201
|
Hoefel G, Tay H, Foster P. MicroRNAs in Lung Diseases. Chest 2019; 156:991-1000. [DOI: 10.1016/j.chest.2019.06.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 06/03/2019] [Accepted: 06/17/2019] [Indexed: 12/31/2022] Open
|
202
|
MicroRNAs - novel biomarkers for malignant pleural effusions. Contemp Oncol (Pozn) 2019; 23:133-140. [PMID: 31798327 PMCID: PMC6883963 DOI: 10.5114/wo.2019.89241] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 08/09/2019] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is one of the most common causes of cancer death. Its poor prognosis can be attributed to the patients’ advanced or metastatic presentation at the time of diagnosis. To improve and accelerate the diagnosis, better therapeutic and diagnostic methods are constantly being sought. MicroRNAs (miRNAs) are short nucleotide sequences of single-stranded, non-coding RNA that function as critical post-transcriptional regulators of gene expression. They are identified not only intracellularly, but also in physiological and pathological body fluids. These molecules are responsible for the regulation of approximately 33% of human genes, either regulating the expression of both oncogenes and suppressor genes or acting directly as an oncogene or suppressor gene itself. MiRNAs can contribute to the formation of cancer. The high specificity and sensitivity of miRNAs have been demonstrated with various malignant diseases, and for this reason, they raise particular interest as new and perspective biomarkers of tumours. Our work summarises the available information from recent years regarding the possibility of using miRNAs as biomarkers in the diagnosis of neoplasms. In this review, we focused on malignant pleural effusions with an emphasis on non-small cell lung cancer (NSCLC).
Collapse
|
203
|
Schmutz C, Cenk E, Marko D. The Alternaria Mycotoxin Alternariol Triggers the Immune Response of IL-1β-stimulated, Differentiated Caco-2 Cells. Mol Nutr Food Res 2019; 63:e1900341. [PMID: 31584250 PMCID: PMC6856692 DOI: 10.1002/mnfr.201900341] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/20/2019] [Indexed: 11/12/2022]
Abstract
SCOPE Alternariol (AOH), a toxic secondary metabolite of Alternaria spp., may contaminate a broad spectrum of food and feed. Besides its cytotoxic, genotoxic, and estrogenic properties, several studies report the potential of AOH to suppress the rich network of immune responses. The specific effect of AOH on inflammation-related signaling in non-immune cells of the intestinal epithelial layer has, however, not been investigated yet. Since intestinal epithelial cells (IECs) are, compared to underlying cells, exposed to higher concentrations of the ingested mycotoxin, the question is addressed whether immunomodulation by AOH at the gastrointestinal barrier must be considered. METHODS AND RESULTS The impact of AOH (0.02-40 µm) on inflammatory signaling in either IL-1β-stimulated or non-stimulated differentiated Caco-2 cells is determined. AOH significantly reduces IL-1β transcription after 5 h but shows an increasing tendency on IL-8 transcript levels after long-term exposure (20 h). In IL-1β-stimulated cells, AOH (20-40 µm) augments TNF-α transcripts while repressing IL-8, IL-6, and IL-1β transcription as well as IL-8 secretion. Furthermore, inflammation-related microRNAs miR-16, miR-146a, miR-125b, and miR-155 are altered in response to AOH. CONCLUSION The obtained data indicate that AOH represses immune responses in an inflamed environment, possibly leading to higher susceptibility to diseases.
Collapse
Affiliation(s)
- Cornelia Schmutz
- University of ViennaFaculty of ChemistryDepartment of Food Chemistry and ToxicologyWaehringerstr. 38A‐1090ViennaAustria
| | - Ebru Cenk
- University of ViennaFaculty of ChemistryDepartment of Food Chemistry and ToxicologyWaehringerstr. 38A‐1090ViennaAustria
| | - Doris Marko
- University of ViennaFaculty of ChemistryDepartment of Food Chemistry and ToxicologyWaehringerstr. 38A‐1090ViennaAustria
| |
Collapse
|
204
|
FADD in Cancer: Mechanisms of Altered Expression and Function, and Clinical Implications. Cancers (Basel) 2019; 11:cancers11101462. [PMID: 31569512 PMCID: PMC6826683 DOI: 10.3390/cancers11101462] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/25/2019] [Accepted: 09/27/2019] [Indexed: 12/15/2022] Open
Abstract
FADD was initially described as an adaptor molecule for death receptor-mediated apoptosis, but subsequently it has been implicated in nonapoptotic cellular processes such as proliferation and cell cycle control. During the last decade, FADD has been shown to play a pivotal role in most of the signalosome complexes, such as the necroptosome and the inflammasome. Interestingly, various mechanisms involved in regulating FADD functions have been identified, essentially posttranslational modifications and secretion. All these aspects have been thoroughly addressed in previous reviews. However, FADD implication in cancer is complex, due to pleiotropic effects. It has been reported either as anti- or protumorigenic, depending on the cell type. Regulation of FADD expression in cancer is a complex issue since both overexpression and downregulation have been reported, but the mechanisms underlying such alterations have not been fully unveiled. Posttranslational modifications also constitute a relevant mechanism controlling FADD levels and functions in tumor cells. In this review, we aim to provide detailed, updated information on alterations leading to changes in FADD expression and function in cancer. The participation of FADD in various biological processes is recapitulated, with a mention of interesting novel functions recently proposed for FADD, such as regulation of gene expression and control of metabolic pathways. Finally, we gather all the available evidence regarding the clinical implications of FADD alterations in cancer, especially as it has been proposed as a potential biomarker with prognostic value.
Collapse
|
205
|
Gulei D, Raduly L, Broseghini E, Ferracin M, Berindan-Neagoe I. The extensive role of miR-155 in malignant and non-malignant diseases. Mol Aspects Med 2019; 70:33-56. [PMID: 31558293 DOI: 10.1016/j.mam.2019.09.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) have rapidly emerged as key molecules in cancer initiation and development, showing the capability to regulate pivotal oncogenic pathways. MiR-155 has gathered an increased attention especially in oncology, but also in non-malignanat pathologies. Nowadays, this noncoding RNA is one of the most important miRNAs in cancer, due to the extensive signaling network associated with it, implication in immune system regulation and also deregulation in disease states. Therefore, numerous research protocols are focused on preclinical modulation of miR-155 for therapeutic purposes, or investigation of its dynamic expression for diagnostic/prognostic assessments, with the final intention of bringing this miRNA into the clinical setting. This review comprehensively presents the extended role of miR-155 in cancer and other pathologies, where its expression is dysregulated. Finally, we assess the future steps toward miR-155 based therapeutics.
Collapse
Affiliation(s)
- Diana Gulei
- MEDFUTURE - Research Center for Advanced Medicine, University of Medicine and Pharmacy Iuliu-Hatieganu, Marinescu 23 Street, Cluj-Napoca, Romania.
| | - Lajos Raduly
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Marinescu 23 Street, No. 23, 400337, Cluj-Napoca, Romania
| | - Elisabetta Broseghini
- Department of Experimental, Diagnostic and Specialty Medicine, DIMES, University of Bologna, Bologna, Italy
| | - Manuela Ferracin
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Marinescu 23 Street, No. 23, 400337, Cluj-Napoca, Romania; Department of Experimental, Diagnostic and Specialty Medicine, DIMES, University of Bologna, Bologna, Italy
| | - Ioana Berindan-Neagoe
- MEDFUTURE - Research Center for Advanced Medicine, University of Medicine and Pharmacy Iuliu-Hatieganu, Marinescu 23 Street, Cluj-Napoca, Romania; Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Marinescu 23 Street, No. 23, 400337, Cluj-Napoca, Romania; Department of Functional Genomics and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuţă", Cluj-Napoca, 400015, Romania.
| |
Collapse
|
206
|
Al‐Rawaf HA, Alghadir AH, Gabr SA. MicroRNAs as Biomarkers of Pain Intensity in Patients With Chronic Fatigue Syndrome. Pain Pract 2019; 19:848-860. [DOI: 10.1111/papr.12817] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/24/2019] [Accepted: 06/28/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Hadeel A. Al‐Rawaf
- Rehabilitation Research Chair College of Applied Medical Sciences King Saud University Riyadh K.S.A
- Department of Clinical Laboratory Sciences College of Applied Medical Sciences King Saud University Riyadh K.S.A
| | - Ahmad H. Alghadir
- Rehabilitation Research Chair College of Applied Medical Sciences King Saud University Riyadh K.S.A
| | - Sami A. Gabr
- Rehabilitation Research Chair College of Applied Medical Sciences King Saud University Riyadh K.S.A
| |
Collapse
|
207
|
Motaei J, Yaghmaie M, Ahmadvand M, Pashaiefar H, Kerachian MA. MicroRNAs as Potential Diagnostic, Prognostic, and Predictive Biomarkers for Acute Graft-versus-Host Disease. Biol Blood Marrow Transplant 2019; 25:e375-e386. [PMID: 31419566 DOI: 10.1016/j.bbmt.2019.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 02/06/2023]
Abstract
Successful treatment of various hematologic diseases with allogeneic hematopoietic stem cell transplantation is often limited due to the occurrence of acute graft-versus-host disease (aGVHD). So far, there are no approved molecular biomarkers for the diagnosis and prediction of aGVHD at the clinical level due to our incomplete understanding of the molecular biology of the disease. Various studies have been conducted on animal models and humans to investigate the role of microRNAs in aGVHD pathogenesis to implicate them as biomarkers and therapeutic targets. Because of their high stability, tissue specificity, ease of measurement, low cost, and simplicity, they are excellent targets for biomarkers. In this review, we focused on microRNA expression profiling studies that were performed recently in both animal models and human cases of aGVHD to identify diagnostic and predictive biomarkers for this disease. The expression pattern of microRNAs can be specific to cells and tissues. Because aGVHD affects several organs, microRNA signatures in target tissues may help to understand the molecular pathology of the disease. Identification of organ-specific microRNAs in aGVHD can be promising to categorize patients for organ-specific therapies. Thus, microRNAs can be used as noninvasive diagnostic tests in clinic to improve prophylaxis, predict incidence and severity, and reduce morbidity.
Collapse
Affiliation(s)
- Jamshid Motaei
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marjan Yaghmaie
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ahmadvand
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Pashaiefar
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Kerachian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Cancer Genetics Research Unit, Reza Radiotherapy and Oncology Center, Mashhad, Iran.
| |
Collapse
|
208
|
Kuno S, Penglong T, Srinoun K. Anemia Severity in β-Thalassemia Correlates with Elevated Levels of microRNA-125b in Activated Phagocytic Monocytes. Hemoglobin 2019; 43:155-161. [PMID: 31379233 DOI: 10.1080/03630269.2019.1628043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
β-Thalassemia (β-thal), is an inherited blood disorder caused by reduced or absent synthesis of β-globin chains leading to imbalance of globin chain synthesis. The clearance of β-thalassemic abnormal red blood cells (RBCs) that result from excessive unbound α-globin is mainly achieved by activated monocytes. The phagocytic activity of β-thal monocytes significantly increases when co-cultured with normal and β-thal RBC individuals compare to that of normal monocytes co-cultured with normal RBCs. The present study indicates that microRNA (miR) plays a role in monocyte activation. In this study, we identified the higher miR-125b expression in CD14 marker-positive monocytic cells of β-thal patients. Moreover, miR-125b expression levels positively correlate with the phagocytic activity of monocytes. Remarkably, miR-125b expression levels are negatively correlated with RBC count, hemoglobin (Hb) and hematocrit [or packed cell volume (PCV)], which are the indices for the severity of anemia. From these findings, our future studies will be to prove the hypothesis that miR-125b expression in activated monocytes may be a genetic modifier related to the severity of anemia in β-thal patients.
