201
|
Zhang D, Xu DH, Qiu J, Rasmussen-Ivey CR, Liles MR, Beck BH. Chitin degradation and utilization by virulent Aeromonas hydrophila strain ML10-51K. Arch Microbiol 2016; 199:573-579. [PMID: 28032191 DOI: 10.1007/s00203-016-1326-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 11/28/2016] [Accepted: 12/07/2016] [Indexed: 11/24/2022]
Abstract
Virulent Aeromonas hydrophila (vAh) is one of the most important bacterial pathogens that causes persistent outbreaks of motile Aeromonas septicemia in warm-water fishes. The survivability of this pathogen in aquatic environments is of great concern. The aim of this study was to determine the capability of the vAh strain ML10-51K to degrade and utilize chitin. Genome-wide analysis revealed that ML10-51K encodes a suite of proteins for chitin metabolism. Assays in vitro showed that four chitinases, one chitobiase and one chitin-binding protein were secreted extracellularly and participated in chitin degradation. ML10-51K was shown to be able to use not only N-acetylglucosamine and colloidal chitin but also chitin flakes as sole carbon sources for growth. This study indicates that ML10-51K is a highly chitinolytic bacterium and suggests that the capability of effective chitin utilization could enable the bacterium to attain high densities when abundant chitin is available in aquatic niches.
Collapse
Affiliation(s)
- Dunhua Zhang
- Aquatic Animal Health Research Unit, USDA-ARS, 990 Wire Road, Auburn, AL, 36832, USA.
| | - De-Hai Xu
- Aquatic Animal Health Research Unit, USDA-ARS, 990 Wire Road, Auburn, AL, 36832, USA
| | - Junqiang Qiu
- College of Fisheries and Life Sciences, Shanghai Ocean University, Pudong New District, Shanghai, 201306, China
| | | | - Mark R Liles
- Department of Biological Sciences, Auburn University, Auburn, AL, USA
| | - Benjamin H Beck
- Aquatic Animal Health Research Unit, USDA-ARS, 990 Wire Road, Auburn, AL, 36832, USA
| |
Collapse
|
202
|
Paulsen SS, Andersen B, Gram L, Machado H. Biological Potential of Chitinolytic Marine Bacteria. Mar Drugs 2016; 14:md14120230. [PMID: 27999269 PMCID: PMC5192467 DOI: 10.3390/md14120230] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 12/07/2016] [Accepted: 12/08/2016] [Indexed: 12/26/2022] Open
Abstract
Chitinolytic microorganisms secrete a range of chitin modifying enzymes, which can be exploited for production of chitin derived products or as fungal or pest control agents. Here, we explored the potential of 11 marine bacteria (Pseudoalteromonadaceae, Vibrionaceae) for chitin degradation using in silico and phenotypic assays. Of 10 chitinolytic strains, three strains, Photobacterium galatheae S2753, Pseudoalteromonas piscicida S2040 and S2724, produced large clearing zones on chitin plates. All strains were antifungal, but against different fungal targets. One strain, Pseudoalteromonas piscicida S2040, had a pronounced antifungal activity against all seven fungal strains. There was no correlation between the number of chitin modifying enzymes as found by genome mining and the chitin degrading activity as measured by size of clearing zones on chitin agar. Based on in silico and in vitro analyses, we cloned and expressed two ChiA-like chitinases from the two most potent candidates to exemplify the industrial potential.
Collapse
Affiliation(s)
- Sara Skøtt Paulsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| | - Birgitte Andersen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| | - Lone Gram
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| | - Henrique Machado
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
203
|
Nelson CE, Beri NR, Gardner JG. Custom fabrication of biomass containment devices using 3-D printing enables bacterial growth analyses with complex insoluble substrates. J Microbiol Methods 2016; 130:136-143. [DOI: 10.1016/j.mimet.2016.09.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 09/19/2016] [Accepted: 09/19/2016] [Indexed: 10/21/2022]
|
204
|
Philibert T, Lee BH, Fabien N. Current Status and New Perspectives on Chitin and Chitosan as Functional Biopolymers. Appl Biochem Biotechnol 2016; 181:1314-1337. [PMID: 27787767 DOI: 10.1007/s12010-016-2286-2] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 10/10/2016] [Indexed: 11/24/2022]
Abstract
The natural biopolymer chitin and its deacetylated product chitosan are found abundantly in nature as structural building blocks and are used in all sectors of human activities like materials science, nutrition, health care, and energy. Far from being fully recognized, these polymers are able to open opportunities for completely novel applications due to their exceptional properties which an economic value is intrinsically entrapped. On a commercial scale, chitosan is mainly obtained from crustacean shells rather than from the fungal and insect sources. Significant efforts have been devoted to commercialize chitosan extracted from fungal and insect sources to completely replace crustacean-derived chitosan. However, the traditional chitin extraction processes are laden with many disadvantages. The present review discusses the potential bioextraction of chitosan from fungal, insect, and crustacean as well as its superior physico-chemical properties. The different aspects of fungal, insects, and crustacean chitosan extraction methods and various parameters having an effect on the yield of chitin and chitosan are discussed in detail. In addition, this review also deals with essential attributes of chitosan for high value-added applications in different fields and highlighted new perspectives on the production of chitin and deacetylated chitosan from different sources with the concomitant reduction of the environmental impact.
Collapse
Affiliation(s)
- Tuyishime Philibert
- School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Byong H Lee
- School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China. .,Department of Food Science and Biotechnology, Kangwon National University, Chuncheon, 24341, South Korea. .,Department of Microbiology/Immunology, McGill University, Montreal, QC, H9X3V9, Canada.
| | - Nsanzabera Fabien
- School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| |
Collapse
|
205
|
Long-Term Warming Alters Carbohydrate Degradation Potential in Temperate Forest Soils. Appl Environ Microbiol 2016; 82:6518-6530. [PMID: 27590813 PMCID: PMC5086546 DOI: 10.1128/aem.02012-16] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 08/19/2016] [Indexed: 11/20/2022] Open
Abstract
As Earth's climate warms, soil carbon pools and the microbial communities that process them may change, altering the way in which carbon is recycled in soil. In this study, we used a combination of metagenomics and bacterial cultivation to evaluate the hypothesis that experimentally raising soil temperatures by 5°C for 5, 8, or 20 years increased the potential for temperate forest soil microbial communities to degrade carbohydrates. Warming decreased the proportion of carbohydrate-degrading genes in the organic horizon derived from eukaryotes and increased the fraction of genes in the mineral soil associated with Actinobacteria in all studies. Genes associated with carbohydrate degradation increased in the organic horizon after 5 years of warming but had decreased in the organic horizon after warming the soil continuously for 20 years. However, a greater proportion of the 295 bacteria from 6 phyla (10 classes, 14 orders, and 34 families) isolated from heated plots in the 20-year experiment were able to depolymerize cellulose and xylan than bacterial isolates from control soils. Together, these findings indicate that the enrichment of bacteria capable of degrading carbohydrates could be important for accelerated carbon cycling in a warmer world.
