2801
|
Induction of glucose metabolism in stimulated T lymphocytes is regulated by mitogen-activated protein kinase signaling. PLoS One 2010; 5:e15425. [PMID: 21085672 PMCID: PMC2978105 DOI: 10.1371/journal.pone.0015425] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Accepted: 09/20/2010] [Indexed: 02/04/2023] Open
Abstract
T lymphocytes play a critical role in cell-mediated immune responses. During activation, extracellular and intracellular signals alter T cell metabolism in order to meet the energetic and biosynthetic needs of a proliferating, active cell, but control of these phenomena is not well defined. Previous studies have demonstrated that signaling from the costimulatory receptor CD28 enhances glucose utilization via the phosphatidylinositol-3-kinase (PI3K) pathway. However, since CD28 ligation alone does not induce glucose metabolism in resting T cells, contributions from T cell receptor-initiated signaling pathways must also be important. We therefore investigated the role of mitogen-activated protein kinase (MAPK) signaling in the regulation of mouse T cell glucose metabolism. T cell stimulation strongly induces glucose uptake and glycolysis, both of which are severely impaired by inhibition of extracellular signal-regulated kinase (ERK), whereas p38 inhibition had a much smaller effect. Activation also induced hexokinase activity and expression in T cells, and both were similarly dependent on ERK signaling. Thus, the ERK signaling pathway cooperates with PI3K to induce glucose utilization in activated T cells, with hexokinase serving as a potential point for coordinated regulation.
Collapse
|
2802
|
Park J, Kusminski CM, Chua SC, Scherer PE. Leptin receptor signaling supports cancer cell metabolism through suppression of mitochondrial respiration in vivo. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:3133-44. [PMID: 21056997 DOI: 10.2353/ajpath.2010.100595] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Obesity represents a risk factor for certain types of cancer. Leptin, a hormone predominantly produced by adipocytes, is elevated in the obese state. In the context of breast cancer, leptin derived from local adipocytes is present at high concentrations within the mammary gland. A direct physiological role of peripheral leptin action in the tumor microenvironment in vivo has not yet been examined. Here, we report that mice deficient in the peripheral leptin receptor, while harboring an intact central leptin signaling pathway, develop a fully mature ductal epithelium, a phenomenon not observed in db/db mice to date. In the context of the MMTV-PyMT mammary tumor model, the lack of peripheral leptin receptors attenuated tumor progression and metastasis through a reduction of the ERK1/2 and Jak2/STAT3 pathways. These are tumor cell-autonomous properties, independent of the metabolic state of the host. In the absence of leptin receptor signaling, the metabolic phenotype is less reliant on aerobic glycolysis and displays an enhanced capacity for β-oxidation, in contrast to nontransformed cells. Leptin receptor-free tumor cells display reduced STAT3 tyrosine phosphorylation on residue Y705 but have increased serine phosphorylation on residue S727, consistent with preserved mitochondrial function in the absence of the leptin receptor. Therefore, local leptin action within the mammary gland is a critical mediator, linking obesity and dysfunctional adipose tissue with aggressive tumor growth.
Collapse
|
2803
|
Stockwin LH, Yu SX, Borgel S, Hancock C, Wolfe TL, Phillips LR, Hollingshead MG, Newton DL. Sodium dichloroacetate selectively targets cells with defects in the mitochondrial ETC. Int J Cancer 2010; 127:2510-9. [PMID: 20533281 DOI: 10.1002/ijc.25499] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The "Warburg effect," also termed aerobic glycolysis, describes the increased reliance of cancer cells on glycolysis for ATP production, even in the presence of oxygen. Consequently, there is continued interest in inhibitors of glycolysis as cancer therapeutics. One example is dichloroacetate (DCA), a pyruvate mimetic that stimulates oxidative phosphorylation through inhibition of pyruvate dehydrogenase kinase. In this study, the mechanistic basis for DCA anti-cancer activity was re-evaluated in vitro using biochemical, cellular and proteomic approaches. Results demonstrated that DCA is relatively inactive (IC(50) ≥ 17 mM, 48 hr), induces apoptosis only at high concentrations (≥ 25 mM, 48 hr) and is not cancer cell selective. Subsequent 2D-PAGE proteomic analysis confirmed DCA-induced growth suppression without apoptosis induction. Furthermore, DCA depolarizes mitochondria and promotes reactive oxygen species (ROS) generation in all cell types. However, DCA was found to have selective activity against rho(0) cells [mitochondrial DNA (mtDNA) deficient] and to synergize with 2-deoxyglucose in complex IV deficient HCT116 p53(-/-) cells. DCA also synergized in vitro with cisplatin and topotecan, two antineoplastic agents known to damage mitochondrial DNA. These data suggest that in cells "hardwired" to selectively utilize glycolysis for ATP generation (e.g., through mtDNA mutations), the ability of DCA to force oxidative phosphorylation confers selective toxicity. In conclusion, although we provide a mechanism distinct from that reported previously, the ability of DCA to target cell lines with defects in the electron transport chain and to synergize with existing chemotherapeutics supports further preclinical development.