Collapse
Affiliation(s)
- Suhaibee Kuno
- Department of Biomedical Sciences, Faculty of Medicine, Prince of Songkla University , Songkhla , Thailand
| | - Tipparat Penglong
- Department of Pathology, Faculty of Medicine, Prince of Songkla University, Songkla, Thailand
| | - Kanitta Srinoun
- Faculty of Medical Technology, Prince of Songkla University , Songkhla , Thailand
| |
Collapse
|
209
|
Veloso Júnior PHDH, Simon KS, de Castro RJA, Coelho LC, Erazo FAH, de Souza ACB, das Neves RC, Lozano VF, Schwartz EF, Tavares AH, Mortari MR, Junqueira-Kipnis AP, Silva-Pereira I, Bocca AL. Peptides ToAP3 and ToAP4 decrease release of inflammatory cytokines through TLR-4 blocking. Biomed Pharmacother 2019; 118:109152. [PMID: 31376652 DOI: 10.1016/j.biopha.2019.109152] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/08/2019] [Accepted: 06/17/2019] [Indexed: 10/26/2022] Open
Abstract
Antimicrobial peptides (AMPs) are small molecules with microbicidal and immunoregulatory activities. In this study we evaluated the anti-inflammatory and antimicrobial activities of peptides ToAP3 and ToAP4, AMPs from the venom of the Brazilian scorpion Tityus obscurus. To test the peptides' activity, murine bone marrow-derived macrophages (BMDMs) or dendritic cells (BMDCs) were stimulated with peptides plus LPS to analyze their ability to modulate cytokine release as well as phenotypic markers. For antimicrobial analysis, we evaluated the indirect activity against macrophage-internalized Cryptococcus neoformans and direct activity against Mycobacterium massiliense. Our data demonstrate that they were able to reduce TNF-α and IL-1β transcript levels and protein levels for BMDM and BMDC. Furthermore, the reduction of TNF-α secretion, before LPS- inflammatory stimuli, is associated with peptide interaction with TLR-4. ToAP4 increased MHC-II expression in BMDC, while ToAP3 decreased co-stimulatory molecules such as CD80 and CD86. Although these peptides were able to modulate the production of cytokines and molecules associated with antigen presentation, they did not increase the ability of clearance of C. neoformans by macrophages. In antimicrobial analysis, only ToAP3 showed potent action against bacteria. Altogether, these results demonstrate a promising target for the development of new immunomodulatory and anti-bacterial therapies.
Collapse
Affiliation(s)
| | - Karina Smidt Simon
- Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | | | - Luísa Coutinho Coelho
- Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | | | | | - Rogério Coutinho das Neves
- Department of Biosciences and Technologies, Institute of Tropical Diseases and Public Health, Federal University of Goiás, Goiânia, Brazil
| | - Viviane Furlan Lozano
- Public Health Central Laboratory, Secretary of Health of Distrito Federal, Brasilia, Brazil
| | - Elizabeth Ferroni Schwartz
- Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Aldo Henrique Tavares
- Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Márcia Renata Mortari
- Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Ana Paula Junqueira-Kipnis
- Department of Biosciences and Technologies, Institute of Tropical Diseases and Public Health, Federal University of Goiás, Goiânia, Brazil
| | - Ildinete Silva-Pereira
- Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Anamelia Lorenzetti Bocca
- Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil.
| |
Collapse
|
210
|
Ji C, Guo X, Ren J, Zu Y, Li W, Zhang Q. Transcriptomic analysis of microRNAs-mRNAs regulating innate immune response of zebrafish larvae against Vibrio parahaemolyticus infection. FISH & SHELLFISH IMMUNOLOGY 2019; 91:333-342. [PMID: 31129189 DOI: 10.1016/j.fsi.2019.05.050] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/22/2019] [Accepted: 05/22/2019] [Indexed: 06/09/2023]
Abstract
In recent years, microRNAs (miRNAs) have been shown to play important roles in immunity. Analyses of the functions of miRNAs and their targets are useful in understanding the regulation of the immune response. To understand the relationships between miRNAs and their targets during infection, we used zebrafish as an infection model in which to characterize the miRNA and mRNA transcriptomes of zebrafish larvae infected with Vibrio parahaemolyticus. We identified the differentially expressed miRNAs and mRNAs. Overall, 37 known zebrafish miRNAs were differentially expressed in the infection group and 107 predicted target genes of 26 miRNAs were differentially expressed in the mRNA transcriptome. These targets with specific Gene Ontology (GO) terms, such as peripheral nervous system neuron axonogenesis, organophosphate metabolic process, heme binding, protein binding, tetrapyrrole binding, protein dimerization activity, and aromatase activity, which regulate nerve conduction, energy metabolism, hematopoiesis, and protein synthesis. They were also associated with Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways such as phototransduction, tryptophan metabolism, notch signaling, and purine metabolism. Our findings indicate that miRNAs regulate the innate immune response via complex networks, and zebrafish (Danio rerio, dre)-miR-205-3p, dre-miR-141-5p, dre-miR-200a-5p, dre-miR-92a-2-5p, dre-miR-192, and dre-miR-1788 may play important roles in the innate immune response by regulating target genes.
Collapse
Affiliation(s)
- Ce Ji
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Xinya Guo
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Jianfeng Ren
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Yao Zu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Weiming Li
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, 48824, USA
| | - Qinghua Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
211
|
Nziza N, Duroux-Richard I, Apparailly F. MicroRNAs in juvenile idiopathic arthritis: Can we learn more about pathophysiological mechanisms? Autoimmun Rev 2019; 18:796-804. [DOI: 10.1016/j.autrev.2019.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 03/03/2019] [Indexed: 01/05/2023]
|
212
|
MicroRNA 155 Contributes to Host Immunity against Leishmania donovani but Is Not Essential for Resolution of Infection. Infect Immun 2019; 87:IAI.00307-19. [PMID: 31182615 DOI: 10.1128/iai.00307-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 05/27/2019] [Indexed: 02/07/2023] Open
Abstract
CD4+ T helper 1 (Th1) cells producing interferon gamma (IFN-γ) are critical for the resolution of visceral leishmaniasis (VL). MicroRNA 155 (miR155) promotes CD4+ Th1 responses and IFN-γ production by targeting suppressor of cytokine signaling-1 (SOCS1) and Src homology-2 domain-containing inositol 5-phosphatase 1 (SHIP-1) and therefore could play a role in the resolution of VL. To determine the role of miR155 in VL, we monitored the course of Leishmania donovani infection in miR155 knockout (miR155KO) and wild-type (WT) C57BL/6 mice. miR155KO mice displayed significantly higher liver and spleen parasite loads than WT controls and showed impaired hepatic granuloma formation. However, parasite growth eventually declined in miR155KO mice, suggesting the induction of a compensatory miR155-independent antileishmanial pathway. Leishmania antigen-stimulated splenocytes from miR155KO mice produced significantly lower levels of Th1-associated IFN-γ than controls. Interestingly, at later time points, levels of Th2-associated interleukin-4 (IL-4) and IL-10 were also lower in miR155KO splenocyte supernatants than in WT mice. On the other hand, miR155KO mice displayed significantly higher levels of IFN-γ, iNOS, and TNF-α gene transcripts in their livers than WT mice, indicating that distinct organ-specific antiparasitic mechanisms were involved in control of L. donovani infection in miR155KO mice. Throughout the course of infection, organs of miR155KO mice showed significantly more PDL1-expressing Ly6Chi inflammatory monocytes than WT mice. Conversely, blockade of Ly6Chi inflammatory monocyte recruitment in miR155KO mice significantly reduced parasitic loads, indicating that these cells contributed to disease susceptibility. In conclusion, we found that miR155 contributes to the control of L. donovani but is not essential for infection resolution.
Collapse
|
213
|
Al-Rawaf HA, Gabr SA, Alghadir AH. Molecular Changes in Diabetic Wound Healing following Administration of Vitamin D and Ginger Supplements: Biochemical and Molecular Experimental Study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2019; 2019:4352470. [PMID: 31428171 PMCID: PMC6679851 DOI: 10.1155/2019/4352470] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 07/06/2019] [Accepted: 07/11/2019] [Indexed: 01/13/2023]
Abstract
BACKGROUND Circulating micro-RNAs are differentially expressed in various tissues and could be considered as potential regulatory biomarkers for T2DM and related complications, such as chronic wounds. AIM In the current study, we investigated whether ginger extract enriched with [6]-gingerol-fractions either alone or in combination with vitamin D accelerates diabetic wound healing and explores underlying molecular changes in the expression of miRNA and their predicted role in diabetic wound healing. METHODS Diabetic wounded mice were treated with [6]-gingerol-fractions (GF) (25 mg/kg of body weight) either alone or in combination with vitamin D (100 ng/kg per day) for two weeks. Circulating miRNA profile, fibrogenesis markers, hydroxyproline (HPX), fibronectin (FN), and collagen deposition, diabetic control variables, FBS, HbA1c, C-peptide, and insulin, and wound closure rate and histomorphometric analyses were, respectively, measured at days 3, 6, 9, and 15 by RT-PCR and immunoassay analysis. RESULTS Treatment of diabetic wounds with GF and vitamin D showed significant improvement in wound healing as measured by higher expression levels of HPX, FN, collagen, accelerated wound closure, complete epithelialization, and scar formation in short periods (11-13 days, (P < 0.01). On a molecular level, three circulating miRNAs, miR-155, miR-146a, and miR-15a, were identified in diabetic and nondiabetic skin wounds by PCR analysis. Lower expression in miR-155 levels and higher expression of miR-146a and miR-15a levels were observed in diabetic skin wounds following treatment with gingerols fractions and vitamin D for 15 days. The data showed that miRNAs, miR-146a, miR-155, and miR-15a, correlated positively with the expression levels of HPX, FN, and collagen and negatively with FBS, HbA1c, C-peptide, and insulin in diabetic wounds following treatment with GF and /or vitamin D, respectively. CONCLUSION Treatment with gingerols fractions (GF) and vitamin D for two weeks significantly improves delayed diabetic wound healing. The data showed that vitamin D and gingerol activate vascularization, fibrin deposition (HPX, FN, and collagen), and myofibroblasts in such manner to synthesize new tissues and help in the scar formation. Accordingly, three miRNAs, miR-155, miR-146a, and miR-15, as molecular targets, were identified and significantly evaluated in wound healing process. It showed significant association with fibrin deposition, vascularization, and reepithelialization process following treatment with GF and vitamin D. It proposed having anti-inflammatory action and promoting new tissue formation via vascularization process during the wound healing. Therefore, it is very interesting to consider miRNAs as molecular targets for evaluating the efficiency of nondrug therapy in the regulation of wound healing process.
Collapse
Affiliation(s)
- Hadeel A. Al-Rawaf
- Rehabilitation Research Chair, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Sami A. Gabr
- Rehabilitation Research Chair, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ahmad H. Alghadir
- Rehabilitation Research Chair, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
214
|
Sonzogni O, Millard AL, Taveira A, Schneider MKJ, Duo L, Speck RF, Wulf GM, Mueller NJ. Efficient Human Cytomegalovirus Replication in Primary Endothelial Cells Is SOCS3 Dependent. Intervirology 2019; 62:80-89. [PMID: 31315128 DOI: 10.1159/000501383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 06/06/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND In immunocompromised patients, human cytomegalovirus (HCMV) infection is a major cause of morbidity and mortality. Suppressor of cytokine signaling (SOCS) proteins are very potent negative regulators of the janus kinase/signal transducer and activator of transcription (JAK/STAT) pathways. We hypothesized that HCMV exploits SOCS1 and/or SOCS3 to its advantage. METHODS All experiments were carried out with primary human lung-derived microvascular endothelial cells (HMVEC). SOCS1 and SOCS3 were silenced by transfecting the cells with siRNA. HCMV was propagated and titered on human lung-derived fibroblasts MRC5. Real-time PCR and Western blot were used to detect mRNA and protein levels, respectively. RESULTS The data presented show that an efficient replication of HCMV in HMVEC is dependent on SOCS3 protein. Time course analysis revealed an increase in SOCS3 protein levels in infected cells. Silencing of SOCS3 (siSOCS3) resulted in inhibition of viral immediate early, early, and late antigen production. Consistently, HCMV titers produced by siSOCS3 cultures were significantly decreased when compared to control transfected cultures (siCNTRs). STAT1 and STAT2 phosphorylation was increased in siSOCS3-infected cells when compared to siCNTR-treated cells. CONCLUSION These findings indicate the implication of SOCS3 in the mechanism of HCMV-mediated control of cellular immune responses.
Collapse
Affiliation(s)
- Olmo Sonzogni
- Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA,
| | - Anne-Laure Millard
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Aline Taveira
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Mårten K J Schneider
- Laboratory of Vascular Immunology, Division of Internal Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Li Duo
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Roberto F Speck
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Gerburg M Wulf
- Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Nicolas J Mueller
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
215
|
Chu Q, Yan X, Liu L, Xu T. The Inducible microRNA-21 Negatively Modulates the Inflammatory Response in Teleost Fish via Targeting IRAK4. Front Immunol 2019; 10:1623. [PMID: 31379828 PMCID: PMC6648887 DOI: 10.3389/fimmu.2019.01623] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 06/28/2019] [Indexed: 12/16/2022] Open
Abstract
Eradication of bacterial infection requires timely and appropriate immune and inflammatory responses, but excessive induction of inflammatory cytokines can cause acute or chronic inflammatory disorders. Thus, various layers of negative regulators and mechanisms are needed to ensure maintenance of the homeostasis for the immune system. miRNAs are a family of small non-coding RNAs that emerged as significant and versatile regulators involved in regulation of immune responses. Recently, the molecular mechanisms of miRNA in host-pathogen interaction networks have been extensively studied in mammals, whereas the underlying regulatory mechanisms in fish are still poorly understood. In this study, we identify miR-21 as a negative regulator of the teleost inflammatory response. We found that lipopolysaccharide and Vibrio anguillarum significantly upregulated the expression of fish miR-21. Upregulated miR-21 suppresses LPS-induced inflammatory cytokine expression by targeting IL-1 receptor-associated kinase 4 (IRAK4), thereby avoiding excessive inflammatory responses. Furthermore, we demonstrated that miR-21 regulates inflammatory responses through NF-κB signaling pathways. The collective findings indicate that miR-21 plays a regulatory role in host-pathogen interactions through IRAK4-mediated NF-κB signaling pathway.
