201
|
Thurman JM, Ljubanović D, Royer PA, Kraus DM, Molina H, Barry NP, Proctor G, Levi M, Holers VM. Altered renal tubular expression of the complement inhibitor Crry permits complement activation after ischemia/reperfusion. J Clin Invest 2006; 116:357-68. [PMID: 16444293 PMCID: PMC1352158 DOI: 10.1172/jci24521] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2005] [Accepted: 11/29/2005] [Indexed: 12/31/2022] Open
Abstract
Ischemia/reperfusion (I/R) of several organs results in complement activation, but the kidney is unique in that activation after I/R occurs only via the alternative pathway. We hypothesized that selective activation of this pathway after renal I/R could occur either because of a loss of complement inhibition or from increased local synthesis of complement factors. We examined the relationship between renal complement activation after I/R and the levels and localization of intrinsic membrane complement inhibitors. We found that loss of polarity of complement receptor 1-related protein y (Crry) in the tubular epithelium preceded activation of the alternative pathway along the basolateral aspect of the tubular cells. Heterozygous gene-targeted mice that expressed lower amounts of Crry were more sensitive to ischemic injury. Furthermore, inhibition of Crry expressed by proximal tubular epithelial cells in vitro resulted in alternative pathway-mediated injury to the cells. Thus, altered expression of a complement inhibitor within the tubular epithelium appears to be a critical factor permitting activation of the alternative pathway of complement after I/R. Increased C3 mRNA and decreased factor H mRNA were also detected in the outer medulla after I/R, suggesting that altered synthesis of these factors might further contribute to complement activation in this location.
Collapse
MESH Headings
- Animals
- Antigens, Surface
- Complement Activation/physiology
- Complement System Proteins/metabolism
- Epithelial Cells/metabolism
- Epithelial Cells/ultrastructure
- Humans
- Kidney Tubules, Proximal/cytology
- Kidney Tubules, Proximal/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Rats
- Rats, Sprague-Dawley
- Receptors, Cell Surface
- Receptors, Complement/genetics
- Receptors, Complement/metabolism
- Receptors, Complement 3b
- Reperfusion Injury/immunology
- Reperfusion Injury/pathology
Collapse
Affiliation(s)
- Joshua M Thurman
- Department of Medicine, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
202
|
Sacks SH, Zhou W. Allograft rejection: effect of local synthesis of complement. SPRINGER SEMINARS IN IMMUNOPATHOLOGY 2005; 27:332-44. [PMID: 16189650 DOI: 10.1007/s00281-005-0005-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2005] [Accepted: 03/18/2005] [Indexed: 12/12/2022]
Abstract
The complement system is known for its ability to participate in non-specific inflammation and membrane injury as well as contributing to antigen-specific immune stimulation. In renal transplantation, the complement cascade behaves true to form in that both non-immune- and immune-mediated destruction of the renal tubules are complement dependent. What is remarkable, however, is the extent of involvement of local synthesis of complement in both of these injuries, suggesting that the extravascular tissue compartment is the domain of local synthesis, whereas the effect of circulating complement is much less. This creates a new paradigm for studying the influence of local synthesis of complement in other organ-based diseases and underlines the need for tissue-targeting strategies in successful therapeutic development.
Collapse
Affiliation(s)
- Steven H Sacks
- Department of Nephrology and Transplantation, King's College London School of Medicine at Guy's, St Thomas Hospitals, 5th Floor Thomas Guy House, Guy's Hospital, London SE1 9RT, UK.
