the DPO primer allowed a wider annealing temperature range (40–65 °C) and had a higher priming specificity compared to conventional primer, in which more than 3 nucleotides in the 3′- or 5′-segment of DPO primer mismatched with DNA template, PCR amplification efficiency would decrease substantially or extension would not proceed. DPO-based multiplex real-time RT-PCR method had analytical detection limit of 8.63 × 102 copies/μL, 1.92 × 102 copies/μL, 1.74 × 102 copies/μL, and 1.76 × 102 copies/μL for PEDV, TGEV, PoRV, and PDCoV in clinical specimens, respectively. A total of 672 clinical specimens of piglets with diarrheal symptoms were collected in Northeastern China from 2017 to 2018 followed by analysis using the assay, and epidemiological investigation results showed that PEDV, TGEV, PoRV, and PDCoV prevalence was 19.05%, 5.21%, 4.32%, and 3.87%, respectively. The assay developed in this study showed higher detection accuracy than conventional RT-PCR method, suggesting a useful tool for the accurate differentiation of the four major viruses causing porcine viral diarrhea in practice. DPO-based real-time RT-PCR assay for differentiating PEDV, TGEV, PoRV, and PDCoV was developed. The assay has strong specificity and high sensitivity. The test of clinical specimens showed that accuracy of the assay was higher than traditional RT-PCR. The assay is useful tool for epidemiological investigation of the four viruses.
Collapse
Affiliation(s)
- Shuo Jia
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, PR China
| | - Baohua Feng
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, PR China
| | - Zhuo Wang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, PR China
| | - Yingying Ma
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, PR China
| | - Xuwen Gao
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, PR China
| | - Yanping Jiang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, PR China
| | - Wen Cui
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, PR China
| | - Xinyuan Qiao
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, PR China
| | - Lijie Tang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, PR China; Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Harbin, PR China
| | - Yijing Li
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, PR China; Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Harbin, PR China
| | - Li Wang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, PR China; Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Harbin, PR China.
| | - Yigang Xu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, PR China; Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Harbin, PR China.
| |
Collapse
|
209
|
Chen J, Fang P, Wang M, Peng Q, Ren J, Wang D, Peng G, Fang L, Xiao S, Ding Z. Porcine deltacoronavirus nucleocapsid protein antagonizes IFN-β production by impairing dsRNA and PACT binding to RIG-I. Virus Genes 2019; 55:520-531. [PMID: 31129785 PMCID: PMC7088841 DOI: 10.1007/s11262-019-01673-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 05/17/2019] [Indexed: 12/24/2022]
Abstract
Porcine deltacoronavirus (PDCoV) is an emerging swine enteropathogenic coronavirus that causes watery diarrhea, vomiting and mortality in newborn piglets. Previous studies have suggested that PDCoV infection antagonizes RIG-I-like receptor (RLR)-mediated IFN-β production to evade host innate immune defense, and PDCoV-encoded nonstructural protein nsp5 and accessory protein NS6 are associated with this process. However, whether the structural protein(s) of PDCoV also antagonize IFN-β production remains unclear. In this study, we found that PDCoV nucleocapsid (N) protein, the most abundant viral structural protein, suppressed Sendai virus (SEV)-induced IFN-β production and transcription factor IRF3 activation, but did not block IFN-β production induced by overexpressing RIG-I/MDA5. Furthermore, study revealed that PDCoV N protein interacted with RIG-I and MDA5 in an in vitro overexpression system and evident interactions between N protein and RIG-I could be detected in the context of PDCoV infection, which interfered with the binding of dsRNA and protein activator of protein kinase R (PACT) to RIG-I. Together, our results demonstrate that PDCoV N protein is an IFN antagonist and utilizes diverse strategies to attenuate RIG-I recognition and activation.
Collapse
Affiliation(s)
- Jun Chen
- Department of Veterinary Preventive Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Zhimin Street, Qingshan Lake, Nanchang, 330045, China
- Jiangxi Provincial Key Laboratory for Animal Science and Technology, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Puxian Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Mohan Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Qi Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Jie Ren
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Dang Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Guiqing Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Zhen Ding
- Department of Veterinary Preventive Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Zhimin Street, Qingshan Lake, Nanchang, 330045, China.
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China.
- Jiangxi Provincial Key Laboratory for Animal Science and Technology, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
210
|
Hou Y, Ke H, Kim J, Yoo D, Su Y, Boley P, Chepngeno J, Vlasova AN, Saif LJ, Wang Q. Engineering a Live Attenuated Porcine Epidemic Diarrhea Virus Vaccine Candidate via Inactivation of the Viral 2'- O-Methyltransferase and the Endocytosis Signal of the Spike Protein. J Virol 2019; 93:e00406-19. [PMID: 31118255 PMCID: PMC6639265 DOI: 10.1128/jvi.00406-19] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 05/13/2019] [Indexed: 01/18/2023] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) causes high mortality in neonatal piglets; however, effective and safe vaccines are still not available. We hypothesized that inactivation of the 2'-O-methyltransferase (2'-O-MTase) activity of nsp16 and the endocytosis signal of the spike protein attenuates PEDV yet retains its immunogenicity in pigs. We generated a recombinant PEDV, KDKE4A, with quadruple alanine substitutions in the catalytic tetrad of the 2'-O-MTase using a virulent infectious cDNA clone, icPC22A, as the backbone. Next, we constructed another mutant, KDKE4A-SYA, by abolishing the endocytosis signal of the spike protein of KDKE4A Compared with icPC22A, the KDKE4A and KDKE4A-SYA mutants replicated less efficiently in vitro but induced stronger type I and type III interferon responses. The pathogenesis and immunogenicities of the mutants were evaluated in gnotobiotic piglets. The virulence of KDKE4A-SYA and KDKE4A was significantly reduced compared with that of icPC22A. Mortality rates were 100%, 17%, and 0% in the icPC22A-, KDKE4A-, and KDKE4A-SYA-inoculated groups, respectively. At 21 days postinoculation (dpi), all surviving pigs were challenged orally with a high dose of icPC22A. The KDKE4A-SYA- and KDKE4A-inoculated pigs were protected from the challenge, because no KDKE4A-SYA- and one KDKE4A-inoculated pig developed diarrhea whereas all the pigs in the mock-inoculated group had severe diarrhea, and 33% of them died. Furthermore, we serially passaged the KDKE4A-SYA mutant in pigs three times and did not find any reversion of the introduced mutations. The data suggest that KDKE4A-SYA may be a PEDV vaccine candidate.IMPORTANCE PEDV is the most economically important porcine enteric viral pathogen and has caused immense economic losses in the pork industries in many countries. Effective and safe vaccines are desperately required but still not available. 2'-O-MTase (nsp16) is highly conserved among coronaviruses (CoVs), and the inactivation of nsp16 in live attenuated vaccines has been attempted for several betacoronaviruses. We show that inactivation of both 2'-O-MTase and the endocytosis signal of the spike protein is an approach to designing a promising live attenuated vaccine for PEDV. The in vivo passaging data also validated the stability of the KDKE4A-SYA mutant. KDKE4A-SYA warrants further evaluation in sows and their piglets and may be used as a platform for further optimization. Our findings further confirmed that nsp16 can be a universal target for CoV vaccine development and will aid in the development of vaccines against other emerging CoVs.
Collapse
Affiliation(s)
- Yixuan Hou
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agriculture and Environmental Sciences, The Ohio State University, Wooster, Ohio, USA
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Wooster, Ohio, USA
| | - Hanzhong Ke
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Jineui Kim
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Dongwan Yoo
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Yunfang Su
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agriculture and Environmental Sciences, The Ohio State University, Wooster, Ohio, USA
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Wooster, Ohio, USA
| | - Patricia Boley
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agriculture and Environmental Sciences, The Ohio State University, Wooster, Ohio, USA
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Wooster, Ohio, USA
| | - Juliet Chepngeno
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agriculture and Environmental Sciences, The Ohio State University, Wooster, Ohio, USA
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Wooster, Ohio, USA
| | - Anastasia N Vlasova
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agriculture and Environmental Sciences, The Ohio State University, Wooster, Ohio, USA
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Wooster, Ohio, USA
| | - Linda J Saif
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agriculture and Environmental Sciences, The Ohio State University, Wooster, Ohio, USA
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Wooster, Ohio, USA
| | - Qiuhong Wang
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agriculture and Environmental Sciences, The Ohio State University, Wooster, Ohio, USA
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Wooster, Ohio, USA
| |
Collapse
|
211
|
Porcine deltacoronavirus nsp15 antagonizes interferon-β production independently of its endoribonuclease activity. Mol Immunol 2019; 114:100-107. [PMID: 31351410 PMCID: PMC7112593 DOI: 10.1016/j.molimm.2019.07.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/06/2019] [Accepted: 07/07/2019] [Indexed: 11/24/2022]
Abstract
PDCoV nsp15 antagonizes IFN-β production. PDCoV nsp15 suppresses NF-κB activation other than IRF3 activation. The endoribonuclease activity is not essential for PDCoV nsp15 to antagonize IFN-β.
Porcine deltacoronavirus (PDCoV) is an emerging swine coronavirus causing diarrhea and intestinal damage in nursing piglets. Previous work showed that PDCoV infection inhibits type I interferon (IFN) production. To further identify and characterize the PDCoV-encoded IFN antagonists will broaden our understanding of its pathogenesis. Nonstructural protein 15 (nsp15) encodes an endoribonuclease that is highly conserved among vertebrate nidoviruses (coronaviruses and arteriviruses) and plays a critical role in viral replication and transcription. Here, we found that PDCoV nsp15 significantly inhibits Sendai virus (SEV)-induced IFN-β production. PDCoV nsp15 disrupts the phosphorylation and nuclear translocation of NF-κB p65 subunit, but not antagonizes the activation of transcription factor IRF3. Interestingly, site-directed mutagenesis found that PDCoV nsp15 mutants (H129A, H234A, K269A) lacking endoribonuclease activity also suppress SEV-induced IFN-β production and NF-κB activation, suggesting that the endoribonuclease activity is not required for its ability to antagonize IFN-β production. Taken together, our results demonstrate that PDCoV nsp15 is an IFN antagonist and it inhibits interferon-β production via an endoribonuclease activity-independent mechanism.