Collapse
Affiliation(s)
- Qing Chu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China.,Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai, China
| | - Xiaolong Yan
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China.,Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai, China
| | - Lihua Liu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China.,Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai, China
| | - Tianjun Xu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China.,Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai, China.,International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China
| |
Collapse
|
216
|
Palmieri B, Vadalà M, Laurino C. Review of the molecular mechanisms in wound healing: new therapeutic targets? J Wound Care 2019; 26:765-775. [PMID: 29244975 DOI: 10.12968/jowc.2017.26.12.765] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The restoration of the skin barrier in acute and chronic wounds is controlled by several molecular mechanisms that synergistically regulate cell kinetics, enzymatic functions, and neurovascular activation. These pathways include genetic and epigenetic activation, which modulate physiological wound healing. Our review describes the genetic background of skin repair, namely transcription-independent diffusible damage signals, individual variability, epigenetic mechanism, controlled qualitative traits, post-translational mechanisms, antioxidants, nutrients, DNA modifications, bacteria activation, mitochondrial activity, and oxidative stress. The DNA background modulating skin restoration could be used to plan new diagnostics and therapeutics.
Collapse
Affiliation(s)
- B Palmieri
- Associated Professor, Dipartimento Chirurgico, Medico, Odontoiatrico e di Scienze Morfologiche con Interesse Trapiantologico, Oncologico e di Medicina Rigenerativa, Università degli Studi di Modena e Reggio Emilia, Modena, Italy; Network del Secondo Parere, Modena (MO), Italy
| | - M Vadalà
- Biologist Researcher, Dipartimento Chirurgico, Medico, Odontoiatrico e di Scienze Morfologiche con Interesse Trapiantologico, Oncologico e di Medicina Rigenerativa, Università degli Studi di Modena e Reggio Emilia, Modena, Italy; Network del Secondo Parere, Modena (MO), Italy
| | - C Laurino
- Biologist Researcher, Dipartimento Chirurgico, Medico, Odontoiatrico e di Scienze Morfologiche con Interesse Trapiantologico, Oncologico e di Medicina Rigenerativa, Università degli Studi di Modena e Reggio Emilia, Modena, Italy; Network del Secondo Parere, Modena (MO), Italy
| |
Collapse
|
217
|
Chen X, Yuan L, Du J, Zhang C, Sun H. The polysaccharide from the roots of Actinidia eriantha activates RAW264.7 macrophages via regulating microRNA expression. Int J Biol Macromol 2019; 132:203-212. [DOI: 10.1016/j.ijbiomac.2019.03.158] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/14/2019] [Accepted: 03/22/2019] [Indexed: 12/12/2022]
|
218
|
Long Noncoding Competing Endogenous RNA Networks in Age-Associated Cardiovascular Diseases. Int J Mol Sci 2019; 20:ijms20123079. [PMID: 31238513 PMCID: PMC6627372 DOI: 10.3390/ijms20123079] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/17/2019] [Accepted: 06/21/2019] [Indexed: 12/24/2022] Open
Abstract
Cardiovascular diseases (CVDs) are the most serious health problem in the world, displaying high rates of morbidity and mortality. One of the main risk factors for CVDs is age. Indeed, several mechanisms are at play during aging, determining the functional decline of the cardiovascular system. Aging cells and tissues are characterized by diminished autophagy, causing the accumulation of damaged proteins and mitochondria, as well as by increased levels of oxidative stress, apoptosis, senescence and inflammation. These processes can induce a rapid deterioration of cellular quality-control systems. However, the molecular mechanisms of age-associated CVDs are only partially known, hampering the development of novel therapeutic strategies. Evidence has emerged indicating that noncoding RNAs (ncRNAs), such as long ncRNAs (lncRNAs) and micro RNAs (miRNAs), are implicated in most patho-physiological mechanisms. Specifically, lncRNAs can bind miRNAs and act as competing endogenous-RNAs (ceRNAs), therefore modulating the levels of the mRNAs targeted by the sponged miRNA. These complex lncRNA/miRNA/mRNA networks, by regulating autophagy, apoptosis, necrosis, senescence and inflammation, play a crucial role in the development of age-dependent CVDs. In this review, the emerging knowledge on lncRNA/miRNA/mRNA networks will be summarized and the way in which they influence age-related CVDs development will be discussed.
Collapse
|
219
|
Mathematical modeling of septic shock: an innovative tool for assessing therapeutic hypotheses. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-0747-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
220
|
Li C, Qu L, Farragher C, Vella A, Zhou B. MicroRNA Regulated Macrophage Activation in Obesity. J Transl Int Med 2019; 7:46-52. [PMID: 31380236 PMCID: PMC6661877 DOI: 10.2478/jtim-2019-0011] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Chuan Li
- Department of Immunology, School of Medicine, University of Connecticut, Farmington, CT, USA
| | - Lili Qu
- Department of Immunology, School of Medicine, University of Connecticut, Farmington, CT, USA
| | - Cullen Farragher
- College of Liberal Arts and Sciences, University of Connecticut, Storrs, CT, USA
| | - Anthony Vella
- Department of Immunology, School of Medicine, University of Connecticut, Farmington, CT, USA
| | - Beiyan Zhou
- Department of Immunology, School of Medicine, University of Connecticut, Farmington, CT, USA
- Institute for Systems Genomics, University of Connecticut, Farmington, CT, USA
| |
Collapse
|
221
|
Taenia crassiceps-Excreted/Secreted Products Induce a Defined MicroRNA Profile that Modulates Inflammatory Properties of Macrophages. J Immunol Res 2019; 2019:2946713. [PMID: 31218234 PMCID: PMC6536978 DOI: 10.1155/2019/2946713] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/26/2019] [Indexed: 12/20/2022] Open
Abstract
Helminth parasites modulate immune responses in their host to prevent their elimination and to establish chronic infections. Our previous studies indicate that Taenia crassiceps-excreted/secreted antigens (TcES) downregulate inflammatory responses in rodent models of autoimmune diseases, by promoting the generation of alternatively activated-like macrophages (M2) in vivo. However, the molecular mechanisms triggered by TcES that modulate macrophage polarization and inflammatory response remain unclear. Here, we found that, while TcES reduced the production of inflammatory cytokines (IL-6, IL-12, and TNFα), they increased the release of IL-10 in LPS-induced bone marrow-derived macrophages (BMDM). However, TcES alone or in combination with LPS or IL-4 failed to increase the production of the canonical M1 or M2 markers in BMDM. To further define the anti-inflammatory effect of TcES in the response of LPS-stimulated macrophages, we performed transcriptomic array analyses of mRNA and microRNA to evaluate their levels. Although the addition of TcES to LPS-stimulated BMDM induced modest changes in the inflammatory mRNA profile, it induced the production of mRNAs associated with the activation of different receptors, phagocytosis, and M2-like phenotype. Moreover, we found that TcES induced upregulation of specific microRNAs, including miR-125a-5p, miR-762, and miR-484, which are predicted to target canonical inflammatory molecules and pathways in LPS-induced BMDM. These results suggest that TcES can modulate proinflammatory responses in macrophages by inducing regulatory posttranscriptional mechanisms and hence reduce detrimental outcomes in hosts running with inflammatory diseases.
Collapse
|
222
|
Giacomini E, Alleva E, Fornelli G, Quartucci A, Privitera L, Vanni VS, Viganò P. Embryonic extracellular vesicles as informers to the immune cells at the maternal-fetal interface. Clin Exp Immunol 2019; 198:15-23. [PMID: 31009068 DOI: 10.1111/cei.13304] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2019] [Indexed: 12/15/2022] Open
Abstract
Extracellular vesicle (EV) exchange is emerging as a novel method of communication at the maternal-fetal interface. The presence of the EVs has been demonstrated in the preimplantation embryo culture medium from different species, such as bovines, porcines and humans. Preimplantation embryo-derived EVs have been shown to carry molecules potentially able to modulate the local endometrial immune system. The non-classical major histocompatibility complex (MHC) class I molecule human leucocyte antigen (HLA)-G, the immunomodulatory molecule progesterone-induced blocking factor and some regulatory miRNAs species are contained in embryo-derived EV cargo. The implanted syncytiotrophoblasts are also well known to secrete EVs, with microvesicles exerting a mainly proinflammatory effect while exosomes in general mediate local immunotolerance. This review focuses on the current knowledge on the potential role of EVs released by the embryo in the first weeks of pregnancy on the maternal immune cells. Collectively, the data warrant further exploration of the dialogue between the mother and the embryo via EVs.
Collapse
Affiliation(s)
- E Giacomini
- Reproductive Sciences Laboratory, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - E Alleva
- Obstetrics and Gynecology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - G Fornelli
- Obstetrics and Gynecology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - A Quartucci
- Obstetrics and Gynecology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - L Privitera
- Obstetrics and Gynecology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - V S Vanni
- Reproductive Sciences Laboratory, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Obstetrics and Gynecology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - P Viganò
- Reproductive Sciences Laboratory, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
223
|
Yang F, Ge G, Shen W, Chen L. The influence of the Chuyou Yuyang granule on the Toll-like receptor/nuclear factor-κB signal pathway in Helicobacter pylori-positive peptic ulcer patients. J Cell Biochem 2019; 120:13745-13750. [PMID: 31034651 DOI: 10.1002/jcb.28647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/07/2018] [Accepted: 02/07/2019] [Indexed: 11/09/2022]
Abstract
BACKGROUND The cure rate of Helicobacter pylori (HP)-positive peptic ulcer has appeared to downward trend, and the resistance of the ulcer relapse has become a hot issue. METHODS Hematoxylin and eosin staining was used to detect the repair of the damaged tissues in patients after treatment with the Chuyou Yuyang granule (CYYY). Elisa was used to analyze the expression of cytokine interleukin 18 (IL-18) and tumor necrosis factor α (TNF-α) in the patients' serum. Western blot analysis was used to explore the mechanism of the CYYY. Reverse-transcription polymerase chain reaction (RT-PCR) was used to detect the expression of microRNA-155a (miR-155a) and miR-146a in the blood of the patients and to confirm whether CYYY could cure peptic ulcer through regulation of miR-155a and miR-146a. RESULTS The damaged gastric mucosal tissues of ulcer patients were significantly repaired by treating with CYYY. The pro-inflammatory cytokine IL18 and TNF-α were notably repressed after treating with CYYY. In addition, CYYY played a key role in regulation of the Toll-like receptor (TLR4)/nuclear factor-κB (NF-κB) signal pathway and the expression of miR-155a and miR-146a. CONCLUSION CYYY was a highly effective therapeutic method for peptic ulcer patients by inhibiting the activation of the TLR4/NF-κB signal pathway and suppressing the expression of miR-155a and miR-146a.
Collapse
Affiliation(s)
- Fang Yang
- Department of Stomach (Gastroenterology), Nantong Hospital of Traditional Chinese Medicine, Nantong, China
| | - Guiping Ge
- Department of Stomach (Gastroenterology), Nantong Hospital of Traditional Chinese Medicine, Nantong, China
| | - Wen Shen
- Department of Stomach (Gastroenterology), Nantong Hospital of Traditional Chinese Medicine, Nantong, China
| | - Liang Chen
- Department of Stomach (Gastroenterology), Nantong Hospital of Traditional Chinese Medicine, Nantong, China
| |
Collapse
|
224
|
Pan M, Huang Y, Zhu X, Lin X, Luo D. miR‑125b‑mediated regulation of cell proliferation through the Jagged‑1/Notch signaling pathway by inhibiting BRD4 expression in psoriasis. Mol Med Rep 2019; 19:5227-5236. [PMID: 31059052 PMCID: PMC6522879 DOI: 10.3892/mmr.2019.10187] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 01/03/2019] [Indexed: 12/14/2022] Open
Abstract
Psoriasis is a chronic inflammatory disease characterized by the abnormal differentiation and hyperproliferation of epidermal keratinocytes. The aim of the present study was to investigate the mechanism by which microRNA‑125b (miR‑125b) inhibits the activation of the bromodomain‑containing protein 4 (BRD4)/Notch signaling pathway in psoriasis. The contents of associated miRNAs in serum samples from 32 patients with psoriasis were detected by reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR). The most significantly downregulated miRNA, miR‑125b, was screened out. In experiments using HaCaT cells, the association between miR‑125b and cell proliferation was observed using a Cell Counting Kit‑8 assay, that between miR‑125b and the Notch signaling pathway was observed by western blotting and RT‑qPCR, and that between miR‑125b and the upstream molecule BRD4 of the Notch signaling pathway was observed by luciferase reporter assay and western blotting. The proliferation of HaCaT cells became apparent following miR‑125b inhibition. The Jagged‑1 ligand in the Notch signaling pathway was upregulated, the active intracellular domain of the Notch1 receptor was increasingly truncated, and the Notch signaling pathway was activated. Furthermore, the inhibited miR‑125b contributed directly toward the upstream protein BRD4 3'‑UTR of Jagged‑1, ultimately activating the Notch signaling pathway with the upregulation of Jagged‑1. In conclusion, the proliferation of HaCaT cells mediated by the Jagged‑1/Notch signaling pathway was decreased with the miR‑125b‑mediated inhibition of BRD4 expression. Therefore, miR‑125b may be a biomarker and potential therapeutic target for psoriasis treatment.
