201
|
Albajes-Eizagirre A, Radua J. What do results from coordinate-based meta-analyses tell us? Neuroimage 2018; 176:550-553. [DOI: 10.1016/j.neuroimage.2018.04.065] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/27/2018] [Accepted: 04/28/2018] [Indexed: 10/17/2022] Open
|
202
|
Dong D, Wang Y, Jia X, Li Y, Chang X, Vandekerckhove M, Luo C, Yao D. Abnormal brain activation during threatening face processing in schizophrenia: A meta-analysis of functional neuroimaging studies. Schizophr Res 2018; 197:200-208. [PMID: 29153447 DOI: 10.1016/j.schres.2017.11.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/07/2017] [Accepted: 11/09/2017] [Indexed: 11/26/2022]
Abstract
Impairment of face perception in schizophrenia is a core aspect of social cognitive dysfunction. This impairment is particularly marked in threatening face processing. Identifying reliable neural correlates of the impairment of threatening face processing is crucial for targeting more effective treatments. However, neuroimaging studies have not yet obtained robust conclusions. Through comprehensive literature search, twenty-one whole brain datasets were included in this meta-analysis. Using seed-based d-Mapping, in this voxel-based meta-analysis, we aimed to: 1) establish the most consistent brain dysfunctions related to threating face processing in schizophrenia; 2) address task-type heterogeneity in this impairment; 3) explore the effect of potential demographic or clinical moderator variables on this impairment. Main meta-analysis indicated that patients with chronic schizophrenia demonstrated attenuated activations in limbic emotional system along with compensatory over-activation in medial prefrontal cortex (MPFC) during threatening faces processing. Sub-task analyses revealed under-activations in right amygdala and left fusiform gyrus in both implicit and explicit tasks. The remaining clusters were found to be differently involved in different types of tasks. Moreover, meta-regression analyses showed brain abnormalities in schizophrenia were partly modulated by age, gender, medication and severity of symptoms. Our results highlighted breakdowns in limbic-MPFC circuit in schizophrenia, suggesting general inability to coordinate and contextualize salient threat stimuli. These findings provide potential targets for neurotherapeutic and pharmacological interventions for schizophrenia.
Collapse
Affiliation(s)
- Debo Dong
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of life Science and technology, University of Electronic Science and Technology of China, 2006 Xiyuan Avenue, Chengdu 611731, China.
| | - Yulin Wang
- Faculty of Psychological and Educational Sciences, Department of Experimental and Applied Psychology, Research Group of Biological Psychology, Vrije Universiteit Brussel, Brussels 1040, Belgium; Department of Data Analysis, Faculty of Psychological and Pedagogical Sciences, Ghent University, Henri Dunantlaan 1, B-9000 Gent, Belgium.
| | - Xiaoyan Jia
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of life Science and technology, University of Electronic Science and Technology of China, 2006 Xiyuan Avenue, Chengdu 611731, China.
| | - Yingjia Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of life Science and technology, University of Electronic Science and Technology of China, 2006 Xiyuan Avenue, Chengdu 611731, China.
| | - Xuebin Chang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of life Science and technology, University of Electronic Science and Technology of China, 2006 Xiyuan Avenue, Chengdu 611731, China.
| | - Marie Vandekerckhove
- Faculty of Psychological and Educational Sciences, Department of Experimental and Applied Psychology, Research Group of Biological Psychology, Vrije Universiteit Brussel, Brussels 1040, Belgium.
| | - Cheng Luo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of life Science and technology, University of Electronic Science and Technology of China, 2006 Xiyuan Avenue, Chengdu 611731, China.
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of life Science and technology, University of Electronic Science and Technology of China, 2006 Xiyuan Avenue, Chengdu 611731, China.
| |
Collapse
|
203
|
Han Q, Hou Y, Shang H. A Voxel-Wise Meta-Analysis of Gray Matter Abnormalities in Essential Tremor. Front Neurol 2018; 9:495. [PMID: 29997568 PMCID: PMC6028592 DOI: 10.3389/fneur.2018.00495] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/06/2018] [Indexed: 02/05/2023] Open
Abstract
Objective: To identify the consistent gray matter (GM) volume changes from the whole brain voxel-based morphometry (VBM) studies on essential tremor (ET). Methods: The whole brain VBM studies comparing ET patients and healthy controls (HCs) were systematically searched in the PubMed, Embase and Web of Science from January 2000 to December 2017. Coordinates with significant differences in regional GM volume between ET patients and HCs were extracted from included studies and the meta-analysis was performed using effect size-based signed differential mapping (ES-SDM). Results: A total of 10 studies with 241 ET patients and 213 HCs were included in the meta-analysis. The consistent GM volume reduction was detected in the left precuneus extending to the left posterior cingulate gyrus. The subgroup meta-analysis which included studies performed on a 3.0 T scanner revealed significant GM volume increases in the bilateral frontal lobes, bilateral temporal lobes, left insula, left striatum and left pons, but obvious publication biases of these findings were detected through funnel plots and Egger's tests. Conclusions: The consistent result of our meta-analysis showed a structural damage in the left precuneus extending to the left posterior cingulate gyrus, which possibly played a role in the cognitive dysfunction and depression in ET patients. It might enhance our understanding of the pathophysiological mechanisms underlying ET.
Collapse
Affiliation(s)
- Qing Han
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Yanbing Hou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Huifang Shang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
204
|
Ji GJ, Hu P, Liu TT, Li Y, Chen X, Zhu C, Tian Y, Chen X, Wang K. Functional Connectivity of the Corticobasal Ganglia–Thalamocortical Network in Parkinson Disease: A Systematic Review and Meta-Analysis with Cross-Validation. Radiology 2018. [DOI: 10.1148/radiol.2018172183] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
205
|
Gray Matter Abnormalities Associated With Chronic Back Pain: A Meta-Analysis of Voxel-based Morphometric Studies. Clin J Pain 2018; 33:983-990. [PMID: 28234752 DOI: 10.1097/ajp.0000000000000489] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Studies employing voxel-based morphometry have reported inconsistent findings on the association of gray matter (GM) abnormalities with chronic back pain (CBP). We, therefore, performed a meta-analysis of available studies to identify the most consistent GM regions associated with CBP. METHODS The PubMed, Embase, and Web of Science databases were searched from January 2000 to May 29, 2016. Comprehensive meta-analyses of whole-brain voxel-based morphometry studies to identify the most robust GM abnormalities in CBP were conducted using the Seed-based d Mapping software package. RESULTS A total of 10 studies, comprising 293 patients with CBP and 624 healthy controls, were included in the meta-analyses. The most robust findings of regional GM decreases in patients with CBP compared with healthy controls were identified in the bilateral medial prefrontal cortex extending to the anterior cingulate cortex, the right medial prefrontal cortex extending to the orbitofrontal cortex. Regional GM decreases in the left anterior insula were less robustly observed. CONCLUSIONS The present study demonstrates a pattern of GM alterations in CBP. These data further advance our understanding of the pathophysiology of CBP.
Collapse
|
206
|
Wang HY, Zhang XX, Si CP, Xu Y, Liu Q, Bian HT, Zhang BW, Li XL, Yan ZR. Prefrontoparietal dysfunction during emotion regulation in anxiety disorder: a meta-analysis of functional magnetic resonance imaging studies. Neuropsychiatr Dis Treat 2018; 14:1183-1198. [PMID: 29785110 PMCID: PMC5953307 DOI: 10.2147/ndt.s165677] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE Impairments in emotion regulation, and more specifically in cognitive reappraisal, are thought to play a key role in the pathogenesis of anxiety disorders. However, the available evidence on such deficits is inconsistent. To further illustrate the neurobiological underpinnings of anxiety disorder, the present meta-analysis summarizes functional magnetic resonance imaging (fMRI) findings for cognitive reappraisal tasks and investigates related brain areas. METHODS We performed a comprehensive series of meta-analyses of cognitive reappraisal fMRI studies contrasting patients with anxiety disorder with healthy control (HC) subjects, employing an anisotropic effect-size signed differential mapping approach. We also conducted a subgroup analysis of medication status, anxiety disorder subtype, data-processing software, and MRI field strengths. Meta-regression was used to explore the effects of demographics and clinical characteristics. Eight studies, with 11 datasets including 219 patients with anxiety disorder and 227 HC, were identified. RESULTS Compared with HC, patients with anxiety disorder showed relatively decreased activation of the bilateral dorsomedial prefrontal cortex (dmPFC), bilateral dorsal anterior cingulate cortex (dACC), bilateral supplementary motor area (SMA), left ventromedial prefrontal cortex (vmPFC), bilateral parietal cortex, and left fusiform gyrus during cognitive reappraisal. The subgroup analysis, jackknife sensitivity analysis, heterogeneity analysis, and Egger's tests further confirmed these findings. CONCLUSIONS Impaired cognitive reappraisal in anxiety disorder may be the consequence of hypo-activation of the prefrontoparietal network, consistent with insufficient top-down control. Our findings provide robust evidence that functional impairment in prefrontoparietal neuronal circuits may have a significant role in the pathogenesis of anxiety disorder.
Collapse
Affiliation(s)
- Hai-Yang Wang
- Department of Neurology, Jining No 1 People’s Hospital, Jining, Shandong Province, China
| | - Xiao-Xia Zhang
- Department of Neurology, Jining No 1 People’s Hospital, Jining, Shandong Province, China
| | - Cui-Ping Si
- Department of Neurology, Jining No 1 People’s Hospital, Jining, Shandong Province, China
| | - Yang Xu
- Department of Neurology, Jining No 1 People’s Hospital, Jining, Shandong Province, China
| | - Qian Liu
- Department of Neurology, Jining No 1 People’s Hospital, Jining, Shandong Province, China
| | - He-Tao Bian
- Department of Neurology, Jining No 1 People’s Hospital, Jining, Shandong Province, China
| | - Bing-Wei Zhang
- Department of Neurology and Psychiatry, First Affiliate Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Xue-Lin Li
- Department of Intensive Care Unit, Jining No 1 People’s Hospital, Jining, Shandong Province, China
| | - Zhong-Rui Yan
- Department of Neurology, Jining No 1 People’s Hospital, Jining, Shandong Province, China
| |
Collapse
|
207
|
Ma HR, Sheng LQ, Pan PL, Wang GD, Luo R, Shi HC, Dai ZY, Zhong JG. Cerebral glucose metabolic prediction from amnestic mild cognitive impairment to Alzheimer's dementia: a meta-analysis. Transl Neurodegener 2018; 7:9. [PMID: 29713467 PMCID: PMC5911957 DOI: 10.1186/s40035-018-0114-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 04/03/2018] [Indexed: 12/14/2022] Open
Abstract
Brain 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) has been utilized to monitor disease conversion from amnestic mild cognitive impairment (aMCI) to Alzheimer’s dementia (AD). However, the conversion patterns of FDG-PET metabolism across studies are not conclusive. We conducted a voxel-wise meta-analysis using Seed-based d Mapping that included 10 baseline voxel-wise FDG-PET comparisons between 93 aMCI converters and 129 aMCI non-converters from nine longitudinal studies. The most robust and reliable metabolic alterations that predicted conversion from aMCI to AD were localized in the left posterior cingulate cortex (PCC)/precuneus. Furthermore, meta-regression analyses indicated that baseline mean age and severity of cognitive impairment, and follow-up duration were significant moderators for metabolic alterations in aMCI converters. Our study revealed hypometabolism in the left PCC/precuneus as an early feature in the development of AD. This finding has important implications in understanding the neural substrates for AD conversion and could serve as a potential imaging biomarker for early detection of AD as well as for tracking disease progression at the predementia stage.
