2501
|
Urano F, Bertolotti A, Ron D. IRE1 and efferent signaling from the endoplasmic reticulum. J Cell Sci 2000; 113 Pt 21:3697-702. [PMID: 11034898 DOI: 10.1242/jcs.113.21.3697] [Citation(s) in RCA: 188] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genetic analysis of the cellular adaptation to malfolded proteins in the endoplasmic reticulum (the unfolded protein response - UPR) has revealed a novel signaling pathway initiated by activation of IRE1, an ER-resident protein kinase and endonuclease. In yeast, Ire1p activates gene expression by promoting a non-conventional splicing event that converts the mRNA encoding the Hac1p transcription factor from an inefficiently translated inactive mRNA to an actively translated one. Hac1p binds to the promoters of genes encoding chaperones and other targets of the UPR and activates them. Recently, mammalian IRE1 homologues have been identified and their response to ER stress is regulated by binding to the ER chaperone BiP. The mechanisms by which mammalian IRE1 activates gene expression have not been completely characterized and mammalian HAC1 homologues have not been identified. Surprisingly, mammalian IRE1s are able to activate both JUN N-terminal kinases and an alternative ER-stress signaling pathway mediated by the transcription factor ATF6. This indicates that the mammalian UPR is more complex than that found in yeast.
Collapse
Affiliation(s)
- F Urano
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York 10016, USA
| | | | | |
Collapse
|
2502
|
Harding HP, Novoa I, Zhang Y, Zeng H, Wek R, Schapira M, Ron D. Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol Cell 2000; 6:1099-108. [PMID: 11106749 DOI: 10.1016/s1097-2765(00)00108-8] [Citation(s) in RCA: 2491] [Impact Index Per Article: 99.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Protein kinases that phosphorylate the alpha subunit of eukaryotic initiation factor 2 (eIF2alpha) are activated in stressed cells and negatively regulate protein synthesis. Phenotypic analysis of targeted mutations in murine cells reveals a novel role for eIF2alpha kinases in regulating gene expression in the unfolded protein response (UPR) and in amino acid starved cells. When activated by their cognate upstream stress signals, the mammalian eIF2 kinases PERK and GCN2 repress translation of most mRNAs but selectively increase translation of Activating Transcription Factor 4 (ATF4), resulting in the induction of the downstream gene CHOP (GADD153). This is the first example of a mammalian signaling pathway homologous to the well studied yeast general control response in which eIF2alpha phosphorylation activates genes involved in amino acid biosynthesis. Mammalian cells thus utilize an ancient pathway to regulate gene expression in response to diverse stress signals.
Collapse
Affiliation(s)
- H P Harding
- Skirball Institute of Biomolecular Medicine The Department of Medicine, Kaplan Cancer Center New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | | | | | |
Collapse
|
2503
|
Regulation of hemoglobin synthesis and proliferation of differentiating erythroid cells by heme-regulated eIF-2α kinase. Blood 2000. [DOI: 10.1182/blood.v96.9.3241.h8003241_3241_3248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Protein synthesis in reticulocytes depends on the availability of heme. In heme deficiency, inhibition of protein synthesis correlates with the activation of heme-regulated eIF-2α kinase (HRI), which blocks the initiation of protein synthesis by phosphorylating eIF-2α. HRI is a hemoprotein with 2 distinct heme-binding domains. Heme negatively regulates HRI activity by binding directly to HRI. To further study the physiological function of HRI, the wild-type (Wt) HRI and dominant-negative inactive mutants of HRI were expressed by retrovirus-mediated transfer in both non-erythroid NIH 3T3 and mouse erythroleukemic (MEL) cells. Expression of Wt HRI in 3T3 cells resulted in the inhibition of protein synthesis, a loss of proliferation, and eventually cell death. Expression of the inactive HRI mutants had no apparent effect on the growth characteristics or morphology of NIH 3T3 cells. In contrast, expression of 3 dominant-negative inactive mutants of HRI in MEL cells resulted in increased hemoglobin production and increased proliferative capacity of these cells upon dimethyl-sulfoxide induction of erythroid differentiation. These results directly demonstrate the importance of HRI in the regulation of protein synthesis in immature erythroid cells and suggest a role of HRI in the regulation of the numbers of matured erythroid cells.
Collapse
|
2504
|
Kokame K, Agarwala KL, Kato H, Miyata T. Herp, a new ubiquitin-like membrane protein induced by endoplasmic reticulum stress. J Biol Chem 2000; 275:32846-53. [PMID: 10922362 DOI: 10.1074/jbc.m002063200] [Citation(s) in RCA: 259] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hyperhomocysteinemia, a risk factor for vascular disease, injures endothelial cells through undefined mechanisms. We previously identified several homocysteine-responsive genes in cultured human vascular endothelial cells, including the endoplasmic reticulum (ER)-resident molecular chaperone GRP78/BiP. Here, we demonstrate that homocysteine induces the ER stress response and leads to the expression of a novel protein, Herp, containing a ubiquitin-like domain at the N terminus. mRNA expression of Herp was strongly up-regulated by inducers of ER stress, including mercaptoethanol, tunicamycin, A23187, and thapsigargin. The ER stress-dependent induction of Herp was also observed at the protein level. Immunochemical analyses using Herp-specific antibodies indicated that Herp is a 54-kDa, membrane-associated ER protein. Herp is the first integral membrane protein regulated by the ER stress response pathway. Both the N and C termini face the cytoplasmic side of the ER; this membrane topology makes it unlikely that Herp acts as a molecular chaperone for proteins in the ER, in contrast to GRP78 and other ER stress-responsive proteins. Herp may, therefore, play an unknown role in the cellular survival response to stress.
Collapse
Affiliation(s)
- K Kokame
- National Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan.
| | | | | | | |
Collapse
|
2505
|
White BC, Sullivan JM, DeGracia DJ, O'Neil BJ, Neumar RW, Grossman LI, Rafols JA, Krause GS. Brain ischemia and reperfusion: molecular mechanisms of neuronal injury. J Neurol Sci 2000; 179:1-33. [PMID: 11054482 DOI: 10.1016/s0022-510x(00)00386-5] [Citation(s) in RCA: 603] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Brain ischemia and reperfusion engage multiple independently-fatal terminal pathways involving loss of membrane integrity in partitioning ions, progressive proteolysis, and inability to check these processes because of loss of general translation competence and reduced survival signal-transduction. Ischemia results in rapid loss of high-energy phosphate compounds and generalized depolarization, which induces release of glutamate and, in selectively vulnerable neurons (SVNs), opening of both voltage-dependent and glutamate-regulated calcium channels. This allows a large increase in cytosolic Ca(2+) associated with activation of mu-calpain, calcineurin, and phospholipases with consequent proteolysis of calpain substrates (including spectrin and eIF4G), activation of NOS and potentially of Bad, and accumulation of free arachidonic acid, which can induce depletion of Ca(2+) from the ER lumen. A kinase that shuts off translation initiation by phosphorylating the alpha-subunit of eukaryotic initiation factor-2 (eIF2alpha) is activated either by adenosine degradation products or depletion of ER lumenal Ca(2+). Early during reperfusion, oxidative metabolism of arachidonate causes a burst of excess oxygen radicals, iron is released from storage proteins by superoxide-mediated reduction, and NO is generated. These events result in peroxynitrite generation, inappropriate protein nitrosylation, and lipid peroxidation, which ultrastructurally appears to principally damage the plasmalemma of SVNs. The initial recovery of ATP supports very rapid eIF2alpha phosphorylation that in SVNs is prolonged and associated with a major reduction in protein synthesis. High catecholamine levels induced by the ischemic episode itself and/or drug administration down-regulate insulin secretion and induce inhibition of growth-factor receptor tyrosine kinase activity, effects associated with down-regulation of survival signal-transduction through the Ras pathway. Caspase activation occurs during the early hours of reperfusion following mitochondrial release of caspase 9 and cytochrome c. The SVNs find themselves with substantial membrane damage, calpain-mediated proteolytic degradation of eIF4G and cytoskeletal proteins, altered translation initiation mechanisms that substantially reduce total protein synthesis and impose major alterations in message selection, down-regulated survival signal-transduction, and caspase activation. This picture argues powerfully that, for therapy of brain ischemia and reperfusion, the concept of single drug intervention (which has characterized the approaches of basic research, the pharmaceutical industry, and clinical trials) cannot be effective. Although rigorous study of multi-drug protocols is very demanding, effective therapy is likely to require (1) peptide growth factors for early activation of survival-signaling pathways and recovery of translation competence, (2) inhibition of lipid peroxidation, (3) inhibition of calpain, and (4) caspase inhibition. Examination of such protocols will require not only characterization of functional and histopathologic outcome, but also study of biochemical markers of the injury processes to establish the role of each drug.