IMPORTANCE The massive carbon stocks currently held in soils have been built up over millennia, and while numerous lines of evidence indicate that climate change will accelerate the processing of this carbon, it is unclear whether the genetic repertoire of the microbes responsible for this elevated activity will also change. In this study, we showed that bacteria isolated from plots subject to 20 years of 5°C of warming were more likely to depolymerize the plant polymers xylan and cellulose, but that carbohydrate degradation capacity is not uniformly enriched by warming treatment in the metagenomes of soil microbial communities. This study illustrates the utility of combining culture-dependent and culture-independent surveys of microbial communities to improve our understanding of the role changing microbial communities may play in soil carbon cycling under climate change.
Collapse
|
206
|
Singh S, Gaur R. Evaluation of antagonistic and plant growth promoting activities of chitinolytic endophytic actinomycetes associated with medicinal plants against Sclerotium rolfsii
in chickpea. J Appl Microbiol 2016; 121:506-18. [DOI: 10.1111/jam.13176] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/30/2016] [Accepted: 05/03/2016] [Indexed: 11/28/2022]
Affiliation(s)
- S.P. Singh
- Department of Microbiology; Mewar University, Gangrar; Chittorgarh India
| | - R. Gaur
- Department of Microbiology; Mewar University, Gangrar; Chittorgarh India
- Department of Microbiology; Dr R. M. L. Avadh University; Faizabad India
| |
Collapse
|
207
|
Dai Y, Yan Z, Jia L, Zhang S, Gao L, Wei X, Mei Z, Liu X. The composition, localization and function of low-temperature-adapted microbial communities involved in methanogenic degradations of cellulose and chitin from Qinghai-Tibetan Plateau wetland soils. J Appl Microbiol 2016; 121:163-76. [PMID: 27123875 DOI: 10.1111/jam.13164] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/26/2015] [Accepted: 01/18/2016] [Indexed: 02/05/2023]
Affiliation(s)
- Y. Dai
- Key Laboratory of Environmental and Applied Microbiology; Environmental Microbiology Key Laboratory of Sichuan Province; Chengdu Institute of Biology; Chinese Academy of Sciences; Sichuan China
| | - Z. Yan
- Key Laboratory of Environmental and Applied Microbiology; Environmental Microbiology Key Laboratory of Sichuan Province; Chengdu Institute of Biology; Chinese Academy of Sciences; Sichuan China
| | - L. Jia
- The State Key Laboratory of Biotherapy; West China Hospital; Sichuan University; Sichuan China
| | - S. Zhang
- Key Laboratory of Environmental and Applied Microbiology; Environmental Microbiology Key Laboratory of Sichuan Province; Chengdu Institute of Biology; Chinese Academy of Sciences; Sichuan China
| | - L. Gao
- Department of Agricultural Engineering; Chongqing Academy of Agricultural Sciences; Chongqing China
| | - X. Wei
- Department of Agricultural Engineering; Chongqing Academy of Agricultural Sciences; Chongqing China
| | - Z. Mei
- Center of Agricultural Engineering; Biogas Institute of Ministry of Agriculture; Chengdu China
| | - X. Liu
- Key Laboratory of Environmental and Applied Microbiology; Environmental Microbiology Key Laboratory of Sichuan Province; Chengdu Institute of Biology; Chinese Academy of Sciences; Sichuan China
| |
Collapse
|
208
|
Microbial interactions lead to rapid micro-scale successions on model marine particles. Nat Commun 2016; 7:11965. [PMID: 27311813 PMCID: PMC4915023 DOI: 10.1038/ncomms11965] [Citation(s) in RCA: 245] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 05/16/2016] [Indexed: 01/24/2023] Open
Abstract
In the ocean, organic particles harbour diverse bacterial communities, which collectively digest and recycle essential nutrients. Traits like motility and exo-enzyme production allow individual taxa to colonize and exploit particle resources, but it remains unclear how community dynamics emerge from these individual traits. Here we track the taxon and trait dynamics of bacteria attached to model marine particles and demonstrate that particle-attached communities undergo rapid, reproducible successions driven by ecological interactions. Motile, particle-degrading taxa are selected for during early successional stages. However, this selective pressure is later relaxed when secondary consumers invade, which are unable to use the particle resource but, instead, rely on carbon from primary degraders. This creates a trophic chain that shifts community metabolism away from the particle substrate. These results suggest that primary successions may shape particle-attached bacterial communities in the ocean and that rapid community-wide metabolic shifts could limit rates of marine particle degradation. Particles of organic matter in the ocean harbour microbial communities that digest and recycle essential nutrients. Here, Datta et al. use model marine particles to show that the attached bacterial communities undergo rapid, reproducible successions driven by ecological interactions.
Collapse
|
209
|
Bukovská P, Gryndler M, Gryndlerová H, Püschel D, Jansa J. Organic Nitrogen-Driven Stimulation of Arbuscular Mycorrhizal Fungal Hyphae Correlates with Abundance of Ammonia Oxidizers. Front Microbiol 2016; 7:711. [PMID: 27242732 PMCID: PMC4863899 DOI: 10.3389/fmicb.2016.00711] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/28/2016] [Indexed: 11/28/2022] Open
Abstract
Large fraction of mineral nutrients in natural soil environments is recycled from complex and heterogeneously distributed organic sources. These sources are explored by both roots and associated mycorrhizal fungi. However, the mechanisms behind the responses of arbuscular mycorrhizal (AM) hyphal networks to soil organic patches of different qualities remain little understood. Therefore, we conducted a multiple-choice experiment examining hyphal responses to different soil patches within the root-free zone by two AM fungal species (Rhizophagus irregularis and Claroideoglomus claroideum) associated with Medicago truncatula, a legume forming nitrogen-fixing root nodules. Hyphal colonization of the patches was assessed microscopically and by quantitative real-time PCR (qPCR) using AM taxon-specific markers, and the prokaryotic and fungal communities in the patches (pooled per organic amendment treatment) were profiled by 454-amplicon sequencing. Specific qPCR markers were then designed and used to quantify the abundance of prokaryotic taxa showing the strongest correlation with the pattern of AM hyphal proliferation in the organic patches as per the 454-sequencing. The hyphal density of both AM fungi increased due to nitrogen (N)-containing organic amendments (i.e., chitin, DNA, albumin, and clover biomass), while no responses as compared to the non-amended soil patch were recorded for cellulose, phytate, or inorganic phosphate amendments. Abundances of several prokaryotes, including Nitrosospira sp. (an ammonium oxidizer) and an unknown prokaryote with affiliation to Acanthamoeba endosymbiont, which were frequently recorded in the 454-sequencing profiles, correlated positively with the hyphal responses of R. irregularis to the soil amendments. Strong correlation between abundance of these two prokaryotes and the hyphal responses to organic soil amendments by both AM fungi was then confirmed by qPCR analyses using all individual replicate patch samples. Further research is warranted to ascertain the causality of these correlations and particularly which direct roles (if any) do these prokaryotes play in the observed AM hyphal responses to organic N amendment, organic N utilization by the AM fungus and its (N-unlimited) host plant. Further, possible trophic dependencies between the different players in the AM hyphosphere needs to be elucidated upon decomposing the organic N sources.