Collapse
Affiliation(s)
- Hai Rong Ma
- 1Department of Neurology, Traditional Chinese Medicine Hospital of Kunshan, Kunshan, People's Republic of China
| | - Li Qin Sheng
- 1Department of Neurology, Traditional Chinese Medicine Hospital of Kunshan, Kunshan, People's Republic of China
| | - Ping Lei Pan
- 2Department of Neurology, School of Medicine, Affiliated Yancheng Hospital, Southeast University, West Xindu Road 2#, Yancheng, Jiangsu Province 224001 People's Republic of China
| | - Gen Di Wang
- 2Department of Neurology, School of Medicine, Affiliated Yancheng Hospital, Southeast University, West Xindu Road 2#, Yancheng, Jiangsu Province 224001 People's Republic of China
| | - Rong Luo
- 2Department of Neurology, School of Medicine, Affiliated Yancheng Hospital, Southeast University, West Xindu Road 2#, Yancheng, Jiangsu Province 224001 People's Republic of China
| | - Hai Cun Shi
- 2Department of Neurology, School of Medicine, Affiliated Yancheng Hospital, Southeast University, West Xindu Road 2#, Yancheng, Jiangsu Province 224001 People's Republic of China
| | - Zhen Yu Dai
- 3Department of Radiology, School of Medicine, Affiliated Yancheng Hospital, Southeast University, West Xindu Road 2#, Yancheng, Jiangsu Province 224001 People's Republic of China
| | - Jian Guo Zhong
- 2Department of Neurology, School of Medicine, Affiliated Yancheng Hospital, Southeast University, West Xindu Road 2#, Yancheng, Jiangsu Province 224001 People's Republic of China
| |
Collapse
|
208
|
Deng Y, Wang X, Wang Y, Zhou C. Neural correlates of interference resolution in the multi-source interference task: a meta-analysis of functional neuroimaging studies. Behav Brain Funct 2018; 14:8. [PMID: 29636070 PMCID: PMC5891971 DOI: 10.1186/s12993-018-0140-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/17/2018] [Indexed: 01/01/2023] Open
Abstract
Background Interference resolution refers to cognitive control processes enabling one to focus on task-related information while filtering out unrelated information. But the exact neural areas, which underlie a specific cognitive task on interference resolution, are still equivocal. The multi-source interference task (MSIT), as a particular cognitive task, is a well-established experimental paradigm used to evaluate interference resolution. Studies combining the MSIT with functional magnetic resonance imaging (fMRI) have shown that the MSIT evokes the dorsal anterior cingulate cortex (dACC) and cingulate–frontal–parietal cognitive-attentional networks. However, these brain areas have not been evaluated quantitatively and these findings have not been replicated. Methods In the current study, we firstly report a voxel-based meta-analysis of functional brain activation associated with the MSIT so as to identify the localization of interference resolution in such a specific cognitive task. Articles on MSIT-related fMRI published between 2003 and July 2017 were eligible. The electronic databases searched included PubMed, Web of Knowledge, and Google Scholar. Differential BOLD activation patterns between the incongruent and congruent condition were meta-analyzed in anisotropic effect-size signed differential mapping software. Results Robustness meta-analysis indicated that two significant activation clusters were shown to have reliable functional activity in comparisons between incongruent and congruent conditions. The first reliable activation cluster, which included the dACC, medial prefrontal cortex, supplementary motor area, replicated the previous MSIT-related fMRI study results. Furthermore, we found another reliable activation cluster comprising areas of the right insula, right inferior frontal gyrus, and right lenticular nucleus-putamen, which were not typically discussed in previous MSIT-related fMRI studies. Conclusions The current meta-analysis study presents the reliable brain activation patterns on MSIT. These findings suggest that the cingulate-frontal-striatum network and right insula may allow control demands to resolve interference on MSIT. These results provide new insights into the neural mechanisms underlying interference resolution.
Collapse
Affiliation(s)
- Yuqin Deng
- Department of Sport Psychology, School of Kinesiology, Shanghai University of Sport, 399 Chang Hai Road, Shanghai, 200438, People's Republic of China
| | - Xiaochun Wang
- Department of Sport Psychology, School of Kinesiology, Shanghai University of Sport, 399 Chang Hai Road, Shanghai, 200438, People's Republic of China
| | - Yan Wang
- Interdisciplinary Center for Social and Behavioral Studies, Dongbei University of Finance and Economics, Dalian, 116025, Liaoning Province, People's Republic of China
| | - Chenglin Zhou
- Department of Sport Psychology, School of Kinesiology, Shanghai University of Sport, 399 Chang Hai Road, Shanghai, 200438, People's Republic of China.
| |
Collapse
|
209
|
Zhang F, Chen G, He M, Dai J, Shang H, Gong Q, Jia Z. Altered white matter microarchitecture in amyotrophic lateral sclerosis: A voxel-based meta-analysis of diffusion tensor imaging. NEUROIMAGE-CLINICAL 2018; 19:122-129. [PMID: 30035009 PMCID: PMC6051469 DOI: 10.1016/j.nicl.2018.04.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/18/2018] [Accepted: 04/01/2018] [Indexed: 02/05/2023]
Abstract
Background The results of recent diffusion tensor imaging (DTI) studies on amyotrophic lateral sclerosis (ALS) are inconclusive and controversial. We performed a voxel-based meta-analysis to identify a statistical consensus among published DTI studies of altered white matter (WM) microarchitecture in ALS. Methods A systematic search was conducted for relevant studies that used voxel-wise analyses of WM microarchitecture in patients with ALS. Anisotropic effect size-signed differential mapping (AES-SDM) was applied to analyze fractional anisotropy (FA) differences between ALS patients and healthy controls. Meta-regression analysis was used to explore the effects of clinical characteristics on WM integrity in patients with ALS. Results A total of 14 studies with 16 datasets that included 396 patients and 360 healthy controls were identified. The pooled meta-analysis revealed that patients with ALS exhibited significant FA reductions in two clusters relative to healthy controls. The largest cluster exhibited a peak coordinate in the left corona radiata, extending to the body and splenium of the corpus callosum, left superior longitudinal fasciculus, posterior limb of the internal capsule, right corona radiata, and bilateral cingulate gyrus. The other cluster exhibited decreased FA in the right corticospinal tract that extended to the right cerebral peduncle. The Amyotrophic Lateral Sclerosis Functional Rating Scale-Revised (ALSFRS-R) score was positively correlated with the FA reduction in the left corona radiata. Mean age and illness duration were not linearly correlated with the FA reductions. Conclusions This study provides a thorough profile of WM microarchitecture alterations in patients with ALS and further evidence that the neuronal degeneration is not limited to the corticospinal tract but also includes extra-motor areas, which supports the view that ALS is a multisystem degenerative disorder that involves the white matter.
Collapse
Affiliation(s)
- Feifei Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Guangxiang Chen
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China; Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Manxi He
- Department of Psychoradiology, Chengdu Mental Health Center, Chengdu 610031, China
| | - Jing Dai
- Department of Psychoradiology, Chengdu Mental Health Center, Chengdu 610031, China
| | - Huifang Shang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China.
| | - Zhiyun Jia
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China; Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
210
|
Blest-Hopley G, Giampietro V, Bhattacharyya S. Residual effects of cannabis use in adolescent and adult brains - A meta-analysis of fMRI studies. Neurosci Biobehav Rev 2018. [PMID: 29535069 DOI: 10.1016/j.neubiorev.2018.03.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
While numerous studies have investigated the residual effects of cannabis use on human brain function, results of these studies have been inconsistent. Using meta-analytic approaches we summarize the effects of prolonged cannabis exposure on human brain function as measured using task-based functional MRI (fMRI) across studies employing a range of cognitive activation tasks comparing regular cannabis users with non-users. Separate meta-analyses were carried out for studies investigating adult and adolescent cannabis users. Systematic literature search identified 20 manuscripts (13 adult and 7 adolescent studies) meeting study inclusion criteria. Adult analyses compared 530 cannabis users to 580 healthy controls while adolescent analyses compared 219 cannabis users to 224 healthy controls. In adult cannabis users brain activation was increased in the superior and posterior transverse temporal and inferior frontal gyri and decreased in the striate area, insula and middle temporal gyrus. In adolescent cannabis users, activation was increased in the inferior parietal gyrus and putamen compared to healthy controls. Functional alteration in these areas may reflect compensatory neuroadaptive changes in cannabis users.
Collapse
Affiliation(s)
- Grace Blest-Hopley
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Vincent Giampietro
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, PO Box 089, UK
| | - Sagnik Bhattacharyya
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK; South London and Maudsley NHS Foundation Trust, Denmark Hill, Camberwell, London, UK.
| |
Collapse
|
211
|
Fullana MA, Albajes-Eizagirre A, Soriano-Mas C, Vervliet B, Cardoner N, Benet O, Radua J, Harrison BJ. Fear extinction in the human brain: A meta-analysis of fMRI studies in healthy participants. Neurosci Biobehav Rev 2018. [PMID: 29530516 DOI: 10.1016/j.neubiorev.2018.03.002] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The study of fear extinction represents an important example of translational neuroscience in psychiatry and promises to improve the understanding and treatment of anxiety and fear-related disorders. We present the results of a set of meta-analyses of human fear extinction studies in healthy participants, conducted with functional magnetic resonance imaging (fMRI) and reporting whole-brain results. Meta-analyses of fear extinction learning primarily implicate consistent activation of brain regions linked to threat appraisal and experience, including the dorsal anterior cingulate and anterior insular cortices. An overlapping anatomical result was obtained from the meta-analysis of extinction recall studies, except when studies directly compared an extinguished threat stimulus to an unextinguished threat stimulus (instead of a safety stimulus). In this latter instance, more consistent activation was observed in dorsolateral and ventromedial prefrontal cortex regions, together with other areas including the hippocampus. While our results partially support the notion of a shared neuroanatomy between human and rodent models of extinction processes, they also encourage an expanded account of the neural basis of human fear extinction.
Collapse
Affiliation(s)
- Miquel A Fullana
- FIDMAG Germanes Hospitalàries, CIBERSAM, Sant Boi de Llobregat, Barcelona, Spain; Department of Psychiatry, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | | | - Carles Soriano-Mas
- Department of Psychiatry, Bellvitge University Hospital-IDIBELL, CIBERSAM, Barcelona, Spain; Department of Psychobiology and Methodology of Health Sciences, Universitat Autònoma de Barcelona, Spain
| | - Bram Vervliet
- Center for Excellence on Generalization in Health and Psychopathology, University of KU Leuven, Leuven, Belgium; Department of Psychiatry, Harvard Medical School, Boston, USA; Department of Psychiatry, Massachusetts General Hospital, Boston, USA
| | - Narcís Cardoner
- Department of Psychiatry, Universitat Autònoma de Barcelona, Barcelona, Spain; Depression and Anxiety Unit, Mental Health Department, CIBERSAM, Parc Taulí Sabadell University Hospital, Barcelona, Spain
| | | | - Joaquim Radua
- FIDMAG Germanes Hospitalàries, CIBERSAM, Sant Boi de Llobregat, Barcelona, Spain; Institute of Psychiatry, King's College London, De Crespigny Park, London, UK; Centre for Psychiatric Research and Education, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Ben J Harrison
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Level 3, 161 Barry Street, Melbourne, Victoria, Australia.
| |
Collapse
|
212
|
Wang C, Pan Y, Liu Y, Xu K, Hao L, Huang F, Ke J, Sheng L, Ma H, Guo W. Aberrant default mode network in amnestic mild cognitive impairment: a meta-analysis of independent component analysis studies. Neurol Sci 2018; 39:919-931. [DOI: 10.1007/s10072-018-3306-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 02/23/2018] [Indexed: 12/24/2022]
|
213
|
Bossier H, Seurinck R, Kühn S, Banaschewski T, Barker GJ, Bokde ALW, Martinot JL, Lemaitre H, Paus T, Millenet S, Moerkerke B. The Influence of Study-Level Inference Models and Study Set Size on Coordinate-Based fMRI Meta-Analyses. Front Neurosci 2018; 11:745. [PMID: 29403344 PMCID: PMC5778144 DOI: 10.3389/fnins.2017.00745] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 12/20/2017] [Indexed: 01/05/2023] Open
Abstract
Given the increasing amount of neuroimaging studies, there is a growing need to summarize published results. Coordinate-based meta-analyses use the locations of statistically significant local maxima with possibly the associated effect sizes to aggregate studies. In this paper, we investigate the influence of key characteristics of a coordinate-based meta-analysis on (1) the balance between false and true positives and (2) the activation reliability of the outcome from a coordinate-based meta-analysis. More particularly, we consider the influence of the chosen group level model at the study level [fixed effects, ordinary least squares (OLS), or mixed effects models], the type of coordinate-based meta-analysis [Activation Likelihood Estimation (ALE) that only uses peak locations, fixed effects, and random effects meta-analysis that take into account both peak location and height] and the amount of studies included in the analysis (from 10 to 35). To do this, we apply a resampling scheme on a large dataset (N = 1,400) to create a test condition and compare this with an independent evaluation condition. The test condition corresponds to subsampling participants into studies and combine these using meta-analyses. The evaluation condition corresponds to a high-powered group analysis. We observe the best performance when using mixed effects models in individual studies combined with a random effects meta-analysis. Moreover the performance increases with the number of studies included in the meta-analysis. When peak height is not taken into consideration, we show that the popular ALE procedure is a good alternative in terms of the balance between type I and II errors. However, it requires more studies compared to other procedures in terms of activation reliability. Finally, we discuss the differences, interpretations, and limitations of our results.