Collapse
Affiliation(s)
- B C White
- Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, MI, USA.
| | | | | | | | | | | | | | | |
Collapse
|
2506
|
Pan M, Liang JS, Fisher EA, Ginsberg HN. Inhibition of Translocation of Nascent Apolipoprotein B across the Endoplasmic Reticulum Membrane Is Associated with Selective Inhibition of the Synthesis of Apolipoprotein B. J Biol Chem 2000. [DOI: 10.1016/s0021-9258(19)61524-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
2507
|
Yoshida H, Okada T, Haze K, Yanagi H, Yura T, Negishi M, Mori K. ATF6 activated by proteolysis binds in the presence of NF-Y (CBF) directly to the cis-acting element responsible for the mammalian unfolded protein response. Mol Cell Biol 2000; 20:6755-67. [PMID: 10958673 PMCID: PMC86199 DOI: 10.1128/mcb.20.18.6755-6767.2000] [Citation(s) in RCA: 777] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Transcription of genes encoding molecular chaperones and folding enzymes in the endoplasmic reticulum (ER) is induced by accumulation of unfolded proteins in the ER. This intracellular signaling, known as the unfolded protein response (UPR), is mediated by the cis-acting ER stress response element (ERSE) in mammals. In addition to ER chaperones, the mammalian transcription factor CHOP (also called GADD153) is induced by ER stress. We report here that the transcription factor XBP-1 (also called TREB5) is also induced by ER stress and that induction of CHOP and XBP-1 is mediated by ERSE. The ERSE consensus sequence is CCAAT-N(9)-CCACG. As the general transcription factor NF-Y (also known as CBF) binds to CCAAT, CCACG is considered to provide specificity in the mammalian UPR. We recently found that the basic leucine zipper protein ATF6 isolated as a CCACG-binding protein is synthesized as a transmembrane protein in the ER, and ER stress-induced proteolysis produces a soluble form of ATF6 that translocates into the nucleus. We report here that overexpression of soluble ATF6 activates transcription of the CHOP and XBP-1 genes as well as of ER chaperone genes constitutively, whereas overexpression of a dominant negative mutant of ATF6 blocks the induction by ER stress. Furthermore, we demonstrated that soluble ATF6 binds directly to CCACG only when CCAAT exactly 9 bp upstream of CCACG is bound to NF-Y. Based on these and other findings, we concluded that specific and direct interactions between ATF6 and ERSE are critical for transcriptional induction not only of ER chaperones but also of CHOP and XBP-1.
Collapse
Affiliation(s)
- H Yoshida
- HSP Research Institute, Kyoto Research Park, Shimogyo-ku, Japan
| | | | | | | | | | | | | |
Collapse
|
2508
|
Brostrom MA, Reilly BA, Wilson FJ, Brostrom CO. Vasopressin-induced hypertrophy in H9c2 heart-derived myocytes. Int J Biochem Cell Biol 2000; 32:993-1006. [PMID: 11084379 DOI: 10.1016/s1357-2725(00)00037-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Protein synthesis in H9c2 heart-derived myocytes responds biphasically to arginine vasopressin (1 microM). An initial 50% inhibition attributable to Ca(2+) mobilization from the sarcoplasmic/endoplasmic reticulum is followed by a recovery that subsequently converts to a 1.5-fold stimulation. This study was undertaken to ascertain whether vasopressin programs H9c2 cells to undergo hypertrophy or to proliferate and whether early translational inhibition is required for programming. Translational suppression was observed only at vasopressin concentrations (>1 nM) causing extensive (>50%) depletion of Ca(2+) stores and was diminished at supraphysiologic extracellular Ca(2+) concentrations. Stimulation of protein synthesis, by contrast, was unaffected by changes in extracellular Ca(2+), depended on gene transcription, was suppressed by a protein kinase C pseudosubstrate sequence (peptide 19-27), and was observed at pM vasopressin concentrations. Activation of MAP kinases, phosphoinositide 3-kinase, calcineurin, S6 kinase, or eIF4 could not be implicated in the stimulation, which persisted for 24 h. Vasopressin-treated H9c2 cells underwent hypertrophy by standard criteria. Cellular protein accumulation occurred at pM hormone concentrations, was blocked by peptide 19-27, was observed regardless of retinoic acid pretreatment to prevent myogenic transdifferentiation, and preceded full repletion of Ca(2+) stores. It is proposed that H9c2 cells, which possess all basic features of V1-vasopressin receptor signaling, provide a convenient model for investigating vasopressin-induced myocyte hypertrophy. Early translational suppression is not needed for vasopressin-induced H9c2 myocyte hypertrophy whereas activation of protein kinase C appears essential.
Collapse
Affiliation(s)
- M A Brostrom
- Department of Pharmacology, UMDNJ-Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA.
| | | | | | | |
Collapse
|
2509
|
Abstract
Positioning of the translation initiation complex on mRNAs requires interaction between the anticodon of initiator Met-tRNA, associated with eIF2-GTP and 40S ribosomal subunit, and the cognate start codon of the mRNA. We show that an internal ribosome entry site located in the genome of cricket paralysis virus can form 80S ribosomes without initiator Met-tRNA, eIF2, or GTP hydrolysis, with a CCU triplet in the ribosomal P site and a GCU triplet in the A site. P-site mutagenesis revealed that the P site was not decoded, and protein sequence analysis showed that translation initiates at the triplet in the A site. Translational initiation from the A site of the ribosome suggests that the repertoire of translated open reading frames in eukaryotic mRNAs may be greater than anticipated.
Collapse
Affiliation(s)
- J E Wilson
- Department of Microbiology and Immunology, Stanford University School of Medicine, California 94305, USA
| | | | | | | |
Collapse
|
2510
|
Liu CY, Schröder M, Kaufman RJ. Ligand-independent dimerization activates the stress response kinases IRE1 and PERK in the lumen of the endoplasmic reticulum. J Biol Chem 2000; 275:24881-5. [PMID: 10835430 DOI: 10.1074/jbc.m004454200] [Citation(s) in RCA: 306] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
IRE1 and PERK are type I transmembrane serine/threonine protein kinases that are activated by unfolded proteins in the endoplasmic reticulum (ER) to signal adaptive responses. IRE1 is present in all eukaryotic cells and signals the unfolded protein response through its kinase and endoribonuclease activities. PERK signals phosphorylation of a translation initiation factor to inhibit protein synthesis in higher eukaryotic cells but is absent in the Saccharomyces cerevisiae genome. The amino acid sequences of the amino-terminal ER luminal domains (NLDs) from IRE1 and PERK display limited homology and have diverged among species. In this study, we have demonstrated that the NLD of yeast Ire1p is required for signaling. However, the NLDs from human IRE1alpha and murine IRE1beta and the Caenorhabditis elegans IRE1 and PERK function as replacements for the S. cerevisiae Ire1p-NLD to signal the unfolded protein response. Replacement of the Ire1p-NLD with a functional leucine zipper dimerization motif yielded a constitutively active kinase that surprisingly was further activated by ER stress. These results demonstrate that ER stress-induced dimerization of the NLD is sufficient for IRE1 and PERK activation and is conserved through evolution. We propose that ligand-independent activation of IRE1 and PERK permits homodimerization upon accumulation of unfolded proteins in the lumen of the ER.
Collapse
Affiliation(s)
- C Y Liu
- Howard Hughes Medical Institute and the Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor, Michigan 48109-0650, USA
| | | | | |
Collapse
|
2511
|
Pagani M, Fabbri M, Benedetti C, Fassio A, Pilati S, Bulleid NJ, Cabibbo A, Sitia R. Endoplasmic reticulum oxidoreductin 1-lbeta (ERO1-Lbeta), a human gene induced in the course of the unfolded protein response. J Biol Chem 2000; 275:23685-92. [PMID: 10818100 DOI: 10.1074/jbc.m003061200] [Citation(s) in RCA: 221] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Oxidative conditions must be generated in the endoplasmic reticulum (ER) to allow disulfide bond formation in secretory proteins. A family of conserved genes, termed ERO for ER oxidoreductins, plays a key role in this process. We have previously described the human gene ERO1-L, which complements several phenotypic traits of the yeast thermo-sensitive mutant ero1-1 (Cabibbo, A., Pagani, M., Fabbri, M., Rocchi, M., Farmery, M. R., Bulleid, N. J., and Sitia, R. (2000) J. Biol. Chem. 275, 4827-4833). Here, we report the cloning and characterization of a novel human member of this family, ERO1-Lbeta. Immunofluorescence, endoglycosidase sensitivity, and in vitro translation/translocation assays reveal that the products of the ERO1-Lbeta gene are primarily localized in the ER of mammalian cells. The ability to allow growth at 37 degrees C and to alleviate the "unfolded protein response" when expressed in ero1-1 cells indicates that ERO1-Lbeta is involved also in generating oxidative conditions in the ER. ERO1-L and ERO1-Lbeta display different tissue distributions. Furthermore, only ERO1-Lbeta transcripts are induced in the course of the unfolded protein response. Our results suggest a complex regulation of ER redox homeostasis in mammalian cells.
Collapse
Affiliation(s)
- M Pagani
- Department of Molecular Pathology and Medicine, DIBIT-San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milano, Italy
| | | | | | | | | | | | | | | |
Collapse
|
2512
|
Delépine M, Nicolino M, Barrett T, Golamaully M, Lathrop GM, Julier C. EIF2AK3, encoding translation initiation factor 2-alpha kinase 3, is mutated in patients with Wolcott-Rallison syndrome. Nat Genet 2000; 25:406-9. [PMID: 10932183 DOI: 10.1038/78085] [Citation(s) in RCA: 605] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Wolcott-Rallison syndrome (WRS) is a rare, autosomal recessive disorder characterized by permanent neonatal or early infancy insulin-dependent diabetes. Epiphyseal dysplasia, osteoporosis and growth retardation occur at a later age. Other frequent multisystemic manifestations include hepatic and renal dysfunction, mental retardation and cardiovascular abnormalities. On the basis of two consanguineous families, we mapped WRS to a region of less than 3 cM on chromosome 2p12, with maximal evidence of linkage and homozygosity at 4 microsatellite markers within an interval of approximately 1 cM. The gene encoding the eukaryotic translation initiation factor 2-alpha kinase 3 (EIF2AK3) resides in this interval; thus we explored it as a candidate. We identified distinct mutations of EIF2AK3 that segregated with the disorder in each of the families. The first mutation produces a truncated protein in which the entire catalytic domain is missing. The other changes an amino acid, located in the catalytic domain of the protein, that is highly conserved among kinases from the same subfamily. Our results provide evidence for the role of EIF2AK3 in WRS. The identification of this gene may provide insight into the understanding of the more common forms of diabetes and other pathologic manifestations of WRS.