| | | |
Collapse
|
203
|
Berger SP, Roos A, Daha MR. Complement and the kidney: what the nephrologist needs to know in 2006? Nephrol Dial Transplant 2005; 20:2613-9. [PMID: 16204271 DOI: 10.1093/ndt/gfi166] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
204
|
Kielar ML, John R, Bennett M, Richardson JA, Shelton JM, Chen L, Jeyarajah DR, Zhou XJ, Zhou H, Chiquett B, Nagami GT, Lu CY. Maladaptive role of IL-6 in ischemic acute renal failure. J Am Soc Nephrol 2005; 16:3315-25. [PMID: 16192425 DOI: 10.1681/asn.2003090757] [Citation(s) in RCA: 197] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The role of IL-6 was investigated in murine ischemic acute renal failure. The renal pedicles were clamped for 17 min, and the mice were studied at various times after reperfusion. We found that serum IL-6 increased after murine ischemic renal injury. This increase was associated with increased IL-6 mRNA in the ischemic kidney but not in the contralateral kidney or the liver. Maximal IL-6 production occurred at 4 to 8 h and decreased to baseline by 24 h. Reperfusion of the kidney was required for IL-6 production. In situ hybridization and immunohistochemistry showed that macrophages infiltrated areas adjacent to the vascular bundles in the outer medulla within hours of reperfusion and showed that these macrophages produced IL-6 mRNA. For understanding how macrophages were stimulated to produce IL-6, an in vitro model in which S3 proximal tubular cells were injured by reactive oxygen species was set up. These injured cells released molecules that activated macrophages to produce IL-6 in vitro. IL-6 that was produced in response to renal ischemia was maladaptive because transgenic knockout of IL-6 ameliorated renal injury as measured by serum creatinine and histology. IL-6 transgenic knockout mice were lethally irradiated, and their bone marrow was reconstituted with wild-type IL-6 cells. Such bone marrow transfers abolished the protective effects of transgenic IL-6 knockout. It is concluded that macrophages infiltrate the area of the vascular bundles of the outer medulla, these macrophages produce IL-6, and this IL-6 exacerbates ischemic murine acute renal failure.
Collapse
Affiliation(s)
- Mariusz L Kielar
- Department of Internal Medicine (Nephrology), University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
205
|
Thurman JM, Lucia MS, Ljubanovic D, Holers VM. Acute tubular necrosis is characterized by activation of the alternative pathway of complement. Kidney Int 2005; 67:524-30. [PMID: 15673300 DOI: 10.1111/j.1523-1755.2005.67109.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Studies in animal models have shown that the alternative pathway of complement is activated in the kidney after ischemia/reperfusion. In addition, mice deficient in complement factor B, a necessary component of the alternative pathway, are protected from ischemic acute renal failure. The purpose of this study was to determine whether alternative pathway activation also occurs during the development of ischemic acute tubular necrosis in the human kidney. METHODS Biopsies were identified from nine patients with morphologically normal kidneys and seven patients with evidence of acute tubular necrosis by light microscopy. Immunofluorescence microscopy was used to quantify and localize the complement activation products C3d and C4d. The results were correlated with available clinical data. RESULTS Similar to mice, small amounts of activated C3d were present along the tubular basement membrane in normal kidneys. However, kidneys from patients with acute tubular necrosis had C3d complement deposition along a significantly greater number of tubules, and many of the tubules were completely circumscribed. In contrast, C4d was not detectable, indicating that complement activation occurred primarily via alternative pathway activation. CONCLUSION Complement activation occurs in human ischemic acute tubular necrosis. As in rodents, complement activation along the tubular basement membrane after ischemia appears to occur principally via the alternative complement pathway. Because of this, an inhibitor of the alternative pathway might limit complement activation and inflammation after ischemia/reperfusion, thereby protecting the kidney from ischemic acute renal failure.
Collapse
Affiliation(s)
- Joshua M Thurman
- Department of Internal Medicine, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA.
| | | | | | | |
Collapse
|
206
|
Møller-Kristensen M, Wang W, Ruseva M, Thiel S, Nielsen S, Takahashi K, Shi L, Ezekowitz A, Jensenius JC, Gadjeva M. Mannan-binding lectin recognizes structures on ischaemic reperfused mouse kidneys and is implicated in tissue injury. Scand J Immunol 2005; 61:426-34. [PMID: 15882434 DOI: 10.1111/j.1365-3083.2005.01591.x] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Organ damage as a consequence of ischaemia and reperfusion (I/R) is a major clinical problem in an acute renal failure and transplantation. Ligands on surfaces of endothelial cells that are exposed due to the ischaemia may be recognized by pattern recognition molecules such as mannan-binding lectin (MBL), inducing complement activation. We examined the contribution of the MBL complement pathway in a bilateral renal I/R model (45 min of ischaemia followed by 24 h of reperfusion), using transgenic mice deficient in MBL-A and MBL-C [MBL double knockout (MBL DKO)] and in wildtype (WT) mice. Kidney damages, which were evaluated by levels of blood urea nitrogen (BUN) and creatinine, showed that MBL DKO mice were significantly protected compared with WT mice. MBL DKO mice, reconstituted with recombinant human MBL, showed a dose-dependent severity of kidney injury increasing to a comparable level to WT mice. Acute tubular necrosis was evident in WT mice but not in MBL DKO mice after I/R, confirming renal damages in WT mice. MBL ligands in kidneys were observed to be present after I/R but not in sham-operated mice. C3a (desArg) levels in MBL DKO mice were decreased after I/R compared with that in WT mice, indicating less complement activation that was correlated with less C3 deposition in the kidneys of MBL DKO mice. Our data implicate a role of MBL in I/R-induced kidney injury.
