201
|
Olvera-Vargas H, Trellu C, Nidheesh PV, Mousset E, Ganiyu SO, Martínez-Huitle CA, Zhou M, Oturan MA. Challenges and opportunities for large-scale applications of the electro-Fenton process. WATER RESEARCH 2024; 266:122430. [PMID: 39278119 DOI: 10.1016/j.watres.2024.122430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 09/07/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
As an electrochemical advanced oxidation process, the electro-Fenton (EF) process has gained significant importance in the treatment of wastewater and persistent organic pollutants in recent years. As recently reported in a bibliometric analysis, the number of scientific publications on EF have increased exponentially since 2002, reaching nearly 500 articles published in 2022 (Deng et al., 2022). The influence of the main operating parameters has been thoroughly investigated for optimization purposes, such as type of electrode materials, reactor design, current density, and type and concentration of catalyst. Even though most of the studies have been conducted at a laboratory scale, focusing on fundamental aspects and their applications to degrade specific pollutants and treat real wastewater, important large-scale attempts have also been made. This review presents and discusses the most recent advances of the EF process with special emphasis on the aspects more closely related to future implementations at the large scale, such as applications to treat real effluents (industrial and municipal wastewaters) and soil remediation, development of large-scale reactors, costs and effectiveness evaluation, and life cycle assessment. Opportunities and perspectives related to the heterogeneous EF process for real applications are also discussed. This review article aims to be a critical and exhaustive overview of the most recent developments for large-scale applications, which seeks to arouse the interest of a large scientific community and boost the development of EF systems in real environments.
Collapse
Affiliation(s)
- Hugo Olvera-Vargas
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México (IER-UNAM), Morelos 62580, Mexico.
| | - Clément Trellu
- Laboratoire Géomatériaux et Environnement EA 4508, Université Gustave Eiffel, Cedex 2, Marne-la-Vallée 77454, France.
| | | | - Emmanuel Mousset
- Nantes Université, ONIRIS, CNRS, GEPEA, UMR 6144, F-85000 La Roche-sur-Yon, France
| | - Soliu O Ganiyu
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton AB, T6G 2W2, Canada
| | - Carlos A Martínez-Huitle
- Institute of Chemistry, Federal University of Rio Grande do Norte, Lagoa Nova, CEP, Natal, RN 59078-970, Brazil
| | - Minghua Zhou
- Nankai University, College of Environmental Science and Engineering, Tianjin 300350, China
| | - Mehmet A Oturan
- Laboratoire Géomatériaux et Environnement EA 4508, Université Gustave Eiffel, Cedex 2, Marne-la-Vallée 77454, France.
| |
Collapse
|
202
|
Qi Q, Liu Z, Chen X, Yu J, Li X, Wang R, Liu Y, Chen J. Promoted electrochemical performance by MOF on MOF composite catalyst of microbial fuel cell: CuCo-MOF@ZIF-8 and the comparison between two-step hydrothermal method and dual-solution method. Biosens Bioelectron 2024; 264:116693. [PMID: 39167887 DOI: 10.1016/j.bios.2024.116693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/06/2024] [Accepted: 08/19/2024] [Indexed: 08/23/2024]
Abstract
The microbial fuel cell (MFC) is a device that simultaneously achieves electricity generation and sewage degradation. In this study, a novel cathode catalyst metal-organic frameworks (MOFs) have been fabricated by two-step hydrothermal and dual-solution method (CuCo-MOF@ZIF-8). The synthesized trimetal MOFs exhibited a 3D badminton-like structure morphology and porosity. The results of the characterizations showed that CuCo-MOF@ZIF-8 possesses greater surface area porosity and novel functional groups. The Trimetal MOF-on-MOF mode not only demonstrated the stability of the structure but also enhanced its mechanism. Molecular mechanism analysis revealed changes in the organic ligand and metal binding site due to the transformation of Cu2+ to Cu+, Co2+ to Co3+, and Zn-N to Zn-O organic connection. Furthermore, differences between the two fabrication methods were compared. The solid-state single preparation (CuCo-MOF@ZIF-8-1), was synthesized using the two-step hydrothermal method; the liquid mixed preparation material (CuCo-MOF@ZIF-8-2), was synthesized using the dual-solution method; they exhibited completely different chemical structures and morphologies during material testing and characterization. The maximum output power density of CuCo-MOF@ZIF-8-2-MFC was 246.38 mW/m2, about 2.49 times of ZIF-8 (98.72 mW/m2). The output voltage of CuCo-MOF@ZIF-8-1-MFC was measured at 357 mV over 10 d, while that of CuCo-MOF@ZIF-8-2-MFC reached 365 mV over 12 d.
Collapse
Affiliation(s)
- Qin Qi
- School of Life Sciences, Qufu Normal University, Qufu, 273165, PR China
| | - Zhen Liu
- School of Life Sciences, Qufu Normal University, Qufu, 273165, PR China
| | - Xiaomin Chen
- School of Life Sciences, Qufu Normal University, Qufu, 273165, PR China
| | - Jiale Yu
- School of Life Sciences, Qufu Normal University, Qufu, 273165, PR China
| | - Xin Li
- School of Life Sciences, Qufu Normal University, Qufu, 273165, PR China
| | - Renjun Wang
- School of Life Sciences, Qufu Normal University, Qufu, 273165, PR China
| | - Yanyan Liu
- School of Life Sciences, Qufu Normal University, Qufu, 273165, PR China
| | - Junfeng Chen
- School of Life Sciences, Qufu Normal University, Qufu, 273165, PR China.
| |
Collapse
|
203
|
Dahlström C, Duan R, Eivazi A, Magalhães S, Alves L, Engholm M, Svanedal I, Edlund H, Medronho B, Norgren M. Stacking self-gluing cellulose II films: A facile strategy for the formation of novel all-cellulose laminates. Carbohydr Polym 2024; 344:122523. [PMID: 39218546 DOI: 10.1016/j.carbpol.2024.122523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 09/04/2024]
Abstract
Cellulose laminates represent a remarkable convergence of natural materials and modern engineering, offering a wide range of versatile applications in sustainable packaging, construction, and advanced materials. In this study, novel all-cellulose laminates are developed using an environmentally friendly approach, where freshly regenerated cellulose II films are stacked without the need for solvents (for impregnation and/or partial dissolution), chemical modifications, or resins. The structural and mechanical properties of these all-cellulose laminates were thoroughly investigated. This simple and scalable procedure results in transparent laminates with exceptional mechanical properties comparable to or even superior to common plastics, with E-modulus higher than 9 GPa for a single layer and 7 GPa for the laminates. These laminates are malleable and can be easily patterned. Depending on the number of layers, they can be thin and flexible (with just one layer) or thick and rigid (with three layers). Laminates were also doped with 10 wt% undissolved fibers without compromising their characteristics. These innovative all-cellulose laminates present a robust, eco-friendly alternative to traditional synthetic materials, thus bridging the gap between environmental responsibility and high-performance functionality.
Collapse
Affiliation(s)
- Christina Dahlström
- Surface and Colloid Engineering, FSCN Research Centre, Mid Sweden University, Holmgatan 10, SE-851 70 Sundsvall, Sweden.
| | - Ran Duan
- Surface and Colloid Engineering, FSCN Research Centre, Mid Sweden University, Holmgatan 10, SE-851 70 Sundsvall, Sweden; Tetra Pak, Ruben Rausings gata, SE-221 00 Lund, Sweden
| | - Alireza Eivazi
- Surface and Colloid Engineering, FSCN Research Centre, Mid Sweden University, Holmgatan 10, SE-851 70 Sundsvall, Sweden
| | - Solange Magalhães
- University of Coimbra, CERES, Department of Chemical Engineering, 3030-790 Coimbra, Portugal
| | - Luís Alves
- University of Coimbra, CERES, Department of Chemical Engineering, 3030-790 Coimbra, Portugal
| | - Magnus Engholm
- Advanced Materials and Processes, FSCN Research Centre, Mid Sweden University, Holmgatan 10, SE-851 70 Sundsvall, Sweden
| | - Ida Svanedal
- Surface and Colloid Engineering, FSCN Research Centre, Mid Sweden University, Holmgatan 10, SE-851 70 Sundsvall, Sweden
| | - Håkan Edlund
- Surface and Colloid Engineering, FSCN Research Centre, Mid Sweden University, Holmgatan 10, SE-851 70 Sundsvall, Sweden
| | - Bruno Medronho
- Surface and Colloid Engineering, FSCN Research Centre, Mid Sweden University, Holmgatan 10, SE-851 70 Sundsvall, Sweden; MED-Mediterranean Institute for Agriculture, Environment and Development, CHANGE-Global Change and Sustainability Institute, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, Ed. 8, 8005-139 Faro, Portugal
| | - Magnus Norgren
- Surface and Colloid Engineering, FSCN Research Centre, Mid Sweden University, Holmgatan 10, SE-851 70 Sundsvall, Sweden
| |
Collapse
|
204
|
Zhang J, Chen Y, Ni M, Hou C, Qiao X, Wang T. A novel halloysite nanotubes-based hybrid monolith for in-tube solid-phase microextraction of polar cationic pesticides. Food Chem 2024; 458:140205. [PMID: 38943962 DOI: 10.1016/j.foodchem.2024.140205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 06/13/2024] [Accepted: 06/22/2024] [Indexed: 07/01/2024]
Abstract
The accurate determination of polar cationic pesticides in food poses a challenge due to their high polarity and trace levels in complex matrices. This study hypothesized that the use of halloysite nanotubes (HNTs) can significantly enhance the extraction efficiency and sensitivity of these analytes because of their rich hydroxyl groups and cation exchange sites. Therefore, we chemically incorporated HNTs with organic polymer monoliths for in-tube solid-phase microextraction (SPME). This novel hybrid monolith extended service life, improved adsorption capacity, and exhibited excellent extraction performance for polar cationic pesticides. Based on these advancements, a robust and sensitive in-tube SPME-HILIC-MS/MS method was constructed to determine trace levels of polar cationic pesticides in complex food matrices. The method achieved limits of detection of 1.9, 2.1, and 0.1 μg/kg for maleic hydrazide, amitrole, and cyromazine, respectively. The spiked recoveries in five food samples ranged from 80.2 to 100.8%, with relative standard deviations below 10.7%.
Collapse
Affiliation(s)
- Jinhan Zhang
- School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo 315211, PR China
| | - Yihui Chen
- Ningbo Customs Technology Center, Ningbo 315040, PR China.
| | - Meilin Ni
- Ningbo Customs Technology Center, Ningbo 315040, PR China
| | - Chunyan Hou
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Xiaoqiang Qiao
- College of Pharmaceutical Sciences, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding 071002, PR China
| | - Tingting Wang
- School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo 315211, PR China.
| |
Collapse
|
205
|
Wang Z, Chen F, Deng Y, Tang X, Li P, Zhao Z, Zhang M, Liu G. Texture characterization of 3D printed fibrous whey protein-starch composite emulsion gels as dysphagia food: A comparative study on starch type. Food Chem 2024; 458:140302. [PMID: 38968706 DOI: 10.1016/j.foodchem.2024.140302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/07/2024] [Accepted: 06/29/2024] [Indexed: 07/07/2024]
Abstract
Texture-modified, multi-nutrient composite foods are essential in clinical treatment for dysphagia individuals. Herein, fibrous whey protein-stabilized emulsion and different crystalline starches (wheat, corn, rice, potato, sweet potato, cassava, mung bean and pea) were used to structure composite emulsion gels (CEGs). These CEGs then underwent 3D printing to explore the feasibility of developing a dysphagia diet. The network of molded CEGs was mainly maintained by hydrophobic interactions and hydrogen bonds. Rice and cassava starches were better suited for structuring soft-textured CEGs. Compared with molded CEGs, 3D printing decreased hydrogen bonds and the compactness of the nano-aggregate structure within the gel system, forming a looser gel network and softening the CEGs. Interestingly, these effects were more pronounced for the CEGs with high initial hardness. This study provided new strategy to fabricate CEGs as dysphagia diet using fibrous whey protein and starch, and to design texture-modified foods for patients using 3D printing.
Collapse
Affiliation(s)
- Zhiming Wang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Funi Chen
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Yuanyuan Deng
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Xiaojun Tang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Ping Li
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Zhihao Zhao
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Mingwei Zhang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Food Laboratory of Zhongyuan, Luohe 462300, Henan, China.
| | - Guang Liu
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China.
| |
Collapse
|
206
|
Ji Z, Wang J, Yan Z, Liu C, Liu Z, Chang H, Qu F, Liang H. Gravity-driven membrane integrated with membrane distillation for efficient shale gas produced water treatment. WATER RESEARCH 2024; 266:122332. [PMID: 39216126 DOI: 10.1016/j.watres.2024.122332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/11/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
Substantial volumes of hazardous shale gas produced water (SGPW) generated in unconventional natural gas exploration. Membrane distillation (MD) is a promising approach for SGPW desalination, while membrane fouling, wetting, and permeate deterioration restrict MD application. The integration of gravity-driven membrane (GDM) with MD process was proposed to improve MD performance, and different pretreatment methods (i.e., oxidation, coagulation, and granular filtration) were systematically investigated. Results showed that pretreatment released GDM fouling and improved permeate quality by enrich certain microbes' community (e.g., Proteobacteria and Nitrosomonadaceae), greatly ensured the efficient desalination of MD. Pretreatment greatly influences GDM fouling layer morphology, leading to different flux performance. Thick/rough/hydrophilic fouling layer formed after coagulation, and thin/loose fouling layer formed after silica sand filtration improved GDM flux by 2.92 and 1.9 times, respectively. Moreover, the beneficial utilization of adsorption-biodegradation effects significantly enhanced GDM permeate quality. 100 % of ammonia and 53.99 % of UV254 were efficiently removed after zeolite filtration-GDM and granular activated carbon filtration-GDM, respectively. Compared to the surged conductivity (41.29 μS/cm) and severe flux decline (>82 %) under water recovery rate of 75 % observed in single MD for SGPW treatment, GDM economically controlled permeate conductivity (1.39-19.9 μS/cm) and MD fouling (flux decline=8.3 %-27.5 %). Exploring the mechanisms, the GDM-MD process has similarity with Janus MD membrane in SGPW treatment, significantly reduced MD fouling and wetting.