Collapse
|
212
|
Geng S, Luo H, Liu Y, Chen C, Xu W, Chen Y, Li X, Fang W. Prevalence of porcine circovirus type 3 in pigs in the southeastern Chinese province of Zhejiang. BMC Vet Res 2019; 15:244. [PMID: 31307451 PMCID: PMC6631677 DOI: 10.1186/s12917-019-1977-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 06/24/2019] [Indexed: 12/03/2022] Open
Abstract
Background Porcine circovirus type 3 (PCV3) was first reported in US in 2016. The virus was also identified later in China. Prevalence of PCV3 in Zhejiang province in southeastern China is not clear though it has been reported in many parts of China. Results PCV3 infection and its co-infection with other swine viral pathogens in pig herds of Zhejiang province were retrospectively investigated by quantitative PCR (qPCR) and its sero-prevalence by indirect ELISA. PCV3 was found positive in 67.1% of the 283 clinical samples taken from 2014 to 2017 as shown by qPCR. Single infection with PCV3 accounted for only one-third of the samples, and majority were of co-infections, predominantly with PEDV (41.6%) but generally low with other swine viruses. Indirect ELISA using the PCV3 capsid protein as the coating antigen revealed an average sero-positive rate of 52.6% (40.8 to 60.8%) in 2345 serum samples from 2011 to 2017, with earliest yet high positive findings in samples taken in 2012. Of 203 serum samples, the qPCR method showed more positive findings than ELISA (81.3% vs 56.2%). With 89 serum samples negative by ELISA, vast majority (n = 81) were found positive by qPCR. There was negative correlation in levels of PCV3 DNA and anti-capsid antibody response. ORF2-based phylogenetic analysis revealed three major groups (PCV3a, PCV3b and PCV3c) of the 200 strains, 38 from this study and 162 reference strains from GenBank. Most of the strains from this study were clustered into PCV3c. Of the putative signature residues of the capsid protein (aa 24, 27, 77 and 150) relative to the three groups, only the PCV3a group strains showed a distinct pattern of residues VKSI (95% of the strains), while the other two groups did not have such a ‘signature’ pattern. Conclusions Results from this study provided further evidence that the novel virus PCV3 was widely distributed in China and might have emerged in Zhejiang province before 2014, most probably back in 2012 when there was high PCV3 sero-prevalence. PCV3 might be viremic in pigs and could spread by fecal shedding. Electronic supplementary material The online version of this article (10.1186/s12917-019-1977-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shichao Geng
- Zhejiang University Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, 310058, Zhejiang, China
| | - Hao Luo
- Zhejiang University Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, 310058, Zhejiang, China
| | - Yajie Liu
- Zhejiang University Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, 310058, Zhejiang, China
| | - Cong Chen
- Zhejiang University Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, 310058, Zhejiang, China
| | - Weicheng Xu
- Zhejiang University Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, 310058, Zhejiang, China
| | - Yunlu Chen
- Zhejiang University Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, 310058, Zhejiang, China
| | - Xiaoliang Li
- Zhejiang University Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, 310058, Zhejiang, China.
| | - Weihuan Fang
- Zhejiang University Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
213
|
Zhang J, Chen J, Shi D, Shi H, Zhang X, Liu J, Cao L, Zhu X, Liu Y, Wang X, Ji Z, Feng L. Porcine deltacoronavirus enters cells via two pathways: A protease-mediated one at the cell surface and another facilitated by cathepsins in the endosome. J Biol Chem 2019; 294:9830-9843. [PMID: 31068417 PMCID: PMC6597833 DOI: 10.1074/jbc.ra119.007779] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/02/2019] [Indexed: 11/06/2022] Open
Abstract
Porcine deltacoronavirus (PDCoV) is a pathogen belonging to the genus Deltacoronavirus that in 2014 caused outbreaks of piglet diarrhea in the United States. To identify suitable therapeutic targets, a more comprehensive understanding of the viral entry pathway is required, particularly of the role of proteases. Here, we identified the proteases that activate the viral spike (S) glycoprotein to initiate cell entry and also pinpointed the host-cellular pathways that PDCoV uses for entry. Our results revealed that cathepsin L (CTSL) and cathepsin B (CTSB) in lysosomes and extracellular trypsin in cell cultures independently activate the S protein for membrane fusion. Pretreating the cells with the lysosomal acidification inhibitor bafilomycin-A1 (Baf-A1) completely inhibited PDCoV entry, and siRNA-mediated ablation of CTSL or CTSB expression significantly reduced viral infection, indicating that PDCoV uses an endosomal pathway for entry. Of note, trypsin treatment of cell cultures also activated PDCoV entry, even when the endosomal pathway was inhibited. This observation indicated that trypsin-induced S protein cleavage and activation in cell cultures enables viral entry directly from the cell surface. Our results provide critical insights into the PDCoV infection mechanism, uncovering two distinct viral entry pathways: one through cathepsin L and cathepsin B in the endosome and another via a protease at the cell surface. Because PDCoV infection sites represent a proteases-rich environment, these findings suggest that endosome inhibitor treatment alone is insufficient to block PDCoV entry into intestinal epithelial cells in vivo Therefore, approaches that inhibit viral entry from the cell membrane should also be considered.
Collapse
Affiliation(s)
- Jialin Zhang
- From the State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Jianfei Chen
- From the State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Da Shi
- From the State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Hongyan Shi
- From the State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Xin Zhang
- From the State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Jianbo Liu
- From the State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Liyan Cao
- From the State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Xiangdong Zhu
- From the State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Ye Liu
- From the State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Xiaobo Wang
- From the State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Zhaoyang Ji
- From the State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Li Feng
- From the State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| |
Collapse
|
214
|
Susceptibility of Chickens to Porcine Deltacoronavirus Infection. Viruses 2019; 11:v11060573. [PMID: 31234434 PMCID: PMC6631122 DOI: 10.3390/v11060573] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/16/2019] [Accepted: 06/18/2019] [Indexed: 01/10/2023] Open
Abstract
Porcine deltacoronavirus (PDCoV) is a novel swine enteropathogenic coronavirus with worldwide distribution. PDCoV belongs to the Deltacoronavirus (DCoV) genus, which mainly includes avian coronaviruses (CoVs). PDCoV has the potential to infect human and chicken cells in vitro, and also has limited infectivity in calves. However, the origin of PDCoV in pigs, the host range, and cross-species infection of PDCoV still remain unclear. To determine whether PDCoV really has the ability to infect chickens in vivo, the three lines of chicken embryos and specific pathogen free (SPF) chickens were inoculated with PDCoV HNZK-02 strain to investigate PDCoV infection in the current study. Our results indicated that PDCoV can infect chicken embryos and could be continuously passaged on them. Furthermore, we observed that PDCoV-inoculated chickens showed mild diarrhea symptoms and low fecal viral RNA shedding. PDCoV RNA could also be detected in multiple organs (lung, kidney, jejunum, cecum, and rectum) and intestinal contents of PDCoV-inoculated chickens until 17 day post-inoculation by real-time quantitative PCR (qRT-PCR). A histology analysis indicated that PDCoV caused mild lesions in the lung, kidney, and intestinal tissues. These results prove the susceptibility of chickens to PDCoV infection, which might provide more insight about the cross-species transmission of PDCoV.
Collapse
|
215
|
Perez AM, Linhares DCL, Arruda AG, VanderWaal K, Machado G, Vilalta C, Sanhueza JM, Torrison J, Torremorell M, Corzo CA. Individual or Common Good? Voluntary Data Sharing to Inform Disease Surveillance Systems in Food Animals. Front Vet Sci 2019; 6:194. [PMID: 31294036 PMCID: PMC6598744 DOI: 10.3389/fvets.2019.00194] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 05/31/2019] [Indexed: 12/23/2022] Open
Abstract
Livestock producers have traditionally been reluctant to share information related to their business, including data on health status of their animals, which, sometimes, has impaired the ability to implement surveillance programs. However, during the last decade, swine producers in the United States (US) and other countries have voluntarily begun to share data for the control and elimination of specific infectious diseases, such as the porcine reproductive and respiratory syndrome virus (PRRSv). Those surveillance programs have played a pivotal role in bringing producers and veterinarians together for the benefit of the industry. Examples of situations in which producers have decided to voluntarily share data for extended periods of time to support applied research and, ultimately, disease control in the absence of a regulatory framework have rarely been documented in the peer-reviewed literature. Here, we provide evidence of a national program for voluntary sharing of disease status data that has helped the implementation of surveillance activities that, ultimately, allowed the generation of critically important scientific information to better support disease control activities. Altogether, this effort has supported, and is supporting, the design and implementation of prevention and control approaches for the most economically devastating swine disease affecting the US. The program, which has been voluntarily sustained and supported over an extended period of time by the swine industry in the absence of any regulatory framework and that includes data on approximately 50% of the sow population in the US, represents a unique example of a livestock industry self-organized surveillance program to generate scientific-driven solutions for emerging swine health issues in North America.
Collapse
Affiliation(s)
- Andres M. Perez
- College of Veterinary Medicine, University of Minnesota, Minneapolis, MN, United States
| | | | - Andreia G. Arruda
- College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Kimberly VanderWaal
- College of Veterinary Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Gustavo Machado
- College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Carles Vilalta
- College of Veterinary Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Juan M. Sanhueza
- College of Veterinary Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Jerry Torrison
- College of Veterinary Medicine, University of Minnesota, Minneapolis, MN, United States
| | | | - Cesar A. Corzo
- College of Veterinary Medicine, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
216
|
|
217
|
Qin P, Du EZ, Luo WT, Yang YL, Zhang YQ, Wang B, Huang YW. Characteristics of the Life Cycle of Porcine Deltacoronavirus (PDCoV) In Vitro: Replication Kinetics, Cellular Ultrastructure and Virion Morphology, and Evidence of Inducing Autophagy. Viruses 2019; 11:v11050455. [PMID: 31109068 PMCID: PMC6563515 DOI: 10.3390/v11050455] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/15/2019] [Accepted: 05/16/2019] [Indexed: 12/16/2022] Open
Abstract
Porcine deltacoronavirus (PDCoV) causes severe diarrhea and vomiting in affected piglets. The aim of this study was to establish the basic, in vitro characteristics of the life cycle such as replication kinetics, cellular ultrastructure, virion morphology, and induction of autophagy of PDCoV. Time-course analysis of viral subgenomic and genomic RNA loads and infectious titers indicated that one replication cycle of PDCoV takes 5 to 6 h. Electron microscopy showed that PDCoV infection induced the membrane rearrangements with double-membrane vesicles and large virion-containing vacuoles. The convoluted membranes structures described in alpha- and beta-coronavirus were not observed. PDCoV infection also increased the number of autophagosome-like vesicles in the cytoplasm of cells, and the autophagy response was detected by LC3 I/II and p62 Western blot analysis. For the first time, this study presents the picture of the PDCoV infection cycle, which is crucial to help elucidate the molecular mechanism of deltacoronavirus replication.
Collapse
Affiliation(s)
- Pan Qin
- Institute of Preventive Veterinary Medicine and Key Laboratory of Animal Virology of Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - En-Zhong Du
- Institute of Preventive Veterinary Medicine and Key Laboratory of Animal Virology of Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
- YEBIO Bioengineering Co., Ltd. of Qingdao, Qingdao 266114, China.
| | - Wen-Ting Luo
- Institute of Preventive Veterinary Medicine and Key Laboratory of Animal Virology of Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Yong-Le Yang
- Institute of Preventive Veterinary Medicine and Key Laboratory of Animal Virology of Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Yu-Qi Zhang
- Institute of Preventive Veterinary Medicine and Key Laboratory of Animal Virology of Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Bin Wang
- Institute of Preventive Veterinary Medicine and Key Laboratory of Animal Virology of Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Yao-Wei Huang
- Institute of Preventive Veterinary Medicine and Key Laboratory of Animal Virology of Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
218
|
Zhang H, Liang Q, Li B, Cui X, Wei X, Ding Q, Wang Y, Hu H. Prevalence, phylogenetic and evolutionary analysis of porcine deltacoronavirus in Henan province, China. Prev Vet Med 2019; 166:8-15. [PMID: 30935509 PMCID: PMC7114282 DOI: 10.1016/j.prevetmed.2019.02.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 02/23/2019] [Accepted: 02/28/2019] [Indexed: 01/08/2023]
Abstract
Porcine deltacoronavirus (PDCoV) is a novel porcine enteric coronavirus that causes diarrhea, vomiting and dehydration in piglets. This newly virus has spread rapidly and has caused serious economic losses for pig industry since the outbreak in USA in 2014. In this study, 430 faecal and intestinal samples (143 faecal samples and 287 intestinal samples) were collected from individual pigs with diarrhea and 211 serum samples were also collected from the sows with mild diarrhea in 17 regions in Henan province, China from April 2015 to March 2018. The RT-PCR detection indicated that the infection of PDCoV was high up to 23.49% (101/430), and co-infection with PEDV were common (60.40%, 61/101) in Henan pigs. The prevalence of PDCoV in suckling piglets was the highest (36.43%, 94/258). We also found that PDCoV could be detected in sows faeces and sera while the sows showed mild, self-limited diarrhea in clinic. The complete genomes of 4 PDCoV Henan strains (CH-01, HNZK-02, HNZK-04, HNZK-06) were sequenced and analyzed. Phylogenetic analysis based on the complete genome, spike and nucleocapsid gene sequences revealed that the PDCoV Henan strains were closely related to other PDCoV reference strains that located in the Chinese clade. Furthermore, the phylogenetic analysis showed PDCoV CH-01 strain was closely related to CHN-HB-2014 strain and HKU15-44 strain, while the other PDCoV Henan strains were more related to PDCoV CHJXNI2 and CH-SXD1-2015 strains, indicating that the ancestor of these sequenced strains may different. These results would support the understanding of the prevalence and evolution characteristics of PDCoV in China.