Collapse
Affiliation(s)
- M Møller-Kristensen
- Department of Medical Microbiology and Immunology, University of Aarhus, Denmark.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
207
|
Versteilen AMG, Di Maggio F, Leemreis JR, Groeneveld ABJ, Musters RJP, Sipkema P. Molecular mechanisms of acute renal failure following ischemia/reperfusion. Int J Artif Organs 2005; 27:1019-29. [PMID: 15645611 DOI: 10.1177/039139880402701203] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Acute renal failure (ARF) necessitating renal replacement therapy is a common problem associated with high morbidity and mortality in the critically ill. Hypotension, followed by resuscitation, is the most common etiologic factor, mimicked by ischemia/reperfusion (I/R) in animal models. Although knowledge of the pathophysiology of ARF in the course of this condition is increasingly detailed, the intracellular and molecular mechanisms leading to ARF are still incompletely understood. This review aims at describing the role of cellular events and signals, including collapse of the cytoskeleton, mitochondrial and nuclear changes, in mediating cell dysfunction, programmed cell death (apoptosis), necrosis and others. Insight into the molecular pathways in the various elements of the kidney, such as vascular endothelium and smooth muscle and tubular epithelium leading to cell damage upon I/R will, hopefully, open new therapeutic modalities, to mitigate the development of ARF after hypotensive episodes and to promote repair and resumption of renal function once ARF has developed.
Collapse
Affiliation(s)
- A M G Versteilen
- Department of Physiology, Institute for Cardiovascular Research, Vrije Universiteit Medical Centre, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
208
|
Abstract
The MHC, primarily known for its antigen-presenting class I and II molecules, harbours, within a central segment of less than 1 Mb, a dense collection of genes involved in various biological functions. Although MHC I and MHC II are principal players of adaptive immunity, several loci within this central (still called class III) MHC region encode members of the innate immune system. These include the long known factors of the complement system--potentially inhibitory and triggering natural killer receptors as well as stress proteins. Whether this physical proximity is fortuitous or functionally advantageous is an important question for the future of MHC genetics.
Collapse
Affiliation(s)
- Georges Hauptmann
- Centre de Recherche d'Immunologie et d'Hématologie, Faculté de Médecine, Hôpitaux Universitaires de Strasbourg, 4 rue Kirschleger, F-67085 Strasbourg Cedex, France.
| | | |
Collapse
|
209
|
Zhou T, Sun GZ, Zhang MJ, Chen JL, Zhang DQ, Hu QS, Chen YY, Chen N. Role of adhesion molecules and dendritic cells in rat hepatic/renal ischemia-reperfusion injury and anti-adhesive intervention with anti-P-selectin lectin-EGF domain monoclonal antibody. World J Gastroenterol 2005; 11:1005-10. [PMID: 15742404 PMCID: PMC4250761 DOI: 10.3748/wjg.v11.i7.1005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the role of P-selectin, intercellular adhesion molecule-1 (ICAM-1) and dendritic cells (DCs) in liver/kidney of rats with hepatic/renal ischemia-reperfusion injury and the preventive effect of anti-P-selectin lectin-EGF domain monoclonal antibody (anti-PsL-EGFmAb) on the injury.
METHODS: Rat models of hepatic and renal ischemia-reperfusion were established. The rats were then divided into two groups, one group treated with anti-PsL-EGFmAb (n = 20) and control treated with saline (n = 20). Both groups were subdivided into four groups according to reperfusion time (1, 3, 6 and 24 h). The sham-operated group (n = 5) served as a control group. DCs were observed by the microscopic image method, while P-selectin and ICAM-1 were analyzed by immunohistochemistry.
RESULTS: P-selectin increased significantly in hepatic sinusoidal endothelial cells and renal tubular epithelial cells 1 h after ischemia-reperfusion, and the expression of ICAM-1 was up-regulated in hepatic sinusoid and renal vessels after 6 h. CD1a+CD80+DCs gradually increased in hepatic sinusoidal endothelium and renal tubules and interstitium 1 h after ischemia-reperfusion, and there was the most number of DCs in 24-h group. The localization of DCs was associated with rat hepatic/renal function. These changes became less significant in rats treated with anti-PsL-EGFmAb.