Collapse
Affiliation(s)
- M Delépine
- Centre National de Génotypage, Evry, France
| | | | | | | | | | | |
Collapse
|
2513
|
Dong J, Qiu H, Garcia-Barrio M, Anderson J, Hinnebusch AG. Uncharged tRNA activates GCN2 by displacing the protein kinase moiety from a bipartite tRNA-binding domain. Mol Cell 2000; 6:269-79. [PMID: 10983975 DOI: 10.1016/s1097-2765(00)00028-9] [Citation(s) in RCA: 382] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Protein kinase GCN2 regulates translation in amino acid-starved cells by phosphorylating elF2. GCN2 contains a regulatory domain related to histidyl-tRNA synthetase (HisRS) postulated to bind multiple deacylated tRNAs as a general sensor of starvation. In accordance with this model, GCN2 bound several deacylated tRNAs with similar affinities, and aminoacylation of tRNAphe weakened its interaction with GCN2. Unexpectedly, the C-terminal ribosome binding segment of GCN2 (C-term) was required in addition to the HisRS domain for strong tRNA binding. A combined HisRS+ C-term segment bound to the isolated protein kinase (PK) domain in vitro, and tRNA impeded this interaction. An activating mutation (GCN2c-E803V) that weakens PK-C-term association greatly enhanced tRNA binding by GCN2. These results provide strong evidence that tRNA stimulates the GCN2 kinase moiety by preventing an inhibitory interaction with the bipartite tRNA binding domain.
Collapse
Affiliation(s)
- J Dong
- Laboratory of Eukaryotic Gene Regulation, National Institute of Child Health and Human Development, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
2514
|
Caspersen C, Pedersen PS, Treiman M. The sarco/endoplasmic reticulum calcium-ATPase 2b is an endoplasmic reticulum stress-inducible protein. J Biol Chem 2000; 275:22363-72. [PMID: 10748035 DOI: 10.1074/jbc.m001569200] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The sarco/endoplasmic reticulum calcium-ATPase (SERCA) translocates Ca(2+) from the cytosol to the lumen of the endoplasmic reticulum. This Ca(2+) storage is important for cellular processes such as calcium signaling and endoplasmic reticulum (ER)-associated posttranslational protein modifications. We investigated the expression of the SERCA2 and SERCA3 isozymes in PC12 cells exposed to agents interfering with different aspects of the posttranslational protein processing within the ER, thereby activating the ER stress-induced unfolded protein response (UPR). All agents increased the SERCA2b mRNA level 3-4-fold, in parallel with increasing mRNA levels for the ER stress marker proteins BiP/GRP78 and CHOP/GADD153. In contrast, SERCA3 mRNA levels did not change. SERCA2b mRNA stability was not changed, indicating that the mechanism of its up-regulation was transcriptional, in accordance with the presence of ER stress response elements in the promoter region of the SERCA2 gene. SERCA2b was also increased at the protein level upon ER stress treatments. Induction of ER stress by tunicamycin, dithiothreitol, or l-azetidine 2-carboxylic acid did not result in depletion of ER calcium, showing that such depletion was not necessary for up-regulation of SERCA2b expression or UPR activation in general. We conclude that the SERCA2b expression can be controlled by the UPR pathway independently of ER Ca(2+) depletion.
Collapse
Affiliation(s)
- C Caspersen
- Department of Medical Physiology and the Biotechnology Center for Cellular Communication, The Panum Institute, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark
| | | | | |
Collapse
|
2515
|
Abstract
Unfolded proteins are constantly delivered to the ER lumen, where they must be removed by folding or degradation. Recent studies show that the 'unfolded protein response' controls essentially all aspects of ER function, coordinating these two fates for misfolded proteins in a process necessary for normal cell life.
Collapse
Affiliation(s)
- R Y Hampton
- Department of Biology, University of California San Diego, 2100E Pacific Hall, La Jolla, CA 92093-0347, USA.
| |
Collapse
|
2516
|
Balachandran S, Roberts PC, Brown LE, Truong H, Pattnaik AK, Archer DR, Barber GN. Essential role for the dsRNA-dependent protein kinase PKR in innate immunity to viral infection. Immunity 2000; 13:129-41. [PMID: 10933401 DOI: 10.1016/s1074-7613(00)00014-5] [Citation(s) in RCA: 413] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The double-stranded (ds) RNA-dependent protein kinase PKR is considered to play an important role in interferon's (IFN's) response to viral infection. Here, we demonstrate that mice lacking PKR are predisposed to lethal intranasal infection by the usually innocuous vesicular stomatitis virus, and also display increased susceptibility to influenza virus infection. Our data indicate that in normal cells, PKR primarily prevents virus replication by inhibiting the translation of viral mRNAs through phosphorylation of eIF2alpha, while concomitantly assisting in the production of autocrine IFN and the establishment of an antiviral state. These results show that PKR is an essential component of innate immunity that acts early in host defense prior to the onset of IFN counteraction and the acquired immune response.
Collapse
Affiliation(s)
- S Balachandran
- Department of Microbiology and Immunology, University of Miami School of Medicine, Florida 33136, USA
| | | | | | | | | | | | | |
Collapse
|
2517
|
Bonnet MC, Weil R, Dam E, Hovanessian AG, Meurs EF. PKR stimulates NF-kappaB irrespective of its kinase function by interacting with the IkappaB kinase complex. Mol Cell Biol 2000; 20:4532-42. [PMID: 10848580 PMCID: PMC85837 DOI: 10.1128/mcb.20.13.4532-4542.2000] [Citation(s) in RCA: 178] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2000] [Accepted: 03/27/2000] [Indexed: 01/12/2023] Open
Abstract
The interferon (IFN)-induced double-stranded RNA-activated protein kinase PKR mediates inhibition of protein synthesis through phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eIF2alpha) and is also involved in the induction of the IFN gene through the activation of the transcription factor NF-kappaB. NF-kappaB is retained in the cytoplasm through binding to its inhibitor IkappaBalpha. The critical step in NF-kappaB activation is the phosphorylation of IkappaBalpha by the IkappaB kinase (IKK) complex. This activity releases NF-kappaB from IkappaBalpha and allows its translocation to the nucleus. Here, we have studied the ability of PKR to activate NF-kappaB in a reporter assay and have shown for the first time that two catalytically inactive PKR mutants, PKR/KR296 and a deletion mutant (PKR/Del42) which lacks the potential eIF2alpha-binding domain, can also activate NF-kappaB. This result indicated that NF-kappaB activation by PKR does not require its kinase activity and that it is independent of the PKR-eIF2alpha relationship. Transfection of either wild-type PKR or catalytically inactive PKR in PKR(0/0) mouse embryo fibroblasts resulted in the activation of the IKK complex. By using a glutathione S-transferase pull-down assay, we showed that PKR interacts with the IKKbeta subunit of the IKK complex. This interaction apparently does not require the integrity of the IKK complex, as it was found to occur with extracts from cells deficient in the NF-kappaB essential modulator, one of the components of the IKK complex. Therefore, our results reveal a novel pathway by which PKR can modulate the NF-kappaB signaling pathway without using its kinase activity.
Collapse
Affiliation(s)
- M C Bonnet
- Unité de Virologie et d'Immunologie Cellulaire, URA CNRS 1930, Institut Pasteur, 75724 Paris Cedex 15, France
| | | | | | | | | |
Collapse
|
2518
|
Abstract
As obligate intracellular parasites, viruses rely exclusively on the translational machinery of the host cell for the synthesis of viral proteins. This relationship has imposed numerous challenges on both the infecting virus and the host cell. Importantly, viruses must compete with the endogenous transcripts of the host cell for the translation of viral mRNA. Eukaryotic viruses have thus evolved diverse mechanisms to ensure translational efficiency of viral mRNA above and beyond that of cellular mRNA. Mechanisms that facilitate the efficient and selective translation of viral mRNA may be inherent in the structure of the viral nucleic acid itself and can involve the recruitment and/or modification of specific host factors. These processes serve to redirect the translation apparatus to favor viral transcripts, and they often come at the expense of the host cell. Accordingly, eukaryotic cells have developed antiviral countermeasures to target the translational machinery and disrupt protein synthesis during the course of virus infection. Not to be outdone, many viruses have answered these countermeasures with their own mechanisms to disrupt cellular antiviral pathways, thereby ensuring the uncompromised translation of virion proteins. Here we review the varied and complex translational programs employed by eukaryotic viruses. We discuss how these translational strategies have been incorporated into the virus life cycle and examine how such programming contributes to the pathogenesis of the host cell.
Collapse
Affiliation(s)
- M Gale
- University of Texas Southwestern Medical Center, Dallas, Texas, USA.
| | | | | |
Collapse
|
2519
|
Bertolotti A, Zhang Y, Hendershot LM, Harding HP, Ron D. Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat Cell Biol 2000; 2:326-32. [PMID: 10854322 DOI: 10.1038/35014014] [Citation(s) in RCA: 2156] [Impact Index Per Article: 86.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PERK and IRE1 are type-I transmembrane protein kinases that reside in the endoplasmic reticulum (ER) and transmit stress signals in response to perturbation of protein folding. Here we show that the lumenal domains of these two proteins are functionally interchangeable in mediating an ER stress response and that, in unstressed cells, both lumenal domains form a stable complex with the ER chaperone BiP. Perturbation of protein folding promotes reversible dissociation of BiP from the lumenal domains of PERK and IRE1. Loss of BiP correlates with the formation of high-molecular-mass complexes of activated PERK or IRE1, and overexpression of BiP attenuates their activation. These findings are consistent with a model in which BiP represses signalling through PERK and IRE1 and protein misfolding relieves this repression by effecting the release of BiP from the PERK and IRE1 lumenal domains.
