2451
|
Cossart R, Esclapez M, Hirsch JC, Bernard C, Ben-Ari Y. GluR5 kainate receptor activation in interneurons increases tonic inhibition of pyramidal cells. Nat Neurosci 1998; 1:470-8. [PMID: 10196544 DOI: 10.1038/2185] [Citation(s) in RCA: 260] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We studied the modulation of GABAergic inhibition by glutamate and kainate acting on GluR5-containing kainate receptors in the CA1 hippocampal region. Glutamate, kainate or ATPA, a selective agonist of GluR5-containing receptors, generates an inward current in inhibitory interneurons and cause repetitive action potential firing. This results in a massive increase of tonic GABAergic inhibition in the somata and apical dendrites of pyramidal neurons. These effects are prevented by the GluR5 antagonist LY 293558. Electrical stimulation of excitatory afferents generates kainate receptor-mediated excitatory postsynaptic currents (EPSCs) and action potentials in identified interneurons that project to the dendrites and somata of pyramidal neurons. Therefore glutamate acting on kainate receptors containing the GluR5 subunit may provide a protective mechanism against hyperexcitability.
Collapse
Affiliation(s)
- R Cossart
- Epilepsie et Ischémie Cérébrale, INSERM U29, Hôpital de Port Royal, Paris, France
| | | | | | | | | |
Collapse
|
2452
|
Giant depolarizing potentials: the septal pole of the hippocampus paces the activity of the developing intact septohippocampal complex in vitro. J Neurosci 1998. [PMID: 9698326 DOI: 10.1523/jneurosci.18-16-06349.1998] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In neonatal hippocampal slices, recurrent spontaneous giant depolarizing potentials (GDPs) provide neuronal synchronized firing and Ca2+ oscillations. To investigate the possible role of GDPs in the synchronization of neuronal activity in intact neonatal limbic structures, we used multiple simultaneous electrophysiological recordings in the recently described preparation of intact neonatal septohippocampal complex in vitro. Combined whole-cell (in single or pairs of cells) and extracellular field recordings (one to five simultaneous recording sites) from the CA3 hippocampal region and various parts of the septum indicated that spontaneous GDPs, which can be initiated anywhere along the longitudinal hippocampal axis, are most often initiated in the septal poles of hippocampus and propagate to medial septum and temporal poles of both hippocampi simultaneously. GDPs were abolished in the medial septum but not in the hippocampus after surgical separation of both structures, suggesting hippocampal origin of GDPs. The preferential septotemporal orientation of GDP propagation observed in the intact hippocampus was associated with a corresponding gradient of GDP frequency in isolated portions of hippocampus. Accordingly, most GDPs propagated in the septotemporal direction in both septal and temporal hippocampal isolated halves, and whereas GDP frequency remained similar in the septal part of hippocampus after its surgical isolation, it progressively decreased in more temporally isolated portions of the hippocampus. Because GDPs provide most of the synaptic drive of neonatal neurons, they may modulate the development of neuronal connections in the immature limbic system.
Collapse
|
2453
|
Mathern GW, Pretorius JK, Kornblum HI, Mendoza D, Lozada A, Leite JP, Chimelli L, Born DE, Fried I, Sakamoto AC, Assirati JA, Peacock WJ, Ojemann GA, Adelson PD. Altered hippocampal kainate-receptor mRNA levels in temporal lobe epilepsy patients. Neurobiol Dis 1998; 5:151-76. [PMID: 9848088 DOI: 10.1006/nbdi.1998.0200] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study determined whether hippocampal kainate (KA) receptor mRNA levels were increased or decreased in temporal lobe epilepsy patients compared with nonseizure autopsies. Hippocampal sclerosis (HS; n = 17), nonsclerosis (non-HS; n = 11), and autopsy hippocampi (n = 9) were studied for KA1-2 and GluR5-7 mRNA levels using semiquantitative in situ hybridization techniques, along with neuron densities. Compared with autopsy hippocampi, HS and non-HS cases showed decreased GluR5 and GluR6 hybridization densities per CA2 and/or CA3 pyramid. Furthermore, HS patients demonstrated increased KA2 and GluR5 hybridization densities per granule cell compared with autopsy hippocampi. These findings indicate that chronic temporal lobe seizures were associated with differential changes in hippocampal KA1-2 and GluR5-7 hybridization densities that vary by subfield and pathology group. In temporal lobe epilepsy patients, these results support the hypothesis that pyramidal cell GluR5 and GluR6 mRNA levels are decreased as a consequence of seizures, and in HS patients granule cell KA2 and GluR5 mRNA levels are increased in association with aberrant fascia dentata mossy fiber sprouting and/or hippocampal neuronal loss.
Collapse
Affiliation(s)
- G W Mathern
- Division of Neurosurgery, University of California, Los Angeles 90095, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2454
|
Bernard C, Esclapez M, Hirsch JC, Ben-Ari Y. Interneurones are not so dormant in temporal lobe epilepsy: a critical reappraisal of the dormant basket cell hypothesis. Epilepsy Res 1998; 32:93-103. [PMID: 9761312 DOI: 10.1016/s0920-1211(98)00043-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
One axiom at the basis of epilepsy research is that there exists an imbalance between excitation and inhibition. This abnormality can be achieved by an increase of excitation on principal cells, a decreased inhibition (i.e. disinhibition) or both. This review focuses on dysfunction of inhibition, and in particular on the 'dormant basket cell hypothesis'. This hypothesis states that, (1) interneurones are functionally disconnected from excitatory afferents, resulting in hyperexcitability of principal neurones and loss of paired pulse inhibition, (2) when properly activated, interneurones can still perform their task, i.e. suppress epileptiform activity and restore paired pulse inhibition. The aim of this review is to discuss the evidence in support of the 'dormant basket cell hypothesis'. We will first discuss the rationale underlying the hypothesis and the criteria needed to validate the hypothesis. We will then show that, (1) the key experimental data offered in support of the hypothesis (Bekenstein and Lothman, 1993. Dormancy of inhibitory interneurones in a model of temporal lobe epilepsy. Science 259, 97-100; Sloviter, 1991. Permanently altered hippocampal structure, excitability, and inhibition after experimental status epilepticus in the rat: the 'dormant basket cell' hypothesis and its relevance to temporal lobe epilepsy. Hippocampus 1, 41-66) are difficult to interpret, and (2) recent recordings from interneurones in epileptic tissue argue against the hypothesis. The 'dormant basket cell hypothesis' is then discussed in the broader context of disinhibition.
Collapse
|
2455
|
Braun H, Schulz S, Becker A, Schröder H, Höllt V. Protective effects of cortistatin (CST-14) against kainate-induced neurotoxicity in rat brain. Brain Res 1998; 803:54-60. [PMID: 9729275 DOI: 10.1016/s0006-8993(98)00609-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cortistatin (CST-14) is a recently discovered endogenous peptide which shares similarity to somatostatin and binds to somatostatin receptors. In this study, we show that CST-14 exhibits anticonvulsive and neuroprotective effects in rats. Injection of rats with kainic acid (KA; 10 mg/kg; i.p.) generated a strong seizure activity which was attenuated by the i.c.v. application of 1 and 10 nmol CST-14 when given 10 min before KA. Moreover, 3 days after KA injection, a marked loss of neurons in cortex and hippocampus of rats was observed which was inhibited by pretreatment with CST-14. An immunohistochemical analysis using specific antibodies revealed that KA reduced immunoactive sst2A and sst3 somatostatin receptors in the hippocampus-an effect which was largely prevented by pretreatment with CST-14. Superfusion of hippocampal slices with CST-14 also reduced the stimulated release of 3H-d-aspartate. We conclude that CST-14 exerts neuroprotective effects by binding to somatostatin receptors which in turn leads to a reduced release of excitotoxic neurotransmitters.
Collapse
Affiliation(s)
- H Braun
- Department of Pharmacology and Toxicology, Otto-von-Guericke University, Leipziger Str.44, D-39120, Magdeburg, Germany
| | | | | | | | | |
Collapse
|
2456
|
Functionally distinct groups of interneurons identified during rhythmic carbachol oscillations in hippocampus in vitro. J Neurosci 1998. [PMID: 9671655 DOI: 10.1523/jneurosci.18-15-05640.1998] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
During distinct behavioral states, the hippocampus exhibits characteristic rhythmic electrical activity. Evidence in vivo suggests that both principal pyramidal cells and GABAergic interneurons participate in generating oscillations. We found that during rhythmic oscillations in area CA3, functionally distinct classes of interneurons could be identified, although all recorded interneurons had similar dendritic and axonal arbors. One group of interneurons was powerfully excited by CA3 pyramidal cells, whereas two other interneuron groups were relatively unaffected by pyramidal cell firing. One of these groups of interneurons was potently inhibited by other local interneurons during the pyramidal cell bursts. Our findings emphasize that morphologically similar cells are wired together very differently within the local circuit. The classes of hippocampal interneurons we have tentatively defined may be used during distinct behavioral states to switch the local network from one oscillatory state to another.
Collapse
|
2457
|
Chitwood RA, Jaffe DB. Calcium-dependent spike-frequency accommodation in hippocampal CA3 nonpyramidal neurons. J Neurophysiol 1998; 80:983-8. [PMID: 9705484 DOI: 10.1152/jn.1998.80.2.983] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Interneurons of the hippocampal formation are traditionally identified electrophysiologically as those cells that fire trains of weakly accommodating action potentials in response to depolarizing current injection. We studied the firing properties of nonpyramidal neurons in the five substrata of the CA3b region of hippocampus. With the use of whole cell recording methods we found that nonpyramidal neurons fired in a range from weak to strong spike-frequency accommodation (SFA) that was calcium dependent. Slow afterhyperpolarizations were not associated with strong SFA. In addition a subset of interneurons ( approximately 20%) fired with an irregular firing pattern that was generally calcium independent. These results suggest a calcium-dependent mechanism for SFA in nonpyramidal neurons that is distinct from pyramidal cells and further demonstrates the heterogeneity of hippocampal interneurons.