Collapse
Affiliation(s)
- Honglei Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, China; Key Laboratory for Animal-derived Food Safety of Henan Province, Zhengzhou, 450002, China
| | - Qingqing Liang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Bingxiao Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Xinge Cui
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Xuelei Wei
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Qingwen Ding
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Yabin Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, China; Key Laboratory for Animal-derived Food Safety of Henan Province, Zhengzhou, 450002, China.
| | - Hui Hu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, China; Key Laboratory for Animal-derived Food Safety of Henan Province, Zhengzhou, 450002, China.
| |
Collapse
|
219
|
A TaqMan-probe-based multiplex real-time RT-qPCR for simultaneous detection of porcine enteric coronaviruses. Appl Microbiol Biotechnol 2019; 103:4943-4952. [PMID: 31025076 PMCID: PMC7080015 DOI: 10.1007/s00253-019-09835-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/29/2019] [Accepted: 04/07/2019] [Indexed: 11/17/2022]
Abstract
Swine enteric coronaviruses are a group of most significant pathogens causing diarrhea in piglets with similar clinical symptoms and pathological changes. To develop a simple, rapid, accurate, and high-throughput detection method for diagnosis and differential diagnosis on swine enteric coronaviruses, specific primers and probes were designed based on the highly conserved regions of transmissible gastroenteritis virus (TGEV) N, porcine epidemic diarrhea virus (PEDV) M, porcine deltacoronavirus (PDCoV) M, and porcine enteric alphacoronavirus (PEAV) N genes respectively. A TaqMan-probe-based multiplex real-time RT-qPCR assay was developed and optimized to simultaneously detect these swine enteric coronaviruses. The results showed that the limit of detection can reach as low as 10 copies in singular real-time RT-qPCR assays and 100 copies in multiplex real-time RT-qPCR assay, with all correlation coefficients (R2) at above 0.99, and the amplification efficiency at between 90 and 120%. This multiplex real-time RT-qPCR assay demonstrated high sensitivity, extreme specificity, and excellent repeatability. The multiplex real-time RT-qPCR assay was then employed to detect the swine enteric coronavirus from 354 field diarrheal samples. The results manifested that TGEV and PDCoV were the main pathogens in these samples, accompanied by co-infections. This well-established multiplex real-time RT-qPCR assay provided a rapid, efficient, specific, and sensitive tool for detection of swine enteric coronaviruses.
Collapse
|
220
|
Zhang Y, Cheng Y, Xing G, Yu J, Liao A, Du L, Lei J, Lian X, Zhou J, Gu J. Detection and spike gene characterization in porcine deltacoronavirus in China during 2016-2018. INFECTION GENETICS AND EVOLUTION 2019; 73:151-158. [PMID: 31026605 PMCID: PMC7106087 DOI: 10.1016/j.meegid.2019.04.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 04/08/2019] [Accepted: 04/22/2019] [Indexed: 12/22/2022]
Abstract
Porcine deltacoronavirus (PDCoV) has been emerging in several swine-producing countries for years. In our study, 719 porcine diarrhoea samples from 18 provinces in China were collected for PDCoV and porcine epidemic diarrhoea virus (PEDV) detection. The epidemiological survey revealed that the positive rates of PDCoV, PEDV and coinfection were 13.07%, 36.72% and 4.73%, respectively. The entire spike (S) genes of eleven detected PDCoV strains were sequenced. Phylogenetic analysis showed that the majority of PDCoVs could be divided into three lineages: the China lineage, the USA/Japan/South Korea lineage and the Viet Nam/Laos/Thailand lineage. The China and the Viet Nam/Laos/Thailand lineages showed much greater genetic divergences than the USA/Japan/South Korea lineage. The present study detected one new monophyletic branch that contained three PDCoVs from China, and this branch was separated from the China lineage but closely related to the Viet Nam/Laos/Thailand lineage. The strain CH-HA2-2017, which belongs to this new branch, had a possible recombination event between positions 27 and 1234. Significant amino acid substitutions of PDCoV S proteins were analysed and displayed with a three-dimensional cartoon diagram. The visual spatial location of these substitutions gave a conformational-based reference for further studies on the significance of critical sites on the PDCoV S protein. The majority of global PDCoVs could be divided into three lineages. Three sequenced PDCoVs from China were closely related to the Viet Nam/Laos/Thailand lineage. The China lineage showed the greatest genetic divergence. One sequenced strain CH-HA2–2017 had a possible recombination event.
Collapse
Affiliation(s)
- Yu Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Engineering Laboratory of Animal Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yao Cheng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Engineering Laboratory of Animal Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Gang Xing
- MOA key laboratory of Animal Virology, Department of Veterinary Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jing Yu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Engineering Laboratory of Animal Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Ao Liao
- Ma'anshan Shiji Animal Health Management Co. Ltd, Anhui, China
| | - Liuyang Du
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Engineering Laboratory of Animal Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jing Lei
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Engineering Laboratory of Animal Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xue Lian
- Jiangsu Engineering Laboratory of Animal Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiyong Zhou
- MOA key laboratory of Animal Virology, Department of Veterinary Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jinyan Gu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOA key laboratory of Animal Virology, Department of Veterinary Medicine, Zhejiang University, Hangzhou 310058, China; Jiangsu Engineering Laboratory of Animal Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
221
|
Wu JL, Mai KJ, Li D, Wu RT, Wu ZX, Tang XY, Li QN, Sun Y, Lan T, Zhang XB, Ma JY. Expression profile analysis of 5-day-old neonatal piglets infected with porcine Deltacoronavirus. BMC Vet Res 2019; 15:117. [PMID: 30992015 PMCID: PMC6469071 DOI: 10.1186/s12917-019-1848-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 03/18/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Porcine deltacoronavirus (PDCoV) is a novel coronavirus that can cause diarrhea in nursing piglets. This study was aimed to investigate the roles of host differentially expressed genes on metabolic pathways in PDCoV infections. RESULTS Twenty thousand six hundred seventy-four differentially expressed mRNAs were identified in 5-day-old piglets responded to PDCoV experimental infections. Many of these genes were correlated to the basic metabolism, such as the peroxisome proliferator-activated receptor (PPAR) signaling pathway which plays a critical role in digestion. At the same time, in the PPAR pathway genes of fatty acid-binding protein (FABP) family members were observed with remarkably differential expressions. The differential expressed genes were associated with appetite decrease and weight loss of PDCoV- affected piglets. DISCUSSION Fatty acid-binding protein 1 (FABP1) and fatty acid-binding protein 3 (FABP3) were found to be regulated by PDCoV. These two genes not only mediate fatty acid transportation to different cell organelles such as mitochondria, peroxisome, endoplasmic reticulum and nucleus, but also modulate fatty acid metabolism and storage as a signaling molecule outside the cell. Therefore, it can be preliminarily concluded that PPAR differential expression caused by PDCoV was mostly associated with weight loss and death from emaciation. CONCLUSIONS The host differentially expressed genes were associated with infection response, metabolism signaling and organismal systems signaling pathways. The genes of FABP family members in the PPAR signaling pathway were the most highly altered and played important roles in metabolism. Alteration of these genes were most likely the reason of weight loss and other clinical symptoms. Our results provided new insights into the metabolic mechanisms and pathogenesis of PDCoV infection. METHODS Animal experiment, Determination of viral growth by real-time RT-PCR, Histopathology, Immunohistochemical staining, Microarray analysis.
Collapse
Affiliation(s)
- Jiao L Wu
- College of Animal Science, South China Agricultural University, Tianhe District, Wushan Road 483, Guangzhou, 510642, China.,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong, China
| | - Kai J Mai
- College of Animal Science, South China Agricultural University, Tianhe District, Wushan Road 483, Guangzhou, 510642, China.,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong, China
| | - Di Li
- College of Animal Science, South China Agricultural University, Tianhe District, Wushan Road 483, Guangzhou, 510642, China.,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong, China
| | - Rui T Wu
- College of Animal Science, South China Agricultural University, Tianhe District, Wushan Road 483, Guangzhou, 510642, China.,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong, China
| | - Zi X Wu
- Guangdong Wen's Foodstuffs Group CO., Ltd., Guangzhou, Guangdong, China
| | - Xiao Y Tang
- College of Animal Science, South China Agricultural University, Tianhe District, Wushan Road 483, Guangzhou, 510642, China.,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong, China
| | - Qian N Li
- College of Animal Science, South China Agricultural University, Tianhe District, Wushan Road 483, Guangzhou, 510642, China.,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong, China
| | - Yuan Sun
- College of Animal Science, South China Agricultural University, Tianhe District, Wushan Road 483, Guangzhou, 510642, China.,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong, China
| | - Tian Lan
- College of Animal Science, South China Agricultural University, Tianhe District, Wushan Road 483, Guangzhou, 510642, China.,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong, China
| | - Xiang B Zhang
- Guangdong Wen's Foodstuffs Group CO., Ltd., Guangzhou, Guangdong, China
| | - Jing Y Ma
- College of Animal Science, South China Agricultural University, Tianhe District, Wushan Road 483, Guangzhou, 510642, China. .,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong, China.
| |
Collapse
|
222
|
Pérez-Rivera C, Ramírez-Mendoza H, Mendoza-Elvira S, Segura-Velázquez R, Sánchez-Betancourt JI. First report and phylogenetic analysis of porcine deltacoronavirus in Mexico. Transbound Emerg Dis 2019; 66:1436-1441. [PMID: 30941894 PMCID: PMC7168549 DOI: 10.1111/tbed.13193] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/21/2019] [Accepted: 03/24/2019] [Indexed: 01/23/2023]
Abstract
Porcine deltacoronavirus has caused great economic losses in the swine industry worldwide. In this study, we carried out the first detection, sequencing and characterization of this virus in Mexico. We analysed 885 rectal samples by multiplex RT‐PCR to determine coinfections. In addition, the Spike gene was amplified, sequenced and analysed phylogenetically. We found 85 positive samples for porcine deltacoronavirus, representing 9.6% of the total samples, and we determined that the most frequent coinfection was with porcine epidemic diarrhoea virus (54.1%). Four sequences of Mexican isolates were most closely related to those of the United States. The antigenic regions and the glycosylation site of the strains obtained coincide with those previously reported. This relationship is probably related to the commercial exchange of pigs between the US and Mexico and the geographical proximity of these two countries.
Collapse
Affiliation(s)
| | - Humberto Ramírez-Mendoza
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia (FMVZ), Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Susana Mendoza-Elvira
- Laboratorio de Microbiología, Facultad de Estudios Superiores Cuautitlán, UNAM, Mexico City, Mexico
| | - Rene Segura-Velázquez
- Unidad de Investigación, Facultad de Medicina Veterinaria y Zootecnia (FMVZ), Universidad Nacional Autónoma de México (UNAM), México City, México
| | | |
Collapse
|
223
|
Wang X, Fang L, Liu S, Ke W, Wang D, Peng G, Xiao S. Susceptibility of porcine IPI-2I intestinal epithelial cells to infection with swine enteric coronaviruses. Vet Microbiol 2019; 233:21-27. [PMID: 31176408 PMCID: PMC7117161 DOI: 10.1016/j.vetmic.2019.04.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 01/07/2023]
Abstract
IPI-2I cells are susceptible to TGEV, PDCoV, and PEAV. IPI-2I cells can be infected with PEDV, but with low efficiency. A homogeneous cell line IPI-FX is obtained from IPI-2I cells by sub-cloning. IPI-FX cells are highly susceptible to PEDV, TGEV, PDCoV, and PEAV.