Collapse
Affiliation(s)
- Luke H Stockwin
- Biological Testing Branch, Developmental Therapeutics Program, SAIC-Frederick Inc., NCI-Frederick, Frederick, MD 21702, USA
| | | | | | | | | | | | | | | |
Collapse
|
2804
|
Phospholipase D-mTOR requirement for the Warburg effect in human cancer cells. Cancer Lett 2010; 299:72-9. [PMID: 20805015 DOI: 10.1016/j.canlet.2010.08.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 07/14/2010] [Accepted: 08/09/2010] [Indexed: 11/27/2022]
Abstract
A characteristic of cancer cells is the generation of lactate from glucose in spite of adequate oxygen for oxidative phosphorylation. This property - known as the "Warburg effect" or aerobic glycolysis - contrasts with anaerobic glycolysis, which is triggered in hypoxic normal cells. The Warburg effect is thought to provide a means for cancer cells to survive under conditions where oxygen is limited and to generate metabolites necessary for cell growth. The shift from oxidative phosphorylation to glycolysis in response to hypoxia is mediated by the production of hypoxia-inducible factor (HIF) - a transcription factor family that stimulates the expression of proteins involved in glucose uptake and glycolysis. We reported previously that elevated phospholipase D (PLD) activity in renal and breast cancer cells is required for the expression of the α subunits of HIF1 and HIF2. We report here that the aerobic glycolysis observed in human breast and renal cancer cells is dependent on the elevated PLD activity. Intriguingly, the effect of PLD on the Warburg phenotype was dependent on the mammalian target of rapamycin complex 1 (mTORC1) in the breast cancer cells and on mTORC2 in the renal cancer cells. These data indicate that elevated PLD-mTOR signaling, which is common in human cancer cells, is critical for the metabolic shift to aerobic glycolysis.
Collapse
|
2805
|
|
2806
|
Post-transcriptional regulation of the mitochondrial H(+)-ATP synthase: a key regulator of the metabolic phenotype in cancer. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1807:543-51. [PMID: 21035425 DOI: 10.1016/j.bbabio.2010.10.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 10/19/2010] [Accepted: 10/20/2010] [Indexed: 12/12/2022]
Abstract
A distinctive metabolic trait of tumors is their enforced aerobic glycolysis. This phenotype was first reported by Otto Warburg, who suggested that the increased glucose consumption of cancer cells under aerobic conditions might result from an impaired bioenergetic activity of their mitochondria. A central player in defining the bioenergetic activity of the cell is the mitochondrial H(+)-ATP synthase. The expression of its catalytic subunit β-F1-ATPase is tightly regulated at post-transcriptional levels during mammalian development and in the cell cycle. Moreover, the down-regulation of β-F1-ATPase is a hallmark of most human carcinomas. In this review we summarize our present understanding of the molecular mechanisms that participate in promoting the "abnormal" aerobic glycolysis of prevalent human carcinomas. The role of the ATPase Inhibitor Factor 1 (IF1) and of Ras-GAP SH3 binding protein 1 (G3BP1), controlling the activity of the H(+)-ATP synthase and the translation of β-F1-ATPase mRNA respectively in cancer cells is emphasized. Furthermore, we underline the role of mitochondrial dysfunction as a pivotal player of tumorigenesis.