Collapse
Affiliation(s)
- R A Chitwood
- Division of Life Sciences, University of Texas at San Antonio, San Antonio, Texas 78249, USA
| | | |
Collapse
|
2458
|
Salin P, Kachidian P, Bartoli M, Castets F. Distribution of Striatin, a newly identified calmodulin-binding protein in the rat brain: An in situ hybridization and immunocytochemical study. J Comp Neurol 1998. [DOI: 10.1002/(sici)1096-9861(19980720)397:1<41::aid-cne4>3.0.co;2-i] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
2459
|
Williams SR, Buhl EH, Mody I. The dynamics of synchronized neurotransmitter release determined from compound spontaneous IPSCs in rat dentate granule neurones in vitro. J Physiol 1998; 510 ( Pt 2):477-97. [PMID: 9705998 PMCID: PMC2231042 DOI: 10.1111/j.1469-7793.1998.477bk.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
1. The properties of GABAA receptor-mediated spontaneous IPSCs generated in hippocampal dentate granule neurones were analysed using whole-cell voltage-clamp techniques in order to explore the functional consequences of the low number (6-12) and close proximity of synaptic contacts made by single GABAergic interneurones. 2. Spontaneous IPSCs (sIPSCs) occurred with a frequency of 14.0 +/- 9.1 Hz (n = 31) and revealed a multi-modal positively skewed amplitude distribution (39.0 +/- 19.8 pA, median values). 3. The variance of 10-90% rise times and decay kinetics between IPSCs decreased with increasing peak amplitude. Larger amplitude events had significantly faster rise times, consistent with their site of generation being proximal to the soma. The decay kinetics of sIPSCs did not significantly change with amplitude. 4. Large amplitude sIPSCs occurred singularly or in discrete bursts, repeated regularly at low frequency. The rising phase of such sIPSCs were multi-phasic, composed of clear step-like inflections that were not a product of noise. The variability between the rising phase of individual sIPSCs was quantified by calculating their standard deviation, which produced fast rising (0.22 +/- 0.05 ms time to peak, n = 16) functions with half-widths of 0.38 +/- 0.10 ms, which declined to plateaux. 5. Computer simulations demonstrated that IPSCs with properties similar to those recorded experimentally could be generated by the linear summation of groups of temporally dispersed component events. Standard deviation functions of the rising phase of simulated IPSCs accurately described distributions of the temporal dispersion of unitary components. 6. The GABA uptake inhibitor (R)-N[4,4-bis(3-methyl-2-thienyl)but-3-enl-yl] nipecotic acid (tiagabine) (10 microM, n = 12) significantly prolonged the decay of mIPSCs (6.5 +/- 0.8 to 8.7 +/- 1.0 ms, median values) and sIPSCs (6.2 +/- 0.4 to 7.3 +/- 1.2 ms, median values), but failed to alter the frequency of occurrence, 10-90% rise times or peak amplitude of events. The application of flurazepam (30 microM, n = 7; 50 microM, n = 4) prolonged the decay of sIPSCs regardless of their amplitude. 7. These data indicate that sIPSCs are formed by the summation of unitary components that occur asynchronously and that GABA released from multiple sites has independent post-synaptic actions.
Collapse
Affiliation(s)
- S R Williams
- Reed Neurological Research Center, University of California Los Angeles School of Medicine, Department of Neurology 90095-1769, USA
| | | | | |
Collapse
|
2460
|
Involvement of distinct pioneer neurons in the formation of layer-specific connections in the hippocampus. J Neurosci 1998. [PMID: 9614236 DOI: 10.1523/jneurosci.18-12-04616.1998] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
During neural development, specific recognition molecules provide the cues necessary for the formation of initial projection maps, which are reshaped later in development. In some systems, guiding cues for axonal pathfinding and target selection are provided by specific cells that are present only at critical times. For instance, the floor plate guides commissural axons in the spinal cord, and the subplate is involved in the formation of thalamocortical connections. Here we study the development of entorhinal and commissural connections to the murine hippocampus, which in the adult terminate in nonoverlapping layers. We show that two groups of pioneer neurons, Cajal-Retzius cells and GABAergic neurons, form layer-specific scaffolds that overlap with distinct hippocampal afferents at embryonic and early postnatal stages. Furthermore, at postnatal day 0 (P0)-P5, before the dendrites of pyramidal neurons develop, these pioneer neurons are preferential synaptic targets for hippocampal afferents. Birthdating analysis using 5'-bromodeoxyuridine (BrdU) pulses showed that most such early-generated neurons disappear at late postnatal stages, most likely by cell death. Together with previous studies, these findings indicate that distinct pioneer neurons are involved in the guidance and targeting of different hippocampal afferents.
Collapse
|
2461
|
Paulsen O, Moser EI. A model of hippocampal memory encoding and retrieval: GABAergic control of synaptic plasticity. Trends Neurosci 1998; 21:273-8. [PMID: 9683315 DOI: 10.1016/s0166-2236(97)01205-8] [Citation(s) in RCA: 245] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The current view of the role of GABAergic interneurones in cortical-network function has shifted from one of merely dampening neuronal activity to that of an active role in information processing. In this review, we explore a potential role of hippocampal GABAergic interneurones in providing spatial and temporal conditions for modifications of synaptic weights during hippocampus-dependent memory processes. We argue that knowledge of spatiotemporal activity patterns in distinct classes of interneurone is essential to understanding the cellular mechanisms underlying learning and memory.
Collapse
Affiliation(s)
- O Paulsen
- MRC Anatomical Neuropharmacology Unit, University Dept of Pharmacology, Oxford, UK
| | | |
Collapse
|
2462
|
Funahashi M, Stewart M. Properties of gamma-frequency oscillations initiated by propagating population bursts in retrohippocampal regions of rat brain slices. J Physiol 1998; 510 ( Pt 1):191-208. [PMID: 9625877 PMCID: PMC2231035 DOI: 10.1111/j.1469-7793.1998.191bz.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/1997] [Accepted: 03/19/1998] [Indexed: 11/30/2022] Open
Abstract
1. In the hippocampal formation in vivo, brief periods of gamma-frequency activity follow population bursts called sharp waves. The approximately 200 Hz activity of the sharp wave itself may serve to enhance synaptic connections and the approximately 40 Hz gamma activity has been offered as a mechanism for solving the 'binding' problem. We describe epochs of gamma-frequency activity which follow population spikes evoked by low frequency repetitive extracellular stimuli in retrohippocampal neurons of horizontal rat brain slices. 2. gamma-Frequency activity recorded intracellularly from deep layer neurons of entorhinal cortex, presubiculum and parasubiculum consisted of one action potential correlated with each of the three to five gamma cycles recorded with a proximate field potential electrode. A minority of cells exhibited only sub-threshold gamma-frequency membrane potential oscillations (ranging from 5 to 10 mV). No cells fired more than one spike per gamma cycle under any conditions. 3. The range of synchrony varied from individual cells which showed gamma-frequency firing without corresponding oscillations in close field recordings to field potential recordings of oscillations which were well correlated across regions. The lead or lag between any two retrohippocampal regions was in the direction of the conduction delay for the primary population spike, but typically was less, and approached zero milliseconds for some cycles in most cells. The level of synchrony was stable for particular stimulating conditions (intensity, stimulation rate, stimulus location). 4. The duration of the period of gamma activity had the duration of a slow depolarizing potential which was mediated by NMDA receptor activation. NMDA receptor antagonists or low concentrations of AMPA receptor antagonists reduced the duration of, or completely abolished the slow potential, thereby eliminating the gamma portion of the evoked response. 5. gamma-Frequency firing was eliminated by the GABAA receptor antagonist picrotoxin but small (< 5 mV) membrane potential oscillations remained after focal picrotoxin applications, and these exhibited the voltage dependence of EPSPs. Bath application of thiopental lowered the frequency of gamma oscillations, confirming the involvement of GABAA receptors. 6. The GABAB receptor antagonist 2-hydroxy-saclofen appeared to enhance the gamma activity by increasing the duration of the gamma epoch and increasing the amplitude of individual gamma cycles in field potential recordings. These saclofen-induced cycles were, however, less well synchronized across regions. 7. We show that synchronous gamma (40-100 Hz) activity follows population bursts by deep layer retrohippocampal neurons in undrugged slices from rat brain. Responses from medial entorhinal, parasubicular or presubicular cells were not distinguishable. These events can be initiated by a propagating population spike. We suggest that an NMDA receptor mediated depolarization enables the network of deep layer retrohippocampal neurons to oscillate by providing a sustained excitation, the duration of which determines the duration of the gamma episode. gamma-Frequency firing is primarily the result of GABAA receptor dependent inhibition during this period of sustained depolarization. Recurrent excitation appears to be inconsequential for principal cell firing, but may contribute to interneuron firing.
Collapse
Affiliation(s)
- M Funahashi
- Department of Physiology, State University of New York Health Science Center at Brooklyn, 450 Clarkson Avenue, Brooklyn, NY 11203, USA.
| | | |
Collapse
|
2463
|
Csicsvari J, Hirase H, Czurko A, Buzsáki G. Reliability and state dependence of pyramidal cell-interneuron synapses in the hippocampus: an ensemble approach in the behaving rat. Neuron 1998; 21:179-89. [PMID: 9697862 DOI: 10.1016/s0896-6273(00)80525-5] [Citation(s) in RCA: 417] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Spike transmission probability between pyramidal cells and interneurons in the CA1 pyramidal layer was investigated in the behaving rat by the simultaneous recording of neuronal ensembles. Population synchrony was strongest during sharp wave (SPW) bursts. However, the increase was three times larger for pyramidal cells than for interneurons. The contribution of single pyramidal cells to the discharge of interneurons was often large (up to 0.6 probability), as assessed by the presence of significant (<3 ms) peaks in the cross-correlogram. Complex-spike bursts were more effective than single spikes. Single cell contribution was higher between SPW bursts than during SPWs or theta activity. Hence, single pyramidal cells can reliably discharge interneurons, and the probability of spike transmission is behavior dependent.
Collapse
Affiliation(s)
- J Csicsvari
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey 07102, USA
| | | | | | | |
Collapse
|
2464
|
Levkovitz Y, Segal M. Age-dependent local modulation of hippocampal-evoked responses to perforant path stimulation. Neurobiol Aging 1998; 19:317-24. [PMID: 9733164 DOI: 10.1016/s0197-4580(98)00068-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Local modulation of hippocampal-evoked responses to perforant path stimulation was studied by leaking drugs from the recording pipette placed in the dentate gyrus of anesthetized young (3 months old), aging (17 months old) and old (28 months old) rats. In old rats, the excitatory postsynaptic potential (EPSP) slope was much reduced compared to young and aging rats. The population spike (PS) size was similar in all age groups. Bicuculline caused a marked increase in PS size relative to population EPSP, and reversed the response to the second pulse in a paired-pulse paradigm from inhibition to facilitation. The effect of bicuculline was only slightly reduced in old rats. The 5-HT1a agonist 8-OH-DPAT potentiated PSs in the dentate gyrus, while not affecting paired-pulse inhibition. The effect of 8-OH-DPAT was slightly reduced in old rats. Carbachol, a cholinergic agonist, reversed paired-pulse inhibition into facilitation in the young brain, but not in aging and old rats. These results demonstrate that age affects differentially the action of biogenic amines on hippocampal reactivity to afferent stimulation.
