201
|
Nithya Shree J, Premika T, Sharlin S, Annie Aglin A. Diverse approaches to express recombinant spike protein: A comprehensive review. Protein Expr Purif 2024; 223:106556. [PMID: 39009199 DOI: 10.1016/j.pep.2024.106556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/03/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
The spike protein of the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is responsible for infecting host cells. It has two segments, S1 and S2. The S1 segment has a receptor-binding domain (RBD) that attaches to the host receptor angiotensin-converting enzyme 2 (ACE2). The S2 segment helps in the fusion of the viral cell membrane by creating a six-helical bundle through the two-heptad repeat domain. To develop effective vaccines and therapeutics against COVID-19, it is critical to express and purify the SARS-CoV-2 Spike protein. Extensive studies have been conducted on expression of a complete recombinant spike protein or its fragments. This review provides an in-depth analysis of the different expression systems employed for spike protein expression, along with their advantages and disadvantages.
Collapse
Affiliation(s)
- Jk Nithya Shree
- Department of Biotechnology, Mepco Schlenk Engineering College, Sivakasi, 626005, Tamilnadu, India
| | - T Premika
- Department of Biotechnology, Mepco Schlenk Engineering College, Sivakasi, 626005, Tamilnadu, India
| | - S Sharlin
- Department of Biotechnology, Mepco Schlenk Engineering College, Sivakasi, 626005, Tamilnadu, India
| | - A Annie Aglin
- Department of Biotechnology, Mepco Schlenk Engineering College, Sivakasi, 626005, Tamilnadu, India.
| |
Collapse
|
202
|
Ismail NZ, Khairuddean M, Al-Anazi M, Arsad H. Tri-chalcone suppressed breast cancer cell proliferation and induced apoptosis through intrinsic and extrinsic pathways. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8993-9006. [PMID: 38874806 DOI: 10.1007/s00210-024-03220-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/04/2024] [Indexed: 06/15/2024]
Abstract
Breast cancer development depends critically on antiproliferative and apoptotic mechanisms. However, the mechanisms underlying the antiproliferative and apoptosis effects of breast cancer treated with tri-chalcone remain unclear. Tri-chalcones have been demonstrated in prior studies to inhibit the proliferation of breast cancer cells (MCF-7). Following the discovery, this study seeks to investigate the effect of tri-chalcone compounds on targets involved in antiproliferative and apoptosis mechanisms. In this study, we employed bioinformatics analysis along with in vitro evaluation using tri-chalcone-treated MCF-7 cells to determine the responses of antiproliferative and apoptosis mechanisms. The analysis revealed that the compounds interact with six apoptosis target receptors: TNFα, Bak, Bcl-2, caspase-9, and caspase-8. Tri-chalcone S1-2 exhibited the strongest binding affinities for TNFα (-7.39 kcal/mol), caspase-8 (-8.43 kcal/mol), caspase-9 (-8.53 kcal/mol), Bcl-2 (-8.51 kcal/mol), and Bak (-7.15 kcal/mol). The tri-chalcone S1-2 paired with the corresponding proteins showed minor flexibility and extremely small changes of less than 0.25 nm during the MD simulation. Additionally, tri-chalcone S1-2 had a significant inhibitory effect on the proliferation of MCF-7 cells (5.31 ± 0.26 µg/mL) compared to other compounds. S1-2 also induced apoptosis, affecting nearly half (43.80%) of the total early and late apoptosis in MCF-7 cells. S1-2-treated MCF-7 cells also demonstrated upregulations of genes TNFα (1.50), Bak (1.42), caspase-8 (1.24), and caspase-9 (1.61), accompanied by a downregulation of gene Bcl-2 (0.71). The discovery gives us a better understanding of how tri-chalcone S1-2 suppressed MCF-7 cell proliferation and induced apoptosis through intrinsic and extrinsic pathways.
Collapse
Affiliation(s)
- Noor Zafirah Ismail
- School of Chemical Sciences, Universiti Sains Malaysia, 11800, Gelugor, Penang, Malaysia
| | - Melati Khairuddean
- School of Chemical Sciences, Universiti Sains Malaysia, 11800, Gelugor, Penang, Malaysia.
| | - Menier Al-Anazi
- Department of Chemistry, Faculty of Science, University of Tabuk, 71491, Tabuk, Kingdom of Saudi Arabia
| | - Hasni Arsad
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia
| |
Collapse
|
203
|
Berkowitz N, MacMillan A, Simmons MB, Shinde U, Purdy GE. Structural modeling and characterization of the Mycobacterium tuberculosis MmpL3 C-terminal domain. FEBS Lett 2024; 598:2734-2747. [PMID: 39198717 PMCID: PMC11560685 DOI: 10.1002/1873-3468.15007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/29/2024] [Accepted: 08/05/2024] [Indexed: 09/01/2024]
Abstract
The Mycobacterium tuberculosis (Mtb) cell envelope provides a protective barrier against the immune response and antibiotics. The mycobacterial membrane protein large (MmpL) family of proteins export cell envelope lipids and siderophores; therefore, these proteins are important for the basic biology and pathogenicity of Mtb. In particular, MmpL3 is essential and a known drug target. Despite interest in MmpL3, the structural data in the field are incomplete. Utilizing homology modeling, AlphaFold, and biophysical techniques, we characterized the cytoplasmic C-terminal domain (CTD) of MmpL3 to better understand its structure and function. Our in silico models of the MmpL11TB and MmpL3TB CTD reveal notable features including a long unstructured linker that connects the globular domain to the last transmembrane (TM) in each transporter, charged lysine and arginine residues facing the membrane, and a C-terminal alpha helix. Our predicted overall structure enables a better understanding of these transporters.
Collapse
Affiliation(s)
- Naomi Berkowitz
- Oregon Health & Science University, Department of Molecular Microbiology & Immunology, Portland, OR, 97239, United States
| | - Allison MacMillan
- Oregon Health & Science University, Department of Molecular Microbiology & Immunology, Portland, OR, 97239, United States
| | - Marit B. Simmons
- Oregon Health & Science University, Department of Molecular Microbiology & Immunology, Portland, OR, 97239, United States
| | - Ujwal Shinde
- Oregon Health & Science University, Biophysics Core Facility, Portland, OR, 97239, United States
| | - Georgiana E. Purdy
- Oregon Health & Science University, Department of Molecular Microbiology & Immunology, Portland, OR, 97239, United States
| |
Collapse
|
204
|
Silvestrini ML, Solazzo R, Boral S, Cocco MJ, Closson JD, Masetti M, Gardner KH, Chong LT. Gating residues govern ligand unbinding kinetics from the buried cavity in HIF-2α PAS-B. Protein Sci 2024; 33:e5198. [PMID: 39467204 PMCID: PMC11516114 DOI: 10.1002/pro.5198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/30/2024]
Abstract
While transcription factors have been generally perceived as "undruggable," an exception is the HIF-2 hypoxia-inducible transcription factor, which contains an internal cavity that is sufficiently large to accommodate a range of small-molecules, including the therapeutically used inhibitor belzutifan. Given the relatively long ligand residence times of these small molecules and the lack of any experimentally observed pathway connecting the cavity to solvent, there has been great interest in understanding how these drug ligands exit the buried receptor cavity. Here, we focus on the relevant PAS-B domain of hypoxia-inducible factor 2α (HIF-2α) and examine how one such small molecule (THS-017) exits from the buried cavity within this domain on the seconds-timescale using atomistic simulations and ZZ-exchange NMR. To enable the simulations, we applied the weighted ensemble path sampling strategy, which generates continuous pathways for a rare-event process [e.g., ligand (un)binding] with rigorous kinetics in orders of magnitude less computing time compared to conventional simulations. Results reveal the formation of an encounter complex intermediate and two distinct classes of pathways for ligand exit. Based on these pathways, we identified two pairs of conformational gating residues in the receptor: one for the major class (N288 and S304) and another for the minor class (L272 and M309). ZZ-exchange NMR validated the kinetic importance of N288 for ligand unbinding. Our results provide an ideal simulation dataset for rational manipulation of ligand unbinding kinetics.
Collapse
Affiliation(s)
| | - Riccardo Solazzo
- Department of Pharmacy and BiotechnologyAlma Mater Studiorum‐Università di BolognaBolognaItaly
| | - Soumendu Boral
- Structural Biology InitiativeCUNY Advanced Science Research CenterNew YorkNew YorkUSA
| | - Melanie J. Cocco
- Department of Pharmaceutical SciencesUniversity of California, IrvineIrvineCaliforniaUSA
- Department of Molecular Biology and BiochemistryUniversity of California, IrvineIrvineCaliforniaUSA
| | - Joseph D. Closson
- Structural Biology InitiativeCUNY Advanced Science Research CenterNew YorkNew YorkUSA
- PhD Program in BiochemistryCUNY Graduate CenterNew YorkNew YorkUSA
| | - Matteo Masetti
- Department of Pharmacy and BiotechnologyAlma Mater Studiorum‐Università di BolognaBolognaItaly
| | - Kevin H. Gardner
- Structural Biology InitiativeCUNY Advanced Science Research CenterNew YorkNew YorkUSA
- Department of Chemistry and BiochemistryCity College of New YorkNew YorkNew YorkUSA
- PhD Programs in Biochemistry, Biology, and ChemistryCUNY Graduate CenterNew YorkNew YorkUSA
| | - Lillian T. Chong
- Department of ChemistryUniversity of PittsburghPittsburghPennsylvaniaUSA
| |
Collapse
|
205
|
Cao F, von Bülow S, Tesei G, Lindorff‐Larsen K. A coarse-grained model for disordered and multi-domain proteins. Protein Sci 2024; 33:e5172. [PMID: 39412378 PMCID: PMC11481261 DOI: 10.1002/pro.5172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/12/2024] [Accepted: 08/23/2024] [Indexed: 10/20/2024]
Abstract
Many proteins contain more than one folded domain, and such modular multi-domain proteins help expand the functional repertoire of proteins. Because of their larger size and often substantial dynamics, it may be difficult to characterize the conformational ensembles of multi-domain proteins by simulations. Here, we present a coarse-grained model for multi-domain proteins that is both fast and provides an accurate description of the global conformational properties in solution. We show that the accuracy of a one-bead-per-residue coarse-grained model depends on how the interaction sites in the folded domains are represented. Specifically, we find excessive domain-domain interactions if the interaction sites are located at the position of the Cα atoms. We also show that if the interaction sites are located at the center of mass of the residue, we obtain good agreement between simulations and experiments across a wide range of proteins. We then optimize our previously described CALVADOS model using this center-of-mass representation, and validate the resulting model using independent data. Finally, we use our revised model to simulate phase separation of both disordered and multi-domain proteins, and to examine how the stability of folded domains may differ between the dilute and dense phases. Our results provide a starting point for understanding interactions between folded and disordered regions in proteins, and how these regions affect the propensity of proteins to self-associate and undergo phase separation.
Collapse
Affiliation(s)
- Fan Cao
- Structural Biology and NMR Laboratory & the Linderstrøm‐Lang Centre for Protein Science, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| | - Sören von Bülow
- Structural Biology and NMR Laboratory & the Linderstrøm‐Lang Centre for Protein Science, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| | - Giulio Tesei
- Structural Biology and NMR Laboratory & the Linderstrøm‐Lang Centre for Protein Science, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| | - Kresten Lindorff‐Larsen
- Structural Biology and NMR Laboratory & the Linderstrøm‐Lang Centre for Protein Science, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
206
|
Huang Z, Peng Z, Zhang M, Li X, Qiu X. Structure, Function and Engineering of the Nonribosomal Peptide Synthetase Condensation Domain. Int J Mol Sci 2024; 25:11774. [PMID: 39519324 PMCID: PMC11546977 DOI: 10.3390/ijms252111774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 10/30/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
The nonribosomal peptide synthetase (NRPS) is a highly precise molecular assembly machinery for synthesizing structurally diverse peptides, which have broad medicinal applications. Withinthe NRPS, the condensation (C) domain is a core catalytic domain responsible for the formation of amide bonds between individual monomer residues during peptide elongation. This review summarizes various aspects of the C domain, including its structural characteristics, catalytic mechanisms, substrate specificity, substrate gating function, and auxiliary functions. Moreover, through case analyses of the NRPS engineering targeting the C domains, the vast potential of the C domain in the combinatorial biosynthesis of peptide natural product derivatives is demonstrated.
Collapse
Affiliation(s)
| | | | | | | | - Xiaoting Qiu
- College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; (Z.H.); (Z.P.); (M.Z.); (X.L.)
| |
Collapse
|
207
|
Dewing S, Phan TM, Kraft EJ, Mittal J, Showalter SA. Acetylation-Dependent Compaction of the Histone H4 Tail Ensemble. J Phys Chem B 2024; 128:10636-10649. [PMID: 39437158 PMCID: PMC11533190 DOI: 10.1021/acs.jpcb.4c05701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
Acetylation of the histone H4 tail (H4Kac) has been established as a significant regulator of chromatin architecture and accessibility; however, the molecular mechanisms that underlie these observations remain elusive. Here, we characterize the ensemble features of the histone H4 tail and determine how they change following acetylation on specific sets of lysine residues. Our comprehensive account is enabled by a robust combination of experimental and computational biophysical methods that converge on molecular details including conformer size, intramolecular contacts, and secondary structure propensity. We find that acetylation significantly alters the chemical environment of basic patch residues (16-20) and leads to tail compaction that is partially mediated by transient intramolecular contacts established between the basic patch and N-terminal amino acids. Beyond acetylation, we identify that the protonation state of H18, which is affected by the acetylation state, is a critical regulator of ensemble characteristics, highlighting the potential for interplay between the sequence context and post-translational modifications to define the ensemble features of intrinsically disordered regions. This study elucidates molecular details that could link H4Kac with the regulation of chromatin architecture, illuminating a small piece of the complex network of molecular mechanisms underlying the histone code hypothesis.