Collapse
Affiliation(s)
- Zhengxuan Ji
- School of Architecture & Civil Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Jiaxuan Wang
- School of Architecture & Civil Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Zhongsen Yan
- College of Civil Engineering, Fuzhou University, Fujian 350108, China
| | - Caihong Liu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Zhe Liu
- School of Environmental & Municipal Engineering, Xi'an University of Architecture & Technology, 710055, China
| | - Haiqing Chang
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610207, China; State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu 610065, China.
| | - Fangshu Qu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Guangzhou University, Guangzhou 510006, China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
207
|
Wang Q, Li Y, Tang Z, Du K. Regulation of macroporous cellulose microspheres via phase separation force induced by carbon nanotubes doping for enhanced protein adsorption. Carbohydr Polym 2024; 344:122541. [PMID: 39218558 DOI: 10.1016/j.carbpol.2024.122541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/07/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024]
Abstract
The burgeoning requirement for purified biomacromolecules in biopharmaceutical industry has amplified the exigency for advanced chromatographic separation techniques. Herein, macroporous cellulose microspheres (CCMs) with micron-sized pores are produced by a facile regulation via carbon nanotubes (CNTs). In this strategy, the incorporation of CNTs breaks the homogeneous regeneration of the cellulose, thus providing anisotropic phase force to produce macropores. The CCMs have manifested a faster mass transfer rate and more available adsorption sites owing to well-defined macropores (2.69 ± 0.57 μm) and high specific surface area (147.47 m2 g-1). Further, CCMs are functionalized by quaternary ammonium salts (GTAc-CCMs) and utilized as anion adsorbents to adsorb pancreatic kininogenase (PK). The prepared GTAc-CCMs show rapid adsorption kinetics for PK at pH 6.0, reaching 90 % equilibrium within 60 min. Also, GTAc-CCMs for PK exhibit high adsorptive capacity (632.50 mg g-1), excellent recyclability (> 80 % removal amount after 10 cycles) and selectivity especially at pH 6.0. Notably, the GTAc-CCMs have been successfully applied in a fixed-bed chromatography process, indicating their potential as an effective chromatographic medium for rapid separation of biomacromolecules.
Collapse
Affiliation(s)
- Qin Wang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Yanjie Li
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Zhangyong Tang
- Sichuan Deebio Pharmaceutical Co., Ltd, Xiaohan Industrial Park, Guanghan 618304, PR China
| | - Kaifeng Du
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China.
| |
Collapse
|
208
|
Wang M, Zuo X, Jacovone RMS, O'Hara R, Mondal AN, Asatekin A, Rodrigues DF. Influence of zwitterionic amphiphilic copolymers on heterogeneous gypsum formation: A promising approach for scaling resistance. WATER RESEARCH 2024; 266:122439. [PMID: 39307081 DOI: 10.1016/j.watres.2024.122439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 11/06/2024]
Abstract
This study aims to investigate the influence of zwitterionic amphiphilic copolymers (ZACs) in the nucleation and growth of heterogeneous CaSO4 at the zwitterion-water interface, which is crucial for the prevention of mineral scaling and consequent downtime or suboptimal performance in industries like membrane desalination, heat exchangers, and pipeline transportation. In situ grazing incidence small angle X-ray Scattering (GISAXS), and quartz crystal microbalance with dissipation (QCM-D) techniques were used to analyze the evolution of CaSO4 particles on two new ZAC coatings: poly-(trifluoroethyl methacrylate-random-sulfobetaine methacrylate) (PTFEMA-r-SBMA, or PT:SBMA) and poly(trifluoroethyl methacrylate-random-2-methacryloyloxyethyl phosphorylcholine) (PTFEMA-r-MPC, or PT:MPC). The results showed that PT:MPC coatings promoted nucleation but inhibited crystal growth, resulting in slower overall reaction kinetics on PT:MPC coatings compared to PT:SBMA coatings. Interfacial interactions involving the substrates, sulfate minerals, and ions were examined, revealing that calcium ion adsorption, primarily governed by electrostatic attraction, played a crucial role in the nucleation and growth processes on both ZAC coatings. The crystal characterization revealed a phase transition from bassanite to gypsum on both ZAC coatings, suggesting that these zwitterionic materials can influence the mineral phase of heterogeneously formed CaSO4 crystals. These findings enhance our understanding of the fundamental mechanisms underlying heterogeneous CaSO4 scaling in the presence of zwitterionic materials.
Collapse
Affiliation(s)
- Meng Wang
- Department of Civil & Environmental Engineering, University of Houston, Houston, TX, 77004, USA
| | - Xiaobing Zuo
- X-ray Science Division, Argonne National Laboratory, Lemont, Illinois, 60439, USA
| | - Raynara M S Jacovone
- Department of Civil & Environmental Engineering, University of Houston, Houston, TX, 77004, USA
| | - Ryan O'Hara
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts, 02155, USA
| | - Abhishek Narayan Mondal
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts, 02155, USA
| | - Ayse Asatekin
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts, 02155, USA
| | - Debora F Rodrigues
- Department of Civil & Environmental Engineering, University of Houston, Houston, TX, 77004, USA; Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, South Carolina, 29634, USA.
| |
Collapse
|
209
|
Lu T, Li X, Lu M, Lv W, Liu W, Dong X, Liu Z, Xie S, Lv S. Flexible and scalable photothermal/electro thermal anti-icing/de-icing metamaterials for effective large-scale preparation. iScience 2024; 27:111086. [PMID: 39507248 PMCID: PMC11539719 DOI: 10.1016/j.isci.2024.111086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/28/2024] [Accepted: 09/27/2024] [Indexed: 11/08/2024] Open
Abstract
Anti-icing and de-icing are vital for infrastructure maintenance. While carbon-based materials with photothermal or electrothermal effects have advanced, they face challenges like environmental dependence, poor resistance, high energy consumption, and complex manufacturing. Here, we developed a scalable, hybrid metamaterial driven by photothermal/electrothermal for all-weather anti-icing/de-icing. Its nanostructured surface delays icing by 360 s at -30°C, breaking records across a wide temperature range. The porous structure enhances light absorption, achieving a delayed icing time of 2500 s at -20°C under one sunlight. The graphene film's high conductivity allows rapid de-icing with 1.6W power. After 720 h of outdoor exposure, the metamaterial retained a contact angle above 150°, confirming durability. More critically, we have demonstrated that the metamaterial can be manufactured on a large scale, which is essential for improving the economics of the anti-icing/de-icing sector.
Collapse
Affiliation(s)
- Tonghui Lu
- School of Naval Architecture, Ocean and Energy Power Engineering, Wuhan University of Technology, Wuhan 430063, China
| | - Xianglin Li
- School of Naval Architecture, Ocean and Energy Power Engineering, Wuhan University of Technology, Wuhan 430063, China
| | - Mengying Lu
- School of Naval Architecture, Ocean and Energy Power Engineering, Wuhan University of Technology, Wuhan 430063, China
| | - Wenhao Lv
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430063, China
| | - Wenzhuo Liu
- School of Naval Architecture, Ocean and Energy Power Engineering, Wuhan University of Technology, Wuhan 430063, China
| | - Xuanchen Dong
- School of Naval Architecture, Ocean and Energy Power Engineering, Wuhan University of Technology, Wuhan 430063, China
| | - Zhe Liu
- School of Naval Architecture, Ocean and Energy Power Engineering, Wuhan University of Technology, Wuhan 430063, China
| | - Shangzhen Xie
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, China
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, China
| | - Song Lv
- School of Naval Architecture, Ocean and Energy Power Engineering, Wuhan University of Technology, Wuhan 430063, China
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430063, China
| |
Collapse
|
210
|
Chhillar M, Kukkar D, Kumar Yadav A, Kim KH. Nitrogen doped carbon dots and gold nanoparticles mediated FRET for the detection of creatinine in human urine samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 321:124752. [PMID: 38945007 DOI: 10.1016/j.saa.2024.124752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/19/2024] [Accepted: 06/26/2024] [Indexed: 07/02/2024]
Abstract
Serum creatinine (CR) is regarded as one of the most sought out prognostic biomarkers in medical evaluation of chronic kidney disease (CKD). In light of the diagnostic significance of CR, the utility of a fluorescence biosensor for its detection in human urine specimens has been explored based on Förster resonance energy transfer (FRET) across nitrogen-doped carbon dots (N-CDs) and gold nanoparticles (GNPs). A straightforward microwave-assisted synthesis procedure has been adopted to prepare N-CDs (λexcitation = 400 nm, λemission = 540 ± 5 nm) with bright green emissions. On addition of pre-synthesized GNPs, the radiative emanation of the N-CDs is completely suppressed on account of FRET across the N-CDs and the GNPs. About 77 % of their fluorescence intensity is recovered after adding CR to GNPs@N-CDs nanocomposite. The limit of detection for CR sensing is estimated as 0.02 µg•mL-1. This biosensor is selective enough to recognize CR in the existence of potential interfering substances (e.g., ascorbic acid, glucose, glutathione, urea, and electrolytes). Its practical utility for CR detection has been validated further on the basis of satisfactory correlation with the benchmark Jaffe method, as observed in artificial/human urine specimens. Consequently, this manuscript marks a pioneering report on employing CDs and GNPs-based FRET for identifying CR in urine specimens of CKD patients.
Collapse
Affiliation(s)
- Monika Chhillar
- Department of Biotechnology, Chandigarh University, Gharuan, Mohali 140413, Punjab, India; University Centre for Research and Development, Chandigarh University, Gharuan, Mohali 140413, Punjab, India
| | - Deepak Kukkar
- Department of Biotechnology, Chandigarh University, Gharuan, Mohali 140413, Punjab, India; University Centre for Research and Development, Chandigarh University, Gharuan, Mohali 140413, Punjab, India.
| | - Ashok Kumar Yadav
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research, Sector 12, Chandigarh, India
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, South Korea.
| |
Collapse
|
211
|
Nasrollahpour S, Tanhadoust A, Pulicharla R, Brar SK. Long-chain perfluoroalkyl carboxylic acids removal by biochar: Experimental study and uncertainty based data-driven predictive model. iScience 2024; 27:111140. [PMID: 39502287 PMCID: PMC11536053 DOI: 10.1016/j.isci.2024.111140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/03/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024] Open
Abstract
Given the persistence and toxicity of long-chain perfluoroalkyl carboxylic acids (PFCAs) and their rising concentrations, there is an urgent need for effective removal strategies. This study investigated the adsorptive removal of PFCAs, specifically perfluorononanoic acid (PFNA) and perfluorodecanoic acid (PFDA), using biochar derived from wood and compost. Factors such as biochar size, weight, and initial PFCA concentrations were analyzed to assess their impact on adsorption efficiency over time. The adsorption of PFDA and PFNA reached 90.13% and 85.8%, respectively, at an initial concentration of 500 μg/L. Advanced machine learning techniques, specifically deep neural networks, were employed to model adsorption behavior, incorporating noise injection to account for data uncertainties and preventing overfitting. Results demonstrated the superior performance of compost-derived biochar due to its higher aromaticity and functional group availability. The longer chain length of PFDA contributed to its higher adsorption efficiency compared to PFNA.
Collapse
Affiliation(s)
- Sepideh Nasrollahpour
- Department of Civil Engineering, Lassonde School of Engineering, York University, Toronto, ON M3J 1P3, Canada
| | - Amin Tanhadoust
- Department of Civil Engineering, Isfahan University of Technology (IUT), Isfahan, Iran
| | - Rama Pulicharla
- Department of Civil Engineering, Lassonde School of Engineering, York University, Toronto, ON M3J 1P3, Canada
| | - Satinder Kaur Brar
- Department of Civil Engineering, Lassonde School of Engineering, York University, Toronto, ON M3J 1P3, Canada
| |
Collapse
|
212
|
Zhang X, Sathiyaseelan A, Zhang L, Lu Y, Jin T, Wang MH. Zirconium and cerium dioxide fabricated activated carbon-based nanocomposites for enhanced adsorption and photocatalytic removal of methylene blue and tetracycline hydrochloride. ENVIRONMENTAL RESEARCH 2024; 261:119720. [PMID: 39096986 DOI: 10.1016/j.envres.2024.119720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/23/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
Activated carbon (AC) is a porous, amorphous form of carbon known for its strong adsorption capacity, making it highly effective for use in wastewater treatment. In this investigation, AC-based nanocomposites (NCs) loaded with zirconium dioxide and cerium dioxide nanoparticles (ZrO2/CeO2 NPs) were successfully synthesized for the effective elimination of methylene blue (MB) and tetracycline hydrochloride (TCH). The AC-ZrO2/CeO2 NCs have a size of 231.83 nm, a zeta potential of -20.07 mV, and a PDI value of 0.160. The adsorption capacities of AC-ZrO2/CeO2 NCs for MB and TCH were proved in agreement with the Langmuir isotherm and pseudo 1st order kinetic model, respectively. The maximum adsorption capacities were determined to be 75.54 mg/g for MB and 26.75 mg/g for TCH. Notably, AC-ZrO2/CeO2 NCs exhibited superior photocatalytic degradation efficiency for MB and TCH under sunlight irradiation with removal efficiencies reaching up to 97.91% and 82.40% within 90 min, respectively. The t1/2 for the photo-degradation process of MB and TCH were 11.55 min and 44.37 min. Analysis of active species trapping confirmed the involvement of hole (h+), superoxide anion (•O2-), and hydroxyl radical (•OH) in the degradation mechanism. Furthermore, the residual solution post-contaminant removal exhibited minimal toxicity towards Artemia salina and NIH3T3 cells. Importantly, the NCs did not exhibit antibacterial activity against tested pathogens post-absorption/degradation of TCH. Thus, AC-ZrO2/CeO2 NCs could be a promising nanomaterial for wastewater treatment applications.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Anbazhagan Sathiyaseelan
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Lina Zhang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Yuting Lu
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Tieyan Jin
- College of Food Science and Engineering, Yanbian University, Yanji, Jilin, 133002, China.
| | - Myeong-Hyeon Wang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
213
|
Zi S, Wu D, Zhang Y, Jiang X, Liu J. Insights into the controlling factors of the transport of tire wear particles in saturated porous media: The facilitative role of aging and fulvic acid. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175665. [PMID: 39181254 DOI: 10.1016/j.scitotenv.2024.175665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/14/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024]
Abstract
The widespread distribution and potential adverse effects of tire wear particles (TWPs) on soil and groundwater quality pose a growing environmental concern. This study investigated the transport behavior of TWPs in saturated porous media and elucidated the underlying mechanisms influenced by environmental factors. Additionally, the effects of key environmental factors, such as aging, ionic strength, cation species, medium type, and natural organic matter (NOM), on the transport of TWPs were evaluated. The results showed that aging processes simulated through O3 and UV irradiation altered the physicochemical properties of TWPs, increased the mobility of TWPs at low ionic strengths. However, the high ionic strengths and the presence of Ca2+ significantly inhibited the mobility of TWPs due to enhanced aggregation. The transport mechanism of the original and aged TWPs shifted from blocking to ripening under favorable retention conditions (i.e., high ionic strengths, divalent cations, and fine sands). Interestingly, the presence of fulvic acid (FA) inhibited the ripening of the three TWPs, significantly promoting their transport through a spatial site resistance mechanism. The two-site kinetic attachment model (TSKAM), extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory, and colloid filtration theory (CFT) were applied to describe the transport behavior of the TWPs. The study provided a comprehensive understanding of the transport behavior of TWPs in groundwater environments, highlighting the environmental risks associated with their widespread distribution.