CONCLUSION: DCs play an important role in immune pathogenesis of hepatic/renal ischemia-reperfusion injury. Anti-PsL-EGFmAb may regulate and inhibit local DC immigration and accumulation in liver/kidney.
Collapse
Affiliation(s)
- Tong Zhou
- Department of Nephrology, Rui Jin Hospital, Shanghai Second Medical University, Shanghai 200025, China.
| | | | | | | | | | | | | | | |
Collapse
|
210
|
Thurman JM, Kraus DM, Girardi G, Hourcade D, Kang HJ, Royer PA, Mitchell LM, Giclas PC, Salmon J, Gilkeson G, Holers VM. A novel inhibitor of the alternative complement pathway prevents antiphospholipid antibody-induced pregnancy loss in mice. Mol Immunol 2005; 42:87-97. [PMID: 15488947 DOI: 10.1016/j.molimm.2004.07.043] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2004] [Accepted: 07/06/2004] [Indexed: 11/16/2022]
Abstract
Studies in gene-targeted mice have demonstrated that factor B of the alternative complement pathway plays an important role in several disease models, but an exogenous inhibitor of factor B has not previously been available. We have developed an inhibitory monoclonal antibody directed against a critical epitope on mouse factor B and have tested it in a model of antiphospholipid (aPL) antibody (Ab)-induced fetal loss. Gene-targeted factor B-deficient mice (fB-/-) were injected with a fusion protein comprised of the second and third short consensus repeat (SCR) domains of mouse factor B linked to a mouse IgG1 Fc domain. Hybridomas were made from splenocytes of the immunized mouse. One mAb, designated 1379, produced an IgG1 antibody that inhibited alternative pathway activation in vitro and in vivo by preventing formation of the C3bBb complex. Strikingly, this mAb inhibited alternative pathway activation in serum from mice, rats, humans, monkeys, pigs and horses. Fab fragments made from this mAb also inhibited alternative pathway activation. Epitope mapping demonstrated that this antibody binds to factor B within the third SCR domain. When mAb 1379 was administered to mice that also received human IgG containing antiphospholipid antibodies, it provided significant protection from antiphospholipid antibody-induced complement activation and fetal loss. Thus, this mAb to factor B has broad species reactivity and effectively inhibits alternative pathway activation. The mAb protects mice in an in vivo model of antiphospholipid antibody syndrome, demonstrating the therapeutic potential for the inhibition of factor B in this disease.
Collapse
Affiliation(s)
- Joshua M Thurman
- Division of Nephrology and Hypertension, University of Colorado Health Sciences Center, 4200 E. 9th Avenue, B-115, Denver, CO 80262, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
211
|
Abstract
The adaptive immune system has evolved highly specific pattern recognition proteins and receptors that, when triggered, provide a first line of host defense against pathogens. Studies reveal that these innate recognition proteins are also self-reactive and can initiate inflammation against self-tissues in a similar manner as with pathogens. This specific event is referred to as "innate autoimmunity." In this review, we describe two classes of autoimmune responses, that is, reperfusion injury and fetal loss syndrome, in which the recognition and injury are mediated by innate immunity. Both disorders are common and are clinically important. Reperfusion injury (RI) represents an acute inflammatory response after a reversible ischemic event and subsequent restoration of blood flow. Findings that injury is IgM and complement dependent and that a single natural antibody prepared from a panel of B-1 cell hybridomas can restore injury in antibody-deficient mice suggest that RI is an autoimmune-type disorder. Fetal loss syndrome is also an antibody- and complement-dependent disorder. Although both immune and natural antibodies are likely involved in recognition of phospholipid self-antigens, inhibition of the complement pathway in rodent models can block fetal loss. As new innate recognition proteins and receptors are identified, it is likely that innate responses to self represent frequent events and possibly underlie many of the known chronic autoimmune disorders normally attributable to dysregulation of adaptive immunity.