Collapse
Affiliation(s)
- Sophia
M. Dewing
- Center
for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular
Biology, The Pennsylvania State University, 77 Pollock Rd, University Park, Pennsylvania 16802, United States
| | - Tien M. Phan
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, 200 Jack E. Brown Engineering Building, College Station, Texas 77843-3122, United States
| | - Emma J. Kraft
- Department
of Chemistry, The Pennsylvania State University, 376 Science Drive, University Park, Pennsylvania 16802, United States
| | - Jeetain Mittal
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, 200 Jack E. Brown Engineering Building, College Station, Texas 77843-3122, United States
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Interdisciplinary
Graduate Program in Genetics and Genomics, Texas A&M University, College
Station, Texas 77843, United States
| | - Scott A. Showalter
- Center
for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular
Biology, The Pennsylvania State University, 77 Pollock Rd, University Park, Pennsylvania 16802, United States
- Department
of Chemistry, The Pennsylvania State University, 376 Science Drive, University Park, Pennsylvania 16802, United States
| |
Collapse
|
208
|
Ero R, Qiao Z, Tan KA, Gao YG. Structural insights into the membrane-bound proteolytic machinery of bacterial protein quality control. Biochem Soc Trans 2024; 52:2077-2086. [PMID: 39417347 DOI: 10.1042/bst20231250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/23/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024]
Abstract
In bacteria and eukaryotic organelles of prokaryotic origin, ATP-dependent proteases are crucial for regulating protein quality control through substrate unfolding and degradation. Understanding the mechanism and regulation of this key cellular process could prove instrumental in developing therapeutic strategies. Very recently, cryo-electron microscopy structural studies have shed light on the functioning of AAA+ proteases, including membrane-bound proteolytic complexes. This review summarizes the structure and function relationship of bacterial AAA+ proteases, with a special focus on the sole membrane-bound AAA+ protease in Escherichia coli, FtsH. FtsH substrates include both soluble cytoplasmic and membrane-incorporated proteins, highlighting its intricate substrate recognition and processing mechanisms. Notably, 12 copies of regulatory HflK and HflC proteins, arranged in a cage-like structure embedded in the bacterial inner membrane, can encase up to 4 FtsH hexamers, thereby regulating their role in membrane protein quality control. FtsH represents an intriguing example, highlighting both its similarity to cytosolic AAA+ proteases with respect to overall architecture and oligomerization as well as its unique features, foremost its incorporation into a membrane-bound complex formed by HflK and HflC to mediate its function in protein quality control.
Collapse
Affiliation(s)
- Rya Ero
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, 636921 Singapore
| | - Zhu Qiao
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, 636921 Singapore
| | - Kwan Ann Tan
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore
| | - Yong-Gui Gao
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, 636921 Singapore
| |
Collapse
|
209
|
Rodrigues Rodrigues R, Alves MLF, Bilhalva MA, Kremer FS, Junior CM, Ferreira MRA, Galvão CC, Quatrin PHDN, Conceição FR. Large Clostridial Toxins: A Brief Review and Insights into Antigen Design for Veterinary Vaccine Development. Mol Biotechnol 2024:10.1007/s12033-024-01303-6. [PMID: 39472390 DOI: 10.1007/s12033-024-01303-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/08/2024] [Indexed: 12/18/2024]
Abstract
The group of large clostridial toxins (LCTs) includes toxins A (TcdA) and B (TcdB) from Clostridioides difficile, hemorrhagic and lethal toxins from Paeniclostridium sordellii, alpha toxin from Clostridium novyi (TcnA), and cytotoxin from Clostridium perfringens. These toxins are associated with severe pathologies in livestock, including gas gangrene (P. sordellii and C. novyi), infectious necrotic hepatitis (C. novyi), avian necrotic enteritis (C. perfringens), and enterocolitis (C. difficile). Immunoprophylaxis is crucial for controlling these diseases, but traditional vaccines face production challenges, such as labor-intensive processes, and often exhibit low immunogenicity. This has led to increased interest in recombinant vaccines. While TcdA and TcdB are well-studied for human immunization, other LCTs remain poorly characterized and require further investigation. Therefore, this study emphasizes the importance of understanding lesser-explored toxins and proposes using immunoinformatics to identify their immunodominant regions. By mapping these regions using silico tools and considering their homology with TcdA and TcdB, the study aims to guide future research in veterinary vaccinology. It also explores alternatives to overcome the limitations of conventional and recombinant vaccines, offering guidelines for developing more effective vaccination strategies against severe infections in animals.
Collapse
Affiliation(s)
- Rafael Rodrigues Rodrigues
- Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas - Campus Universitário, Capão do Leão, Rio Grande Do Sul, CEP 96160-000, Brazil.
| | - Mariliana Luiza Ferreira Alves
- Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas - Campus Universitário, Capão do Leão, Rio Grande Do Sul, CEP 96160-000, Brazil
- Instituto Federal Sul-Rio-Grandense, IFSul, Campus Pelotas, Pelotas, Rio Grande Do Sul, Brasil
| | - Miguel Andrade Bilhalva
- Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas - Campus Universitário, Capão do Leão, Rio Grande Do Sul, CEP 96160-000, Brazil
| | - Frederico Schmitt Kremer
- Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas - Campus Universitário, Capão do Leão, Rio Grande Do Sul, CEP 96160-000, Brazil
| | - Clóvis Moreira Junior
- Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas - Campus Universitário, Capão do Leão, Rio Grande Do Sul, CEP 96160-000, Brazil
| | - Marcos Roberto Alves Ferreira
- Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas - Campus Universitário, Capão do Leão, Rio Grande Do Sul, CEP 96160-000, Brazil
| | - Cleideanny Cancela Galvão
- Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas - Campus Universitário, Capão do Leão, Rio Grande Do Sul, CEP 96160-000, Brazil
| | - Pedro Henrique Dala Nora Quatrin
- Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas - Campus Universitário, Capão do Leão, Rio Grande Do Sul, CEP 96160-000, Brazil
| | - Fabricio Rochedo Conceição
- Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas - Campus Universitário, Capão do Leão, Rio Grande Do Sul, CEP 96160-000, Brazil
| |
Collapse
|
210
|
Kuravsky M, Kelly C, Redfield C, Shammas SL. The transition state for coupled folding and binding of a disordered DNA binding domain resembles the unbound state. Nucleic Acids Res 2024; 52:11822-11837. [PMID: 39315703 PMCID: PMC11514473 DOI: 10.1093/nar/gkae794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 08/22/2024] [Accepted: 09/02/2024] [Indexed: 09/25/2024] Open
Abstract
The basic zippers (bZIPs) are one of two large eukaryotic families of transcription factors whose DNA binding domains are disordered in isolation but fold into stable α-helices upon target DNA binding. Here, we systematically disrupt pre-existing helical propensity within the DNA binding region of the homodimeric bZIP domain of cAMP-response element binding protein (CREB) using Ala-Gly scanning and examine the impact on target binding kinetics. We find that the secondary structure of the transition state strongly resembles that of the unbound state. The residue closest to the dimerization domain is largely folded within both unbound and transition states; dimerization apparently propagates additional helical propensity into the basic region. The results are consistent with electrostatically-enhanced DNA binding, followed by rapid folding from the folded zipper outwards. Fly-casting theory suggests that protein disorder can accelerate binding. Interestingly however, we did not observe higher association rate constants for mutants with lower levels of residual structure in the unbound state.
Collapse
Affiliation(s)
- Mikhail Kuravsky
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Conor Kelly
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | | | - Sarah L Shammas
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| |
Collapse
|
211
|
Kumari K, Singh AK, Mandal P, Rakshit S. Crowder Chain Length Variability and Excluded Volume Effect on the Phase Separation Behavior of Mucin. J Phys Chem Lett 2024; 15:10505-10513. [PMID: 39393020 DOI: 10.1021/acs.jpclett.4c01524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Phase separation within cellular membranes, a critical process underpinning diverse cellular functions, is significantly influenced by transmembrane proteins. Therefore, elucidating the behavior of a transmembrane protein in its phase-separated state is of utmost importance. Our study explores mucin behavior in the cellular milieu, aiming to determine the role of crowder chain length and excluded volume in phase separation. Confocal microscopy images demonstrate the strong partitioning of mucin into the condensed phase influenced by hydrophobic and electrostatic interactions. Fluorescence recovery after photobleaching analysis revealed increased mobility in the presence of shorter chain length crowders, indicating the dynamic behavior of protein within condensed phases. Excluded volume calculation using the theoretical model emphasizes its importance in mucin phase separation under crowded conditions. Our findings underscore the ability of mucin to phase-separate under crowded conditions, highlighting the crucial role of excluded volume and enhancing our understanding of its involvement in cancer progression.
Collapse
Affiliation(s)
- Komal Kumari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Anant Kumar Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Priyankar Mandal
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Surajit Rakshit
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
212
|
Khan SA, Hicks A, Leite WC, Byrnes J, Gorai B, Mroginski MA, O'Neill H, Miller AF. Extended conformations of bifurcating electron transfer flavoprotein constitute up to half the population, possibly mediating conformational change. Chem Sci 2024:d4sc04544k. [PMID: 39512923 PMCID: PMC11536132 DOI: 10.1039/d4sc04544k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/15/2024] [Indexed: 11/15/2024] Open
Abstract
Electron transfer bifurcation enables biological systems to drive unfavourable (endergonic) electron transfer by coupling it to favourable (exergonic) transfer of a second electron. In electron transfer flavoproteins (ETFs), a domain-scale conformational change is believed to sever the favourable pathway after a single electron has used it, thereby preventing the energy dissipation that would accompany exergonic transfer of the second electron. To understand the conformation change that participates in turnover, we have deployed small-angle neutron scattering (SANS) and computational techniques to characterize the bifurcating ETF from Acidaminococcus fermentans (AfeETF). SANS data reveal an overall radius of gyration (R g) of 30.1 ± 0.2 Å and a maximum dimension (D max) of 100 Å for oxidized AfeETF. These measurements are 4 Å and 30 Å larger, respectively, than those of any published bifurcating ETF structure. Thus, we find that none of the reported ETF structures can explain the observed scattering, nor can any individual conformation generated by either of our molecular dynamics protocols. To optimize ensembles best able to explain the SANS data, we adapted a genetic algorithm. Successful ensembles contained a compact conformation comparable to one of the crystallographically documented conformations, accompanied by a much more extended one, and these two conformations sufficed to account for the data. The extended conformations identified all have R gs at least 4 Å larger than those of any currently published ETF structures. However, they are strongly populated, constituting 20% of the population of reduced ETF and over 50% of the population of oxidized AfeETF. Thus, the published (compact) structures provide a seriously incomplete picture of the conformation of AfeETF in solution. Moreover, because the composition of the conformational ensemble changes upon reduction of AfeETF's flavins, interconversion of the conformations may contribute to turnover. We propose that the extended conformations can provide energetically accessible paths for rapid interconversion of the open and closed compact conformations that are believed essential at alternating points in turnover.
Collapse
Affiliation(s)
- Sharique A Khan
- Department of Chemistry, University of Kentucky Lexington KY 40506 USA
- Neutron Scattering Division, Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| | - Alan Hicks
- Neutron Scattering Division, Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| | - Wellington C Leite
- Neutron Scattering Division, Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| | - James Byrnes
- National Synchrotron Light Source II, Brookhaven National Laboratory Upton NY 11973 USA
| | - Biswajit Gorai
- Department of Chemistry, Technische Universität Berlin 10623 Berlin Germany
| | | | - Hugh O'Neill
- Neutron Scattering Division, Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| | | |
Collapse
|
213
|
So M, Ono M, Oogai S, Kondo M, Yamazaki K, Nachtegael C, Hamajima H, Mutoh R, Kato M, Kawate H, Oki T, Kawata Y, Kumamoto S, Tokui N, Takei T, Shimizu K, Inoue A, Yamamoto N, Unoki M, Tanabe K, Nakashima K, Sasaki H, Hojo H, Nagata Y, Suetake I. Inhibitory effects of extracts from Eucalyptus gunnii on α-synuclein amyloid fibrils. Biosci Biotechnol Biochem 2024; 88:1289-1298. [PMID: 39169473 DOI: 10.1093/bbb/zbae114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 08/10/2024] [Indexed: 08/23/2024]
Abstract
Amyloid fibril formation is associated with various amyloidoses, including neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. Despite the numerous studies on the inhibition of amyloid formation, the prevention and treatment of a majority of amyloid-related disorders are still challenging. In this study, we investigated the effects of various plant extracts on amyloid formation of α-synuclein. We found that the extracts from Eucalyptus gunnii are able to inhibit amyloid formation, and to disaggregate preformed fibrils, in vitro. The extract itself did not lead to cell damage. In the extract, miquelianin, which is a glycosylated form of quercetin and has been detected in the plasma and the brain, was identified and assessed to have a moderate inhibitory activity, compared to the effects of ellagic acid and quercetin, which are strong inhibitors for amyloid formation. The properties of miquelianin provide insights into the mechanisms controlling the assembly of α-synuclein in the brain.