Collapse
Affiliation(s)
- Shaoxin Zi
- College of Marine and Environmental Sciences, Ministry of Education Key Laboratory of Marine Resource Chemistry and Food Technology, Tianjin University of Science & Technology, Tianjin 300457, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Di Wu
- College of Marine and Environmental Sciences, Ministry of Education Key Laboratory of Marine Resource Chemistry and Food Technology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yingxin Zhang
- College of Marine and Environmental Sciences, Ministry of Education Key Laboratory of Marine Resource Chemistry and Food Technology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Xiangtao Jiang
- Marine Science Institute, The University of Texas at Austin, Port Aransas, TX 78373, USA
| | - Jin Liu
- College of Marine and Environmental Sciences, Ministry of Education Key Laboratory of Marine Resource Chemistry and Food Technology, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|
214
|
Han SH, Huang DD, Cheng ZJ, Liu AL, Lei Y. Hydrogen peroxide enhanced glow-type chemiluminescence of hydrazine hydrate modified carbon quantum dots-potassium persulfate system. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 321:124730. [PMID: 38943757 DOI: 10.1016/j.saa.2024.124730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/01/2024]
Abstract
Most known chemiluminescence (CL) systems are flash-type that generate weak luminescence and decline quickly after dozens of seconds, while the glow-type CL systems have stable emission for an extended period to achieve accurate quantitation. In this work, a long-term CL system based on hydrazine-hydrate (N2H4·H2O) modified carbon quantum dots (N-CQDs) as a luminescent probe, with K2S2O8 and H2O2 as co-reactants, was proposed. The CL emission enhanced by H2O2 increased 18-fold more than that of N-CQDs and K2S2O8 direct reaction, and decayed by 5% of the maximum intensity over 700 s. In the reaction system, K2S2O8 and H2O2 co-reactants can promote each other to continuously generate corresponding radicals (•OH, O2•-, 1O2), which in turn trigger the CL emission of N-CQDs. This phenomenon was identified as the primary cause for the production of persistent CL. In addition, a stable and selective CL sensor based on the N-CQDs-K2S2O8-H2O2 CL enhancing system was developed for ascorbic acid quantitation in the linear range from 0.1 to 10.0 mM with a detection limit of 0.036 mM. The method has been applied to the analysis of tablet samples and holds potential in pharmaceutical analysis field.
Collapse
Affiliation(s)
- Shu-Hua Han
- Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, The School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Dan-Dan Huang
- Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, The School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Zhang-Jian Cheng
- Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, The School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Ai-Lin Liu
- Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, The School of Pharmacy, Fujian Medical University, Fuzhou 350122, China.
| | - Yun Lei
- Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, The School of Pharmacy, Fujian Medical University, Fuzhou 350122, China.
| |
Collapse
|
215
|
Wang R, Luan Y, Li J, Li X, Dai W, Tao K. Strong binding between nanoplastic and bacterial proteins facilitates protein corona formation and reduces nanoplastics toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175433. [PMID: 39134275 DOI: 10.1016/j.scitotenv.2024.175433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/28/2024] [Accepted: 08/08/2024] [Indexed: 08/16/2024]
Abstract
The interaction and combination of nanoplastics with microorganisms, enzymes, plant proteins, and other substances have garnered considerable attention in current research. This study specifically examined the interaction and biological effects of NPs and proteins. The findings indicated that the presence of externally wrapped proteins alters the original morphology and surface roughness of nanoplastics, leading to the formation of unevenly distributed coronas on the surface. This confirms that nanoplastics can interact with proteins to form protein coronas. The study characterized the adsorption behavior of bacterial proteins on unmodified, amino-modified, and carboxyl-modified nanoplastics using Langmuir and Freundlich isotherm models, showing that the adsorption process of the three nanoplastics on bacterial proteins was mainly controlled by chemisorption. Fluorescence spectroscopy revealed a higher binding affinity of unmodified nanoplastics. Nearly 40 % of the proteins in the protein corona of unmodified NPs are involved in metabolite production and electron transport processes. Nearly 50 % of the proteins in the protein corona of amino-modified NPs are involved in cellular metabolic processes, followed by enzymes that carry out redox reactions. The protein corona of carboxyl-modified NPs has the highest number of proteins involved in metabolic pathways, followed by proteins involved in energy-electron transfer. The formation of protein coronas on NPs with different surface modifications can reduce the toxicity of nanoplastics to bacteria to a certain extent compared to pure nanoplastics, especially amino-modified NPs, which show a significant increase in bacterial survival. The formation of protein coronas on NPs leads to varying degrees of decrease in bacterial ROS and MDA generation, with amino-modified NPs showing the most reduction; SOD and CAT exhibit varying degrees of increase and decrease. These findings not only advance our understanding of the biological impacts of NPs but also provide a basis for future in-depth investigations into the pathways of NP contamination in real environments.
Collapse
Affiliation(s)
- Rongyu Wang
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Yaning Luan
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China.
| | - Jing Li
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China.
| | - Xiaodong Li
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Wei Dai
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Kejie Tao
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
216
|
Ding Q, Ishikawa D, Yamamura H, Watanabe Y. Causes of negatively charged meso-colloids formed in the coagulation process: Implication of the origin of foulants in the coagulation-membrane filtration process. WATER RESEARCH 2024; 266:122435. [PMID: 39298893 DOI: 10.1016/j.watres.2024.122435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/05/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024]
Abstract
Tiny colloids with a size similar to that of membrane pores are responsible for irreversible fouling in the pre-coagulation microfiltration membrane filtration process for drinking water treatment. Such colloidal particles are defined here as meso‑colloids, and the charge neutralization of meso‑colloids is demonstrated to be a key to controlling irreversible fouling. However, meso‑colloids remain negatively charged at neutral pH, the reason for which is still unclear. To increase the efficiency of membrane operation, additional knowledge about the causes and behaviors of meso‑colloids during pre-coagulation is indispensable. Therefore, in this study, meso‑colloids are fractionated after a series of jar tests, and their exact composition and charge properties are characterized. Two natural water samples, the adjusted water consisting of meso‑colloid fraction separated from one of the natural water samples and additional inorganic chemicals, and the adjusted water by the addition of appropriate inorganic chemicals into pure water are used for jar tests, which are conducted with and without the addition of the coagulant polyaluminum chloride (PACl). After the jar tests using two natural water samples, all of the meso‑colloids exhibit a negative charge under the conditions applied for the jar tests, indicating that charge neutralization is difficult. The composition of the meso‑colloids is found to be completely different depending on the water source used. Organic-rich water tends to generate meso‑colloids with a low Al/C (mass ratio of aluminum and organic carbon) ratio. In contrast, organic-poor water tends to produce meso‑colloids with a high Al/C ratio. From the results of the jar tests using two kinds of adjusted water samples, it is found challenging to neutralize meso‑colloids by PACl at neutral pH, because the overdose and underdose of PACl result in negatively charged biopolymer or negatively charged aluminum species. Therefore, the development of a new coagulant for specific use in the coagulation membrane filtration process is proposed, which can minimize the formation of negatively charged species even at neutral pH.
Collapse
Affiliation(s)
- Qing Ding
- Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Daisuke Ishikawa
- Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Hiroshi Yamamura
- Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan.
| | - Yoshimasa Watanabe
- Research and Development Initiatives, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| |
Collapse
|
217
|
Liu S, Huang J, Shi L, He W, Zhang W, Li E, Zhang C, Pang H, Tan X. Interaction of Pb(II) with microplastic-sediment complexes: Critical effect of surfactant. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124815. [PMID: 39182819 DOI: 10.1016/j.envpol.2024.124815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
In this study, the impact of surfactants on the adsorption behavior of Pb(II) onto microplastics-sediment (MPs-S) complexes was investigated. Firstly, virgin polyamide (VPA) and polyethylene (VPE) were placed in Xiangjiang River sediment for six months to conduct in-situ aging. The results indicated that the biofilm-developed polyamide (BPA) and polyethylene (BPE) formed new oxygen-containing functional groups and different biofilm species. Furthermore, the adsorption capacity of Pb(II) in sediment (S) and MPs-S complexes was in the following order: S > BPA-S > VPE-S > VPA-S > BPE-S. The addition of sodium dodecyl benzenesulfonate (SDBS) promoted the adsorption of Pb(II), and the adsorption amount of Pb(II) increased with the higher concentration of SDBS, while adding cetyltrimethylammonium bromide (CTAB) showed the opposite result. The adsorption process of MPs-S complexes to Pb(II) was dominated by chemical adsorption, and the interaction between MPs-S complexes and Pb(II) was multilayer adsorption involving physical and chemical adsorption when the surfactants were added. Besides, the pH exerts a significant effect on Pb(II) adsorption in different MPs-S complexes, and the highest adsorption amount occurred at pH 6. Noteworthy, CTAB promoted the adsorption ability of Pb(II) when the exogenous FA was added. The binding characteristic of sediment endogenous DOM components and Pb(II) was influenced by the addition of MPs and surfactants. Finally, it confirmed that adsorption mechanisms mainly involve electrostatic and hydrophobic interaction. This study provides a new perspective to explore the environmental behaviors of Pb(II) by MPs and sediments with the addition of surfactants, which was conducive to evaluating the ecological risks of MPs and heavy metals in aquatic environments.
Collapse
Affiliation(s)
- Si Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Jinhui Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China.
| | - Lixiu Shi
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China
| | - Wenjuan He
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Wei Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Enjie Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Chenyu Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Haoliang Pang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Xiaofei Tan
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| |
Collapse
|
218
|
Muhamad NAS, Mohd Mokhtar N, Naim R, Lau WJ, Ismail NH. Treatment of wastewater from oil palm industry in Malaysia using polyvinylidene fluoride-bentonite hollow fiber membranes via membrane distillation system. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124739. [PMID: 39168437 DOI: 10.1016/j.envpol.2024.124739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 08/23/2024]
Abstract
Membrane distillation (MD) is gaining increasing recognition within membrane-based processes for palm oil mill effluent (POME) treatment. This study aims to alter the physicochemical characteristics of polyvinylidene fluoride (PVDF) membranes through the incorporation of bentonite (B) at varying weight concentrations (ranging from 0.25 wt% to 1.0 wt%). Characterization was conducted to evaluate changes in morphology, thermal stability, surface characteristics and wetting properties of the resulting membranes. The resulting membranes were also tested using direct contact membrane distillation (DCMD) with POME as the feed solution, aiming to generate high-purity water. Results indicated that the PVDF-0.3B and PVDF-0.5B membranes achieved the highest water vapor flux. The finger-like structure and macrovoids present in these membranes aid in minimizing mass resistance during vapor transport and enhancing permeate flux. All membranes demonstrated exceptional performance in removing contaminants, eliminating total dissolved solids (TDS) and achieving over 99% rejection of chemical oxygen demand (COD), nitrate nitrogen (NN), color, and turbidity from the feed solution. The permeate water analysis showed that the PVDF-0.3B membrane had superior removal efficiency and met the standards set by the local Department of Environment (DOE). The PVDF-0.3B membrane was chosen as the preferred option because of its consistent flux and high removal efficiency. This study demonstrated that incorporating bentonite into PVDF membranes significantly enhanced their properties and performance for POME treatment.
Collapse
Affiliation(s)
- Nor Amirah Safiah Muhamad
- Faculty of Civil Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300, Kuantan, Pahang, Malaysia
| | - Nadzirah Mohd Mokhtar
- Faculty of Civil Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300, Kuantan, Pahang, Malaysia; Bioaromatic Research Centre, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300, Kuantan, Pahang, Malaysia.
| | - Rosmawati Naim
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300, Kuantan, Pahang, Malaysia
| | - Woei Jye Lau
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Nor Hafiza Ismail
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| |
Collapse
|
219
|
Khan R, Shukla S, Kumar M, Barceló D, Zuorro A, Bhargava PC. Progress and obstacles in employing carbon quantum dots for sustainable wastewater treatment. ENVIRONMENTAL RESEARCH 2024; 261:119671. [PMID: 39048068 DOI: 10.1016/j.envres.2024.119671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/15/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
We explored the potential of carbon quantum dots (CQDs) as novel materials for wastewater treatment and their role towards environmental sustainability. The advantages of CQDs over other carbon-based materials, when synthesized using the same precursor material and for the same contaminant are discussed, enabling future researchers to choose the appropriate material. CQDs have demonstrated exceptional adaptability in various wastewater treatment, acting as efficient adsorbents for contaminants, exhibiting excellent photocatalytic properties for degradation of organic pollutants, and functioning as highly sensitive sensors for water quality monitoring. We found that bottom-up approach has better control over particle size (resulting CQDs: 1-4 nm), whereas top-down synthesis approach (resulting CQDs: 2-10 nm) have more potential for large scale applications and tunability. Transmission electron microscopy (TEM) remains the most expensive characterization technique, which provides the best resolution of the CQD's surface. The study emphasizes on the environmental impact and safety considerations pertaining to CQDs by emphasizing the need for thorough toxicity evaluation, and necessary environmental precautions. The study also identifies the lacunae pertaining to critical challenges in practical implementation of CQDs, such as scalability, competition of co-existing contaminants, and stability. Finally, future research directions are proposed, advocating green synthesis approaches, tailored surface functionalization, and, lowering the overall cost for analysis, synthesis and application of CQDs.