Swine enteric coronavirus (CoV) is an important group of pathogens causing diarrhea in piglets. At least four kinds of swine enteric CoVs have been identified, including transmissible gastroenteritis virus (TGEV), porcine epidemic diarrhea virus (PEDV), porcine deltacoronavirus (PDCoV), and the emerging HKU2-like porcine enteric alphacoronavirus (PEAV). The small intestines, particularly the jejunum and ileum, are the most common targets of these four CoVs in vivo, and co-infections by these CoVs are frequently observed in clinically infected pigs. This study was conducted to investigate the susceptibility of the porcine ileum epithelial cell line, IPI-2I, to different swine enteric CoVs. We found that IPI-2I cells are highly susceptible to TGEV, PDCoV, and PEAV, as demonstrated by cytopathic effect and virus multiplication. However, only a small number of cells could be infected by PEDV, possibly due to the heterogeneity of IPI-2I cells. A homogeneous cell line, designated IPI-FX, obtained from IPI-2I cells by sub-cloning with limited serial dilutions, was found to be highly susceptible to PEDV. Furthermore, IPI-FX cells were also highly susceptible to TGEV, PDCoV, as well as PEAV. Thus, this sub-cloned IPI-FX cell line is an ideal cell model to study the mechanisms of infection, particularly co-infections of swine enteric CoVs.
Collapse
Affiliation(s)
- Xunlei Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.
| | - Shudan Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Wenting Ke
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Dang Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Guiqing Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| |
Collapse
|
224
|
Tang X, Lan T, Wu R, Zhou Z, Chen Y, Sun Y, Zheng Y, Ma J. Analysis of long non-coding RNAs in neonatal piglets at different stages of porcine deltacoronavirus infection. BMC Vet Res 2019; 15:111. [PMID: 30971240 PMCID: PMC6458635 DOI: 10.1186/s12917-019-1862-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 04/03/2019] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND PDCoV (Porcine Deltacoronavirus) is a novel porcine coronavirus that causes intestinal necrosis of piglets, thinning of the intestinal wall and severe villus atrophy in the small intestine. PDCoV is a highly contagious infectious disease characterized by diarrhea, dehydration and vomiting. It has been reported that lncRNA has a significant effect on viral replication and increased or decreased virulence. At present, there is almost no research on lncRNA related to PDCoV infection. With the development of the research, a large number of lncRNAs related to PDCoV infection have been discovered. Identifying the role of these lncRNAs in the infection process facilitates the screening of diagnostically significant biomarkers. RESULTS Using high throughput sequencing to screen differentially expressed long non-coding RNA (lncRNA) during PDCoV infection, we identified 99, 41 and 33 differentially expressed lncRNAs in the early, middle and late stages of infection, respectively. These lncRNAs were involved in glycolysis / gluconeogenesis, histidine metabolism and pentose and Chloroalkane and chloroalkene degradation pathway. We obtained expression data of miRNAs, lncRNAs and mRNAs during PDCoV infection and constructed and investigated an interaction network. The qRT-PCR validation results of 6 differentially expressed lncRNAs were consistent with RNA-Seq results. CONCLUSIONS This study is the first to examine differentially expressed lncRNAs after PDCoV infection of piglets. These results can provide new insights into PDCoV infection and antiviral strategies.
Collapse
Affiliation(s)
- Xiaoyu Tang
- College of Animal Science, South China Agricultural University, Tianhe District, Wushan Road 483, Guangzhou, 510642, China.,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong, China
| | - Tian Lan
- College of Animal Science, South China Agricultural University, Tianhe District, Wushan Road 483, Guangzhou, 510642, China.,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong, China
| | - Ruiting Wu
- College of Animal Science, South China Agricultural University, Tianhe District, Wushan Road 483, Guangzhou, 510642, China.,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong, China
| | - Zhihai Zhou
- College of Animal Science, South China Agricultural University, Tianhe District, Wushan Road 483, Guangzhou, 510642, China.,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong, China
| | - Yuqi Chen
- College of Animal Science, South China Agricultural University, Tianhe District, Wushan Road 483, Guangzhou, 510642, China.,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong, China
| | - Yuan Sun
- College of Animal Science, South China Agricultural University, Tianhe District, Wushan Road 483, Guangzhou, 510642, China.,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong, China
| | - Yaoyao Zheng
- College of Animal Science, South China Agricultural University, Tianhe District, Wushan Road 483, Guangzhou, 510642, China.,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong, China
| | - Jingyun Ma
- College of Animal Science, South China Agricultural University, Tianhe District, Wushan Road 483, Guangzhou, 510642, China. .,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong, China.
| |
Collapse
|
225
|
Ma L, Zeng F, Huang B, Zhu Y, Wu M, Xu F, Xiao L, Huang R, Ma J, Cong F, Guo P. Point-of-care diagnostic assay for rapid detection of porcine deltacoronavirus using the recombinase polymerase amplification method. Transbound Emerg Dis 2019; 66:1324-1331. [PMID: 30801935 PMCID: PMC7168525 DOI: 10.1111/tbed.13155] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/24/2019] [Accepted: 02/15/2019] [Indexed: 12/13/2022]
Abstract
Porcine deltacoronavirus (PDCoV) has emerged and spread throughout the porcine industry in many countries over the last 6 years. PDCoV caused watery diarrhoea, vomiting and dehydration in newborn piglets. A sensitive diagnostic method would be beneficial to the prevention and control of PDCoV infection. Recombinase polymerase amplification (RPA) is an isothermal amplification method which has been widely used for virus detection. A probe-based reverse transcription RPA (RT-RPA) assay was developed for real-time detection of PDCoV. The amplification can be finished in 20 min and fluorescence monitoring was performed by a portable device. The lowest detection limit of the PDCoV RT-RPA assay was 100 copies of RNA molecules per reaction; moreover, the RT-RPA assay had no cross-reaction with other common swine viruses. The clinical performance of the RT-RPA assay was evaluated using 108 clinical samples (54 intestine specimens and 54 faecal swab specimens). The coincidence rate of the detection results for clinical samples between RT-RPA and RT-qPCR was 97.2%. In summary, the real-time RT-RPA assay offers a promising alternative to RT-qPCR for point-of-care detection of PDCoV.
Collapse
Affiliation(s)
- Lei Ma
- Guangdong Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Fanwen Zeng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Bihong Huang
- Guangdong Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Yujun Zhu
- Guangdong Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Miaoli Wu
- Guangdong Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Fengjiao Xu
- Guangdong Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Li Xiao
- Guangdong Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Ren Huang
- Guangdong Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Jingyun Ma
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Feng Cong
- Guangdong Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Pengju Guo
- Guangdong Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| |
Collapse
|
226
|
Complete Genome Sequences of Two Porcine Deltacoronavirus Strains from Henan Province, China. Microbiol Resour Announc 2019; 8:MRA01517-18. [PMID: 30863822 PMCID: PMC6406112 DOI: 10.1128/mra.01517-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 01/28/2019] [Indexed: 11/20/2022] Open
Abstract
In 2016 and 2018, two porcine deltacoronavirus (PDCoV) strains, CH-01 and HNZK-02, were identified from fecal samples of piglets with diarrhea in Henan Province, China. The full-length genomic sequence analysis indicated that these two strains had high nucleotide identities with the other Chinese PDCoV epidemic strains. In 2016 and 2018, two porcine deltacoronavirus (PDCoV) strains, CH-01 and HNZK-02, were identified from fecal samples of piglets with diarrhea in Henan Province, China. The full-length genomic sequence analysis indicated that these two strains had high nucleotide identities with the other Chinese PDCoV epidemic strains.
Collapse
|
227
|
Koonpaew S, Teeravechyan S, Frantz PN, Chailangkarn T, Jongkaewwattana A. PEDV and PDCoV Pathogenesis: The Interplay Between Host Innate Immune Responses and Porcine Enteric Coronaviruses. Front Vet Sci 2019; 6:34. [PMID: 30854373 PMCID: PMC6395401 DOI: 10.3389/fvets.2019.00034] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 01/28/2019] [Indexed: 12/24/2022] Open
Abstract
Enteropathogenic porcine epidemic diarrhea virus (PEDV) and porcine deltacoronavirus (PDCoV), members of the coronavirus family, account for the majority of lethal watery diarrhea in neonatal pigs in the past decade. These two viruses pose significant economic and public health burdens, even as both continue to emerge and reemerge worldwide. The ability to evade, circumvent or subvert the host’s first line of defense, namely the innate immune system, is the key determinant for pathogen virulence, survival, and the establishment of successful infection. Unfortunately, we have only started to unravel the underlying viral mechanisms used to manipulate host innate immune responses. In this review, we gather current knowledge concerning the interplay between these viruses and components of host innate immunity, focusing on type I interferon induction and signaling in particular, and the mechanisms by which virus-encoded gene products antagonize and subvert host innate immune responses. Finally, we provide some perspectives on the advantages gained from a better understanding of host-pathogen interactions. This includes their implications for the future development of PEDV and PDCoV vaccines and how we can further our knowledge of the molecular mechanisms underlying virus pathogenesis, virulence, and host coevolution.
Collapse
Affiliation(s)
- Surapong Koonpaew
- Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| | - Samaporn Teeravechyan
- Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| | - Phanramphoei Namprachan Frantz
- Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| | - Thanathom Chailangkarn
- Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| | - Anan Jongkaewwattana
- Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| |
Collapse
|
228
|
Nelson SW, Zentkovich MM, Nolting JM, Bowman AS. Porcine Epidemic Diarrhea Virus and Porcine Deltacoronavirus not Detected in Waterfowl in the North American Mississippi Migratory Bird Flyway in 2013. J Wildl Dis 2019; 55:223-226. [PMID: 29953312 PMCID: PMC8710939 DOI: 10.7589/2018-03-074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cloacal swab samples collected from 538 migratory waterfowl along the Mississippi Migratory Bird Flyway in 2013 were tested for porcine epidemic diarrhea virus and porcine deltacoronavirus. Neither virus was detected in any of the samples, indicating that waterfowl likely did not contribute to the rapid spread of these viruses within central US.
Collapse
Affiliation(s)
- Sarah W. Nelson
- The Ohio State University, Department of Veterinary Preventive Medicine, 1920 Coffey Road, Columbus, Ohio, USA
| | - Michele M. Zentkovich
- The Ohio State University, Department of Veterinary Preventive Medicine, 1920 Coffey Road, Columbus, Ohio, USA
| | - Jacqueline M. Nolting
- The Ohio State University, Department of Veterinary Preventive Medicine, 1920 Coffey Road, Columbus, Ohio, USA
| | - Andrew S. Bowman
- The Ohio State University, Department of Veterinary Preventive Medicine, 1920 Coffey Road, Columbus, Ohio, USA
| |
Collapse
|
229
|
Klaumann F, Correa-Fiz F, Franzo G, Sibila M, Núñez JI, Segalés J. Current Knowledge on Porcine circovirus 3 (PCV-3): A Novel Virus With a Yet Unknown Impact on the Swine Industry. Front Vet Sci 2018; 5:315. [PMID: 30631769 PMCID: PMC6315159 DOI: 10.3389/fvets.2018.00315] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 11/28/2018] [Indexed: 12/21/2022] Open
Abstract
Porcine circovirus 3 (PCV-3) is a recently described virus belonging to the family Circoviridae. It represents the third member of genus Circovirus able to infect swine, together with PCV-1, considered non-pathogenic, and PCV-2, one of the most economically relevant viruses for the swine worldwide industry. PCV-3 was originally found by metagenomics analyses in 2015 in tissues of pigs suffering from porcine dermatitis and nephropathy syndrome, reproductive failure, myocarditis and multisystemic inflammation. The lack of other common pathogens as potential infectious agents of these conditions prompted the suspicion that PCV-3 might etiologically be involved in disease occurrence. Subsequently, viral genome was detected in apparently healthy pigs, and retrospective studies indicated that PCV-3 was already present in pigs by early 1990s. In fact, current evidence suggests that PCV-3 is a rather widespread virus worldwide. Recently, the virus DNA has also been found in wild boar, expanding the scope of infection susceptibility among the Suidae family; also, the potential reservoir role of this species for the domestic pig has been proposed. Phylogenetic studies with available PCV-3 partial and complete sequences from around the world have revealed high nucleotide identity (>96%), although two main groups and several subclusters have been described as well. Moreover, it has been proposed the existence of a most common ancestor dated around 50 years ago. Taking into account the economic importance and the well-known effects of PCV-2 on the swine industry, a new member of the same family like PCV-3 should not be neglected. Studies on epidemiology, pathogenesis, immunity and diagnosis are guaranteed in the next few years. Therefore, the present review will update the current knowledge and future trends of research on PCV-3.