Collapse
Affiliation(s)
- Masatomo So
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- Institute for Protein Research, Osaka University, Osaka, Japan
| | - Misaki Ono
- Department of Nutritional Sciences, Faculty of Nutritional Sciences, Nakamura Gakuen University, Fukuoka, Japan
| | - Shigeki Oogai
- Saga Food & Cosmetic Laboratory, Saga Prefectural Industrial Innovation Center, Saga, Japan
| | - Minako Kondo
- ARFS, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Kaede Yamazaki
- Saga Food & Cosmetic Laboratory, Saga Prefectural Industrial Innovation Center, Saga, Japan
| | - Charlotte Nachtegael
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles-Vrije Universiteit Brussel, Brussels, Belgium
- Machine Learning Group, Université Libre de Bruxelles, Brussels, Belgium
| | - Hiroshi Hamajima
- Saga Food & Cosmetic Laboratory, Saga Prefectural Industrial Innovation Center, Saga, Japan
| | - Risa Mutoh
- Department of Applied Physics, Faculty of Science, Fukuoka University, Fukuoka, Japan
| | - Masaki Kato
- Department of Nutritional Sciences, Faculty of Nutritional Sciences, Nakamura Gakuen University, Fukuoka, Japan
- Graduate School of Nutritional Sciences, Nakamura Gakuen University, Fukuoka, Japan
| | - Hisaya Kawate
- Department of Nutritional Sciences, Faculty of Nutritional Sciences, Nakamura Gakuen University, Fukuoka, Japan
- Graduate School of Nutritional Sciences, Nakamura Gakuen University, Fukuoka, Japan
| | - Tomoyuki Oki
- Department of Nutritional Sciences, Faculty of Nutritional Sciences, Nakamura Gakuen University, Fukuoka, Japan
- Graduate School of Nutritional Sciences, Nakamura Gakuen University, Fukuoka, Japan
| | - Yasushi Kawata
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori, Japan
| | - Shiho Kumamoto
- Department of Nutritional Sciences, Faculty of Nutritional Sciences, Nakamura Gakuen University, Fukuoka, Japan
| | - Noritaka Tokui
- Department of Nutritional Sciences, Faculty of Nutritional Sciences, Nakamura Gakuen University, Fukuoka, Japan
- Graduate School of Nutritional Sciences, Nakamura Gakuen University, Fukuoka, Japan
- Institute of Preventive and Medical Dietetics, Nakamura Gakuen University, Fukuoka, Japan
| | - Toshiki Takei
- Institute for Protein Research, Osaka University, Osaka, Japan
| | - Kuniyoshi Shimizu
- Department of Agro-Environmental Sciences, Kyushu University, Fukuoka, Japan
| | - Akio Inoue
- Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Naoki Yamamoto
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Motoko Unoki
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kenichi Tanabe
- Department of Nutritional Sciences, Faculty of Nutritional Sciences, Nakamura Gakuen University, Fukuoka, Japan
- Graduate School of Nutritional Sciences, Nakamura Gakuen University, Fukuoka, Japan
- Institute of Preventive and Medical Dietetics, Nakamura Gakuen University, Fukuoka, Japan
| | - Kinichi Nakashima
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroyuki Sasaki
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Hironobu Hojo
- Institute for Protein Research, Osaka University, Osaka, Japan
| | - Yasuo Nagata
- Saga Food & Cosmetic Laboratory, Saga Prefectural Industrial Innovation Center, Saga, Japan
| | - Isao Suetake
- Institute for Protein Research, Osaka University, Osaka, Japan
- Department of Nutritional Sciences, Faculty of Nutritional Sciences, Nakamura Gakuen University, Fukuoka, Japan
- Graduate School of Nutritional Sciences, Nakamura Gakuen University, Fukuoka, Japan
- Institute of Preventive and Medical Dietetics, Nakamura Gakuen University, Fukuoka, Japan
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| |
Collapse
|
214
|
Govindarajan DK, Eskeziyaw BM, Kandaswamy K, Mengistu DY. Diagnosis of extraintestinal pathogenic Escherichia coli pathogenesis in urinary tract infection. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100296. [PMID: 39553200 PMCID: PMC11565050 DOI: 10.1016/j.crmicr.2024.100296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024] Open
Abstract
Extra-intestinal pathogenic Escherichia coli (ExPEC) is a virulent pathogen found in humans that causes the majority of urinary tract infections, and other infections such as meningitis and sepsis. ExPEC can enter the urinary tract through two modes: ascending from the bladder or descending from the kidneys. Human anatomical structures generally prevent the transmission of pathogens between the extra-intestinal area, kidneys, bladder, and urinary tract. However, adhesins, a virulence protein of ExPEC, promote the initial bacterial attachment and invasion of host cells. In addition to adhesion proteins, ExPEC contains iron acquisition systems and toxins to evade the host immune system, acquire essential nutrients, and gain antibiotic resistance. The presence of antibiotic-resistant genes makes treating ExPEC in urinary tract infections (UTIs) more complicated. Therefore, screening for the presence of ExPEC among other uropathogens in UTI patients is essential, as it can potentially aid in the effective treatment and mitigation of ExPEC pathogens. Several diagnostic techniques are available for detecting ExPEC, including urine culture, polymerase chain reaction, serological testing, loop-mediated isothermal amplification, and biochemical tests. This review addresses strain-specific diagnostic techniques for screening ExPEC in UTI patients.
Collapse
Affiliation(s)
| | | | - Kumaravel Kandaswamy
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, India
| | | |
Collapse
|
215
|
Shulga DA, Kudryavtsev KV. Ensemble Docking as a Tool for the Rational Design of Peptidomimetic Staphylococcus aureus Sortase A Inhibitors. Int J Mol Sci 2024; 25:11279. [PMID: 39457061 PMCID: PMC11508331 DOI: 10.3390/ijms252011279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/15/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Sortase A (SrtA) of Staphylococcus aureus has long been shown to be a relevant molecular target for antibacterial development. Moreover, the designed SrtA inhibitors act via the antivirulence mechanism, potentially causing less evolutional pressure and reduced antimicrobial resistance. However, no marketed drugs or even drug candidates have been reported until recently, despite numerous efforts in the field. SrtA has been shown to be a tough target for rational structure-based drug design (SBDD), which hampers the regular development of small-molecule inhibitors using the available arsenal of drug discovery tools. Recently, several oligopeptides resembling the sorting sequence LPxTG (Leu-Pro-Any-Thr-Gly) of the native substrates of SrtA were reported to be active in the micromolar range. Despite the good experimental design of those works, their molecular modeling parts are still not convincing enough to be used as a basis for a rational modification of peptidic inhibitors. In this work, we propose to use the ensemble docking approach, in which the relevant SrtA conformations are extracted from the molecular dynamics simulation of the LPRDA (Leu-Pro-Arg-Asp-Ala)-SrtA complex, to effectively represent the most significant and diverse target conformations. The developed protocol is shown to describe the known experimental data well and then is applied to a series of new peptidomimetic molecules resembling the active oligopeptide structures reported previously in order to prioritize structures from this work for further synthesis and activity testing. The proposed approach is compared to existing alternatives, and further directions for its development are outlined.
Collapse
Affiliation(s)
- Dmitry A. Shulga
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
| | - Konstantin V. Kudryavtsev
- Vreden National Medical Research Center of Traumatology and Orthopedics, 195427 St. Petersburg, Russia
| |
Collapse
|
216
|
Arjmand S, Ilaghi M, Shafie'ei M, Gobira PH, Grassi-Oliveira R, Wegener G. Exploring the potential link between ΔFosB and N-acetylcysteine in craving/relapse dynamics: can N-acetylcysteine stand out as a possible treatment candidate? Acta Neuropsychiatr 2024; 37:e31. [PMID: 39415655 DOI: 10.1017/neu.2024.38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
From a neuroscientific point of view, one of the unique archetypes of substance use disorders is its road to relapse, in which the reward system plays a crucial role. Studies on the neurobiology of substance use disorders have highlighted the central role of a protein belonging to the Fos family of transcription factors, ΔFosB. Relying on the roles ΔFosB plays in the pathophysiology of substance use disorders, we endeavour to present some evidence demonstrating that N-acetylcysteine, a low-cost and well-tolerated over-the-counter medicine, may influence the downstream pathway of ΔFosB, thereby serving as a treatment strategy to mitigate the risk of relapse in cases of substance use.
Collapse
Affiliation(s)
- Shokouh Arjmand
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Mehran Ilaghi
- Institute of Neuropharmacology, Kerman Neuroscience Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Shafie'ei
- Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Pedro H Gobira
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Rodrigo Grassi-Oliveira
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Gregers Wegener
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Affective Disorders, Aarhus University Hospital-Psychiatry, Aarhus, Denmark
| |
Collapse
|
217
|
Nilashi M, Ahmadi H, Abumalloh RA, Alrizq M, Alghamdi A, Alyami S. Knowledge discovery of patients reviews on breast cancer drugs: Segmentation of side effects using machine learning techniques. Heliyon 2024; 10:e38563. [PMID: 39430478 PMCID: PMC11489357 DOI: 10.1016/j.heliyon.2024.e38563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/30/2024] [Accepted: 09/26/2024] [Indexed: 10/22/2024] Open
Abstract
Breast cancer stands as the most frequently diagnosed life-threatening cancer among women worldwide. Understanding patients' drug experiences is essential to improving treatment strategies and outcomes. In this research, we conduct knowledge discovery on breast cancer drugs using patients' reviews. A new machine learning approach is developed by employing clustering, text mining and regression techniques. We first use Latent Dirichlet Allocation (LDA) technique to discover the main aspects of patients' experiences from the patients' reviews on breast cancer drugs. We also use Expectation-Maximization (EM) algorithm to segment the data based on patients' overall satisfaction. We then use the Forward Entry Regression technique to find the relationship between aspects of patients' experiences and drug's effectiveness in each segment. The textual reviews analysis on breast cancer drugs found 8 main side effects: Musculoskeletal Effects, Menopausal Effects, Dermatological Effects, Metabolic Effects, Gastrointestinal Effects, Neurological and Cognitive Effects, Respiratory Effects and Cardiovascular. The results are provided and discussed. The findings of this study are expected to offer valuable insights and practical guidance for prospective patients, aiding them in making informed decisions regarding breast cancer drug consumption.
Collapse
Affiliation(s)
- Mehrbakhsh Nilashi
- UCSI Graduate Business School, UCSI University, 56000, Cheras, Kuala Lumpur, Malaysia
- Centre for Business Informatics and Industrial Management, UCSI Graduate Business School, UCSI University, Malaysia
| | - Hossein Ahmadi
- Centre for Health Technology, Faculty of Health, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Rabab Ali Abumalloh
- Department of Computer Science and Engineering, Qatar University, Doha, 2713, Qatar
| | - Mesfer Alrizq
- Information Systems Dept., College of Computer Science and Information Systems, Najran University, Najran, Saudi Arabia
- AI Lab, Scientific and Engineering Research Center (SERC), Najran University, Najran, Saudi Arabia
| | - Abdullah Alghamdi
- Information Systems Dept., College of Computer Science and Information Systems, Najran University, Najran, Saudi Arabia
- AI Lab, Scientific and Engineering Research Center (SERC), Najran University, Najran, Saudi Arabia
| | - Sultan Alyami
- Computer Science Dept., College of Computer Science and Information Systems, Najran University, Najran, Saudi Arabia
- AI Lab, Scientific and Engineering Research Center (SERC), Najran University, Najran, Saudi Arabia
| |
Collapse
|
218
|
Ragupathi H, Pushparaj MM, Gopi SM, Govindarajan DK, Kandaswamy K. Biofilm matrix: a multifaceted layer of biomolecules and a defensive barrier against antimicrobials. Arch Microbiol 2024; 206:432. [PMID: 39402397 DOI: 10.1007/s00203-024-04157-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/24/2024] [Accepted: 10/03/2024] [Indexed: 11/10/2024]
Abstract
Bacterial cells often exist in the form of sessile aggregates known as biofilms, which are polymicrobial in nature and can produce slimy Extracellular Polymeric Substances (EPS). EPS is often referred to as a biofilm matrix and is a heterogeneous mixture of various biomolecules such as polysaccharides, proteins, and extracellular DNA/RNA (eDNA/RNA). In addition, bacteriophage (phage) was also found to be an integral component of the matrix and can serve as a protective barrier. In recent years, the roles of proteins, polysaccharides, and phages in the virulence of biofilms have been well studied. However, a mechanistic understanding of the release of such biomolecules and their interactions with antimicrobials requires a thorough review. Therefore, this article critically reviews the various mechanisms of release of matrix polymers. In addition, this article also provides a contemporary understanding of interactions between various biomolecules to protect biofilms against antimicrobials. In summary, this article will provide a thorough understanding of the functions of various biofilm matrix molecules.