Collapse
Affiliation(s)
- Y Levkovitz
- Department of Neurobiology, The Weizmann Institute, Rehovot, Israel
| | | |
Collapse
|
2465
|
Papatheodoropoulos C, Kostopoulos G. Development of a transient increase in recurrent inhibition and paired-pulse facilitation in hippocampal CA1 region. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1998; 108:273-85. [PMID: 9693803 DOI: 10.1016/s0165-3806(98)00061-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Paired-pulse recurrent inhibition (RI) of population spike (PS) and facilitation (PPF) of field excitatory postsynaptic potential (EPSP) were studied in the CA1 region of hippocampal slices taken from Wistar rats aged from 9 days to 16 months. The comparison of three different paired-pulse protocols revealed the antidromic-orthodromic (A-O) stimulation as the most reliable in quantifying the strength of fast (peaking at 10 ms) and slow (peaking at 200 ms) components of recurrent inhibition. Fast RI, present but weak at 9 days, progressively increased to reach its maximal strength at 30 days, declining in adult (2 m) and middle-aged (16 m) animals. Slow RI was replaced by facilitation at 9 days while it was absent at 15 days. It reached adult values at 30 days. A reduction of the test response at interpulse interval (IPI) of 2-4 ms was strong in developing and adult animals, but was significantly decreased in 16 m. At maximal stimulation PPF was expressed as an enhancement of the slow rather than the fast phase of the EPSP and was particularly strong with a prominent N-methyl-D-aspartate dependent component. A very characteristic selectivity for a prominent PPF at stimulation frequency of 5 Hz appeared first at the 18th day and increased gradually to reach a maximum at the 30th day, after which it declined to very low values in middle-aged animals. A similar developmental pattern was observed in slices taken from rats reared in complete darkness, suggesting a strong innate origin. The ability of hippocampal circuits for plastic gating of information appears to be transiently enhanced at the completion of the first postnatal month as it can be exercised at a wider part of the frequency spectrum, with maximal inhibition and potentiation especially at the frequency of theta rhythm.
Collapse
|
2466
|
Abstract
Networks of GABAergic neurons have been implicated in neuronal population synchronization. To define the extent of cellular interconnections, we determined the effect, number, and subcellular distribution of synapses between putative GABAergic neurons in layers II-IV of the cat visual cortex using paired intracellular recordings in vitro followed by correlated light and electron microscopy. All neurons having interneuronal electrophysiological properties were classified by their postsynaptic target profile and were identified as basket (BC; n = 6), dendrite-targeting (DTC; n = 1), and double bouquet (DBC; n = 2) cells. In four out of five anatomically fully recovered and reconstructed cell pairs, synaptic connections were found to be reciprocal. Generally BCs established synaptic junctions closer (21 +/- 20 micron) to postsynaptic somata than did DBCs (43 +/- 19 micron; p < 0.01). The unitary number of synapses (n values, 10, 7, and 20) in each of three BC-to-BC pairs was higher than that in three BC-to-DBC (n values, 1, 2, and 2) and three DBC-to-BC (n values, 1, 4, and 4) connections (p < 0.05). A BC innervated a DTC through two synaptic junctions. Unitary postsynaptic effects mediated by five BCs could be recorded in two BCs, two DBCs, and a DTC. The BCs elicited short-duration fast IPSPs, similar to those mediated by GABAA receptors. At a membrane potential of -55.0 +/- 6.4 mV, unitary IPSPs (n = 5) had a mean amplitude of 919 +/- 863 microV. Postsynaptic response failures were absent when an IPSP was mediated by several release sites. Thus, distinct GABAergic interneurons form reciprocally interconnected networks. The strength of innervation and the proximal placement of synapses suggest a prominent role for BCs in governing the activity of intracortical GABAergic networks in layers II-IV.
Collapse
|
2467
|
Abstract
Dual intracellular recordings of hilar interneurons and CA3 pyramidal cells were performed in transverse slices of guinea pig hippocampus in the presence of the convulsant compound 4-aminopyridine (4-AP) and ionotropic glutamate receptor antagonists. Under these conditions, interneurons burst fire synchronously, producing synchronized inhibitory postsynaptic potentials (sIPSPs) in pyramidal cells. Three different hilar interneuron subpopulations that contributed to the sIPSP were identified based on their projection properties and morphology. These three types were pyramidal-like stellate interneurons, spheroid interneurons, and oviform interneurons. Physiologically, pyramidal-like stellate interneurons could be differentiated from the other interneuron subpopulations because they generated short synchronized bursts of action potentials coincident with the hyperpolarizing and depolarizing gamma-aminobutyric acid-A (GABAA)-mediated inhibitory postsynaptic potentials (IPSPs) recorded in pyramidal cells. The bursts in pyramidal-like stellate cells were abolished by theGABAA-receptor blocker, bicuculline. In contrast, spheroid interneurons of the dentate-hilus (D-H) border and oviform hilar interneurons exhibited prolonged bicuculline-resistant bursts that occurred coincident with the GABAB pyramidal cell sIPSPs. Pyramidal-like stellate interneurons likely did not contribute to the generation of synchronized GABAB responses in hippocampal pyramidal cells. Spheroid interneurons were unique among these subpopulations of interneurons in that the bicuculline-resistant bursts in spheroid interneurons were sustained by a synaptic depolarization that persisted in the presence of antagonists of ionotropic glutamate, GABAA and GABAB receptors [6-cyano-7-nitroquinoxaline-2,3-dione, 20 microM; 3-3(2-carboxipiperazine-4-yl)propyl-1-phosphonate, 20 microM; bicuculline, 10-15 microM; CGP 55845A, 20 microM]. This novel depolarizing potential reversed between -30 and 0 mV. No noticeable synaptic depolarization sustaining burst firing could be isolated in oviform interneurons, suggesting that firing in this interneuron subpopulation was synchronized by nonsynaptic mechanisms. The results of the present study indicate that the hilar inhibitory circuit is composed of at least three different subpopulations of interneurons, distinguishable by their morphological characteristics and synaptic inputs and outputs. These findings give further support to the hypothesis that there are distinct populations of interneurons producing GABAA and GABAB responses with defined functional roles within the hippocampal inhibitory circuit. Notably, we found that spheroid interneurons were unique among the hilar interneurons studied, in that the synchronized bursts observed in these cells are sustained by a novel ionotropic glutamate and GABA receptor-independent synaptic depolarization.
Collapse
Affiliation(s)
- M Forti
- Department of Pharmacology, State University of New York Health Science Center at Brooklyn, Brooklyn, New York 11203, USA
| | | |
Collapse
|
2468
|
Bramham CR. Phasic boosting of medial perforant path-evoked granule cell output time-locked to spontaneous dentate EEG spikes in awake rats. J Neurophysiol 1998; 79:2825-32. [PMID: 9636089 DOI: 10.1152/jn.1998.79.6.2825] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Dentate spikes (DSs) are positive-going field potential transients that occur intermittently in the hilar region of the dentate gyrus during alert wakefulness and slow-wave sleep. The function of dentate spikes is unknown; they have been suggested to be triggered by perforant path input and are associated with firing of hilar interneurons and inhibition of CA3 pyramidal cells. Here we investigated the effect of DSs on medial perforant path (MPP)-granule cell-evoked transmission in freely moving rats. The MPP was stimulated selectively in the angular bundle while evoked field potentials and the EEG were recorded with a vertical multielectrode array in the dentate gyrus. DSs were identified readily on the basis of their characteristic voltage-versus-depth profile, amplitude, duration, and state dependency. Using on-line detection of the DS peak, the timing of MPP stimulation relative to single DSs was controlled. DS-triggered evoked responses were compared with conventional, manually evoked responses in still-alert wakefulness (awake immobility) and, in some cases, slow-wave sleep. Input-output curves were obtained with stimulation on the positive DS peak (0 delay) and at delays of 50, 100, and 500 ms. Stimulation on the peak DS was associated with a significant increase in the population spike amplitude, a reduction in population spike latency, and a decrease in the field excitatory postsynaptic potential (fEPSP) slope, relative to manual stimulation. Granule cell excitability was enhanced markedly during DSs, as indicated by a mean 93% increase in the population spike amplitude and a leftward shift in the fEPSP-spike relation. Maximum effects occurred at the DS peak, and lasted between 50 and 100 ms. Paired-pulse inhibition of the population spike was unaffected, indicating intact recurrent inhibition during DSs. The results demonstrate enhancement of perforant path-evoked granule cell output time-locked to DSs. DSs therefore may function to intermittently boost excitatory transmission in the entorhinal cortex-dentate gyrus-CA3 circuit. Such a mechanism may be important in the natural induction of long-term potentiation in the dentate gyrus and CA3 regions.
Collapse
Affiliation(s)
- C R Bramham
- Department of Physiology, University of Bergen, N-5009 Bergen, Norway
| |
Collapse
|
2469
|
Chevassus-Au-Louis N, Rafiki A, Jorquera I, Ben-Ari Y, Represa A. Neocortex in the hippocampus: an anatomical and functional study of CA1 heterotopias after prenatal treatment with methylazoxymethanol in rats. J Comp Neurol 1998; 394:520-36. [PMID: 9590559 DOI: 10.1002/(sici)1096-9861(19980518)394:4<520::aid-cne9>3.0.co;2-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Migration disorders cause neurons to differentiate in an abnormal heterotopic position. Although significant insights have been gained into the etiology of these disorders, very little is known about the anatomy of heterotopias. We have studied heterotopic masses arising in the hippocampal CA1 region after prenatal treatment with methylazoxymethanol (MAM) in rats. Heterotopic cells were phenotypically similar to neocortical supragranular neurons and exhibited the same temporal profile of migration and neurogenesis. However, they did not express molecules characteristic of CA1 neurons such as the limbic-associated membrane protein. Horseradish peroxidase injections in heterotopia demonstrated labeled fibers not only in the neocortex and white matter but also in the CA1 stratum radiatum and stratum lacunosum. To study the pathophysiological consequences of this connectivity, we compared the effects of neocortical and limbic seizures on the expression of Fos protein and on cell death in MAM animals. After metrazol-induced seizures, Fos-positive cells were present in CA1 heterotopias, the only hippocampal region to be activated with the neocortex. By contrast, kainic acid-induced seizures caused a prominent delayed cell death in limbic regions and in CA1 heterotopias. Together, these results suggest that neocortical heterotopias in the CA1 region are integrated in both the hippocampal and neocortical circuitry.
Collapse
|
2470
|
Walther T, Balschun D, Voigt JP, Fink H, Zuschratter W, Birchmeier C, Ganten D, Bader M. Sustained long term potentiation and anxiety in mice lacking the Mas protooncogene. J Biol Chem 1998; 273:11867-73. [PMID: 9565612 DOI: 10.1074/jbc.273.19.11867] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Mas protooncogene is a maternally imprinted gene encoding an orphan G protein-coupled receptor expressed mainly in forebrain and testis. Here, we provide evidence for a function of Mas in the central nervous system. Targeted disruption of the Mas protooncogene leads to an increased durability of long term potentiation in the dentate gyrus, without affecting hippocampal morphology, basal synaptic transmission, and presynaptic function. In addition, Mas-/- mice show alterations in the onset of depotentiation. The permissive influence of Mas ablation on hippocampal synaptic plasticity is paralleled by behavioral changes. While spatial learning in the Morris water maze is not significantly influenced, Mas-deficient animals display an increased anxiety as assessed in the elevated-plus maze. Thus, Mas is an important modulating factor in the electrophysiology of the hippocampus and is involved in behavioral pathways in the adult brain.