Collapse
Affiliation(s)
| | | | | | | | - Jan Jansa
- Laboratory of Fungal Biology, Institute of Microbiology, Czech Academy of SciencesPrague, Czech Republic
| |
Collapse
|
210
|
Barbosa A, Balagué V, Valera F, Martínez A, Benzal J, Motas M, Diaz JI, Mira A, Pedrós-Alió C. Age-Related Differences in the Gastrointestinal Microbiota of Chinstrap Penguins (Pygoscelis antarctica). PLoS One 2016; 11:e0153215. [PMID: 27055030 PMCID: PMC4824521 DOI: 10.1371/journal.pone.0153215] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 03/26/2016] [Indexed: 11/30/2022] Open
Abstract
The gastrointestinal tract microbiota is known to play very important roles in the well being of animals. It is a complex community composed by hundreds of microbial species interacting closely among them and with their host, that is, a microbial ecosystem. The development of high throughput sequencing techniques allows studying the diversity of such communities in a realistic way and considerable work has been carried out in mammals and some birds such as chickens. Wild birds have received less attention and in particular, in the case of penguins, only a few individuals of five species have been examined with molecular techniques. We collected cloacal samples from Chinstrap penguins in the Vapour Col rookery in Deception Island, Antarctica, and carried out pyrosequencing of the V1-V3 region of the 16S rDNA in samples from 53 individuals, 27 adults and 26 chicks. This provided the first description of the Chinstrap penguin gastrointestinal tract microbiota and the most extensive in any penguin species. Firmicutes, Bacteoridetes, Proteobacteria, Fusobacteria, Actinobacteria, and Tenericutes were the main components. There were large differences between chicks and adults. The former had more Firmicutes and the latter more Bacteroidetes and Proteobacteria. In addition, adults had richer and more diverse bacterial communities than chicks. These differences were also observed between parents and their offspring. On the other hand, nests explained differences in bacterial communities only among chicks. We suggest that environmental factors have a higher importance than genetic factors in the microbiota composition of chicks. The results also showed surprisingly large differences in community composition with other Antarctic penguins including the congeneric Adélie and Gentoo penguins.
Collapse
Affiliation(s)
- Andrés Barbosa
- Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| | - Vanessa Balagué
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, CSIC, Barcelona, Spain
| | - Francisco Valera
- Departamento de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas, CSIC, Almería, Spain
| | - Ana Martínez
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, México DF, México
| | - Jesús Benzal
- Departamento de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas, CSIC, Almería, Spain
| | - Miguel Motas
- Facultad de Veterinaria, Universidad de Murcia, Murcia, Spain
| | - Julia I. Diaz
- Centro de Estudios Parasitológicos y de Vectores, CCT La Plata (CONICET-UNLP), La Plata, Argentina
| | - Alex Mira
- Department of Genomics and Health, FISABIO Foundation, Center for Advanced Research in Public Health, Valencia, Spain
| | - Carlos Pedrós-Alió
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, CSIC, Barcelona, Spain
| |
Collapse
|
211
|
Blank CE, Hinman NW. Cyanobacterial and algal growth on chitin as a source of nitrogen; ecological, evolutionary, and biotechnological implications. ALGAL RES 2016. [DOI: 10.1016/j.algal.2016.02.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
212
|
Soverini M, Quercia S, Biancani B, Furlati S, Turroni S, Biagi E, Consolandi C, Peano C, Severgnini M, Rampelli S, Brigidi P, Candela M. The bottlenose dolphin (Tursiops truncatus) faecal microbiota. FEMS Microbiol Ecol 2016; 92:fiw055. [DOI: 10.1093/femsec/fiw055] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2016] [Indexed: 12/31/2022] Open
|
213
|
Freedman ZB, Upchurch RA, Zak DR, Cline LC. Anthropogenic N Deposition Slows Decay by Favoring Bacterial Metabolism: Insights from Metagenomic Analyses. Front Microbiol 2016; 7:259. [PMID: 26973633 PMCID: PMC4773658 DOI: 10.3389/fmicb.2016.00259] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 02/16/2016] [Indexed: 12/03/2022] Open
Abstract
Litter decomposition is an enzymatically-complex process that is mediated by a diverse assemblage of saprophytic microorganisms. It is a globally important biogeochemical process that can be suppressed by anthropogenic N deposition. In a northern hardwood forest ecosystem located in Michigan, USA, 20 years of experimentally increased atmospheric N deposition has reduced forest floor decay and increased soil C storage. Here, we paired extracellular enzyme assays with shotgun metagenomics to assess if anthropogenic N deposition has altered the functional potential of microbial communities inhabiting decaying forest floor. Experimental N deposition significantly reduced the activity of extracellular enzymes mediating plant cell wall decay, which occurred concurrently with changes in the relative abundance of metagenomic functional gene pathways mediating the metabolism of carbohydrates, aromatic compounds, as well as microbial respiration. Moreover, experimental N deposition increased the relative abundance of 50 of the 60 gene pathways, the majority of which were associated with saprotrophic bacteria. Conversely, the relative abundance and composition of fungal genes mediating the metabolism of plant litter was not affected by experimental N deposition. Future rates of atmospheric N deposition have favored saprotrophic soil bacteria, whereas the metabolic potential of saprotrophic fungi appears resilient to this agent of environmental change. Results presented here provide evidence that changes in the functional capacity of saprotrophic soil microorganisms mediate how anthropogenic N deposition increases C storage in soil.
Collapse
Affiliation(s)
- Zachary B Freedman
- School of Natural Resources and Environment, University of Michigan Ann Arbor, MI, USA
| | - Rima A Upchurch
- School of Natural Resources and Environment, University of Michigan Ann Arbor, MI, USA
| | - Donald R Zak
- School of Natural Resources and Environment, University of MichiganAnn Arbor, MI, USA; Department of Ecology, Evolution, and Behavior, University of MichiganAnn Arbor, MI, USA
| | - Lauren C Cline
- School of Natural Resources and Environment, University of Michigan Ann Arbor, MI, USA
| |
Collapse
|
214
|
Elieh-Ali-Komi D, Hamblin MR. Chitin and Chitosan: Production and Application of Versatile Biomedical Nanomaterials. INTERNATIONAL JOURNAL OF ADVANCED RESEARCH 2016; 4:411-427. [PMID: 27819009 PMCID: PMC5094803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Chitin is the most abundant aminopolysaccharide polymer occurring in nature, and is the building material that gives strength to the exoskeletons of crustaceans, insects, and the cell walls of fungi. Through enzymatic or chemical deacetylation, chitin can be converted to its most well-known derivative, chitosan. The main natural sources of chitin are shrimp and crab shells, which are an abundant byproduct of the food-processing industry, that provides large quantities of this biopolymer to be used in biomedical applications. In living chitin-synthesizing organisms, the synthesis and degradation of chitin require strict enzymatic control to maintain homeostasis. Chitin synthase, the pivotal enzyme in the chitin synthesis pathway, uses UDP-N-acetylglucosamine (UDPGlcNAc), produce the chitin polymer, whereas, chitinase enzymes degrade chitin. Bacteria are considered as the major mediators of chitin degradation in nature. Chitin and chitosan, owing to their unique biochemical properties such as biocompatibility, biodegradability, non-toxicity, ability to form films, etc, have found many promising biomedical applications. Nanotechnology has also increasingly applied chitin and chitosan-based materials in its most recent achievements. Chitin and chitosan have been widely employed to fabricate polymer scaffolds. Moreover, the use of chitosan to produce designed-nanocarriers and to enable microencapsulation techniques is under increasing investigation for the delivery of drugs, biologics and vaccines. Each application is likely to require uniquely designed chitosan-based nano/micro-particles with specific dimensions and cargo-release characteristics. The ability to reproducibly manufacture chitosan nano/microparticles that can encapsulate protein cargos with high loading efficiencies remains a challenge. Chitosan can be successfully used in solution, as hydrogels and/or nano/microparticles, and (with different degrees of deacetylation) an endless array of derivatives with customized biochemical properties can be prepared. As a result, chitosan is one of the most well-studied biomaterials. The purpose of this review is to survey the biosynthesis and isolation, and summarize nanotechnology applications of chitin and chitosan ranging from tissue engineering, wound dressings, antimicrobial agents, antiaging cosmetics, and vaccine adjuvants.