Collapse
Affiliation(s)
- A Bertolotti
- Skirball Institute of Biomolecular Medicine, Departments of Medicine and Cell Biology and the Kaplan Cancer Center, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | | | |
Collapse
|
2520
|
Gomez E, Pavitt GD. Identification of domains and residues within the epsilon subunit of eukaryotic translation initiation factor 2B (eIF2Bepsilon) required for guanine nucleotide exchange reveals a novel activation function promoted by eIF2B complex formation. Mol Cell Biol 2000; 20:3965-76. [PMID: 10805739 PMCID: PMC85753 DOI: 10.1128/mcb.20.11.3965-3976.2000] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2000] [Accepted: 03/15/2000] [Indexed: 11/20/2022] Open
Abstract
Eukaryotic translation initiation factor 2B (eIF2B) is the guanine nucleotide exchange factor for protein synthesis initiation factor 2 (eIF2). Composed of five subunits, it converts eIF2 from a GDP-bound form to the active eIF2-GTP complex. This is a regulatory step of translation initiation. In vitro, eIF2B catalytic function can be provided by the largest (epsilon) subunit alone (eIF2Bepsilon). This activity is stimulated by complex formation with the other eIF2B subunits. We have analyzed the roles of different regions of eIF2Bepsilon in catalysis, in eIF2B complex formation, and in binding to eIF2 by characterizing mutations in the Saccharomyces cerevisiae gene encoding eIF2Bepsilon (GCD6) that impair the essential function of eIF2B. Our analysis of nonsense mutations indicates that the C terminus of eIF2Bepsilon (residues 518 to 712) is required for both catalytic activity and interaction with eIF2. In addition, missense mutations within this region impair the catalytic activity of eIF2Bepsilon without affecting its ability to bind eIF2. Internal, in-frame deletions within the N-terminal half of eIF2Bepsilon disrupt eIF2B complex formation without affecting the nucleotide exchange activity of eIF2Bepsilon alone. Finally, missense mutations identified within this region do not affect the catalytic activity of eIF2Bepsilon alone or its interactions with the other eIF2B subunits or with eIF2. Instead, these missense mutations act indirectly by impairing the enhancement of the rate of nucleotide exchange that results from complex formation between eIF2Bepsilon and the other eIF2B subunits. This suggests that the N-terminal region of eIF2Bepsilon is an activation domain that responds to eIF2B complex formation.
Collapse
Affiliation(s)
- E Gomez
- Department of Anatomy and Physiology, Medical Sciences Institute, University of Dundee, Dundee, United Kingdom
| | | |
Collapse
|
2521
|
Affiliation(s)
- K Mori
- Graduate School of Biostudies, Kyoto University, Japan
| |
Collapse
|
2522
|
Abstract
Alpha 1-antitrypsin deficiency is the most common genetic cause of liver disease in children. It is also associated with chronic liver disease, hepatocellular carcinoma, and pulmonary emphysema in adults. Liver injury is caused by hepatotoxic effects of retention of the mutant alpha 1-antitrypsin molecule within the endoplasmic reticulum of liver cells, and emphysema is caused by uninhibited proteolytic damage to elastic tissue in the lung parenchyma. Recent studies of the biochemistry and cell biology of the mutant alpha 1-antitrypsin molecule have led to advances in understanding susceptibility to liver injury and in developing new strategies for prevention of both liver and lung disease.
Collapse
Affiliation(s)
- D H Perlmutter
- Departments of Pediatrics, Biology, and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA.
| |
Collapse
|
2523
|
Harding HP, Zhang Y, Bertolotti A, Zeng H, Ron D. Perk is essential for translational regulation and cell survival during the unfolded protein response. Mol Cell 2000; 5:897-904. [PMID: 10882126 DOI: 10.1016/s1097-2765(00)80330-5] [Citation(s) in RCA: 1571] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Malfolded proteins in the endoplasmic reticulum (ER) inhibit translation initiation. This response is believed to be mediated by increased phosphorylation of eukaryotic initiation factor 2alpha (eIF2alpha) and is hypothesized to reduce the work load imposed on the folding machinery during stress. Here we report that mutating the gene encoding the ER stress-activated eIF2alpha kinase PERK abolishes the phosphorylation of eIF2alpha in response to accumulation of malfolded proteins in the ER resulting in abnormally elevated protein synthesis and higher levels of ER stress. Mutant cells are markedly impaired in their ability to survive ER stress and inhibition of protein synthesis by cycloheximide treatment during ER stress ameliorates this impairment. PERK thus plays a major role in the ability of cells to adapt to ER stress.
Collapse
Affiliation(s)
- H P Harding
- Department of Medicine, The Kaplan Cancer Center, New York University School of Medicine, New York 10016, USA
| | | | | | | | | |
Collapse
|
2524
|
Garcia-Barrio M, Dong J, Ufano S, Hinnebusch AG. Association of GCN1-GCN20 regulatory complex with the N-terminus of eIF2alpha kinase GCN2 is required for GCN2 activation. EMBO J 2000; 19:1887-99. [PMID: 10775272 PMCID: PMC302013 DOI: 10.1093/emboj/19.8.1887] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Stimulation of GCN4 mRNA translation due to phosphorylation of the alpha-subunit of initiation factor 2 (eIF2) by its specific kinase, GCN2, requires binding of uncharged tRNA to a histidyl-tRNA synthetase (HisRS)-like domain in GCN2. GCN2 function in vivo also requires GCN1 and GCN20, but it was unknown whether these latter proteins act directly to promote the stimulation of GCN2 by uncharged tRNA. We found that the GCN1-GCN20 complex physically interacts with GCN2, binding to the N-terminus of the protein. Overexpression of N-terminal GCN2 segments had a dominant-negative phenotype that correlated with their ability to interact with GCN1-GCN20 and impede association between GCN1 and native GCN2. Consistently, this Gcn(-) phenotype was suppressed by overexpressing GCN2, GCN1-GCN20 or tRNA(His). The requirement for GCN1 was also reduced by overexpressing tRNA(His) in a gcn1Delta strain. We conclude that binding of GCN1-GCN20 to GCN2 is required for its activation by uncharged tRNA. The homologous N-terminus of Drosophila GCN2 interacted with yeast GCN1-GCN20 and had a dominant Gcn(-) phenotype, suggesting evolutionary conservation of this interaction.
Collapse
Affiliation(s)
- M Garcia-Barrio
- Laboratory of Eukaryotic Gene Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
2525
|
Yang R, Wek SA, Wek RC. Glucose limitation induces GCN4 translation by activation of Gcn2 protein kinase. Mol Cell Biol 2000; 20:2706-17. [PMID: 10733573 PMCID: PMC85486 DOI: 10.1128/mcb.20.8.2706-2717.2000] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eIF-2alpha) is a well-characterized mechanism regulating protein synthesis in response to environmental stresses. In the yeast Saccharomyces cerevisiae, starvation for amino acids induces phosphorylation of eIF-2alpha by Gcn2 protein kinase, leading to elevated translation of GCN4, a transcriptional activator of more than 50 genes. Uncharged tRNA that accumulates during amino acid limitation is proposed to activate Gcn2p by associating with Gcn2p sequences homologous to histidyl-tRNA synthetase (HisRS) enzymes. Given that eIF-2alpha phosphorylation in mammals is induced in response to both carbohydrate and amino acid limitations, we addressed whether activation of Gcn2p in yeast is also controlled by different nutrient deprivations. We found that starvation for glucose induces Gcn2p phosphorylation of eIF-2alpha and stimulates GCN4 translation. Induction of eIF-2alpha phosphorylation by Gcn2p during glucose limitation requires the function of the HisRS-related domain but is largely independent of the ribosome binding sequences of Gcn2p. Furthermore, Gcn20p, a factor required for Gcn2 protein kinase stimulation of GCN4 expression in response to amino acid starvation, is not essential for GCN4 translational control in response to limitation for carbohydrates. These results indicate there are differences between the mechanisms regulating Gcn2p activity in response to amino acid and carbohydrate deficiency. Gcn2p induction of GCN4 translation during carbohydrate limitation enhances storage of amino acids in the vacuoles and facilitates entry into exponential growth during a shift from low-glucose to high-glucose medium. Gcn2p function also contributes to maintenance of glycogen levels during prolonged glucose starvation, suggesting a linkage between amino acid control and glycogen metabolism.
Collapse
Affiliation(s)
- R Yang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | |
Collapse
|
2526
|
Dannies PS. Protein folding and deficiencies caused by dominant-negative mutants of hormones. VITAMINS AND HORMONES 2000; 58:1-26. [PMID: 10668393 DOI: 10.1016/s0083-6729(00)58019-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Protein folding and transport in the secretory pathway of cells is a controlled process, facilitated by chaperones. Proteins that do not fold well elicit several different programmed responses from the cells. A comparison of mutants of growth hormone that result in growth hormone deficiency suggests that cells do not respond in the same way to all growth hormone mutants that cannot fold, because some mutants are dominant and some are recessive. Causes for autosomal dominant hormone deficiencies include accumulation of toxic or dysfunctional forms, competition for chaperones important for folding or transport, induction of protein degradation in the endoplasmic reticulum, or long-term responses of the cells to synthesis of proteins that do not fold that decrease hormone synthesis or cell viability.