Collapse
Affiliation(s)
- Han Bossier
- Department of Data Analysis, Ghent University, Ghent, Belgium
| | - Ruth Seurinck
- Department of Data Analysis, Ghent University, Ghent, Belgium
| | - Simone Kühn
- Department of Psychiatry and Psychotherapy, University Clinic, Hamburg-Eppendorf, Germany
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Gareth J. Barker
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Arun L. W. Bokde
- Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Jean-Luc Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1000 Neuroimaging & Psychiatry, University Paris Sud – Paris Saclay, University Paris Descartes; and Maison de Solenn, Paris, France
| | - Herve Lemaitre
- Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1000 “Neuroimaging & Psychiatry”, Faculté de médecine, Université Paris-Sud, Le Kremlin-Bicêtre; and Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Tomáš Paus
- Baycrest and Departments of Psychology and Psychiatry, Rotman Research Institute, University of Toronto, Toronto, ON, Canada
| | - Sabina Millenet
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | |
Collapse
|
214
|
Wang X, Cheng B, Luo Q, Qiu L, Wang S. Gray Matter Structural Alterations in Social Anxiety Disorder: A Voxel-Based Meta-Analysis. Front Psychiatry 2018; 9:449. [PMID: 30298028 PMCID: PMC6160565 DOI: 10.3389/fpsyt.2018.00449] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/30/2018] [Indexed: 02/05/2023] Open
Abstract
The current insight into the neurobiological pathogenesis underlying social anxiety disorder (SAD) is still rather limited. We implemented a meta-analysis to explore the neuroanatomical basis of SAD. We undertook a systematic search of studies comparing gray matter volume (GMV) differences between SAD patients and healthy controls (HC) using a whole-brain voxel-based morphometry (VBM) approach. The anisotropic effect size version of seed-based d mapping (AES-SDM) meta-analysis was conducted to explore the GMV differences of SAD patients compared with HC. We included eleven studies with 470 SAD patients and 522 HC in the current meta-analysis. In the main meta-analysis, relative to HC, SAD patients showed larger GMVs in the left precuneus, right middle occipital gyrus (MOG) and supplementary motor area (SMA), as well as smaller GMV in the left putamen. In the subgroup analyses, compared with controls, adult patients (age ≥ 18 years) with SAD exhibited larger GMVs in the left precuneus, right superior frontal gyrus (SFG), angular gyrus, middle temporal gyrus (MTG), MOG and SMA, as well as a smaller GMV in the left thalamus; SAD patients without comorbid depressive disorder exhibited larger GMVs in the left superior parietal gyrus and precuneus, right inferior temporal gyrus, fusiform gyrus, MTG and superior temporal gyrus (STG), as well as a smaller GMV in the bilateral thalami; and currently drug-free patients with SAD exhibited a smaller GMV in the left thalamus compared with HC while no larger GMVs were found. For SAD patients with different clinical features, our study revealed directionally consistent larger cortical GMVs and smaller subcortical GMVs, including locationally consistent larger precuneus and thalamic deficits in the left brain. Age, comorbid depressive disorder and concomitant medication use of the patients might be potential confounders of SAD at the neuroanatomical level.
Collapse
Affiliation(s)
- Xiuli Wang
- Department of Clinical Psychology, the Fourth People's Hospital of Chengdu, Chengdu, China
| | - Bochao Cheng
- Department of Radiology, West China Second University Hospital of Sichuan University, Chengdu, China
| | - Qiang Luo
- Department of Radiology, Huaxi MR Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Lihua Qiu
- Department of Radiology, the Second People's Hospital of Yibin, Yibin, China
| | - Song Wang
- Department of Clinical Psychology, the Fourth People's Hospital of Chengdu, Chengdu, China.,Department of Radiology, Huaxi MR Research Center, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
215
|
Chen HM, Sha ZQ, Ma HZ, He Y, Feng T. Effective network of deep brain stimulation of subthalamic nucleus with bimodal positron emission tomography/functional magnetic resonance imaging in Parkinson's disease. CNS Neurosci Ther 2017; 24:135-143. [PMID: 29222835 DOI: 10.1111/cns.12783] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 11/21/2017] [Accepted: 11/21/2017] [Indexed: 11/28/2022] Open
Abstract
AIMS Deep brain stimulation of the subthalamic nucleus (STN-DBS) has become an effective treatment strategy for patients with Parkinson's disease. However, the biological mechanism underlying DBS treatment remains poorly understood. METHOD In this study, we investigated how STN-DBS modulated the brain network using a bimodal positron emission tomography (PET)/functional magnetic resonance imaging (fMRI) dataset. We first performed an activation likelihood estimation meta-analysis of 13 PET/SPECT studies concerning STN-DBS effects on resting-state brain activity in Parkinson's disease. Additionally, using a functional connectivity analysis in resting-state fMRI, we investigated whether these STN-DBS-affected regions were functionally connected to constitute an effective network. RESULTS The results revealed that STN-DBS reduced brain activity in the right thalamus, bilateral caudal supplementary area, and the left primary motor cortex, and it increased brain activity in the left thalamus during rest. Second, these STN-DBS-affected areas were functionally connected within an STN-DBS effective network. CONCLUSION Deep brain stimulation of the subthalamic nucleus (STN-DBS) may deactivate the motor cortex as a remote and network effect, affecting the target and the neighboring subcortical areas. These areas may constitute an effective network of STN-DBS modulation. Our results shed light on the mechanisms of STN-DBS treatment from a network perspective and highlight the potential therapeutic benefits of targeted network modulation.
Collapse
Affiliation(s)
- Hui-Min Chen
- Center for Neurodegenerative Disease, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Zhi-Qiang Sha
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China.,IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.,Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Hui-Zi Ma
- Center for Neurodegenerative Disease, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yong He
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China.,IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.,Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Tao Feng
- Center for Neurodegenerative Disease, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Parkinson's Disease Center, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
216
|
Samartsidis P, Montagna S, Nichols TE, Johnson TD. The coordinate-based meta-analysis of neuroimaging data. Stat Sci 2017; 32:580-599. [PMID: 29545671 DOI: 10.1214/17-sts624] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Neuroimaging meta-analysis is an area of growing interest in statistics. The special characteristics of neuroimaging data render classical meta-analysis methods inapplicable and therefore new methods have been developed. We review existing methodologies, explaining the benefits and drawbacks of each. A demonstration on a real dataset of emotion studies is included. We discuss some still-open problems in the field to highlight the need for future research.
Collapse
Affiliation(s)
- Pantelis Samartsidis
- MRC Biostatistics Unit, University Forvie Site, Robinson Way, Cambridge CB2 0SR, UK
| | - Silvia Montagna
- School of Mathematics, Statistics and Actuarial Science, University of Kent, Canterbury, CT2 7FS
| | | | - Timothy D Johnson
- Biostatistics Department, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
217
|
Sha Z, Xia M, Lin Q, Cao M, Tang Y, Xu K, Song H, Wang Z, Wang F, Fox PT, Evans AC, He Y. Meta-Connectomic Analysis Reveals Commonly Disrupted Functional Architectures in Network Modules and Connectors across Brain Disorders. Cereb Cortex 2017; 28:4179-4194. [PMID: 29136110 DOI: 10.1093/cercor/bhx273] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Zhiqiang Sha
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Mingrui Xia
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Qixiang Lin
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Miao Cao
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Yanqing Tang
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
- Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ke Xu
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Haiqing Song
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Zhiqun Wang
- Department of Radiology, Xuanwu Hospital of Capital Medical University, Beijing, China
- Department of Radiology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Fei Wang
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
- Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Peter T Fox
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, TX, USA
- Department of Radiology, University of Texas Health Science Center at San Antonio, TX, USA
- South Texas Veterans Health Care System at San Antonio, TX, USA
- Shenzhen University School of Medicine, Shenzhen, China
| | - Alan C Evans
- McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, QC, Canada
| | - Yong He
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| |
Collapse
|
218
|
Pan P, Liu Y, Zhang Y, Zhao H, Ye X, Xu Y. Brain gray matter abnormalities in progressive supranuclear palsy revisited. Oncotarget 2017; 8:80941-80955. [PMID: 29113357 PMCID: PMC5655252 DOI: 10.18632/oncotarget.20895] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 08/26/2017] [Indexed: 12/11/2022] Open
Abstract
Whole-brain voxel-based morphometry (VBM) studies of progressive supranuclear palsy (PSP) have demonstrated heterogeneous findings regarding gray matter (GM) abnormalities. Here, we used Seed-based d Mapping, a coordinate-based meta-analytic approach to identify consistent regions of GM anomalies across studies of PSP. Totally, 18 original VBM studies, comprising 284 patients with PSP and 367 healthy controls were included. As compared to healthy controls, patients with PSP demonstrated significant GM reductions in both cortical and subcortical regions, including the frontal motor cortices, medial (including anterior cingulate cortex) and lateral frontal cortices, insula, superior temporal gyrus, striatum (putamen and caudate nucleus), thalamus, midbrain, and anterior cerebellum. Our study further suggests that many confounding factors, such as age, male ratio, motor severity, cognitive impairment severity, and illness duration of PSP patients, and scanner field-strength, could contribute to the heterogeneity of GM alterations in PSP across studies. Our comprehensive meta-analysis demonstrates a specific neuroanatomical pattern of GM atrophy in PSP with the involvement of the cortical-subcortical circuitries that mediate vertical supranuclear gaze palsy, motor disabilities (postural instability with falls and parkinsonism), and cognitive-behavioral disturbances. Confounding factors merit attention in future studies.
Collapse
Affiliation(s)
- PingLei Pan
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, PR China
- Department of Neurology, Affiliated Yancheng Hospital, School of Medicine, Southeast University, Yancheng, PR China
| | - Yi Liu
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, PR China
- The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, PR China
- Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing, PR China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, PR China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, PR China
| | - Yang Zhang
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, PR China
- The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, PR China
- Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing, PR China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, PR China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, PR China
| | - Hui Zhao
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, PR China
- The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, PR China
- Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing, PR China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, PR China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, PR China
| | - Xing Ye
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, PR China
- The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, PR China
- Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing, PR China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, PR China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, PR China
| | - Yun Xu
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, PR China
- The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, PR China
- Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing, PR China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, PR China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, PR China
| |
Collapse
|
219
|
Ma HR, Pan PL, Sheng LQ, Dai ZY, Wang GD, Luo R, Chen JH, Xiao PR, Zhong JG, Shi HC. Aberrant pattern of regional cerebral blood flow in Alzheimer's disease: a voxel-wise meta-analysis of arterial spin labeling MR imaging studies. Oncotarget 2017; 8:93196-93208. [PMID: 29190989 PMCID: PMC5696255 DOI: 10.18632/oncotarget.21475] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 09/20/2017] [Indexed: 12/20/2022] Open
Abstract
Many studies have applied arterial spin labeling (ASL) to characterize cerebral perfusion patterns of Alzheimer's disease (AD). However, findings across studies are not conclusive. A quantitatively voxel-wise meta-analysis to pool the resting-state ASL studies that measure regional cerebral blood flow (rCBF) alterations in AD was conducted to identify the most consistent and replicable perfusion pattern using seed-based d mapping. The meta-analysis, including 17 ASL studies encompassing 327 AD patients and 357 healthy controls, demonstrated that decreased rCBF in AD patients relative to healthy controls were consistently identified in the bilateral posterior cingulate cortices (PCC)/precuneus, bilateral inferior parietal lobules (IPLs), and left dorsolateral prefrontal cortex. The meta-regression analysis showed that more severe cognitive impairment in the AD samples correlated with greater decreases of rCBF in the bilateral PCC and left IPL. This study characterizes an aberrant ASL-rCBF perfusion pattern of AD involving the posterior default mode network and executive network, which are implicated in its pathophysiology and hold promise for developing imaging biomarkers.
Collapse
Affiliation(s)
- Hai Rong Ma
- Department of Neurology, Traditional Chinese Medicine Hospital of Kunshan, Kunshan, PR China
| | - Ping Lei Pan
- Department of Neurology, Affiliated Yancheng Hospital, School of Medicine, Southeast University, Yancheng, PR China
| | - Li Qin Sheng
- Department of Neurology, Traditional Chinese Medicine Hospital of Kunshan, Kunshan, PR China
| | - Zhen Yu Dai
- Department of Radiology, Affiliated Yancheng Hospital, School of Medicine, Southeast University, Yancheng, PR China
| | - Gen Di Wang
- Department of Neurology, Affiliated Yancheng Hospital, School of Medicine, Southeast University, Yancheng, PR China
| | - Rong Luo
- Department of Neurology, Affiliated Yancheng Hospital, School of Medicine, Southeast University, Yancheng, PR China
| | - Jia Hui Chen
- Department of Neurology, Affiliated Yancheng Hospital, School of Medicine, Southeast University, Yancheng, PR China
| | - Pei Rong Xiao
- Department of Neurology, Affiliated Yancheng Hospital, School of Medicine, Southeast University, Yancheng, PR China
| | - Jian Guo Zhong
- Department of Neurology, Affiliated Yancheng Hospital, School of Medicine, Southeast University, Yancheng, PR China
| | - Hai Cun Shi
- Department of Neurology, Affiliated Yancheng Hospital, School of Medicine, Southeast University, Yancheng, PR China
| |
Collapse
|
220
|
Picó-Pérez M, Radua J, Steward T, Menchón JM, Soriano-Mas C. Emotion regulation in mood and anxiety disorders: A meta-analysis of fMRI cognitive reappraisal studies. Prog Neuropsychopharmacol Biol Psychiatry 2017; 79:96-104. [PMID: 28579400 DOI: 10.1016/j.pnpbp.2017.06.001] [Citation(s) in RCA: 224] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 05/03/2017] [Accepted: 06/01/2017] [Indexed: 12/16/2022]
Abstract
Emotion regulation by means of cognitive reappraisal has been widely studied with functional magnetic resonance imaging (fMRI). To date, several meta-analyses of studies using cognitive reappraisal tasks in healthy volunteers have been carried out, but no meta-analyses have yet been performed on the fMRI data of clinical populations with identified alterations in emotion regulation capacity. We provide a comprehensive meta-analysis of cognitive reappraisal fMRI studies in populations of patients with mood or anxiety disorders, yielding a pooled sample of 247 patients and 262 controls from thirteen independent studies. As a distinguishing feature of this meta-analysis, original statistical brain maps were obtained from six of these studies. Our primary results demonstrated that patients with mood and anxiety disorders recruited the regulatory fronto-parietal network involved in cognitive reappraisal to a lesser extent in comparison to healthy controls. Conversely, they presented increased activation in regions that may be associated with the emotional experience (i.e., insula, cerebellum, precentral and inferior occipital gyri) and in regions whose activation may be the consequence of compensatory mechanisms (i.e., supramarginal gyri and superior parietal lobule). Moreover, activations in the left ventrolateral prefrontal cortex and the left superior temporal gyrus were associated with reinterpretation emotion regulation strategies, whereas medial frontal and parietal activations were associated with the deployment of distancing strategies. The regions revealed by this meta-analysis conform to a pattern of dysfunctional brain activation during cognitive reappraisal common to mood and anxiety disorders. As such, this neural pattern may reflect a transdiagnostic feature of these disorders.