Collapse
Affiliation(s)
- Michael C Carroll
- CBR Institute for Biomedical Research, and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
212
|
de Vries B, Walter SJ, Peutz-Kootstra CJ, Wolfs TGAM, van Heurn LWE, Buurman WA. The mannose-binding lectin-pathway is involved in complement activation in the course of renal ischemia-reperfusion injury. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 165:1677-88. [PMID: 15509537 PMCID: PMC1618654 DOI: 10.1016/s0002-9440(10)63424-4] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Ischemia-reperfusion (I/R) is an important cause of acute renal failure (ARF). The complement system appears to be essentially involved in I/R injury. However, via which pathway the complement system is activated and in particular whether the mannose-binding lectin (MBL)-pathway is activated is unclear. This tempted us to study the activation and regulation of the MBL-pathway in the course of experimental renal I/R injury and in clinical post-transplant ARF. Mice subjected to renal I/R displayed evident renal MBL-depositions, depending on the duration of warm ischemia, in the early reperfusion phase. Renal deposition of C3, C6 and C9 was observed in the later reperfusion phase. The deposition of MBL-A and -C completely co-localized with the late complement factor C6, showing that MBL is involved in complement activation in the course of renal I/R injury. Moreover, the degree of early MBL-deposition correlated with complement activation, neutrophil-influx, and organ-failure observed in the later reperfusion phase. In serum of mice subjected to renal I/R MBL-A, levels increased in contrast to MBL-C levels, which dropped evidently. In line, liver mRNA levels for MBL-A increased, whereas MBL-C levels decreased. Renal MBL mRNA levels rapidly dropped in the course of renal I/R. Finally, in human biopsies, MBL-depositions were observed early after transplantation of ischemically injured kidneys. In line with our experimental data, in ischemically injured grafts displaying post-transplant organ-failure extensive MBL depositions were observed in peritubular capillaries and tubular epithelial cells. In conclusion, in experimental renal I/R injury and clinical post-transplant ARF the MBL-pathway is activated, followed by activation of the complement system. These data indicate that the MBL-pathway is involved in ischemia-induced complement activation.
Collapse
Affiliation(s)
- Bart de Vries
- Department of General Surgery, Maastricht University, P.O. Box 616, Universiteitssingel 50, 6200 MD Maastricht, the Netherlands
| | | | | | | | | | | |
Collapse
|
213
|
Knight KR, Shinkel TA, Cowan PJ, Romeo-Meeuw R, d'Apice AJF, Morrison WA. Transgenic expression of human complement regulators reduces skeletal muscle ischaemia/reperfusion injury in mice. Clin Sci (Lond) 2004; 108:47-53. [PMID: 15341509 DOI: 10.1042/cs20040236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study aimed to explore the hypothesis that activated complement components contribute significantly to I/R (ischaemia/reperfusion) injury in skeletal muscle. After 50, 70 and 90 min of tourniquet ischaemia and 24 h of reperfusion, viability of the medial gastrocnemius muscle in CBA-C57BL/6 wild-type mice, assessed histochemically by reduction of NBT (Nitro Blue Tetrazolium) dye, was 60, 21 and 8% respectively. Skeletal muscle viability after 70 min of ischaemia and 24 h of reperfusion in transgenic mice expressing a combination of human CD46, CD55 and CD59, all inhibitors of complement activation, was 45% compared with 24% in ischaemic reperfused wild-type mice (P=0.008; n=6 per group). Muscle from sham-treated transgenic mice and wild-type littermates had no significant loss of viability relative to normal contralateral gastrocnemius muscle. A significant reduction in myeloperoxidase activity (a measure of neutrophil infiltration), xanthine oxidase activity (a source of free radicals) and water content (a measure of oedema) was observed in ischaemic reperfused muscle from transgenic mice compared with ischaemic reperfused wild-type muscle (P<0.05). Haematoxylin and eosin-stained histological sections also showed less damage and less apparent leucocyte infiltration in muscles from ischaemic reperfused transgenic mice than those from wild-type animals given the same degree of injury. Muscles from sham-treated transgenic and wild-type controls were almost identical with normal muscle. It is concluded that complement activation contributes to the pathogenesis of I/R injury in murine skeletal muscle, resulting in increased neutrophil infiltration into the injured muscle, increased free radical production and vascular permeability during reperfusion, and a net detrimental effect on muscle viability.
Collapse
Affiliation(s)
- Kenneth R Knight
- Bernard O'Brien Institute of Microsurgery, St. Vincent's Hospital Melbourne, Fitzroy, Victoria 3065, Australia.
| | | | | | | | | | | |
Collapse
|
214
|
Arumugam TV, Shiels IA, Woodruff TM, Granger DN, Taylor SM. The role of the complement system in ischemia-reperfusion injury. Shock 2004; 21:401-9. [PMID: 15087815 DOI: 10.1097/00024382-200405000-00002] [Citation(s) in RCA: 236] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ischemia-reperfusion (I/R) injury is a common clinical event with the potential to seriously affect, and sometimes kill, the patient. Interruption of blood supply causes ischemia, which rapidly damages metabolically active tissues. Paradoxically, restoration of blood flow to the ischemic tissues initiates a cascade of pathology that leads to additional cell or tissue injury. I/R is a potent inducer of complement activation that results in the production of a number of inflammatory mediators. The use of specific inhibitors to block complement activation has been shown to prevent local tissue injury after I/R. Clinical and experimental studies in gut, kidney, limb, and liver have shown that I/R results in local activation of the complement system and leads to the production of the complement factors C3a, C5a, and the membrane attack complex. The novel inhibitors of complement products may find wide clinical application because there are no effective drug therapies currently available to treat I/R injuries.