Collapse
|
2807
|
El Mjiyad N, Caro-Maldonado A, Ramírez-Peinado S, Muñoz-Pinedo C. Sugar-free approaches to cancer cell killing. Oncogene 2010; 30:253-64. [PMID: 20972457 DOI: 10.1038/onc.2010.466] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tumors show an increased rate of glucose uptake and utilization. For this reason, glucose analogs are used to visualize tumors by the positron emission tomography technique, and inhibitors of glycolytic metabolism are being tested in clinical trials. Upregulation of glycolysis confers several advantages to tumor cells: it promotes tumor growth and has also been shown to interfere with cell death at multiple levels. Enforcement of glycolysis inhibits apoptosis induced by cytokine deprivation. Conversely, antiglycolytic agents enhance cell death induced by radio- and chemotherapy. Synergistic effects are likely due to regulation of the apoptotic machinery, as glucose regulates activation and levels of proapoptotic BH3-only proteins such as Bim, Bad, Puma and Noxa, as well as the antiapoptotic Bcl-2 family of proteins. Moreover, inhibition of glucose metabolism sensitizes cells to death ligands. Glucose deprivation and antiglycolytic drugs induce tumor cell death, which can proceed through necrosis or through mitochondrial or caspase-8-mediated apoptosis. We will discuss how oncogenic pathways involved in metabolic stress signaling, such as p53, AMPK (adenosine monophosphate-activated protein kinase) and Akt/mTOR (mammalian target of rapamycin), influence sensitivity to inhibition of glucose metabolism. Finally, we will analyze the rationale for the use of antiglycolytic inhibitors in the clinic, either as single agents or as a part of combination therapies.
Collapse
Affiliation(s)
- N El Mjiyad
- Cell Death Regulation Group, IDIBELL (Bellvitge Biomedical Research Institute), L'Hospitalet de Llobregat, Barcelona, Spain
| | | | | | | |
Collapse
|
2808
|
Quiescent fibroblasts exhibit high metabolic activity. PLoS Biol 2010; 8:e1000514. [PMID: 21049082 PMCID: PMC2958657 DOI: 10.1371/journal.pbio.1000514] [Citation(s) in RCA: 336] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Accepted: 08/31/2010] [Indexed: 02/07/2023] Open
Abstract
Metabolomics technology reveals that fibroblast that have exited the proliferative cell cycle nevertheless utilize glucose throughout central carbon metabolism and rely on the pentose phosphate pathway for viability. Many cells in mammals exist in the state of quiescence, which is characterized by reversible exit from the cell cycle. Quiescent cells are widely reported to exhibit reduced size, nucleotide synthesis, and metabolic activity. Much lower glycolytic rates have been reported in quiescent compared with proliferating lymphocytes. In contrast, we show here that primary human fibroblasts continue to exhibit high metabolic rates when induced into quiescence via contact inhibition. By monitoring isotope labeling through metabolic pathways and quantitatively identifying fluxes from the data, we show that contact-inhibited fibroblasts utilize glucose in all branches of central carbon metabolism at rates similar to those of proliferating cells, with greater overflow flux from the pentose phosphate pathway back to glycolysis. Inhibition of the pentose phosphate pathway resulted in apoptosis preferentially in quiescent fibroblasts. By feeding the cells labeled glutamine, we also detected a “backwards” flux in the tricarboxylic acid cycle from α-ketoglutarate to citrate that was enhanced in contact-inhibited fibroblasts; this flux likely contributes to shuttling of NADPH from the mitochondrion to cytosol for redox defense or fatty acid synthesis. The high metabolic activity of the fibroblasts was directed in part toward breakdown and resynthesis of protein and lipid, and in part toward excretion of extracellular matrix proteins. Thus, reduced metabolic activity is not a hallmark of the quiescent state. Quiescent fibroblasts, relieved of the biosynthetic requirements associated with generating progeny, direct their metabolic activity to preservation of self integrity and alternative functions beneficial to the organism as a whole. Many cells in the human body are in a reversible state of quiescence, where they have exited the cell cycle but retain the capacity to re-enter it and divide again. Previous experiments in lymphocytes had suggested that quiescent cells reduce their glucose uptake and metabolic rate. In our studies, we have investigated the metabolism of fibroblasts, cells found in connective tissue and skin. Using “metabolomics” to monitor flux through metabolic pathways, we discovered that fibroblasts remain highly metabolically active even though they are not dividing. They degrade and resynthesize protein and fatty acid, and secrete large amounts of protein into the extracellular environment. Despite our expectation that quiescent cells would not have a high demand for nucleotide biosynthesis, we found that they do divert glucose to the pentose phosphate pathway, presumably to generate NADPH. The NADPH created may help the quiescent fibroblasts to detoxify free radicals or to synthesize fatty acids. Experiments in which we inhibited the pentose phosphate pathway resulted in increased apoptosis in quiescent cells, suggesting a possible strategy for selectively killing nondividing cells.