Collapse
Affiliation(s)
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Dermatology, Harvard Medical School, Boston, Massachusetts, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
215
|
Rivett DW, Scheuerl T, Culbert CT, Mombrikotb SB, Johnstone E, Barraclough TG, Bell T. Resource-dependent attenuation of species interactions during bacterial succession. ISME JOURNAL 2016; 10:2259-68. [PMID: 26894447 PMCID: PMC4989303 DOI: 10.1038/ismej.2016.11] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 12/11/2015] [Accepted: 12/30/2015] [Indexed: 02/06/2023]
Abstract
Bacterial communities are vital for many economically and ecologically important processes. The role of bacterial community composition in determining ecosystem functioning depends critically on interactions among bacterial taxa. Several studies have shown that, despite a predominance of negative interactions in communities, bacteria are able to display positive interactions given the appropriate evolutionary or ecological conditions. We were interested in how interspecific interactions develop over time in a naturalistic setting of low resource supply rates. We assembled aquatic bacterial communities in microcosms and assayed the productivity (respiration and growth) and substrate degradation while tracking community composition. The results demonstrated that while bacterial communities displayed strongly negative interactions during the early phase of colonisation and acclimatisation to novel biotic and abiotic factors, this antagonism declined over time towards a more neutral state. This was associated with a shift from use of labile substrates in early succession to use of recalcitrant substrates later in succession, confirming a crucial role of resource dynamics in linking interspecific interactions with ecosystem functioning.
Collapse
Affiliation(s)
- Damian W Rivett
- Department of Life Sciences, Imperial College London, Ascot, Berkshire, UK
| | - Thomas Scheuerl
- Department of Life Sciences, Imperial College London, Ascot, Berkshire, UK
| | | | | | - Emma Johnstone
- Department of Life Sciences, Imperial College London, Ascot, Berkshire, UK
| | | | - Thomas Bell
- Department of Life Sciences, Imperial College London, Ascot, Berkshire, UK
| |
Collapse
|
216
|
Abdul Rahman N, Parks DH, Vanwonterghem I, Morrison M, Tyson GW, Hugenholtz P. A Phylogenomic Analysis of the Bacterial Phylum Fibrobacteres. Front Microbiol 2016; 6:1469. [PMID: 26779135 PMCID: PMC4704652 DOI: 10.3389/fmicb.2015.01469] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 12/07/2015] [Indexed: 12/13/2022] Open
Abstract
The Fibrobacteres has been recognized as a bacterial phylum for over a decade, but little is known about the group beyond its environmental distribution, and characterization of its sole cultured representative genus, Fibrobacter, after which the phylum was named. Based on these incomplete data, it is thought that cellulose hydrolysis, anaerobic metabolism, and lack of motility are unifying features of the phylum. There are also contradicting views as to whether an uncultured sister lineage, candidate phylum TG3, should be included in the Fibrobacteres. Recently, chitin-degrading cultured representatives of TG3 were isolated from a hypersaline soda lake, and the genome of one species, Chitinivibrio alkaliphilus, sequenced and described in detail. Here, we performed a comparative analysis of Fibrobacter succinogenes, C. alkaliphilus and eight near or substantially complete Fibrobacteres/TG3 genomes of environmental populations recovered from termite gut, anaerobic digester, and sheep rumen metagenomes. We propose that TG3 should be amalgamated with the Fibrobacteres phylum based on robust monophyly of the two lineages and shared character traits. Polymer hydrolysis, using a distinctive set of glycoside hydrolases and binding domains, appears to be a prominent feature of members of the Fibrobacteres. Not all members of this phylum are strictly anaerobic as some termite gut Fibrobacteres have respiratory chains adapted to the microaerophilic conditions found in this habitat. Contrary to expectations, flagella-based motility is predicted to be an ancestral and common trait in this phylum and has only recently been lost in F. succinogenes and its relatives based on phylogenetic distribution of flagellar genes. Our findings extend current understanding of the Fibrobacteres and provide an improved basis for further investigation of this phylum.
Collapse
Affiliation(s)
- Nurdyana Abdul Rahman
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland Brisbane, QLD, Australia
| | - Donovan H Parks
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland Brisbane, QLD, Australia
| | - Inka Vanwonterghem
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of QueenslandBrisbane, QLD, Australia; Advanced Water Management Center, The University of QueenslandBrisbane, QLD, Australia
| | - Mark Morrison
- Microbial Biology and Metagenomics, The University of Queensland Diamantina Institute, Translational Research Institute Brisbane, QLD, Australia
| | - Gene W Tyson
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland Brisbane, QLD, Australia
| | - Philip Hugenholtz
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of QueenslandBrisbane, QLD, Australia; Genomics and Computational Biology, Institute for Molecular Bioscience, The University of QueenslandBrisbane, QLD, Australia
| |
Collapse
|
217
|
Abstract
Glycoside hydrolases are important enzymes that support bacterial growth by enabling the degradation of polysaccharides (e.g., starch, cellulose, xylan, and chitin) in the environment. Presently, little is known about the overall phylogenetic distribution of the genomic potential to degrade these polysaccharides in bacteria. However, knowing the phylogenetic breadth of these traits may help us predict the overall polysaccharide processing in environmental microbial communities. In order to address this, we identified and analyzed the distribution of 392,166 enzyme genes derived from 53 glycoside hydrolase families in 8,133 sequenced bacterial genomes. Enzymes for oligosaccharides and starch/glycogen were observed in most taxonomic groups, whereas glycoside hydrolases for structural polymers (i.e., cellulose, xylan, and chitin) were observed in clusters of relatives at taxonomic levels ranging from species to genus as determined by consenTRAIT. The potential for starch and glycogen processing, as well as oligosaccharide processing, was observed in 85% of the strains, whereas 65% possessed enzymes to degrade some structural polysaccharides (i.e., cellulose, xylan, or chitin). Potential degraders targeting one, two, and three structural polysaccharides accounted for 22.6, 32.9, and 9.3% of genomes analyzed, respectively. Finally, potential degraders targeting multiple structural polysaccharides displayed increased potential for oligosaccharide deconstruction. This study provides a framework for linking the potential for polymer deconstruction with phylogeny in complex microbial assemblages.