Collapse
Affiliation(s)
- Harini Ragupathi
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, Tamil Nadu, 641049, India
| | - Mahamahima Muthuswamy Pushparaj
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, Tamil Nadu, 641049, India
| | - Sarves Mani Gopi
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, Tamil Nadu, 641049, India
| | - Deenadayalan Karaiyagowder Govindarajan
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore, Singapore
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Drive, 637371, Singapore, Singapore
| | - Kumaravel Kandaswamy
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, Tamil Nadu, 641049, India.
| |
Collapse
|
219
|
Seyedolmohadesin M, Kouhzad M, Götz F, Ashkani M, Aminzadeh S, Bostanghadiri N. Emergence of lineage ST150 and linezolid resistance in Enterococcus faecalis: a molecular epidemiology study of UTIs in Tehran, Iran. Front Microbiol 2024; 15:1464691. [PMID: 39469459 PMCID: PMC11514486 DOI: 10.3389/fmicb.2024.1464691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/23/2024] [Indexed: 10/30/2024] Open
Abstract
Background Urinary tract infections (UTIs) represent one of the most prevalent bacterial infections, with Enterococcus species now recognized as the second leading cause of these infections. This study focused on symptomatic UTI cases to investigate the risk factors associated with Enterococcus faecalis clinical isolates in patients from Tehran, Iran. Methods Urine samples were collected from patients presenting with symptomatic UTIs. The identification of E. faecalis isolates was performed using standard microbiological techniques, with confirmation via polymerase chain reaction (PCR). Antibiotic susceptibility testing was conducted using the Kirby-Bauer disc diffusion method. The presence of virulence genes was determined through PCR, and biofilm formation was assessed using the microtiter plate method. Additionally, multi-locus sequence typing (MLST) was utilized to genotype linezolid-resistant isolates. Results Out of 300 UTI cases, E. faecalis was identified as the causative agent in 160 instances. Notably, a high proportion of these isolates exhibited resistance to tetracycline (83.8%) and minocycline (82.5%). Linezolid resistance was observed in 1.3% (n = 2) of the isolates. Conversely, the highest susceptibility rates were observed for vancomycin, penicillin G, ampicillin, and nitrofurantoin, each demonstrating a 98.8% susceptibility rate. Biofilm formation was detected in 25% of the E. faecalis isolates. A significant majority (93.8%) of the isolates harbored the efbA and ace genes, with varying frequencies of esp (72.5%), asa1 (61.2%), cylA (52.5%), and gelE (88.8%) genes. MLST analysis demonstrated that both linezolid-resistant isolates, characterized by strong biofilm formation and the presence of virulence genes, were assigned to the ST150 lineage, which has not been previously documented in clinical settings. Conclusion The emergence of the ST150 clonal lineage, underscores its clinical significance, particularly in relation to linezolid resistance in E. faecalis. This study adds to the growing body of evidence linking specific clonal lineages with antibiotic resistance, highlighting the critical need for ongoing surveillance and molecular characterization of resistant pathogens.
Collapse
Affiliation(s)
- Maryam Seyedolmohadesin
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Azad University, Tehran, Iran
| | - Mobina Kouhzad
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Türkiye
| | - Friedrich Götz
- Department of Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany
| | - Maedeh Ashkani
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Soheila Aminzadeh
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Narjess Bostanghadiri
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
220
|
Zhang X, Prabhu S, Arulperumjothi M, Prabhu SM, Arockiaraj M, Manimozhi V. Distance based topological characterization, graph energy prediction, and NMR patterns of benzene ring embedded in P-type surface in 2D network. Sci Rep 2024; 14:23766. [PMID: 39390202 PMCID: PMC11467197 DOI: 10.1038/s41598-024-75193-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/03/2024] [Indexed: 10/12/2024] Open
Abstract
Nanostructures are tiny objects at the molecular and microscopic scale, with carbon nanotubes being the most notable among them. The elements possess exceptional microelectronic properties and other unique characteristics. Researchers have recently focused on the mathematical features of these materials. Molecular descriptors are crucial in mathematical chemistry, particularly in QSAR and QSPR modeling. Topological indices hold a significant position among them. This study presents the precise formulation of the ten most crucial topological indices for a benzene ring positioned on a P-type surface within the highly symmetric 2D lattice BCZ 48 . We have incorporated the computed indices to develop a predictive model for the graph energy of the 2D lattice and, in addition, provided the NMR patterns and the HOMO-LUMO gap.
Collapse
Affiliation(s)
- Xiujun Zhang
- School of Computer Science, Chengdu University, Chengdu, China
| | - S Prabhu
- Department of Mathematics, Rajalakshmi Engineering College, Chennai, 602105, India
| | - M Arulperumjothi
- Department of Mathematics, St. Joseph's College of Engineering, Chennai, 600119, India
| | - S Manikanda Prabhu
- Department of Mathematics, St. Joseph's College of Engineering, Chennai, 600119, India
| | | | - V Manimozhi
- Department of Mathematics, Panimalar Engineering College, Chennai, 600123, India
| |
Collapse
|
221
|
Tee WV, Lim SJM, Berezovsky IN. Toward the Design of Allosteric Effectors: Gaining Comprehensive Control of Drug Properties and Actions. J Med Chem 2024; 67:17191-17206. [PMID: 39326868 PMCID: PMC11472305 DOI: 10.1021/acs.jmedchem.4c01043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024]
Abstract
While the therapeutic potential of allosteric drugs is increasingly realized, the discovery of effectors is largely incidental. The rational design of allosteric effectors requires new state-of-the-art approaches to account for the distinct characteristics of allosteric ligands and their modes of action. We present a broadly applicable computational framework for obtaining allosteric site-effector pairs, providing targeted, highly specific, and tunable regulation to any functional site. We validated the framework using the main protease from SARS-CoV-2 and the K-RasG12D oncoprotein. High-throughput per-residue quantification of the energetics of allosteric signaling and effector binding revealed known drugs capable of inducing the required modulation upon binding. Starting from fragments of known well-characterized drugs, allosteric effectors and binding sites were designed and optimized simultaneously to achieve targeted and specific signaling to distinct functional sites, such as, for example, the switch regions of K-RasG12D. The generic framework proposed in this work will be instrumental in developing allosteric therapies aligned with a precision medicine approach.
Collapse
Affiliation(s)
- Wei-Ven Tee
- Bioinformatics
Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, Singapore 138671, Singapore
| | - Sylvester J. M. Lim
- Bioinformatics
Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, Singapore 138671, Singapore
| | - Igor N. Berezovsky
- Bioinformatics
Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, Singapore 138671, Singapore
- Department
of Biological Sciences (DBS), National University
of Singapore (NUS), 8
Medical Drive, Singapore 117579, Singapore
| |
Collapse
|
222
|
Chen R, Ding J, Li Y, Zhang Y, Yang R. Lactoferrin-Based Heteroprotein Systems, From Their Formation Mechanism, Properties, To Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21986-22000. [PMID: 39316720 DOI: 10.1021/acs.jafc.4c05298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Lactoferrin (LF) is an important iron-binding glycoprotein found in milk and mucosal secretions. The alkaline lactoferrin can interact with some acidic proteins to form heteroprotein systems with multifunctional properties and a wide range of applications. Lactoferrin can interact with animal and plant proteins mainly through the electrostatic forces, dipolar attraction, and hydrophobic interactions. In this review, the types of heteroprotein complexes formed by the complex coacervation of lactoferrin with other proteins are introduced, including the preparation, structure, and applications. The factors affecting the formation of heteroprotein complexes are described, such as pH, ionic strength, mixing ratio, total protein concentration, and temperature. The issues and challenges in the formation of heteroprotein complexes are also discussed.
Collapse
Affiliation(s)
- Runxuan Chen
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Jiaqi Ding
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Yichen Li
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Yuyu Zhang
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, P. R. China
| | - Rui Yang
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| |
Collapse
|
223
|
Moschonas GD, Delhaye L, Cooreman R, Hüsers F, Bhat A, Stylianidou Z, De Bousser E, De Pryck L, Grzesik H, De Sutter D, Parthoens E, De Smet AS, Maciejczuk A, Lippens S, Callewaert N, Vandekerckhove L, Debyser Z, Sodeik B, Eyckerman S, Saelens X. MX2 forms nucleoporin-comprising cytoplasmic biomolecular condensates that lure viral capsids. Cell Host Microbe 2024; 32:1705-1724.e14. [PMID: 39389033 DOI: 10.1016/j.chom.2024.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 02/01/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024]
Abstract
Human myxovirus resistance 2 (MX2) can restrict HIV-1 and herpesviruses at a post-entry step through a process requiring an interaction between MX2 and the viral capsids. The involvement of other host cell factors, however, remains poorly understood. Here, we mapped the proximity interactome of MX2, revealing strong enrichment of phenylalanine-glycine (FG)-rich proteins related to the nuclear pore complex as well as proteins that are part of cytoplasmic ribonucleoprotein granules. MX2 interacted with these proteins to form multiprotein cytoplasmic biomolecular condensates that were essential for its anti-HIV-1 and anti-herpes simplex virus 1 (HSV-1) activity. MX2 condensate formation required the disordered N-terminal region and MX2 dimerization. Incoming HIV-1 and HSV-1 capsids associated with MX2 at these dynamic cytoplasmic biomolecular condensates, preventing nuclear entry of their viral genomes. Thus, MX2 forms cytoplasmic condensates that likely act as nuclear pore decoys, trapping capsids and inducing premature viral genome release to interfere with nuclear targeting of HIV-1 and HSV-1.
Collapse
Affiliation(s)
- George D Moschonas
- VIB Center for Medical Biotechnology, VIB, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biochemistry and Microbiology, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium
| | - Louis Delhaye
- VIB Center for Medical Biotechnology, VIB, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium
| | - Robin Cooreman
- VIB Center for Medical Biotechnology, VIB, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biochemistry and Microbiology, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium
| | - Franziska Hüsers
- Institute of Virology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; RESIST-Cluster of Excellence, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Anayat Bhat
- Department of Pharmacological and Pharmaceutical Sciences, Laboratory of Molecular Virology and Gene Therapy, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Zoe Stylianidou
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium
| | - Elien De Bousser
- VIB Center for Medical Biotechnology, VIB, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biochemistry and Microbiology, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Laure De Pryck
- VIB Center for Medical Biotechnology, VIB, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biochemistry and Microbiology, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Hanna Grzesik
- VIB Center for Medical Biotechnology, VIB, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium
| | - Delphine De Sutter
- VIB Center for Medical Biotechnology, VIB, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium
| | - Eef Parthoens
- VIB Center for Inflammation Research, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium; VIB BioImaging Core, VIB, 9052 Ghent, Belgium
| | - Anne-Sophie De Smet
- VIB Center for Medical Biotechnology, VIB, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biochemistry and Microbiology, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium
| | - Aleksandra Maciejczuk
- VIB Center for Medical Biotechnology, VIB, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium
| | - Saskia Lippens
- VIB Center for Inflammation Research, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium; VIB BioImaging Core, VIB, 9052 Ghent, Belgium
| | - Nico Callewaert
- VIB Center for Medical Biotechnology, VIB, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biochemistry and Microbiology, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium
| | - Linos Vandekerckhove
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium
| | - Zeger Debyser
- Department of Pharmacological and Pharmaceutical Sciences, Laboratory of Molecular Virology and Gene Therapy, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Beate Sodeik
- Institute of Virology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; RESIST-Cluster of Excellence, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; DZIF-German Centre for Infection Research, Partner site Hannover-Braunschweig, Germany
| | - Sven Eyckerman
- VIB Center for Medical Biotechnology, VIB, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium.
| | - Xavier Saelens
- VIB Center for Medical Biotechnology, VIB, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biochemistry and Microbiology, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium.
| |
Collapse
|
224
|
Cook M, Freniere C, Wu C, Lozano F, Xiong Y. Structural insights into HIV-2 CA lattice formation and FG-pocket binding revealed by single particle cryo-EM. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.09.617312. [PMID: 39416035 PMCID: PMC11482794 DOI: 10.1101/2024.10.09.617312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
One of the most striking features of HIV is the capsid; a fullerene cone comprised of the pleomorphic capsid protein (CA) which shields the viral genome from cellular defense mechanisms and recruits cellular cofactors to the virus. Despite significant advances in understanding the mechanisms of HIV-1 CA assembly and host factor interaction, HIV-2 CA remains poorly understood. By templating the assembly of HIV-2 CA on functionalized liposomes, we were able to determine high resolution structures of the HIV-2 CA lattice, including both CA hexamers and pentamers, alone and in complexes with peptides of host phenylalanine-glycine (FG)-motif proteins Nup153 and CPSF6. While the overall fold and mode of binding the FG-peptides are conserved with HIV-1, this study reveals distinctive structural features that define the HIV-2 CA lattice, potential differences in interactions with other host factors such as CypA, and divergence in the mechanism of formation of hexameric and pentameric CA assemblies. This study extends our understanding of HIV capsids and highlights an approach with significant potential to facilitate the study of lentiviral capsid biology.
Collapse
Affiliation(s)
- Matthew Cook
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Christian Freniere
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Chunxiang Wu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Faith Lozano
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Lead Contact
| |
Collapse
|
225
|
Gautam P, Ciuta I, Teif VB, Sinha SK. Predicting p53-dependent cell transitions from thermodynamic models. J Chem Phys 2024; 161:135101. [PMID: 39356070 DOI: 10.1063/5.0225166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 09/18/2024] [Indexed: 10/03/2024] Open
Abstract
A cell's fate involves transitions among its various states, each defined by a distinct gene expression profile governed by the topology of gene regulatory networks, which are affected by 3D genome organization. Here, we develop thermodynamic models to determine the fate of a malignant cell as governed by the tumor suppressor p53 signaling network, taking into account long-range chromatin interactions in the mean-field approximation. The tumor suppressor p53 responds to stress by selectively triggering one of the potential transcription programs that influence many layers of cell signaling. These range from p53 phosphorylation to modulation of its DNA binding affinity, phase separation phenomena, and internal connectivity among cell fate genes. We use the minimum free energy of the system as a fundamental property of biological networks that influences the connection between the gene network topology and the state of the cell. We constructed models based on network topology and equilibrium thermodynamics. Our modeling shows that the binding of phosphorylated p53 to promoters of target genes can have properties of a first order phase transition. We apply our model to cancer cell lines ranging from breast cancer (MCF-7), colon cancer (HCT116), and leukemia (K562), with each one characterized by a specific network topology that determines the cell fate. Our results clarify the biological relevance of these mechanisms and suggest that they represent flexible network designs for switching between developmental decisions.