Collapse
Affiliation(s)
- Francini Klaumann
- CAPES Foundation, Ministry of Education of Brazil, Brasília, Brazil.,IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Florencia Correa-Fiz
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Giovanni Franzo
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Padua, Italy
| | - Marina Sibila
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Barcelona, Spain
| | - José I Núñez
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Joaquim Segalés
- UAB, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Barcelona, Spain.,Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
230
|
Xu Z, Zhong H, Huang S, Zhou Q, Du Y, Chen L, Xue C, Cao Y. Porcine deltacoronavirus induces TLR3, IL-12, IFN-α, IFN-β and PKR mRNA expression in infected Peyer's patches in vivo. Vet Microbiol 2018; 228:226-233. [PMID: 30593372 PMCID: PMC7117130 DOI: 10.1016/j.vetmic.2018.12.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/05/2018] [Accepted: 12/11/2018] [Indexed: 12/25/2022]
Abstract
PDCoV infection caused severe diarrhea, virus shedding and intestinal lesion in weaned piglets. PDCoV could induce TLR3 mRNA expression in infected Peyer's patches from weaned piglets. PDCoV obviously induced IL-12, IFN-α, IFN-β, and PKR mRNA expression in infected Peyer's patches from weaned piglets.
Porcine deltacoronavirus (PDCoV) is a newly identified swine enteropathogenic coronavirus that causes watery diarrhea in piglets and results in significant economic losses to the pig industry. Currently there are no effective treatments or vaccines for PDCoV. In particular, the pathogenesis of PDCoV infection is still largely unknown. In this study, we reported that inoculating conventional weaned piglets with 1 × 109 TCID50 of the PDCoV CHN-GD-2016 strain by oral feeding could cause severe diarrhea. Virus RNA was detected in rectal swabs from 1 to 7 days post inoculation. In addition, microscopic lesions in small intestine were observed, and viral antigen also detected in the small intestines with PDCoV immunohistochemical staining. Importantly, PDCoV significantly induced mRNA expression of TLR3, IL-12, IFN-α, IFN-β, and PKR, the genes involved in modulation of the host immune responses, in infected Peyer's patches at 3 d.p.i., indicating that Peyer's patches play an important role in PDCoV immune responses in vivo. Collectively, our findings suggest that the observed gene expression profile might help explain immunological and pathological changes associated with PDCoV infection.
Collapse
Affiliation(s)
- Zhichao Xu
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, 510006, China
| | - Huiling Zhong
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, 510006, China
| | - Songjian Huang
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, 510006, China
| | - Qingfeng Zhou
- Wen's Group Academy, Wen's Foodstuffs Group Co, Ltd, Xinxing, Guangdong, 527400, China
| | - Yunping Du
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, 510006, China; Wen's Group Academy, Wen's Foodstuffs Group Co, Ltd, Xinxing, Guangdong, 527400, China
| | - Li Chen
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, 510006, China; Wen's Group Academy, Wen's Foodstuffs Group Co, Ltd, Xinxing, Guangdong, 527400, China
| | - Chunyi Xue
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yongchang Cao
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
231
|
Boniotti MB, Papetti A, Bertasio C, Giacomini E, Lazzaro M, Cerioli M, Faccini S, Bonilauri P, Vezzoli F, Lavazza A, Alborali GL. Porcine Epidemic Diarrhoea Virus in Italy: Disease spread and the role of transportation. Transbound Emerg Dis 2018; 65:1935-1942. [PMID: 30094946 PMCID: PMC7169760 DOI: 10.1111/tbed.12974] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/15/2018] [Accepted: 07/07/2018] [Indexed: 11/30/2022]
Abstract
Porcine Epidemic Diarrhoea Virus (PEDV) causes watery diarrhoea, dehydration, and a high mortality rate among suckling pigs. Recently, PEDV had a large negative economic impact on the swine industries in Asia and North America. In 2014, PEDV re-emerged in many European countries, but most countries only reported a few sporadic cases. Here, we report the epidemic wave that occurred in Italy from 2015 to 2017. During this time, PEDV was detected by real-time PCR in 438 farms located mainly in the high-density pig production area in Northern Italy. Most of the outbreaks were in farrow-to-finish, farrow-to-wean and finisher farms. Clinical signs were observed mainly in suckling and fattening animals, while mortality rates were higher in piglets, reaching 50%. A sequence analysis showed that a PEDV strain, similar to the OH851 S-INDEL strain isolated in the USA in January 2014, was responsible for the outbreaks in Italy in 2015 and 2016. However, from January 2017, a recombinant variant strain, containing a portion of the Swine Enteric Coronavirus in the S1 gene, spread and almost completely outcompeted the previous nonrecombinant strain. In total, 14.1% of the environmental swabs collected from trucks at slaughterhouses after animals were unloaded tested positive for PEDV before the trucks were cleaned and disinfected, and 46% remained positive after cleaning and disinfection processes were performed. Moreover, environmental swabs indicated that 17.3% of the empty trucks arriving at the farms to load animals were PEDV-positive. This study indicates that trucks can have an important role in the spread of PEDV in Italy.
Collapse
Affiliation(s)
| | - Alice Papetti
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia RomagnaBresciaItaly
| | - Cristina Bertasio
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia RomagnaBresciaItaly
| | - Enrico Giacomini
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia RomagnaBresciaItaly
| | - Massimiliano Lazzaro
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia RomagnaBresciaItaly
| | - Monica Cerioli
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia RomagnaBresciaItaly
| | - Silvia Faccini
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia RomagnaBresciaItaly
| | - Paolo Bonilauri
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia RomagnaBresciaItaly
| | - Fausto Vezzoli
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia RomagnaBresciaItaly
| | - Antonio Lavazza
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia RomagnaBresciaItaly
| | | |
Collapse
|
232
|
Development of a Conventional RT-PCR Assay for Rapid Detection of Porcine Deltacoronavirus with the Same Detection Limit as a SYBR Green-Based Real-Time RT-PCR Assay. BIOMED RESEARCH INTERNATIONAL 2018; 2018:5035139. [PMID: 30533434 PMCID: PMC6247729 DOI: 10.1155/2018/5035139] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/25/2018] [Accepted: 10/21/2018] [Indexed: 11/18/2022]
Abstract
Porcine deltacoronavirus (PDCoV) is a newly discovered coronavirus, which belongs to the family Coronaviridae. It causes watery diarrhea, vomiting, and dehydration in newborn piglets. A sensitive RT-PCR method is urgently required to detect PDCoV infection. In this study, we developed and evaluated a conventional RT-PCR assay and a SYBR green-based real-time RT-PCR assay that targeted the PDCoV n gene. Both assays are specific and have the same limit of detection at 2 × 101 copies of RNA molecules per reaction. Eighty-four clinical samples were subjected to both conventional RT-PCR and real-time RT-PCR, and the same positive rate (41.7%) was achieved, which was much higher than the positive rate (26.2%) using a previously described one-step RT-PCR technique. In summary, a conventional RT-PCR technique was successfully established for the detection of PDCoV with the same detection limit as a SYBR green-based real-time RT-PCR assay.
Collapse
|
233
|
Zhang MJ, Liu DJ, Liu XL, Ge XY, Jongkaewwattana A, He QG, Luo R. Genomic characterization and pathogenicity of porcine deltacoronavirus strain CHN-HG-2017 from China. Arch Virol 2018; 164:413-425. [PMID: 30377826 PMCID: PMC7087286 DOI: 10.1007/s00705-018-4081-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 10/05/2018] [Indexed: 01/21/2023]
Abstract
Porcine deltacoronavirus (PDCoV) was first detected in Hong Kong and has recently spread to many countries around the world. PDCoV causes acute diarrhea and vomiting in pigs, resulting in significant economic losses in the global pork industry. In this study, a Chinese PDCoV strain, designated CHN-HG-2017, was isolated from feces of a suckling piglet with severe watery diarrhea on a farm located in central China. Subsequently, the virus was identified by an indirect immunofluorescence assay and electron microscopy. A nucleotide sequence alignment showed that the whole genome of CHN-HG-2017 is 97.6%-99.1% identical to other PDCoV strains. Analysis of potential recombination sites showed that CHN-HG-2017 is a possible recombinant originating from the strains CH/SXD1/2015 and Vietnam/HaNoi6/2015. Furthermore, the pathogenicity of this recombinant PDCoV strain was investigated in 5-day-old piglets by oral inoculation. The challenged piglets developed typical symptoms, such as vomiting, anorexia, diarrhea and lethargy, from 1 to 7 days post-inoculation (DPI). Viral shedding was detected in rectal swabs until 14 DPI in the challenged piglets. Interestingly, high titers of virus-neutralizing antibodies in sera were detected at 21 DPI. Tissues of small intestines from CHN-HG-2017-infected piglets at 4 DPI displayed significant macroscopic and microscopic lesions with clear viral antigen expression. Our analysis of the full genome sequence of a recombinant PDCoV and its virulence in suckling piglets might provide new insights into the pathogenesis of PDCoV and facilitate further investigation of this newly emerged pathogen.
Collapse
Affiliation(s)
- Meng-Jia Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
| | - De-Jian Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
| | - Xiao-Li Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
| | - Xing-Yi Ge
- College of Biology, Hunan University, Changsha, 410082, China
| | - Anan Jongkaewwattana
- Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Rd., Klong Nueng, Pathum Thani, 12120, Thailand
| | - Qi-Gai He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China.
| | - Rui Luo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China.
| |
Collapse
|
234
|
Hsu TH, Liu HP, Chin CY, Wang C, Zhu WZ, Wu BL, Chang YC. Detection, sequence analysis, and antibody prevalence of porcine deltacoronavirus in Taiwan. Arch Virol 2018; 163:3113-3117. [PMID: 30051342 PMCID: PMC7086614 DOI: 10.1007/s00705-018-3964-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 07/15/2018] [Indexed: 11/02/2022]
Abstract
Porcine deltacoronavirus (PDCoV) was initially documented in Hong Kong and later in the United States, South Korea, and Thailand. To investigate if PDCoV is also present in Taiwan, three swine coronaviruses-PDCoV, porcine epidemic diarrhea virus (PEDV), and transmissible gastroenteritis coronavirus (TGEV)-were tested using real-time reverse transcription polymerase chain reaction (rRT-PCR) in 172 rectal swab samples from piglets exhibiting diarrhea between January 2016 and May 2017 on 68 pig farms in Taiwan. The rRT-PCR results were positive for PDCoV (29/172, 16.9%), PEDV (36/172, 20.9%), TGEV (2/172, 1.2%), and coinfections (16/172, 9.3%). After cloning and sequencing, PDCoV nucleocapsid genes were analyzed. Phylogeny results indicated that the nucleotide sequences of all isolates were like those reported in other countries. To further trace PDCoV in the period of 2011 to 2015, an enzyme-linked immunosorbent assay (ELISA) was used to detect antibodies against PDCoV. The results showed that 279 of 1,039 (26.9%) sera were positive for the PDCoV nucleocapsid protein, implying that PDCoV might have existed in Taiwan before 2011.