Collapse
Affiliation(s)
- Min Pan
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yao Huang
- Institute of Sport Medicine, Affiliated Hospital of Nanjing University of TCM, Nanjing, Jiangsu 210023, P.R. China
| | - Xiaofang Zhu
- Department of Dermatology, Northern Jiangsu Province Hospital, Yangzhou, Jiangsu 225001, P.R. China
| | - Xiangfei Lin
- Department of Dermatology, Northern Jiangsu Province Hospital, Yangzhou, Jiangsu 225001, P.R. China
| | - Dan Luo
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
225
|
Dong L, Li H, Zhang S, Yang G. miR‑148 family members are putative biomarkers for sepsis. Mol Med Rep 2019; 19:5133-5141. [PMID: 31059023 PMCID: PMC6522910 DOI: 10.3892/mmr.2019.10174] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 10/01/2018] [Indexed: 12/19/2022] Open
Abstract
Sepsis is a type of systemic inflammatory response caused by infection. The present study aimed to identify novel targets for the treatment of sepsis. We conducted bioinformatic analysis of the microarray Gene Expression Omnibus dataset GSE12624, which includes data on 34 patients with sepsis and 36 healthy individuals without sepsis. Differentially expressed genes (DEGs) in sepsis patients were identified using Bayesian methods included in the limma package in R. Correlations among the expression values of DEGs were analyzed using the weighted gene co-expression network analysis (WGCNA) to construct a co-expression network. Subsequently, the generated co-expression network was visualized using Cytoscape 3.3 software. Additionally, a protein-protein interaction (PPI) network was constructed based on all the DEGs using STRING. Finally, the integrated regulatory network was constructed based on DEGs, microRNAs (miRNAs) and transcription factors (TFs). A total of 407 DEGs were identified in the sepsis samples, including 227 upregulated DEGs and 180 downregulated DEGs. WGCNA grouped the DEGs into 13 co-expressed modules. Additionally, MAP3K8 and RPS6KA5 in the MEyellow module were enriched in the MAPK and TNF signaling pathways. In addition, the PPI network comprised 48 nodes and 112 edges, which included the pairs MAP3K8-RPS6KA5, MAP3K8-IL10, RPS6KA5-EXOSC4 and EXOSC4-EXOSC5. Lastly, the TF-miRNA-target DEG regulatory network was constructed based on eight TFs (NF-κB), seven miRNAs (miR152, miR-148A/B), and 52 TF-miRNA-target gene triplets (17 upregulated genes, including MAP3K8, and 10 downregulated genes, including RPS6KA5). Our analysis showed that the members of the miR-148 family (miR-148A/B and miR-152) are candidate biomarkers for sepsis.
Collapse
Affiliation(s)
- Lei Dong
- Intensive Care Unit, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Hongwei Li
- Intensive Care Unit, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Shunli Zhang
- Department of Pediatrics, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Guanzheng Yang
- Department of Respiratory Medicine, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| |
Collapse
|
226
|
Curtale G, Rubino M, Locati M. MicroRNAs as Molecular Switches in Macrophage Activation. Front Immunol 2019; 10:799. [PMID: 31057539 PMCID: PMC6478758 DOI: 10.3389/fimmu.2019.00799] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 03/26/2019] [Indexed: 12/25/2022] Open
Abstract
The efficacy of macrophage- mediated inflammatory response relies on the coordinated expression of key factors, which expression is finely regulated at both transcriptional and post-transcriptional level. Several studies have provided compelling evidence that microRNAs play pivotal roles in modulating macrophage activation, polarization, tissue infiltration, and resolution of inflammation. In this review, we highlight the essential molecular mechanisms underlying the different phases of inflammation that are targeted by microRNAs to inhibit or accelerate restoration to tissue integrity and homeostasis. We further review the impact of microRNA-dependent regulation of tumor-associated macrophages and the relative implication for tumor biology.
Collapse
Affiliation(s)
- Graziella Curtale
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy.,Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy
| | - Marcello Rubino
- Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy
| | - Massimo Locati
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy.,Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy
| |
Collapse
|
227
|
Host and MTB genome encoded miRNA markers for diagnosis of tuberculosis. Tuberculosis (Edinb) 2019; 116:37-43. [PMID: 31153517 DOI: 10.1016/j.tube.2019.04.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/26/2019] [Accepted: 04/16/2019] [Indexed: 02/08/2023]
Abstract
MicroRNAs (miRNAs) are a class of noncoding RNA molecules which are involved in various cellular and physiological processes. Previously, studies have identified several miRNAs that are potential diagnostic biomarkers for various infectious diseases including tuberculosis. We have performed small RNA sequencing using the Ion Torrent PGM platform in extra pulmonary tuberculosis (EPTB) subject's serum samples to identify circulating miRNAs during mycobacterium tuberculosis (MTB) infection. Our analysis identified 20 circulating miRNAs upregulated and 5 miRNAs downregulated during MTB infection in patient's serum. In addition, we have identified 6 MTB genome encoded miRNAs upregulated in EPTB patient's serum samples. Taqman based qRT-PCR analysis of host-genome encoded (hsa-miR-146a-5p and hsa-miR-125b-5p) and MTB genome encoded (MTB-miR5) miRNAs showed increased expression in a cohort of 52 healthy, pulmonary tuberculosis (PTB) and extra pulmonary tuberculosis (EPTB) patients serum samples. Our study identified for the first time a panel of host and MTB genome specific differentially expressed circulating miRNAs in serum samples of an Indian patient cohort with tuberculosis infection with a potential as a non-invasive diagnostic biomarker for tuberculosis infection.
Collapse
|
228
|
Chen W, Yan Q, Yang H, Zhou X, Tan Z. Effects of restrictions on maternal feed intake on the immune indexes of umbilical cord blood and liver Toll-like receptor signaling pathways in fetal goats during pregnancy. J Anim Sci Biotechnol 2019; 10:29. [PMID: 31011422 PMCID: PMC6466723 DOI: 10.1186/s40104-019-0336-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 02/17/2019] [Indexed: 01/16/2023] Open
Abstract
Background Liver has important immune function during fetal development and after birth. However, the effect of maternal malnutrition on immune function of the fetal liver is rarely reported. In this study, twelve pregnant goats (Xiangdong black goat, at d 45 of gestation) were assigned to the control group (fed 100% of nutritional requirements) and the restriction group (fed 60% of the intake of the control group) during gestation from d 55 to 100. Fetal goats were harvested at d 100 of gestation and immune indexes and amino acid profiles of the umbilical cord blood and liver Toll-like receptors (TLRs) signaling pathways were measured. Results Maternal body weight in the restriction group was lower than the control group (P < 0.05). Maternal feed intake restriction decreased (P < 0.05) heart weight, heart index, alkaline phosphatase and serum amyloid protein A in the umbilical cord blood (UCB). Moreover, only histidine was decreased in the restricted group (P = 0.084), and there were no differences in other amino acids contents in the UCB between the two groups (P > 0.05). The TLR2 and TLR4 mRNA expression in the fetal liver in the restriction group was greater (P < 0.05) than that in the control group. Furthermore, the mRNA expression levels of myeloid differentiation primary response 88 (MyD88), TNF receptor associated factor 6, nuclear factor kappa B subunit 1, NFKB inhibitor alpha, IFN-β, TGF-β, TNF-α and IL-1β in the restricted group were upregulated (P < 0.05), and the expression of TLR3 (P = 0.099) tended to be higher in the restricted group. However, protein levels of TLR2, TLR4, IκBα, phosphorylated IκBα, phosphorylated IκBα/total IκBα, TRIF and MyD88 were not affected (P > 0.05) by maternal intake restriction. Conclusions These results revealed that the restriction of maternal feed intake influenced the development of heart and hepatic protein synthesis at the acute phase of fetal goats and upregulated the mRNA expression of genes involved in MyD88-dependent signaling pathways and of target cytokines.
Collapse
Affiliation(s)
- Wenxun Chen
- 1CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125 People's Republic of China.,2University of Chinese Academy of Science, Beijing, 100049 People's Republic of China
| | - Qiongxian Yan
- 1CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125 People's Republic of China
| | - Hong Yang
- 1CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125 People's Republic of China.,2University of Chinese Academy of Science, Beijing, 100049 People's Republic of China
| | - Xiaoling Zhou
- 1CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125 People's Republic of China.,2University of Chinese Academy of Science, Beijing, 100049 People's Republic of China.,3College of Animal Science, Tarim University, Alaer, 843300 People's Republic of China
| | - Zhiliang Tan
- 1CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125 People's Republic of China.,Hunan Co-Innovation Center of Animal Production Safety, CICAPS, Changsha, Hunan 410128 People's Republic of China.,5Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan People's Republic of China
| |
Collapse
|
229
|
Michaille JJ, Awad H, Fortman EC, Efanov AA, Tili E. miR-155 expression in antitumor immunity: The higher the better? Genes Chromosomes Cancer 2019; 58:208-218. [PMID: 30382602 DOI: 10.1002/gcc.22698] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/25/2018] [Accepted: 10/28/2018] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs are small noncoding RNAs that modulate gene expression either directly, by impairing the stability and/or translation of transcripts that contain their specific target sequence, or indirectly through the targeting of transcripts that encode transcription factors, factors implicated in signal transduction pathways, or epigenetic regulators. Abnormal expression of micro-RNAs has been found in nearly all types of pathologies, including cancers. MiR-155 has been the first microRNA to be implicated in the regulation of the innate and adaptative immune responses, and its expression is either increased or decreased in a variety of liquid and solid malignancies. In this review, we examine the oncogenic and antitumor potentials of miR-155, with special emphasize on its dose-dependent effects. We describe the impact of miR-155 levels on antitumor activity of lymphocytes and myeloid cells. We discuss miR-155 dose-dependent effects in leukemias and analyze results showing that miR-155 intermediate levels tend to be detrimental, whereas high levels of miR-155 expression usually prove beneficial. We also examine the beneficial effects of high levels of miR-155 expression in solid tumors. We discuss the possible causal involvement of miR-155 in leukemias and dementia in individuals with Down's syndrome. We finally propose that increasing miR-155 levels in immune cells might increase the efficiency of newly developed cancer immunotherapies, due to miR-155 ability to target transcripts encoding immune checkpoints such as cytotoxic T lymphocyte antigen-4 or programmed death-ligand 1.