Collapse
Affiliation(s)
- Pankaj Gautam
- Theoretical and Computational Biophysical Chemistry Group, Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Isabella Ciuta
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
| | - Vladimir B Teif
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
| | - Sudipta Kumar Sinha
- Theoretical and Computational Biophysical Chemistry Group, Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| |
Collapse
|
226
|
Salvador-Garcia D, Jin L, Hensley A, Gölcük M, Gallaud E, Chaaban S, Port F, Vagnoni A, Planelles-Herrero VJ, McClintock MA, Derivery E, Carter AP, Giet R, Gür M, Yildiz A, Bullock SL. A force-sensitive mutation reveals a non-canonical role for dynein in anaphase progression. J Cell Biol 2024; 223:e202310022. [PMID: 38949648 PMCID: PMC11215527 DOI: 10.1083/jcb.202310022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 04/29/2024] [Accepted: 06/18/2024] [Indexed: 07/02/2024] Open
Abstract
The diverse roles of the dynein motor in shaping microtubule networks and cargo transport complicate in vivo analysis of its functions significantly. To address this issue, we have generated a series of missense mutations in Drosophila Dynein heavy chain. We show that mutations associated with human neurological disease cause a range of defects, including impaired cargo trafficking in neurons. We also describe a novel microtubule-binding domain mutation that specifically blocks the metaphase-anaphase transition during mitosis in the embryo. This effect is independent from dynein's canonical role in silencing the spindle assembly checkpoint. Optical trapping of purified dynein complexes reveals that this mutation only compromises motor performance under load, a finding rationalized by the results of all-atom molecular dynamics simulations. We propose that dynein has a novel function in anaphase progression that depends on it operating in a specific load regime. More broadly, our work illustrates how in vivo functions of motors can be dissected by manipulating their mechanical properties.
Collapse
Affiliation(s)
- David Salvador-Garcia
- Cell Biology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Li Jin
- Cell Biology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Andrew Hensley
- Department of Physics, University of California, Berkeley, Berkeley, CA, USA
| | - Mert Gölcük
- School of Mechanical Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Emmanuel Gallaud
- Institut de Génétique et Développement de Rennes, Université de Rennes, Rennes, France
| | - Sami Chaaban
- Structural Studies Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Fillip Port
- Cell Biology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Alessio Vagnoni
- Cell Biology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | | | - Mark A. McClintock
- Cell Biology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Emmanuel Derivery
- Cell Biology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Andrew P. Carter
- Structural Studies Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Régis Giet
- Institut de Génétique et Développement de Rennes, Université de Rennes, Rennes, France
| | - Mert Gür
- School of Mechanical Engineering, Istanbul Technical University, Istanbul, Turkey
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ahmet Yildiz
- Department of Physics, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cellular Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Simon L. Bullock
- Cell Biology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
227
|
Rajendran D, Goyal S, Chaurasiya DK, Naganathan AN. Determinants of Unfolding Cooperativity and Binding Are Decoupled in a DNA Binding Domain. J Phys Chem B 2024; 128:9341-9352. [PMID: 39310971 DOI: 10.1021/acs.jpcb.4c03895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
The relative magnitudes of noncovalent stabilization energies or the coupling free energies in folded proteins are anisotropically distributed, uniquely influencing folding and functional behaviors. In this regard, the fructose repressor (FruR) DBD belonging to the LacR repressor family harbors a three-residue insertion─KQY─between the canonical second and third helices. This sequence insertion promotes a strong Tyr-Tyr stacking interaction that is not observed in related homologues. Combining experiments with simulations, we show that the Tyr-Tyr stacking contributes to a decoupled unfolding due to the localization of a large part of the stabilization energy in this specific structural region. This leads to melting temperatures from different probes spanning nearly 10 K, while concomitantly stabilizing a partially structured intermediate state. Disruption of the aromatic stacking interaction via an alanine mutation promotes a molten-globular state whose native ensemble is replete with non-native interactions while displaying enhanced thermodynamic fluctuations and minimal calorimetric cooperativity. Surprisingly, the molten-globular variant of FruR DBD binds to the operator site on DNA with an affinity similar to that of the wild-type but with altered secondary-structure characteristics in the bound state, underscoring the chaperone-like role of DNA through its large negative electrostatic potential. FruR DBD thus appears to be at the verge of disorder as expected of an entropically destabilizing three-residue insertion but is rescued by the aromatic stacking interaction that distinctly dictates the finer details of stability, cooperativity, and binding.
Collapse
Affiliation(s)
- Divya Rajendran
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Saloni Goyal
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Dhruv Kumar Chaurasiya
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Athi N Naganathan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
228
|
Maharjan R, Zhang Z, Klenotic PA, Gregor WD, Tringides ML, Cui M, Purdy GE, Yu EW. Structures of the mycobacterial MmpL4 and MmpL5 transporters provide insights into their role in siderophore export and iron acquisition. PLoS Biol 2024; 22:e3002874. [PMID: 39423221 PMCID: PMC11524445 DOI: 10.1371/journal.pbio.3002874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/30/2024] [Accepted: 10/01/2024] [Indexed: 10/21/2024] Open
Abstract
The Mycobacterium tuberculosis (Mtb) pathogen, the causative agent of the airborne infection tuberculosis (TB), harbors a number of mycobacterial membrane protein large (MmpL) transporters. These membrane proteins can be separated into 2 distinct subclasses, where they perform important functional roles, and thus, are considered potential drug targets to combat TB. Previously, we reported both X-ray and cryo-EM structures of the MmpL3 transporter, providing high-resolution structural information for this subclass of the MmpL proteins. Currently, there is no structural information available for the subclass associated with MmpL4 and MmpL5, transporters that play a critical role in iron homeostasis of the bacterium. Here, we report cryo-EM structures of the M. smegmatis MmpL4 and MmpL5 transporters to resolutions of 2.95 Å and 3.00 Å, respectively. These structures allow us to propose a plausible pathway for siderophore translocation via these 2 transporters, an essential step for iron acquisition that enables the survival and replication of the mycobacterium.
Collapse
Affiliation(s)
- Rakesh Maharjan
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Zhemin Zhang
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Philip A. Klenotic
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - William D. Gregor
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Marios L. Tringides
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Meng Cui
- Department of Pharmaceutical Sciences, Northeastern University School of Pharmacy, Boston, Massachusetts, United States of America
| | - Georgiana E. Purdy
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Edward W. Yu
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| |
Collapse
|
229
|
Osoegawa K, Yim K, Jeracki M, Nguyen TN, Wang L, Cho A, David R, Son J, Mankey A, Marsh SGE, Gendzekhadze K, Murphey C, Fernández Viňa MA. A new strategy for systematically classifying HLA alleles into serological specificities: Update and refinement. HLA 2024; 104:e15702. [PMID: 39435845 DOI: 10.1111/tan.15702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/02/2024] [Accepted: 09/10/2024] [Indexed: 10/23/2024]
Abstract
HLA antigens were historically defined according to the unique reactivity pattern of cells expressing HLA molecules with distinctive clusters of allo-antisera and/or monoclonal antibodies. Subsequently, amino acid residues determining epitopes (DEP) in the HLA molecule were correlated with reactivity patterns. In current clinical practice, the presence of allo-antibodies is assessed using Luminex-based solid phase single antigen bead (SAB) assays for transplantation. Recently, novel antigens were proposed for HLA molecules with DEP patterns that do not match any serologically defined antigens recognised by the WHO Nomenclature Committee. To validate the antigens, mean fluorescence intensity values of SABs tested on >13,000 patients' sera were extracted from clinical databases and analysed by scatter plots using a linear regression model. We found that when two proteins were considered as the same antigen in the original study, for example, HLA-A*02:01 and -A*02:06, their correlation ranked among the highest values at each locus. In contrast, discrete asymmetric outliers were observed when there were different antigens, for example, HLA-A*30:01 and -A*30:02, allowing validation and confirmation of 20 novel antigens for HLA-A, -B, -C and -DR. The outliers were confirmed to be true or false by flow cytometric crossmatches. In addition to the previously defined residues for antigen assignments, findings suggest that further distinction should be made for common antigens by including the substitutions at residue 67 of HLA-B, 67 and 74 of -DR. These serologic analyses can be applied systematically to identify and confirm novel antigens. These developments will lead to designing optimal SAB panels and further improving virtual donor-specific antibodies assessment.
Collapse
Affiliation(s)
- Kazutoyo Osoegawa
- Histocompatibility and Immunogenetics Laboratory, Stanford Blood Center, Palo Alto, California, USA
| | - Kenneth Yim
- Histocompatibility and Immunogenetics Laboratory, Stanford Blood Center, Palo Alto, California, USA
| | - Megan Jeracki
- Histocompatibility and Immunogenetics Laboratory, Stanford Blood Center, Palo Alto, California, USA
| | - Tuan-Nghia Nguyen
- Histocompatibility and Immunogenetics Laboratory, Stanford Blood Center, Palo Alto, California, USA
| | - Lin Wang
- Histocompatibility and Immunogenetics Laboratory, Stanford Blood Center, Palo Alto, California, USA
| | - Andrew Cho
- Histocompatibility and Immunogenetics Laboratory, Stanford Blood Center, Palo Alto, California, USA
| | - Rhidina David
- Histocompatibility and Immunogenetics Laboratory, Stanford Blood Center, Palo Alto, California, USA
| | - Jellina Son
- Histocompatibility and Immunogenetics Laboratory, Stanford Blood Center, Palo Alto, California, USA
| | - Arianne Mankey
- Histocompatibility and Immunogenetics Laboratory, Stanford Blood Center, Palo Alto, California, USA
| | - Steven G E Marsh
- Anthony Nolan Research Institute & UCL Cancer Institute, Royal Free Campus, London, UK
| | - Ketevan Gendzekhadze
- Department of Hematology & Hematopoietic Cell transplantation, Histocompatibility (HLA) & Immunogenetics laboratory, City of Hope, Irwindale, California, USA
| | - Cathi Murphey
- Histocompatibility and Immunogenetics Laboratory, Southwest Immunodiagnostics, Inc, San Antonio, Texas, USA
| | - Marcelo A Fernández Viňa
- Histocompatibility and Immunogenetics Laboratory, Stanford Blood Center, Palo Alto, California, USA
- Department of Pathology, Stanford University School of Medicine, Palo Alto, California, USA
| |
Collapse
|
230
|
Han Z, Shen Z, Pei J, You Q, Zhang Q, Wang L. Transformation of peptides to small molecules in medicinal chemistry: Challenges and opportunities. Acta Pharm Sin B 2024; 14:4243-4265. [PMID: 39525591 PMCID: PMC11544290 DOI: 10.1016/j.apsb.2024.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/14/2024] [Accepted: 06/11/2024] [Indexed: 11/16/2024] Open
Abstract
Peptides are native binders involved in numerous physiological life procedures, such as cellular signaling, and serve as ready-made regulators of biochemical processes. Meanwhile, small molecules compose many drugs owing to their outstanding advantages of physiochemical properties and synthetic convenience. A novel field of research is converting peptides into small molecules, providing a convenient portable solution for drug design or peptidomic research. Endowing properties of peptides onto small molecules can evolutionarily combine the advantages of both moieties and improve the biological druggability of molecules. Herein, we present eight representative recent cases in this conversion and elaborate on the transformation process of each case. We discuss the innovative technological methods and research approaches involved, and analyze the applicability conditions of the approaches and methods in each case, guiding further modifications of peptides to small molecules. Finally, based on the aforementioned cases, we summarize a general procedure for peptide-to-small molecule modifications, listing the technological methods available for each transformation step and providing our insights on the applicable scenarios for these methods. This review aims to present the progress of peptide-to-small molecule modifications and propose our thoughts and perspectives for future research in this field.
Collapse
Affiliation(s)
- Zeyu Han
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zekai Shen
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jiayue Pei
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qiuyue Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Lei Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
231
|
Sanbonmatsu K. Supercomputing in the biological sciences: Toward Zettascale and Yottascale simulations. Curr Opin Struct Biol 2024; 88:102889. [PMID: 39163795 DOI: 10.1016/j.sbi.2024.102889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 08/22/2024]
Abstract
Molecular simulations of biological systems tend to be significantly more compute-intensive than those in materials science and astrophysics, due to important contributions of long-range electrostatic forces and large numbers of time steps (>1E9) required. Simulations of biomolecular complexes of microseconds to milliseconds are considered state-of-the-art today. However, these time scales are miniscule in comparison to physiological time scales relevant to molecular machine activity, drug action, and elongation cycles for protein synthesis, RNA synthesis, and DNA synthesis (seconds to days). While an exascale supercomputer has simulated an entire virus for nanoseconds, this supercomputer would need to be 10 billion times faster to simulate that virus for 3 hours of physiological time, demonstrating the insatiable need for computing power. With growing interest in computational drug design from the pharmaceutical sector, the biological sciences are positioned to be an industry driver in computing.