Collapse
Affiliation(s)
- P S Dannies
- Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut 06510, USA
| |
Collapse
|
2527
|
Czech C, Tremp G, Pradier L. Presenilins and Alzheimer's disease: biological functions and pathogenic mechanisms. Prog Neurobiol 2000; 60:363-84. [PMID: 10670705 DOI: 10.1016/s0301-0082(99)00033-7] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia in the elderly population. Dementia is associated with massive accumulation of fibrillary aggregates in various cortical and subcortical regions of the brain. These aggregates appear intracellularly as neurofibrillary tangles, extracellularly as amyloid plaques and perivascular amyloid in cerebral blood vessels. The causative factors in AD etiology implicate both, genetic and environmental factors. The large majority of early-onset familial Alzheimer's disease (FAD) cases are linked to mutations in the genes coding for presenilin 1 (PS1) and presenilin 2 (PS2). The corresponding proteins are 467 (PS1) and 448 (PS2) amino-acids long, respectively. Both are membrane proteins with multiple transmembrane regions. Presenilins show a high degree of conservation between species and a presenilin homologue with definite conservation of the hydrophobic structure has been identified even in the plant Arabidopsis thaliana. More than 50 missense mutations in PS1 and two missense mutations in PS2 were identified which are causative for FAD. PS mutations lead to the same functional consequence as mutations on amyloid precursor protein (APP), altering the processing of APP towards the release of the more amyloidogenic form 1-42 of Abeta (Abeta42). In this regard, the physical interaction between APP and presenilins in the endoplasmic reticulum has been demonstrated and might play a key role in Abeta42 production. It was hypothesized that PS1 might directly cleave APP. However, extracellular amyloidogenesis and Abeta production might not be the sole factor involved in AD pathology and several lines of evidence support a role of apoptosis in the massive neuronal loss observed. Presenilins were shown to modify the apoptotic response in several cellular systems including primary neuronal cultures. Some evidence is accumulating which points towards the beta-catenin signaling pathways to be causally involved in presenilin mediated cell death. Increased degradation of beta-catenin has been shown in brain of AD patients with PS1 mutations and reduced beta-catenin signaling increased neuronal vulnerability to apoptosis in cell culture models. The study of presenilin physiological functions and the pathological mechanisms underlying their role in pathogenesis clearly advanced our understanding of cellular mechanisms underlying the neuronal cell death and will contribute to the identification of novel drug targets for the treatment of AD.
Collapse
Affiliation(s)
- C Czech
- Rhône-Poulenc Rorer, Research and Development, Vitry sur Seine, France.
| | | | | |
Collapse
|
2528
|
Rafie-Kolpin M, Chefalo PJ, Hussain Z, Hahn J, Uma S, Matts RL, Chen JJ. Two heme-binding domains of heme-regulated eukaryotic initiation factor-2alpha kinase. N terminus and kinase insertion. J Biol Chem 2000; 275:5171-8. [PMID: 10671563 DOI: 10.1074/jbc.275.7.5171] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In heme deficiency, protein synthesis in reticulocytes is inhibited by activation of heme-regulated alpha-subunit of eukaryotic initiation factor-2alpha (eIF-2alpha) kinase (HRI). Previous studies indicate that HRI contains two distinct heme-binding sites per HRI monomer. To study the role of the N terminus in the heme regulation of HRI, two N-terminally truncated mutants, Met2 and Met3 (deletion of the first 103 and 130 amino acids, respectively), were prepared. Met2 and Met3 underwent autophosphorylation and phosphorylated eIF-2alpha with a specific activity of approximately 50% of that of the wild type HRI. These mutants were significantly less sensitive to heme regulation both in vivo and in vitro. In addition, the heme contents of purified Met2 and Met3 HRI were less than 5% of that of the wild type HRI. These results indicated that the N terminus was important but was not the only domain involved in the heme-binding and heme regulation of HRI. Heme binding of the individual HRI domains showed that both N terminus and kinase insertion were able to bind hemin, whereas the C terminus and the catalytic domains were not. Thus, both the N terminus and the kinase insertion, which are unique to HRI, are involved in the heme binding and the heme regulation of HRI.
Collapse
Affiliation(s)
- M Rafie-Kolpin
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | | | |
Collapse
|
2529
|
Rivera VM, Wang X, Wardwell S, Courage NL, Volchuk A, Keenan T, Holt DA, Gilman M, Orci L, Cerasoli F, Rothman JE, Clackson T. Regulation of protein secretion through controlled aggregation in the endoplasmic reticulum. Science 2000; 287:826-30. [PMID: 10657290 DOI: 10.1126/science.287.5454.826] [Citation(s) in RCA: 261] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
A system for direct pharmacologic control of protein secretion was developed to allow rapid and pulsatile delivery of therapeutic proteins. A protein was engineered so that it accumulated as aggregates in the endoplasmic reticulum. Secretion was then stimulated by a synthetic small-molecule drug that induces protein disaggregation. Rapid and transient secretion of growth hormone and insulin was achieved in vitro and in vivo. A regulated pulse of insulin secretion resulted in a transient correction of serum glucose concentrations in a mouse model of hyperglycemia. This approach may make gene therapy a viable method for delivery of polypeptides that require rapid and regulated delivery.
Collapse
Affiliation(s)
- V M Rivera
- ARIAD Gene Therapeutics, 26 Landsdowne Street, Cambridge, MA 02139, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2530
|
Doutheil J, Althausen S, Treiman M, Paschen W. Effect of nitric oxide on endoplasmic reticulum calcium homeostasis, protein synthesis and energy metabolism. Cell Calcium 2000; 27:107-15. [PMID: 10756977 DOI: 10.1054/ceca.1999.0099] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
It has been suggested that nitric oxide (NO) may contribute to ischemia-induced cell injury. However, the mechanisms underlying NO toxicity have not yet been fully elucidated. In the present study, we investigated the effect of NO on the level of endoplasmic reticulum (ER) calcium stores, on ER Ca2+ pump activity, on protein synthesis, on concentrations of high-energy phosphates, and on gadd153 mRNA levels. Primary neuronal cells were exposed to the NO-donor (+/-)-S-Nitroso-N-acetylpenicillamine (SNAP) for 1 h, 2 h, 6 h or 24 h. The level of ER calcium stores was evaluated by measuring the increase in cytoplasmic calcium activity induced by exposing cells to thapsigargin, an irreversible inhibitor of ER Ca(2+)-ATPase; the activity of ER Ca(2+)-ATPase was determined by measuring a phosphorylated intermediate; SNAP-induced changes in gadd153 expression were evaluated by quantitative PCR; SNAP-induced changes in protein synthesis were investigated by measuring the incorporation of L-[4,5-3H]leucine into proteins, and changes in the levels of ATP, ADP, AMP were measured by HPLC. Exposing cells to SNAP for 1 h to 2 h induced a marked depletion of ER calcium stores through an inhibition of ER Ca(2+)-ATPase (to 58% of control), and a concentration-dependent suppression of protein synthesis which was reversed in the presence of hemoglobin, suggesting NO-related effects. ATP levels and adenylate energy charge were significantly decreased only when cells were exposed to the highest SNAP concentration for 6 h or 24 h, excluding significant effects of NO on the energy state of cells in the acute state, i.e. when ER calcium stores were already completely depleted and protein synthesis severely suppressed. In light of the regulatory role of ER calcium homeostasis in the control of protein synthesis, the results imply that the suppression of protein synthesis resulted from NO-induced inhibition of ER Ca(2+)-ATPase and depletion of ER calcium stores, and that NO-induced disturbances of energy metabolism are secondary to the effect of NO on ER calcium homeostasis. It is, therefore, concluded that ER calcium stores are a primary target of NO-toxicity.
Collapse
Affiliation(s)
- J Doutheil
- Department of Experimental Neurology, Max-Planck-Institute for Neurological Research, Cologne, Germany
| | | | | | | |
Collapse
|
2531
|
Sood R, Porter AC, Olsen DA, Cavener DR, Wek RC. A mammalian homologue of GCN2 protein kinase important for translational control by phosphorylation of eukaryotic initiation factor-2alpha. Genetics 2000; 154:787-801. [PMID: 10655230 PMCID: PMC1460965 DOI: 10.1093/genetics/154.2.787] [Citation(s) in RCA: 216] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
A family of protein kinases regulates translation in response to different cellular stresses by phosphorylation of the alpha subunit of eukaryotic initiation factor-2 (eIF-2alpha). In yeast, an eIF-2alpha kinase, GCN2, functions in translational control in response to amino acid starvation. It is thought that uncharged tRNA that accumulates during amino acid limitation binds to sequences in GCN2 homologous to histidyl-tRNA synthetase (HisRS) enzymes, leading to enhanced kinase catalytic activity. Given that starvation for amino acids also stimulates phosphorylation of eIF-2alpha in mammalian cells, we searched for and identified a GCN2 homologue in mice. We cloned three different cDNAs encoding mouse GCN2 isoforms, derived from a single gene, that vary in their amino-terminal sequences. Like their yeast counterpart, the mouse GCN2 isoforms contain HisRS-related sequences juxtaposed to the kinase catalytic domain. While GCN2 mRNA was found in all mouse tissues examined, the isoforms appear to be differentially expressed. Mouse GCN2 expressed in yeast was found to inhibit growth by hyperphosphorylation of eIF-2alpha, requiring both the kinase catalytic domain and the HisRS-related sequences. Additionally, lysates prepared from yeast expressing mGCN2 were found to phosphorylate recombinant eIF-2alpha substrate. Mouse GCN2 activity in both the in vivo and in vitro assays required the presence of serine-51, the known regulatory phosphorylation site in eIF-2alpha. Together, our studies identify a new mammalian eIF-2alpha kinase, GCN2, that can mediate translational control.