Collapse
Affiliation(s)
- Tien-Huan Hsu
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung-Hsing University, Taichung, Taiwan ROC
| | - Hao-Ping Liu
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung-Hsing University, Taichung, Taiwan ROC
| | - Chieh-Yu Chin
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung-Hsing University, Taichung, Taiwan ROC
| | - Chinling Wang
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, USA
| | - Wan-Zhen Zhu
- Department of Biotechnology, School of Health Technology, Ming Chuan University, 5 De-Ming Rd, Gui-Shan, Taoyuan City, 333, Taiwan ROC
| | - Bing-Lin Wu
- Department of Biotechnology, School of Health Technology, Ming Chuan University, 5 De-Ming Rd, Gui-Shan, Taoyuan City, 333, Taiwan ROC
| | - Yu-Chung Chang
- Department of Biotechnology, School of Health Technology, Ming Chuan University, 5 De-Ming Rd, Gui-Shan, Taoyuan City, 333, Taiwan ROC.
| |
Collapse
|
235
|
Discovery and Sequence Analysis of Four Deltacoronaviruses from Birds in the Middle East Reveal Interspecies Jumping with Recombination as a Potential Mechanism for Avian-to-Avian and Avian-to-Mammalian Transmission. J Virol 2018; 92:JVI.00265-18. [PMID: 29769348 DOI: 10.1128/jvi.00265-18] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/01/2018] [Indexed: 11/20/2022] Open
Abstract
The emergence of Middle East respiratory syndrome showed once again that coronaviruses (CoVs) in animals are potential source for epidemics in humans. To explore the diversity of deltacoronaviruses in animals in the Middle East, we tested fecal samples from 1,356 mammals and birds in Dubai, The United Arab Emirates. Four novel deltacoronaviruses were detected from eight birds of four species by reverse transcription-PCR (RT-PCR): FalCoV UAE-HKU27 from a falcon, HouCoV UAE-HKU28 from a houbara bustard, PiCoV UAE-HKU29 from a pigeon, and QuaCoV UAE-HKU30 from five quails. Complete genome sequencing showed that FalCoV UAE-HKU27, HouCoV UAE-HKU28, and PiCoV UAE-HKU29 belong to the same CoV species, suggesting recent interspecies transmission between falcons and their prey, houbara bustards and pigeons, possibly along the food chain. Western blotting detected specific anti-FalCoV UAE-HKU27 antibodies in 33 (75%) of 44 falcon serum samples, supporting genuine infection in falcons after virus acquisition. QuaCoV UAE-HKU30 belongs to the same CoV species as porcine coronavirus HKU15 (PorCoV HKU15) and sparrow coronavirus HKU17 (SpCoV HKU17), discovered previously from swine and tree sparrows, respectively, supporting avian-to-swine transmission. Recombination involving the spike protein is common among deltacoronaviruses, which may facilitate cross-species transmission. FalCoV UAE-HKU27, HouCoV UAE-HKU28, and PiCoV UAE-HKU29 originated from recombination between white-eye coronavirus HKU16 (WECoV HKU16) and magpie robin coronavirus HKU18 (MRCoV HKU18), QuaCoV UAE-HKU30 from recombination between PorCoV HKU15/SpCoV HKU17 and munia coronavirus HKU13 (MunCoV HKU13), and PorCoV HKU15 from recombination between SpCoV HKU17 and bulbul coronavirus HKU11 (BuCoV HKU11). Birds in the Middle East are hosts for diverse deltacoronaviruses with potential for interspecies transmission.IMPORTANCE During an attempt to explore the diversity of deltacoronaviruses among mammals and birds in Dubai, four novel deltacoronaviruses were detected in fecal samples from eight birds of four different species: FalCoV UAE-HKU27 from a falcon, HouCoV UAE-HKU28 from a houbara bustard, PiCoV UAE-HKU29 from a pigeon, and QuaCoV UAE-HKU30 from five quails. Genome analysis revealed evidence of recent interspecies transmission between falcons and their prey, houbara bustards and pigeons, possibly along the food chain, as well as avian-to-swine transmission. Recombination, which is known to occur frequently in some coronaviruses, was also common among these deltacoronaviruses and occurred predominantly at the spike region. Such recombination, involving the receptor binding protein, may contribute to the emergence of new viruses capable of infecting new hosts. Birds in the Middle East are hosts for diverse deltacoronaviruses with potential for interspecies transmission.
Collapse
|
236
|
Porcine Deltacoronavirus Accessory Protein NS6 Antagonizes Interferon Beta Production by Interfering with the Binding of RIG-I/MDA5 to Double-Stranded RNA. J Virol 2018; 92:JVI.00712-18. [PMID: 29769346 DOI: 10.1128/jvi.00712-18] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 05/11/2018] [Indexed: 12/12/2022] Open
Abstract
Porcine deltacoronavirus (PDCoV) has recently emerged as an enteric pathogen that can cause serious vomiting and diarrhea in suckling piglets. The first outbreak of PDCoV occurred in the United States in 2014 and was followed by reports of PDCoV in South Korea, China, Thailand, Lao People's Democratic Republic, and Vietnam, leading to economic losses for pig farms and posing a considerable threat to the swine industry worldwide. Our previous studies have shown that PDCoV encodes three accessory proteins, NS6, NS7, and NS7a, but the functions of these proteins in viral replication, pathogenesis, and immune regulation remain unclear. Here, we found that ectopic expression of accessory protein NS6 significantly inhibits Sendai virus-induced interferon beta (IFN-β) production as well as the activation of transcription factors IRF3 and NF-κB. Interestingly, NS6 does not impede the IFN-β promoter activation mediated via key molecules in the RIG-I-like receptor (RLR) signaling pathway, specifically RIG-I, MDA5, and their downstream molecules MAVS, TBK1, IKKε, and IRF3. Further analyses revealed that NS6 is not an RNA-binding protein; however, it interacts with RIG-I/MDA5. This interaction attenuates the binding of double-stranded RNA by RIG-I/MDA5, resulting in the reduction of RLR-mediated IFN-β production. Taken together, our results demonstrate that ectopic expression of NS6 antagonizes IFN-β production by interfering with the binding of RIG-I/MDA5 to double-stranded RNA, revealing a new strategy employed by PDCoV accessory proteins to counteract the host innate antiviral immune response.IMPORTANCE Coronavirus accessory proteins are species specific, and they perform multiple functions in viral pathogenicity and immunity, such as acting as IFN antagonists and cell death inducers. Our previous studies have shown that PDCoV encodes three accessory proteins. Here, we demonstrated for the first time that PDCoV accessory protein NS6 antagonizes IFN-β production by interacting with RIG-I and MDA5 to impede their association with double-stranded RNA. This is an efficient strategy of antagonizing type I IFN production by disrupting the binding of host pattern recognition receptors (PRRs) and pathogen-associated molecular patterns (PAMPs). These findings deepen our understanding of the function of accessory protein NS6, and they may direct us toward novel therapeutic targets and lead to the development of more effective vaccines against PDCoV infection.
Collapse
|
237
|
Suzuki T, Shibahara T, Imai N, Yamamoto T, Ohashi S. Genetic characterization and pathogenicity of Japanese porcine deltacoronavirus. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2018; 61:176-182. [PMID: 29621617 PMCID: PMC7172274 DOI: 10.1016/j.meegid.2018.03.030] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 01/26/2018] [Accepted: 03/30/2018] [Indexed: 11/30/2022]
Abstract
Porcine deltacoronavirus (PDCoV) have recently emerged in several swine producing countries. Our survey found that in addition to porcine epidemic diarrhoea virus (PEDV), PDCoV has also been a causative enteric pathogen of diarrhoeic outbreaks occurring at swine farms around Japan since late 2013. Phylogenetic analysis using the complete genomes of PDCoVs detected in Japan in 2014 demonstrated that the PDCoVs from Japan may be closely related to the PDCoVs from the U.S. and Korea during 2013 to 2014 but not the PDCoVs from China and Hong Kong during 2004 to 2016 and from Thailand, Vietnam and Laos during 2015 to 2016. To investigate the pathogenicity of a representative Japanese PDCoV, we performed an experimental infection using hysterectomy-produced colostrum-deprived piglets. The PDCoV-inoculated piglets showed acute, watery diarrhoea, but all recovered and survived. In addition, all piglets inoculated with the Japanese PDCoV exhibited virus shedding at high level in faeces and viremia corresponding to their clinical symptoms. In the PDCoV-inoculated group, viruses were mainly detected from jejunums to colons by a quantitative PDCoV-specific PCR and microscopic observation. These findings would provide useful information for establishing a diagnostic methodology for distinguishing diarrhoea caused by PDCoV from that caused by other enteric pathogens, such as PEDV.
Collapse
Affiliation(s)
- Tohru Suzuki
- Division of Viral Disease and Epidemiology, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan.
| | - Tomoyuki Shibahara
- Division of Pathology and Pathophysiology, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Naoto Imai
- Fukushima Prefectural Kenchu Livestock Hygiene Service Center, Fukushima, Japan
| | - Takehisa Yamamoto
- Division of Viral Disease and Epidemiology, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Seiichi Ohashi
- Division of Viral Disease and Epidemiology, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| |
Collapse
|
238
|
Chen Q, Wang L, Yang C, Zheng Y, Gauger PC, Anderson T, Harmon KM, Zhang J, Yoon KJ, Main RG, Li G. The emergence of novel sparrow deltacoronaviruses in the United States more closely related to porcine deltacoronaviruses than sparrow deltacoronavirus HKU17. Emerg Microbes Infect 2018; 7:105. [PMID: 29872066 PMCID: PMC5988828 DOI: 10.1038/s41426-018-0108-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/26/2018] [Accepted: 05/09/2018] [Indexed: 02/07/2023]
Affiliation(s)
- Qi Chen
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, 50010, USA
| | - Leyi Wang
- Department of Veterinary Clinical Medicine and the Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Illinois, Urbana, IL, 61802, USA
| | - Chenghuai Yang
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, 50010, USA
| | - Ying Zheng
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, 50010, USA
| | - Phillip C Gauger
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, 50010, USA
| | - Tavis Anderson
- National Animal Disease Center, USDA-ARS, Ames, IA, 50010, USA
| | - Karen M Harmon
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, 50010, USA
| | - Jianqiang Zhang
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, 50010, USA
| | - Kyoung-Jin Yoon
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, 50010, USA
| | - Rodger G Main
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, 50010, USA
| | - Ganwu Li
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, 50010, USA.
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Street, Harbin, 150069, China.
| |
Collapse
|
239
|
Chen Q, Wang L, Zheng Y, Zhang J, Guo B, Yoon KJ, Gauger PC, Harmon KM, Main RG, Li G. Metagenomic analysis of the RNA fraction of the fecal virome indicates high diversity in pigs infected by porcine endemic diarrhea virus in the United States. Virol J 2018; 15:95. [PMID: 29801460 PMCID: PMC5970503 DOI: 10.1186/s12985-018-1001-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 05/13/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Emergence and re-emergence of porcine epidemic diarrhea virus (PEDV) in North America, Asia and Europe has caused severe economic loss to the global swine industry. However, the virome of PEDV infected pigs and its effect on disease severity remains unknown. The advancements of sequencing technology have made it possible to characterize the entire microbiome of different body sites for any host. METHODS The objective of this study was to characterize the RNA virome in PEDV-positive pigs using the hypothesis-free metagenomics approach based on next-generation sequencing. Specifically, 217 PEDV-positive swine fecal swab samples collected from diarrheic piglets over 17 US states during 2015-2016 were analyzed. RESULTS A Kraken algorithm-based bioinformatics analysis revealed the presence of up to 9 different RNA genera besides PEDV (Alphacoronavirus genus), including Mamastrovirus (52%, 113/217), Enterovirus (39%, 85/217), Sapelovirus (31%, 67/217), Posavirus (30%, 66/217), Kobuvirus (23%, 49/217), Sapovirus (13%, 28/217), Teschovirus (10%, 22/217), Pasivirus (9%, 20/217), and Deltacoronavirus (3%, 6/217). There were 58 out of 217 piglets (27%) have PEDV infection alone whereas the remaining 159 (73%) shed 2 up to 9 different viruses. CONCLUSION These findings demonstrated that PEDV infected diarrheic pigs had an extensive RNA viral flora consisting of four different families: Astroviridae, Picornaviridae, Caliciviridae, and Coronaviridae.