Collapse
|
218
|
Belanche A, Pinloche E, Preskett D, Newbold CJ. Effects and mode of action of chitosan and ivy fruit saponins on the microbiome, fermentation and methanogenesis in the rumen simulation technique. FEMS Microbiol Ecol 2015; 92:fiv160. [PMID: 26676056 PMCID: PMC5831848 DOI: 10.1093/femsec/fiv160] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2015] [Indexed: 01/09/2023] Open
Abstract
This study investigates the effects of supplementing a control diet (CON) with chitosan (CHI) or ivy fruit saponins (IVY) as natural feed additives. Both additives had similar abilities to decrease rumen methanogenesis (–42% and –40%, respectively) using different mechanisms: due to its antimicrobial and nutritional properties CHI promoted a shift in the fermentation pattern towards propionate production which explained about two thirds of the decrease in methanogenesis. This shift was achieved by a simplification of the structure in the bacterial community and a substitution of fibrolytic (Firmicutes and Fibrobacteres) by amylolytic bacteria (Bacteroidetes and Proteobacteria) which led to greater amylase activity, lactate and microbial protein yield with no detrimental effect on feed digestibility. Contrarily, IVY had negligible nutritional properties promoting minor changes in the fermentation pattern and on the bacterial community. Instead, IVY modified the structure of the methanogen community and decreased its diversity. This specific antimicrobial effect of IVY against methanogens was considered its main antimethanogenic mechanism. IVY had however a negative impact on microbial protein synthesis. Therefore, CHI and IVY should be further investigated in vivo to determine the optimum doses which maintain low methanogenesis but prevent negative effects on the rumen fermentation and animal metabolism. Rumen function is generally suboptimal leading to loses in the form of methane and nitrogen, analysis of the rumen microbiome is vital to understand the mode of action of new feed additives to improve rumen function.
Collapse
Affiliation(s)
- Alejandro Belanche
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, SY23 3DA, Aberystwyth, UK
| | - Eric Pinloche
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, SY23 3DA, Aberystwyth, UK
| | - David Preskett
- BioComposites Centre, Bangor University, LL57 2UW, Bangor, UK
| | - C Jamie Newbold
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, SY23 3DA, Aberystwyth, UK
| |
Collapse
|
219
|
Baleen whales host a unique gut microbiome with similarities to both carnivores and herbivores. Nat Commun 2015; 6:8285. [PMID: 26393325 PMCID: PMC4595633 DOI: 10.1038/ncomms9285] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 08/04/2015] [Indexed: 12/21/2022] Open
Abstract
Mammals host gut microbiomes of immense physiological consequence, but the determinants of diversity in these communities remain poorly understood. Diet appears to be the dominant factor, but host phylogeny also seems to be an important, if unpredictable, correlate. Here we show that baleen whales, which prey on animals (fish and crustaceans), harbor unique gut microbiomes with surprising parallels in functional capacity and higher level taxonomy to those of terrestrial herbivores. These similarities likely reflect a shared role for fermentative metabolisms despite a shift in primary carbon sources from plant-derived to animal-derived polysaccharides, such as chitin. In contrast, protein catabolism and essential amino acid synthesis pathways in baleen whale microbiomes more closely resemble those of terrestrial carnivores. Our results demonstrate that functional attributes of the microbiome can vary independently even given an animal-derived diet, illustrating how diet and evolutionary history combine to shape microbial diversity in the mammalian gut. Diet is a major factor determining the composition of gut microbiota in mammals, while host evolutionary history seems to play an unclear role. Here, Sanders et al. show that baleen whales, which prey on animals, harbour a unique gut microbiome with similarities to those of terrestrial herbivores.
Collapse
|
220
|
Preparation and characterization of cross-linked carboxymethyl chitin porous membrane scaffold for biomedical applications. Carbohydr Polym 2015; 126:150-5. [DOI: 10.1016/j.carbpol.2015.02.050] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 02/10/2015] [Accepted: 02/18/2015] [Indexed: 11/20/2022]
|
221
|
Kim JS, Yoon BY, Ahn J, Cha J, Ha NC. Crystal structure of β-N-acetylglucosaminidase CbsA from Thermotoga neapolitana. Biochem Biophys Res Commun 2015; 464:869-74. [DOI: 10.1016/j.bbrc.2015.07.053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 07/09/2015] [Indexed: 10/23/2022]
|
222
|
Plumbridge J. Regulation of the Utilization of Amino Sugars by Escherichia coli and Bacillus subtilis: Same Genes, Different Control. J Mol Microbiol Biotechnol 2015; 25:154-67. [DOI: 10.1159/000369583] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Amino sugars are dual-purpose compounds in bacteria: they are essential components of the outer wall peptidoglycan (PG) and the outer membrane of Gram-negative bacteria and, in addition, when supplied exogenously their catabolism contributes valuable supplies of energy, carbon and nitrogen to the cell. The enzymes for both the synthesis and degradation of glucosamine (GlcN) and N-acetylglucosamine (GlcNAc) are highly conserved but during evolution have become subject to different regulatory regimes. <i>Escherichia coli</i> grows more rapidly using GlcNAc as a carbon source than with GlcN. On the other hand, <i>Bacillus subtilis,</i> but not other <i>Bacilli</i> tested, grows more efficiently on GlcN than GlcNAc. The more rapid growth on this sugar is associated with the presence of a second, GlcN-specific operon, which is unique to this species. A single locus is associated with the genes for catabolism of GlcNAc and GlcN in <i>E. coli,</i> although they enter the cell via different transporters. In <i>E. coli</i> the amino sugar transport and catabolic genes have also been requisitioned as part of the PG recycling process. Although PG recycling likely occurs in <i>B. subtilis,</i> it appears to have different characteristics.
Collapse
|
223
|
Deguchi S, Tsujii K, Horikoshi K. In situ microscopic observation of chitin and fungal cells with chitinous cell walls in hydrothermal conditions. Sci Rep 2015; 5:11907. [PMID: 26148792 PMCID: PMC4493705 DOI: 10.1038/srep11907] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 06/01/2015] [Indexed: 11/09/2022] Open
Abstract
Recent findings of intact chitin in fossil records suggest surprisingly high recalcitrance of this biopolymer during hydrothermal treatments. We also know in the experience of everyday life that mushroom, cells of which have chitinous cell walls, do not fall apart however long they are simmered. We used in situ optical microscopy to examine chitin and fungal cells with chitinous cell walls during hydrothermal treatments, and obtained direct evidence that they remained undegraded at temperatures well over 200 °C. The results show very hot and compressed water is needed to make mushrooms mushy.