Collapse
Affiliation(s)
- Thiruma V Arumugam
- Department of Molecular & Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130-3932, USA
| | | | | | | | | |
Collapse
|
215
|
Turnberg D, Botto M, Lewis M, Zhou W, Sacks SH, Morgan BP, Walport MJ, Cook HT. CD59a deficiency exacerbates ischemia-reperfusion injury in mice. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 165:825-32. [PMID: 15331407 PMCID: PMC1618586 DOI: 10.1016/s0002-9440(10)63345-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The terminal complement components C5a and the membrane attack complex are involved in the pathogenesis of ischemia-reperfusion injury in many organs. CD59 is the major regulator of membrane attack complex formation. Mice deficient in the Cd59a gene (mCd59a-/-) were used to investigate the role of CD59 in renal ischemia-reperfusion injury. Unilateral ischemia-reperfusion injury was induced by clamping the left renal pedicle for 30 minutes under general anesthetic. Mice were studied at 72 hours and 2 weeks after ischemia-reperfusion injury. mCd59a-/- mice developed significantly greater tubular injury (P = 0.01), tubulointerstitial apoptosis (P = 0.02), and neutrophil influx (P = 0.04) than controls at 72 hours after ischemia-reperfusion. Two weeks after ischemia-reperfusion, mCd59a-/- mice exhibited more severe tubular damage predominantly in a corticomedullary distribution than controls (P = 0.02). Quantification of interstitial leukocytes revealed significantly greater numbers of infiltrating lymphocytes (but not macrophages) in mCd59a-/- mice than controls (P = 0.04) at 2 weeks. At both time points, significantly more C9 (as a marker of membrane attack complex) deposition occurred in a peritubular distribution in mCd59a-/- mice than controls. In conclusion, these results demonstrate that the lack of CD59a, by allowing unregulated membrane attack complex deposition, exacerbates both the tubular injury and the interstitial leukocyte infiltrate after ischemia-reperfusion injury in mice.
Collapse
Affiliation(s)
- Daniel Turnberg
- Rheumatology Section, Eric Bywaters Centre, London, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
216
|
Yamada K, Miwa T, Liu J, Nangaku M, Song WC. Critical protection from renal ischemia reperfusion injury by CD55 and CD59. THE JOURNAL OF IMMUNOLOGY 2004; 172:3869-75. [PMID: 15004194 DOI: 10.4049/jimmunol.172.6.3869] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Renal ischemia-reperfusion injury (IRI) is a feature of ischemic acute renal failure and it impacts both short- and long-term graft survival after kidney transplantation. Complement activation has been implicated in renal IRI, but its mechanism of action is uncertain and the determinants of complement activation during IRI remain poorly understood. We engineered mice deficient in two membrane complement regulatory proteins, CD55 and CD59, and used them to investigate the role of these endogenous complement inhibitors in renal IRI. CD55-deficient (CD55(-/-)), but not CD59-deficient (CD59(-/-)), mice exhibited increased renal IRI as indicated by significantly elevated blood urea nitrogen levels, histological scores, and neutrophil infiltration. Remarkably, although CD59 deficiency alone was inconsequential, CD55/CD59 double deficiency greatly exacerbated IRI. Severe IRI in CD55(-/-)CD59(-/-) mice was accompanied by endothelial deposition of C3 and the membrane attack complex (MAC) and medullary capillary thrombosis. Complement depletion in CD55(-/-)CD59(-/-) mice with cobra venom factor prevented these effects. Thus, CD55 and CD59 act synergistically to inhibit complement-mediated renal IRI, and abrogation of their function leads to MAC-induced microvascular injury and dysfunction that may exacerbate the initial ischemic assault. Our findings suggest a rationale for anti-complement therapies aimed at preventing microvascular injury during ischemia reperfusion, and the CD55(-/-)CD59(-/-) mouse provides a useful animal model in this regard.