Collapse
Affiliation(s)
- Ramsha Khan
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, 226001, Uttar Pradesh, India.
| | - Saurabh Shukla
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, 226001, Uttar Pradesh, India.
| | - Manish Kumar
- Sustainability Cluster, School of Engineering University of Petroleum and Energy Studies Dehradun, Uttarakhand, India; Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterey, Monterrey, 64849, Nuevo Leon, Mexico.
| | - Damià Barceló
- Sustainability Cluster, School of Engineering University of Petroleum and Energy Studies Dehradun, Uttarakhand, India; Chemistry and Physics Department, University of Almeria, Ctra Sacramento s/n, 04120, Almería, Spain.
| | - Antonio Zuorro
- Department of Chemical Engineering, Materials and Environment, Sapienza University, Via Eudossiana 18, Rome, 00184, Italy.
| | - Preeti Chaturvedi Bhargava
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, 226001, Uttar Pradesh, India.
| |
Collapse
|
220
|
Gong H, Hua Y, Wang Y, Zhang X, Wang H, Zhao Z, Zhang Y. Fabrication of a novel macrophage-targeted biomimetic delivery composite hydrogel with multiple-sensitive properties for tri-modal combination therapy of rheumatoid arthritis. Int J Pharm 2024; 665:124708. [PMID: 39284423 DOI: 10.1016/j.ijpharm.2024.124708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/26/2024] [Accepted: 09/10/2024] [Indexed: 10/11/2024]
Abstract
In this study, a porous polydopamine (PDA) nanoparticle-decorated β-glucan microcapsules (GMs) nanoplatform (PDA/GMs) were developed with macrophage-targeted biomimetic features and a carriers-within-carriers structure. Indocyanine green (ICG) and catalase (CAT) were subsequently co-encapsulated within the PDA/GMs to create a multifunctional nanotherapeutic agent, termed CIPGs. Furthermore, CIPGs and sinomenine (SIN) were co-loaded within a thermo-sensitive hydrogel to design an injectable delivery system, termed CIPG/SH, with potential for multi-modal therapy of rheumatoid arthritis (RA). Photothermal studies indicated that the CIPGs hold excellent photothermal conversion ability and thermal stability, as they combined the photothermal performance of both PDA and ICG. Meanwhile, the CIPGs displayed favorable oxygen self-supplying and photodynamic performance. The CIPGs showed near-infrared (NIR)-induced phototoxicity, effectively inhibiting macrophage proliferation and displaying remarkable antibacterial activity. In vitro drug release from the prepared CIPG/SH showed a controlled release pattern. Animal experiments conducted on an RA mice model confirmed that the formulated CIPG/SH exhibited significant therapeutic effects. By integrating the biological advantages, photothermal/photodynamic performance of the CIPGs, and controlled drug release performance of the thermo-sensitive hydrogels in a single delivery system, the prepared injectable CIPG/SH represents a novel versatile delivery system with great potential for multi-modal combination targeting therapy in RA.
Collapse
Affiliation(s)
- Haoyang Gong
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Yabing Hua
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Yicheng Wang
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Xinyi Zhang
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Hui Wang
- Department of Pharmacy, Xuzhou Hospital of TCM, Xuzhou 221000, China.
| | - Ziming Zhao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Yanzhuo Zhang
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| |
Collapse
|
221
|
McKinnon Z, Khadra I, Halbert GW, Batchelor HK. Characterisation of colloidal structures and their solubilising potential for BCS class II drugs in fasted state simulated intestinal fluid. Int J Pharm 2024; 665:124733. [PMID: 39317247 DOI: 10.1016/j.ijpharm.2024.124733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024]
Abstract
A suite of fasted state simulated intestinal fluid (SIF), based on variability observed in a range of fasted state human intestinal fluid (HIF) samples was used to study the solubility of eight poorly soluble drugs (three acidic drugs (naproxen, indomethacin and phenytoin), two basic drugs (carvedilol and tadalafil) and three neutral drugs (felodipine, fenofibrate, griseofulvin)). Particle size of the colloidal structures formed in these SIF in the presence and absence of drugs was measured using dynamic light scattering and nanoparticle tracking analysis. Results indicate that drug solubility tends to increase with increasing total amphiphile concentration (TAC) in SIF with acidic drugs proving to be more soluble than basic or neutral drug in the media evaluated. Dynamic light scattering showed that as the amphiphile concentration increased, the hydrodynamic diameters of the structures decreased. The scattering distribution confirmed the polydispersity of the simulated intestinal fluids compared to the monodisperse distribution observed for FaSSIF v1). There was a large difference in the size of the structures found based on the composition of the SIF, for example, the diameter of the structures measured in felodipine in the minimum TAC media was measured to be 170 ± 5 nm which decreased to 5.1 ± 0.2 nm in the maximum TAC media point. The size measured of the colloidal structures of felodipine in the FaSSIF v1 was 86 ± 1 nm. However, there was no simple correlation between solubility and colloidal size. Nanoparticle tracking analysis was used for the first time to characterise colloidal structures within SIF and the results were compared to those obtained by dynamic light scattering. The particle size measured by dynamic light scattering was generally greater in media with a lower concentration of amphiphiles and smaller in media of a higher concentration of amphiphiles, compared to that of the data yielded by nanoparticle tracking analysis. This work shows that the colloidal structures formed vary depending on the composition of SIF which affects the solubility. Work is ongoing to determine the relationship between colloidal structure and solubility.
Collapse
Affiliation(s)
- Zoe McKinnon
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, United Kingdom
| | - Ibrahim Khadra
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, United Kingdom
| | - Gavin W Halbert
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, United Kingdom
| | - Hannah K Batchelor
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, United Kingdom.
| |
Collapse
|
222
|
Li W, Chen R, Zhang S, Li M, Lu J, Qiang Z. Application of high-dose UV irradiation as nanofiltration pretreatment for drinking water production: Organic fouling mitigation and micropollutant removal. WATER RESEARCH 2024; 266:122348. [PMID: 39217642 DOI: 10.1016/j.watres.2024.122348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/11/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Nanofiltration (NF) is being increasingly applied to produce high-quality drinking water; however, its cost-effective operation remains challenging due to the perennial membrane fouling. On account of the low tolerance of common NF membranes to chemical oxidants, this study proposed high-dose UV irradiation as a pretreatment strategy for organic fouling mitigation. Results showed that the permeate flux decline of the membrane with UV-treated feedwater (with a dose of 750 mJ cm-2) was less drastic than that with raw feedwater, but slightly faster as compared to that with UV/Cl2 pretreatment. The final normalized fluxes were 0.69, 0.79, and 0.82, respectively, after 10 h of operation with raw, UV- and UV/Cl2-treated feedwaters. With the characterization of feedwaters and membranes, the fouling was found to be initiated by the adsorption of hydrophilic biopolymers onto the membrane, followed by the deposition of hydrophobic humic substances. Reduction of the "glue" biopolymers was crucial to membrane fouling mitigation. The applicability of UV pretreatment in practice was testified with a pilot-scale UV-NF system where permeate flux of the NF module decreased by 37% after six-week continuous operation. Moreover, UV pretreatment could remove most of the identified pesticides in the feedwater with a removal efficiency over 80% for metolachlor and imidacloprid, but had no or even a negative effect on perfluorinated compounds. This work discloses the efficacy and mechanism of high-dose UV irradiation for NF membrane fouling control, which facilitates future research and application of NF technology.
Collapse
Affiliation(s)
- Wentao Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Rongwen Chen
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Suona Zhang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Mengkai Li
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Jinsuo Lu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhimin Qiang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
223
|
Wang F, Chen Z, Zhou Q, Sun Q, Zheng N, Chen Z, Lin J, Li B, Li L. Implications of liquid-liquid phase separation and ferroptosis in Alzheimer's disease. Neuropharmacology 2024; 259:110083. [PMID: 39043267 DOI: 10.1016/j.neuropharm.2024.110083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/04/2024] [Accepted: 07/15/2024] [Indexed: 07/25/2024]
Abstract
Neuronal cell demise represents a prevalent occurrence throughout the advancement of Alzheimer's disease (AD). However, the mechanism of triggering the death of neuronal cells remains unclear. Its potential mechanisms include aggregation of soluble amyloid-beta (Aβ) to form insoluble amyloid plaques, abnormal phosphorylation of tau protein and formation of intracellular neurofibrillary tangles (NFTs), neuroinflammation, ferroptosis, oxidative stress, liquid-liquid phase separation (LLPS) and metal ion disorders. Among them, ferroptosis is an iron-dependent lipid peroxidation-driven cell death and emerging evidences have demonstrated the involvement of ferroptosis in the pathological process of AD. The sensitivity to ferroptosis is tightly linked to numerous biological processes. Moreover, emerging evidences indicate that LLPS has great impacts on regulating human health and diseases, especially AD. Soluble Aβ can undergo LLPS to form liquid-like droplets, which can lead to the formation of insoluble amyloid plaques. Meanwhile, tau has a high propensity to condensate via the mechanism of LLPS, which can lead to the formation of NFTs. In this review, we summarize the most recent advancements pertaining to LLPS and ferroptosis in AD. Our primary focus is on expounding the influence of Aβ, tau protein, iron ions, and lipid oxidation on the intricate mechanisms underlying ferroptosis and LLPS within the domain of AD pathology. Additionally, we delve into the intricate cross-interactions that occur between LLPS and ferroptosis in the context of AD. Our findings are expected to serve as a theoretical and experimental foundation for clinical research and targeted therapy for AD.
Collapse
Affiliation(s)
- Fuwei Wang
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Zihao Chen
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Qiong Zhou
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Qiang Sun
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Nan Zheng
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Ziwen Chen
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Jiantao Lin
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China.
| | - Baohong Li
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China.
| | - Li Li
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China.
| |
Collapse
|
224
|
Chen Y, Wang F, Gao J, He X, Liu Q, Liu L. Enhancing bioremediation of petroleum-contaminated soil by sophorolipids-modified biochar: Combined metagenomic and metabolomic analyses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175772. [PMID: 39191326 DOI: 10.1016/j.scitotenv.2024.175772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/06/2024] [Accepted: 08/22/2024] [Indexed: 08/29/2024]
Abstract
In this study, sophorolipids (SLs)-modified biochar (BC-SLs) was used to enhance the bioremediation of petroleum hydrocarbons (PHs) contaminated soil. The biodegradation rate of petroleum hydrocarbons (PHs) by BC-SLs and BC treatments were 62.86 % and 52.64 % after 60 days of remediation experiments, respectively, higher than non-biochar treatment group (24.09 %). The metagenomic analysis showed that the abundance of petroleum-degrading bacteria Actinobacteria and Proteobacteria were increased by 3.8 % and 5.3 %, respectively in BC-SLs treatment, and the abundance of functional genes for PHs degradation, such as alkB, nidA and pcaG, were significantly increased by 12.85 %, 30.08 % and 21.01 %, respectively. The metabolomic analysis showed that BC-SLs facilitated the metabolic process of PHs, the microbial metabolism of petroleum hydrocarbons (PHs) became more active. Fatty acid degradation and polycyclic aromatic hydrocarbons (PAHs) degradation were up-regulated, indicating the promoting effect of the BC-SLs for PHs metabolism. The combined metagenomic and metabolomic analysis demonstrated the strong positive correlations between PHs metabolites and PHs-degrading bacteria, such as lauric acid vs. Actinobacteria, benzoic vs. Proteobacteria. The strong positive correlations between PHs metabolites and PHs-degrading genes were also observed, such as o-ehyltoluene vs. nahD, 4-isopropylbenzoic acid vs. etbAa. The modification of biochar with SLs increased the oxygen-containing functional groups on the surface of biochar. Meanwhile, the emulsification and solubilization of SLs promoted the bioavailability of PHs. The effects of BC-SLs on the nitrogen cycle during PHs remediation showed that it facilitated the accumulation of nitrogen-fixing genes, promoted nitrification but inhibited denitrification process. This study confirms that the application of BC-SLs is an effective remediation of PHs contamination and a sustainable method for controlling agricultural waste resources.
Collapse
Affiliation(s)
- Yuhang Chen
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Fumei Wang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Jiaqi Gao
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Xinhua He
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Qinglong Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Le Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
225
|
Wang H, Wang J, Zhang H, Wang X, Rao X. Quercetin encapsulation and release using rapid CO 2-responsive rosin-based surfactants in Pickering emulsions. Food Chem 2024; 458:140528. [PMID: 39047322 DOI: 10.1016/j.foodchem.2024.140528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/03/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
Emulsion-based delivery systems are extensively employed for encapsulating functional active ingredients, protecting them from degradation, and enhancing bioavailability and release efficiency. Here, a CO2-responsive surfactant synthesized from rosin displays rapid responsiveness to CO2 at room temperature, transitioning reversibly switches between active and inactive states multiple times. The dual tertiary amines on the rosin rigid structure contributes to its CO2 sensitivity. When in its active cationic form, in conjunction with silica nanoparticles, it exhibits desired Pickering emulsification performance across various oil phases. In the Pickering emulsion loaded with quercetin, the encapsulation efficiency and loading efficiency reached 80.50% and 0.69%, respectively, with stability lasting at least 30 days. The system provides robust protection for quercetin against external factors, such as UV and heat, revealing sustained release effects. This study investigated the potential of using rosin-based CO2-responsive surfactants alongside nanoparticles to design stable Pickering emulsion systems for active substance encapsulation and sustained release.
Collapse
Affiliation(s)
- Hanwen Wang
- Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen, Fujian Province 361021, China; College of Chemical Engineering, Huaqiao University, Xiamen, Fujian Province 361021, China; Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Huaqiao University, Xiamen, Fujian Province 361021, China
| | - Jiawei Wang
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian Province 361021, China
| | - Hangyuan Zhang
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian Province 361021, China
| | - Xinyang Wang
- Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen, Fujian Province 361021, China; College of Chemical Engineering, Huaqiao University, Xiamen, Fujian Province 361021, China; Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Huaqiao University, Xiamen, Fujian Province 361021, China.
| | - Xiaoping Rao
- Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen, Fujian Province 361021, China; College of Chemical Engineering, Huaqiao University, Xiamen, Fujian Province 361021, China; Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Huaqiao University, Xiamen, Fujian Province 361021, China.
| |
Collapse
|
226
|
Maggetti C, Pinelli D, Di Federico V, Sisti L, Tabanelli T, Cavani F, Frascari D. Development and validation of an adsorption process for phosphate removal and recovery from municipal wastewater based on hydrotalcite-related materials. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175509. [PMID: 39147065 DOI: 10.1016/j.scitotenv.2024.175509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
In the current international context characterized by the tendency to stricter limits for P concentration in treated wastewater and a strong drive towards phosphate recovery, it is crucial to develop cost-effective technologies to remove and recover phosphate from municipal wastewater (MWW). In this study, an initial screening of the phosphate adsorption performances of 9 sorbents including several hydrotalcites led to the selection of calcined pyroaurite - an innovative material composed of mixed Mg/Fe oxides - as the best-performing one. The assessment of calcined pyroaurite by means of isotherms and continuous-flow adsorption/desorption tests conducted with actual MWW resulted in a high P sorption capacity (12 mgP g-1 at the typical phosphate concentration in MWW), the capacity to treat 730 BVs at the 1 mgP L-1 breakpoint imposed by the current EU legislation, and a 93 % phosphate recovery. Calcined pyroaurite resulted in satisfactory performances also in a test conducted with a saline MWW deriving from a hotspot of seawater intrusion, a rapidly increasing phenomenon as a result of climate change. Five consecutive adsorption/desorption cycles conducted in a 20-cm column at a 5-min empty bed contact time resulted stable in terms of P adsorption/recovery performances, specific surface area and chemical structure of calcined pyroaurite. In the perspective to apply phosphate recovery with calcined pyroaurite at full scale, the process scale-up to a 60-cm packed bed - close to the column heights of industrial applications - resulted in stable performances. Calcium phosphate, widely used to produce phosphate-based fertilizers, can be obtained from the desorbed product by precipitation with Ca(OH)2. These results point to calcined pyroaurite as a very promising material for phosphate removal and recovery from MWW and from other P-rich effluents in a circular economy perspective.