Collapse
Affiliation(s)
- Shigeru Deguchi
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
| | - Kaoru Tsujii
- Graduate School of Engineering, Chuo University, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Koki Horikoshi
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
| |
Collapse
|
224
|
Cretoiu MS, Berini F, Kielak AM, Marinelli F, van Elsas JD. A novel salt-tolerant chitobiosidase discovered by genetic screening of a metagenomic library derived from chitin-amended agricultural soil. Appl Microbiol Biotechnol 2015; 99:8199-215. [PMID: 26040993 PMCID: PMC4561078 DOI: 10.1007/s00253-015-6639-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 04/21/2015] [Accepted: 04/24/2015] [Indexed: 12/04/2022]
Abstract
Here, we report on the construction of a metagenomic library from a chitin-amended disease-suppressive agricultural soil and its screening for genes that encode novel chitinolytic enzymes. The library, constructed in fosmids in an Escherichia coli host, comprised 145,000 clones containing inserts of sizes of 21 to 40 kb, yielding a total of approximately 5.8 GB of cloned soil DNA. Using genetic screenings by repeated PCR cycles aimed to detect gene sequences of the bacterial chitinase A-class (hereby named chi A genes), we identified and characterized five fosmids carrying candidate genes for chitinolytic enzymes. The analysis thus allowed access to the genomic (fosmid-borne) context of these genes. Using the chiA-targeted PCR, which is based on degenerate primers, the five fosmids all produced amplicons, of which the sequences were related to predicted chitinolytic enzyme-encoding genes of four different host organisms, including Stenotrophomonas maltophilia. Sequencing and de novo annotation of the fosmid inserts confirmed that each one of these carried one or more open reading frames that were predicted to encode enzymes active on chitin, including one for a chitin deacetylase. Moreover, the genetic contexts in which the putative chitinolytic enzyme-encoding genes were located were unique per fosmid. Specifically, inserts from organisms related to Burkholderia sp., Acidobacterium sp., Aeromonas veronii, and the chloroflexi Nitrolancetus hollandicus and/or Ktedonobacter racemifer were obtained. Remarkably, the S. maltophilia chiA-like gene was found to occur in two different genetic contexts (related to N. hollandicus/K. racemifer), indicating the historical occurrence of genetic reshufflings in this part of the soil microbiota. One fosmid containing the insert composed of DNA from the N. hollandicus-like organism (denoted 53D1) was selected for further work. Using subcloning procedures, its putative gene for a chitinolytic enzyme was successfully brought to expression in an E. coli host. On the basis of purified protein preparations, the produced protein was characterized as a chitobiosidase of 43.6 kDa, with a pI of 4.83. Given its activity spectrum, it can be typified as a halotolerant chitobiosidase.
Collapse
Affiliation(s)
- Mariana Silvia Cretoiu
- />Department of Microbial Ecology, CEES, University of Groningen, Groningen, The Netherlands
- />Department of Marine Microbiology, Royal Netherlands Institute for Sea Research, Yerseke, The Netherlands
| | - Francesca Berini
- />Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
- />“The Protein Factory” Research Center, Politecnico of Milano, ICRM CNR Milano and University of Insubria, Varese, Italy
| | - Anna Maria Kielak
- />Department of Microbial Ecology, The Netherlands Institute of Ecology (NIOO), Wageningen, The Netherlands
| | - Flavia Marinelli
- />Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
- />“The Protein Factory” Research Center, Politecnico of Milano, ICRM CNR Milano and University of Insubria, Varese, Italy
| | - Jan Dirk van Elsas
- />Department of Microbial Ecology, CEES, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
225
|
Fontanez KM, Eppley JM, Samo TJ, Karl DM, DeLong EF. Microbial community structure and function on sinking particles in the North Pacific Subtropical Gyre. Front Microbiol 2015; 6:469. [PMID: 26042105 PMCID: PMC4436931 DOI: 10.3389/fmicb.2015.00469] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 04/29/2015] [Indexed: 01/20/2023] Open
Abstract
Sinking particles mediate the transport of carbon and energy to the deep-sea, yet the specific microbes associated with sedimenting particles in the ocean's interior remain largely uncharacterized. In this study, we used particle interceptor traps (PITs) to assess the nature of particle-associated microbial communities collected at a variety of depths in the North Pacific Subtropical Gyre. Comparative metagenomics was used to assess differences in microbial taxa and functional gene repertoires in PITs containing a preservative (poisoned traps) compared to preservative-free traps where growth was allowed to continue in situ (live traps). Live trap microbial communities shared taxonomic and functional similarities with bacteria previously reported to be enriched in dissolved organic matter (DOM) microcosms (e.g., Alteromonas and Methylophaga), in addition to other particle and eukaryote-associated bacteria (e.g., Flavobacteriales and Pseudoalteromonas). Poisoned trap microbial assemblages were enriched in Vibrio and Campylobacterales likely associated with eukaryotic surfaces and intestinal tracts as symbionts, pathogens, or saprophytes. The functional gene content of microbial assemblages in poisoned traps included a variety of genes involved in virulence, anaerobic metabolism, attachment to chitinaceaous surfaces, and chitin degradation. The presence of chitinaceaous surfaces was also accompanied by the co-existence of bacteria which encoded the capacity to attach to, transport and metabolize chitin and its derivatives. Distinctly different microbial assemblages predominated in live traps, which were largely represented by copiotrophs and eukaryote-associated bacterial communities. Predominant sediment trap-assocaited eukaryotic phyla included Dinoflagellata, Metazoa (mostly copepods), Protalveolata, Retaria, and Stramenopiles. These data indicate the central role of eukaryotic taxa in structuring sinking particle microbial assemblages, as well as the rapid responses of indigenous microbial species in the degradation of marine particulate organic matter (POM) in situ in the ocean's interior.
Collapse
Affiliation(s)
- Kristina M Fontanez
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology Cambridge, MA, USA
| | - John M Eppley
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology Cambridge, MA, USA ; Department of Oceanography, School of Ocean and Earth Science and Technology, University of Hawaii Honolulu, HI, USA ; Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawaii Honolulu, HI, USA
| | - Ty J Samo
- Department of Oceanography, School of Ocean and Earth Science and Technology, University of Hawaii Honolulu, HI, USA ; Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawaii Honolulu, HI, USA ; Lawrence Livermore National Laboratory, Nuclear and Chemical Sciences Division Livermore, CA, USA
| | - David M Karl
- Department of Oceanography, School of Ocean and Earth Science and Technology, University of Hawaii Honolulu, HI, USA ; Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawaii Honolulu, HI, USA
| | - Edward F DeLong
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology Cambridge, MA, USA ; Department of Oceanography, School of Ocean and Earth Science and Technology, University of Hawaii Honolulu, HI, USA ; Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawaii Honolulu, HI, USA
| |
Collapse
|
226
|
Wietz M, Wemheuer B, Simon H, Giebel HA, Seibt MA, Daniel R, Brinkhoff T, Simon M. Bacterial community dynamics during polysaccharide degradation at contrasting sites in the Southern and Atlantic Oceans. Environ Microbiol 2015; 17:3822-31. [DOI: 10.1111/1462-2920.12842] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 03/04/2015] [Accepted: 03/04/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Matthias Wietz
- Institute for Chemistry and Biology of the Marine Environment; University of Oldenburg; Oldenburg 26129 Germany
| | - Bernd Wemheuer
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory; Institute of Microbiology and Genetics; University of Göttingen; Göttingen 37077 Germany
| | - Heike Simon
- Institute for Chemistry and Biology of the Marine Environment; University of Oldenburg; Oldenburg 26129 Germany
| | - Helge-Ansgar Giebel
- Institute for Chemistry and Biology of the Marine Environment; University of Oldenburg; Oldenburg 26129 Germany
| | - Maren A. Seibt
- ICBM-MPI Bridging Group for Marine Geochemistry; Institute for Chemistry and Biology of the Marine Environment; University of Oldenburg; Oldenburg 26129 Germany
| | - Rolf Daniel
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory; Institute of Microbiology and Genetics; University of Göttingen; Göttingen 37077 Germany
| | - Thorsten Brinkhoff
- Institute for Chemistry and Biology of the Marine Environment; University of Oldenburg; Oldenburg 26129 Germany
| | - Meinhard Simon
- Institute for Chemistry and Biology of the Marine Environment; University of Oldenburg; Oldenburg 26129 Germany
| |
Collapse
|
227
|
Prokaryotic functional gene diversity in the sunlit ocean: Stumbling in the dark. Curr Opin Microbiol 2015; 25:33-9. [PMID: 25863027 DOI: 10.1016/j.mib.2015.03.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Revised: 03/07/2015] [Accepted: 03/16/2015] [Indexed: 11/24/2022]
Abstract
Prokaryotes are extremely abundant in the ocean where they drive biogeochemical cycles. The recent development and application of -omics techniques has provided an astonishing amount of information revealing the existence of a vast diversity of functional genes and a large heterogeneity within each gene. The big challenge for microbial ecologists is now to understand the ecological relevance of this variability for ecosystem functioning, a question that remains largely understudied. This brief review highlights some of the latest advances in the study of the diversity of biogeochemically relevant functional genes in the sunlit ocean.