Collapse
Affiliation(s)
- Karissa Sanbonmatsu
- Los Alamos National Laboratory, United States; New Mexico Consortium, New Mexico.
| |
Collapse
|
232
|
Osterne VJS, De Sloover G, Van Damme EJM. Revisiting legume lectins: Structural organization and carbohydrate-binding properties. Carbohydr Res 2024; 544:109241. [PMID: 39153325 DOI: 10.1016/j.carres.2024.109241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/18/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Legume lectins are a diverse family of carbohydrate-binding proteins that share significant similarities in their primary, secondary, and tertiary structures, yet exhibit remarkable variability in their quaternary structures and carbohydrate-binding specificities. The tertiary structure of legume lectins, characterized by a conserved β-sandwich fold, provides the scaffold for the formation of a carbohydrate-recognition domain (CRD) responsible for ligand binding. The structural basis for the binding is similar between members of the family, with key residues interacting with the sugar through hydrogen bonds, hydrophobic interactions, and van der Waals forces. Variability in substructures and residues within the CRD are responsible for the large array of specificities and enable legume lectins to recognize diverse sugar structures, while maintaining a consistent structural fold. Therefore, legume lectins can be classified into several specificity groups based on their preferred ligands, including mannose/glucose-specific, N-acetyl-d-galactosamine/galactose-specific, N-acetyl-d-glucosamine-specific, l-fucose-specific, and α-2,3 sialic acid-specific lectins. In this context, this review examined the structural aspects and carbohydrate-binding properties of representative legume lectins and their specific ligands in detail. Understanding the structure/binding relationships of lectins continues to provide valuable insights into their biological roles, while also assisting in the potential applications of these proteins in glycobiology, diagnostics, and therapeutics.
Collapse
Affiliation(s)
- Vinicius J S Osterne
- Laboratory of Biochemistry and Glycobiology, Department of Biotechnology, Ghent University, Proeftuinstraat 86, 9000, Ghent, Belgium
| | - Gilles De Sloover
- Laboratory of Biochemistry and Glycobiology, Department of Biotechnology, Ghent University, Proeftuinstraat 86, 9000, Ghent, Belgium
| | - Els J M Van Damme
- Laboratory of Biochemistry and Glycobiology, Department of Biotechnology, Ghent University, Proeftuinstraat 86, 9000, Ghent, Belgium.
| |
Collapse
|
233
|
Ahmad R, Haque M. Metformin: Beyond Type 2 Diabetes Mellitus. Cureus 2024; 16:e71730. [PMID: 39421288 PMCID: PMC11486535 DOI: 10.7759/cureus.71730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 10/17/2024] [Indexed: 10/19/2024] Open
Abstract
Metformin was developed from an offshoot of Guanidine. It is known to be the first-line medication for type 2 diabetes mellitus, polycystic ovarian syndrome, and weight reduction. Metformin has also been shown to have effectiveness in the management of non-alcoholic fatty liver disease (NAFLD), liver cirrhosis, and various carcinomas like hepatocellular, colorectal, prostate, breast, urinary bladder, blood, melanoma, bone, skin, lung and so on. This narrative review focuses on the effect of metformin on non-alcoholic fatty liver disease, liver cirrhosis, and hepatocellular carcinoma. The search platforms for the topic were PubMed, Scopus, and Google search engine. Critical words for searching included 'Metformin,' AND 'Indications of Metformin,' AND 'Non-Alcoholic Fatty Liver Disease,' AND 'Metformin mechanism of action,' AND 'NAFLD management,' AND 'NAFLD and inflammation,' AND 'Metformin and insulin,' AND 'Metformin and inflammation,' AND 'Liver cirrhosis,' AND 'Hepatocellular carcinoma.' Lifestyle modification and the use of hypoglycemic agents can help improve liver conditions. Metformin has several mechanisms that enhance liver health, including reducing reactive oxygen species, nuclear factor kappa beta (NF-κB), liver enzymes, improving insulin sensitivity, and improving hepatic cell lipophagy. Long-term use of metformin may cause some adverse effects like lactic acidosis and gastrointestinal disturbance. Metformin long-term overdose may lead to a rise in hydrogen sulfide in liver cells, which calls for pharmacovigilance. Drug regulating authorities should provide approval for further research, and national and international guidelines need to be developed for liver diseases, perhaps with the inclusion of metformin as part of the management regime.
Collapse
Affiliation(s)
- Rahnuma Ahmad
- Department of Physiology, Medical College for Women and Hospital, Dhaka, BGD
| | - Mainul Haque
- Department of Pharmacology and Therapeutics, National Defence University of Malaysia, Kuala Lumpur, MYS
| |
Collapse
|
234
|
Ramprasad S, Nyarko A. Ensembles of interconverting protein complexes with multiple interaction domains. Curr Opin Struct Biol 2024; 88:102874. [PMID: 38981144 DOI: 10.1016/j.sbi.2024.102874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/22/2024] [Accepted: 06/11/2024] [Indexed: 07/11/2024]
Abstract
Many critical biological processes depend on protein complexes that exist as ensembles of subcomplexes rather than a discrete complex. The subcomplexes dynamically interconvert with one another, and the ability to accurately resolve the composition of the diverse molecular species in the ensemble is crucial for understanding the contribution of each subcomplex to the overall function of the protein complex. Advances in computational programs have made it possible to predict the various molecular species in these ensembles, but experimental approaches to identify the pool of subcomplexes and associated stoichiometries are often challenging. This review highlights some experimental approaches that can be used to resolve the diverse molecular species in protein complexes that exist as ensembles of sub complexes.
Collapse
Affiliation(s)
- Sanjay Ramprasad
- Department of Biochemistry & Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Afua Nyarko
- Department of Biochemistry & Biophysics, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|
235
|
Feng Z, Alvarenga OE, Accardi A. Structural basis of closed groove scrambling by a TMEM16 protein. Nat Struct Mol Biol 2024; 31:1468-1481. [PMID: 38684930 DOI: 10.1038/s41594-024-01284-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 03/21/2024] [Indexed: 05/02/2024]
Abstract
Activation of Ca2+-dependent TMEM16 scramblases induces phosphatidylserine externalization, a key step in multiple signaling processes. Current models suggest that the TMEM16s scramble lipids by deforming the membrane near a hydrophilic groove and that Ca2+ dependence arises from the different association of lipids with an open or closed groove. However, the molecular rearrangements underlying groove opening and how lipids reorganize outside the closed groove remain unknown. Here we directly visualize how lipids associate at the closed groove of Ca2+-bound fungal nhTMEM16 in nanodiscs using cryo-EM. Functional experiments pinpoint lipid-protein interaction sites critical for closed groove scrambling. Structural and functional analyses suggest groove opening entails the sequential appearance of two π-helical turns in the groove-lining TM6 helix and identify critical rearrangements. Finally, we show that the choice of scaffold protein and lipids affects the conformations of nhTMEM16 and their distribution, highlighting a key role of these factors in cryo-EM structure determination.
Collapse
Affiliation(s)
- Zhang Feng
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, USA
| | - Omar E Alvarenga
- Physiology, Biophysics and Systems Biology Graduate Program, Weill Cornell Medical College, New York, NY, USA
| | - Alessio Accardi
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, USA.
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, USA.
- Department of Biochemistry, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
236
|
Cavalcanti-Dantas VDM, Fernandes B, Dantas PHLF, Uchoa GR, Mendes AF, Araújo Júnior WOD, Castellano LRC, Fernandes AIV, Goulart LR, Oliveira RADS, Assis PACD, Souza JRD, Morais CNLD. Differential epitope prediction across diverse circulating variants of SARS-COV-2 in Brazil. Comput Biol Chem 2024; 112:108139. [PMID: 38972100 DOI: 10.1016/j.compbiolchem.2024.108139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 06/09/2024] [Accepted: 06/22/2024] [Indexed: 07/09/2024]
Abstract
COVID-19, caused by the SARS-COV-2 virus, induces numerous immunological reactions linked to the severity of the clinical condition of those infected. The surface Spike protein (S protein) present in Sars-CoV-2 is responsible for the infection of host cells. This protein presents a high rate of mutations, which can increase virus transmissibility, infectivity, and immune evasion. Therefore, we propose to evaluate, using immunoinformatic techniques, the predicted epitopes for the S protein of seven variants of Sars-CoV-2. MHC class I and II epitopes were predicted and further assessed for their immunogenicity, interferon-gamma (IFN-γ) inducing capacity, and antigenicity. For B cells, linear and structural epitopes were predicted. For class I MHC epitopes, 40 epitopes were found for the clades of Wuhan, Clade 2, Clade 3, and 20AEU.1, Gamma, and Delta, in addition to 38 epitopes for Alpha and 44 for Omicron. For MHC II, there were differentially predicted epitopes for all variants and eight equally predicted epitopes. These were evaluated for differences in the MHC II alleles to which they would bind. Regarding B cell epitopes, 16 were found in the Wuhan variant, 14 in 22AEU.1 and in Clade 3, 15 in Clade 2, 11 in Alpha and Delta, 13 in Gamma, and 9 in Omicron. When compared, there was a reduction in the number of predicted epitopes concerning the Spike protein, mainly in the Delta and Omicron variants. These findings corroborate the need for updates seen today in bivalent mRNA vaccines against COVID-19 to promote a targeted immune response to the main circulating variant, Omicron, leading to more robust protection against this virus and avoiding cases of reinfection. When analyzing the specific epitopes for the RBD region of the spike protein, the Omicron variant did not present a B lymphocyte epitope from position 390, whereas the epitope at position 493 for MHC was predicted only for the Alpha, Gamma, and Omicron variants.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ana Isabel Vieira Fernandes
- Health Promotion Department of the Medical Sciences Center and Division for Infectious and Parasitic Diseases, Lauro Wanderley University Hospital, Federal University of Paraiba, Brazil
| | | | | | | | | | | |
Collapse
|
237
|
Zheng T, Cai S. Recent technical advances in cellular cryo-electron tomography. Int J Biochem Cell Biol 2024; 175:106648. [PMID: 39181502 DOI: 10.1016/j.biocel.2024.106648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Understanding the in situ structure, organization, and interactions of macromolecules is essential for elucidating their functions and mechanisms of action. Cellular cryo-electron tomography (cryo-ET) is a cutting-edge technique that reveals in situ molecular-resolution architectures of macromolecules in their lifelike states. It also provides insights into the three-dimensional distribution of macromolecules and their spatial relationships with various subcellular structures. Thus, cellular cryo-ET bridges the gap between structural biology and cell biology. With rapid advancements, this technique achieved substantial improvements in throughput, automation, and resolution. This review presents the fundamental principles and methodologies of cellular cryo-ET, highlighting recent developments in sample preparation, data collection, and image processing. We also discuss emerging trends and potential future directions. As cellular cryo-ET continues to develop, it is set to play an increasingly vital role in structural cell biology.
Collapse
Affiliation(s)
- Tianyu Zheng
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China; Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shujun Cai
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China; Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
238
|
Hashimi A, Tocheva EI. Cell envelope diversity and evolution across the bacterial tree of life. Nat Microbiol 2024; 9:2475-2487. [PMID: 39294462 DOI: 10.1038/s41564-024-01812-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 08/16/2024] [Indexed: 09/20/2024]
Abstract
The bacterial cell envelope is a complex multilayered structure conserved across all bacterial phyla. It is categorized into two main types based on the number of membranes surrounding the cell. Monoderm bacteria are enclosed by a single membrane, whereas diderm cells are distinguished by the presence of a second, outer membrane (OM). An ancient divide in the bacterial domain has resulted in two major clades: the Gracilicutes, consisting strictly of diderm phyla; and the Terrabacteria, encompassing monoderm and diderm species with diverse cell envelope architectures. Recent structural and phylogenetic advancements have improved our understanding of the diversity and evolution of the OM across the bacterial tree of life. Here we discuss cell envelope variability within major bacterial phyla and focus on conserved features found in diderm lineages. Characterizing the mechanisms of OM biogenesis and the evolutionary gains and losses of the OM provides insights into the primordial cell and the last universal common ancestor from which all living organisms subsequently evolved.
Collapse
Affiliation(s)
- Ameena Hashimi
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Elitza I Tocheva
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
239
|
Sotiropoulou AI, Hatzinikolaou DG, Chrysina ED. Structural studies of β-glucosidase from the thermophilic bacterium Caldicellulosiruptor saccharolyticus. Acta Crystallogr D Struct Biol 2024; 80:733-743. [PMID: 39361356 PMCID: PMC11448918 DOI: 10.1107/s2059798324009252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/20/2024] [Indexed: 10/05/2024] Open
Abstract
β-Glucosidase from the thermophilic bacterium Caldicellulosiruptor saccharolyticus (Bgl1) has been denoted as having an attractive catalytic profile for various industrial applications. Bgl1 catalyses the final step of in the decomposition of cellulose, an unbranched glucose polymer that has attracted the attention of researchers in recent years as it is the most abundant renewable source of reduced carbon in the biosphere. With the aim of enhancing the thermostability of Bgl1 for a broad spectrum of biotechnological processes, it has been subjected to structural studies. Crystal structures of Bgl1 and its complex with glucose were determined at 1.47 and 1.95 Å resolution, respectively. Bgl1 is a member of glycosyl hydrolase family 1 (GH1 superfamily, EC 3.2.1.21) and the results showed that the 3D structure of Bgl1 follows the overall architecture of the GH1 family, with a classical (β/α)8 TIM-barrel fold. Comparisons of Bgl1 with sequence or structural homologues of β-glucosidase reveal quite similar structures but also unique structural features in Bgl1 with plausible functional roles.