Collapse
Affiliation(s)
- T Walther
- Max-Delbrück-Center for Molecular Medicine (MDC), D-13122 Berlin-Buch, Germany
| | | | | | | | | | | | | | | |
Collapse
|
2471
|
Abstract
Computational models of hippocampal region CA3 were used to study the role of theta rhythm in storage and retrieval of temporal sequences of neuronal activity patterns. Retrieval of multiple overlapping temporal sequences requires a mechanism for disambiguation, e.g., for choosing between two sequences with the same starting pattern but different final patterns (forked sequences). Modulatory input to the hippocampus from the medial septum may enhance the disambiguation of pattern sequences by causing phasic changes in the relative strength of afferent input and recurrent excitation. In the models, the strength of recurrent synaptic transmission is modulated by activation of GABA(B) receptors. Theta frequency inputs from the medial septum cause oscillations in the levels of GABA in the model, producing phasic changes in the strength of synaptic potentials during a theta cycle similar to those observed experimentally (Wyble et al., Soc Neurosci Abstr 1997;23: 197.7). These phasic changes in GABA(B) suppression improve sequence disambiguation in the simulations, as previously shown with analysis of a simpler model (Sohal and Hasselmo, Neural Comp 1998;10:889-902). In addition, tonic changes in levels of cholinergic modulation enhance the storage of forked sequences by preventing a strong influence of recurrent synapses during storage.
Collapse
Affiliation(s)
- V S Sohal
- Department of Psychology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | |
Collapse
|
2472
|
Abstract
Dentate granule cells communicate with their postsynaptic targets by three distinct terminal types. These include the large mossy terminals, filopodial extensions of the mossy terminals, and smaller en passant synaptic varicosities. We examined the postsynaptic targets of mossy fibers by combining in vivo intracellular labeling of granule cells, immunocytochemistry, and electron microscopy. Single granule cells formed large, complex "mossy" synapses on 11-15 CA3 pyramidal cells and 7-12 hilar mossy cells. In contrast, GABAergic interneurons, identified with immunostaining for substance P-receptor, parvalbumin, and mGluR1a-receptor, were selectively innervated by very thin (filopodial) extensions of the mossy terminals and by small en passant boutons in both the hilar and CA3 regions. These terminals formed single, often perforated, asymmetric synapses on the cell bodies, dendrites, and spines of GABAergic interneurons. The number of filopodial extensions and small terminals was 10 times larger than the number of mossy terminals. These findings show that in contrast to cortical pyramidal neurons, (1) granule cells developed distinct types of terminals to affect interneurons and pyramidal cells and (2) they innervated more inhibitory than excitatory cells. These findings may explain the physiological observations that increased activity of granule cells suppresses the overall excitability of the CA3 recurrent system and may form the structural basis of the target-dependent regulation of glutamate release in the mossy fiber system.
Collapse
|
2473
|
Shetty AK, Turner DA. Hippocampal interneurons expressing glutamic acid decarboxylase and calcium-binding proteins decrease with aging in Fischer 344 rats. J Comp Neurol 1998. [DOI: 10.1002/(sici)1096-9861(19980504)394:2<252::aid-cne9>3.0.co;2-1] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
2474
|
Hollrigel GS, Chen K, Baram TZ, Soltesz I. The pro-convulsant actions of corticotropin-releasing hormone in the hippocampus of infant rats. Neuroscience 1998; 84:71-9. [PMID: 9522363 PMCID: PMC3387920 DOI: 10.1016/s0306-4522(97)00499-5] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Whole-cell patch-clamp and extracellular field recordings were obtained from 450-microns-thick brain slices of infant rats (10-13 days postnatal) to determine the actions of corticotropin-releasing hormone on glutamate- and GABA-mediated synaptic transmission in the hippocampus. Synthetic corticotropin-releasing hormone (0.15 microM) reversibly increased the excitability of hippocampal pyramidal cells, as determined by the increase in the amplitude of the CA1 population spikes evoked by stimulation of the Schaffer collateral pathway. This increase in population spike amplitude could be prevented by the corticotropin-releasing hormone receptor antagonist alpha-helical (9-41)-corticotropin-releasing hormone (10 microM). Whole-cell patch-clamp recordings revealed that, in the presence of blockers of fast excitatory and inhibitory synaptic transmission, corticotropin-releasing hormone caused only a small (1-2 mV) depolarization of the resting membrane potential in CA3 pyramidal cells, and it did not significantly alter the input resistance. However, corticotropin-releasing hormone, in addition to decreasing the slow afterhyperpolarization, caused an increase in the number of action potentials per burst evoked by depolarizing current pulses. Corticotropin-releasing hormone did not significantly change the frequency, amplitude or kinetics of miniature excitatory postsynaptic currents. However, it increased the frequency of the spontaneous excitatory postsynaptic currents in CA3 pyramidal cells, without altering their amplitude and single exponential rise and decay time constants. Corticotropin-releasing hormone did not change the amplitude of the pharmacologically isolated (i.e. recorded in the presence of GABAA receptor antagonist bicuculline) excitatory postsynaptic currents in CA3 and CA1 pyramidal cells evoked by stimulation of the mossy fibers and the Schaffer collaterals, respectively. Current-clamp recordings in bicuculline-containing medium showed that, in the presence of corticotropin-releasing hormone, mossy fiber stimulation leads to large, synchronized, polysynaptically-evoked bursts of action potentials in CA3 pyramidal cells. In addition, the peptide caused a small, reversible decrease in the amplitude of the pharmacologically isolated (i.e. recorded in the presence of glutamate receptor antagonists) evoked inhibitory postsynaptic currents in CA3 pyramidal cells, but it did not significantly alter the frequency, amplitude, rise and decay time constants of spontaneous or miniature inhibitory postsynaptic currents. These data demonstrate that corticotropin-releasing hormone, an endogenous neuropeptide whose intracerebroventricular infusion results in seizure activity in immature rats, has diverse effects in the hippocampus which may contribute to epileptogenesis. It is proposed that the net effect of corticotropin-releasing hormone is a preferential amplification of those incoming excitatory signals which are strong enough to reach firing threshold in at least a subpopulation of CA3 cells. These findings suggest that the actions of corticotropin-releasing hormone on neuronal excitability in the immature hippocampus may play a role in human developmental epilepsies.
Collapse
Affiliation(s)
- G S Hollrigel
- Department of Anatomy and Neurobiology, University of California, Irvine 92697, USA
| | | | | | | |
Collapse
|
2475
|
Strambi C, Cayre M, Sattelle DB, Augier R, Charpin P, Strambi A. Immunocytochemical Mapping of an RDL-Like GABA Receptor Subunit and of GABA in Brain Structures Related to Learning and Memory in the Cricket Acheta domesticus. Learn Mem 1998. [DOI: 10.1101/lm.5.1.78] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The distribution of putative RDL-like GABA receptors and of γ-aminobutyric acid (GABA) in the brain of the adult house cricket Acheta domesticus was studied using specific antisera. Special attention was given to brain structures known to be related to learning and memory. The main immunostaining for the RDL-like GABA receptor was observed in mushroom bodies, in particular the upper part of mushroom body peduncle and the two arms of the posterior calyx. Weaker immunostaining was detected in the distal part of the peduncle and in the α and β lobes. The dorso- and ventrolateral protocerebrum neuropils appeared rich in RDL-like GABA receptors. Staining was also detected in the glomeruli of the antennal lobe, as well as in the ellipsoid body of the central complex. Many neurons clustered in groups exhibit GABA-like immunoreactivity. Tracts that were strongly immunostained innervated both the calyces and the lobes of mushroom bodies. The glomeruli of the antennal lobe, the ellipsoid body, as well as neuropils of the dorso- and ventrolateral protocerebrum were also rich in GABA-like immuno- reactivity. The data demonstrated a good correlation between the distribution of the GABA-like and of the RDL-like GABA receptor immunoreactivity. The prominent distribution of RDL-like GABA receptor subunits, in particular areas of mushroom bodies and antennal lobes, underlines the importance of inhibitory signals in information processing in these major integrative centers of the insect brain.
Collapse
|
2476
|
Du J, Tao-Cheng JH, Zerfas P, McBain CJ. The K+ channel, Kv2.1, is apposed to astrocytic processes and is associated with inhibitory postsynaptic membranes in hippocampal and cortical principal neurons and inhibitory interneurons. Neuroscience 1998; 84:37-48. [PMID: 9522360 DOI: 10.1016/s0306-4522(97)00519-8] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A variety of voltage-gated ion channels are expressed on principal cell dendrites and have been proposed to play a pivotal role in the regulation of dendritic excitability. Previous studies at the light microscopic level demonstrated that the K+ channel subunit Kv2.1 expression was polarized to the cell soma and dendrites of principal neurons throughout the central nervous system. Here, using double immunostaining we now show that Kv2.1 protein is similarly expressed in the majority of cortical and hippocampal parvalbumin, calbindin and somatostatin-containing inhibitory interneurons. At the electron microscopic level Kv2.1 immunoreactivity was primarily observed on the plasma membrane of the somata and proximal dendrites of both principal neurons and inhibitory interneurons; expression was low on smaller dendritic branches, and absent on axons and presynaptic terminals. Kv2.1 subunit expression was highly concentrated on the cell surface membrane immediately facing astrocytic processes. Kv2.1 expression was also concentrated in specific cytoplasmic compartments and on the subsurface cisterns underlying the plasma membrane facing astrocytes. In addition, Kv2.1 subunit immunoreactivity was associated with postsynaptic densities of a fraction of inhibitory symmetric synapses; while expression at asymmetric synapses was rare. These data demonstrate that channels formed by Kv2.1 subunits are uniquely positioned on the soma and principal dendrites of both pyramidal cells and inhibitory interneurons at sites immediately adjacent to astrocytic processes. This close apposition to astrocytes will ensure a rapid removal and limit the influence of K+ released into the extracellular space. This expression pattern suggests that channels formed by Kv2.1 are poised to provide a role in the regulation of neuronal dendritic excitability.