Collapse
|
228
|
Bai Y, Eijsink VGH, Kielak AM, van Veen JA, de Boer W. Genomic comparison of chitinolytic enzyme systems from terrestrial and aquatic bacteria. Environ Microbiol 2014; 18:38-49. [DOI: 10.1111/1462-2920.12545] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 06/12/2014] [Indexed: 12/01/2022]
Affiliation(s)
- Yani Bai
- Department of Microbial Ecology; Netherlands Institute of Ecology (NIOO-KNAW); P.O. Box 50 Wageningen 6700 AB The Netherlands
| | - Vincent G. H. Eijsink
- Department of Chemistry, Biotechnology and Food Science; Norwegian University of Life Sciences; Aas Norway
| | - Anna M. Kielak
- Department of Microbial Ecology; Netherlands Institute of Ecology (NIOO-KNAW); P.O. Box 50 Wageningen 6700 AB The Netherlands
| | - Johannes A. van Veen
- Department of Microbial Ecology; Netherlands Institute of Ecology (NIOO-KNAW); P.O. Box 50 Wageningen 6700 AB The Netherlands
- Institute of Biology; Faculty of Science; Leiden University; Leiden The Netherlands
| | - Wietse de Boer
- Department of Microbial Ecology; Netherlands Institute of Ecology (NIOO-KNAW); P.O. Box 50 Wageningen 6700 AB The Netherlands
- Soil Quality Group; Wageningen University; P.O. Box 9101 Wageningen 6700 HB The Netherlands
| |
Collapse
|
229
|
Paspaliari DK, Mollerup MS, Kallipolitis BH, Ingmer H, Larsen MH. Chitinase expression in Listeria monocytogenes is positively regulated by the Agr system. PLoS One 2014; 9:e95385. [PMID: 24752234 PMCID: PMC3994053 DOI: 10.1371/journal.pone.0095385] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 03/25/2014] [Indexed: 11/23/2022] Open
Abstract
The food-borne pathogen Listeria monocytogenes encodes two chitinases, ChiA and ChiB, which allow the bacterium to hydrolyze chitin, the second most abundant polysaccharide in nature. Intriguingly, despite the absence of chitin in human and mammalian hosts, both of the chitinases have been deemed important for infection, through a mechanism that, at least in the case of ChiA, involves modulation of host immune responses. In this study, we show that the expression of the two chitinases is subject to regulation by the listerial agr system, a homologue of the agr quorum-sensing system of Staphylococcus aureus, that has so far been implicated in virulence and biofilm formation. We demonstrate that in addition to these roles, the listerial agr system is required for efficient chitin hydrolysis, as deletion of agrD, encoding the putative precursor of the agr autoinducer, dramatically decreased chitinolytic activity on agar plates. Agr was specifically induced in response to chitin addition in stationary phase and agrD was found to regulate the amount of chiA, but not chiB, transcripts. Although the transcript levels of chiB did not depend on agrD, the extracellular protein levels of both chitinases were reduced in the ΔagrD mutant. The regulatory effect of agr on chiA is potentially mediated through the small RNA LhrA, which we show here to be negatively regulated by agr. LhrA is in turn known to repress chiA translation by binding to the chiA transcript and interfering with ribosome recruitment. Our results highlight a previously unrecognized role of the agr system and suggest that autoinducer-based regulation of chitinolytic systems may be more commonplace than previously thought.
Collapse
Affiliation(s)
- Dafni Katerina Paspaliari
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Maria Storm Mollerup
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Birgitte H. Kallipolitis
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Hanne Ingmer
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Marianne Halberg Larsen
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
- * E-mail:
| |
Collapse
|
230
|
Bacterial epibionts of Daphnia: a potential route for the transfer of dissolved organic carbon in freshwater food webs. ISME JOURNAL 2014; 8:1808-19. [PMID: 24694716 DOI: 10.1038/ismej.2014.39] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 02/06/2014] [Accepted: 02/12/2014] [Indexed: 11/09/2022]
Abstract
The identification of interacting species and elucidation of their mode of interaction may be crucial to understand ecosystem-level processes. We analysed the activity and identity of bacterial epibionts in cultures of Daphnia galeata and of natural daphnid populations. Epibiotic bacteria incorporated considerable amounts of dissolved organic carbon (DOC), as estimated via uptake of tritiated leucine: three times more tracer was consumed by microbes on a single Daphnia than in 1 ml of lake water. However, there was virtually no incorporation if daphnids were anaesthetised, suggesting that their filtration activity was essential for this process. Microbial DOC uptake could predominantly be assigned to microbes that were located on the filter combs of daphnids, where the passage of water would ensure a continuously high DOC supply. Most of these bacteria were Betaproteobacteria from the genus Limnohabitans. Specifically, we identified a monophyletic cluster harbouring Limnohabitans planktonicus that encompassed sequence types from D. galeata cultures, from the gut of Daphnia magna and from daphnids of Lake Zurich. Our results suggest that the epibiotic growth of bacteria related to Limnohabitans on Daphnia spp. may be a widespread and rather common phenomenon. Moreover, most of the observed DOC flux to Daphnia in fact does not seem to be associated with the crustacean biomass itself but with its epibiotic microflora. The unexplored physical association of daphnids with heterotrophic bacteria may have considerable implications for our understanding of carbon transfer in freshwater food webs, that is, a trophic 'shortcut' between microbial DOC uptake and predation by fish.