Collapse
Affiliation(s)
- C Maggetti
- Department of Civil, Chemical, Environmental and Materials Engineering (DICAM), Alma Mater Studiorum -, University of Bologna, via Terracini 28, 40131 Bologna, Italy
| | - D Pinelli
- Department of Civil, Chemical, Environmental and Materials Engineering (DICAM), Alma Mater Studiorum -, University of Bologna, via Terracini 28, 40131 Bologna, Italy
| | - V Di Federico
- Department of Civil, Chemical, Environmental and Materials Engineering (DICAM), Alma Mater Studiorum -, University of Bologna, via Terracini 28, 40131 Bologna, Italy
| | - L Sisti
- Department of Civil, Chemical, Environmental and Materials Engineering (DICAM), Alma Mater Studiorum -, University of Bologna, via Terracini 28, 40131 Bologna, Italy
| | - T Tabanelli
- Dipartimento di Chimica Industriale "Toso Montanari", Alma Mater Studiorum -, University of Bologna, Viale Risorgimento 4, 40136, Bologna, Italy
| | - F Cavani
- Dipartimento di Chimica Industriale "Toso Montanari", Alma Mater Studiorum -, University of Bologna, Viale Risorgimento 4, 40136, Bologna, Italy
| | - D Frascari
- Department of Civil, Chemical, Environmental and Materials Engineering (DICAM), Alma Mater Studiorum -, University of Bologna, via Terracini 28, 40131 Bologna, Italy.
| |
Collapse
|
227
|
Liang D, Li C, Chen H, Sørmo E, Cornelissen G, Gao Y, Reguyal F, Sarmah A, Ippolito J, Kammann C, Li F, Sailaukhanuly Y, Cai H, Hu Y, Wang M, Li X, Cui X, Robinson B, Khan E, Rinklebe J, Ye T, Wu F, Zhang X, Wang H. A critical review of biochar for the remediation of PFAS-contaminated soil and water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:174962. [PMID: 39059650 DOI: 10.1016/j.scitotenv.2024.174962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/14/2024] [Accepted: 07/20/2024] [Indexed: 07/28/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) present significant environmental and health hazards due to their inherent persistence, ubiquitous presence in the environment, and propensity for bioaccumulation. Consequently, the development of efficacious remediation strategies for soil and water contaminated with PFAS is imperative. Biochar, with its unique properties, has emerged as a cost-effective adsorbent for PFAS. Despite this, a comprehensive review of the factors influencing PFAS adsorption and immobilization by biochar is lacking. This narrative review examines recent findings indicating that the application of biochar can effectively immobilize PFAS, thereby mitigating their environmental transport and subsequent ecological impact. In addition, this paper reviewed the sorption mechanisms of biochar and the factors affecting its sorption efficiency. The high effectiveness of biochars in PFAS remediation has been attributed to their high porosity in the right pore size range (>1.5 nm) that can accommodate the relatively large PFAS molecules (>1.02-2.20 nm), leading to physical entrapment. Effective sorption requires attraction or bonding to the biochar framework. Binding is stronger for long-chain PFAS than for short-chain PFAS, as attractive forces between long hydrophobic CF2-tails more easily overcome the repulsion of the often-anionic head groups by net negatively charged biochars. This review summarizes case studies and field applications highlighting the effectiveness of biochar across various matrices, showcasing its strong binding with PFAS. We suggest that research should focus on improving the adsorption performance of biochar for short-chain PFAS compounds. Establishing the significance of biochar surface electrical charge in the adsorption process of PFAS is necessary, as well as quantifying the respective contributions of electrostatic forces and hydrophobic van der Waals forces to the adsorption of both short- and long-chain PFAS. There is an urgent need for validation of the effectiveness of the biochar effect in actual environmental conditions through prolonged outdoor testing.
Collapse
Affiliation(s)
- Dezhan Liang
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China
| | - Caibin Li
- Yancao Industry Biochar-Based Fertilizer Engineering Research Center of China, Bijie Yancao Company of Guizhou Province, Bijie, Guizhou 550700, China
| | - Hanbo Chen
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resources, Zhejiang University of Science & Technology, Hangzhou 310023, China
| | - Erlend Sørmo
- Norwegian Geotechnical Institute (NGI), 0484 Oslo, Norway; Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences (NMBU), 1430 Ås, Norway
| | - Gerard Cornelissen
- Norwegian Geotechnical Institute (NGI), 0484 Oslo, Norway; Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences (NMBU), 1430 Ås, Norway
| | - Yurong Gao
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China
| | - Febelyn Reguyal
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Ajit Sarmah
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Jim Ippolito
- School of Environment and Natural Resources, The Ohio State University, Columbus, OH 43210, USA
| | - Claudia Kammann
- Department of Applied Ecology, Geisenheim University, 65366 Geisenheim, Germany
| | - Fangbai Li
- Guangdong Provincial Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Yerbolat Sailaukhanuly
- Laboratory of Engineering Profile, Satbayev University, 22a Satpaev Str., Almaty 050013, Kazakhstan
| | - Heqing Cai
- Yancao Industry Biochar-Based Fertilizer Engineering Research Center of China, Bijie Yancao Company of Guizhou Province, Bijie, Guizhou 550700, China
| | - Yan Hu
- Yancao Industry Biochar-Based Fertilizer Engineering Research Center of China, Bijie Yancao Company of Guizhou Province, Bijie, Guizhou 550700, China
| | - Maoxian Wang
- Yancao Industry Biochar-Based Fertilizer Engineering Research Center of China, Bijie Yancao Company of Guizhou Province, Bijie, Guizhou 550700, China
| | - Xiaofei Li
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China
| | - Xinglan Cui
- National Engineering Research Center for Environment-friendly Metallurgy in Producing Premium Non-ferrous Metals, GRINM Resources and Environmental Technology Corporation Limited, Beijing 101407, China
| | - Brett Robinson
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand
| | - Eakalak Khan
- Civil and Environmental Engineering and Construction Department, University of Nevada, Las Vegas, NV 89154-4015, USA
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Tingjin Ye
- IronMan Environmental Technology Co., Ltd., Foshan 528041, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaokai Zhang
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Hailong Wang
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China; Guangdong Provincial Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
228
|
Agatić ZF, Tepavčević V, Puača G, Poša M. Interaction of drug molecules with surfactants below (Benesi-Hildebrand equation) and above the critical micelle concentration (Kawamura equation). Int J Pharm 2024; 665:124675. [PMID: 39265847 DOI: 10.1016/j.ijpharm.2024.124675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/12/2024] [Accepted: 09/05/2024] [Indexed: 09/14/2024]
Abstract
Drug molecules can interact with surfactant molecules either in their monomeric form, where the Benesi-Hildebrand equation determines the binding constant, or when a micellar pseudophase is formed, where the Kawamura equation assesses the partition coefficient. Benesi-Hildebrand plots represent the differential absorbance as a function of surfactant concentration below the critical micelle concentration (CMC), while Kawamura plots show this relationship above the CMC, where the drug can influence the CMC and needs consideration. This review aims to provide an overview of methods for evaluating drug-surfactant interactions in aqueous solutions, particularly below and above the CMC, using spectroscopic data. Understanding these interactions is crucial for pharmacodynamics, affecting drug binding, enzymatic activity, and formulation. Various surfactants were analyzed with diphenhydramine hydrochloride, levofloxacin, phenothiazine, moxifloxacin, and chlorpromazine hydrochloride to determine monomeric binding constants, while sulfathiazole, sodium valproate, cefotaxime, losartan, and metformin hydrochloride were assessed for partitioning coefficient values. Errors in Benesi-Hildebrand plots may arise from considering surfactant concentrations above the CMC, while mistakes in Kawamura plots may stem from neglecting to determine the CMC in the presence of drug molecules, which can alter the surfactant's behavior.
Collapse
Affiliation(s)
- Zita Farkaš Agatić
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| | - Vesna Tepavčević
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia.
| | - Gorana Puača
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| | - Mihalj Poša
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| |
Collapse
|
229
|
Chaurasiya M, Kumar G, Paul S, Verma SS, Rawal RK. Natural product-loaded lipid-based nanocarriers for skin cancer treatment: An overview. Life Sci 2024; 357:123043. [PMID: 39233200 DOI: 10.1016/j.lfs.2024.123043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/28/2024] [Accepted: 09/01/2024] [Indexed: 09/06/2024]
Abstract
The skin is essential for body protection and regulating physiological processes. It is the largest organ and serves as the first-line barrier against UV radiation, harmful substances, and infections. Skin cancer is considered the most prevalent type of cancer worldwide, while melanoma skin cancer is having high mortality rates. Skin cancer, including melanoma and non-melanoma forms, is primarily caused by prolonged exposure to UV sunlight and pollution. Currently, treatments for skin cancer include surgery, chemotherapy, and radiotherapy. However, several factors hinder the effectiveness of these treatments, such as low efficacy, the necessity for high concentrations of active components to achieve a therapeutic effect, and poor drug permeation into the stratum corneum or lesions. Additionally, low bioavailability at the target site necessitates high doses, leading to skin irritation and further obstructing drug absorption through the stratum corneum. To overcome these challenges, recent research focuses on developing a medication delivery system based on nanotechnology as an alternative to this traditional approach. Nano-drug delivery systems have demonstrated great promise in treating skin cancer by providing a more effective means of delivering drugs with better stability and drug absorption. An overview of various lipid-based nanocarriers is given in this review article that are utilized to carry natural compounds to treat skin cancer.
Collapse
Affiliation(s)
- Mithilesh Chaurasiya
- Natural Product Chemistry, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; School of Pharmaceutical Sciences, Chhatrapati Shahu Ji Maharaj University, Kanpur, Uttar Pradesh, India
| | - Gaurav Kumar
- Natural Product Chemistry, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India
| | - Smita Paul
- Natural Product Chemistry, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India
| | - Shweta Singh Verma
- School of Pharmaceutical Sciences, Chhatrapati Shahu Ji Maharaj University, Kanpur, Uttar Pradesh, India
| | - Ravindra K Rawal
- Natural Product Chemistry, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India.
| |
Collapse
|
230
|
Wang Y, Xu T, Qi J, Liu K, Zhang M, Si C. Nano/micro flexible fiber and paper-based advanced functional packaging materials. Food Chem 2024; 458:140329. [PMID: 38991239 DOI: 10.1016/j.foodchem.2024.140329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/19/2024] [Accepted: 07/02/2024] [Indexed: 07/13/2024]
Abstract
Recently, fiber-based and functional paper food packaging has garnered significant attention for its versatility, excellent performance, and potential to provide sustainable solutions to the food packaging industry. Fiber-based food packaging is characterized by its large surface area, adjustable porosity and customizability, while functional paper-based food packaging typically exhibits good mechanical strength and barrier properties. This review summarizes the latest research progress on food packaging based on fibers and functional paper. Firstly, the raw materials used for preparing fiber and functional paper, along with their physical and chemical properties and roles in food packaging, were discussed. Subsequently, the latest advancements in the application of fiber and paper materials in food packaging were introduced. This paper also discusses future research directions and potential areas for improvement in fiber and functional paper food packaging to further enhance their effectiveness in ensuring food safety, quality, and sustainability.
Collapse
Affiliation(s)
- Yaxuan Wang
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Ting Xu
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China; Robustnique Co. Ltd. Block C, Phase II, Pioneer Park, Lanyuan Road, Tianjin 300384, China.
| | - Junjie Qi
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Kun Liu
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Meng Zhang
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chuanling Si
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China; Robustnique Co. Ltd. Block C, Phase II, Pioneer Park, Lanyuan Road, Tianjin 300384, China.
| |
Collapse
|
231
|
Hashemi E, Norouzi MM, Sadeghi-Kiakhani M. Magnetic biochar as a revolutionizing approach for diverse dye pollutants elimination: A comprehensive review. ENVIRONMENTAL RESEARCH 2024; 261:119548. [PMID: 38977156 DOI: 10.1016/j.envres.2024.119548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024]
Abstract
The term "biomass" encompasses all substances found in the natural world that were once alive or derived from living organisms or their byproducts. These substances consist of organic molecules containing hydrogen, typically oxygen, frequently nitrogen, and small amounts of heavy, alkaline earth and alkali metals. Magnetic biochar refers to a type of material derived from biomass that has been magnetized typically by adding magnetic components such as magnetic iron oxides to display magnetic properties. These materials are extensively applicable in widespread areas like environmental remediation and catalysis. The magnetic properties of these compounds made them ideal for practical applications through their easy separation from a reaction mixture or environmental sample by applying a magnetic field. With the evolving global strategy focused on protecting the planet and moving towards a circular, cost-effective economy, natural compounds, and biomass have become particularly important in the field of biochemistry. The current research explores a comparative analysis of the versatility and potential of biomass for eliminating dyes as a sustainable, economical, easy, compatible, and biodegradable method. The elimination study focused on the removal of various dyes as pollutants. Various operational parameters which influenced the dye removal process were also discussed. Furthermore, the research explained, in detail, adsorption kinetic models, types of isotherms, and desorption properties of magnetic biochar adsorbents. This comprehensive review offers an advanced framework for the effective use of magnetic biochar, removing dyes from textile wastewater.
Collapse
Affiliation(s)
- Elaheh Hashemi
- Department of Chemistry, Faculty of Sciences, Shahid Rajaee Teacher Training University, P.O. Box: 1678815811, Tehran, Iran.
| | - Mohammad-Mahdi Norouzi
- Department of Chemistry, Faculty of Sciences, Shahid Rajaee Teacher Training University, P.O. Box: 1678815811, Tehran, Iran
| | - Mousa Sadeghi-Kiakhani
- Institute for Color Science and Technology, Department of Organic Colorants, P.O. Box: 16765-654, Tehran, Iran
| |
Collapse
|
232
|
Ji L, Huang J, Yu L, Jin H, Hu X, Sun Y, Yin F, Cai Y. Recent advances in nanoagents delivery system-based phototherapy for osteosarcoma treatment. Int J Pharm 2024; 665:124633. [PMID: 39187032 DOI: 10.1016/j.ijpharm.2024.124633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/09/2024] [Accepted: 08/22/2024] [Indexed: 08/28/2024]
Abstract
Osteosarcoma (OS) is a prevalent and highly malignant bone tumor, characterized by its aggressive nature, invasiveness, and rapid progression, contributing to a high mortality rate, particularly among adolescents. Traditional treatment modalities, including surgical resection, radiotherapy, and chemotherapy, face significant challenges, especially in addressing chemotherapy resistance and managing postoperative recurrence and metastasis. Phototherapy (PT), encompassing photodynamic therapy (PDT) and photothermal therapy (PTT), offers unique advantages such as low toxicity, minimal drug resistance, selective destruction, and temporal control, making it a promising approach for the clinical treatment of various malignant tumors. Constructing multifunctional delivery systems presents an opportunity to effectively combine tumor PDT, PTT, and chemotherapy, creating a synergistic anti-tumor effect. This review aims to consolidate the progress in the application of novel delivery system-mediated phototherapy in osteosarcoma. By summarizing advancements in this field, the objective is to propose a rational combination therapy involving targeted delivery systems and phototherapy for tumors, thereby expanding treatment options and enhancing the prognosis for osteosarcoma patients. In conclusion, the integration of innovative delivery systems with phototherapy represents a promising avenue in osteosarcoma treatment, offering a comprehensive approach to overcome challenges associated with conventional treatments and improve patient outcomes.