Collapse
Affiliation(s)
- J Du
- Laboratory of Cellular and Molecular Neurophysiology, NICHD-NIH, USA
| | | | | | | |
Collapse
|
2477
|
Somogyi P, Tamás G, Lujan R, Buhl EH. Salient features of synaptic organisation in the cerebral cortex. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1998; 26:113-35. [PMID: 9651498 DOI: 10.1016/s0165-0173(97)00061-1] [Citation(s) in RCA: 644] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The neuronal and synaptic organisation of the cerebral cortex appears exceedingly complex, and the definition of a basic cortical circuit in terms of defined classes of cells and connections is necessary to facilitate progress of its analysis. During the last two decades quantitative studies of the synaptic connectivity of identified cortical neurones and their molecular dissection revealed a number of general rules that apply to all areas of cortex. In this review, first the precise location of postsynaptic GABA and glutamate receptors is examined at cortical synapses, in order to define the site of synaptic interactions. It is argued that, due to the exclusion of G protein-coupled receptors from the postsynaptic density, the presence of extrasynaptic receptors and the molecular compartmentalisation of the postsynaptic membrane, the synapse should include membrane areas beyond the membrane specialisation. Subsequently, the following organisational principles are examined: 1. The cerebral cortex consists of: (i) a large population of principal neurones reciprocally connected to the thalamus and to each other via axon collaterals releasing excitatory amino acids, and, (ii) a smaller population of mainly local circuit GABAergic neurones. 2. Differential reciprocal connections are also formed amongst GABAergic neurones. 3. All extrinsic and intracortical glutamatergic pathways terminate on both the principal and the GABAergic neurones, differentially weighted according to the pathway. 4. Synapses of multiple sets of glutamatergic and GABAergic afferents subdivide the surface of cortical neurones and are often co-aligned on the dendritic domain. 5. A unique feature of the cortex is the GABAergic axo-axonic cell, influencing principal cells through GABAA receptors at synapses located exclusively on the axon initial segment. The analysis of these salient features of connectivity has revealed a remarkably selective array of connections, yet a highly adaptable design of the basic circuit emerges when comparisons are made between cortical areas or layers. The basic circuit is most obvious in the hippocampus where a relatively homogeneous set of spatially aligned principal cells allows an easy visualization of the organisational rules. Those principles which have been examined in the isocortex proved to be identical or very similar. In the isocortex, the basic circuit, scaled to specific requirements, is repeated in each layer. As multiple sets of output neurones evolved, requiring subtly different needs for their inputs, the basic circuit may be superimposed several times in the same layer. Tangential intralaminar connections in both the hippocampus and isocortex also connect output neurones with similar properties, as best seen in the patchy connections in the isocortex. The additional radial superposition of several laminae of distinct sets of output neurones, each representing and supported by its basic circuit, requires a co-ordination of their activity that is mediated by highly selective interlaminar connections, involving both the GABAergic and the excitatory amino acid releasing neurones. The remarkable specificity in the geometry of cells and the selectivity in placement of neurotransmitter receptors and synapses on their surface, strongly suggest a predominant role for time in the coding of information, but this does not exclude an important role also for the rate of action potential discharge in cortical representation of information.
Collapse
Affiliation(s)
- P Somogyi
- Medical Research Council, Anatomical Neuropharmacology Unit, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3TH, UK.
| | | | | | | |
Collapse
|
2478
|
Blasco-Ibáñez JM, Martínez-Guijarro FJ, Freund TF. Enkephalin-containing interneurons are specialized to innervate other interneurons in the hippocampal CA1 region of the rat and guinea-pig. Eur J Neurosci 1998; 10:1784-95. [PMID: 9751150 DOI: 10.1046/j.1460-9568.1998.00190.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Enkephalins are known to have a profound effect on hippocampal inhibition, but the possible endogenous source of these neuropeptides, and their relationship to inhibitory interneurons is still to be identified. In the present study we analysed the morphological characteristics of met-enkephalin-immunoreactive cells in the CA1 region of the rat and guinea-pig hippocampus, their coexistence with other neuronal markers and their target selectivity at the light and electron microscopic levels. Several interneurons in all subfields of the hippocampus were found to be immunoreactive for met-enkephalin. In the guinea-pig, fibres arising from immunoreactive interneurons were seen to form a plexus in the stratum oriens/alveus border zone, and basket-like arrays of boutons on both enkephalin-immunoreactive and immunonegative cell bodies in all strata. Immunoreactive boutons always established symmetric synaptic contacts on somata and dendritic shafts. Enkephalin-immunoreactive cells co-localized GABA, vasoactive intestinal polypeptide and calretinin. Postembedding immunogold staining for GABA showed that all the analysed enkephalin-immunoreactive boutons contacted GABAergic postsynaptic structures. In double-immunostained sections, enkephalin-positive axons were seen to innervate calbindin D28k-, somatostatin-, calretinin- and vasoactive intestinal polypeptideimmunoreactive cells with multiple contacts. Based on these characteristics, enkephalin-containing cells in the hippocampus are classified as interneurons specialized to innervate other interneurons, and represent a subset of vasoactive intestinal polypeptide- and calretinin-containing cells. The striking match of ligand and receptor distribution in the case of enkephalin-mediated interneuronal communication suggests that this neuropeptide may play an important role in the synchronization and timing of inhibition involved in rhythmic network activities of the hippocampus.
Collapse
Affiliation(s)
- J M Blasco-Ibáñez
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.
| | | | | |
Collapse
|
2479
|
Dentate gyrus basket cell GABAA receptors are blocked by Zn2+ via changes of their desensitization kinetics: an in situ patch-clamp and single-cell PCR study. J Neurosci 1998. [PMID: 9502804 DOI: 10.1523/jneurosci.18-07-02437.1998] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Although GABA type A receptors (GABAARs) in principal cells have been studied in detail, there is only limited information about GABAARs in interneurons. We have used the patch-clamp technique in acute rat hippocampal slices in combination with single-cell PCR to determine kinetic, pharmacological, and structural properties of dentate gyrus basket cell GABAARs. Application of 1 mM GABA (100 msec) to nucleated patches via a piezo-driven fast application device resulted in a current with a fast rise and a marked biexponential decay (time constants 2.4 and 61.8 msec). This decay could be attributed to strong receptor desensitization. Dose-response curves for the peak and the slow component yielded EC50 values of 139 and 24 microM, respectively. Zn2+ caused a marked blocking effect on both the peak and the slow component via a noncompetitive mechanism (IC50 values of 8 and 16 microM). This led to an acceleration of the slow component as well as a prolongation of recovery from desensitization. Zn2+ sensitivity was suggested to depend on the absence of gamma-subunits in GABAARs. To test this hypothesis we performed single-cell reverse transcription PCR that revealed primarily the presence of alpha2-, beta2-, beta3-, gamma1-, and gamma2-subunit mRNAs. In addition, flunitrazepam increased the receptor affinity for its agonist, indicating the presence of functional benzodiazepine binding sites, i.e., gamma-subunits. Thus, additional factors seem to co-determine the Zn2+ sensitivity of native GABAARs. The modulatory effects of Zn2+ on GABAAR desensitization suggest direct influences on synaptic integration via changes in inhibition and shunting at GABAergic synapses.
Collapse
|
2480
|
Bulloch K, Milner TA, Prasad A, Hsu M, Buzsaki G, McEwen BS. Induction of calcitonin gene-related peptide-like immunoreactivity in hippocampal neurons following ischemia: a putative regional modulator of the CNS injury/immune response. Exp Neurol 1998; 150:195-205. [PMID: 9527888 DOI: 10.1006/exnr.1997.6765] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Calcitonin gene-related peptide (CGRP) is a potent vasodilator and immune cell modulator. In two studies within the hippocampal formation (HF), CGRP-like immunoreactivity (CGRP-LI) was increased in the inner molecular layer of the dentate gyrus after adrenalectomy and in mossy cells after colchicine-induced destruction of granule neurons. Given the increase in CGRP-LI following damage to the granule cell region of the HF, we investigated another trauma model, ischemia, that targeted different areas of the HF, CA1 region, and subiculum to ascertain the regional expression of this peptide after insult. Following ischemia, light microscopic evaluation showed CGRP-LI in basket cell-like neuronal perikarya within the dorsal subiculum and CA1 region of the hippocampus and in varicose fibers within the CA2 region of the hippocampus. Control rats rarely expressed CGRP-LI within neurons in these regions. In ischemic brains, double-labeled immunocytochemistry with antibodies to various neural markers demonstrated co-localization of CGRP-LI primarily within surviving subicular and CA1 cells resembling interneurons containing parvalbumin-LI or calbindin-LI. Electron microscopic analysis of the CA1 region from ischemic brains showed that CGRP-LI was contained in terminals with numerous small synaptic vesicles that formed symmetric synapses with perikarya and large dendrites of pyramidal cells, some of which were degenerating. Collectively, the data from this study and our previous study indicate that damage induces CGRP-LI expression in interneurons and nonprincipal cells in the area of damage, and we hypothesize that CGRP expression in surviving neurons within damage-related regions of the hippocampus is likely to be an important, and possibly a protective, component of the response of the nervous system to injury.
Collapse
Affiliation(s)
- K Bulloch
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, New York 10021, USA.
| | | | | | | | | | | |
Collapse
|
2481
|
Wheal HV, Bernard C, Chad JE, Cannon RC. Pro-epileptic changes in synaptic function can be accompanied by pro-epileptic changes in neuronal excitability. Trends Neurosci 1998; 21:167-74. [PMID: 9554727 DOI: 10.1016/s0166-2236(97)01182-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Repetitive sensory input, stroboscopic lights or repeated sounds can induce epileptic seizures in susceptible individuals. In order to understand the process we have to consider multiple factors. The output of a set of neurones is determined by the amount of excitatory synaptic input, the degree of positive feedback and their inherent electrical excitability, which can be modified by synaptic inhibition. Recent research has shown that it is possible to separate these phenomena, and that they do not always behave in unison.
Collapse
Affiliation(s)
- H V Wheal
- Neuroscience Research Group, School of Biological Sciences, University of Southampton, UK
| | | | | | | |
Collapse
|
2482
|
Sík A, Hájos N, Gulácsi A, Mody I, Freund TF. The absence of a major Ca2+ signaling pathway in GABAergic neurons of the hippocampus. Proc Natl Acad Sci U S A 1998; 95:3245-50. [PMID: 9501248 PMCID: PMC19727 DOI: 10.1073/pnas.95.6.3245] [Citation(s) in RCA: 157] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/1997] [Accepted: 01/22/1998] [Indexed: 02/06/2023] Open
Abstract
The Ca2+/calmodulin-dependent protein phosphatase 2B or calcineurin (CN) participates in several Ca2+-dependent signal transduction cascades and, thus, contributes to the short and long term regulation of neuronal excitability. By using a specific antibody to CN, we demonstrate its absence from hippocampal interneurons and illustrate a physiological consequence of such CN deficiency. Consistent with the lack of CN in interneurons as detected by immunocytochemistry, the CN inhibitors FK-506 or okadaic acid significantly prolonged N-methyl-D-aspartate channel openings recorded in the cell-attached mode in hippocampal principal cells but not those recorded in interneurons. Interneurons were also devoid of Ca2+/calmodulin-dependent protein kinase IIalpha, yet many of their nuclei contained the cyclic AMP-responsive element binding protein. On the basis of the CN and Ca2+/calmodulin-dependent protein kinase IIalpha deficiency of interneurons, entirely different biochemical mechanisms are expected to govern Ca2+-dependent neuronal plasticity in interneurons versus principal cells.