Collapse
|
231
|
Matano C, Uhde A, Youn JW, Maeda T, Clermont L, Marin K, Krämer R, Wendisch VF, Seibold GM. Engineering of Corynebacterium glutamicum for growth and L-lysine and lycopene production from N-acetyl-glucosamine. Appl Microbiol Biotechnol 2014; 98:5633-43. [PMID: 24668244 DOI: 10.1007/s00253-014-5676-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/05/2014] [Accepted: 03/06/2014] [Indexed: 11/27/2022]
Abstract
Sustainable supply of feedstock has become a key issue in process development in microbial biotechnology. The workhorse of industrial amino acid production Corynebacterium glutamicum has been engineered towards utilization of alternative carbon sources. Utilization of the chitin-derived aminosugar N-acetyl-glucosamine (GlcNAc) for both cultivation and production with C. glutamicum has hitherto not been investigated. Albeit this organism harbors the enzymes N-acetylglucosamine-6-phosphatedeacetylase and glucosamine-6P deaminase of GlcNAc metabolism (encoded by nagA and nagB, respectively) growth of C. glutamicum with GlcNAc as substrate was not observed. This was attributed to the lack of a functional system for GlcNAc uptake. Of the 17 type strains of the genus Corynebacterium tested here for their ability to grow with GlcNAc, only Corynebacterium glycinophilum DSM45794 was able to utilize this substrate. Complementation studies with a GlcNAc-uptake deficient Escherichia coli strain revealed that C. glycinophilum possesses a nagE-encoded EII permease for GlcNAc uptake. Heterologous expression of the C. glycinophilum nagE in C. glutamicum indeed enabled uptake of GlcNAc. For efficient GlcNac utilization in C. glutamicum, improved expression of nagE with concurrent overexpression of the endogenous nagA and nagB genes was found to be necessary. Based on this strategy, C. glutamicum strains for the efficient production of the amino acid L-lysine as well as the carotenoid lycopene from GlcNAc as sole substrate were constructed.
Collapse
Affiliation(s)
- Christian Matano
- Faculty of Biology and CeBiTec, Bielefeld University, 33501, Bielefeld, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
232
|
Rousk J, Bengtson P. Microbial regulation of global biogeochemical cycles. Front Microbiol 2014; 5:103. [PMID: 24672519 PMCID: PMC3954078 DOI: 10.3389/fmicb.2014.00103] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 02/27/2014] [Indexed: 11/21/2022] Open
Affiliation(s)
- Johannes Rousk
- Department of Biology/Microbial Ecology, Lund UniversityLund, Sweden
| | | |
Collapse
|
233
|
Kharade SS, McBride MJ. Flavobacterium johnsoniae chitinase ChiA is required for chitin utilization and is secreted by the type IX secretion system. J Bacteriol 2014; 196:961-70. [PMID: 24363341 PMCID: PMC3957688 DOI: 10.1128/jb.01170-13] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 12/14/2013] [Indexed: 12/15/2022] Open
Abstract
Flavobacterium johnsoniae, a member of phylum Bacteriodetes, is a gliding bacterium that digests insoluble chitin and many other polysaccharides. A novel protein secretion system, the type IX secretion system (T9SS), is required for gliding motility and for chitin utilization. Five potential chitinases were identified by genome analysis. Fjoh_4555 (ChiA), a 168.9-kDa protein with two glycoside hydrolase family 18 (GH18) domains, was targeted for analysis. Disruption of chiA by insertional mutagenesis resulted in cells that failed to digest chitin, and complementation with wild-type chiA on a plasmid restored chitin utilization. Antiserum raised against recombinant ChiA was used to detect the protein and to characterize its secretion by F. johnsoniae. ChiA was secreted in soluble form by wild-type cells but remained cell associated in strains carrying mutations in any of the T9SS genes, gldK, gldL, gldM, gldNO, sprA, sprE, and sprT. Western blot and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyses suggested that ChiA was proteolytically processed into two GH18 domain-containing proteins. Proteins secreted by T9SSs typically have conserved carboxy-terminal domains (CTDs) belonging to the TIGRFAM families TIGR04131 and TIGR04183. ChiA does not exhibit strong similarity to these sequences and instead has a novel CTD. Deletion of this CTD resulted in accumulation of ChiA inside cells. Fusion of the ChiA CTD to recombinant mCherry resulted in secretion of mCherry into the medium. The results indicate that ChiA is a soluble extracellular chitinase required for chitin utilization and that it relies on a novel CTD for secretion by the F. johnsoniae T9SS.
Collapse
Affiliation(s)
- Sampada S Kharade
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | | |
Collapse
|
234
|
Jacquiod S, Franqueville L, Cécillon S, M. Vogel T, Simonet P. Soil bacterial community shifts after chitin enrichment: an integrative metagenomic approach. PLoS One 2013; 8:e79699. [PMID: 24278158 PMCID: PMC3835784 DOI: 10.1371/journal.pone.0079699] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 09/25/2013] [Indexed: 11/19/2022] Open
Abstract
Chitin is the second most produced biopolymer on Earth after cellulose. Chitin degrading enzymes are promising but untapped sources for developing novel industrial biocatalysts. Hidden amongst uncultivated micro-organisms, new bacterial enzymes can be discovered and exploited by metagenomic approaches through extensive cloning and screening. Enrichment is also a well-known strategy, as it allows selection of organisms adapted to feed on a specific compound. In this study, we investigated how the soil bacterial community responded to chitin enrichment in a microcosm experiment. An integrative metagenomic approach coupling phylochips and high throughput shotgun pyrosequencing was established in order to assess the taxonomical and functional changes in the soil bacterial community. Results indicate that chitin enrichment leads to an increase of Actinobacteria, γ-proteobacteria and β-proteobacteria suggesting specific selection of chitin degrading bacteria belonging to these classes. Part of enriched bacterial genera were not yet reported to be involved in chitin degradation, like the members from the Micrococcineae sub-order (Actinobacteria). An increase of the observed bacterial diversity was noticed, with detection of specific genera only in chitin treated conditions. The relative proportion of metagenomic sequences related to chitin degradation was significantly increased, even if it represents only a tiny fraction of the sequence diversity found in a soil metagenome.
Collapse
Affiliation(s)
- Samuel Jacquiod
- Environmental Microbial Genomics Group, Ecole Centrale de Lyon, Laboratoire Ampère UMR5005 CNRS, Ecully, France
- Microbial Molecular Ecology Group, Section of Microbiology, København Universitat, København, Denmark
| | - Laure Franqueville
- Environmental Microbial Genomics Group, Ecole Centrale de Lyon, Laboratoire Ampère UMR5005 CNRS, Ecully, France
| | - Sébastien Cécillon
- Environmental Microbial Genomics Group, Ecole Centrale de Lyon, Laboratoire Ampère UMR5005 CNRS, Ecully, France
| | - Timothy M. Vogel
- Environmental Microbial Genomics Group, Ecole Centrale de Lyon, Laboratoire Ampère UMR5005 CNRS, Ecully, France
| | - Pascal Simonet
- Environmental Microbial Genomics Group, Ecole Centrale de Lyon, Laboratoire Ampère UMR5005 CNRS, Ecully, France
- * E-mail:
| |
Collapse
|
235
|
Macdonald C, Barden S, Foley S. Isolation and characterization of chitin-degrading micro-organisms from the faeces of Goeldi's monkey, Callimico goeldii. J Appl Microbiol 2013; 116:52-9. [DOI: 10.1111/jam.12338] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 08/26/2013] [Accepted: 08/30/2013] [Indexed: 12/01/2022]
Affiliation(s)
- C. Macdonald
- School of Life; Sport & Social Science; Edinburgh Napier University; Edinburgh UK
- Animal Department; Edinburgh Zoo; Edinburgh UK
| | - S. Barden
- School of Life; Sport & Social Science; Edinburgh Napier University; Edinburgh UK
| | - S. Foley
- School of Life; Sport & Social Science; Edinburgh Napier University; Edinburgh UK
| |
Collapse
|