Collapse
Affiliation(s)
- Qi Chen
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, 1907 ISU C-Drive, VMRI#1, Ames, IA, 50011, USA
| | - Leyi Wang
- Department of Veterinary Clinical Medicine and the Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Illinois, Urbana, IL, 61802, USA
| | - Ying Zheng
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, 1907 ISU C-Drive, VMRI#1, Ames, IA, 50011, USA
| | - Jianqiang Zhang
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, 1907 ISU C-Drive, VMRI#1, Ames, IA, 50011, USA
| | - Baoqing Guo
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, 1907 ISU C-Drive, VMRI#1, Ames, IA, 50011, USA
| | - Kyoung-Jin Yoon
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, 1907 ISU C-Drive, VMRI#1, Ames, IA, 50011, USA
| | - Phillip C Gauger
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, 1907 ISU C-Drive, VMRI#1, Ames, IA, 50011, USA
| | - Karen M Harmon
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, 1907 ISU C-Drive, VMRI#1, Ames, IA, 50011, USA
| | - Rodger G Main
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, 1907 ISU C-Drive, VMRI#1, Ames, IA, 50011, USA
| | - Ganwu Li
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, 1907 ISU C-Drive, VMRI#1, Ames, IA, 50011, USA.
| |
Collapse
|
240
|
Broad receptor engagement of an emerging global coronavirus may potentiate its diverse cross-species transmissibility. Proc Natl Acad Sci U S A 2018; 115:E5135-E5143. [PMID: 29760102 DOI: 10.1073/pnas.1802879115] [Citation(s) in RCA: 196] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Porcine deltacoronavirus (PDCoV), identified in 2012, is a common enteropathogen of swine with worldwide distribution. The source and evolutionary history of this virus is, however, unknown. PDCoV belongs to the Deltacoronavirus genus that comprises predominantly avian CoV. Phylogenetic analysis suggests that PDCoV originated relatively recently from a host-switching event between birds and mammals. Insight into receptor engagement by PDCoV may shed light into such an exceptional phenomenon. Here we report that PDCoV employs host aminopeptidase N (APN) as an entry receptor and interacts with APN via domain B of its spike (S) protein. Infection of porcine cells with PDCoV was drastically reduced by APN knockout and rescued after reconstitution of APN expression. In addition, we observed that PDCoV efficiently infects cells of unusual broad species range, including human and chicken. Accordingly, PDCoV S was found to target the phylogenetically conserved catalytic domain of APN. Moreover, transient expression of porcine, feline, human, and chicken APN renders cells susceptible to PDCoV infection. Binding of PDCoV to an interspecies conserved site on APN may facilitate direct transmission of PDCoV to nonreservoir species, including humans, potentially reflecting the mechanism that enabled a virus, ancestral to PDCoV, to breach the species barrier between birds and mammals. The APN cell surface protein is also used by several members of the Alphacoronavirus genus. Hence, our data constitute the second identification of CoVs from different genera that use the same receptor, implying that CoV receptor selection is subjected to specific restrictions that are still poorly understood.
Collapse
|
241
|
Fu X, Fang B, Liu Y, Cai M, Jun J, Ma J, Bu D, Wang L, Zhou P, Wang H, Zhang G. Newly emerged porcine enteric alphacoronavirus in southern China: Identification, origin and evolutionary history analysis. INFECTION GENETICS AND EVOLUTION 2018; 62:179-187. [PMID: 29704627 PMCID: PMC7106130 DOI: 10.1016/j.meegid.2018.04.031] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/02/2018] [Accepted: 04/24/2018] [Indexed: 11/25/2022]
Abstract
Coronaviruses have a wide host range and can cause a variety of diseases with varying severity in different animals. Several enteric coronaviruses have been identified that are associated with diarrhea in swine and that have caused substantial economic losses. In this study, a newly emerged porcine enteric alphacoronavirus (PEAV), PEAV-GD-CH/2017, was identified from suckling piglets with diarrhea in southern China, and a full-length genome sequence of PEAV was obtained for systematic analysis. The novel PEAV sequence was most identical to that of bat-HKU2, and the differences between them were comprehensively compared, especially the uniform features of the S protein, which was shown to have a close relationship with betacoronaviruses and to perhaps represent unrecognized betacoronaviruses. In addition, Bayesian analysis was conducted to address the origin of PEAV, and the divergence time between PEAV and bat-HKU2 was estimated at 1926, which indicates that PEAV is not newly emerged and may have circulated in swine herds for several decades since the interspecies transmission of this coronavirus from bat to swine. The evolutionary rate of coronaviruses was estimated to be 1.93 × 10−4 substitutions per site per year for the RdRp gene in our analysis. For the origin of PEAV, we suspect that it is the result of the interspecies transmission of bat-HKU2 from bat to swine. Our results provide valuable information about the uniform features, origin and evolution of the novel PEAV, which will facilitate further investigations of this newly emerged pathogen. Identify and sequence a PEAV strain from suckling piglets with diarrhea The S protein of PEAV may recombination from unrecognized beta-CoV. The novel PEAV was emerged approximately at 1926 based on Bayesian analysis. PEAV origin from the interspecies transmission of bat-HKU2 from bat to swine
Collapse
Affiliation(s)
- Xinliang Fu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Bo Fang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Yixing Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Mengkai Cai
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Junming Jun
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Jun Ma
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Key Laboratory of Comprehensive Prevention and Control for Severe Clinical Animal Diseases of Guangdong Province, Guangzhou, China
| | - Dexin Bu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Lifang Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Key Laboratory of Comprehensive Prevention and Control for Severe Clinical Animal Diseases of Guangdong Province, Guangzhou, China
| | - Pei Zhou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Key Laboratory of Comprehensive Prevention and Control for Severe Clinical Animal Diseases of Guangdong Province, Guangzhou, China
| | - Heng Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Key Laboratory of Comprehensive Prevention and Control for Severe Clinical Animal Diseases of Guangdong Province, Guangzhou, China.
| | - Guihong Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China.
| |
Collapse
|
242
|
Contribution of porcine aminopeptidase N to porcine deltacoronavirus infection. Emerg Microbes Infect 2018; 7:65. [PMID: 29636467 PMCID: PMC5893578 DOI: 10.1038/s41426-018-0068-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 03/18/2018] [Accepted: 03/21/2018] [Indexed: 12/13/2022]
Abstract
Porcine deltacoronavirus (PDCoV), a member of genus Deltacoronavirus, is an emerging swine enteropathogenic coronavirus (CoV). Although outstanding efforts have led to the identification of Alphacoronavirus and Betacoronavirus receptors, the receptor for Deltacoronavirus is unclear. Here, we compared the amino acid sequences of several representative CoVs. Phylogenetic analysis showed that PDCoV spike (S) protein was close to the cluster containing transmissible gastroenteritis virus (TGEV), which utilizes porcine aminopeptidase N (pAPN) as a functional receptor. Ectopic expression of pAPN in non-susceptible BHK-21 cells rendered them susceptible to PDCoV. These results indicate that pAPN may be a functional receptor for PDCoV infection. However, treatment with APN-specific antibody and inhibitors did not completely block PDCoV infection in IPI-2I porcine intestinal epithelial cells. pAPN knockout in IPI-2I cells completely blocked TGEV infection but only slightly decreased PDCoV infection. Homologous modeling of pAPN with the S1 C-terminal domain (S1-CTD) of PDCoV or TGEV showed that TGEV S1-CTD adopted β-turns (β1-β2 and β3-β4), forming the tip of a β-barrel, to recognize pAPN. However, only the top residues in the β1-β2 turn of PDCoV S1-CTD had the possibility to support an interaction with pAPN, and the β3-β4 turn failed to contact pAPN. We also discuss the evolution and variation of PDCoV S1-CTD based on structure information, providing clues to explain the usage of pAPN by PDCoV. Taken together, the results presented herein reveal that pAPN is likely not a critical functional receptor for PDCoV, although it is involved in PDCoV infection.
Collapse
|
243
|
Xu Z, Zhong H, Zhou Q, Du Y, Chen L, Zhang Y, Xue C, Cao Y. A Highly Pathogenic Strain of Porcine Deltacoronavirus Caused Watery Diarrhea in Newborn Piglets. Virol Sin 2018; 33:131-141. [PMID: 29569144 PMCID: PMC6178105 DOI: 10.1007/s12250-018-0003-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 11/22/2017] [Indexed: 12/05/2022] Open
Abstract
Porcine deltacoronavirus (PDCoV) is a newly identified virus that causes watery diarrhea in newborn piglets and results in significant economic losses to the pig industry. Since first reported in Hong Kong in 2012, PDCoV has been subsequently detected in USA, South Korea, Thailand, and mainland China. Here we isolated a strain of PDCoV, named CHN-GD-2016, from the intestinal content of a diseased newborn piglet with severe diarrhea in a pig farm in Guangdong, China. PDCoV CHN-GD-2016 could be identified by immunofluorescence with PDCoV specific rabbit antisera, and typical crown-shaped particles with spiky surface projections of this PDCoV were observed with electron microscopy. Genomic analysis showed that the PDCoV CHN-GD-2016 was closely related to other Chinese PDCoV strains, with the highest sequence similarity with the strain CHN/Tianjin/2016. Importantly, inoculation of newborn piglets with 1 × 105 TCID50 of CHN-GD-2016 by oral feeding successfully reproduced clear clinical symptoms, including vomiting, dehydration, and severe diarrhea in piglets. In addition, the virus RNA in rectal swabs from 1 to 7 days post inoculation was detected, macroscopic and microscopic lesions in small intestine were observed, and viral antigen was also detected in the small intestines with immunohistochemical staining. Collectively, the data show in this study confirms that PDCoV is present in Guangdong, China and is highly pathogenic in newborn piglets.
Collapse
Affiliation(s)
- Zhichao Xu
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, 510006, China
| | - Huiling Zhong
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, 510006, China
| | - Qingfeng Zhou
- Guangdong Wen's Group Academy, Guangdong Wen's Foodstuffs Group Co., Ltd, Xinxing, 527400, China
| | - Yunping Du
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, 510006, China.,Guangdong Wen's Group Academy, Guangdong Wen's Foodstuffs Group Co., Ltd, Xinxing, 527400, China
| | - Li Chen
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, 510006, China.,Guangdong Wen's Group Academy, Guangdong Wen's Foodstuffs Group Co., Ltd, Xinxing, 527400, China
| | - Yun Zhang
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, 510006, China
| | - Chunyi Xue
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yongchang Cao
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, 510006, China. .,School of Life Science, Higher Education Mega Center, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
244
|
Hu H, Jung K, Wang Q, Saif LJ, Vlasova AN. Development of a one-step RT-PCR assay for detection of pancoronaviruses (α-, β-, γ-, and δ-coronaviruses) using newly designed degenerate primers for porcine and avian `fecal samples. J Virol Methods 2018; 256:116-122. [PMID: 29499225 PMCID: PMC7113874 DOI: 10.1016/j.jviromet.2018.02.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 01/18/2018] [Accepted: 02/26/2018] [Indexed: 11/28/2022]
Abstract
Coronaviruses (CoVs) are critical human and animal pathogens because of their potential to cause severe epidemics of respiratory or enteric diseases. In pigs, the newly emerged porcine deltacoronavirus (PDCoV) and re-emerged porcine epidemic diarrhea virus (PEDV) reported in the US and Asia, as well as the discovery of novel CoVs in wild bats or birds, has necessitated development of improved detection and control measures for these CoVs. Because the previous pancoronavirus (panCoV) RT-PCR established in our laboratory in 2007-2011 did not detect deltacoronaviruses (δ-CoVs) in swine fecal and serum samples, our goal was to develop a new panCoV RT-PCR assay to detect known human and animal CoVs, including δ-CoVs. In this study, we designed a new primer set to amplify a 668 bp-region within the RNA-dependent RNA polymerase (RdRP) gene that encodes the most conserved protein domain of α-, β-, γ-, and δ-CoVs. We established a one-step panCoV RT-PCR assay and standardized the assay conditions. The newly established panCoV RT-PCR assay was demonstrated to have a high sensitivity and specificity. Using a panel of 60 swine biological samples (feces, intestinal contents, and sera) characterized by PEDV, PDCoV and transmissible gastroenteritis virus-specific RT-PCR assays, we demonstrated that sensitivity and specificity of the newly established panCoV RT-PCR assay were 100%. 400 avian fecal (RNA) samples were further tested simultaneously for CoV by the new panCoV RT-PCR and a one-step RT-PCR assay with the δ-CoV nucleocapsid-specific universal primers. Four of 400 avian samples were positive for CoV, three of which were positive for δ-CoV by the conventional RT-PCR. PanCoV RT-PCR fragments for 3 of the 4 CoVs were sequenced. Phylogenetic analysis revealed the presence of one γ-CoV and two δ-CoV in the sequenced samples. The newly designed panCoV RT-PCR assay should be useful for the detection of currently known CoVs in animal biological samples.