Collapse
Affiliation(s)
- Maria Picó-Pérez
- Department of Psychiatry, Bellvitge University Hospital-IDIBELL, Barcelona, Spain; Department of Clinical Sciences, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Joaquim Radua
- FIDMAG Germanes Hospitalàries, Barcelona, Spain; Centre for Psychiatric Research and Education, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, UK; CIBER Salud Mental (CIBERSam), Instituto Salud Carlos III (ISCIII), Barcelona, Spain
| | - Trevor Steward
- Department of Psychiatry, Bellvitge University Hospital-IDIBELL, Barcelona, Spain; Department of Clinical Sciences, School of Medicine, University of Barcelona, Barcelona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III (ISCIII), Barcelona, Spain
| | - José M Menchón
- Department of Psychiatry, Bellvitge University Hospital-IDIBELL, Barcelona, Spain; Department of Clinical Sciences, School of Medicine, University of Barcelona, Barcelona, Spain; CIBER Salud Mental (CIBERSam), Instituto Salud Carlos III (ISCIII), Barcelona, Spain
| | - Carles Soriano-Mas
- Department of Psychiatry, Bellvitge University Hospital-IDIBELL, Barcelona, Spain; CIBER Salud Mental (CIBERSam), Instituto Salud Carlos III (ISCIII), Barcelona, Spain; Department of Psychobiology and Methodology in Health Sciences, Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
221
|
Alústiza I, Radua J, Pla M, Martin R, Ortuño F. Meta-analysis of functional magnetic resonance imaging studies of timing and cognitive control in schizophrenia and bipolar disorder: Evidence of a primary time deficit. Schizophr Res 2017; 188:21-32. [PMID: 28169089 DOI: 10.1016/j.schres.2017.01.039] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 01/22/2017] [Accepted: 01/24/2017] [Indexed: 01/11/2023]
Abstract
Schizophrenia (SZ) and Bipolar Disorder (BD) are associated with deficits in both timing and cognitive control functions. However, the underlying neurological dysfunctions remain poorly understood. The main goal of this study was to identify brain structures activated both by increases in cognitive activity and during timing tasks in patients with SZ and BD relative to controls. We conducted two signed differential mapping (SDM) meta-analyses of functional magnetic resonance imaging studies assessing the brain response to increasing levels of cognitive difficulty: one concerned SZ, and the other BD patients. We conducted a similar SDM meta-analysis on neuroimaging of timing in SZ (no studies in BD could be included). Finally, we carried out a multimodal meta-analysis to identify common brain regions in the findings of the two previous meta-analyses. We found that SZ patients showed hypoactivation in timing-related cortical-subcortical areas. The dysfunction observed during timing partially coincided with deficits for cognitive control functions. We hypothesize that a dysfunctional temporal/cognitive control network underlies the persistent cognitive impairment observed in SZ.
Collapse
Affiliation(s)
- Irene Alústiza
- Department of Psychiatry and Clinical Psychology, Clínica Universidad de Navarra, Pamplona, Navarra, Spain; Instituto de Investigación Sanitaria de Navarra (IDISNA), Navarra, Spain.
| | - Joaquim Radua
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Sweden; FIDMAG Germanes Hospitalaries, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain
| | - Marta Pla
- Department of Psychiatry and Clinical Psychology, Clínica Universidad de Navarra, Pamplona, Navarra, Spain; Instituto de Investigación Sanitaria de Navarra (IDISNA), Navarra, Spain
| | - Raquel Martin
- Department of Psychiatry and Clinical Psychology, Clínica Universidad de Navarra, Pamplona, Navarra, Spain; Instituto de Investigación Sanitaria de Navarra (IDISNA), Navarra, Spain
| | - Felipe Ortuño
- Department of Psychiatry and Clinical Psychology, Clínica Universidad de Navarra, Pamplona, Navarra, Spain; Instituto de Investigación Sanitaria de Navarra (IDISNA), Navarra, Spain
| |
Collapse
|
222
|
Wise T, Radua J, Via E, Cardoner N, Abe O, Adams TM, Amico F, Cheng Y, Cole JH, de Azevedo Marques Périco C, Dickstein DP, Farrow TFD, Frodl T, Wagner G, Gotlib IH, Gruber O, Ham BJ, Job DE, Kempton MJ, Kim MJ, Koolschijn PCMP, Malhi GS, Mataix-Cols D, McIntosh AM, Nugent AC, O'Brien JT, Pezzoli S, Phillips ML, Sachdev PS, Salvadore G, Selvaraj S, Stanfield AC, Thomas AJ, van Tol MJ, van der Wee NJA, Veltman DJ, Young AH, Fu CH, Cleare AJ, Arnone D. Common and distinct patterns of grey-matter volume alteration in major depression and bipolar disorder: evidence from voxel-based meta-analysis. Mol Psychiatry 2017; 22:1455-1463. [PMID: 27217146 PMCID: PMC5622121 DOI: 10.1038/mp.2016.72] [Citation(s) in RCA: 384] [Impact Index Per Article: 54.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 03/01/2016] [Accepted: 03/23/2016] [Indexed: 12/11/2022]
Abstract
Finding robust brain substrates of mood disorders is an important target for research. The degree to which major depression (MDD) and bipolar disorder (BD) are associated with common and/or distinct patterns of volumetric changes is nevertheless unclear. Furthermore, the extant literature is heterogeneous with respect to the nature of these changes. We report a meta-analysis of voxel-based morphometry (VBM) studies in MDD and BD. We identified studies published up to January 2015 that compared grey matter in MDD (50 data sets including 4101 individuals) and BD (36 data sets including 2407 individuals) using whole-brain VBM. We used statistical maps from the studies included where available and reported peak coordinates otherwise. Group comparisons and conjunction analyses identified regions in which the disorders showed common and distinct patterns of volumetric alteration. Both disorders were associated with lower grey-matter volume relative to healthy individuals in a number of areas. Conjunction analysis showed smaller volumes in both disorders in clusters in the dorsomedial and ventromedial prefrontal cortex, including the anterior cingulate cortex and bilateral insula. Group comparisons indicated that findings of smaller grey-matter volumes relative to controls in the right dorsolateral prefrontal cortex and left hippocampus, along with cerebellar, temporal and parietal regions were more substantial in major depression. These results suggest that MDD and BD are characterised by both common and distinct patterns of grey-matter volume changes. This combination of differences and similarities has the potential to inform the development of diagnostic biomarkers for these conditions.
Collapse
Affiliation(s)
- T Wise
- Department of Psychological Medicine, Centre for Affective Disorders, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - J Radua
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- Research Unit, FIDMAG Germanes Hospitalàries – CIBERSAM, Sant Boi de Llobregat, Barcelona, Spain
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - E Via
- Mental Health, Parc Taulí Sabadell-CIBERSAM, University Hospital, Sabadell, Barcelona, Spain
- Department of Psychiatry, Bellvitge University Hospital-IDIBELL, Barcelona, Spain
| | - N Cardoner
- Mental Health, Parc Taulí Sabadell-CIBERSAM, University Hospital, Sabadell, Barcelona, Spain
| | - O Abe
- Department of Radiology, Nihon University School of Medicine, Tokyo, Japan
| | - T M Adams
- Department of Psychological Medicine, Centre for Affective Disorders, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - F Amico
- Department of Psychiatry, Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
| | - Y Cheng
- Department of Psychiatry, The 1st Affiliated Hospital of Kunming Medical University, Kunming, PR China
| | - J H Cole
- Computational, Cognitive and Clinical Neuroimaging Laboratory, Department of Medicine, Imperial College London, London, UK
| | - C de Azevedo Marques Périco
- Department of Neuroscience, Medical School, Fundação do ABC, Santo André, SP, Brazil
- ABC Center of Studies on Mental Health, Santo André, SP, Brazil
| | - D P Dickstein
- PediMIND Program, Bradley Hospital, Department of Psychiatry, Brown University, East Providence, RI, USA
| | - T F D Farrow
- Academic Clinical Neurology, Department of Neuroscience, University of Sheffield, Sheffield, UK
| | - T Frodl
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke University, Magdeburg, Germany
- Department of Psychiatry, University of Dublin, Trinity College, Dublin, Ireland
| | - G Wagner
- Psychiatric Brain and Body Research Group Jena, Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - I H Gotlib
- Department of Psychology, Stanford University, Stanford, CA, USA
| | - O Gruber
- Section for Experimental Psychopathology and Neuroimaging, Department of General Psychiatry, Heidelberg University Hospital, Heidelberg, Germany
| | - B J Ham
- Department of Psychiatry, Korea University College of Medicine, Seoul, South Korea
| | - D E Job
- Neuroimaging Sciences, University of Edinburgh, Edinburgh, UK
- Scottish Imaging Network–A Platform for Scientific Excellence (SINAPSE), Giffnock, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - M J Kempton
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - M J Kim
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| | - P C M P Koolschijn
- Department of Psychology, Dutch Autism and ADHD Research Center, Brain and Cognition, University of Amsterdam, Amsterdam, The Netherlands
| | - G S Malhi
- CADE Clinic, Discipline of Psychiatry, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - D Mataix-Cols
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - A M McIntosh
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - A C Nugent
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - J T O'Brien
- Institute for Ageing and Health, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, UK
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - S Pezzoli
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- Department of Neuroscience, Medical School, University of Sheffield, Sheffield, UK
| | - M L Phillips
- Department of Psychiatry, University of Pittsburgh, School of Medicine, Pittsburgh, PA
| | - P S Sachdev
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, University of New South Wales, Randwick, NSW, Australia
- Neuropsychiatric Institute, Prince of Wales Hospital, Randwick, NSW, Australia
| | - G Salvadore
- Janssen Research and Development, Titusville, NJ, USA
| | - S Selvaraj
- Department of Psychiatry and Behavioral Sciences, Center of Excellence on Mood Disorders, Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - A C Stanfield
- The Patrick Wild Centre, Royal Edinburgh Hospital, University of Edinburgh, Edinburgh, UK
| | - A J Thomas
- Institute for Ageing and Health, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, UK
| | - M J van Tol
- NeuroImaging Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - N J A van der Wee
- Department of Psychiatry, Leiden University Medical Center, Leiden University, Leiden, The Netherlands
- Leiden Institute for Brain and Cognition, Leiden, The Netherlands
| | - D J Veltman
- Department of Psychiatry, VU University Medical Center, Amsterdam, The Netherlands
| | - A H Young
- Department of Psychological Medicine, Centre for Affective Disorders, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - C H Fu
- Department of Psychological Medicine, Centre for Affective Disorders, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- School of Psychology, University of East London, London, UK
| | - A J Cleare
- Department of Psychological Medicine, Centre for Affective Disorders, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - D Arnone
- Department of Psychological Medicine, Centre for Affective Disorders, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| |
Collapse
|
223
|
Kronbichler L, Tschernegg M, Martin AI, Schurz M, Kronbichler M. Abnormal Brain Activation During Theory of Mind Tasks in Schizophrenia: A Meta-Analysis. Schizophr Bull 2017; 43:1240-1250. [PMID: 28575475 PMCID: PMC5737081 DOI: 10.1093/schbul/sbx073] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Social cognition abilities are severely impaired in schizophrenia (SZ). The current meta-analysis used foci of 21 individual studies on functional abnormalities in the schizophrenic brain in order to identify regions that reveal convergent under- or over-activation during theory of mind (TOM) tasks. Studies were included in the analyses when contrasting tasks that require the processing of mental states with tasks which did not. Only studies that investigated patients with an ICD or DSM diagnosis were included. Quantitative voxel-based meta-analyses were done using Seed-based d Mapping software. Common TOM regions like medial-prefrontal cortex and temporo-parietal junction revealed abnormal activation in schizophrenic patients: Under-activation was identified in the medial prefrontal cortex, left orbito-frontal cortex, and in a small section of the left posterior temporo-parietal junction. Remarkably, robust over-activation was identified in a more dorsal, bilateral section of the temporo-parietal junction. Further abnormal activation was identified in medial occipito-parietal cortex, right premotor areas, left cingulate gyrus, and lingual gyrus. The findings of this study suggest that SZ patients simultaneously show over- and under-activation in TOM-related regions. Especially interesting, temporo-parietal junction reveals diverging activation patterns with an under-activating left posterior and an over-activating bilateral dorsal section. In conclusion, SZ patients show less specialized brain activation in regions linked to TOM and increased activation in attention-related networks suggesting compensatory effects.