Collapse
Affiliation(s)
- Koei Yamada
- Center for Experimental Therapeutics and Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
217
|
Toomayan GA, Chen LE, Jiang HX, Qi WN, Seaber AV, Frank MM, Urbaniak JR. C1-esterase inhibitor and a novel peptide inhibitor improve contractile function in reperfused skeletal muscle. Microsurgery 2004; 23:561-7. [PMID: 14705072 DOI: 10.1002/micr.10210] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To determine the role of inhibition of complement activation in the contractile function of skeletal muscle ischemia-reperfusion (I/R) injury, the rat extensor digitorum longus (EDL) muscles underwent 3 h ischemia and received human C1-esterase inhibitor (C1-INH, 100 IU/kg), a synthetic C1q A chain peptide with a similar inhibitory effect on activated C1 (peptide, 5 mg/kg), or human serum albumin control. Results showed a significant overall increase in tetanic contractile forces of the reperfused EDL in both C1-INH and peptide groups compared to controls. Maximum improvement occurred with peptide treatment at 120-Hz stimulation, with an increase in force from 38 +/- 4% of normal in controls to 52 +/- 4% in peptide-treated rats. There were no significant differences between C1-INH and peptide groups. Plasma C3 and C4 activities were significantly increased in both treated groups, suggesting inhibition of complement activation. Our results suggest that complement activation is involved in I/R injury, and inhibition of complement activation may therefore represent a potential therapeutic approach to reducing or preventing I/R injury.
Collapse
Affiliation(s)
- Glen A Toomayan
- Orthopaedic Microsurgery Laboratories, Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | |
Collapse
|
218
|
Affiliation(s)
- Richard J Quigg
- Section of Nephrology, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
219
|
Elliott MK, Jarmi T, Ruiz P, Xu Y, Holers VM, Gilkeson GS. Effects of complement factor D deficiency on the renal disease of MRL/lpr mice. Kidney Int 2004; 65:129-38. [PMID: 14675043 DOI: 10.1111/j.1523-1755.2004.00371.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND The alternative complement pathway (AP) is activated in individuals with lupus nephritis and in murine models of systemic lupus erythematosus, including MRL/lpr mice. A previous study from our laboratory evaluated the development of renal disease in MRL/lpr mice genetically deficient in factor B (Bf-/-), a protein necessary for AP activation. MRL/lpr Bf-/- mice developed less renal disease and had improved survival; however, these mice were also a different major histocompatibility complex (MHC) haplotype (H-2b) than their wild-type littermates (H-2k) due to the gene for Bf being located in the MHC gene complex. We undertook the current study to determine if the decreased renal disease in MRL/lpr Bf-/- mice was due to the lack of AP activation or the H-2b haplotype by studying the effects of factor D (Df) deficiency, a critical protein for AP activation, on disease development in MRL/lpr mice. METHODS Df-deficient mice were backcrossed with MRL/lpr mice for four to nine generations. MRL/lpr H-2k Df-/-, Df+/-, and Df+/+ littermates were evaluated for disease development. Lack of AP activation in MRL/lpr Df-/- mice was determined by the zymosan assay. Serum creatinine levels were measured using a creatinine kit. Proteinuria and autoantibody levels were determined by enzyme-linked immunosorbent assay (ELISA). Sections from one kidney were stained with fluorescein isothiocyanate (FITC) alpha-murine C3 or alpha-murine IgG to detect C3 and IgG deposition. The remaining kidney was cut in half with one half fixed, sectioned, and stained with hematoxylin and eosin and periodic acid-Schiff (PAS) to evaluate pathology and another half fixed in glutaraldehyde and examined via electron microscopy. RESULTS MRL/lpr Df-/- mice had similar glomerular IgG deposition, proteinuria and autoantibody levels, as Df+/+ and Df+/- littermates. However, glomerular C3 deposition, serum creatinine levels, and pathologic renal disease were significantly reduced in Df-/- mice. Despite the lack of renal disease in Df-/- mice, life span was not impacted by factor D deficiency. CONCLUSION The absence of Df and AP activation is protective against the development of proliferative renal disease in MRL/lpr mice suggesting the similar effect of Bf deficiency in MRL/lpr mice was also due to the lack of AP activation.