Collapse
Affiliation(s)
- Jean-Jacques Michaille
- BioPerox-IL, Université de Bourgogne-Franche Comté (EA 7270), Dijon, France.,Department of Cancer Biology and Genetics, Wexner Medical Center, The Ohio State University, Columbus, Ohio
| | - Hamdy Awad
- Department of Anesthesiology, Wexner Medical Center, The Ohio State University, Columbus, Ohio
| | - Emily C Fortman
- Department of Cancer Biology and Genetics, Wexner Medical Center, The Ohio State University, Columbus, Ohio
| | - Alexander A Efanov
- Department of Anesthesiology, Wexner Medical Center, The Ohio State University, Columbus, Ohio
| | - Esmerina Tili
- Department of Cancer Biology and Genetics, Wexner Medical Center, The Ohio State University, Columbus, Ohio.,Department of Anesthesiology, Wexner Medical Center, The Ohio State University, Columbus, Ohio
| |
Collapse
|
230
|
Vaz AR, Pinto S, Ezequiel C, Cunha C, Carvalho LA, Moreira R, Brites D. Phenotypic Effects of Wild-Type and Mutant SOD1 Expression in N9 Murine Microglia at Steady State, Inflammatory and Immunomodulatory Conditions. Front Cell Neurosci 2019; 13:109. [PMID: 31024256 PMCID: PMC6465643 DOI: 10.3389/fncel.2019.00109] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/05/2019] [Indexed: 12/12/2022] Open
Abstract
Accumulation of mutated superoxide dismutase 1 (mSOD1) in amyotrophic lateral sclerosis (ALS) involves injury to motor neurons (MNs), activation of glial cells and immune unbalance. However, neuroinflammation, besides its detrimental effects, also plays beneficial roles in ALS pathophysiology. Therefore, the targeting of microglia to modulate the release of inflammatory neurotoxic mediators and their exosomal dissemination, while strengthening cell neuroprotective properties, has gained growing interest. We used the N9 microglia cell line to identify phenotype diversity upon the overexpression of wild-type (WT; hSOD1WT) and mutated G93A (hSOD1G93A) protein. To investigate how each transduced cell respond to an inflammatory stimulus, N9 microglia were treated with lipopolysaccharide (LPS). Glycoursodeoxycholic acid (GUDCA) and dipeptidyl vinyl sulfone (VS), known to exert neuroprotective properties, were tested for their immunoregulatory properties. Reduced Fizz1, IL-10 and TLR4 mRNAs were observed in both transduced cells. However, in contrast with hSOD1WT-induced decreased of inflammatory markers, microglia transduced with hSOD1G93A showed upregulation of pro-inflammatory (TNF-α/IL-1β/HMGB1/S100B/iNOS) and membrane receptors (MFG-E8/RAGE). Importantly, their derived exosomes were enriched in HMGB1 and SOD1. When inflammatory-associated miRNAs were evaluated, increased miR-146a in cells with overexpressed hSOD1WT was not recapitulated in their exosomes, whereas hSOD1G93A triggered elevated exosomal miR-155/miR-146a, but no changes in cells. LPS stimulus increased M1/M2 associated markers in the naïve microglia, including MFG-E8, miR-155 and miR-146a, whose expression was decreased in both hSOD1WT and hSOD1G93A cells treated with LPS. Treatment with GUDCA or VS led to a decrease of TNF-α, IL-1β, HMGB1, S100B and miR-155 in hSOD1G93A microglia. Only GUDCA was able to increase cellular IL-10, RAGE and TLR4, together with miR-21, while decreased exosomal miR-155 cargo. Conversely, VS reduced MMP-2/MMP-9 activation, as well as upregulated MFG-E8 and miR-146a, while producing miR-21 shuttling into exosomes. The current study supports the powerful role of overexpressed hSOD1WT in attenuating M1/M2 activation, and that of hSOD1G93A in switching microglia from the steady state into a reactive phenotype with low responsiveness to stimuli. This work further reveals GUDCA and VS as promising modulators of microglia immune response by eliciting common and compound-specific molecular mechanisms that may promote neuroregeneration.
Collapse
Affiliation(s)
- Ana Rita Vaz
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
- Department of Biochemistry and Human Biology, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Sara Pinto
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Catarina Ezequiel
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Carolina Cunha
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Luís A. Carvalho
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Rui Moreira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
- Department of Pharmaceutical Chemistry and Therapeutics, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Dora Brites
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
- Department of Biochemistry and Human Biology, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
231
|
Akbari Kordkheyli V, Khonakdar Tarsi A, Mishan MA, Tafazoli A, Bardania H, Zarpou S, Bagheri A. Effects of quercetin on microRNAs: A mechanistic review. J Cell Biochem 2019; 120:12141-12155. [PMID: 30957271 DOI: 10.1002/jcb.28663] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/10/2019] [Accepted: 02/14/2019] [Indexed: 12/21/2022]
Abstract
MicroRNA (miRNA)-dependent pathways are one of the newest gene regulation mechanisms in various diseases, particularly in cancers. miRNAs are endogenous noncoding RNAs with about 18 to 25 nucleotide length, which can regulate the expression of at least 60% of human total genome posttranscriptionally. Quercetin is the most abundant flavonoid in a variety of fruits, flowers, and medical herbs, known as a strong free radical scavenger that could show antioxidant, anti-inflammatory, and antitumor activities. Recent studies also reported its strong impact on various miRNA expressions in different abnormalities. In this review, we aimed to summarize the studies focused on the effects of quercetin on different miRNA expressions to more clear the main possible mechanisms of quercetin influences and introduce it as a beneficial agent for regulation of miRNAs in various biological directions.
Collapse
Affiliation(s)
- Vahid Akbari Kordkheyli
- Department of Clinical Biochemistry-Biophysics and Genetics, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abbas Khonakdar Tarsi
- Department of Clinical Biochemistry-Biophysics and Genetics, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad A Mishan
- Ocular Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Tafazoli
- Department of Analysis and Bioanalysis of Medicines, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, 15-089 Bialystok, Poland.,Department of Endocrinology, Diabetology and Internal Medicine, Clinical Research Center, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Hassan Bardania
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Setareh Zarpou
- Department of Clinical Biochemistry-Biophysics and Genetics, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abouzar Bagheri
- Department of Clinical Biochemistry-Biophysics and Genetics, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
232
|
Aldapa-Vega G, Moreno-Eutimio MA, Berlanga-Taylor AJ, Jiménez-Uribe AP, Nieto-Velazquez G, López-Ortega O, Mancilla-Herrera I, Cortés-Malagón EM, Gunn JS, Isibasi A, Wong-Baeza I, López-Macías C, Pastelin-Palacios R. Structural variants of Salmonella Typhimurium lipopolysaccharide induce less dimerization of TLR4/MD-2 and reduced pro-inflammatory cytokine production in human monocytes. Mol Immunol 2019; 111:43-52. [PMID: 30959420 DOI: 10.1016/j.molimm.2019.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 02/23/2019] [Accepted: 03/07/2019] [Indexed: 01/22/2023]
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) changes the structure of its lipopolysaccharide (LPS) in response to the environment. The two main LPS variants found in S. Typhimurium correspond to LPS with a hepta-acylated lipid A (LPS 430) and LPS with modified phosphate groups on its lipid A (LPS 435). We have previously shown that these modified LPS have a lower capacity than wild type (WT) LPS to induce the production of pro-inflammatory cytokines in mice. Nevertheless, it is not know if LPS 430 and LPS 435 could also subvert the innate immune responses in human cells. In this study, we found that LPS 430 and LPS 435 were less efficient than WT LPS to induce the production of pro-inflammatory cytokines by human monocytes, in addition we found a decreased dimerization of the TLR4/MD-2 complex in response to LPS 430, suggesting that structurally modified LPS are sensed differently than WT LPS by this receptor; however, LPS 430 and 435 induced similar activation of the transcription factors NF-κB p65, IRF3, p38 and ERK1/2 than WT LPS. Microarray analysis of LPS 430- and LPS 435-activated monocytes revealed a gene transcription profile with differences only in the expression levels of microRNA genes compared to the profile induced by WT LPS, suggesting that the lipid A modifications present in LPS 430 and LPS 435 have a moderate effect on the activation of the human TLR4/MD-2 complex. Our results are relevant to understand LPS modulation of immune responses and this knowledge could be useful for the development of novel adjuvants and immunomodulators.
Collapse
Affiliation(s)
- Gustavo Aldapa-Vega
- Unidad de Investigación Médica en Inmunoquímica, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, Mexico; Programa de Posgrado en Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Mario Adán Moreno-Eutimio
- Unidad de Investigación de Inmunidad e Inflamación, División de Investigación, Hospital Juárez de México, Ciudad de México, Mexico
| | - Antonio J Berlanga-Taylor
- MRC-PHE Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, St Mary's Campus, Norfolk Place, London, UK
| | - Alexis P Jiménez-Uribe
- Unidad de Investigación Médica en Inmunoquímica, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, Mexico
| | - Goreti Nieto-Velazquez
- Unidad de Investigación de Inmunidad e Inflamación, División de Investigación, Hospital Juárez de México, Ciudad de México, Mexico
| | - Orestes López-Ortega
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Ismael Mancilla-Herrera
- Departamento de Infectología e Inmunología, Instituto Nacional de Perinatología, Ciudad de México, Mexico
| | - Enoc Mariano Cortés-Malagón
- Unidad de Investigación en Genética y Cáncer, División de Investigación, Hospital Juárez de México, Ciudad de México, Mexico
| | - John S Gunn
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| | - Armando Isibasi
- Unidad de Investigación Médica en Inmunoquímica, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, Mexico
| | - Isabel Wong-Baeza
- Laboratorio de Inmunología Molecular II, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Constantino López-Macías
- Unidad de Investigación Médica en Inmunoquímica, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, Mexico; Visiting Professor of Immunology. Nuffield Department of Medicine, University of Oxford. UK; Mexican Translational Immunology Research Group, FOCIS Centres of Excellence, Mexico.
| | | |
Collapse
|
233
|
Ramzan F, Mitchell CJ, Milan AM, Schierding W, Zeng N, Sharma P, Mitchell SM, D'Souza RF, Knowles SO, Roy NC, Sjödin A, Wagner KH, Cameron-Smith D. Comprehensive Profiling of the Circulatory miRNAome Response to a High Protein Diet in Elderly Men: A Potential Role in Inflammatory Response Modulation. Mol Nutr Food Res 2019; 63:e1800811. [PMID: 30892810 DOI: 10.1002/mnfr.201800811] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 02/21/2019] [Indexed: 12/11/2022]
Abstract
SCOPE MicroRNA are critical to the coordinated post-transcriptional regulation of gene expression, yet few studies have addressed the influence of habitual diet on microRNA expression. High protein diets impact cardiometabolic health and body composition in the elderly suggesting the possibility of a complex systems response. Therefore, high-throughput small RNA sequencing technology is applied in response to doubling the protein recommended dietary allowance (RDA) over 10 weeks in older men to examine alterations in circulating miRNAome. METHODS AND RESULTS Older men (n = 31; 74.1 ± 0.6 y) are randomized to consume either RDA (0.8 g kg-1 day-1 ) or 2RDA (1.6 g kg-1 day-1 ) of protein for 10 weeks. Downregulation of five microRNAs (miR-125b-5p, -100-5p, -99a-5p, -23b-3p, and -203a) is observed following 2RDA with no changes in the RDA. In silico functional analysis highlights target gene enrichment in inflammation-related pathways. qPCR quantification of predicted inflammatory genes (TNFα, IL-8, IL-6, pTEN, PPP1CB, and HOXA1) in peripheral blood mononuclear cells shows increased expression following 2RDA diet (p ≤ 0.05). CONCLUSION The study findings suggest a possible selective alteration in the post-transcriptional regulation of the immune system following a high protein diet. However, very few microRNAs are altered despite a large change in the dietary protein.
Collapse
Affiliation(s)
- Farha Ramzan
- Liggins Institute, The University of Auckland, Auckland, 1023, New Zealand.,Riddet Institute, Massey University, Palmerston North, 4442, New Zealand
| | - Cameron J Mitchell
- Liggins Institute, The University of Auckland, Auckland, 1023, New Zealand
| | - Amber M Milan
- Liggins Institute, The University of Auckland, Auckland, 1023, New Zealand
| | - William Schierding
- Liggins Institute, The University of Auckland, Auckland, 1023, New Zealand
| | - Nina Zeng
- Liggins Institute, The University of Auckland, Auckland, 1023, New Zealand
| | - Pankaja Sharma
- Liggins Institute, The University of Auckland, Auckland, 1023, New Zealand.,Riddet Institute, Massey University, Palmerston North, 4442, New Zealand
| | - Sarah M Mitchell
- Liggins Institute, The University of Auckland, Auckland, 1023, New Zealand.,Riddet Institute, Massey University, Palmerston North, 4442, New Zealand
| | - Randall F D'Souza
- Liggins Institute, The University of Auckland, Auckland, 1023, New Zealand
| | - Scott O Knowles
- Food Nutrition and Health Team, AgResearch Ltd., Grasslands Research Centre, Palmerston North, 4442, New Zealand
| | - Nicole C Roy
- Food Nutrition and Health Team, AgResearch Ltd., Grasslands Research Centre, Palmerston North, 4442, New Zealand.,Riddet Institute, Massey University, Palmerston North, 4442, New Zealand.,The High-Value Nutrition National Science Challenge, Auckland, 1023, New Zealand
| | - Anders Sjödin
- Department of Nutrition, Exercise and Sport, Copenhagen University, 1165, Denmark
| | - Karl-Heinz Wagner
- Department of Nutritional Sciences and Research Platform Active Ageing, University of Vienna, 1010, Vienna, Austria
| | - David Cameron-Smith
- Liggins Institute, The University of Auckland, Auckland, 1023, New Zealand.,Riddet Institute, Massey University, Palmerston North, 4442, New Zealand.,Food & Bio-Based Products Group, AgResearch Ltd., Hamilton, 3214, New Zealand
| |
Collapse
|
234
|
Lu D, Yamawaki T, Zhou H, Chou WY, Chhoa M, Lamas E, Escobar SS, Arnett HA, Ge H, Juan T, Wang S, Li CM. Limited differential expression of miRNAs and other small RNAs in LPS-stimulated human monocytes. PLoS One 2019; 14:e0214296. [PMID: 30908559 PMCID: PMC6433273 DOI: 10.1371/journal.pone.0214296] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 03/11/2019] [Indexed: 01/01/2023] Open
Abstract
Monocytes are a distinct subset of myeloid cells with diverse functions in early inflammatory immune modulation. While previous studies have surveyed the role of miRNA regulation on different myeloid cell lines and primary cultures, the time-dependent kinetics of inflammatory stimulation on miRNA expression and the relationship between miRNA-to-target RNA expression have not been comprehensively profiled in monocytes. In this study, we use next-generation sequencing and RT-PCR assays to analyze the non-coding small RNA transcriptome of unstimulated and lipopolysaccharide (LPS)-stimulated monocytes at 6 and 24 hours. We identified a miRNA signature consisting of five mature miRNAs (hsa-mir-146a, hsa-mir-155, hsa-mir-9, hsa-mir-147b, and hsa-mir-193a) upregulated by LPS-stimulated monocytes after 6 hours and found that most miRNAs were also upregulated after 24 hours of stimulation. Only one miRNA gene was down-regulated and no other small RNAs were found dysregulated in monocytes after LPS treatment. In addition, novel tRNA-derived fragments were also discovered in monocytes although none showed significant changes upon LPS stimulation. Interrogation of validated miRNA targets by transcriptomic analysis revealed that absolute expression of most miRNA targets implicating in innate immune response decreased over time in LPS-stimulated monocytes although their expression patterns along the treatment were heterogeneous. Our findings reveal a potential role by which selective miRNA upregulation and stable expression of other small RNAs enable monocytes to develop finely tuned cellular responses during acute inflammation.