Collapse
Affiliation(s)
- Lisa Kronbichler
- Neuroscience Institute, Paracelsus Medical University, Christian-Doppler Clinic, Salzburg, Austria,To whom correspondence should be addressed; Neuroscience Institute Paracelsus Medical University, 5020 Salzburg, Austria; tel: +43-57255-56795, fax: +43-662-4483-3089, e-mail:
| | - Melanie Tschernegg
- Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria,Department of Psychology, University of Salzburg, Salzburg, Austria
| | - Anna Isabel Martin
- Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria,Department of Psychology, University of Salzburg, Salzburg, Austria
| | - Matthias Schurz
- Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria,Department of Psychology, University of Salzburg, Salzburg, Austria
| | - Martin Kronbichler
- Neuroscience Institute, Paracelsus Medical University, Christian-Doppler Clinic, Salzburg, Austria,Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria,Department of Psychology, University of Salzburg, Salzburg, Austria
| |
Collapse
|
224
|
Liu J, Xu X, Luo Q, Luo Y, Chen Y, Lui S, Wu M, Zhu H, Kemp GJ, Gong Q. Brain grey matter volume alterations associated with antidepressant response in major depressive disorder. Sci Rep 2017; 7:10464. [PMID: 28874763 PMCID: PMC5585337 DOI: 10.1038/s41598-017-10676-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 08/14/2017] [Indexed: 02/05/2023] Open
Abstract
Not all patients with major depressive disorder respond to adequate pharmacological therapy. Psychoradiological studies have reported that antidepressant responders and nonresponders show different alterations in brain grey matter, but the findings are inconsistent. The present study reports a meta-analysis of voxel-based morphometric studies of patients with major depressive disorder, both antidepressant responders and nonresponders, using the anisotropic effect size version of Seed-based D Mapping to identify brain regions correlated to clinical response. A systematic search was conducted up to June 2016 to identify studies focussing on antidepressant response. In responders across 9 datasets grey matter volume (GMV) was significantly higher in the left inferior frontal gyrus and insula, while GMV was significantly lower in the bilateral anterior cingulate cortex (ACC) and the right superior frontal gyrus (SFG). In nonresponders across 5 datasets GMV was significantly lower in the bilateral ACC, median cingulate cortex (MCC) and right SFG. Conjunction analysis confirmed significant differences in the bilateral ACC and right SFG, where GMV was significantly lower in nonresponders but higher in responders. The current study adds to psychoradiology, an evolving subspecialty of radiology mainly for psychiatry and clinical psychology.
Collapse
Affiliation(s)
- Jia Liu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Xin Xu
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu, China
| | - Qiang Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Ya Luo
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu, China
| | - Ying Chen
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu, China
| | - Su Lui
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Min Wu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Hongyan Zhu
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China.
| | - Graham J Kemp
- Institute of Ageing and Chronic Disease, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom.,Liverpool Magnetic Resonance Imaging Centre (LiMRIC), University of Liverpool, Liverpool, United Kingdom
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
225
|
Conjoint and dissociated structural and functional abnormalities in first-episode drug-naive patients with major depressive disorder: a multimodal meta-analysis. Sci Rep 2017; 7:10401. [PMID: 28871117 PMCID: PMC5583354 DOI: 10.1038/s41598-017-08944-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 07/21/2017] [Indexed: 02/05/2023] Open
Abstract
Published MRI evidence of structural and resting-state functional brain abnormalities in MDD has been inconsistent. To eliminate interference by repeated disease episodes and antidepressant treatment, we conducted the first multimodal voxel-wise meta-analysis of studies of voxel-based morphometry (VBM) and the amplitude of low-frequency fluctuation (ALFF) in first-episode drug-naive MDD patients, using the Seed-based d Mapping method (SDM). Fifteen VBM data sets and 11 ALFF data sets were included. SDM-based multimodal meta-analysis was used to highlight brain regions with both structural and functional abnormalities. This identified conjoint structural and functional abnormalities in left lateral orbitofrontal cortex and right supplementary motor area, and also dissociated abnormalities of structure (decreased grey matter in right dorsolateral prefrontal cortex and right inferior temporal gyrus; increased grey matter in right insula, right putamen, left temporal pole, and bilateral thalamus) and function (increased brain activity in left supplementary motor area, left parahippocampal gyrus, and hippocampus; decreased brain activity in right lateral orbitofrontal cortex). This study reveals a complex pattern of conjoint and dissociated structural and functional abnormalities, supporting the involvement of basal ganglia-thalamocortical circuits, representing emotional, cognitive and psychomotor abnormalities, in the pathophysiology of early-stage MDD. Specifically, this study adds to Psychoradiology, an emerging subspecialty of radiology, which seems primed to play a major clinical role in guiding diagnostic and treatment planning decisions in patients with mental disorder.
Collapse
|
226
|
Carlisi CO, Norman LJ, Lukito SS, Radua J, Mataix-Cols D, Rubia K. Comparative Multimodal Meta-analysis of Structural and Functional Brain Abnormalities in Autism Spectrum Disorder and Obsessive-Compulsive Disorder. Biol Psychiatry 2017; 82:83-102. [PMID: 27887721 DOI: 10.1016/j.biopsych.2016.10.006] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 10/03/2016] [Accepted: 10/05/2016] [Indexed: 01/17/2023]
Abstract
BACKGROUND Autism spectrum disorder (ASD) and obsessive-compulsive disorder (OCD) share inhibitory control deficits possibly underlying poor control over stereotyped and repetitive and compulsive behaviors, respectively. However, it is unclear whether these symptom profiles are mediated by common or distinct neural profiles. This comparative multimodal meta-analysis assessed shared and disorder-specific neuroanatomy and neurofunction of inhibitory functions. METHODS A comparative meta-analysis of 62 voxel-based morphometry and 26 functional magnetic resonance imaging (fMRI) studies of inhibitory control was conducted comparing gray matter volume and activation abnormalities between patients with ASD (structural MRI: 911; fMRI: 188) and OCD (structural MRI: 928; fMRI: 247) and control subjects. Multimodal meta-analysis compared groups across voxel-based morphometry and fMRI. RESULTS Both disorders shared reduced function and structure in the rostral and dorsomedial prefrontal cortex including the anterior cingulate. OCD patients had a disorder-specific increase in structure and function of left basal ganglia (BG) and insula relative to control subjects and ASD patients, who had reduced right BG and insula volumes versus OCD patients. In fMRI, ASD patients showed disorder-specific reduced left dorsolateral-prefrontal activation and reduced posterior cingulate deactivation, whereas OCD patients showed temporoparietal underactivation. CONCLUSIONS The multimodal comparative meta-analysis shows shared and disorder-specific abnormalities. Whereas the rostrodorsomedial prefrontal cortex was smaller in structure and function in both disorders, this was concomitant with increased structure and function in BG and insula in OCD patients, but a reduction in ASD patients, presumably reflecting a disorder-specific frontostriatoinsular dysregulation in OCD in the form of poor frontal control over overactive BG, and a frontostriatoinsular maldevelopment in ASD with reduced structure and function in this network. Disorder-differential mechanisms appear to drive overlapping phenotypes of inhibitory control abnormalities in patients with ASD and OCD.
Collapse
Affiliation(s)
- Christina O Carlisi
- Department of Child and Adolescent Psychiatry Institute of Psychology, Psychiatry, and Neuroscience, King's College London, London, United Kingdom
| | - Luke J Norman
- Department of Child and Adolescent Psychiatry Institute of Psychology, Psychiatry, and Neuroscience, King's College London, London, United Kingdom
| | - Steve S Lukito
- Department of Child and Adolescent Psychiatry Institute of Psychology, Psychiatry, and Neuroscience, King's College London, London, United Kingdom
| | - Joaquim Radua
- Department of Psychosis Studies, Institute of Psychology, Psychiatry, and Neuroscience, King's College London, London, United Kingdom; Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden; FIDMAG Germanes Hospitalàries, CIBERSAM, Barcelona, Spain
| | - David Mataix-Cols
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden
| | - Katya Rubia
- Department of Child and Adolescent Psychiatry Institute of Psychology, Psychiatry, and Neuroscience, King's College London, London, United Kingdom.
| |
Collapse
|
227
|
Dong D, Wang Y, Chang X, Jiang Y, Klugah-Brown B, Luo C, Yao D. Shared abnormality of white matter integrity in schizophrenia and bipolar disorder: A comparative voxel-based meta-analysis. Schizophr Res 2017; 185:41-50. [PMID: 28082140 DOI: 10.1016/j.schres.2017.01.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 12/06/2016] [Accepted: 01/03/2017] [Indexed: 01/04/2023]
Abstract
Patients with schizophrenia and bipolar disorder (BD) shared a significant overlap in genetic susceptibility, pharmacological treatment responses, neuropsychological deficits, and epidemiological features. However, it remains unknown whether these clinical overlaps are mediated by shared or disorder-specific abnormalities of white matter integrity. In this voxel-based meta-analytic comparison of whole-brain white matter integrity, we aimed to identify the shared or disorder-specific structural abnormalities between schizophrenia and BD. A comprehensive literature search was conducted up to February 2016 to identify studies that compared between patients and healthy controls (HC) by using whole-brain diffusion approach (schizophrenia: 24 datasets with 754 patients vs. 775 HC; BD: 23 datasets with 705 patients vs. 679 HC). Voxel-wise meta-analyses were conducted and restricted to unified template using seed-based d-Mapping. Abnormal white matter integrity was calculated within each condition and a direct comparison of effect size was performed of alterations between two conditions. Two regions with significant reductions of fractional anisotropy (FA) characterized abnormal water diffusion in both disorders: the genu of the corpus callosum (CC) and posterior cingulum fibers. There was no significant difference found between the two disorders. Our results highlighted shared impairments of FA at genu of the CC and left posterior cingulum fibers, which suggests that, phenotypic overlap between schizophrenia and BD could be related to common brain circuit dysfunction.
Collapse
Affiliation(s)
- Debo Dong
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Yulin Wang
- Faculty of Psychological and Educational Sciences, Department of Experimental and Applied Psychology, Research Group of Biological Psychology, Vrije Universiteit Brussel, Brussels 1040, Belgium; Faculty of Psychology and Educational Sciences, Department of Data Analysis, Ghent University, Henri Dunantlaan 2, Ghent B-9000, Belgium.
| | - Xuebin Chang
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Yuchao Jiang
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Benjamin Klugah-Brown
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Cheng Luo
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Dezhong Yao
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China.
| |
Collapse
|
228
|
Liu J, Liu T, Wang W, Ma L, Ma X, Shi S, Gong Q, Wang M. Reduced Gray Matter Volume in Patients with Type 2 Diabetes Mellitus. Front Aging Neurosci 2017; 9:161. [PMID: 28588480 PMCID: PMC5439076 DOI: 10.3389/fnagi.2017.00161] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 05/08/2017] [Indexed: 02/05/2023] Open
Abstract
Background and Purpose: Previous studies of voxel-based morphometry (VBM) have found that patients with type 2 diabetes mellitus (T2DM) exhibit gray matter alterations, but these findings are inconsistent and have not been quantitatively reviewed. Therefore, the aim of this study was to conduct a quantitative meta-analysis of VBM studies of patients with T2DM. Materials and Methods: The seed-based d mapping method was applied to quantitatively estimate the regional gray matter abnormalities in T2DM patients. We also used meta-regression to explore the effects of some demographics and clinical characteristics. Results: Seven studies, with 8 datasets comprising 530 participants with T2DM and 549 non-T2DM controls, were included. The pooled and subgroup meta-analyses found that T2DM patients showed robustly reduced gray matter in the bilateral superior temporal gyrus, middle temporal gyrus, medial superior frontal gyrus, insula, median cingulate cortex, precuneus cortex and the left lentiform nucleus extending into the parahippocampus. The meta-regression also found that the percentage of female patients with T2DM was negatively associated with gray matter in the right superior temporal gyrus and illness duration was negatively associated with gray matter in the right middle temporal gyrus. Conclusion: This meta-analysis indicates that T2DM patients have significantly and robustly reduced gray matter mainly in the cortical-striatal-limbic networks, which are associated with human cognition. Thereby implicating this finding in the pathophysiology of cognitive impairment in T2DM patients.