Collapse
Affiliation(s)
- Anastasia I Sotiropoulou
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 116 35 Athens, Greece
| | - Dimitris G Hatzinikolaou
- Enzyme and Microbial Biotechnology Unit, Department of Biology, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 157 72 Athens, Greece
| | - Evangelia D Chrysina
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 116 35 Athens, Greece
| |
Collapse
|
240
|
Zhao L, Liu B, Tong HHY, Yao X, Liu H, Zhang Q. Inhibitor binding and disruption of coupled motions in MmpL3 protein: Unraveling the mechanism of trehalose monomycolate transport. Protein Sci 2024; 33:e5166. [PMID: 39291929 PMCID: PMC11409367 DOI: 10.1002/pro.5166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/07/2024] [Accepted: 08/24/2024] [Indexed: 09/19/2024]
Abstract
Mycobacterial membrane protein Large 3 (MmpL3) of Mycobacterium tuberculosis (Mtb) is crucial for the translocation of trehalose monomycolate (TMM) across the inner bacterial cell membrane, making it a promising target for anti-tuberculosis (TB) drug development. While several structural, microbiological, and in vitro studies have provided significant insights, the precise mechanisms underlying TMM transport by MmpL3 and its inhibition remain incompletely understood at the atomic level. In this study, molecular dynamic (MD) simulations for the apo form and seven inhibitor-bound forms of Mtb MmpL3 were carried out to obtain a thorough comprehension of the protein's dynamics and function. MD simulations revealed that the seven inhibitors in this work stably bind to the central channel of the transmembrane domain and primarily forming hydrogen bonds with ASP251, ASP640, or both residues. Through dynamical cross-correlation matrix and principal component analysis analyses, several types of coupled motions between different domains were observed in the apo state, and distinct conformational states were identified using Markov state model analysis. These coupled motions and varied conformational states likely contribute to the transport of TMM. However, simulations of inhibitor-bound MmpL3 showed an enlargement of the proton channel, potentially disrupting coupled motions. This indicates that inhibitors may impair MmpL3's transport function by directly blocking the proton channel, thereby hindering coordinated domain movements and indirectly affecting TMM translocation.
Collapse
Affiliation(s)
- Likun Zhao
- Centre for Artificial Intelligence Driven Drug Discovery, Faculty of Applied SciencesMacao Polytechnic UniversityMacaoChina
| | - Bo Liu
- Centre for Artificial Intelligence Driven Drug Discovery, Faculty of Applied SciencesMacao Polytechnic UniversityMacaoChina
| | - Henry H. Y. Tong
- Centre for Artificial Intelligence Driven Drug Discovery, Faculty of Applied SciencesMacao Polytechnic UniversityMacaoChina
| | - Xiaojun Yao
- Centre for Artificial Intelligence Driven Drug Discovery, Faculty of Applied SciencesMacao Polytechnic UniversityMacaoChina
| | - Huanxiang Liu
- Centre for Artificial Intelligence Driven Drug Discovery, Faculty of Applied SciencesMacao Polytechnic UniversityMacaoChina
| | - Qianqian Zhang
- Centre for Artificial Intelligence Driven Drug Discovery, Faculty of Applied SciencesMacao Polytechnic UniversityMacaoChina
| |
Collapse
|
241
|
Caetano-Anollés K, Aziz MF, Mughal F, Caetano-Anollés G. On Protein Loops, Prior Molecular States and Common Ancestors of Life. J Mol Evol 2024; 92:624-646. [PMID: 38652291 PMCID: PMC11458777 DOI: 10.1007/s00239-024-10167-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/22/2024] [Indexed: 04/25/2024]
Abstract
The principle of continuity demands the existence of prior molecular states and common ancestors responsible for extant macromolecular structure. Here, we focus on the emergence and evolution of loop prototypes - the elemental architects of protein domain structure. Phylogenomic reconstruction spanning superkingdoms and viruses generated an evolutionary chronology of prototypes with six distinct evolutionary phases defining a most parsimonious evolutionary progression of cellular life. Each phase was marked by strategic prototype accumulation shaping the structures and functions of common ancestors. The last universal common ancestor (LUCA) of cells and viruses and the last universal cellular ancestor (LUCellA) defined stem lines that were structurally and functionally complex. The evolutionary saga highlighted transformative forces. LUCA lacked biosynthetic ribosomal machinery, while the pivotal LUCellA lacked essential DNA biosynthesis and modern transcription. Early proteins therefore relied on RNA for genetic information storage but appeared initially decoupled from it, hinting at transformative shifts of genetic processing. Urancestral loop types suggest advanced folding designs were present at an early evolutionary stage. An exploration of loop geometric properties revealed gradual replacement of prototypes with α-helix and β-strand bracing structures over time, paving the way for the dominance of other loop types. AlphFold2-generated atomic models of prototype accretion described patterns of fold emergence. Our findings favor a ‛processual' model of evolving stem lines aligned with Woese's vision of a communal world. This model prompts discussing the 'problem of ancestors' and the challenges that lie ahead for research in taxonomy, evolution and complexity.
Collapse
Affiliation(s)
- Kelsey Caetano-Anollés
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Callout Biotech, Albuquerque, NM, 87112, USA
| | - M Fayez Aziz
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Fizza Mughal
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Gustavo Caetano-Anollés
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
242
|
Xu S, Li ZL, Li ZM, Liu HL. Mining unique cysteine synthetases and computational study on thoroughly eliminating feedback inhibition through tunnel engineering. Protein Sci 2024; 33:e5160. [PMID: 39275998 PMCID: PMC11400630 DOI: 10.1002/pro.5160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/16/2024]
Abstract
L-cysteine is an essential component in pharmaceutical and agricultural industries, and synthetic biology has made strides in developing new metabolic pathways for its production, particularly in archaea with unique O-phosphoserine sulfhydrylases (OPSS) as key enzymes. In this study, we employed database mining to identify a highly catalytic activity OPSS from Acetobacterium sp. (AsOPSS). However, it was observed that the enzymatic activity of AsOPSS suffered significant feedback inhibition from the product L-cysteine, exhibiting an IC50 value of merely 1.2 mM. A semi-rational design combined with tunnel analysis strategy was conducted to engineer AsOPSS. The best variant, AsOPSSA218R was achieved, totally eliminating product inhibition without sacrificing catalytic efficiency. Molecular docking and molecular dynamic simulations indicated that the binding conformation of AsOPSSA218R with L-cys was altered, leading to a reduced affinity between L-cysteine and the active pocket. Tunnel analysis revealed that the AsOPSSA218R variant reshaped the landscape of the tunnel, resulting in the construction of a new tunnel. Furthermore, random acceleration molecular dynamics simulation and umbrella sampling simulation demonstrated that the novel tunnel improved the suitability for product release and effectively separated the interference between the product release and substrate binding processes. Finally, more than 45 mM of L-cysteine was produced in vitro within 2 h using the AsOPSSA218R variant. Our findings emphasize the potential for relieving feedback inhibition by artificially generating new product release channels, while also laying an enzymatic foundation for efficient L-cysteine production.
Collapse
Affiliation(s)
- Shuai Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Zong-Lin Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Zhi-Min Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, Shanghai, China
| | - Hong-Lai Liu
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
243
|
Mohamed MA, Elsaman T, Mohamed MS, Eltayib EM. Computational investigations of flavonoids as ALDH isoform inhibitors for treatment of cancer. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2024; 35:837-875. [PMID: 39503629 DOI: 10.1080/1062936x.2024.2415593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/05/2024] [Indexed: 11/08/2024]
Abstract
Human aldehyde dehydrogenases (ALDHs) are a group of 19 isoforms often overexpressed in cancer stem cells (CSCs). These enzymes play critical roles in CSC protection, maintenance, cancer progression, therapeutic resistance, and poor prognosis. Thus, targeting ALDH isoforms offers potential for innovative cancer treatments. Flavonoids, known for their ability to affect multiple cancer-related pathways, have shown anticancer activity by downregulating specific ALDH isoforms. This study aimed to evaluate 830 flavonoids from the PubChem database against five ALDH isoforms (ALDH1A1, ALDH1A2, ALDH1A3, ALDH2, ALDH3A1) using computational methods to identify potent inhibitors. Extra precision (XP) Glide docking and MM-GBSA free binding energy calculations identified several flavonoids with high binding affinities. MD simulation highlighted flavonoids 1, 2, 18, 27, and 42 as potential specific inhibitors for each isoform, respectively. Flavonoid 10 showed high binding affinities for ALDH1A2, ALDH1A3, and ALDH3A1, emerging as a potential multi-ALDH inhibitor. ADMET property evaluation indicated that the promising hits have acceptable drug-like profiles, but further optimization is needed to enhance their therapeutic efficacy and reduce toxicity, making them more effective ALDH inhibitors for future cancer treatment.
Collapse
Affiliation(s)
- M A Mohamed
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Kingdom of Saudi Arabia
| | - T Elsaman
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Kingdom of Saudi Arabia
| | - M S Mohamed
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Kingdom of Saudi Arabia
| | - E M Eltayib
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Kingdom of Saudi Arabia
| |
Collapse
|
244
|
Ayimbila F, Tantimongcolwat T, Ruankham W, Pingaew R, Prachayasittikul V, Worachartcheewan A, Prachayasittikul V, Prachayasittikul S, Phopin K. Insight into the binding mechanisms of fluorinated 2-aminothiazole sulfonamide and human serum albumin: Spectroscopic and in silico approaches. Int J Biol Macromol 2024; 277:134048. [PMID: 39116983 DOI: 10.1016/j.ijbiomac.2024.134048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 08/10/2024]
Abstract
4-Fluoro-N-(thiazol-2-yl)benzenesulfonamide (3) is a novel fluorinated compound, containing various biological activities. Therefore, absorption spectroscopy, fluorescence quenching, molecular docking, and molecular simulation were employed to investigate the interaction between 3 and human serum albumin (HSA). Firstly, compound 3 meets all criteria for drug-likeness prediction. UV absorption spectra revealed the interaction of 3 with HSA altered the microenvironment of protein, as well as circular dichroism spectroscopic analysis indicated slightly conformational changes and a reduction in α-helical content. The binding parameters of the HSA-3 complex suggested that fluorescence quenching is driven by combined static and dynamic processes. Additionally, the stability of the complex is attributed to conventional hydrogen and hydrophobic bonding interactions. Furthermore, esterase-like activity indicated that the binding of 3 might disrupt HSA's bond networks, leading to structural alterations. Consequently, the strong binding constant (Ka ≈ 1.204 × 106 M-1) aligns with the predicted unbound fraction (0.28) in serum, indicating that thiazole 3 has good bioavailability in plasma and can be effectively transported to target sites, thereby exerting its pharmaceutical effects. However, careful dosage management is essential to prevent potential adverse effects. Overall, these findings highlight the potential of 3 as a therapeutic agent, emphasizing the need for further research to optimize its uses.
Collapse
Affiliation(s)
- Francis Ayimbila
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Tanawut Tantimongcolwat
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Waralee Ruankham
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Ratchanok Pingaew
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Veda Prachayasittikul
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Apilak Worachartcheewan
- Department of Community Medical Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Virapong Prachayasittikul
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Supaluk Prachayasittikul
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Kamonrat Phopin
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand; Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand.
| |
Collapse
|
245
|
Mohd Zawawi Z, Kalyanasundram J, Mohd Zain R, Mat Ripen A, Basri DF, Yap WB. Insights into the Replication Kinetics Profiles of Malaysian SARS-CoV-2 Variant Alpha, Beta, Delta, and Omicron in Vero E6 Cell Line. Int J Mol Sci 2024; 25:10541. [PMID: 39408868 PMCID: PMC11477365 DOI: 10.3390/ijms251910541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/10/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Comprehending the replication kinetics of SARS-CoV-2 variants helps explain why certain variants spread more easily, are more contagious, and pose a significant health menace to global populations. The replication kinetics of the Malaysian isolates of Alpha, Beta, Delta, and Omicron variants were studied in the Vero E6 cell line. Their replication kinetics were determined using the plaque assay, quantitative real-time PCR (qRT-PCR), and the viral growth curve. The Beta variant exhibited the highest replication rate at 24 h post-infection (h.p.i), as evidenced by the highest viral titers and lowest viral RNA multiplication threshold. The plaque phenotypes also varied among the variants, in which the Beta and Omicron variants formed the largest and smallest plaques, respectively. All studied variants showed strong cytopathic effects after 48 h.p.i. The whole-genome sequencing highlighted cell-culture adaptation, where the Beta, Delta, and Omicron variants acquired mutations at the multibasic cleavage site after three cycles of passaging. The findings suggest a strong link between the replication rates and their respective transmissibility and pathogenicity. This is essential in predicting the impacts of the upcoming variants on the local and global populations and is useful in designing preventive measures to curb virus outbreaks.
Collapse
Affiliation(s)
- Zarina Mohd Zawawi
- Virology Unit, Infectious Disease Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health, Shah Alam 40170, Malaysia; (J.K.); (R.M.Z.)