Collapse
Affiliation(s)
- R Sood
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | |
Collapse
|
2532
|
Urano F, Wang X, Bertolotti A, Zhang Y, Chung P, Harding HP, Ron D. Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science 2000; 287:664-6. [PMID: 10650002 DOI: 10.1126/science.287.5453.664] [Citation(s) in RCA: 2314] [Impact Index Per Article: 92.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Malfolded proteins in the endoplasmic reticulum (ER) induce cellular stress and activate c-Jun amino-terminal kinases (JNKs or SAPKs). Mammalian homologs of yeast IRE1, which activate chaperone genes in response to ER stress, also activated JNK, and IRE1alpha-/- fibroblasts were impaired in JNK activation by ER stress. The cytoplasmic part of IRE1 bound TRAF2, an adaptor protein that couples plasma membrane receptors to JNK activation. Dominant-negative TRAF2 inhibited activation of JNK by IRE1. Activation of JNK by endogenous signals initiated in the ER proceeds by a pathway similar to that initiated by cell surface receptors in response to extracellular signals.
Collapse
Affiliation(s)
- F Urano
- Skirball Institute of Biomolecular Medicine, Departments of Medicine, Cell Biology and the Kaplan Cancer Center, New York University Medical School, New York, NY 10016, USA
| | | | | | | | | | | | | |
Collapse
|
2533
|
Kedersha NL, Gupta M, Li W, Miller I, Anderson P. RNA-binding proteins TIA-1 and TIAR link the phosphorylation of eIF-2 alpha to the assembly of mammalian stress granules. J Cell Biol 1999; 147:1431-42. [PMID: 10613902 PMCID: PMC2174242 DOI: 10.1083/jcb.147.7.1431] [Citation(s) in RCA: 1004] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/1999] [Accepted: 11/16/1999] [Indexed: 12/20/2022] Open
Abstract
In response to environmental stress, the related RNA-binding proteins TIA-1 and TIAR colocalize with poly(A)(+) RNA at cytoplasmic foci that resemble the stress granules (SGs) that harbor untranslated mRNAs in heat shocked plant cells (Nover et al. 1989; Nover et al. 1983; Scharf et al. 1998). The accumulation of untranslated mRNA at SGs is reversible in cells that recover from a sublethal stress, but irreversible in cells subjected to a lethal stress. We have found that the assembly of TIA-1/R(+) SGs is initiated by the phosphorylation of eIF-2alpha. A phosphomimetic eIF-2alpha mutant (S51D) induces the assembly of SGs, whereas a nonphosphorylatable eIF-2alpha mutant (S51A) prevents the assembly of SGs. The ability of a TIA-1 mutant lacking its RNA-binding domains to function as a transdominant inhibitor of SG formation suggests that this RNA-binding protein acts downstream of the phosphorylation of eIF-2alpha to promote the sequestration of untranslated mRNAs at SGs. The assembly and disassembly of SGs could regulate the duration of stress- induced translational arrest in cells recovering from environmental stress.
Collapse
Affiliation(s)
- Nancy L. Kedersha
- Division of Rheumatology and Immunology, Brigham and Women's Hospital, Smith Building, Boston, Massachusetts 02115
| | - Mita Gupta
- Division of Rheumatology and Immunology, Brigham and Women's Hospital, Smith Building, Boston, Massachusetts 02115
| | - Wei Li
- Division of Rheumatology and Immunology, Brigham and Women's Hospital, Smith Building, Boston, Massachusetts 02115
| | - Ira Miller
- Division of Rheumatology and Immunology, Brigham and Women's Hospital, Smith Building, Boston, Massachusetts 02115
| | - Paul Anderson
- Division of Rheumatology and Immunology, Brigham and Women's Hospital, Smith Building, Boston, Massachusetts 02115
| |
Collapse
|
2534
|
Ito T, Warnken SP, May WS. Protein synthesis inhibition by flavonoids: roles of eukaryotic initiation factor 2alpha kinases. Biochem Biophys Res Commun 1999; 265:589-94. [PMID: 10558914 DOI: 10.1006/bbrc.1999.1727] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Flavonoids such as genistein and quercetin suppress tumor cell growth in vitro and in vivo. Many metabolic enzymes, including protein kinases, are known to be inhibited by flavonoids, yet the molecular targets and biochemical mechanisms of the tumor growth suppression remain unclear. Here, we find that flavonoids inhibit protein synthesis in both mouse and human leukemia cells. This inhibition is associated with phosphorylation of the alpha-subunit of eukaryotic initiation factor 2 (eIF2alpha), a key regulatory mechanism of protein translation. Three mammalian eIF2alpha kinases have been identified: the interferon-inducible double-stranded RNA-dependent kinase (PKR), the heme-regulated inhibitor (HRI), and the very recently discovered PERK/PEK. We find that all of these eIF2alpha kinases can be activated by quercetin and genistein, indicating redundant roles of the eIF2alpha kinases. Thus, activation of eIF2alpha kinases appears to be a mechanism by which flavonoids can inhibit the growth of tumor and leukemia cells.
Collapse
Affiliation(s)
- T Ito
- Department of Internal Medicine, University of Texas Medical Branch at Galveston, Galveston, Texas, 77555-1048, USA
| | | | | |
Collapse
|
2535
|
Terenzi F, deVeer MJ, Ying H, Restifo NP, Williams BR, Silverman RH. The antiviral enzymes PKR and RNase L suppress gene expression from viral and non-viral based vectors. Nucleic Acids Res 1999; 27:4369-75. [PMID: 10536144 PMCID: PMC148718 DOI: 10.1093/nar/27.22.4369] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Expression of transfected genes is shown to be suppressed by two intracellular enzymes, RNase L and protein kinase PKR, which function in interferon-treated cells to restrict viral replication. RNase L(-/-) or PKR(-/-) murine embryonic fibroblasts produced enhanced levels of protein from transfected genes compared with wild-type cells. Increased expression of exogenous genes in RNase L(-/-) cells correlated with elevated levels of mRNA and thus appeared to be due to enhanced mRNA stability. Plasmid encoding adenovirus VA RNAs was able to further enhance accumulation of the exogenous gene transcript and protein, even in cells lacking PKR. In contrast to the increased expression of transfected genes in cells lacking RNase L or PKR, expression of endogenous host genes was unaffected by the absence of these enzymes. In addition, a dominant-negative PKR mutant improved expression from a conventional plasmid vector and from a Semliki Forest virus derived, self-replicating vector. These results indicate that viral infections and transfections produce similar stress responses in mammalian cells and suggest strategies for selectively increasing expression of exogenous genes.
Collapse
Affiliation(s)
- F Terenzi
- Department of Cancer Biology, NB40, The Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | | | | | | | | | | |
Collapse
|
2536
|
Doerrler WT, Lehrman MA. Regulation of the dolichol pathway in human fibroblasts by the endoplasmic reticulum unfolded protein response. Proc Natl Acad Sci U S A 1999; 96:13050-5. [PMID: 10557271 PMCID: PMC23898 DOI: 10.1073/pnas.96.23.13050] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Accumulation of unfolded proteins within the endoplasmic reticulum (ER) of eukaryotic cells triggers the unfolded protein response (UPR), which activates transcription of several genes encoding ER chaperones and folding enzymes. This study reports that conversion of dolichol-linked Man(2-5)GlcNAc(2) intermediates into mature Glc(3)Man(9)GlcNAc(2) oligosaccharides in primary human adult dermal fibroblasts is also stimulated by the UPR. This stimulation was not evident in several immortal cell lines and did not require a cytoplasmic stress response. Inhibition of dolichol-linked Glc(3)Man(9)GlcNAc(2) synthesis by glucose deprivation could be counteracted by the UPR, improving the transfer of Glc(3)Man(9)GlcNAc(2) to asparagine residues on nascent polypeptides. Glycosidic processing of asparagine-linked Glc(3)Man(9)GlcNAc(2) in the ER leads to the production of monoglucosylated oligosaccharides that promote interaction with the lectin chaperones calreticulin and calnexin. Thus, control of the dolichol-linked Glc(3)Man(9)GlcNAc(2) supply gives the UPR the potential to maintain efficient protein folding in the ER without new synthesis of chaperones or folding enzymes.
Collapse
Affiliation(s)
- W T Doerrler
- Cell Regulation Graduate Program, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75235-9041, USA
| | | |
Collapse
|
2537
|
Alirezaei M, Nairn AC, Glowinski J, Prémont J, Marin P. Zinc inhibits protein synthesis in neurons. Potential role of phosphorylation of translation initiation factor-2alpha. J Biol Chem 1999; 274:32433-8. [PMID: 10542287 DOI: 10.1074/jbc.274.45.32433] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the central nervous system, Zn(2+) is concentrated in the cerebral cortex and hippocampus and has been found to be toxic to neurons. In this study, we show that exposure of cultured cortical neurons from mouse to increasing concentrations of Zn(2+) (10-300 microM) induces a progressive decrease in global protein synthesis. The potency of Zn(2+) was increased by about 2 orders of magnitude in the presence of Na(+)-pyrithione, a Zn(2+) ionophore. The basal rate of protein synthesis was restored 3 h after Zn(2+) removal. Zn(2+) induced a sustained increase in phosphorylation of the alpha subunit of the translation eukaryotic initiation factor-2 (eIF-2alpha), whereas it triggered a transient increase in phosphorylation of eukaryotic elongation factor-2 (eEF-2). Protein synthesis was still depressed 60 min after the onset of Zn(2+) exposure while the state of eEF-2 phosphorylation had already returned to its basal level. Moreover, Zn(2+) was less effective than glutamate to increase eEF-2 phosphorylation, whereas it induced a more profound inhibition of protein synthesis. These results suggest that Zn(2+)-induced inhibition of protein synthesis mainly correlates with the increase in eIF-2alpha phosphorylation. Supporting further that Zn(2+) acts at the initiation step of protein synthesis, it strongly decreased the amount of polyribosomes.