Collapse
Affiliation(s)
- A Sík
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Szigony utca 43, Budapest, H-1083, Hungary
| | | | | | | | | |
Collapse
|
2483
|
Hájos N, Papp EC, Acsády L, Levey AI, Freund TF. Distinct interneuron types express m2 muscarinic receptor immunoreactivity on their dendrites or axon terminals in the hippocampus. Neuroscience 1998; 82:355-76. [PMID: 9466448 DOI: 10.1016/s0306-4522(97)00300-x] [Citation(s) in RCA: 165] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
In previous studies m2 muscarinic acetylcholine receptor-immunoreactive interneurons and various types of m2-positive axon terminals have been described in the hippocampal formation. The aim of the present study was to identify the types of interneurons expressing m2 receptor and to examine whether the somadendritic and axonal m2 immunostaining labels the same or distinct cell populations. In the CA1 subfield, neurons immunoreactive for m2 have horizontal dendrites, they are located at the stratum oriens/alveus border and have an axon that project to the dendritic region of pyramidal cells. In the CA3 subfield and the hilus, m2-positive neurons are multipolar and are scattered in all layers except stratum lacunosum-moleculare. In stratum pyramidale of the CA1 and CA3 regions, striking axon terminal staining for m2 was observed, surrounding the somata and axon initial segments of pyramidal cells in a basket-like manner. The co-localization of m2 with neurochemical markers and GABA was studied using the "mirror" technique and fluorescent double-immunostaining at the light microscopic level and with double-labelling using colloidal gold-conjugated antisera and immunoperoxidase reaction (diaminobenzidine) at the electron microscopic level. GABA was shown to be present in the somata of most m2-immunoreactive interneurons, as well as in the majority of m2-positive terminals in all layers. The calcium-binding protein parvalbumin was absent from practically all m2-immunoreactive cell bodies and dendrites. In contrast, many of the terminals synapsing on pyramidal cell somata and axon initial segments co-localized parvalbumin and m2, suggesting a differential distribution of m2 receptor immunoreactivity on the axonal and somadendritic membrane of parvalbumin-containing basket and axo-axonic cells. The co-existence of m2 receptors with the calcium-binding protein calbindin and the neuropeptides cholecystokinin and vasoactive intestinal polypeptide was rare throughout the hippocampal formation. Only calretinin and somatostatin showed an appreciable degree of co-localization with m2 (20% and 15%, respectively). Using retrograde tracing, some of the m2-positive cells in stratum oriens were shown to project to the medial septum, accouting for 38% of all projection neurons. The present results demonstrate that there is a differential distribution of m2 receptor immunoreactivity on the axonal vs the somadendritic membranes of distinct interneuron types and suggest that acetylcholine via m2 receptors may reduce GABA release presynaptically from the terminals of perisomatic inhibitory cells, while it may act to increase the activity of another class of interneuron, which innervates the dendritic region of pyramidal cells.
Collapse
Affiliation(s)
- N Hájos
- Institute of Experimental Medicine, Hungarian Academy of Science, Budapest
| | | | | | | | | |
Collapse
|
2484
|
Abstract
Although two kinetically distinct evoked GABAA responses (GABAA,fast and GABAA,slow) have been observed in CA1 pyramidal neurons, studies of spontaneous IPSCs (sIPSCs) in these neurons have reported only a single population of events that resemble GABAA,fast in their rise and decay kinetics. The absence of slow sIPSCs calls into question the synaptic basis of GABAA,slow. We present evidence here that both evoked responses are synaptic in origin, because two classes of minimally evoked, spontaneous and miniature IPSCs exist that correspond to GABAA,fast and GABAA,slow. Slow sIPSCs occur infrequently, suggesting that the cells underlying these events have a low spontaneous firing rate, unlike the cells giving rise to fast sIPSCs. Like evoked GABAA,fast and GABAA,slow, fast and slow sIPSCs are modulated differentially by furosemide, a subtype-specific GABAA antagonist. Furosemide blocks fast IPSCs by acting directly on the postsynaptic receptors, because it reduces the amplitude of both miniature IPSCs and the responses of excised patches to applied GABA. Thus, in the hippocampus, parallel inhibitory circuits are composed of separate populations of interneurons that contact anatomically segregated and pharmacologically distinct postsynaptic receptors.
Collapse
|
2485
|
Acetylcholine activates an alpha-bungarotoxin-sensitive nicotinic current in rat hippocampal interneurons, but not pyramidal cells. J Neurosci 1998. [PMID: 9454829 DOI: 10.1523/jneurosci.18-04-01187.1998] [Citation(s) in RCA: 288] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The effects of acetylcholine on both pyramidal neurons and interneurons in the area CA1 of the rat hippocampus were examined, using intracellular recording techniques in an in vitro slice preparation. In current-clamp mode, fast local application of acetylcholine (ACh) to the soma of inhibitory interneurons in stratum radiatum resulted in depolarization and rapid firing of action potentials. Under voltage-clamp, ACh produced fast, rapidly desensitizing inward currents that were insensitive to atropine but that were blocked by nanomolar concentrations of the nicotinic alpha7 receptor-selective antagonists alpha-bungarotoxin (alphaBgTx) and methyllycaconitine. Nicotinic receptor antagonists that are not selective for alpha7-containing receptors had little (mecamylamine) or no effect (dihydro-beta-erythroidine) on the ACh-induced currents. Glutamate receptor antagonists had no effect on the ACh-evoked response, indicating that the current was not mediated by presynaptic facilitation of glutamate release. However, the current could be desensitized almost completely by bath superfusion with 100 nM nicotine. In contrast to those actions on interneurons, application of ACh to the soma of CA1 pyramidal cells did not produce a detectable current. Radioligand-binding experiments with [125I]-alphaBgTx demonstrated that stratum radiatum interneurons express alpha7-containing nAChRs, and in situ hybridization revealed significant amounts of alpha7 mRNA. CA1 pyramidal cells did not show specific binding of [125I]-alphaBgTx and only low levels of alpha7 mRNA. These results suggest that, in addition to their proposed presynaptic role in modulating transmitter release, alpha7-containing nAChRs also may play a postsynaptic role in the excitation of hippocampal interneurons. By desensitizing these receptors, nicotine may disrupt this action and indirectly excite pyramidal neurons by reducing GABAergic inhibition.
Collapse
|
2486
|
Levy WB, Desmond NL, Zhang DX. Perforant path activation modulates the induction of long-term potentiation of the schaffer collateral--hippocampal CA1 response: theoretical and experimental analyses. Learn Mem 1998; 4:510-8. [PMID: 10701875 DOI: 10.1101/lm.4.6.510] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In one computational model of hippocampal function, the entorhinal cortical input to CA1 is hypothesized to play a key role in the ability of CA1 to decode CA3 recodings. Here, we develop a modification of this CA1 decoder hypothesis that is applicable to several computational theories of hippocampal function, and then we electrophysiologically investigate one assumption of this new hypothesis. First, using biologically realistic estimates, we calculate that CA3-induced CA1 excitation is too high and that inhibition plausibly plays a role in this CA1 decoder model. Thus motivated, we turn to a physiological demonstration to substantiate the plausibility of the proposed mechanism. Using the rat hippocampal slice, we examine an interlaminar interaction between the distal perforant path input to hippocampal CA1 stratum moleculare and the more proximal Schaffer collateral input to stratum radiatum. Perforant path activation provides sufficient inhibition to block homosynaptic long-term potentiation elicited by a suitably strong stratum radiatum input. For this interlaminar interaction to be most effective, perforant path activation must both precede and follow Schaffer collateral activation. Perforant path-evoked inhibition in CA1 can thus serve as a viable mechanism in the learned decoder theory of hippocampal CA1.
Collapse
Affiliation(s)
- W B Levy
- Department of Neurological Surgery, University of Virginia, Charlottesville 22908, USA
| | | | | |
Collapse
|
2487
|
Lübke J, Frotscher M, Spruston N. Specialized electrophysiological properties of anatomically identified neurons in the hilar region of the rat fascia dentata. J Neurophysiol 1998; 79:1518-34. [PMID: 9497429 DOI: 10.1152/jn.1998.79.3.1518] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Because of their strategic position between the granule cell and pyramidal cell layers, neurons of the hilar region of the hippocampal formation are likely to play an important role in the information processing between the entorhinal cortex and the hippocampus proper. Here we present an electrophysiological characterization of anatomically identified neurons in the fascia dentata as studied using patch-pipette recordings and subsequent biocytin-staining of neurons in slices. The resting potential, input resistance (RN), membrane time constant (taum), "sag" in hyperpolarizing responses, maximum firing rate during a 1-s current pulse, spike width, and fast and slow afterhyperpolarizations (AHPs) were determined for several different types of hilar neurons. Basket cells had a dense axonal plexus almost exclusively within the granule cell layer and were distinguishable by their low RN, short taum, lack of sag, and rapid firing rates. Dentate granule cells also lacked sag and were identifiable by their higher RN, longer taum, and lower firing rates than basket cells. Mossy cells had extensive axon collaterals within the hilus and a few long-range collaterals to the inner molecular layer and CA3c and were characterized physiologically by small fast and slow AHPs. Spiny and aspiny hilar interneurons projected primarily either to the inner or outer segment of the molecular layer and had a dense intrahilar axonal plexus, terminating onto somata within the hilus and CA3c. Physiologically, spiny hilar interneurons generally had higher RN values than mossy cells and a smaller slow AHP than aspiny interneurons. The specialized physiological properties of different classes of hilar neurons are likely to be important determinants of their functional operation within the hippocampal circuitry.
Collapse
Affiliation(s)
- J Lübke
- Anatomisches Institut, Albert-Ludwigs-Universität Freiburg, D-79104 Freiburg, Germany
| | | | | |
Collapse
|
2488
|
Mitchell J. Tetanus toxin-enhanced GABA immunoreactivity in living neurons. J Histochem Cytochem 1998; 46:321-6. [PMID: 9487113 DOI: 10.1177/002215549804600305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Analysis of the connectivity between different neuronal cell types is dependent on an appreciation of their dendritic and axonal arborizations. A detailed study of the dendrites and axons of GABAergic neurons has been thwarted by the lack of a suitable technique for enhancing GABA immunoreactivity. This article describes a procedure using tetanus toxin which, when applied to organotypic hippocampal cultures, considerably enhances the immunoreactivity in the dendrites and axons of the GABA- and somatostatin-containing neurons and clearly demonstrates the co-localization of GABA and somatostatin immunoreactivities in the same neuron. Tetanus toxin was applied to the culture medium on Day 14 for a 24-hr period and the cultures were fixed at the end of Day 18. Tetanus toxin-treated cultures (n = 30) or untreated cultures (n = 40) were incubated for either GABA or somatostatin immunoreactivity. Tetanus toxin-treated cultures used for co-localization studies (n = 20) were incubated for both GABA and somatostatin immunoreactivity.