Collapse
Affiliation(s)
- Hui Hu
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, 44691, United States; College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Kwonil Jung
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, 44691, United States
| | - Qiuhong Wang
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, 44691, United States
| | - Linda J Saif
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, 44691, United States.
| | - Anastasia N Vlasova
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, 44691, United States.
| |
Collapse
|
245
|
Niederwerder MC, Hesse RA. Swine enteric coronavirus disease: A review of 4 years with porcine epidemic diarrhoea virus and porcine deltacoronavirus in the United States and Canada. Transbound Emerg Dis 2018; 65:660-675. [PMID: 29392870 PMCID: PMC7169865 DOI: 10.1111/tbed.12823] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Indexed: 01/03/2023]
Abstract
Swine enteric coronaviruses, including porcine epidemic diarrhoea virus (PEDV) and porcine deltacoronavirus (PDCoV), have emerged and spread throughout the North American swine industry over the last four years. These diseases cause significant losses within the pork industry and within the first year after PEDV introduction, approximately 10% of the US herd died due to the disease. Similar to other enteric coronaviruses, such as transmissible gastroenteritis virus (TGEV), these emerging swine enteric coronavirus diseases (SECD) are age-dependent, with high morbidity and mortality in neonatal pigs. Since the introduction of SECD, research has focused on investigating viral pathogenesis through experimental inoculation, increasing maternal antibody for neonatal protection, understanding transmission risks through feed and transportation, and outlining the importance of biosecurity in preventing SECD introduction and spread. A survey of swine professionals conducted for this review revealed that the majority of respondents (75%) believe SECD can be eradicated and that most herds have been successful at long-term elimination of SECD after exposure (80%). However, unique properties of SECD, such as ineffective immunity through parenteral vaccination and a low oral infectious dose, play a major role in management of SECD. This review serves to describe the current knowledge of SECD and the characteristics of these viruses which provide both opportunities and challenges for long-term disease control and potential eradication from the US swine population.
Collapse
Affiliation(s)
- M C Niederwerder
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA.,Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS, USA
| | - R A Hesse
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA.,Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
246
|
Complete Genome Sequences of Two Porcine Deltacoronavirus Strains, CHN-GD16-03 and CHN-GD16-05, Isolated in Southern China, 2016. GENOME ANNOUNCEMENTS 2018; 6:6/4/e01545-17. [PMID: 29371364 PMCID: PMC5786690 DOI: 10.1128/genomea.01545-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report here the amplification and sequence analysis of two complete genomes of newly emerged porcine deltacoronavirus (PDCoV) strains, isolated from diarrhea samples from piglets in Guangdong Province in southern China. These genomes provide further sequence data for evaluating the relationships among PDCoVs from different countries.
Collapse
|
247
|
Liu BJ, Zuo YZ, Gu WY, Luo SX, Shi QK, Hou LS, Zhong F, Fan JH. Isolation and phylogenetic analysis of porcine deltacoronavirus from pigs with diarrhoea in Hebei province, China. Transbound Emerg Dis 2018; 65:874-882. [PMID: 29363288 PMCID: PMC7169788 DOI: 10.1111/tbed.12821] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Indexed: 12/11/2022]
Abstract
Porcine deltacoronavirus (PDCoV) is a recently identified coronavirus in the genus Deltacoronavirus that can cause enteric disease with clinical signs including diarrhoea, vomiting, dehydration and mortality in neonatal piglets. Although evidence of the prevalence of PDCoV in China is accumulating, little published information about Chinese PDCoV isolates is available. In this study, we investigated the presence of PDCoV in 49 faecal/intestinal samples from piglets with diarrhoea on different farms in Hebei province. Five samples (10.2%) were positive for PDCoV, but no coinfection of PDCoV with other enteropathogens was observed. A PDCoV strain named HB-BD was successfully isolated from the intestinal contents of a diarrhoeic piglet and serially propagated in swine testicular (ST) cells for >40 passages. The complete genome of the HB-BD strain was sequenced and analysed. Genomic analysis showed that the HB-BD strain had a closer relationship with Chinese strains than those from other countries and was grouped within the Chinese PDCoV cluster. The results of this study will be valuable for further research of PDCoV genetic evolution and development of effective diagnostic reagents, assays and potential vaccines against newly emerged PDCoV strains.
Collapse
Affiliation(s)
- B-J Liu
- College of Veterinary Medicine, Agricultural University of Hebei, Baoding, China
| | - Y-Z Zuo
- College of Veterinary Medicine, Agricultural University of Hebei, Baoding, China.,College of Animal Science and Technology, Agricultural University of Hebei, Baoding, China
| | - W-Y Gu
- Animal Diseases Control Center of Hebei, Shijiazhuang, China
| | - S-X Luo
- College of Veterinary Medicine, Agricultural University of Hebei, Baoding, China
| | - Q-K Shi
- College of Veterinary Medicine, Agricultural University of Hebei, Baoding, China
| | - L-S Hou
- College of Veterinary Medicine, Agricultural University of Hebei, Baoding, China
| | - F Zhong
- College of Animal Science and Technology, Agricultural University of Hebei, Baoding, China
| | - J-H Fan
- College of Veterinary Medicine, Agricultural University of Hebei, Baoding, China
| |
Collapse
|
248
|
Wang M, Wang Y, Baloch AR, Pan Y, Tian L, Xu F, Shivaramu S, Chen S, Zeng Q. Detection and genetic characterization of porcine deltacoronavirus in Tibetan pigs surrounding the Qinghai-Tibet Plateau of China. Transbound Emerg Dis 2018; 65:363-369. [PMID: 29363281 PMCID: PMC7169672 DOI: 10.1111/tbed.12819] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Indexed: 11/10/2022]
Abstract
Porcine deltacoronavirus (PDCoV) is a recently discovered RNA virus that belongs to the family Coronaviridae and genus Deltacoronavirus. This virus causes enteric disease in piglets that is characterized by enteritis and diarrhoea. In our present investigation, 189 diarrhoeic samples were collected between July 2016 and May 2017 from Tibetan pigs inhabiting in three different provinces surrounding the Qinghai–Tibet Plateau of China. We then applied the molecular‐based method of reverse transcription polymerase chain reactions (RT‐PCRs) to detect the presence of PDCoV in collected samples, and RT‐PCR indicated that the prevalence of PDCoV was 3.70% (7/189) in Tibetan pigs. Four of 7 PDCoV‐positive pigs were monoinfections of PDCoV, three samples were co‐infections of PDCoV with porcine epidemic diarrhoea virus (PEDV), and 52 (27.51%) samples were positive for PEDV. Four strains with different full‐length genomes were identified (CHN/GS/2016/1, CHN/GS/2016/2, CHN/GS‐/2017/1 and CHN/QH/2017/1), and their genomes were used to analyse the characteristics of PDCoV currently prevalent in Tibetan pigs. We found a 3‐nt insertion in the spike gene in four strains in Tibetan pigs. Phylogenetic analysis of the complete genome and spike and nucleocapsid gene sequences revealed that these strains shared ancestors with the strain CHN‐AH‐2004, which was found in pigs from the Anhui province of China mainland. However, PDCoV strains from Tibetan pigs formed different branches within the same cluster, implying continuous evolution in the field. Our present findings highlight the importance of epidemiologic surveillance to limit the spread of PDCoV in livestock at high altitudes in China.
Collapse
Affiliation(s)
- M Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Y Wang
- Anning Branch Lanzhou General Hospital, Lanzhou, Gansu, China
| | - A R Baloch
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
| | - Y Pan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - L Tian
- China Animal Health and Epidemiology Center, Qingdao, Shandong, China
| | - F Xu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - S Shivaramu
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
| | - S Chen
- Veterinary Department of Gansu Province, Lanzhou, Gansu, China
| | - Q Zeng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| |
Collapse
|
249
|
Le VP, Song S, An BH, Park GN, Pham NT, Le DQ, Nguyen VT, Vu TTH, Kim KS, Choe S, An DJ. A novel strain of porcine deltacoronavirus in Vietnam. Arch Virol 2017; 163:203-207. [PMID: 29022111 PMCID: PMC7087264 DOI: 10.1007/s00705-017-3594-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 08/20/2017] [Indexed: 11/29/2022]
Abstract
Two porcine deltacoronavirus (PDCoV) strains (Binh21 and HaNoi6) were isolated from two pig farms in North Vietnam. Phylogenetic analysis of the complete genomes and the Spike and Membrane genes revealed that the two Vietnam PDCoVs belong to the same lineage as PDCoVs from Thailand and Laos; however, the N genes belonged to the same lineage as PDCoVs from the USA, Korea, China, and Hong Kong. The recombination detection program subsequently identified the major parent (S5011 strain) and minor parent (HKU15-44 strain) of the two Vietnam PDCoV strains (p < 0.01).
Collapse
Affiliation(s)
- Van Phan Le
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Sok Song
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Gyeongbuk-do, 39660, Republic of Korea
| | - Byung-Hyun An
- Applied Chemistry and Biological Engineering, Ajou University, Suwon, 443-749, Republic of Korea
| | - Gyu-Nam Park
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Gyeongbuk-do, 39660, Republic of Korea
| | - Ngoc Thach Pham
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Dinh Quyen Le
- Research and Development Laboratory, AVAC Vietnam Company Limited (AVAC), Hanoi, Vietnam
| | - Van Tam Nguyen
- Research and Development Laboratory, AVAC Vietnam Company Limited (AVAC), Hanoi, Vietnam
| | - Thi Thu Hang Vu
- Research and Development Laboratory, AVAC Vietnam Company Limited (AVAC), Hanoi, Vietnam
| | - Ki-Sun Kim
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Gyeongbuk-do, 39660, Republic of Korea
| | - SeEun Choe
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Gyeongbuk-do, 39660, Republic of Korea
| | - Dong-Jun An
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Gyeongbuk-do, 39660, Republic of Korea.
| |
Collapse
|
250
|
Complete Genome Characterization of Novel Chinese Porcine Deltacoronavirus Strain SD. GENOME ANNOUNCEMENTS 2017; 5:5/40/e00930-17. [PMID: 28982988 PMCID: PMC5629045 DOI: 10.1128/genomea.00930-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A porcine deltacoronavirus (PDCoV) was isolated and identified from feces of diarrheic piglets in Shandong Province of the Chinese mainland, and the complete genome of the Chinese PDCoV strain, SD, was sequenced and analyzed to further characterize PDCoV circulating in China.
Collapse
|