Collapse
Affiliation(s)
- Margaret K Elliott
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | | | | | | | | | | |
Collapse
|
220
|
Lien YHH, Lai LW, Silva AL. Pathogenesis of renal ischemia/reperfusion injury: lessons from knockout mice. Life Sci 2003; 74:543-52. [PMID: 14623025 DOI: 10.1016/j.lfs.2003.08.001] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ischemia/reperfusion-induced acute renal failure is a common clinical problem associated with a high morbidity and mortality. Upon hypoxic injury, the depletion of ATP causes mitochondrial dysfunction, and accumulation of intracellular sodium, calcium and reactive oxygen species. Subsequently, multiple enzyme systems including proteases, nitric oxide synthases, phospholipases and endonuclease are activated and responsible for cytoskeleton disruption, membrane damage, and DNA degradation, and eventually cell death. Ischemia/reperfusion injury also activates complement, cytokines, and chemokines, which are cytotoxic themselves, but also attract leukocytes into the ischemic area to cause further damage. The vascular endothelial cell injury and dysfunction prolong ischemia and induce vascular congestion, edema, and further infiltration of inflammatory cells. Many players in renal ischemia/reperfusion injury and their mechanisms have been investigated using genetically manipulated mouse models. In this review, we focus on the information gathered from these studies. Deficiency of the Na/Ca exchanger, inducible nitric oxide synthase, Caspase-1, A3 adenosine receptor, C3, C5, C6, Factor B, or midkine protects the kidney against I/R injury. Conversely, deficiency of the interleukin-1 receptor, osteopontin, C4, or recombination activation gene-1 is not protective, while the absence of adrenomedullin or endothelin receptor B delays the recovery of ischemia/reperfusion injury. The knowledge obtained from these studies provides new direction for designing potential therapeutic agents for treating ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Yeong-Hau H Lien
- Nephrology Section, Department of Medicine, University of Arizona Health Sciences Center, Tucson, AZ 85724, USA.
| | | | | |
Collapse
|
221
|
Abstract
The complement system plays a complex role in transplantation, beginning with effects on reperfusion injury and continuing with stimulation of the adaptive immune response. Recent evidence has emphasised the importance of the late components of the complement cascade in the mediation of post-ischaemic damage, which are apparently triggered by the classical, alternative or lectin pathways of complement activation, depending on the organ affected. In studies of renal allograft rejection, the local synthesis of complement component C3 seems to influence the T-cell response more strongly than circulating complement protein, raising the possibility that there is co-operation between locally derived C3 and antigen presentation in the graft. Class switching of alloantibody to a high-affinity IgG response is also highly dependent on C3. In addition, the finding that capillary-bound C4d is a robust marker for humoral rejection has started a new investigation into the significance of alloantibodies in acute and chronic allograft rejection. There are several selective and nonselective inhibitors suitable for clinical development; clearly it is time for more concerted effort to evaluate their role in clinical transplantation.
Collapse
Affiliation(s)
- Steven H Sacks
- Department of Nephrology and Transplantation, 5th Floor, Thomas Guy House, Guy's Hospital, King's College London, University of London, SE1 9RT, London, UK.
| | | | | |
Collapse
|
222
|
Burne-Taney MJ, Ascon DB, Daniels F, Racusen L, Baldwin W, Rabb H. B cell deficiency confers protection from renal ischemia reperfusion injury. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:3210-5. [PMID: 12960350 DOI: 10.4049/jimmunol.171.6.3210] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recent data have demonstrated a role for CD4(+) cells in the pathogenesis of renal ischemia reperfusion injury (IRI). Identifying engagement of adaptive immune cells in IRI suggests that the other major cell of the adaptive immune response, B cells, may also mediate renal IRI. An established model of renal IRI was used: 30 min of renal pedicle clamping was followed by reperfusion in B cell-deficient ( mu MT) and wild-type mice. Renal function was significantly improved in mu MT mice compared with wild-type mice at 24, 48, and 72 h postischemia. mu MT mice also had significantly reduced tubular injury. Both groups of mice had similar renal phagocyte infiltration postischemia assessed by myeloperoxidase levels and similar levels of CD4(+) T cell infiltration postischemia. Peritubular complement C3d staining was also similar in both groups. To identify the contribution of cellular vs soluble mechanism of action, serum transfer into mu MT mice partially restored ischemic phenotype, but B cell transfers did not. These data are the first demonstration of a pathogenic role for B cells in ischemic acute renal failure, with a serum factor as a potential underlying mechanism of action.
Collapse
Affiliation(s)
- Melissa J Burne-Taney
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | |
Collapse
|
223
|
Affiliation(s)
- V Michael Holers
- Department of Medicine and Immunology, Health Science Center, University of Colorado, Denver, CO 80262, USA.
| |
Collapse
|