Collapse
Affiliation(s)
- Daniel Lu
- Genome Analysis Unit, Amgen Research, South San Francisco, California, United States of America
| | - Tracy Yamawaki
- Genome Analysis Unit, Amgen Research, South San Francisco, California, United States of America
| | - Hong Zhou
- Genome Analysis Unit, Amgen Research, South San Francisco, California, United States of America
| | - Wen-Yu Chou
- Genome Analysis Unit, Amgen Research, South San Francisco, California, United States of America
| | - Mark Chhoa
- Genome Analysis Unit, Amgen Research, South San Francisco, California, United States of America
| | - Edwin Lamas
- Genome Analysis Unit, Amgen Research, South San Francisco, California, United States of America
| | - Sabine S. Escobar
- Inflammation/Oncology TA, Amgen Research, South San Francisco, California, United States of America
| | - Heather A. Arnett
- Inflammation/Oncology TA, Amgen Research, South San Francisco, California, United States of America
| | - Huanying Ge
- Genome Analysis Unit, Amgen Research, South San Francisco, California, United States of America
| | - Todd Juan
- Genome Analysis Unit, Amgen Research, South San Francisco, California, United States of America
| | - Songli Wang
- Genome Analysis Unit, Amgen Research, South San Francisco, California, United States of America
| | - Chi-Ming Li
- Genome Analysis Unit, Amgen Research, South San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
235
|
Adibzadeh Sereshgi MM, Abdollahpour-Alitappeh M, Mahdavi M, Ranjbar R, Ahmadi K, Taheri RA, Fasihi-Ramandi M. Immunologic balance of regulatory T cell/T helper 17 responses in gastrointestinal infectious diseases: Role of miRNAs. Microb Pathog 2019; 131:135-143. [PMID: 30914387 DOI: 10.1016/j.micpath.2019.03.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 03/18/2019] [Accepted: 03/22/2019] [Indexed: 12/22/2022]
Abstract
Gastrointestinal Infectious diseases (GIDs) are the second cause of death worldwide. T helper17 cells (Th17) play an important role in GIDs through production of IL-17A, IL-17F, and IL-22 cytokines. Because of their increased activities in GID, Th17 and its inflammatory cytokines can inhibit the progression and eliminate the infection. Actually, although Th17 have the best performance in the acute phase, regulatory T cells (Treg cells) are enhanced in the chronic phase and infection progress through its suppressive function. In addition, Treg cells prevent undesirable inflammatory damages developed by immune system components. On the other hand, miRNAs have important roles in the regulation of immune responses to eliminate bacterial infections and protect host organisms from harmful effects. Actually, miRNAs can reinforce innate and adaptive immunity to remove infections. Of note, miRNAs can develop a regulatory network with the immune system. Additionally, miRNAs can also serve in favor of bacteria to reduce immune responses. Therefore, balance of immune responses in Treg and Th17 cells can influence outcome of many infectious diseases. In conclusion, there is an imbalance in the Treg/Th17 ratio in GIDs; importantly, sets of miRNAs, particularly miR155 and miR146, were determined to be involved clearly in GIDs.
Collapse
Affiliation(s)
| | | | - Mehdi Mahdavi
- Immunotherapy Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran; Recombinant Vaccine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Ranjbar
- Molecular Biology Research Center, System Biology and Poisoning Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Kazem Ahmadi
- Molecular Biology Research Center, System Biology and Poisoning Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ramezan Ali Taheri
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mahdi Fasihi-Ramandi
- Molecular Biology Research Center, System Biology and Poisoning Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
236
|
Watson SF, Knol LI, Witteveldt J, Macias S. Crosstalk Between Mammalian Antiviral Pathways. Noncoding RNA 2019; 5:E29. [PMID: 30909383 PMCID: PMC6468734 DOI: 10.3390/ncrna5010029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 12/15/2022] Open
Abstract
As part of their innate immune response against viral infections, mammals activate the expression of type I interferons to prevent viral replication and dissemination. An antiviral RNAi-based response can be also activated in mammals, suggesting that several mechanisms can co-occur in the same cell and that these pathways must interact to enable the best antiviral response. Here, we will review how the classical type I interferon response and the recently described antiviral RNAi pathways interact in mammalian cells. Specifically, we will uncover how the small RNA biogenesis pathway, composed by the nucleases Drosha and Dicer can act as direct antiviral factors, and how the type-I interferon response regulates the function of these. We will also describe how the factors involved in small RNA biogenesis and specific small RNAs impact the activation of the type I interferon response and antiviral activity. With this, we aim to expose the complex and intricate network of interactions between the different antiviral pathways in mammals.
Collapse
Affiliation(s)
- Samir F Watson
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK.
| | - Lisanne I Knol
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK.
| | - Jeroen Witteveldt
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK.
| | - Sara Macias
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK.
| |
Collapse
|
237
|
Bax Targeted by miR-29a Regulates Chondrocyte Apoptosis in Osteoarthritis. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1434538. [PMID: 30993110 PMCID: PMC6434297 DOI: 10.1155/2019/1434538] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 12/18/2018] [Indexed: 12/12/2022]
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disease, where chondrocyte apoptosis is responsible for cartilage degeneration. Bax is a well-known proapoptotic protein of the Bcl-2 family, involved in a large number of physiological and pathological processes. However, the regulation mechanisms of Bax underlying chondrocyte apoptosis in OA remain unknown. In the present study, we determined the role of Bax in human OA and chondrocyte apoptosis. The results showed that Bax was upregulated in chondrocytes from the articular cartilage of OA patients and in cultured chondrocyte-like ATDC5 cells treated by IL-1β. Bax was identified to be the direct target of miR-29a by luciferase reporter assay and by western blotting. Inhibition of miR-29a by the mimics protested and overexpression by miR-29a inhibitors aggravated ATDC5 apoptosis induced by IL-1β. These data reveal that miR-29a/Bax axis plays an important role in regulating chondrocyte apoptosis and suggest that targeting the proapoptotic protein Bax and increasing expression levels of miR-29a emerge as potential approach for protection against the development of OA.
Collapse
|
238
|
El Samaloty NM, Hassan ZA, Hefny ZM, Abdelaziz DHA. Circulating microRNA-155 is associated with insulin resistance in chronic hepatitis C patients. Arab J Gastroenterol 2019; 20:1-7. [PMID: 30852102 DOI: 10.1016/j.ajg.2019.01.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 12/10/2018] [Accepted: 01/27/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND STUDY AIM Hepatitis C represents a potential public health problem worldwide. Insulin resistance (IR) and type 2 diabetes (T2D) are among the serious metabolic complications for chronic hepatitis C virus (HCV) infection. MicroRNAs (miRNAs) are a group of small non-coding RNAs which are implicated in the modulation of almost all biological processes. The objective of this study was to investigate the levels of both miR-155 and miR-34a in sera of chronic HCV patients with or without T2D. PATIENTS AND METHODS In this study, we investigated the expression of both miR-155 and miR-34a in 80 subjects (20 HCV, 19 HCV/T2D, 21 T2D and 19 healthy controls), using quantitative real-time PCR. RESULTS Our results revealed significantly higher levels of both miR-155 and miR-34a in chronic HCV patients compared to healthy control subjects. However, only circulating miR-155 levels showed significant decline in diabetic HCV patients compared to non-diabetic HCV group. Intriguingly, the circulating levels of miR-155 were inversely correlated with HOMA-IR, fasting blood glucose and HbA1c levels. CONCLUSION Our findings indicate that the insulin resistance and T2D in HCV are strongly related to miR-155. This may suggest a role for miR-155 in the pathogenesis of IR caused by HCV. However, further large-scale studies are required to confirm our findings.
Collapse
Affiliation(s)
- Nourhan M El Samaloty
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Future University, Egypt
| | - Zeinab A Hassan
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Egypt
| | - Zeinab M Hefny
- Department of Tropical Medicine, Faculty of Medicine Ain Shams University, Egypt
| | - Dalia H A Abdelaziz
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Egypt.
| |
Collapse
|
239
|
Nobile S, Tenace MA, Pappa HM. The Role of Vitamin D in the Pathogenesis of Inflammatory Bowel Disease. GASTROINTESTINAL DISORDERS 2019; 1:231-240. [DOI: 10.3390/gidisord1010018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Vitamin D has a complex role in the pathogenesis of inflammatory bowel disease (IBD), which is still under investigation. We conducted a literature search using PubMed through December 2018 through the use of relevant search terms. We found an abundance of evidence to support the role of vitamin D in regulating the innate and adaptive arms of the immune system. The pathogenesis of IBD implicates the immune dysregulation of these immune system components. Proof of concept of the vitamin’s role in the pathogenesis of IBD is the mapping of the vitamin D receptor in a region of chromosome 12, where IBD is also mapped, and specific VDR polymorphisms’ link to IBD phenotypes. Further research is needed to better delineate vitamin D’s role in preventing IBD and its potential as a therapeutic target for this disease.
Collapse
Affiliation(s)
- Stefano Nobile
- Department of Mother and Child Health, Salesi Children’s Hospital, via F. Corridoni 11, 60123 Ancona, Italy
| | - Michela A. Tenace
- Department of Mother and Child Health, Salesi Children’s Hospital, via F. Corridoni 11, 60123 Ancona, Italy
| | - Helen M. Pappa
- Division of Pediatric Gastroenterology and Hepatology, SSM Health Cardinal Glennon Children’s Hospital, Saint Louis University, St. Louis, MO 63104, USA
| |
Collapse
|
240
|
Yang T, Xu G, Newton PT, Chagin AS, Mkrtchian S, Carlström M, Zhang XM, Harris RA, Cooter M, Berger M, Maddipati KR, Akassoglou K, Terrando N. Maresin 1 attenuates neuroinflammation in a mouse model of perioperative neurocognitive disorders. Br J Anaesth 2019; 122:350-360. [PMID: 30770053 PMCID: PMC6396737 DOI: 10.1016/j.bja.2018.10.062] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Resolution of inflammation is an active and dynamic process after surgery. Maresin 1 (MaR1) is one of a growing number of specialised pro-resolving lipids biosynthesised by macrophages that regulates acute inflammation. We investigated the effects of MaR1 on postoperative neuroinflammation, macrophage activity, and cognitive function in mice. METHODS Adult male C57BL/6 (n=111) and Ccr2RFP/+Cx3cr1GFP/+ (n=54) mice were treated with MaR1 before undergoing anaesthesia and orthopaedic surgery. Systemic inflammatory changes, bone healing, neuroinflammation, and cognition were assessed at different time points. MaR1 protective effects were also evaluated using bone marrow derived macrophage cultures. RESULTS MaR1 exerted potent systemic anti-inflammatory effects without impairing fracture healing. Prophylaxis with MaR1 prevented surgery-induced glial activation and opening of the blood-brain barrier. In Ccr2RFP/+Cx3cr1GFP/+ mice, fewer infiltrating macrophages were detected in the hippocampus after surgery with MaR1 prophylaxis, which resulted in improved memory function. MaR1 treatment also reduced expression of pro-inflammatory cell surface markers and cytokines by in vitro cultured macrophages. MaR1 was detectable in the cerebrospinal fluid of older adults before and after surgery. CONCLUSIONS MaR1 exerts distinct anti-inflammatory and pro-resolving effects through regulation of macrophage infiltration, NF-κB signalling, and cytokine release after surgery. Future studies on the use of pro-resolving lipid mediators may inform novel approaches to treat neuroinflammation and postoperative neurocognitive disorders.