Collapse
Affiliation(s)
- M Alirezaei
- Chaire de Neuropharmacologie, INSERM U114, Collège de France, 11, Place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | | | | | | | | |
Collapse
|
2538
|
Lu J, O'Hara EB, Trieselmann BA, Romano PR, Dever TE. The interferon-induced double-stranded RNA-activated protein kinase PKR will phosphorylate serine, threonine, or tyrosine at residue 51 in eukaryotic initiation factor 2alpha. J Biol Chem 1999; 274:32198-203. [PMID: 10542257 DOI: 10.1074/jbc.274.45.32198] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The family of eukaryotic initiation factor 2alpha (eIF2alpha) protein kinases plays an important role in regulating cellular protein synthesis under stress conditions. The mammalian kinases PKR and HRI and the yeast kinase GCN2 specifically phosphorylate Ser-51 on the alpha subunit of the translation initiation factor eIF2. By using an in vivo assay in yeast, the substrate specificity of these three eIF2alpha kinases was examined by substituting Ser-51 in eIF2alpha with Thr or Tyr. In yeast, phosphorylation of eIF2 inhibits general translation but derepresses translation of the GCN4 mRNA. All three kinases phosphorylated Thr in place of Ser-51 and were able to regulate general and GCN4-specific translation. In addition, both PKR and HRI were found to phosphorylate eIF2alpha-S51Y and stimulate GCN4 expression. Isoelectric focusing analysis of eIF2alpha followed by detection using anti-eIF2alpha and anti-phosphotyrosine-specific antibodies demonstrated that PKR and HRI phosphorylated eIF2alpha-S51Y on Tyr in vivo. These results provide new insights into the substrate recognition properties of the eIF2alpha kinases, and they are intriguing considering the potential for alternate substrates for PKR in cellular signaling and growth control pathways.
Collapse
Affiliation(s)
- J Lu
- Laboratory of Eukaryotic Gene Regulation, NICHD, National Institutes of Health, Bethesda, Maryland 20892-2716, USA
| | | | | | | | | |
Collapse
|
2539
|
Haze K, Yoshida H, Yanagi H, Yura T, Mori K. Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol Biol Cell 1999; 10:3787-99. [PMID: 10564271 PMCID: PMC25679 DOI: 10.1091/mbc.10.11.3787] [Citation(s) in RCA: 1592] [Impact Index Per Article: 61.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The unfolded protein response (UPR) controls the levels of molecular chaperones and enzymes involved in protein folding in the endoplasmic reticulum (ER). We recently isolated ATF6 as a candidate for mammalian UPR-specific transcription factor. We report here that ATF6 constitutively expressed as a 90-kDa protein (p90ATF6) is directly converted to a 50-kDa protein (p50ATF6) in ER-stressed cells. Furthermore, we showed that the most important consequence of this conversion was altered subcellular localization; p90ATF6 is embedded in the ER, whereas p50ATF6 is a nuclear protein. p90ATF6 is a type II transmembrane glycoprotein with a hydrophobic stretch in the middle of the molecule. Thus, the N-terminal half containing a basic leucine zipper motif is oriented facing the cytoplasm. Full-length ATF6 as well as its C-terminal deletion mutant carrying the transmembrane domain is localized in the ER when transfected. In contrast, mutant ATF6 representing the cytoplasmic region translocates into the nucleus and activates transcription of the endogenous GRP78/BiP gene. We propose that ER stress-induced proteolysis of membrane-bound p90ATF6 releases soluble p50ATF6, leading to induced transcription in the nucleus. Unlike yeast UPR, mammalian UPR appears to use a system similar to that reported for cholesterol homeostasis.
Collapse
Affiliation(s)
- K Haze
- HSP Research Institute, Kyoto Research Park, Shimogyo-ku, Kyoto 600-8813, Japan
| | | | | | | | | |
Collapse
|
2540
|
Abstract
The double stranded RNA (dsRNA)-activated protein kinase PKR is a ubiquitously expressed serine/threonine protein kinase that is induced by interferon and activated by dsRNA, cytokine, growth factor and stress signals. It is essential for cells to respond adequately to different stresses including growth factor deprivation, products of the inflammatory response (TNF) and bacterial (lipopolysaccharide) and viral (dsRNA) products. As a vital component of the cellular antiviral response pathway, PKR is autophosphorylated and activated on binding to dsRNA. This results in inhibition of protein synthesis via the phosphorylation of eIF2alpha and also induces transcription of inflammatory genes by PKR-dependent signaling of the activation of different transcription factors. Along with RNaseL, PKR constitutes the antiviral arm of a group of mammalian stress response proteins that have counterparts in yeast. What began as adaptation to amino acid deprivation and sensing unfolded proteins in the endoplasmic reticulum has evolved into a family of sophisticated mammalian stress response proteins able to mediate cellular responses to both physical and biological stress.
Collapse
Affiliation(s)
- B R Williams
- Department of Cancer Biology NB40, Lerner Research Institute, The Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, Ohio, OH 44195, USA
| |
Collapse
|
2541
|
Abstract
BiP, an HSP70 molecular chaperone located in the lumen of the endoplasmic reticulum (ER), binds newly-synthesized proteins as they are translocated into the ER and maintains them in a state competent for subsequent folding and oligomerization. BiP is also an essential component of the translocation machinery, as well as playing a role in retrograde transport across the ER membrane of aberrant proteins destined for degradation by the proteasome. BiP is an abundant protein under all growth conditions, but its synthesis is markedly induced under conditions that lead to the accumulation of unfolded polypeptides in the ER. This attribute provides a marker for disease states that result from misfolding of secretory and transmembrane proteins.
Collapse
Affiliation(s)
- M J Gething
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
2542
|
Chevet E, Jakob CA, Thomas DY, Bergeron JJ. Calnexin family members as modulators of genetic diseases. Semin Cell Dev Biol 1999; 10:473-80. [PMID: 10597630 DOI: 10.1006/scdb.1999.0316] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The endoplasmic reticulum (ER) is an intracellular compartment devoted to the synthesis, segregation and folding of soluble and membrane secretory proteins. Some mutations in these proteins lead to their incorrect or incomplete folding in the ER. The ER has a quality control system which detects misfolded proteins and then specifies their fate. Some mutated proteins are retained in the ER wherein they accumulate (Russell bodies for misfolded immunoglobulin heavy chains, the PiZZ for alpha 1-antitrypsin), others are retrotranslocated from the ER and degraded by the cytosolic proteasomal system, and yet other proteins are eventually secreted (in AZC-treated cells). In this review we summarize the role of ER resident proteins in quality control of mutated secretory proteins.
Collapse
Affiliation(s)
- E Chevet
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada.
| | | | | | | |
Collapse
|
2543
|
Berlanga JJ, Santoyo J, De Haro C. Characterization of a mammalian homolog of the GCN2 eukaryotic initiation factor 2alpha kinase. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 265:754-62. [PMID: 10504407 DOI: 10.1046/j.1432-1327.1999.00780.x] [Citation(s) in RCA: 213] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In eukaryotic cells, protein synthesis is regulated in response to various environmental stresses by phosphorylating the alpha subunit of the eukaryotic initiation factor 2 (eIF2alpha). Three different eIF2alpha kinases have been identified in mammalian cells, the heme-regulated inhibitor (HRI), the interferon-inducible RNA-dependent kinase (PKR) and the endoplasmic reticulum-resident kinase (PERK). A fourth eIF2alpha kinase, termed GCN2, was previously characterized from Saccharomyces cerevisiae, Drosophila melanogaster and Neurospora crassa. Here we describe the cloning of a mouse GCN2 cDNA (MGCN2), which represents the first mammalian GCN2 homolog. MGCN2 has a conserved motif, N-terminal to the kinase subdomain V, and a large insert of 139 amino acids located between subdomains IV and V that are characteristic of the known eIF2alpha kinases. Furthermore, MGCN2 contains a class II aminoacyl-tRNA synthetase domain and a degenerate kinase segment, downstream and upstream of the eIF2alpha kinase domain, respectively, and both are singular features of GCN2 protein kinases. MGCN2 mRNA is expressed as a single message of approximately 5.5 kb in a wide range of different tissues, with the highest levels in the liver and the brain. Specific polyclonal anti-(MGCN2) immunoprecipitated an eIF2alpha kinase activity and recognized a 190 kDa phosphoprotein in Western blots from either mouse liver or MGCN2-transfected 293 cell extracts. Interestingly, serum starvation increased eIF2alpha phosphorylation in MGCN2-transfected human 293T cells. This finding provides evidence that GCN2 is the unique eIF2alpha kinase present in all eukaryotes from yeast to mammals and underscores the role of MGCN2 kinase in translational control and its potential physiological significance.
Collapse
Affiliation(s)
- J J Berlanga
- Centro de Biología Molecular 'Severo Ochoa', Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Spain
| | | | | |
Collapse
|
2544
|
Abstract
Initiation of protein synthesis requires both an mRNA and the initiator methionyl (Met)-tRNA to be bound to the ribosome. Most mRNAs are recruited to the ribosome through recognition of the 5' m7G cap by a group of proteins referred to as the cap-binding complex or eIF4F. Evidence is accumulating that eIF4G, the largest subunit of the cap-binding complex, serves as a central adapter by binding to various translation factors and regulators. Other translation factors also have modular structures that facilitate multiple protein-protein interactions, which suggests that adapter functions are common among the translation initiation factors. By linking different regulatory domains to a conserved eIF2-kinase domain, cells adapt to stress and changing growth conditions by altering the translational capacity through phosphorylation of eIF2, which mediates the binding of the initiator Met-tRNA to the ribosome.