Collapse
Affiliation(s)
- Lichen Ji
- Zhejiang Chinese Medical University, Hangzhou 310053, China; Center for Rehabilitation Medicine Rehabilitation & Sports Medicine Research Institute of Zhejiang Province Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China; Department of Joint Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200092, China
| | - Jiaqing Huang
- Zhejiang Chinese Medical University, Hangzhou 310053, China; Center for Rehabilitation Medicine Rehabilitation & Sports Medicine Research Institute of Zhejiang Province Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China; Department of Hematology, Hangzhou First People's Hospital, Hangzhou 310003, China
| | - Liting Yu
- Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Huihui Jin
- Zhejiang Chinese Medical University, Hangzhou 310053, China; Center for Rehabilitation Medicine Rehabilitation & Sports Medicine Research Institute of Zhejiang Province Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Xuanhan Hu
- Zhejiang Chinese Medical University, Hangzhou 310053, China; Center for Rehabilitation Medicine Rehabilitation & Sports Medicine Research Institute of Zhejiang Province Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Yuan Sun
- College of Chemistry Engineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Feng Yin
- Department of Joint Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200092, China.
| | - Yu Cai
- Center for Rehabilitation Medicine Rehabilitation & Sports Medicine Research Institute of Zhejiang Province Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China.
| |
Collapse
|
233
|
Sharma M, Kumar C, Arya SK, Puri S, Khatri M. Neurological effects of carbon quantum dots on zebrafish: A review. Neuroscience 2024; 560:334-346. [PMID: 39384061 DOI: 10.1016/j.neuroscience.2024.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/20/2024] [Accepted: 10/07/2024] [Indexed: 10/11/2024]
Abstract
Fluorescent carbon dots have emerged as promising nanomaterials for various applications, including bioimaging, food safety detection and drug delivery. However, their potential impact on neurological systems, especially in-vivo models, remains a critical area of investigation. This review focuses on the neurological effects of carbon dots and carbon quantum dots on zebrafish, an established vertebrate model with a conserved central nervous system. Recent studies have demonstrated the efficient uptake and distribution of carbon dots in zebrafish tissues, with a particular affinity for neural tissues. The intricate neural architecture of zebrafish allows for the precise examination of behavioral changes and neurodevelopmental alterations induced by fluorescent carbon dots. Neurotoxicity assessments reveal both short-term and long-term effects, ranging from immediate behavioral alterations to subtle changes in neuronal morphology. The review discusses potential mechanisms underlying these effects highlights the need for standardized methodologies in assessing neurological outcomes and emphasizes the importance of ethical considerations in nanomaterial research. As the field of nanotechnology continues to advance, a comprehensive understanding of the impact of fluorescent carbon dots on neurological function in zebrafish is crucial for informing safe and sustainable applications in medicine and beyond.
Collapse
Affiliation(s)
- Monika Sharma
- Department of Biotechnology, University Institute of Engineering and Technology Panjab University Sector-25, Chandigarh 160014, India
| | - Chaitanya Kumar
- Department of Biotechnology, University Institute of Engineering and Technology Panjab University Sector-25, Chandigarh 160014, India; Centre for Nanoscience &, Nanotechnology, University Institute for Emerging Areas in Science and Technology (UIEAST), Panjab University, Chandigarh 160014, India
| | - Shailendra Kumar Arya
- Department of Biotechnology, University Institute of Engineering and Technology Panjab University Sector-25, Chandigarh 160014, India
| | - Sanjeev Puri
- Department of Biotechnology, University Institute of Engineering and Technology Panjab University Sector-25, Chandigarh 160014, India
| | - Madhu Khatri
- Department of Biotechnology, University Institute of Engineering and Technology Panjab University Sector-25, Chandigarh 160014, India.
| |
Collapse
|
234
|
Khan M, Nasim M, Feizy M, Parveen R, Gull A, Khan S, Ali J. Contemporary strategies in glioblastoma therapy: Recent developments and innovations. Neuroscience 2024; 560:211-237. [PMID: 39368608 DOI: 10.1016/j.neuroscience.2024.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/30/2024] [Accepted: 09/12/2024] [Indexed: 10/07/2024]
Abstract
Glioblastoma multiforme (GBM) represents one of the most prevailing and aggressive primary brain tumors among adults. Despite advances in therapeutic approaches, the complex microenvironment of GBM poses significant challenges in its optimal therapy, which are attributed to immune evasion, tumor repopulation by stem cells, and limited drug penetration across the blood-brain barrier (BBB). Nanotechnology has emerged as a promising avenue for GBM treatment, offering biosafety, sustained drug release, enhanced solubility, and improved BBB penetrability. In this review, a comprehensive overview of recent advancements in nanocarrier-based drug delivery systems for GBM therapy is emphasized. The conventional and novel treatment modalities for GBM and the potential of nanocarriers to overcome existing limitations are comprehensively covered. Furthermore, the updates in the clinical landscape of GBM therapeutics are presented in addition to the current status of drugs and patents in the same context. Through a critical evaluation of existing literature, the therapeutic prospect and limitations of nanocarrier-based drug delivery strategies are highlighted offering insights into future research directions and clinical translation.
Collapse
Affiliation(s)
- Mariya Khan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, Delhi, India
| | - Modassir Nasim
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, Delhi, India
| | - Mohammadamin Feizy
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, Delhi, India
| | - Rabea Parveen
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, Delhi, India
| | - Azka Gull
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, Delhi, India
| | - Saba Khan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, Delhi, India.
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, Delhi, India.
| |
Collapse
|
235
|
Akbari M, Mobasheri H, Noorizadeh F, Daryabari SH, Dini L. Static magnetic field effects on the secondary structure and elasticity of collagen molecules; a possible biophysical approach to treat keratoconus. Biochem Biophys Res Commun 2024; 733:150726. [PMID: 39317114 DOI: 10.1016/j.bbrc.2024.150726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/15/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024]
Abstract
Type I collagen is among the major extracellular proteins that play a significant role in the maintenance of the cornea's structural integrity and is essential in cell adhesion, differentiation, growth, and integrity. Here, we investigated the effect of 300 mT Static Magnetic Field (300 mT SMF) on the structure and molecular properties of acid-solubilized collagens (ASC) isolated from the rat tail tendon. The SMF effects at molecular and atomic levels were investigated by various biophysical approaches like Circular Dichroism Spectropolarimetery (CD), Fourier Transform Infrared Spectroscopy (FTIR), Zetasizer light Scattering, and Rheological assay. Exposure of isolated type I collagen to 300 mT SMF retained its triple helix. The elasticity of collagen molecules and the keratoconus (KCN) cornea treated with SMF decreased significantly after 5 min and slightly after 10, 15, and 20 min of treatments. The exposure to 300 mT SMF shifted the Amid I bond random coil to antiparallel wave number from 1647 to 1631 cm-1. The pH of the 300 mT SMF treated collagen solution increased by about 25 %. The treatment of the KCN corneas with 300 mT SMF decreased their elasticity significantly. The promising results of the effects of 300 mT SMF on the collagen molecules and KCN cornea propose a novel biophysical approach capable of manipulating the collagen's elasticity, surface charges, electrostatic interactions, cross binding, network formation and fine structure. Therefore, SMF treatment may be considered as a novel non-invasive, direct, non-chemical and fast therapeutic and manipulative means to treat KCN cornea where the deviated physico-chemical status of collagen molecules cause deformation.
Collapse
Affiliation(s)
- Maryam Akbari
- Laboratory of Membrane Biophysics and Macromolecules, Institute of Biochemistry and Biophysics, University of Tehran, Iran.
| | - Hamid Mobasheri
- Laboratory of Membrane Biophysics and Macromolecules, Institute of Biochemistry and Biophysics, University of Tehran, Iran; Institute of Biomaterials of University of Tehran and Tehran University of Medical Sciences (IBUTUMS), Tehran, Iran.
| | | | - Seyed-Hashem Daryabari
- Basir Eye Health Research Center and Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Luciana Dini
- Department of Biology and Biotechnology C. Darwin, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
236
|
Jayaneththi YH, Robert D, Giustozzi F. A critical review on leaching of contaminants from asphalt pavements. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:174967. [PMID: 39097010 DOI: 10.1016/j.scitotenv.2024.174967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/17/2024] [Accepted: 07/20/2024] [Indexed: 08/05/2024]
Abstract
Contaminant leaching from asphalt pavements poses a significant environmental concern, potentially damaging soil and groundwater quality. The growing interest in incorporating recycled materials in asphalt pavements has further raised concerns over the potential environmental hazards due to contaminant leaching. Consequently, this paper offers a comprehensive review of the literature over the past three decades structured into six sections: groundwater contamination via leaching, methodologies for evaluating leaching, analysis of contaminants, contaminants and leaching from road materials incorporating recycled waste, other factors affecting leaching of pollutants from asphalt pavements, and mathematical models to predict leaching from asphalt pavements. Despite the importance of addressing leaching issues, there is a lack of standardised leaching tests and guidelines specific to asphalt materials, limited attention to evaluating contaminants beyond heavy metals and PAHs in asphalt leachates, insufficient understanding of optimal instrument parameters for asphalt leachate analysis, and a scarcity of mathematical models to predict future leaching potential.
Collapse
Affiliation(s)
| | - Dilan Robert
- Civil and Infrastructure Engineering, RMIT University, 124 La Trobe St., Melbourne, VIC 3001, Australia
| | - Filippo Giustozzi
- Civil and Infrastructure Engineering, RMIT University, 124 La Trobe St., Melbourne, VIC 3001, Australia.
| |
Collapse
|
237
|
Zhou H, Tang Y, Han M, Chen Q, Chen J, Liu W. Synthesis of melanin-like amino acid surfactant with enzymatic hydrolysates from silk degumming water. J Biotechnol 2024; 394:85-91. [PMID: 39178917 DOI: 10.1016/j.jbiotec.2024.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 08/16/2024] [Accepted: 08/16/2024] [Indexed: 08/26/2024]
Abstract
The degummed wastewater from silk processing contains a huge amount of amino acids and polypeptides from sericin. The silk degumming water is far from being exploited fully. Sericin in the degumming water is generally wasted and causes environmental pollution. In this study, simulated silk degumming water was hydrolyzed by alkaline protease to produce abundant amino acids and polypeptides. After enzymatic hydrolysis, the maximum free amino groups concentration in the silk degumming water was approximately 54 mM. It facilitated the recycling of silk degumming water for the production of melanin-like amino acid surfactants as raw materials. 4-Tert-butylcatechol was used as the starting material to generate o-quinone via oxidation by ceric ammonium nitrate. o-Quinone was coupled with free amino groups in enzymatic hydrolysates of silk degumming water to synthesize a sericin-based amino acid surfactant as hydrophobic and hydrophilic group, respectively. Through the green and simple synthesis route, the product was characterized to have a novel melanin-like structure. The product exhibited superior surface-active properties by lowering the surface tension to 32.39 mN m-1. Furthermore, it demonstrated good foaming ability and foam stability, with the initial foam volume of 37 mL and the foam half-life time of more than 25 min. The product owned a good emulsification ability in the oil-water emulsion with delamination time of 297 s and 291 s for emulsion formed by soybean oil and liquid paraffin, respectively. The wetting time of the canvas sheet was only 134 s. Consequently, the product showed low surface tension, good foaming, emulsifying, and wetting properties.
Collapse
Affiliation(s)
- Hong Zhou
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yi Tang
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Mengqi Han
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Qinfei Chen
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Jiadong Chen
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Wenbin Liu
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
238
|
Wei X, Choudhary A, Wang LY, Yang L, Uline MJ, Tagliazucchi M, Wang Q, Bedrov D, Liu C. Single-molecule profiling of per- and polyfluoroalkyl substances by cyclodextrin mediated host-guest interactions within a biological nanopore. SCIENCE ADVANCES 2024; 10:eadp8134. [PMID: 39504365 DOI: 10.1126/sciadv.adp8134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 09/30/2024] [Indexed: 11/08/2024]
Abstract
Biological nanopores are increasingly used in molecular sensing due to their single-molecule sensitivity. The detection of per- and polyfluoroalkyl substances (PFAS) like perfluorooctanoic acid and perfluorooctane sulfonic acid is critical due to their environmental prevalence and toxicity. Here, we investigate selective interactions between PFAS and four cyclodextrin (CD) variants (α-, β-, γ-, and 2-hydroxypropyl-γ-CD) within an α-hemolysin nanopore. We demonstrate that PFAS molecules can be electrochemically sensed by interacting with a γ-CD in a nanopore. Using HP-γ-CDs with increased steric resistance, we can identify homologs of the perfluoroalkyl carboxylic acid and the perfluoroalkyl sulfonic acid families and detect common PFAS in drinking water at 0.4 to 2 parts per million levels, which are further lowered to 400 parts per trillion by sample preconcentration. Molecular dynamics simulations reveal the underlying chemical mechanism of PFAS-CD interactions. These insights pave the way toward nanopore-based in situ detection with promises in environmental protection against PFAS pollution.