Collapse
Affiliation(s)
- T Yang
- Department of Physiology and Pharmacology, Stockholm, Sweden; Department of Medicine, Division of Nephrology, Durham, NC, USA
| | - G Xu
- Department of Physiology and Pharmacology, Stockholm, Sweden
| | - P T Newton
- Department of Physiology and Pharmacology, Stockholm, Sweden
| | - A S Chagin
- Department of Physiology and Pharmacology, Stockholm, Sweden; Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - S Mkrtchian
- Department of Physiology and Pharmacology, Stockholm, Sweden
| | - M Carlström
- Department of Physiology and Pharmacology, Stockholm, Sweden
| | - X-M Zhang
- Applied Immunology & Immunotherapy, Center for Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - R A Harris
- Applied Immunology & Immunotherapy, Center for Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - M Cooter
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - M Berger
- Center for Cognitive Neuroscience, Center for the Study of Aging & Human Development, Durham, NC, USA; Center for the Study of Aging & Human Development, Durham, NC, USA; Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - K R Maddipati
- Department of Pathology-Bioactive Lipids Research Program, Wayne State University, Detroit, MI, USA
| | - K Akassoglou
- Gladstone Institutes, San Francisco, CA, USA; Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - N Terrando
- Department of Physiology and Pharmacology, Stockholm, Sweden; Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA; Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
241
|
miR-155 Predicts Long-Term Mortality in Critically Ill Patients Younger than 65 Years. Mediators Inflamm 2019; 2019:6714080. [PMID: 30918471 PMCID: PMC6409014 DOI: 10.1155/2019/6714080] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 12/20/2018] [Accepted: 01/17/2019] [Indexed: 12/21/2022] Open
Abstract
Introduction Alterations in miR-155 serum levels have been described in inflammatory and infectious diseases. Moreover, a role for miR-155 in aging and age-related diseases was recently suggested. We therefore analyzed a potential age-dependent prognostic value of circulating miR-155 as a serum-based marker in critical illness. Methods Concentrations of circulating miR-155 were determined in 218 critically ill patients and 76 healthy controls. Results By using qPCR, we demonstrate that miR-155 serum levels are elevated in patients with critical illness when compared to controls. Notably, levels of circulating miR-155 were independent on the severity of disease, the disease etiology, or the presence of sepsis. In the total cohort, miR-155 was not an indicator for patient survival. Intriguingly, when patients were subdivided according to their age upon admission to the ICU into those younger than 65 years, lower levels of miR-155 turned out as a strong marker, indicating patient mortality with a similar accuracy than other markers frequently used to evaluate critically ill patients on a medical ICU. Conclusion In summary, the data provided within this study suggest an age-specific role of miR-155 as a prognostic biomarker in patients younger than 65 years. Our study is the first to describe an age-dependent miRNA-based prognostic biomarker in human diseases.
Collapse
|
242
|
Ibrahim S, Szóstek-Mioduchowska A, Skarzynski D. Expression profiling of selected miRNAs in equine endometrium in response to LPS challenge in vitro: A new understanding of the inflammatory immune response. Vet Immunol Immunopathol 2019; 209:37-44. [PMID: 30885304 DOI: 10.1016/j.vetimm.2019.02.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 01/24/2019] [Accepted: 02/14/2019] [Indexed: 12/27/2022]
Abstract
Bacterial infections of the genital tract are the major cause of reproductive failure in the mares. MiRNAs are important regulators of gene expression, mostly through transcriptional and translational regression. We hypothesized that LPS induced aberrant expression of miRNAs and their targets, which are involved in regulation of uterine homeostasis. Three groups of primary endometrial epithelial and stromal cells, and endometrial tissue explants were cultured. The 1st group was kept as control, while the 2nd and 3rd groups were challenged with low (0.5 μg/mL) or high (3.0 μg/mL) doses of Lipopolysaccharides (LPS). Cell pellets and tissue explants were collected after 24 and 48 h, for total RNA isolation and qRT-PCR of the selected miRNAs and their targets. Culture media and cell lysates were collected after 24 and 48 h, for cytokines (IL6 and TNFα) and prostaglandins (PGE2 & PGFα2) measurement. Both endometrial cells expressed TLR4 and its accessory molecules (MyD88 & CD14) that are required for triggering inflammatory immune response after LPS, via up-regulation of TRAF6, TNFα, IL6 and IL8, compared to the respective control. After both doses of LPS challenge, miR-155, miR-223 and miR-17 were significantly increased; miR-181b, miR-21 and let-7a were significantly decreased compared to respective controls. Interestingly, miR-24 and miR-532-5p were clearly up-regulated after only the low LPS dose. TNFα, IL6 and PGs in culture media and from cell lysates revealed dose- and time-dependent patterns, after LPS. Results indicated that both epithelial and stromal cells have a primary role in innate immune response after LPS challenge, while this recognition occurred via TLR4 and its accessory molecules. Dysregulation of miRNAs and their targets expression after LPS might affect normal uterine function through perturbation of PG and cytokine secretion.
Collapse
Affiliation(s)
- Sally Ibrahim
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of PAS, Olsztyn, Poland; Department of Animal Reproduction and A.I, Veterinary Research Division, National Research Centre, Dokki, Giza, Egypt.
| | - Anna Szóstek-Mioduchowska
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of PAS, Olsztyn, Poland.
| | - Dariusz Skarzynski
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of PAS, Olsztyn, Poland.
| |
Collapse
|
243
|
Mussbacher M, Salzmann M, Brostjan C, Hoesel B, Schoergenhofer C, Datler H, Hohensinner P, Basílio J, Petzelbauer P, Assinger A, Schmid JA. Cell Type-Specific Roles of NF-κB Linking Inflammation and Thrombosis. Front Immunol 2019; 10:85. [PMID: 30778349 PMCID: PMC6369217 DOI: 10.3389/fimmu.2019.00085] [Citation(s) in RCA: 428] [Impact Index Per Article: 71.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 01/11/2019] [Indexed: 12/22/2022] Open
Abstract
The transcription factor NF-κB is a central mediator of inflammation with multiple links to thrombotic processes. In this review, we focus on the role of NF-κB signaling in cell types within the vasculature and the circulation that are involved in thrombo-inflammatory processes. All these cells express NF-κB, which mediates important functions in cellular interactions, cell survival and differentiation, as well as expression of cytokines, chemokines, and coagulation factors. Even platelets, as anucleated cells, contain NF-κB family members and their corresponding signaling molecules, which are involved in platelet activation, as well as secondary feedback circuits. The response of endothelial cells to inflammation and NF-κB activation is characterized by the induction of adhesion molecules promoting binding and transmigration of leukocytes, while simultaneously increasing their thrombogenic potential. Paracrine signaling from endothelial cells activates NF-κB in vascular smooth muscle cells and causes a phenotypic switch to a “synthetic” state associated with a decrease in contractile proteins. Monocytes react to inflammatory situations with enforced expression of tissue factor and after differentiation to macrophages with altered polarization. Neutrophils respond with an extension of their life span—and upon full activation they can expel their DNA thereby forming so-called neutrophil extracellular traps (NETs), which exert antibacterial functions, but also induce a strong coagulatory response. This may cause formation of microthrombi that are important for the immobilization of pathogens, a process designated as immunothrombosis. However, deregulation of the complex cellular links between inflammation and thrombosis by unrestrained NET formation or the loss of the endothelial layer due to mechanical rupture or erosion can result in rapid activation and aggregation of platelets and the manifestation of thrombo-inflammatory diseases. Sepsis is an important example of such a disorder caused by a dysregulated host response to infection finally leading to severe coagulopathies. NF-κB is critically involved in these pathophysiological processes as it induces both inflammatory and thrombotic responses.
Collapse
Affiliation(s)
- Marion Mussbacher
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Manuel Salzmann
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Christine Brostjan
- Department of Surgery, General Hospital, Medical University of Vienna, Vienna, Austria
| | - Bastian Hoesel
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | | | - Hannes Datler
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Philipp Hohensinner
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - José Basílio
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Peter Petzelbauer
- Skin and Endothelial Research Division, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Alice Assinger
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Johannes A Schmid
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
244
|
Li P, Wang G, Zhang XL, He GL, Luo X, Yang J, Luo Z, Shen TT, Yang XS. MicroRNA-155 Promotes Heat Stress-Induced Inflammation via Targeting Liver X Receptor α in Microglia. Front Cell Neurosci 2019; 13:12. [PMID: 30778287 PMCID: PMC6369214 DOI: 10.3389/fncel.2019.00012] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 01/14/2019] [Indexed: 12/12/2022] Open
Abstract
Background: The neuroinflammatory responses of microglial cells play an important role in the process of brain dysfunction caused by heat stroke. MicroRNAs are reportedly involved in a complex signaling network and have been identified as neuroinflammatory regulators. In this study, we determined the biological roles of microRNA-155 in the inflammatory responses in heat-stressed microglia and explored the underlying mechanisms. Methods: MicroRNA-155 mimic and inhibitor were used to separately upregulate or downregulate microRNA-155 expression. The activation state of BV-2 microglial cells (BV-2 cells) was assessed via immunoreactions using the microglial marker CD11b and CD68. Levels of induced interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) were measured using real-time reverse transcription polymerase chain reaction (RT-PCR) and enzyme linked immunosorbent assays (ELISAs). The activation of nuclear factor kappa B (NF-κB) signaling proteins was evaluated by Western blotting for inhibitory kappa B alpha (IκBα) and NF-κB p65 phosphorylation and indirect immunofluorescence analysis using a p65 phosphorylation antibody. A luciferase reporter assay was used to verify liver X receptor α (LXRα) as a target gene of microRNA-155. Results: Heat stress significantly induced IL-1β, IL-6, and TNF-α release and increased the expression of CD11b and CD68. In addition, IκBα and NF-κB p65 phosphorylation were dramatically increased by heat stress, and microRNA-155 expression was also elevated. High expression of microRNA-155 in heat-stressed microglial cells was inversely correlated with LXRα expression. We then determined the role of microRNA-155 in the heat stress-induced inflammatory responses. The results revealed that by targeting LXRα, microRNA-155 enhanced NF-κB signaling activation and facilitated immune inflammation in heat stress-treated BV-2 cells. Conclusion: MicroRNA-155 promotes heat stress-induced inflammatory responses in microglia. The underlying mechanisms may include facilitating inflammatory factors expression by increasing NF-κB pathway activation via targeting LXRα.
Collapse
Affiliation(s)
- Ping Li
- Laboratory of Extreme Environmental Medicine, Department of Tropical Medicine, Army Medical University, Chongqing, China
| | - Gong Wang
- Laboratory of Extreme Environmental Medicine, Department of Tropical Medicine, Army Medical University, Chongqing, China.,Department of Neurology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Xiao-Liang Zhang
- Laboratory of Extreme Environmental Medicine, Department of Tropical Medicine, Army Medical University, Chongqing, China.,Department of Cardiology, Kunming General Hospital of Chengdu Military Command, Yunnan, China
| | - Gen-Lin He
- Laboratory of Extreme Environmental Medicine, Department of Tropical Medicine, Army Medical University, Chongqing, China
| | - Xue Luo
- Laboratory of Extreme Environmental Medicine, Department of Tropical Medicine, Army Medical University, Chongqing, China
| | - Ju Yang
- Laboratory of Extreme Environmental Medicine, Department of Tropical Medicine, Army Medical University, Chongqing, China
| | - Zhen Luo
- Laboratory of Extreme Environmental Medicine, Department of Tropical Medicine, Army Medical University, Chongqing, China
| | - Ting-Ting Shen
- Laboratory of Extreme Environmental Medicine, Department of Tropical Medicine, Army Medical University, Chongqing, China
| | - Xue-Sen Yang
- Laboratory of Extreme Environmental Medicine, Department of Tropical Medicine, Army Medical University, Chongqing, China
| |
Collapse
|
245
|
Zhu Y, Zhang S, Li Z, Wang H, Li Z, Hu Y, Chen H, Zhang X, Cui L, Zhang J, He W. miR-125b-5p and miR-99a-5p downregulate human γδ T-cell activation and cytotoxicity. Cell Mol Immunol 2019; 16:112-125. [PMID: 29429995 PMCID: PMC6355834 DOI: 10.1038/cmi.2017.164] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 12/04/2017] [Accepted: 12/04/2017] [Indexed: 01/02/2023] Open
Abstract
As an important component of innate immunity, human circulating γδ T cells function in rapid responses to infections and tumorigenesis. MicroRNAs (miRNAs) play a critical regulatory role in multiple biological processes and diseases. Therefore, how the functions of circulating human γδ T cells are regulated by miRNAs merits investigation. In this study, we profiled the miRNA expression patterns in human peripheral γδ T cells from 21 healthy donors and identified 14 miRNAs that were differentially expressed between peripheral αβ T cells and γδ T cells. Of the 14 identified genes, 7 miRNAs were downregulated, including miR-150-5p, miR-450a-5p, miR-193b-3p, miR-365a-3p, miR-31-5p, miR-125b-5p and miR-99a-5p, whereas the other 7 miRNAs were upregulated, including miR-34a-5p, miR-16-5p, miR-15b-5p, miR-24-3p, miR-22-3p, miR-22-5p and miR-9-5p, in γδ T cells compared with αβ T cells. In subsequent functional studies, we found that both miR-125b-5p and miR-99a-5p downregulated γδ T cell activation and cytotoxicity to tumor cells. Overexpression of miR-125b-5p or miR-99a-5p in γδ T cells inhibited γδ T cell activation and promoted γδ T cell apoptosis. Additionally, miR-125b-5p knockdown facilitated the cytotoxicity of γδ T cells toward tumor cells in vitro by increasing degranulation and secretion of IFN-γ and TNF-α. Our findings improve the understanding of the regulatory functions of miRNAs in γδ T cell activation and cytotoxicity, which has implications for interventional approaches to γδ T cell-mediated cancer therapy.