- Center for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - Jeevanathan Kalyanasundram
- Virology Unit, Infectious Disease Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health, Shah Alam 40170, Malaysia; (J.K.); (R.M.Z.)
| | - Rozainanee Mohd Zain
- Virology Unit, Infectious Disease Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health, Shah Alam 40170, Malaysia; (J.K.); (R.M.Z.)
| | - Adiratna Mat Ripen
- Cancer Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health, Shah Alam 40170, Malaysia;
| | - Dayang Fredalina Basri
- Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia;
| | - Wei Boon Yap
- Center for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
- One Health UKM, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| |
Collapse
|
246
|
Duan L, Hengphasatporn K, Sakai T, Fujiki R, Yoshida N, Hirota S, Shigeta Y. Why is Dimeric 3D Domain Swapping in Antibody Light Chains Missing from the Solution? Atomistic Insights Mechanisms. J Phys Chem B 2024; 128:9086-9093. [PMID: 39268801 DOI: 10.1021/acs.jpcb.4c03234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Misfolding of antibody light chains can lead to systemic light chain amyloidosis, which is associated with misfolding and aggregation. The antibody light chain may engage in 3D domain swapping within the variable region (#4VL) through hydrogen bonding (HB) interactions, potentially forming the tetramer, as revealed in solution and crystal structures. However, the 3D-domain swapping (3D-DS) dimers could not be detected experimentally. This study investigates the absence of 3D-DS using computational approaches, focusing on structural dynamics, solvation effects, and stability relevant to the loss of 3D-DS. Microscale molecular dynamics simulations of #4VL and 3D-DS confirm that native HB interactions are essential to maintain β-sheet structures in both #4VL and 3D-DS. A flickering native HB interaction in the 3D-DS system, caused by repulsive interaction with water molecules in the hydrophobic region, leads to intramolecular breathing motions and oligomerization in another 3D-DS. Structural dynamics of the 3D-DS dimer in long-run simulations were analyzed using the newly developed integrated solvation-based principal component analysis (3D-RISM/PCA) and density-based spatial clustering of applications with noise, confirm that if the 3D-DS cannot form the tetramer within the breathing motion process, the 3D-DS will collapse. This finding provides insights into why the 3D-DS dimer is missing from the solution and can be used to design and develop 3D-DS in other antibodies.
Collapse
Affiliation(s)
- Lian Duan
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Kowit Hengphasatporn
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Takahiro Sakai
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Ryo Fujiki
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Norio Yoshida
- Department of Complex Systems Science, Graduate School of Informatics, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan
| | - Shun Hirota
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
247
|
Long H, Liu M, Rao Z, Guan S, Chen X, Huang X, Cao L, Han R. RNA-Seq-Based Transcriptome Analysis of Chinese Cordyceps Aqueous Extracts Protective Effect against Adriamycin-Induced mpc5 Cell Injury. Int J Mol Sci 2024; 25:10352. [PMID: 39408685 PMCID: PMC11476491 DOI: 10.3390/ijms251910352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/17/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Pharmacogenomic analysis based on drug transcriptome characteristics is widely used to identify mechanisms of action. The purpose of this study was to elucidate the molecular mechanism of protective effect against adriamycin (ADM)-induced mpc5 cell injury of Chinese cordyceps aqueous extracts (WCCs) by a systematic transcriptomic analysis. The phytochemicals of WCCs were analyzed via the "phenol-sulfuric acid method", high-performance liquid chromatography (HPLC), and HPLC-mass spectrometry (MS). We analyzed the drug-reaction transcriptome profiles of mpc5 cell after treating them with WCCs. RNA-seq analysis revealed that WCCs alleviated ADM-induced mpc5 cell injury via restoring the expression of certain genes to normal level mainly in the one-carbon pool by the folate pathway, followed by the relaxin, apelin, PI3K-Akt, and nucleotide-binding, oligomerization domain (NOD)-like receptor signaling pathway, enhancing DNA synthesis and repair, cell proliferation, fibrosis reduction, and immune regulation. Otherwise, WCCs also modulated the proliferation and survival of the mpc5 cell by regulating metabolic pathways, and partially restores the expression of genes related to human disease pathways. These findings provide an innovative understanding of the molecular mechanism of the protective effect of WCCs on ADM-induced mpc5 cell injury at the molecular transcription level, and Mthfd2, Dhfr, Atf4, Creb5, Apln, and Serpine1, etc., may be potential novel targets for treating nephrotic syndrome.
Collapse
Affiliation(s)
- Hailin Long
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China; (H.L.); (M.L.); (Z.R.); (X.H.); (L.C.)
| | - Mengzhen Liu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China; (H.L.); (M.L.); (Z.R.); (X.H.); (L.C.)
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Zhongchen Rao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China; (H.L.); (M.L.); (Z.R.); (X.H.); (L.C.)
| | - Shanyue Guan
- Instrumental Analysis and Research Center, Sun Yat-sen University, Guangzhou 510275, China;
| | - Xiaotian Chen
- Center for Industrial Analysis and Testing, Guangdong Academy of Sciences, Guangzhou 510650, China;
| | - Xiaoting Huang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China; (H.L.); (M.L.); (Z.R.); (X.H.); (L.C.)
| | - Li Cao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China; (H.L.); (M.L.); (Z.R.); (X.H.); (L.C.)
| | - Richou Han
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China; (H.L.); (M.L.); (Z.R.); (X.H.); (L.C.)
| |
Collapse
|
248
|
Shahabuddin, Uzma, Azam M, Parveen M, Kadir NHA, Min K, Alam M. Exploring 7β-amino-6-nitrocholestens as COVID-19 antivirals: in silico, synthesis, evaluation, and integration of artificial intelligence (AI) in drug design: assessing the cytotoxicity and antioxidant activity of 3β-acetoxynitrocholestane. RSC Med Chem 2024:d4md00257a. [PMID: 39430952 PMCID: PMC11485945 DOI: 10.1039/d4md00257a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 09/22/2024] [Indexed: 10/22/2024] Open
Abstract
In light of the ongoing pandemic caused by SARS-CoV-2, effective and clinically translatable treatments are desperately needed for COVID-19 and its emerging variants. In this study, some derivatives, including 7β-aminocholestene compounds, and 3β-acetoxy-6-nitrocholesta-4,6-diene were synthesized, in quantitative yields from 7β-bromo-6-nitrocholest-5-enes (1-3) with a small library of amines. The synthesized steroidal products were then thoroughly characterized using a range of physicochemical techniques, including IR, NMR, UV, MS, and elemental analysis. Next, a virtual screening based on structures using docking studies was conducted to investigate the potential of these synthesized compounds as therapeutic candidates against SARS-CoV-2. Specifically, we evaluated the compounds' binding energy of the reactants and their products with three SARS-CoV-2 functional proteins: the papain-like protease, 3C-like protease or main protease, and RNA-dependent RNA polymerase. Our results indicate that the 7β-aminocholestene derivatives (4-8) display intermediate to excellent binding energy, suggesting that they interact strongly with the receptor's active amino acids and may be promising drug candidates for inhibiting SARS-CoV-2. Although the starting steroid derivatives; 7β-bromo-6-nitrocholest-5-enes (1-3) and one steroid product; 3β-acetoxy-6-nitrocholesta-4,6-diene (9) exhibited strong binding energies with various SARS-CoV-2 receptors, they did not meet the Lipinski Rule and ADMET properties required for drug development. These compounds showed either mutagenic or reproductive/developmental toxicity when assessed using toxicity prediction software. The findings based on structure-based virtual screening, suggest that 7β-aminocholestaines (4-8) may be useful for reducing the susceptibility to SARS-CoV-2 infection. The docking pose of compound 4, which has a high score of -7.4 kcal mol-1, was subjected to AI-assisted deep learning to generate 60 AI-designed molecules for drug design. Molecular docking of these AI molecules was performed to select optimal candidates for further analysis and visualization. The cytotoxicity and antioxidant effects of 3β-acetoxy-6-nitrocholesta-4,6-diene were tested in vitro, showing marked cytotoxicity and antioxidant activity. To elucidate the molecular basis for these effects, steroidal compound 9 was subjected to molecular docking analysis to identify potential binding interactions. The stability of the top-ranked docking pose was subsequently assessed using molecular dynamics simulations.
Collapse
Affiliation(s)
- Shahabuddin
- Department of Applied Chemistry, Z. H. College of Engineering & Technology, Aligarh Muslim University Aligarh 202002 India
| | - Uzma
- Division of Organic Synthesis, Department of Chemistry, Aligarh Muslim University Aligarh 202002 India
| | - Mohammad Azam
- Department of Chemistry, College of Science, King Saud University PO 2455 Riyadh 11451 Saudi Arabia
| | - Mehtab Parveen
- Division of Organic Synthesis, Department of Chemistry, Aligarh Muslim University Aligarh 202002 India
| | - Nurul Huda Abd Kadir
- Faculty of Science and Environmental Marine, Universiti Malaysia Terengganu 21030 Terengganu Malaysia
| | - Kim Min
- Department of Safety Engineering, Dongguk University 123 Dongdae-ro Gyeongju-si Gyeongbuk 780714 South Korea
| | - Mahboob Alam
- Department of Safety Engineering, Dongguk University 123 Dongdae-ro Gyeongju-si Gyeongbuk 780714 South Korea
| |
Collapse
|
249
|
Wang Y, Yan W, Cui K, Cheng C, Ren Y, Wu K. Molecular Simulation of the Water Diffusion Behavior and Electronic Properties of Boron-Nitride-Composited Mineral Oil. Molecules 2024; 29:4500. [PMID: 39339495 PMCID: PMC11434289 DOI: 10.3390/molecules29184500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
Despite the fact that doping nanoparticles into insulating transformer oil has proven to be an effective method of enhancing its dielectric and electrical properties, it remains unclear how different types and surface conditions of nanoparticles may affect their dielectric and electrical properties. Therefore, the effect of doping various types of BN nanoparticles (nanosphere, nanotube, and nanosheet) in insulating mineral oil (MO) on the diffusion properties of water molecules and electrical properties across the BN/MO interface was investigated using molecular dynamics (MD) and Density Functional Theory (DFT) simulations. Our results show that different surface morphology and grafted functional groups in different types of BN nanoparticles have a significant impact both on the water diffusion behavior and the interfacial potential barrier across the interface between BN and MO. In the MO system directly doped by BN nanospheres, water diffusion behavior is not significantly restricted. However, grafting -NH2 polar groups onto the BN nanoparticle surface may significantly limit the diffusion behavior of water due to the strong attraction between the -NH2 polar groups and water molecules; the most significant effect is with nanospheres, followed by nanotubes and nanosheets. In terms of electrical properties across the interface between BN and MO, the h-BN surface (derived from BN nanosheets and nanotubes) acts as a trap for electrons in MO (-0.59 eV), while the c-BN surface (derived from BN nanospheres) acts as a potential barrier for electrons in MO (1.45 eV), and it is noteworthy that the presence of water molecules near the interface between BN and MO has little impact on the potential barriers. Advancing a fundamental understanding of the electrical and water diffusion properties of MO in correlation with the surface morphology of different types of nanoparticles is key to improving the insulation properties of oil-impregnated power transformers.
Collapse
Affiliation(s)
- Yang Wang
- School of Electronics and Information, Xi’an Polytechnic University, Xi’an 710048, China; (W.Y.); (K.C.)
- Xi’an Key Laboratory of Interconnected Sensing and Intelligent Diagnosis for Electrical Equipment, Xi’an Polytechnic University, Xi’an 710048, China
| | - Wenchao Yan
- School of Electronics and Information, Xi’an Polytechnic University, Xi’an 710048, China; (W.Y.); (K.C.)
- Xi’an Key Laboratory of Interconnected Sensing and Intelligent Diagnosis for Electrical Equipment, Xi’an Polytechnic University, Xi’an 710048, China
| | - Kunqi Cui
- School of Electronics and Information, Xi’an Polytechnic University, Xi’an 710048, China; (W.Y.); (K.C.)
- Xi’an Key Laboratory of Interconnected Sensing and Intelligent Diagnosis for Electrical Equipment, Xi’an Polytechnic University, Xi’an 710048, China
| | - Chuanhui Cheng
- Electric Power Research Institute, China Southern Power Grid, Guangzhou 510663, China
| | - Yuanyang Ren
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, Xi’an 710049, China; (Y.R.); (K.W.)
| | - Kai Wu
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, Xi’an 710049, China; (Y.R.); (K.W.)
| |
Collapse
|
250
|
Lobez AP, Wu F, Di Trani JM, Rubinstein JL, Oliveberg M, Brzezinski P, Moe A. Electron transfer in the respiratory chain at low salinity. Nat Commun 2024; 15:8241. [PMID: 39300056 DOI: 10.1038/s41467-024-52475-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024] Open
Abstract
Recent studies have established that cellular electrostatic interactions are more influential than assumed previously. Here, we use cryo-EM and perform steady-state kinetic studies to investigate electrostatic interactions between cytochrome (cyt.) c and the complex (C) III2-IV supercomplex from Saccharomyces cerevisiae at low salinity. The kinetic studies show a sharp transition with a Hill coefficient ≥2, which together with the cryo-EM data at 2.4 Å resolution indicate multiple cyt. c molecules bound along the supercomplex surface. Negatively charged loops of CIII2 subunits Qcr6 and Qcr9 become structured to interact with cyt. c. In addition, the higher resolution allows us to identify water molecules in proton pathways of CIV and, to the best of our knowledge, previously unresolved cardiolipin molecules. In conclusion, the lowered electrostatic screening renders engagement of multiple cyt. c molecules that are directed by electrostatically structured CIII2 loops to conduct electron transfer between CIII2 and CIV.
Collapse
Affiliation(s)
- Ana Paula Lobez
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden
| | - Fei Wu
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden
| | - Justin M Di Trani
- Molecular Medicine program, The Hospital for Sick Children, 686 Bay Street, Toronto, Ontario, Canada
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - John L Rubinstein
- Molecular Medicine program, The Hospital for Sick Children, 686 Bay Street, Toronto, Ontario, Canada
- Department of Medical Biophysics, The University of Toronto, 101 College Street, Toronto, Ontario, Canada
- Department of Biochemistry, The University of Toronto, 1 Kings College Circle, Toronto, Ontario, Canada
| | - Mikael Oliveberg
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden.
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden.
| | - Agnes Moe
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden.
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, Bern, Switzerland.
| |
Collapse
|