Collapse
Affiliation(s)
- Jia Liu
- Department of Radiology, Henan Provincial People's Hospital and the People's Hospital of Zhengzhou UniversityZhengzhou, China.,Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, China
| | - Taiyuan Liu
- Department of Radiology, Henan Provincial People's Hospital and the People's Hospital of Zhengzhou UniversityZhengzhou, China
| | - Wenhui Wang
- Department of Radiology, Henan Provincial People's Hospital and the People's Hospital of Zhengzhou UniversityZhengzhou, China
| | - Lun Ma
- Department of Radiology, Henan Provincial People's Hospital and the People's Hospital of Zhengzhou UniversityZhengzhou, China
| | - Xiaoyue Ma
- Department of Radiology, Henan Provincial People's Hospital and the People's Hospital of Zhengzhou UniversityZhengzhou, China
| | - Shaojie Shi
- Department of Radiology, Henan Provincial People's Hospital and the People's Hospital of Zhengzhou UniversityZhengzhou, China
| | - Qiyong Gong
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan UniversityChengdu, China
| | - Meiyun Wang
- Department of Radiology, Henan Provincial People's Hospital and the People's Hospital of Zhengzhou UniversityZhengzhou, China
| |
Collapse
|
229
|
Pan P, Zhu L, Yu T, Shi H, Zhang B, Qin R, Zhu X, Qian L, Zhao H, Zhou H, Xu Y. Aberrant spontaneous low-frequency brain activity in amnestic mild cognitive impairment: A meta-analysis of resting-state fMRI studies. Ageing Res Rev 2017; 35:12-21. [PMID: 28017880 DOI: 10.1016/j.arr.2016.12.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/11/2016] [Accepted: 12/12/2016] [Indexed: 11/24/2022]
Abstract
Recent resting-state functional magnetic resonance imaging (rs-fMRI) studies have provided strong evidence of abnormal spontaneous brain activity in amnestic mild cognitive impairment (aMCI). However, the conclusions have been inconsistent. A meta-analysis of whole-brain rs-fMRI studies that measured differences in the amplitude of low-frequency fluctuations (ALFF) between aMCI patients and healthy controls was conducted using the Seed-based d Mapping software package. Twelve studies reporting 14 datasets were included in the meta-analysis. Compared to healthy controls, patients with aMCI showed decreased ALFFs in the bilateral precuneus/posterior cingulate cortices, bilateral frontoinsular cortices, left occipitotemporal cortex, and right supramarginal gyrus and increased ALFFs in the right lingual gyrus, left middle occipital gyrus, left hippocampus, and left inferior temporal gyrus. A meta-regression analysis demonstrated that the increased severity of cognitive impairment in aMCI patients was associated with greater decreases in ALFFs in the cuneus/precuneus cortices. Our comprehensive meta-analysis suggests that aMCI is associated with widespread aberrant regional spontaneous brain activity, predominantly involving the default mode, salience, and visual networks, which contributes to understanding its pathophysiology.
Collapse
|
230
|
Jiang J, Zhao YJ, Hu XY, Du MY, Chen ZQ, Wu M, Li KM, Zhu HY, Kumar P, Gong QY. Microstructural brain abnormalities in medication-free patients with major depressive disorder: a systematic review and meta-analysis of diffusion tensor imaging. J Psychiatry Neurosci 2017; 42:150-163. [PMID: 27780031 PMCID: PMC5403660 DOI: 10.1503/jpn.150341] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Multiple meta-analyses of diffusion tensor imaging (DTI) studies have reported impaired white matter integrity in patients with major depressive disorder (MDD). However, owing to inclusion of medicated patients in these studies, it is difficult to conclude whether these reported alterations are associated with MDD or confounded by medication effects. A meta-analysis of DTI studies on medication-free (medication-naive and medication washout) patients with MDD would therefore be necessary to disentangle MDD-specific effects. METHODS We analyzed white matter alterations between medication-free patients with MDD and healthy controls using anisotropic effect size-signed differential mapping (AES-SDM). We used DTI query software for fibre tracking. RESULTS Both pooled and subgroup meta-analyses in medication washout patients showed robust fractional anisotropy (FA) reductions in white matter of the right cerebellum hemispheric lobule, body of the corpus callosum (CC) and bilateral superior longitudinal fasciculus III (SLF III), whereas FA reductions in the genu of the CC and right anterior thalamic projections were seen in only medication-naive patients. Fibre tracking showed that the main tracts with observed FA reductions included the right cerebellar tracts, body of the CC, bilateral SLF III and arcuate fascicle. LIMITATIONS The analytic techniques, patient characteristics and clinical variables of the included studies were heterogeneous; we could not exclude the effects of nondrug therapies owing to a lack of data. CONCLUSION By excluding the confounding influences of current medication status, findings from the present study may provide a better understanding of the underlying neuropathology of MDD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hong-Yan Zhu
- Correspondence to: H. Zhu or Q. Gong, Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China; or
| | | | - Qi-Yong Gong
- Correspondence to: H. Zhu or Q. Gong, Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China; or
| |
Collapse
|
231
|
Hu X, Du M, Chen L, Li L, Zhou M, Zhang L, Liu Q, Lu L, Mreedha K, Huang X, Gong Q. Meta-analytic investigations of common and distinct grey matter alterations in youths and adults with obsessive-compulsive disorder. Neurosci Biobehav Rev 2017; 78:91-103. [PMID: 28442404 DOI: 10.1016/j.neubiorev.2017.04.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 04/15/2017] [Accepted: 04/15/2017] [Indexed: 02/05/2023]
Abstract
Obsessive-compulsive disorder (OCD) is a disabling illness with onset generally in childhood. OCD-youths differ from OCD-adults with regard to gender distribution, comorbidity patterns and treatment options. However, little is known about the neural correlate differences underpin those two populations. The current meta-analysis summarizes voxel based morphometry findings to elucidate whether differences of neural correlates exist between these two populations. Both OCD-youths and OCD-adults demonstrated greater striatal volume and smaller prefrontal grey matter volume (GMV). However, smaller GMV in left visual cortex was observed in OCD-youths only, while smaller GMV in anterior cingulate gyrus and greater GMV in cerebellum were demonstrated only in OCD-adults. Meta-regression showed greater GMV in left putamen was most prominent in samples with higher percentages of medicated OCD-adults. Our findings confirmed the most consistent GMV alterations in OCD were in prefrontal-striatal circuitry. Besides, other regions may involve at different developmental stages including deficits of visual cortex in OCD-youths and abnormalities of limbic-cerebellar circuit in OCD-adults. Medication effect may be more pronounced in the striatum, especially the putamen.
Collapse
Affiliation(s)
- Xinyu Hu
- Huaxi MR Research Centre(HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Mingying Du
- Department of Radiology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lizhou Chen
- Huaxi MR Research Centre(HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Lei Li
- Huaxi MR Research Centre(HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Ming Zhou
- Huaxi MR Research Centre(HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Lianqing Zhang
- Huaxi MR Research Centre(HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Qi Liu
- Huaxi MR Research Centre(HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Lu Lu
- Huaxi MR Research Centre(HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Kunal Mreedha
- Huaxi MR Research Centre(HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Xiaoqi Huang
- Huaxi MR Research Centre(HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China.
| | - Qiyong Gong
- Huaxi MR Research Centre(HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
232
|
Tench CR, Tanasescu R, Constantinescu CS, Auer DP, Cottam WJ. Coordinate based random effect size meta-analysis of neuroimaging studies. Neuroimage 2017; 153:293-306. [PMID: 28389386 DOI: 10.1016/j.neuroimage.2017.04.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 03/08/2017] [Accepted: 04/01/2017] [Indexed: 11/17/2022] Open
Abstract
Low power in neuroimaging studies can make them difficult to interpret, and Coordinate based meta-analysis (CBMA) may go some way to mitigating this issue. CBMA has been used in many analyses to detect where published functional MRI or voxel-based morphometry studies testing similar hypotheses report significant summary results (coordinates) consistently. Only the reported coordinates and possibly t statistics are analysed, and statistical significance of clusters is determined by coordinate density. Here a method of performing coordinate based random effect size meta-analysis and meta-regression is introduced. The algorithm (ClusterZ) analyses both coordinates and reported t statistic or Z score, standardised by the number of subjects. Statistical significance is determined not by coordinate density, but by a random effects meta-analyses of reported effects performed cluster-wise using standard statistical methods and taking account of censoring inherent in the published summary results. Type 1 error control is achieved using the false cluster discovery rate (FCDR), which is based on the false discovery rate. This controls both the family wise error rate under the null hypothesis that coordinates are randomly drawn from a standard stereotaxic space, and the proportion of significant clusters that are expected under the null. Such control is necessary to avoid propagating and even amplifying the very issues motivating the meta-analysis in the first place. ClusterZ is demonstrated on both numerically simulated data and on real data from reports of grey matter loss in multiple sclerosis (MS) and syndromes suggestive of MS, and of painful stimulus in healthy controls. The software implementation is available to download and use freely.
Collapse
Affiliation(s)
- C R Tench
- Division of Clinical Neurosciences, Clinical Neurology, University of Nottingham, Queen's Medical Centre, Nottingham, UK.
| | - Radu Tanasescu
- Division of Clinical Neurosciences, Clinical Neurology, University of Nottingham, Queen's Medical Centre, Nottingham, UK; Department of Neurology, University of Medicine and Pharmacy Carol Davila Bucharest, Colentina Hospital, Bucharest, Romania.
| | - C S Constantinescu
- Division of Clinical Neurosciences, Clinical Neurology, University of Nottingham, Queen's Medical Centre, Nottingham, UK.
| | - D P Auer
- Division of Clinical Neuroscience, Radiological Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, UK.
| | - W J Cottam
- Division of Clinical Neuroscience, Radiological Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, UK.
| |
Collapse
|
233
|
Zhou M, Hu X, Lu L, Zhang L, Chen L, Gong Q, Huang X. Intrinsic cerebral activity at resting state in adults with major depressive disorder: A meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry 2017; 75:157-164. [PMID: 28174129 DOI: 10.1016/j.pnpbp.2017.02.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 12/14/2016] [Accepted: 02/03/2017] [Indexed: 02/06/2023]
Abstract
Numerous neuroimaging studies have been undertaken to detect cerebral intrinsic activity in major depressive disorder (MDD) with resting state fMRI (rs-fMRI). However, the inconsistent results have hindered our understanding of the exact neuropathology related to MDD. The current meta-analysis used state-of-the-art conjunction analysis techniques to systematically review and summarize all available neuroimaging studies using rs-fMRI with amplitude of low frequency fluctuation (ALFF) and/or fractional ALFF (fALFF) on MDD patients and further explored the effect of antidepressants on the intrinsic activity of the brain. The anisotropic effect size version of signed differential mapping (AES-SDM) was applied to investigate changes in ALFF/fALFF in depression. We performed a subgroup analysis and group comparison on medicated and drug naïve patients to detect drug effect on MDD patients and conjunction analysis to identify congruent results between the two methods. Meta-regression was used to explore the effects of demographics and clinical characteristics. Adult MDD patients showed a robust increase in intrinsic activity in the resting state in the anterior cingulate cortex (ACC) in both ALFF (P<0.001) and fALFF (P<0.01) studies. The subgroup analysis demonstrated that the increased activity in the ACC was prominent in medicated patients only and not seen in drug-naïve MDD patients, while medication-naïve patients showed a specific decreased activity in the cerebellum (P<0.01). Group comparison showed that the intrinsic ACC activity is elevated in medicated MDD patients compared with drug naïve MDD patients. Meta-regression analysis demonstrated that the increased ACC activation was positively correlated with illness duration (P<0.001). Our findings suggest that increased activity of the ACC is more likely to be associated with antidepressant treatment, while decreased intrinsic activity of the cerebellum might be a specific biomarker for current MDD.
Collapse
Affiliation(s)
- Ming Zhou
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Xinyu Hu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Lu Lu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Lianqing Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Lizhou Chen
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Xiaoqi Huang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
234
|
Li W, Chen Z, Wu M, Zhu H, Gu L, Zhao Y, Kuang W, Bi F, Kemp GJ, Gong Q. Characterization of brain blood flow and the amplitude of low-frequency fluctuations in major depressive disorder: A multimodal meta-analysis. J Affect Disord 2017; 210:303-311. [PMID: 28068619 DOI: 10.1016/j.jad.2016.12.032] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 12/22/2016] [Indexed: 11/30/2022]
Abstract
BACKGROUND In healthy subjects, there is an association between amplitude of low-frequency fluctuations (ALFF) and regional cerebral blood flow (rCBF). To date, no published meta-analysis has investigated changes in the regional ALFF in medication-free depressed patients. METHODS In this study, we aimed to explore whether resting-state rCBF and ALFF changes co-occur in the depressed brain without the potential confound of medication. Using signed differential mapping (SDM), we conducted two meta-analyses, one of rCBF studies and one of ALFF studies, involving medication-free patients with major depressive disorder (MDD). In addition, we conducted a multimodal meta-analysis to identify brain regions that showed abnormalities in both rCBF and ALFF. RESULTS A total of 16 studies were included in this series. We identified abnormalities in resting-state rCBF and ALFF in the left insula in medication-free MDD patients compared with healthy controls (HC). In addition, we observed altered resting-state rCBF in the limbic-subcortical-cortical circuit and altered ALFF in the default mode network (DMN) and some motor-related brain regions. LIMITATIONS The analysis techniques, patient characteristics and clinical variables of the included studies were heterogeneous. CONCLUSIONS The conjoint alterations in ALFF and rCBF in the left insula may represent core neuropathological changes in medication-free patients with MDD and merit further studying.