Collapse
MESH Headings
- Apoptosis
- Cell Proliferation
- Cells, Cultured
- Down-Regulation
- Gene Expression Regulation, Neoplastic
- Humans
- Lymphocyte Activation/immunology
- MicroRNAs/genetics
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- T-Lymphocytes/pathology
Collapse
Affiliation(s)
- Yuli Zhu
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, 100005, Beijing, China
- Institute of blood transfusion, Qingdao Blood Center, 266071, Qingdao, China
| | - Siya Zhang
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, 100005, Beijing, China
| | - Zinan Li
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, 100005, Beijing, China
| | - Huaishan Wang
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, 100005, Beijing, China
| | - Zhen Li
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, 100005, Beijing, China
| | - Yu Hu
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, 100005, Beijing, China
| | - Hui Chen
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, 100005, Beijing, China
| | - Xuan Zhang
- Department of Rheumatology & Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
| | - Lianxian Cui
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, 100005, Beijing, China
| | - Jianmin Zhang
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, 100005, Beijing, China.
| | - Wei He
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, 100005, Beijing, China.
| |
Collapse
|
246
|
Ponnusamy V, Yip PK. The role of microRNAs in newborn brain development and hypoxic ischaemic encephalopathy. Neuropharmacology 2019; 149:55-65. [PMID: 30716413 DOI: 10.1016/j.neuropharm.2018.11.041] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/28/2018] [Accepted: 11/30/2018] [Indexed: 02/08/2023]
Abstract
Neonates can develop hypoxic-ischaemic encephalopathy (HIE) due to lack of blood supply or oxygen, resulting in a major cause of death and disability among term newborns. However, current definitive treatment of therapeutic hypothermia, will only benefit one out of nine babies. Furthermore, the mechanisms of HIE and therapeutic hypothermia are not fully understood. Recently, microRNAs (miRNAs) have become of interest to many researchers due to their important role in post-transcriptional control and deep evolutionary history. Despite this, role of miRNAs in newborns with HIE remains largely unknown due to limited research in this field. Therefore, this review aims to understand the role of miRNAs in normal brain development and HIE pathophysiology with reliance on extrapolated data from other diseases, ages and species due to current limited data. This will provide us with an overview of how miRNAs in normal brain development changes after HIE. Furthermore, it will indicate how miRNAs are affected specifically or globally by the various pathophysiological events. In addition, we discuss about how drugs and commercially available agents can specifically target certain miRNAs as a mechanism of action and potential safety issue with off-target effects. Improving our understanding of the role of miRNAs on the cellular response after HIE would enhance the success of effective diagnosis, prognosis, and treatment of newborns with HIE.
Collapse
Affiliation(s)
- Vennila Ponnusamy
- Centre of Genomics and Child Health, Blizard Institute, Barts and London School of Medicine and Dentistry, Queen Mary University of London, UK; Neonatal Intensive Care Unit, Ashford and St. Peter's Hospitals NHS Trust, Chertsey, UK.
| | - Ping K Yip
- Center of Neuroscience, Surgery and Trauma, Blizard Institute, Barts and London School of Medicine and Dentistry, Queen Mary University of London, UK.
| |
Collapse
|
247
|
Huang Z, Zheng D, Pu J, Dai J, Zhang Y, Zhang W, Wu Z. MicroRNA-125b protects liver from ischemia/reperfusion injury via inhibiting TRAF6 and NF-κB pathway. Biosci Biotechnol Biochem 2019; 83:829-835. [PMID: 30686117 DOI: 10.1080/09168451.2019.1569495] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
MicroRNA-125b (miR-125b), which was previously proved to be a potential immunomodulator in various disease, attenuated mouse hepatic ischemia/reperfusion (I/R) injury in this study. miR-125b was decreased in RAW 264.7 cells exposed to hypoxia/reoxygenation (H/R). The expression of IL-1β, IL-6 and TNF-α in both serum and supernate were reduced in miR-125b over-expression groups. The hepatic histopathological changes were reduced in miR-125b agomir groups. In the miR-125b antagomir groups, serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were significantly elevated compared with negative control (NC) groups. The protein expression of TNF receptor-associated factor 6 (TRAF6), IL-1β and the phosphorylation of p65 (p-p65) were suppressed by the up-regulation of miR-125b. Furthermore, the nuclear translocation of p-p65, measured by immunofluorescence, was enhanced by the miR-125b inhibitors. In conclusion, our study indicates that miR-125b protects liver from hepatic I/R injury via inhibiting TRAF6 and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signal pathway.
Collapse
Affiliation(s)
- Zuotian Huang
- a Department of Hepatobiliary Surgery , The First Affiliated Hospital of Chongqing Medical University , Chongqing , China
| | - Daofeng Zheng
- a Department of Hepatobiliary Surgery , The First Affiliated Hospital of Chongqing Medical University , Chongqing , China
| | - Junliang Pu
- a Department of Hepatobiliary Surgery , The First Affiliated Hospital of Chongqing Medical University , Chongqing , China
| | - Jiangwen Dai
- a Department of Hepatobiliary Surgery , The First Affiliated Hospital of Chongqing Medical University , Chongqing , China
| | - Yuchi Zhang
- a Department of Hepatobiliary Surgery , The First Affiliated Hospital of Chongqing Medical University , Chongqing , China
| | - Wanqiu Zhang
- a Department of Hepatobiliary Surgery , The First Affiliated Hospital of Chongqing Medical University , Chongqing , China
| | - Zhongjun Wu
- a Department of Hepatobiliary Surgery , The First Affiliated Hospital of Chongqing Medical University , Chongqing , China
| |
Collapse
|
248
|
Yu J, Peng J, Luan Z, Zheng F, Su W. MicroRNAs as a Novel Tool in the Diagnosis of Liver Lipid Dysregulation and Fatty Liver Disease. Molecules 2019; 24:molecules24020230. [PMID: 30634538 PMCID: PMC6358728 DOI: 10.3390/molecules24020230] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 12/23/2018] [Accepted: 12/24/2018] [Indexed: 02/07/2023] Open
Abstract
In recent years, metabolic disorder, especially fatty liver disease, has been considered a major challenge to global health. The attention of researchers focused on expanding knowledge of the regulation mechanism behind these diseases and towards the new diagnostics tools and treatments. The pathophysiology of the fatty liver disease is undoubtedly complex. Abnormal hepatic lipid accumulation is a major symptom of most metabolic diseases. Therefore, the identification of novel regulation factors of lipid metabolism is important and meaningful. As a new diagnostic tool, the function of microRNAs during fatty liver disease has recently come into notice in biological research. Accumulating evidence supports the influence of miRNAs in lipid metabolism. In this review, we discuss the potential role of miRNAs in liver lipid metabolism and the pathogenesis of fatty liver disease.
Collapse
Affiliation(s)
- Jingwei Yu
- Shenzhen University Medical Center, Shenzhen University Health Science Center, Shenzhen 518060, China.
- Department of Biology, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Jun Peng
- Shenzhen University Medical Center, Shenzhen University Health Science Center, Shenzhen 518060, China.
| | - Zhilin Luan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, China.
| | - Feng Zheng
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, China.
| | - Wen Su
- Shenzhen University Medical Center, Shenzhen University Health Science Center, Shenzhen 518060, China.
| |
Collapse
|
249
|
Abstract
Inflammatory and infectious diseases are among the main causes of morbidity and mortality worldwide. Inflammation is central to maintenance of organismal homeostasis upon infection, tissue damage, and malignancy. It occurs transiently in response to diverse stimuli (e.g., physical, radioactive, infective, pro-allergenic, or toxic), and in some cases may manifest itself in chronic diseases. To limit the potentially deleterious effects of acute or chronic inflammatory responses, complex transcriptional and posttranscriptional regulatory networks have evolved, often involving nonprotein-coding RNAs (ncRNA). MicroRNAs (miRNAs) are a class of posttranscriptional regulators that control mRNA translation and stability. Long ncRNAs (lncRNAs) are a very diverse group of transcripts >200 nt, functioning among others as scaffolds or decoys both in the nucleus and the cytoplasm. By now, it is well established that miRNAs and lncRNAs are implicated in all major cellular processes including control of cell death, proliferation, or metabolism. Extensive research over the last years furthermore revealed a fundamental role of ncRNAs in pathogen recognition and inflammatory responses. This chapter reviews and summarizes the current knowledge on regulatory ncRNA networks in infection and inflammation.
Collapse
Affiliation(s)
- Leon N Schulte
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (DZL), Philipps-University Marburg, Marburg, Germany
| | - Wilhelm Bertrams
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (DZL), Philipps-University Marburg, Marburg, Germany
| | - Christina Stielow
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (DZL), Philipps-University Marburg, Marburg, Germany
| | - Bernd Schmeck
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (DZL), Philipps-University Marburg, Marburg, Germany.
| |
Collapse
|
250
|
Henry RJ, Doran SJ, Barrett JP, Meadows VE, Sabirzhanov B, Stoica BA, Loane DJ, Faden AI. Inhibition of miR-155 Limits Neuroinflammation and Improves Functional Recovery After Experimental Traumatic Brain Injury in Mice. Neurotherapeutics 2019; 16:216-230. [PMID: 30225790 PMCID: PMC6361054 DOI: 10.1007/s13311-018-0665-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Micro-RNAs (miRs) are short, noncoding RNAs that negatively regulate gene expression at the post-transcriptional level and have been implicated in the pathophysiology of secondary damage after traumatic brain injury (TBI). Among miRs linked to inflammation, miR-155 has been implicated as a pro-inflammatory factor in a variety of organ systems. We examined the expression profile of miR-155, following experimental TBI (controlled cortical impact) in adult male C57Bl/6 mice, as well as the effects of acute or delayed administration of a miR-155 antagomir on post-traumatic neuroinflammatory responses and neurological recovery. Trauma robustly increased miR-155 expression in the injured cortex over 7 days. Similar TBI-induced miR-155 expression changes were also found in microglia/macrophages isolated from the injured cortex at 7 days post-injury. A miR-155 hairpin inhibitor (antagomir; 0.5 nmol), administered intracerebroventricularly (ICV) immediately after injury, attenuated neuroinflammatory markers at both 1 day and 7 days post-injury and reduced impairments in spatial working memory. Delayed ICV infusion of the miR-155 antagomir (0.5 nmol/day), beginning 24 h post-injury and continuing for 6 days, attenuated neuroinflammatory markers at 7 days post-injury and improved motor, but not cognitive, function through 28 days. The latter treatment limited NADPH oxidase 2 expression changes in microglia/macrophages in the injured cortex and reduced cortical lesion volume. In summary, TBI causes a robust and persistent neuroinflammatory response that is associated with increased miR-155 expression in microglia/macrophages, and miR-155 inhibition reduces post-traumatic neuroinflammatory responses and improves neurological recovery. Thus, miR-155 may be a therapeutic target for TBI-related neuroinflammation.
Collapse
Affiliation(s)
- Rebecca J. Henry
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD USA
| | - Sarah J. Doran
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD USA
| | - James P. Barrett
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD USA
| | - Victoria E. Meadows
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD USA
| | - Boris Sabirzhanov
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD USA
| | - Bogdan A. Stoica
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD USA
| | - David J. Loane
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD USA
- Department of Anesthesiology, University of Maryland School of Medicine, 655 West Baltimore Street, No. 6-011, Baltimore, MD 21201 USA
| | - Alan I. Faden
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD USA
- Department of Anesthesiology, University of Maryland School of Medicine, 685 West Baltimore Street, MSTF No. 6-02, Baltimore, MD 21201 USA
| |
Collapse
|