Collapse
Affiliation(s)
- J Mitchell
- Human Morphology, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
2489
|
Ali AB, Deuchars J, Pawelzik H, Thomson AM. CA1 pyramidal to basket and bistratified cell EPSPs: dual intracellular recordings in rat hippocampal slices. J Physiol 1998; 507 ( Pt 1):201-17. [PMID: 9490840 PMCID: PMC2230771 DOI: 10.1111/j.1469-7793.1998.201bu.x] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/1997] [Accepted: 10/06/1997] [Indexed: 02/06/2023] Open
Abstract
1. Dual intracellular recordings in the CA1 region of adult rat hippocampal slices and biocytin filling of synaptically connected cells were used to study the excitatory postsynaptic potentials (EPSPs) elicited in basket (n = 7) and bistratified interneurones (n = 7) by action potentials activated in simultaneously recorded pyramidal cells. 2. Interneurones could be subdivided according to their electrophysiological properties into classical fast spiking, burst firing, regular spiking and fast spiking cells with a rounded spike after-hyperpolarization. These physiological classes did not, however, correlate with morphological type. EPSPs were not recorded in regular spiking cells. 3. Average EPSP amplitudes were larger in bistratified cells (range, 0.5-9 mV) than in basket cells (range, 0. 15-3.6 mV) and the probability of obtaining a pyramidal cell-interneurone EPSP was also higher for the bistratified cells (1:7) than for the basket cells (1:22). EPSP 10-90 % rise times in bistratified cells (0.7-2 ms) and their widths at half-amplitude (3. 9-11.2 ms) were slightly longer than in basket cells (rise times, 0.4-1.6 ms; half-widths, 2.2-9.7 ms). 4. The majority of these EPSPs (6 of 8 tested) increased in amplitude and duration with postsynaptic depolarization, although in two (of 4) basket cells the voltage relation was conventional. 5. All EPSPs tested in both basket (n = 7) and bistratified cells (n = 5) decreased in amplitude with repetitive presynaptic firing. The average amplitudes of second EPSPs elicited within 15 ms of the first were between 34 and 94 % of the average amplitude of the first EPSP. Third and fourth EPSPs in brief trains were further depressed. This depression was associated with an increase in the incidence of apparent failures of transmission indicating a presynaptic locus.
Collapse
Affiliation(s)
- A B Ali
- Department of Physiology, Royal Free Hospital School of Medicine, Rowland Hill Street, London NW3 2PF, UK
| | | | | | | |
Collapse
|
2490
|
Ali AB, Thomson AM. Facilitating pyramid to horizontal oriens-alveus interneurone inputs: dual intracellular recordings in slices of rat hippocampus. J Physiol 1998; 507 ( Pt 1):185-99. [PMID: 9490837 PMCID: PMC2230767 DOI: 10.1111/j.1469-7793.1998.185bu.x] [Citation(s) in RCA: 162] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/1997] [Accepted: 11/18/1997] [Indexed: 02/06/2023] Open
Abstract
1. In adult rat hippocampal slices, simultaneous intracellular recordings from pyramidal cells in CA1 and interneurones near the stratum oriens-alveus border revealed excitatory connections that displayed facilitation on repetitive activation in twelve of thirty-six pairs tested. 2. Postsynaptic interneurones were classified as horizontal oriens-alveus interneurones by the pronounced 'sag' in response to hyperpolarizing current injection, high levels of spontaneous synaptic activity and by the morphology of their somata and dendrites, which were confined to stratum oriens-alveus and their axons which projected to stratum lacunosum-moleculare where they ramified extensively, in the region of entorhinal cortex input to CA1. 3. Excitatory postsynaptic potentials (EPSPs) elicited by single pyramidal cells were 0 to 12 mV in amplitude. Mean EPSP amplitude (single spikes) was 0.93 +/- 1. 06 mV at -70 +/- 2.3 mV (n = 10). The rise time was 1.2 +/- 0.5 ms and the width at half-amplitude was 7.5 +/- 4.7 ms. 4. EPSPs fluctuated greatly in amplitude; the mean coefficient of variation was 0.84 +/- 0.37 for the first EPSP and 0.47 +/- 0.24 for the second. Apparent failures of transmission frequently occurred after first presynaptic spikes but less frequently after the second or subsequent spikes in brief trains. 5. EPSPs displayed facilitation at membrane potentials between -80 mV and spike threshold. Second EPSPs within 20 ms of the first were 253 +/- 48 % (range, 152-324 %) of the mean first EPSP amplitude. Third EPSPs within 60 ms were 266 +/- 70 % (range, 169-389 %) and fourth EPSPs within 60-120 ms were 288 +/- 71 % (range, 188-393 %). Both proportions of apparent failures of transmission and coefficient of variation analysis indicated a presynaptic locus for this facilitation.
Collapse
Affiliation(s)
- A B Ali
- Department of Physiology, Royal Free Hospital School of Medicine, Rowland Hill Street, London NW3 2PF, UK.
| | | |
Collapse
|
2491
|
Garaschuk O, Hanse E, Konnerth A. Developmental profile and synaptic origin of early network oscillations in the CA1 region of rat neonatal hippocampus. J Physiol 1998; 507 ( Pt 1):219-36. [PMID: 9490842 PMCID: PMC2230780 DOI: 10.1111/j.1469-7793.1998.219bu.x] [Citation(s) in RCA: 281] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
1. By applying fura-2-based fluorometric calcium imaging to neonatal rat hippocampal slices we identified a developmentally regulated spontaneous neuronal activity in the CA1 region of the hippocampus. The activity consisted of bursts of intracellular Ca2+ transients recurring synchronously at a slow rate of 0.4-2 min-1 in the entire population of pyramidal neurones and interneurones. 2. These early network oscillations (ENOs) were present during a restricted period of postnatal development. Thus, they were not detected at the day of birth (P0), at P1-P4 they consisted of bursts of large (up to 1.5 microM) Ca2+ transients, gradually transforming into regularly occurring, smaller Ca2+ transients during the subsequent week. Beyond P15-P16 no ENOs were detected. 3. The ENOs were blocked by tetrodotoxin (TTX) and by a reduction in temperature from 33-35 degrees C to 20-22 degrees C. By combining fluorometric imaging with whole-cell current-clamp recordings, we found that each ENO-related Ca2+ transient was associated with a high-frequency (up to 100 Hz) train of action potentials riding on a depolarizing wave. 4. Recordings in the voltage-clamp mode revealed barrages of synaptic currents that were strictly correlated with the ENO-associated Ca2+ transients in neighbouring pyramidal neurones. Perfusing the cells with an intracellular solution that allowed for a discrimination between GABAA and glutamate receptor-mediated currents showed that these barrages of synaptic currents were predominantly of GABAergic origin. 5. The ENOs were totally blocked by the GABAA receptor antagonist bicuculline and they were also substantially reduced by the glutamatergic antagonists D,L-2-amino-5-phosphonovaleric acid (D, L-APV) and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). 6. Synaptic stimulation and application of the GABAA receptor agonist muscimol mimicked the spontaneous Ca2+ transients in pyramidal neurones. The efficacy of muscimol in evoking Ca2+ transients decreased during development in parallel with the gradual disappearance of the ENOs. 7. The developmental decrease in the amplitude of ENO-associated Ca2+ transients occurred in parallel with the transformation of the excitatory synaptic transmission in the hippocampus from the immature GABAergic to the mature glutamatergic form. Thus, at the beginning of the first postnatal week single-shock synaptic stimulation produced Ca2+ transients that were completely blocked by bicuculline. At the end of the second postnatal week the same type of evoked synaptic stimulation produced a Ca2+ transient that was little affected by bicuculline but was abolished by the combined application of D,L-APV and CNQX. 8. These results demonstrate the presence of periodic and spontaneous Ca2+ transients in the majority of pyramidal cells and interneurones of the neonatal CA1 hippocampal network. These ENOs exhibit a highly region-specific developmental profile and may control the activity-dependent wiring of the synaptic connectivity during early postnatal development.
Collapse
Affiliation(s)
- O Garaschuk
- I. Physiologisches Institut, Universitat des Saarlandes, 66421 Homburg, Germany
| | | | | |
Collapse
|
2492
|
Abstract
Previous studies have demonstrated that prior synaptic activity can influence the subsequent induction of synaptic plasticity in the brain. Such temporal modulation of synaptic plasticity has been called "metaplasticity." In this report, we describe the facilitatory effects of high-frequency stimulation on the induction of homosynaptic long-term depression (LTD) in the CA1 region of the rat hippocampus. The LTD induced by low-frequency stimulation (1 Hz) protocols was found to be homosynaptic and NMDA receptor-dependent. The facilitatory effects of the high-frequency stimulation-induced priming event itself were found to be NMDA receptor-independent and to have a duration of at least 90 min. The effects of priming also were heterosynaptic, because the induction of synaptic plasticity by low-frequency stimulation was enhanced at an unprimed synaptic pathway after the priming of an independent pathway. In addition to enhancing LTD, priming also enhanced the reversal of long-term potentiation elicited by a 5 Hz depotentiation protocol. Our results provide examples of how metaplasticity may play a key role in the ongoing modulation of the induction and stabilization of alterations in synaptic strength.
Collapse
|
2493
|
Ermentrout GB, Kopell N. Fine structure of neural spiking and synchronization in the presence of conduction delays. Proc Natl Acad Sci U S A 1998; 95:1259-64. [PMID: 9448319 PMCID: PMC18738 DOI: 10.1073/pnas.95.3.1259] [Citation(s) in RCA: 167] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Hippocampal networks of excitatory and inhibitory neurons that produce gamma-frequency rhythms display behavior in which the inhibitory cells produce spike doublets when there is strong stimulation at separated sites. It has been suggested that the doublets play a key role in the ability to synchronize over a distance. Here we analyze the mechanisms by which timing in the spike doublet can affect the synchronization process. The analysis describes two independent effects: one comes from the timing of excitation from separated local circuits to an inhibitory cell, and the other comes from the timing of inhibition from separated local circuits to an excitatory cell. We show that a network with both of these effects has different synchronization properties than a network with either excitatory or inhibitory type of coupling alone, and we give a rationale for the shorter space scales associated with inhibitory interactions.
Collapse
Affiliation(s)
- G B Ermentrout
- Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | |
Collapse
|
2494
|
Penttonen M, Kamondi A, Acsády L, Buzsáki G. Gamma frequency oscillation in the hippocampus of the rat: intracellular analysis in vivo. Eur J Neurosci 1998; 10:718-28. [PMID: 9749733 DOI: 10.1046/j.1460-9568.1998.00096.x] [Citation(s) in RCA: 266] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Gamma frequency field oscillations reflect synchronized synaptic potentials in neuronal populations within the approximately 10-40 ms range. The generation of gamma activity in the hippocampus was investigated by intracellular recording from principal cells and basket cells in urethane anaesthetized rats. The recorded neurones were verified by intracellular injection of biocytin. Gamma frequency field oscillations were nested within the slower theta waves. The phase and amplitude of intracellular gamma were voltage dependent with an almost complete phase reversal at Cl- equilibrium potential in pyramidal cells. Basket cells fired at gamma frequency and were phase-locked to the same phase of the gamma oscillation as pyramidal cells. Current-induced depolarization coupled with synaptically induced inhibition resulted in gamma frequency discharge (30-80 Hz) of pyramidal cells without accommodation. These observations suggest that at least part of the gamma frequency field oscillation reflects rhythmic hyperpolarization of principal cells, brought about by the rhythmically discharging basket neurones. Resonant properties of pyramidal cells might facilitate network synchrony in the gamma frequency range.