Collapse
Affiliation(s)
- T E Dever
- Laboratory of Eukaryotic Gene Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-2716, USA.
| |
Collapse
|
2545
|
Brewer JW, Hendershot LM, Sherr CJ, Diehl JA. Mammalian unfolded protein response inhibits cyclin D1 translation and cell-cycle progression. Proc Natl Acad Sci U S A 1999; 96:8505-10. [PMID: 10411905 PMCID: PMC17546 DOI: 10.1073/pnas.96.15.8505] [Citation(s) in RCA: 222] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Alterations in normal protein biogenesis and the resulting accumulation of improperly folded proteins in the endoplasmic reticulum (ER) trigger a stress response that up-regulates the expression of ER chaperones, while coordinately repressing overall protein synthesis and causing cell-cycle arrest. Activation of this unfolded protein response (UPR) in mouse NIH 3T3 fibroblasts with the glycosylation inhibitor tunicamycin led to a decline in cyclin D- and E-dependent kinase activities and to G(1) phase arrest. Cyclin D1 protein synthesis was rapidly inhibited by tunicamycin treatment. However, the drug did not significantly affect the mitogen-dependent activities of the extracellular signal-activated protein kinases ERK1 and ERK2 or the level of cyclin D1 mRNA until much later in the response. Therefore, the UPR triggers a signaling pathway that blocks cyclin D1 translation despite continuous mitogenic stimulation. Enforced overexpression of cyclin D1 in tunicamycin-treated cells maintained cyclin D- and E-dependent kinase activities and kept cells in cycle in the face of a fully activated UPR. Translational regulation of cyclin D1 in response to ER stress is a mechanism for checkpoint control that prevents cell-cycle progression until homeostasis is restored.
Collapse
Affiliation(s)
- J W Brewer
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, 332 North Lauderdale, Memphis, TN 38105, USA
| | | | | | | |
Collapse
|
2546
|
Abstract
The mechanisms whereby ribosomes engage a messenger RNA and select the start site for translation differ between prokaryotes and eukaryotes. Initiation sites in polycistronic prokaryotic mRNAs are usually selected via base pairing with ribosomal RNA. That straightforward mechanism is made complicated and interesting by cis- and trans-acting elements employed to regulate translation. Initiation sites in eukaryotic mRNAs are reached via a scanning mechanism which predicts that translation should start at the AUG codon nearest the 5' end of the mRNA. Interest has focused on mechanisms that occasionally allow escape from this first-AUG rule. With natural mRNAs, three escape mechanisms - context-dependent leaky scanning, reinitiation, and possibly direct internal initiation - allow access to AUG codons which, although not first, are still close to the 5' end of the mRNA. This constraint on the initiation step of translation in eukaryotes dictates the location of transcriptional promoters and may have contributed to the evolution of splicing.The binding of Met-tRNA to ribosomes is mediated by a GTP-binding protein in both prokaryotes and eukaryotes, but the more complex structure of the eukaryotic factor (eIF-2) and its association with other proteins underlie some aspects of initiation unique to eukaryotes. Modulation of GTP hydrolysis by eIF-2 is important during the scanning phase of initiation, while modulating the release of GDP from eIF-2 is a key mechanism for regulating translation in eukaryotes. Our understanding of how some other protein factors participate in the initiation phase of translation is in flux. Genetic tests suggest that some proteins conventionally counted as eukaryotic initiation factors may not be required for translation, while other tests have uncovered interesting new candidates. Some popular ideas about the initiation pathway are predicated on static interactions between isolated factors and mRNA. The need for functional testing of these complexes is discussed. Interspersed with these theoretical topics are some practical points concerning the interpretation of cDNA sequences and the use of in vitro translation systems. Some human diseases resulting from defects in the initiation step of translation are also discussed.
Collapse
Affiliation(s)
- M Kozak
- Department of Biochemistry, University of Medicine and Dentistry of New Jersey, 675 Hoes Lane, Piscataway, NJ 08854, USA
| |
Collapse
|
2547
|
Taylor DR, Shi ST, Romano PR, Barber GN, Lai MM. Inhibition of the interferon-inducible protein kinase PKR by HCV E2 protein. Science 1999; 285:107-10. [PMID: 10390359 DOI: 10.1126/science.285.5424.107] [Citation(s) in RCA: 529] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Most isolates of hepatitis C virus (HCV) infections are resistant to interferon, the only available therapy, but the mechanism underlying this resistance has not been defined. Here it is shown that the HCV envelope protein E2 contains a sequence identical with phosphorylation sites of the interferon-inducible protein kinase PKR and the translation initiation factor eIF2alpha, a target of PKR. E2 inhibited the kinase activity of PKR and blocked its inhibitory effect on protein synthesis and cell growth. This interaction of E2 and PKR may be one mechanism by which HCV circumvents the antiviral effect of interferon.
Collapse
Affiliation(s)
- D R Taylor
- Department of Molecular Microbiology and Immunology and Howard Hughes Medical Institute, University of Southern California, School of Medicine, Los Angeles, CA 90089, USA
| | | | | | | | | |
Collapse
|
2548
|
Aridor M, Balch WE. Integration of endoplasmic reticulum signaling in health and disease. Nat Med 1999; 5:745-51. [PMID: 10395318 DOI: 10.1038/10466] [Citation(s) in RCA: 199] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- M Aridor
- Department of Cell and Molecular biology, La Jolla, California 92037, USA
| | | |
Collapse
|
2549
|
Doutheil J, Treiman M, Oschlies U, Paschen W. Recovery of neuronal protein synthesis after irreversible inhibition of the endoplasmic reticulum calcium pump. Cell Calcium 1999; 25:419-28. [PMID: 10579053 DOI: 10.1054/ceca.1999.0042] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In the physiological state, protein synthesis is controlled by calcium homeostasis in the endoplasmic reticulum (ER). Recently, evidence has been presented that dividing cells can adapt to an irreversible inhibition of the ER calcium pump (SERCA), although the mechanisms underlying this adaption have not yet been elucidated. Exposing primary neuronal cells to thapsigargin (Tg, a specific irreversible inhibition of SERCA) resulted in a complete suppression of protein synthesis and disaggregation of polyribosomes indicating inhibition of the initiation step of protein synthesis. Protein synthesis and ribosomal aggregation recovered to 50-70% of control when cells were cultured in medium supplemented with serum for 24 h, but recovery was significantly suppressed in a serum-free medium. Culturing cells in serum-free medium for 24 h already caused an almost 50% suppression of SERCA activity and protein synthesis. SERCA activity did not recover after Tg treatment, and a second exposure of cells to Tg, 24 h after the first, had no effect on protein synthesis. Acute exposure of neurons to Tg induced a depletion of ER calcium stores as indicated by an increase in cytoplasmic calcium activity, but this response was not elicited by the same treatment 24 h later. However, treatments known to deplete ER calcium stores (exposure to the ryanodine receptor agonists caffeine or 2-hydroxycarbazole, or incubating cells in calcium-free medium supplemented with EGTA) caused a second suppression of protein synthesis when applied 24 h after Tg treatment. The results suggest that after Tg exposure, restoration of protein synthesis was induced by recovery of the regulatory link between ER calcium homeostasis and protein synthesis, and not by renewed synthesis of SERCA protein or development of a new regulatory system for the control of protein synthesis. The effect of serum withdrawal on SERCA activity and protein synthesis points to a role of growth factors in maintaining ER calcium homeostasis, and suggests that the ER acts as a mediator of cell damage after interruption of growth factor supplies.
Collapse
Affiliation(s)
- J Doutheil
- Department of Experimental Neurology, Max-Planck-Institute for Neurological Research, Cologne, Germany
| | | | | | | |
Collapse
|
2550
|
Ito T, Yang M, May WS. RAX, a cellular activator for double-stranded RNA-dependent protein kinase during stress signaling. J Biol Chem 1999; 274:15427-32. [PMID: 10336432 DOI: 10.1074/jbc.274.22.15427] [Citation(s) in RCA: 184] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The double-stranded (ds) RNA-dependent protein kinase (PKR) regulates protein synthesis by phosphorylating the alpha subunit of eukaryotic initiation factor-2. PKR is activated by viral induced dsRNA and thought to be involved in the host antiviral defense mechanism. PKR is also activated by various nonviral stresses such as growth factor deprivation, although the mechanism is unknown. By screening a mouse cDNA expression library, we have identified an ubiquitously expressed PKR-associated protein, RAX. RAX has a high sequence homology to human PACT, which activates PKR in the absence of dsRNA. Although RAX also can directly activate PKR in vitro, overexpression of RAX does not induce PKR activation or inhibit growth of interleukin-3 (IL-3)-dependent cells in the presence of IL-3. However, IL-3 deprivation as well as diverse cell stress treatments including arsenite, thapsigargin, and H2O2, which are known to inhibit protein synthesis, induce the rapid phosphorylation of RAX followed by RAX-PKR association and activation of PKR. Therefore, cellular RAX may be a stress-activated, physiologic activator of PKR that couples transmembrane stress signals and protein synthesis.
Collapse
Affiliation(s)
- T Ito
- Sealy Center for Oncology and Hematology, Department of Internal Medicine, The University of Texas Medical Branch at Galveston, Galveston Texas 77555-1048, USA.
| | | | | |
Collapse
|