Collapse
Affiliation(s)
- Xiaojun Wei
- Department of Biomedical Engineering, University of South Carolina, Columbia, SC 29208, USA
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA
| | - Aditya Choudhary
- Department of Materials Science and Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Leon Y Wang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Lixing Yang
- Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Mark J Uline
- Department of Biomedical Engineering, University of South Carolina, Columbia, SC 29208, USA
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA
| | - Mario Tagliazucchi
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica Analítica y Química Física, Universidad de Buenos Aires, C1428 Ciudad Autónoma de Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Instituto de Quimica de los Materiales, Ambiente y Energia (INQUIMAE), C1428 Ciudad Autonoma de Buenos Aires, Argentina
| | - Qian Wang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Dmitry Bedrov
- Department of Materials Science and Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Chang Liu
- Department of Biomedical Engineering, University of South Carolina, Columbia, SC 29208, USA
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
239
|
Plata-Gryl M, Castro-Muñoz R, Gontarek-Castro E, Boczkaj G. Separation of C6 hydrocarbons on sodium dithionite reduced graphene oxide aerogels. J Chromatogr A 2024; 1736:465357. [PMID: 39270566 DOI: 10.1016/j.chroma.2024.465357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024]
Abstract
The ability of reduced graphene oxide aerogels (rGOAs) for challenging gas-phase separation was investigated with hexane isomers and benzene (C6 hydrocarbons) using inverse gas chromatography (IGC). For the first, rGOAs were synthesized with sodium dithionite (DTN) as a reductant. Experiments revealed that the most optimal DTN to graphene oxide mass ratio was 2:1, resulting in the highest specific surface area of 432.3 m2 g-1 and the highest degree of graphitization among analyzed samples. C6 hydrocarbon adsorption tests demonstrated the dominant role of the kinetic effect for the adsorption of branched and cyclic hexane isomers - the partition coefficient decreased as the molecule kinetic diameter increased. The contribution of thermodynamic effects was distinguished for molecules with uneven charge distribution. A comparison of the partition coefficient ratios for different pairs of hydrocarbons demonstrated the potential of rGOAs in separating various C6 hydrocarbons. The selectivity, calculated from binary-component adsorption tests of benzene (Bz)/cC6 equimolar mixture, was 13.7, 8.5 and 2.8 for DTN4, DTN2, and DTN1. The research indicates that rGOAs may have potential as adsorbents for the selective separation of hydrocarbons, however, the competitive adsorption and performance at high surface coverages of adsorbates have to be accounted for in further research to assess the applicability of rGOAs reliably.
Collapse
Affiliation(s)
- Maksymilian Plata-Gryl
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Narutowicza St. 11/12, Gdansk 80-233, Poland
| | - Roberto Castro-Muñoz
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Narutowicza St. 11/12, Gdansk 80-233, Poland.
| | - Emilia Gontarek-Castro
- Department of Environmental Technology, Faculty of Chemistry, University of Gdansk, 80-308 Gdansk, Poland
| | - Grzegorz Boczkaj
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Narutowicza St. 11/12, Gdansk 80-233, Poland; Advanced Materials Centre, Gdansk University of Technology, Narutowicza St. 11/12, Gdansk 80233, Poland
| |
Collapse
|
240
|
Richter C, Dupuy R, Trinter F, Buttersack T, Cablitz L, Gholami S, Stemer D, Nicolas C, Seidel R, Winter B, Bluhm H. Surface accumulation and acid-base equilibrium of phenol at the liquid-vapor interface. Phys Chem Chem Phys 2024; 26:27292-27300. [PMID: 39189878 PMCID: PMC11348876 DOI: 10.1039/d4cp02212b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/21/2024] [Indexed: 08/28/2024]
Abstract
We have investigated the surfactant properties of phenol in aqueous solution as a function of pH and bulk concentration using liquid-jet photoelectron spectroscopy (LJ-PES) and surface tension measurements. The emphasis of this work is on the determination of the Gibbs free energy of adsorption and surface excess of phenol and its conjugate base phenolate at the bulk pKa (9.99), which can be determined for each species using photoelectron spectroscopy. These values are compared to those obtained in measurements well below and well above the pKa, where pure phenol or phenolate, respectively, are the dominant species, and where the Gibbs free energy of adsorption determined from surface tension and LJ-PES data are in excellent agreement. At the bulk pKa the surface-sensitive LJ-PES measurements show a deviation of the expected phenol/phenolate ratio in favor of phenol, i.e., an apparent upward shift of the at the surface. In addition, the Gibbs free energies of adsorption determined by LJ-PES at the bulk pKa for phenol and phenolate deviate from those observed for the pure solutions. We discuss these observations in view of the different surface propensity of phenol and phenolate as well as potential cooperative interactions between them in the near-surface region.
Collapse
Affiliation(s)
- Clemens Richter
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany.
| | - Rémi Dupuy
- CNRS, Laboratoire de Chimie Physique - Matière et Rayonnement, Sorbonne Université, F-75005 Paris Cedex 05, France
| | - Florian Trinter
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany.
| | - Tillmann Buttersack
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany.
| | - Louisa Cablitz
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany.
| | - Shirin Gholami
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany.
| | - Dominik Stemer
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany.
| | - Christophe Nicolas
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin - BP 48 91192, Gif-sur-Yvette Cedex, France
| | - Robert Seidel
- Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Bernd Winter
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany.
| | - Hendrik Bluhm
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany.
| |
Collapse
|
241
|
Zhang X, Dong K, Qin F, Cao G, Wang W, Liu Z. Construction and Properties Evaluation of the Binary Flooding System Based on Lipid Peptide. J Phys Chem B 2024; 128:10961-10974. [PMID: 39443455 DOI: 10.1021/acs.jpcb.4c06350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
To enhance crude oil recovery under complex reservoir conditions and reduce the environmental impact of the oil displacement system, a biosurfactant lipid peptide (TH) was combined with four chemical surfactants. From these combinations, those capable of achieving an ultralow interfacial tension region (<10-2 mN/m) were selected. The selected surfactant mixtures were then combined with polyacrylamide (HPAM) to construct a surfactant-polymer binary oil displacement system. The results showed that TH/OAB(2:1), TH/OAB(3:1), and TH/EAO(3:1) could reduce IFT to the ultralow interfacial tension region. Compound surfactants are easier to form mixed micelles than single surfactants, and the EACN of TH/OAB(2:1) and TH/EAO(3:1) is consistent with EACNOil, which can achieve higher surface activity at lower concentrations. The three compound surfactants have a wide range of ultralow interfacial tension concentrations and excellent antidilution performance. TH/OAB(2:1) and TH/EAO(3:1) have better antiformation adsorption performance than TH/OAB(3:1), and the oil washing rate of TH/OAB(2:1) is up to 80.30%. TH and OAB have spatial complementarity, which can increase the molecular packing density at the oil-water interface and reduce the IFT. In CaCl2 and NaCl solutions, the IFT of the two binary flooding systems constructed by TH/OAB(2:1) and TH/EAO(3:1) and HPAM remained in the ultralow interfacial tension region, with excellent salt resistance. When aged in the reservoir for 90 days, the IFT slightly increased but the viscosity decreased significantly. Adding a viscosity retaining agent (JW) was required to maintain the viscosity of the system. In the simulated oil displacement experiment, the recovery improvement of the two binary oil displacement systems was higher than those of surfactant and polymer alone. This study provides a new idea for the alkali-free surfactant-polymer binary oil flooding system and provides theoretical support for the practical application of TH in tertiary oil recovery.
Collapse
Affiliation(s)
- Xiuxia Zhang
- Department of Environmental and Safety Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Kangning Dong
- Department of Environmental and Safety Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Feifei Qin
- Department of Environmental and Safety Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Gongze Cao
- Petroleum Engineering Technology Research Institute, Shengli Oilfield Company, SINOPEC, Dongying 257000, China
- Key Laboratory of Microbial Enhanced Oil Recovery, Sinopec, Dongying 257000, China
| | - Weidong Wang
- Petroleum Engineering Technology Research Institute, Shengli Oilfield Company, SINOPEC, Dongying 257000, China
- Key Laboratory of Microbial Enhanced Oil Recovery, Sinopec, Dongying 257000, China
| | - Zhoutong Liu
- Department of Environmental and Safety Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
242
|
Tkachenko DV, Larionov RA, Ziganshina SA, Khayarov KR, Klimovitskii AE, Babaeva OB, Gorbatchuk VV, Ziganshin MA. Cyclization of alanyl-valine dipeptides in the solid state. The effects of molecular radiator and heat capacity. Phys Chem Chem Phys 2024; 26:27338-27347. [PMID: 39440569 DOI: 10.1039/d4cp02795g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Heating of linear dipeptides above a critical temperature initiates their cyclization even in the solid state. This method of obtaining cyclic dipeptides meets the requirements of "green chemistry", provides a high yield of the main product and releases only water as a by-product of the reaction, and does not require solvents. However, to date, the cyclization of only a small number of dipeptides in the solid state has been studied, and some correlations of the process were discovered. The influence of the structure of dipeptide molecules and their crystal packing on the kinetics of solid-state cyclization is still not fully understood. In this work, the cyclization of L-alanyl-L-valine in the solid state upon heating was studied. Using non-isothermal kinetic approaches, the kinetic parameters of this reaction and the optimal kinetic model describing this process were determined. The effect of the features of the crystal packing of dipeptides and their heat capacity on the temperature of the cyclization in the solid state was analyzed. This study expands our knowledge about solid-state reactions involving dipeptides and the ability to control such reactions.
Collapse
Affiliation(s)
- Daria V Tkachenko
- Alexander Butlerov Institute of Chemistry, Kazan (Volga Region) Federal University, 18 ul. Kremlyovskaya, 420008 Kazan, Russian Federation.
| | - Radik A Larionov
- Alexander Butlerov Institute of Chemistry, Kazan (Volga Region) Federal University, 18 ul. Kremlyovskaya, 420008 Kazan, Russian Federation.
| | - Sufia A Ziganshina
- Alexander Butlerov Institute of Chemistry, Kazan (Volga Region) Federal University, 18 ul. Kremlyovskaya, 420008 Kazan, Russian Federation.
| | - Khasan R Khayarov
- Alexander Butlerov Institute of Chemistry, Kazan (Volga Region) Federal University, 18 ul. Kremlyovskaya, 420008 Kazan, Russian Federation.
| | - Aleksandr E Klimovitskii
- Alexander Butlerov Institute of Chemistry, Kazan (Volga Region) Federal University, 18 ul. Kremlyovskaya, 420008 Kazan, Russian Federation.
| | - Olga B Babaeva
- A.E. Arbuzov Institute of Organic and Physical Chemistry, RAS, Kazan, 420088, Russia
| | - Valery V Gorbatchuk
- Alexander Butlerov Institute of Chemistry, Kazan (Volga Region) Federal University, 18 ul. Kremlyovskaya, 420008 Kazan, Russian Federation.
| | - Marat A Ziganshin
- Alexander Butlerov Institute of Chemistry, Kazan (Volga Region) Federal University, 18 ul. Kremlyovskaya, 420008 Kazan, Russian Federation.
- Academy of Sciences of the Republic of Tatarstan, Kazan, 420111, Russia
| |
Collapse
|
243
|
Wu S, Khan MA, Zhang L, Zhao H, Huang T, Cao H, Ye D. Paper-based colorimetric sensor using a single-atom nanozyme for the ultrasensitive detection of Cr(VI) in short-necked clams. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:7333-7340. [PMID: 39329181 DOI: 10.1039/d4ay00891j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Single-atom nanozymes (SAzymes) as a class of highly active nanozymes with the advantages of high atom utilization, high catalytic activity and stability have attracted great attention. In this work, Fe-N-C SAzymes with exceptional oxidase (OXD)-like activity were achieved utilizing polyvinylpyrrolidone (PVP) as a template. The Fe-N-C SAzymes with remarkable OXD-like activity could oxidize TMB to blue oxTMB, but 8-hydroxyquinoline (8-HQ) as a metal chelator is capable of discoloring oxTMB. Thus, the addition of 8-HQ decolorized the solution. However, upon the introduction of Cr(VI) ions, 8-HQ preferentially chelated with the Cr(VI) ions, reversing the inhibition of the color reaction and restoring the blue color. Based on this phenomenon, we constructed a novel paper-based analytical device (PAD) that exhibited a linear range of 5-1000 μM and an LOD of 1.2 μM. Importantly, the PAD used in this study shows the merits of simplicity, low preparation costs, and rapid reaction times. When combined with smartphone RGB analysis, it enables the simultaneous analysis of eight different Cr(VI) concentrations without the need for large-scale instrumentation. Moreover, the proposed PAD displays high selectivity, accuracy and utility in testing actual short-necked clam samples. This work not only provides a simple and cost-effective method to detect Cr(VI) but also makes a contribution to rapid food testing.
Collapse
Affiliation(s)
- Shuo Wu
- School of Food Science and Engineering, Hainan University, Haikou 570228, China.
| | - Muhammad Arif Khan
- Materials Science and Engineering, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Lifan Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China.
| | - Hongbin Zhao
- Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai 200444, PR China.
| | - Tianzeng Huang
- School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China.
| | - Hongmei Cao
- School of Food Science and Engineering, Hainan University, Haikou 570228, China.
- Hainan Institute for Food Control, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Haikou 570314, PR China
| | - Daixin Ye
- Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai 200444, PR China.
| |
Collapse
|
244
|
Popovetskiy PS, Petrochenko SA. Preparation of Silver Nanoparticles in a Water-in-Oil Microemulsion Stabilized by Ecosurf EH3 and Determination of Their Electrophoretic Mobility. Electrophoresis 2024. [PMID: 39508200 DOI: 10.1002/elps.202400200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 11/08/2024]
Abstract
This work describes a study on the electrophoresis of silver nanoparticles in reverse microemulsions with varying water content. The microemulsion was stabilized using a nonionic ethoxylated surfactant, 2-ethylhexanol triethoxylate (Ecosurf EH3). This study represents the second example of electrophoresis research conducted in media with a low dielectric constant for etoxylated surfactants. The study also determined the boundaries of thermodynamic stability and the conditions required to obtain nanoparticles with a high yield. The hydrodynamic diameter and electrophoretic mobility of nanoparticles were measured using dynamic light scattering and laser Doppler electrophoresis. The study determined the boundary conditions for applying these methods to laser-absorbing samples. The electrophoretic mobility of nanoparticles was found to be dependent on the fraction of water in the range of 2-5% vol. (equivalent to a metal content of 10-25 mM), as determined by electrophoresis in a free medium. The increase in volume fraction of water leads to agglomeration of micelles, which causes a decrease in the electrokinetic potential of nanoparticles, likely due to the blurring of the diffuse part of the electrical double layer.