Collapse
Affiliation(s)
- Wenbin Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Ziqi Chen
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Min Wu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Hongyan Zhu
- Laboratory of Stem Cell Biology, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
| | - Lei Gu
- Laboratory of Stem Cell Biology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Youjin Zhao
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Weihong Kuang
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Feng Bi
- Department of Oncology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Graham J Kemp
- Magnetic Resonance and Image Analysis Research Centre and Institute of Ageing and Chronic Disease, University of Liverpool, United Kingdom
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Department of Psychiatry, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Department of Psychology, School of Public Administration, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
235
|
Abnormalities of regional brain function in Parkinson's disease: a meta-analysis of resting state functional magnetic resonance imaging studies. Sci Rep 2017; 7:40469. [PMID: 28079169 PMCID: PMC5228032 DOI: 10.1038/srep40469] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 12/06/2016] [Indexed: 12/12/2022] Open
Abstract
There is convincing evidence that abnormalities of regional brain function exist in Parkinson’s disease (PD). However, many resting-state functional magnetic resonance imaging (rs-fMRI) studies using amplitude of low-frequency fluctuations (ALFF) have reported inconsistent results about regional spontaneous neuronal activity in PD. Therefore, we conducted a comprehensive meta-analysis using the Seed-based d Mapping and several complementary analyses. We searched PubMed, Embase, and Web of Science databases for eligible whole-brain rs-fMRI studies that measured ALFF differences between patients with PD and healthy controls published from January 1st, 2000 until June 24, 2016. Eleven studies reporting 14 comparisons, comparing 421 patients and 381 healthy controls, were included. The most consistent and replicable findings in patients with PD compared with healthy controls were identified, including the decreased ALFFs in the bilateral supplementary motor areas, left putamen, left premotor cortex, and left inferior parietal gyrus, and increased ALFFs in the right inferior parietal gyrus. The altered ALFFs in these brain regions are related to motor deficits and compensation in PD, which contribute to understanding its neurobiological underpinnings and could serve as specific regions of interest for further studies.
Collapse
|
236
|
Hancock R, Richlan F, Hoeft F. Possible roles for fronto-striatal circuits in reading disorder. Neurosci Biobehav Rev 2017; 72:243-260. [PMID: 27826071 PMCID: PMC5189679 DOI: 10.1016/j.neubiorev.2016.10.025] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 09/13/2016] [Accepted: 10/27/2016] [Indexed: 01/18/2023]
Abstract
Several studies have reported hyperactivation in frontal and striatal regions in individuals with reading disorder (RD) during reading-related tasks. Hyperactivation in these regions is typically interpreted as a form of neural compensation related to articulatory processing. Fronto-striatal hyperactivation in RD could however, also arise from fundamental impairment in reading related processes, such as phonological processing and implicit sequence learning relevant to early language acquisition. We review current evidence for the compensation hypothesis in RD and apply large-scale reverse inference to investigate anatomical overlap between hyperactivation regions and neural systems for articulation, phonological processing, implicit sequence learning. We found anatomical convergence between hyperactivation regions and regions supporting articulation, consistent with the proposed compensatory role of these regions, and low convergence with phonological and implicit sequence learning regions. Although the application of large-scale reverse inference to decode function in a clinical population should be interpreted cautiously, our findings suggest future lines of research that may clarify the functional significance of hyperactivation in RD.
Collapse
Affiliation(s)
- Roeland Hancock
- Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco, Box 0984, San Francisco, CA 94143, United States.
| | - Fabio Richlan
- Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria
| | - Fumiko Hoeft
- Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco, Box 0984, San Francisco, CA 94143, United States; Haskins Laboratories, 300 George St #900, New Haven, CT 06511, United States; Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi Shinjuku, Tokyo, 160-8582 Japan
| |
Collapse
|
237
|
Pan P, Zhan H, Xia M, Zhang Y, Guan D, Xu Y. Aberrant regional homogeneity in Parkinson's disease: A voxel-wise meta-analysis of resting-state functional magnetic resonance imaging studies. Neurosci Biobehav Rev 2016; 72:223-231. [PMID: 27916710 DOI: 10.1016/j.neubiorev.2016.11.018] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 11/07/2016] [Accepted: 11/21/2016] [Indexed: 12/14/2022]
Abstract
Studies of abnormal regional homogeneity (ReHo) in Parkinson's disease (PD) have reported inconsistent results. Therefore, we conducted a meta-analysis using the Seed-based d Mapping software package to identify the most consistent and replicable findings. A systematic literature search was performed to identify eligible whole-brain resting-state functional magnetic resonance imaging studies that had measured differences in ReHo between patients with PD and healthy controls between January 2000 and June 4, 2016. A total of ten studies reporting 11 comparisons (212 patients; 182 controls) were included. Increased ReHo was consistently identified in the bilateral inferior parietal lobules, bilateral medial prefrontal cortices, and left cerebellum of patients with PD when compared to healthy controls, while decreased ReHo was observed in the right putamen, right precentral gyrus, and left lingual gyrus. The results of the current meta-analysis demonstrate a consistent and coexistent pattern of impairment and compensation of intrinsic brain activity that predominantly involves the default mode and motor networks, which may advance our understanding of the pathophysiological mechanisms underlying PD.
Collapse
Affiliation(s)
- PingLei Pan
- Department of Neurology, Drum Tower Hospital of Nanjing Medical University, Nanjing, PR China; Department of Neurology, The Affiliated Yancheng Hospital, School of Medicine, Southeast University, Yancheng, PR China
| | - Hui Zhan
- Department of Neurology, Drum Tower Hospital of Nanjing Medical University, Nanjing, PR China
| | - MingXu Xia
- Department of Neurology, Drum Tower Hospital of Nanjing Medical University, Nanjing, PR China
| | - Yang Zhang
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, PR China
| | - DeNing Guan
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, PR China
| | - Yun Xu
- Department of Neurology, Drum Tower Hospital of Nanjing Medical University, Nanjing, PR China; Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, PR China; The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, PR China; Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing, Jiangsu, PR China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, PR China; Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, PR China.
| |
Collapse
|
238
|
Hancock R, Richlan F, Hoeft F. Possible roles for fronto-striatal circuits in reading disorder. Neurosci Biobehav Rev 2016. [PMID: 27826071 DOI: 10.1016/j.neubiorev.2016.10.025"] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Several studies have reported hyperactivation in frontal and striatal regions in individuals with reading disorder (RD) during reading-related tasks. Hyperactivation in these regions is typically interpreted as a form of neural compensation related to articulatory processing. Fronto-striatal hyperactivation in RD could however, also arise from fundamental impairment in reading related processes, such as phonological processing and implicit sequence learning relevant to early language acquisition. We review current evidence for the compensation hypothesis in RD and apply large-scale reverse inference to investigate anatomical overlap between hyperactivation regions and neural systems for articulation, phonological processing, implicit sequence learning. We found anatomical convergence between hyperactivation regions and regions supporting articulation, consistent with the proposed compensatory role of these regions, and low convergence with phonological and implicit sequence learning regions. Although the application of large-scale reverse inference to decode function in a clinical population should be interpreted cautiously, our findings suggest future lines of research that may clarify the functional significance of hyperactivation in RD.
Collapse
Affiliation(s)
- Roeland Hancock
- Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco, Box 0984, San Francisco, CA 94143, United States.
| | - Fabio Richlan
- Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria
| | - Fumiko Hoeft
- Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco, Box 0984, San Francisco, CA 94143, United States; Haskins Laboratories, 300 George St #900, New Haven, CT 06511, United States; Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi Shinjuku, Tokyo, 160-8582 Japan
| |
Collapse
|
239
|
Wollman SC, Alhassoon OM, Hall MG, Stern MJ, Connors EJ, Kimmel CL, Allen KE, Stephan RA, Radua J. Gray matter abnormalities in opioid-dependent patients: A neuroimaging meta-analysis. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2016; 43:505-517. [DOI: 10.1080/00952990.2016.1245312] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Scott C. Wollman
- California School of Professional Psychology, San Diego, CA, USA
| | - Omar M. Alhassoon
- California School of Professional Psychology, San Diego, CA, USA
- Department of Psychiatry, University of California, San Diego, CA, USA
| | - Matthew G. Hall
- California School of Professional Psychology, San Diego, CA, USA
| | - Mark J. Stern
- California School of Professional Psychology, San Diego, CA, USA
| | - Eric J. Connors
- California School of Professional Psychology, San Diego, CA, USA
| | | | - Kenneth E. Allen
- California School of Professional Psychology, San Diego, CA, USA
| | - Rick A. Stephan
- California School of Professional Psychology, San Diego, CA, USA
| | - Joaquim Radua
- FIDMAG Germanes Hospitalàries – CIBERSAM, Barcelona, Spain
- Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
240
|
Visintin E, De Panfilis C, Amore M, Balestrieri M, Wolf RC, Sambataro F. Mapping the brain correlates of borderline personality disorder: A functional neuroimaging meta-analysis of resting state studies. J Affect Disord 2016; 204:262-9. [PMID: 27552444 DOI: 10.1016/j.jad.2016.07.025] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Accepted: 07/16/2016] [Indexed: 11/25/2022]
Abstract
BACKGROUND Altered intrinsic function of the brain has been implicated in Borderline Personality Disorder (BPD). Nonetheless, imaging studies have yielded inconsistent alterations of brain function. To investigate the neural activity at rest in BPD, we conducted a set of meta-analyses of brain imaging studies performed at rest. METHODS A total of seven functional imaging studies (152 patients with BPD and 147 control subjects) were combined using whole-brain Signed Differential Mapping meta-analyses. Furthermore, two conjunction meta-analyses of neural activity at rest were also performed: with neural activity changes during emotional processing, and with structural differences, respectively. RESULTS We found altered neural activity in the regions of the default mode network (DMN) in BPD. Within the regions of the midline core DMN, patients with BPD showed greater activity in the anterior as well as in the posterior midline hubs relative to controls. Conversely, in the regions of the dorsal DMN they showed reduced activity compared to controls in the right lateral temporal complex and bilaterally in the orbitofrontal cortex. Increased activity in the precuneus was observed both at rest and during emotional processing. Reduced neural activity at rest in lateral temporal complex was associated with smaller volume of this area. LIMITATIONS Heterogeneity across imaging studies. CONCLUSIONS Altered activity in the regions of the midline core as well as of the dorsal subsystem of the DMN may reflect difficulties with interpersonal and affective regulation in BPD. These findings suggest that changes in spontaneous neural activity could underlie core symptoms in BPD.
Collapse
Affiliation(s)
- Eleonora Visintin
- Brain Center for Motor and Social Cognition, Istituto Italiano di Tecnologia@UniPR, Parma, Italy; Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Chiara De Panfilis
- Department of Neuroscience, Unit of Psychiatry, University of Parma, Italy
| | - Mario Amore
- Department of Neuroscience, Ophthalmology and Genetics, Unit of Psychiatry, University of Genoa, Genoa, Italy
| | - Matteo Balestrieri
- Department of Experimental and Clinical Medical Sciences (DISM), University of Udine, Udine, Italy
| | - Robert Christian Wolf
- Center for Psychosocial Medicine, Department of General Psychiatry, Heidelberg University, Germany
| | - Fabio Sambataro
- Brain Center for Motor and Social Cognition, Istituto Italiano di Tecnologia@UniPR, Parma, Italy; Department of Experimental and Clinical Medical Sciences (DISM), University of Udine, Udine, Italy.
| |
Collapse
|
241
|
Understanding heterogeneity in grey matter research of adults with childhood maltreatment—A meta-analysis and review. Neurosci Biobehav Rev 2016; 69:299-312. [DOI: 10.1016/j.neubiorev.2016.08.011] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 02/18/2016] [Accepted: 08/06/2016] [Indexed: 12/20/2022]
|
242
|
Abstract
Previous studies have demonstrated that patients with posttraumatic stress disorder (PTSD) caused by different types of trauma may show divergence in epidemiology, clinical manifestation and treatment outcome. However, it is still unclear whether this divergence has neuroanatomic correlates in PTSD brains. To elucidate the general and trauma-specific cortical morphometric alterations, we performed a meta-analysis of grey matter (GM) changes in PTSD (N = 246) with different traumas and trauma-exposed controls (TECs, N = 347) using anisotropic effect-size signed differential mapping and its subgroup analysis. Our results revealed general GM reduction (GMR) foci in the prefrontal-limbic-striatal system of PTSD brains when compared with those of TECs. Notably, the GMR patterns were trauma-specific. For PTSD by single-incident traumas, GMR foci were found in bilateral medial prefrontal cortex (mPFC), anterior cingulate cortex (ACC), insula, striatum, left hippocampus and amygdala; and for PTSD by prolonged traumas in the left insula, striatum, amygdala and middle temporal gyrus. Moreover, Clinician-Administered PTSD Scale scores were found to be negatively associated with the GM changes in bilateral ACC and mPFC. Our study indicates that the GMR patterns of PTSD are associated with specific traumas, suggesting a stratified diagnosis and treatment for PTSD patients.