Collapse
Affiliation(s)
- M Penttonen
- Center for Molecular and Behavioural Neuroscience, Rutgers, The State University of New Jersey, Newark 07102, USA
| | | | | | | |
Collapse
|
2495
|
Baraban SC, Schwartzkroin PA. Effects of hyposmolar solutions on membrane currents of hippocampal interneurons and mossy cells in vitro. J Neurophysiol 1998; 79:1108-12. [PMID: 9463467 DOI: 10.1152/jn.1998.79.2.1108] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Whole cell voltage-clamp recordings in rat hippocampal slices were used to investigate the effect of changes in extracellular osmolarity on voltage-activated potassium currents. Currents were evoked from oriens/alveus (O/A) interneurons, hilar interneurons, and mossy cells. Hyposmolar external solutions produced a significant potentiation of K+ current recorded from O/A and hilar interneurons, but not from mossy cells. Hyposmolar solutions also dramatically potentiated the spontaneous excitatory postsynaptic currents recorded from mossy cells. These results suggest that hippocampal excitability can be modulated by the complex actions exerted by changes in extracellular osmolarity.
Collapse
Affiliation(s)
- S C Baraban
- Department of Neurological Surgery, University of Washington, Seattle, Washington 98195, USA
| | | |
Collapse
|
2496
|
Vida I, Halasy K, Szinyei C, Somogyi P, Buhl EH. Unitary IPSPs evoked by interneurons at the stratum radiatum-stratum lacunosum-moleculare border in the CA1 area of the rat hippocampus in vitro. J Physiol 1998; 506 ( Pt 3):755-73. [PMID: 9503336 PMCID: PMC2230758 DOI: 10.1111/j.1469-7793.1998.755bv.x] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/1997] [Accepted: 09/25/1997] [Indexed: 02/06/2023] Open
Abstract
1. Hippocampal non-principal neurons at the stratum radiatum-stratum lacunosum-moleculare border (R-LM interneurons) of the CA1 area may constitute several cell classes and have been implicated in the generation of GABAergic unitary IPSPs. Using biocytin-filled electrodes we recorded R-LM interneurons intracellularly in vitro and determined their postsynaptic effects in concomitantly recorded pyramidal cells. 2. Light microscopic analysis revealed four populations of R-LM interneurons with distinct axons: (1) basket cells (n = 4) with axons predominantly ramifying in the pyramidal cell layer; (2) Schaffer collateral/commissural pathway-associated interneurons (n = 10) stratifying in stratum radiatum and, to a lesser extent, stratum oriens; (3) perforant pathway-associated interneurons (n = 6) innervating the perforant path termination zone in stratum lacunosum-moleculare of the CA1 area as well as equivalent portions of the dentate gyrus and subiculum; and (4) neurogliaform interneurons (n = 2) characterized by their dense, compact axonal and dendritic arbour. 3. Random electron microscopic sampling of synaptic targets revealed a preponderance of pyramidal neurons as postsynaptic elements. Basket cells had a synaptic target preference for somata and proximal dendrites, whereas the remainder of R-LM interneurons innervated dendritic shafts and spines. The axon of dendrite-targeting cells formed up to six putative contacts with individual postsynatpic pyramidal cells. 4. Anatomically recovered R-LM interneurons (n = 22) had a mean resting membrane potential of -56.7 +/- 3.6 mV, a membrane time constant of 12.9 +/- 7.7 ms and an input resistance of 86.4 +/- 29.2 M omega. Depolarizing current pulses generally elicited overshooting action potentials (70.8 +/- 6.9 mV) which had a mean duration, when measured at half-amplitude, of 0.7 +/- 0.1 ms. In response to prolonged (> 200 ms) depolarizing current pulses all R-LM interneurons displayed (a varying degree of) spike frequency adaptation. 5. Basket cells, Schaffer-associated and neurogliaform interneurons elicited small-amplitude (< 2 mV), short-latency IPSPs in postsynaptic pyramids (n = 5, 13 and 1, respectively). Those interactions in which an effect was elicited with the repetitive activation of the presynaptic neuron (n = 13) showed a substantial degree of postsynaptic response summation. Unitary IPSPs had fast kinetics and, whenever tested (n = 5; 1 basket cell and 4 Schaffer-associated interneurons), were abolished by the GABAA receptor antagonist bicuculline. 6. Thus, R-LM interneurons comprise several distinct populations which evoke fast GABAA receptor mediated IPSPs. The domain-specific innervation of postsynaptic pyramidal cells suggests functionally diverse effects on the integration of afferent information in functionally non-equivalent compartments of pyramidal cells.
Collapse
Affiliation(s)
- I Vida
- Department of Pharmacology, Oxford University, UK
| | | | | | | | | |
Collapse
|
2497
|
De Biasi S, Bendotti C. A simplified procedure for the physical development of the sulphide silver method to reveal synaptic zinc in combination with immunocytochemistry at light and electron microscopy. J Neurosci Methods 1998; 79:87-96. [PMID: 9531464 DOI: 10.1016/s0165-0270(97)00169-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The pool of zinc present in excitatory synaptic terminals in normal and pathological conditions (for instance the status epilepticus induced by kainic acid) can be stained by a silver sulphide method followed by physical development of the insoluble zinc-sulphide complexes. In this study we applied a previously described simple and rapid developing procedure that reveals synaptic zinc, to the study of normal and pathological hippocampi and combined it with pre and postembedding immunocytochemical methods to detect different antigens. Normal and kainic acid-treated rats were perfused with fixative solutions containing sodium sulphide and 50 microm-thick vibratome sections of the hippocampi were incubated in a commercial developing solution (IntenSE M, Amersham). The developed vibratome sections were then (1) mounted for light microscopy or osmicated and epon-embedded for electron microscopy; or (2) processed for the preembedding immunoenzymatic detection of various antigens (GABA, parvalbumin, calbindin) with light and electron microscopy. Thin sections from epon-embedded samples were also processed for the postembedding immunogold localization of glutamate. This very simple and rapid procedure gives rise to zinc-specific staining, comparable to that obtained with classical developing methods and good preservation of both antigenicity and ultrastructure. It is therefore possible to detect, in the same thick or thin section, zinc reaction product and different antigens.
Collapse
Affiliation(s)
- S De Biasi
- Department of General Physiology and Biochemistry, University of Milano, Italy.
| | | |
Collapse
|
2498
|
Abstract
Gamma frequency field oscillations (40-100 Hz) are nested within theta oscillations in the dentate-hilar and CA1-CA3 regions of the hippocampus during exploratory behaviors. These oscillations reflect synchronized synaptic potentials that entrain the discharge of neuronal populations within the approximately 10-25 msec range. Using multisite recordings in freely behaving rats, we examined gamma oscillations within the superficial layers (I-III) of the entorhinal cortex. These oscillations increased in amplitude and regularity in association with entorhinal theta waves. Gamma waves showed an amplitude minimum and reversed in phase near the perisomatic region of layer II, indicating that they represent synchronized synaptic potentials impinging on layer II-III neurons. Theta and gamma oscillations in the entorhinal cortex were coupled with theta and gamma oscillations in the dentate hilar region. The majority of layer II-III neurons discharged irregularly but were phase-related to the negative peak of the local (layer II-III) gamma field oscillation. These findings demonstrate that layer II-III neurons discharge in temporally defined gamma windows (approximately 10-25 msec) coupled to the theta cycle. This transient temporal framework, which emerges in both the entorhinal cortex and the hippocampus, may allow spatially distributed subpopulations to form temporally defined ensembles. We speculate that the theta-gamma pattern in the discharge of these neurons is essential for effective neuronal communication and synaptic plasticity in the perforant pathway.
Collapse
|
2499
|
Mrzljak L, Levey AI, Belcher S, Goldman-Rakic P. Localization of the m2 muscarinic acetylcholine receptor protein and mRNA in cortical neurons of the normal and cholinergically deafferented rhesus monkey. J Comp Neurol 1998. [DOI: 10.1002/(sici)1096-9861(19980105)390:1<112::aid-cne10>3.0.co;2-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
2500
|
Yan XX, Toth Z, Schultz L, Ribak CE, Baram TZ. Corticotropin-releasing hormone (CRH)-containing neurons in the immature rat hippocampal formation: light and electron microscopic features and colocalization with glutamate decarboxylase and parvalbumin. Hippocampus 1998; 8:231-43. [PMID: 9662138 PMCID: PMC3387930 DOI: 10.1002/(sici)1098-1063(1998)8:3<231::aid-hipo6>3.0.co;2-m] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Corticotropin-releasing hormone (CRH) excites hippocampal neurons and induces death of selected CA3 pyramidal cells in immature rats. These actions of CRH require activation of specific receptors that are abundant in CA3 during early postnatal development. Given the dramatic effects of CRH on hippocampal neurons and the absence of CRH-containing afferents to this region, we hypothesized that a significant population of CRHergic neurons exists in developing rat hippocampus. This study defined and characterized hippocampal CRH-containing cells by using immunocytochemistry, ultrastructural examination, and colocalization with gamma-aminobutyric acid (GABA)-synthesizing enzyme and calcium-binding proteins. Numerous, large CRH-immunoreactive (ir) neurons were demonstrated in CA3 strata pyramidale and oriens, fewer were observed in the corresponding layers of CA1, and smaller CRH-ir cells were found in stratum lacunosum-moleculare of Ammon's horn. In the dentate gyrus, CRH-ir somata resided in the granule cell layer and hilus. Ultrastructurally, CRH-ir neurons had aspiny dendrites and were postsynaptic to both asymmetric and symmetric synapses. CRH-ir axon terminals formed axosomatic and axodendritic symmetric synapses with pyramidal and granule cells. Other CRH-ir terminals synapsed on axon initial segments of principal neurons. Most CRH-ir neurons were coimmunolabeled for glutamate decarboxylase (GAD)-65 and GAD-67 and the majority also contained parvalbumin, but none were labeled for calbindin. These results confirm the identity of hippocampal CRH-ir cells as GABAergic interneurons. Further, a subpopulation of neurons immunoreactive for both CRH and parvalbumin and located within and adjacent to the principal cell layers consists of basket and chandelier cells. Thus, axon terminals of CRH-ir interneurons are strategically positioned to influence the excitability of the principal hippocampal neurons via release of both CRH and GABA.
Collapse
Affiliation(s)
- Xiao-Xin Yan
- Departments of Anatomy and Neurobiology, University of California at Irvine, Irvine, California
| | - Zsolt Toth
- Departments of Anatomy and Neurobiology, University of California at Irvine, Irvine, California
| | - Linda Schultz
- Departments of Anatomy and Neurobiology, University of California at Irvine, Irvine, California
| | - Charles E. Ribak
- Departments of Anatomy and Neurobiology, University of California at Irvine, Irvine, California
- Correspondence to: Charles E. Ribak, Department of Anatomy and Neurobiology, University of California at Irvine, Irvine, CA 92697-1275.
| | - Tallie Z. Baram
- Departments of Anatomy and Neurobiology, University of California at Irvine, Irvine, California
- Department of Pediatrics, University of California at Irvine, Irvine, California
| |
Collapse
|