Collapse
Affiliation(s)
- Pavel S Popovetskiy
- Department of Chemistry of Coordination, Cluster and Supramolecular Compounds, Nikolaev Institute of Inorganic Chemistry, Novosibirsk, Russia
| | - Sofia A Petrochenko
- Department of Chemistry of Coordination, Cluster and Supramolecular Compounds, Nikolaev Institute of Inorganic Chemistry, Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
245
|
Bachnak R, Narayan S, Moravec DB, Hauser BG, Dallas AJ, Dutcher CS. Influence of Aqueous Phase Salt and Oil Phase Surfactants and Viscosity on the Dynamic Interfacial Tension and Coalescence Timescales. J Phys Chem B 2024; 128:10986-10998. [PMID: 39445668 DOI: 10.1021/acs.jpcb.4c04691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Liquid-liquid separation is a critically important process in the treatment of emulsions that can occur in our environment, such as oily stormwater, shipboard bilgewater, or off-shore oil spill treatment. Effective filtration systems, including coalescing filters, are essential for mitigating these environmental pollutants. Achieving this requires a comprehensive understanding of liquid-liquid interface dynamics influenced by additives and surfactants. Furthermore, understanding the impact of surfactants on emulsion stability in saline environments is vital for optimizing filtration processes and ensuring the protection of marine and freshwater ecosystems. In this work, these effects are highlighted using measurements performed across a range of droplet size, surfactant concentration, viscosity ratios, and saline presence. Dynamic IFT measurements are conducted using the pendant drop method for water in light mineral oil, with and without salt in the water phase. The effect of salt addition is also highlighted by using microfluidic coalescence experiments, in which it was found that the addition of salt increases the dimensionless drainage time below the critical micelle concentration. The second focus of this work is to study the effect of bulk phase viscosity on the stability. Dynamic IFT measurements are performed at both millimeter and micrometer scales using pendant drop experiments and microfluidic tensiometry, respectively, involving light and heavy mineral oils with varying SPAN80 surfactant concentrations. The surfactant diffusivity and interfacial adsorption and desorption rates are then extracted by fitting a surfactant diffusion and equation of state equations to the dynamic IFT measurements. The results of the IFT decay, surfactant diffusivity, and adsorption rates are compared at two different viscosity ratios. This study also compares the times required for IFT relaxation with the film drainage times in water-in-oil systems. The comparison aids in comprehending the impact of competing timescales during film drainage. The findings presented in this paper offer valuable insights into the design and optimization of liquid-liquid filtration systems, especially when operating under challenging environmental conditions, such as in saline environments. The principles explored here can be applied to improving industrial water treatment and in the design of advanced filtration technologies for chemical and petrochemical industries, particularly those involving flow, contributing to more sustainable and efficient practices in handling emulsified waste streams.
Collapse
Affiliation(s)
- Rana Bachnak
- Department of Mechanical Engineering, University of Minnesota─Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Shweta Narayan
- Department of Mechanical Engineering, University of Minnesota─Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Davis B Moravec
- Donaldson Company, Bloomington, Minnesota 55431, United States
| | - Brad G Hauser
- Donaldson Company, Bloomington, Minnesota 55431, United States
| | - Andrew J Dallas
- Donaldson Company, Bloomington, Minnesota 55431, United States
| | - Cari S Dutcher
- Department of Mechanical Engineering, University of Minnesota─Twin Cities, Minneapolis, Minnesota 55455, United States
- Department of Chemical Engineering and Material Science, University of Minnesota─Twin Cities, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
246
|
Mat'usová A, Moody G, Dowding PJ, Eastoe J, Camp PJ. Experimental and simulation study of reverse micelles formed by aerosol-OT and water in non-polar solvents. Phys Chem Chem Phys 2024; 26:27772-27782. [PMID: 39470246 DOI: 10.1039/d4cp03389b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
The formation of reverse micelles by aerosol-OT [sodium bis(2-ethylhexyl) sulfosuccinate] in hydrocarbon solvents, and in the presence of water, is studied using a combination of atomistic molecular-dynamics simulations and small-angle neutron scattering (SANS). There have been many previous studies of aerosol-OT and its self-assembly in both water and non-aqueous solvents, but this work is focused on a combined experimental and simulation study of reverse-micelle formation. The effects of hydration (with water-to-surfactant molar ratios in the range 0-60) and solvent (cyclohexane and n-dodecane) are investigated. A force field is adapted that results in spontaneous formation of reverse micelles starting from completely randomized configurations. The computed dimensions of the reverse micelles compare very favourably with those determined in SANS experiments, providing validation of the simulation model. The kinetics of reverse-micelle formation are studied with a 50-ns, 1.7-million-atom system which contains, in the steady state, about 50 reverse micelles. The internal structures of reverse micelles are characterized with mass density profiles, and the effects of solvent, and the structural crossover from highly structured water to 'bulk' water in the core, are detailed. The corresponding changes in the molecular reorientation times of sequestered water are also determined. Overall, the combination of experiment and simulation gives a detailed picture of reverse-micelle self-assembly and structure.
Collapse
Affiliation(s)
- Angie Mat'usová
- School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, Scotland, UK.
| | - Georgina Moody
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK
| | | | - Julian Eastoe
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK
| | - Philip J Camp
- School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, Scotland, UK.
| |
Collapse
|
247
|
Gungure AS, Jule LT, Nagaprasad N, Ramaswamy K. Studying the properties of green synthesized silver oxide nanoparticles in the application of organic dye degradation under visible light. Sci Rep 2024; 14:26967. [PMID: 39505895 DOI: 10.1038/s41598-024-75614-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024] Open
Abstract
In present study the green synthesis of silver oxide nanoparticles has been effectively achieved using novel plant extract Phragmanthera Macrosolen. This method provides sustainable alternative for nanoparticle synthesis, demonstrating the potential of Phragmanthera Macrosolen as a reducing and stabilizing agent in the production of Ag2O NPs. The synthesized nanoparticles were characterized for their structural, morphological, and optical properties, confirming their successful formation and potential applications in various fields. The effects of different pH values and annealing temperature of the samples on the properties of Ag2O NPs formations, as well as photo-catalytic activities towards Toluidine Blue dye degradations, were studied. Powder XRD reveals that the crystallite natures of Ag2O NPs a long with crystalline size ranges from 25.85 to 35.90 nm. FIB-SEM and HR-TEM images displayed that the Ag2O NPs as spherical shapes. UV-vis spectroscopy displayed that Ag2O NPs belong to a direct-band gap of 2.1-2.6 eV. FTIR- study shown that the green synthesized Ag2O NPs may be steadied via the interfaces of -OH as well as C = O groups in the carbohydrate, flavonoid, tannin, as well as phenolic acid existing in P. macrosolen L. leaf. The chemical states, electron-hole recombinations and purity of Ag and O in the synthesized Ag2O NPs were confirmed through X-ray Photoelectron Spectroscopy (XPS) and PL analysis respectively. Fascinatingly, the synthesized Ag2O NPs at pH 12 displayed high photo-catalytic degradations for TB dyes. The photo-catalytic degradations of the TB dyes were monitored spectro-photo-metrically in wave-length ranges of 200-900 nm, as well as high efficiency (98.50%) with half-life of 9.5798 min and kinetic rate constant of 0.07234 min-1, was obtained after 45 min of reactions. From this study, it can be concluded that Ag2O NPs synthesized from Phragmanthera Macrosolen aqueous extract are promising in the remediation of environmental pollution and water treatment. In this light, the study reports that Phragmanthera Macrosolen green synthesis of Ag2O NPs can effectively address environmental pollution in cost-effective, eco-friendly, and sustainable ways.
Collapse
Affiliation(s)
- Abel Saka Gungure
- Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology, Hyderabad, Sangareddy, India
- College of Natural and Computational Science, Department of Physics, Dambi Dollo University, Dembi Dolo, Ethiopia
| | - Leta Tesfaye Jule
- College of Natural and Computational Science, Department of Physics, Dambi Dollo University, Dembi Dolo, Ethiopia.
| | - N Nagaprasad
- Department of Mechanical Engineering, ULTRA College of Engineering and Technology, Madurai, Tamil Nadu, 625 104, India
| | - Krishnaraj Ramaswamy
- Department of Mechanical Engineering, Dambi Dollo University, Dambi Dollo, Ethiopia.
- Center for global health research, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| |
Collapse
|
248
|
Yao X, Zhang H, Wang H, Zhang Y, Zhong L, Chen M, Wu Y. Construction of Durable, Colored, Superhydrophobic Wood-Based Surface Coatings Using the Sand-In Method. ACS APPLIED MATERIALS & INTERFACES 2024; 16:61123-61134. [PMID: 39453925 DOI: 10.1021/acsami.4c15735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2024]
Abstract
Highly durable color superhydrophobic coatings have attracted much attention in indoor and outdoor decorative applications. In this paper, colorful superhydrophobic coatings with excellent durability were prepared using silane coupling agent-modified iron oxide as the pigment and polydimethylsiloxane-compounded epoxy resin as the base material by the three-step method of "spraying-sanding-spraying". The method is low cost, has a simple preparation process, enables large-area preparation, and has a restorative function. The use of red, yellow, blue, and green four kinds of modified iron oxides through the single color or multicolor into the sand can be obtained by a variety of color coatings, and silica mixed with a variety of colors can be obtained from light to dark coatings. The coating has excellent superhydrophobicity and self-cleaning ability to withstand sandpaper abrasion, water impact, sand impact, UV exposure, and environmental testing. The coating is suitable for interior and exterior decoration and for protection of wooden buildings.
Collapse
Affiliation(s)
- Xingzhou Yao
- College of Furnishings and Industrial Design, Nanjing Forestry University, Nanjing 210037, China
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Haiqiao Zhang
- College of Furnishings and Industrial Design, Nanjing Forestry University, Nanjing 210037, China
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Hongyan Wang
- Zhejiang Academy of Forestry, Hangzhou 310023, China
| | - Yanbing Zhang
- College of Furnishings and Industrial Design, Nanjing Forestry University, Nanjing 210037, China
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Linjun Zhong
- College of Furnishings and Industrial Design, Nanjing Forestry University, Nanjing 210037, China
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Minggui Chen
- Jiangsu Himonia Technology Co., Ltd, Jurong 212426, China
| | - Yan Wu
- College of Furnishings and Industrial Design, Nanjing Forestry University, Nanjing 210037, China
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
249
|
Wieczerzak K, Klimashin FF, Sharma A, Altenried S, Maniura-Weber K, Ren Q, Michler J. Developing a High-Throughput Platform for the Discovery of Sustainable Antibacterial Materials. ACS APPLIED MATERIALS & INTERFACES 2024; 16:60018-60026. [PMID: 39453916 DOI: 10.1021/acsami.4c14689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2024]
Abstract
Healthcare-associated infections (HCAIs) pose a significant global health challenge, exacerbated by the rising threat of antimicrobial resistance (AMR). This study introduces a high-throughput platform designed to identify sustainable antibacterial surfaces, exemplified by a copper-silver-zirconium (CuAgZr) alloy library. Utilizing combinatorial synthesis and advanced characterization techniques, material libraries (MatLibs) are generated and evaluated to rapidly screen diverse alloy compositions. The results demonstrate the ability to reproducibly create alloys with significant antimicrobial properties and high hardness, making them suitable for biomedical applications. The study highlights the critical role of compositional precision in developing materials that balance mechanical strength with antibacterial efficacy. Additionally, this approach ensures significant cost-effectiveness, facilitating the identification of economically viable alloy compositions. This research underscores the potential of high-throughput materials science to expedite the discovery of sustainable solutions for reducing HCAIs and addressing AMR, signaling a leap forward in sustainable healthcare material development.
Collapse
Affiliation(s)
- Krzysztof Wieczerzak
- Laboratory for Mechanics of Materials and Nanostructures, Empa, Swiss Federal Laboratories for Materials Science and Technology, CH-3602 Thun, Switzerland
| | - Fedor F Klimashin
- Laboratory for Mechanics of Materials and Nanostructures, Empa, Swiss Federal Laboratories for Materials Science and Technology, CH-3602 Thun, Switzerland
| | - Amit Sharma
- Laboratory for Mechanics of Materials and Nanostructures, Empa, Swiss Federal Laboratories for Materials Science and Technology, CH-3602 Thun, Switzerland
| | - Stefanie Altenried
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland
| | - Katharina Maniura-Weber
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland
| | - Qun Ren
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland
| | - Johann Michler
- Laboratory for Mechanics of Materials and Nanostructures, Empa, Swiss Federal Laboratories for Materials Science and Technology, CH-3602 Thun, Switzerland
| |
Collapse
|
250
|
Caselli L, Du G, Micciulla S, Traini T, Sebastiani F, Diedrichsen RG, Köhler S, Skoda MWA, van der Plas MJA, Malmsten M. Photocatalytic Degradation of Bacterial Lipopolysaccharides by Peptide-Coated TiO 2 Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2024; 16:60056-60069. [PMID: 39443826 DOI: 10.1021/acsami.4c15706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
In this study, we report the degradation of smooth and rough lipopolysaccharides (LPS) from Gram-negative bacteria and of lipoteichoic acid (LTA) from Gram-positive bacteria by peptide-coated TiO2 nanoparticles (TiO2 NPs). While bare TiO2 NPs displayed minor binding to both LPS and LTA, coating TiO2 NPs with the antimicrobial peptide LL-37 dramatically increased the level of binding to both LPS and LTA, decorating these uniformly. Importantly, peptide coating did not suppress reactive oxygen species generation of TiO2 NPs; hence, UV illumination triggered pronounced degradation of LPS and LTA by peptide-coated TiO2 NPs. Structural consequences of oxidative degradation were examined by neutron reflectometry for smooth LPS, showing that degradation occurred preferentially in its outer O-antigen tails. Furthermore, cryo-TEM and light scattering showed lipopolysaccharide fragments resulting from degradation to be captured by the NP/lipopolysaccharide coaggregates. The capacity of LL-37-TiO2 NPs to capture and degrade LPS and LTA was demonstrated to be of importance for their ability to suppress lipopolysaccharide-induced activation in human monocytes at simultaneously low toxicity. Together, these results suggest that peptide-coated photocatalytic NPs offer opportunities for the confinement of infection and inflammation.
Collapse
Affiliation(s)
- Lucrezia Caselli
- Department of Physical Chemistry 1, Lund University, Lund SE-22100, Sweden
| | - Guanqun Du
- Department of Physical Chemistry 1, Lund University, Lund SE-22100, Sweden
| | | | - Tanja Traini
- Department of Pharmacy, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - Federica Sebastiani
- Department of Physical Chemistry 1, Lund University, Lund SE-22100, Sweden
- Department of Pharmacy, University of Copenhagen, Copenhagen DK-2100, Denmark
| | | | - Sebastian Köhler
- LINXS Institute of Advanced Neutron and X-ray Science, Scheelevagen 19, Lund 22370, Sweden
| | - Maximilian W A Skoda
- ISIS Pulsed Neutron and Muon Source, Rutherford Appleton Laboratory, Harwell OX11 0QX, U.K
| | | | - Martin Malmsten
- Department of Physical Chemistry 1, Lund University, Lund SE-22100, Sweden
- Department of Pharmacy, University of Copenhagen, Copenhagen DK-2100, Denmark
| |
Collapse
|