Collapse
|
243
|
Zhong J, Shi H, Ma H, Sheng L. Voxelwise meta-analysis of grey matter atrophy in narcolepsy. Neurosci Biobehav Rev 2016; 68:1001-1003. [DOI: 10.1016/j.neubiorev.2016.06.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 05/23/2016] [Accepted: 06/12/2016] [Indexed: 12/14/2022]
|
244
|
A systematic review and meta-analysis of tract-based spatial statistics studies regarding attention-deficit/hyperactivity disorder. Neurosci Biobehav Rev 2016; 68:838-847. [PMID: 27450582 DOI: 10.1016/j.neubiorev.2016.07.022] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 07/18/2016] [Accepted: 07/19/2016] [Indexed: 02/05/2023]
Abstract
Diffusion tensor imaging (DTI) studies that use tract-based spatial statistics (TBSS) have demonstrated the microstructural abnormalities of white matter (WM) in patients with attention-deficit/hyperactivity disorder (ADHD); however, robust conclusions have not yet been drawn. The present study integrated the findings of previous TBSS studies to determine the most consistent WM alterations in ADHD via a narrative review and meta-analysis. The literature search was conducted through October 2015 to identify TBSS studies that compared fractional anisotropy (FA) between ADHD patients and healthy controls. FA reductions were identified in the splenium of the corpus callosum (CC) that extended to the right cingulum, right sagittal stratum, and left tapetum. The first two clusters retained significance in the sensitivity analysis and in all subgroup analyses. The FA reduction in the CC splenium was negatively associated with the mean age of the ADHD group. We hypothesize that, in addition to the fronto-striatal-cerebellar circuit, the disturbed WM matter tracts that integrate the bilateral hemispheres and posterior-brain circuitries play a crucial role in the pathophysiology of ADHD.
Collapse
|
245
|
Peng W, Chen Z, Yin L, Jia Z, Gong Q. Essential brain structural alterations in major depressive disorder: A voxel-wise meta-analysis on first episode, medication-naive patients. J Affect Disord 2016; 199:114-23. [PMID: 27100056 DOI: 10.1016/j.jad.2016.04.001] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 04/06/2016] [Indexed: 02/05/2023]
Abstract
BACKGROUND Because brain morphological abnormalities in major depressive disorder (MDD) may be modulated by medication and episodes, previous meta-analyses of voxel-based morphometry (VBM) studies therefore have been biased for including medicated patients or medication-free patients who had ever received drugs, as well as patients with different episodes. We sought to identify the essential morphological features without the interference of medication and episodes in MDD. METHODS Seed-based d Mapping was applied to analyze the gray matter differences between all first episode (FE), medication-naive MDD patients and healthy controls. Subgroup meta-analyses and meta-regression were used to explore the effects of methodology, demographics and clinical characteristics. RESULTS We identified 10 studies comprising 329 FE, medication-naive MDD patients and 340 healthy controls. Gray matter volumes were increased in the bilateral thalamus, cuneus, left paracentral lobule and medial superior frontal gyrus, and decreased in the right dorsolateral superior frontal gyrus, left insula and middle frontal gyrus in patients. Decreased volume in the right inferior temporal gyrus was only observed in patients with short illness duration and studies with threshold corrections. Moreover, there were different results between 3.0T MRI and 1.5T MRI studies. Meta-regression analyses revealed that mean age and the percentage of female patients were not significantly correlated with gray matter changes. LIMITATIONS There are heterogeneities in demographics, clinical features and analyzing methods of selected studies. CONCLUSIONS The present meta-analysis revealed that structural abnormalities in the fronto-limbic networks are the essential characteristics in MDD and could contribute to the high risk of suicide in patients.
Collapse
Affiliation(s)
- Wei Peng
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, PR China
| | - Ziqi Chen
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, PR China
| | - Li Yin
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu, PR China
| | - Zhiyun Jia
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, PR China; Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, PR China.
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, PR China; Department of Psychology, School of Public Administration, Sichuan University, Chengdu, PR China.
| |
Collapse
|
246
|
Kimmel CL, Alhassoon OM, Wollman SC, Stern MJ, Perez-Figueroa A, Hall MG, Rompogren J, Radua J. Age-related parieto-occipital and other gray matter changes in borderline personality disorder: A meta-analysis of cortical and subcortical structures. Psychiatry Res Neuroimaging 2016; 251:15-25. [PMID: 27107250 DOI: 10.1016/j.pscychresns.2016.04.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 02/01/2016] [Accepted: 04/08/2016] [Indexed: 01/08/2023]
Abstract
Previous research suggests that core borderline personality disorder (BPD) symptoms vary in severity with advancing age. While structural neuroimaging studies show smaller limbic and prefrontal gray matter volumes (GMV) in primarily adult and adolescent BPD patients, respectively, findings are inconsistent. Using the effect-size signed differential mapping (ES-SDM) meta-analytic method, we investigated the relationship between advancing age and GMV abnormalities in BPD patients. A total of nine voxel-based morphometry (VBM) studies comparing regional GMV of 256 BPD patients and 272 healthy control subjects were included. Meta-analysis identified lower GMV in the right superior/middle temporal gyri and higher GMV in the right supplementary motor area of BPD patients. Meta-regression showed that increasing age was significantly associated with increased GMV in the left superior parieto-occipital gyri, with younger-aged patients starting at lower GMV compared to controls. In contrast, increasing age was associated with decreased GMV in the right amygdala. These findings suggest that while GMV deficits in limbic structures may become pronounced with advancing age in the course of BPD, parieto-occipital rather than frontal GMV deficits could be especially prominent in younger-aged BPD patients.
Collapse
Affiliation(s)
| | - Omar M Alhassoon
- California School of Professional Psychology, San Diego, CA, USA; University of California, San Diego, Department of Psychiatry, San Diego, CA, USA.
| | - Scott C Wollman
- California School of Professional Psychology, San Diego, CA, USA
| | - Mark J Stern
- California School of Professional Psychology, San Diego, CA, USA
| | | | - Matthew G Hall
- California School of Professional Psychology, San Diego, CA, USA
| | | | - Joaquim Radua
- FIDMAG Germanes Hospitalàries - CIBERSAM, Barcelona, Spain; Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
247
|
Voxelwise meta-analysis of gray matter anomalies in chronic cigarette smokers. Behav Brain Res 2016; 311:39-45. [PMID: 27173432 DOI: 10.1016/j.bbr.2016.05.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 05/02/2016] [Accepted: 05/06/2016] [Indexed: 11/24/2022]
Abstract
BACKGROUND Evidence from previous voxel-based morphometry (VBM) studies revealed that widespread brain regions are involved in chronic smoking. However, the spatial localization reported for gray matter (GM) abnormalities is heterogeneous. The aim of the present study was quantitatively to integrate studies on GM abnormalities observed in chronic smokers. METHODS A systematic search of the PubMed, Web of Knowledge and Science Direct databases from January 1, 2000 to July 31, 2015 was performed to identify eligible whole-brain VBM studies. Comprehensive meta-analyses to investigate regional GM abnormalities in chronic smokers were conducted with the Seed-based d Mapping software package. RESULTS Eleven studies comprising 686 chronic cigarette smokers and 1024 nonsmokers were included in the meta-analyses. Consistently across studies, the chronic smokers showed a robust GM decrease in the bilateral prefrontal cortex and a GM increase in the right lingual cortex. Moreover, meta-regression demonstrated that smoking years and cigarettes per day were partly correlated with GM anomalies in chronic cigarette smokers. CONCLUSIONS The convergent findings of this quantitative meta-analysis reveal a characteristic neuroanatomical pattern in chronic smokers. Future longitudinal studies should investigate whether this brain morphometric pattern can serve as a useful target and a prognostic marker for smoking intervention.
Collapse
|
248
|
Voxel-based meta-analysis of gray matter volume reductions associated with cognitive impairment in Parkinson’s disease. J Neurol 2016; 263:1178-87. [DOI: 10.1007/s00415-016-8122-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/04/2016] [Accepted: 04/05/2016] [Indexed: 12/14/2022]
|
249
|
Martin A, Kronbichler M, Richlan F. Dyslexic brain activation abnormalities in deep and shallow orthographies: A meta-analysis of 28 functional neuroimaging studies. Hum Brain Mapp 2016; 37:2676-99. [PMID: 27061464 PMCID: PMC5103175 DOI: 10.1002/hbm.23202] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 02/19/2016] [Accepted: 03/21/2016] [Indexed: 01/14/2023] Open
Abstract
We used coordinate‐based meta‐analysis to objectively quantify commonalities and differences of dyslexic functional brain abnormalities between alphabetic languages differing in orthographic depth. Specifically, we compared foci of under‐ and overactivation in dyslexic readers relative to nonimpaired readers reported in 14 studies in deep orthographies (DO: English) and in 14 studies in shallow orthographies (SO: Dutch, German, Italian, Swedish). The separate meta‐analyses of the two sets of studies showed universal reading‐related dyslexic underactivation in the left occipitotemporal cortex (including the visual word form area (VWFA)). The direct statistical comparison revealed higher convergence of underactivation for DO compared with SO in bilateral inferior parietal regions, but this abnormality disappeared when foci resulting from stronger dyslexic task‐negative activation (i.e., deactivation relative to baseline) were excluded. Higher convergence of underactivation for DO compared with SO was further identified in the left inferior frontal gyrus (IFG) pars triangularis, left precuneus, and right superior temporal gyrus, together with higher convergence of overactivation in the left anterior insula. Higher convergence of underactivation for SO compared with DO was found in the left fusiform gyrus, left temporoparietal cortex, left IFG pars orbitalis, and left frontal operculum, together with higher convergence of overactivation in the left precentral gyrus. Taken together, the findings support the notion of a biological unity of dyslexia, with additional orthography‐specific abnormalities and presumably different compensatory mechanisms. The results are discussed in relation to current functional neuroanatomical models of developmental dyslexia. Hum Brain Mapp 37:2676–2699, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Anna Martin
- Centre for Cognitive Neuroscience, University of Salzburg, Hellbrunnerstr. 34, Salzburg, 5020, Austria.,Department of Psychology, University of Salzburg, Hellbrunnerstr. 34, Salzburg, 5020, Austria.,Neuroscience Institute, Christian Doppler Clinic, Paracelsus Medical University, Ignaz-Harrer-Str. 79, Salzburg, 5020, Austria
| | - Martin Kronbichler
- Centre for Cognitive Neuroscience, University of Salzburg, Hellbrunnerstr. 34, Salzburg, 5020, Austria.,Department of Psychology, University of Salzburg, Hellbrunnerstr. 34, Salzburg, 5020, Austria.,Neuroscience Institute, Christian Doppler Clinic, Paracelsus Medical University, Ignaz-Harrer-Str. 79, Salzburg, 5020, Austria
| | - Fabio Richlan
- Centre for Cognitive Neuroscience, University of Salzburg, Hellbrunnerstr. 34, Salzburg, 5020, Austria.,Department of Psychology, University of Salzburg, Hellbrunnerstr. 34, Salzburg, 5020, Austria
| |
Collapse
|
250
|
Neural signatures of human fear conditioning: an updated and extended meta-analysis of fMRI studies. Mol Psychiatry 2016; 21:500-8. [PMID: 26122585 DOI: 10.1038/mp.2015.88] [Citation(s) in RCA: 405] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 04/01/2015] [Accepted: 05/26/2015] [Indexed: 02/07/2023]
Abstract
Classical Pavlovian fear conditioning remains the most widely employed experimental model of fear and anxiety, and continues to inform contemporary pathophysiological accounts of clinical anxiety disorders. Despite its widespread application in human and animal studies, the neurobiological basis of fear conditioning remains only partially understood. Here we provide a comprehensive meta-analysis of human fear-conditioning studies carried out with functional magnetic resonance imaging (fMRI), yielding a pooled sample of 677 participants from 27 independent studies. As a distinguishing feature of this meta-analysis, original statistical brain maps were obtained from the authors of 13 of these studies. Our primary analyses demonstrate that human fear conditioning is associated with a consistent and robust pattern of neural activation across a hypothesized genuine network of brain regions resembling existing anatomical descriptions of the 'central autonomic-interoceptive network'. This finding is discussed with a particular emphasis on the neural substrates of conscious fear processing. Our associated meta-analysis of functional deactivations-a scarcely addressed dynamic in fMRI fear-conditioning studies-also suggests the existence of a coordinated brain response potentially underlying the 'safety signal' (that is, non-threat) processing. We attempt to provide an integrated summary on these findings with the view that they may inform ongoing studies of fear-conditioning processes both in healthy and clinical populations, as investigated with neuroimaging and other experimental approaches.
Collapse
|