Collapse
|
2809
|
Mailloux RJ, Adjeitey CNK, Harper ME. Genipin-induced inhibition of uncoupling protein-2 sensitizes drug-resistant cancer cells to cytotoxic agents. PLoS One 2010; 5:e13289. [PMID: 20967268 PMCID: PMC2953501 DOI: 10.1371/journal.pone.0013289] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Accepted: 09/14/2010] [Indexed: 11/19/2022] Open
Abstract
Uncoupling protein-2 (UCP2) is known to suppress mitochondrial reactive oxygen species (ROS) production and is employed by drug-resistant cancer cells to mitigate oxidative stress. Using the drug-sensitive HL-60 cells and the drug-resistant MX2 subline as model systems, we show that genipin, a UCP2 inhibitor, sensitizes drug-resistant cells to cytotoxic agents. Increased MX2 cell death was observed upon co-treatment with genipin and different doses of menadione, doxorubicin, and epirubicin. DCFH-DA fluorimetry revealed that the increase in MX2 cell death was accompanied by enhanced cellular ROS levels. The drug-induced increase in ROS was linked to genipin-mediated inhibition of mitochondrial proton leak. State 4 and resting cellular respiratory rates were higher in the MX2 cells in comparison to the HL-60 cells, and the increased respiration was readily suppressed by genipin in the MX2 cells. UCP2 accounted for a remarkable 37% of the resting cellular oxygen consumption indicating that the MX2 cells are functionally reliant on this protein. Higher amounts of UCP2 protein were detected in the MX2 versus the HL-60 mitochondria. The observed effects of genipin were absent in the HL-60 cells pointing to the selectivity of this natural product for drug-resistant cells. The specificity of genipin for UCP2 was confirmed using CHO cells stably expressing UCP2 in which genipin induced an ∼22% decrease in state 4 respiration. These effects were absent in empty vector CHO cells expressing no UCP2. Thus, the chemical inhibition of UCP2 with genipin sensitizes multidrug-resistant cancer cells to cytotoxic agents.
Collapse
Affiliation(s)
- Ryan J. Mailloux
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Cyril Nii-Klu Adjeitey
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Mary-Ellen Harper
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- * E-mail:
| |
Collapse
|
2810
|
Wenger JB, Chun SY, Dang DT, Luesch H, Dang LH. Combination therapy targeting cancer metabolism. Med Hypotheses 2010; 76:169-72. [PMID: 20947261 DOI: 10.1016/j.mehy.2010.09.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2010] [Revised: 08/15/2010] [Accepted: 09/06/2010] [Indexed: 12/21/2022]
Abstract
Cancer cells undergo significant metabolic adaptation. Cellular transformation enhances both glycolysis and mitochondrial respiration efficiency through the induction of HIF-1α and HIF-2α. In this process, energy production and synthesis of macromolecules are maximized with minimal ROS accumulation. Furthermore, a series of antioxidant enzymes are induced to mitigate the damaging effects of ROS. Examination of these metabolic changes provides rationale for a synergistic approach to combination anti-cancer therapy; targeted inhibition of HIF and inhibition of cellular defenses against oxidative stress.
Collapse
Affiliation(s)
- Justin B Wenger
- Division of Hematology/Oncology, Department of Internal Medicine, University of Florida Shands Cancer Center, University of Florida, Gainesville, FL 32610-0278, United States
| | | | | | | | | |
Collapse
|
2811
|
Li Y, Wang H, Tu C, Shiverick KT, Silverman DN, Frost SC. Role of hypoxia and EGF on expression, activity, localization and phosphorylation of carbonic anhydrase IX in MDA-MB-231 breast cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1813:159-67. [PMID: 20920536 DOI: 10.1016/j.bbamcr.2010.09.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 09/24/2010] [Accepted: 09/27/2010] [Indexed: 12/12/2022]
Abstract
Carbonic anhydrase IX (CAIX) is a zinc metalloenzyme that catalyzes the reversible hydration of CO(2). CAIX is overexpressed in many types of cancer, including breast cancer, but is most frequently absent in corresponding normal tissues. CAIX expression is strongly induced by hypoxia and is significantly associated with tumor grade and poor survival. Herein, we show that hypoxia induces a significant increase in CAIX protein in MDA-MB-231 breast cancer cells. Using a unique mass spectrophotometric assay, we demonstrate that CAIX activity in plasma membranes isolated from MDA-MB-231 is correlated with CAIX content. We also show that CAIX exists predominantly as a dimeric, high-mannose N-linked glycoprotein. While there is some evidence that the dimeric form resides specifically in lipid rafts, our data do not support this hypothesis. EGF, alone, did not affect the distribution of CAIX into lipid rafts. However, acute EGF treatment in the context of hypoxia increased the amount of CAIX in lipid rafts by about 5-fold. EGF did not stimulate tyrosine phosphorylation of CAIX, although EGFR and down-stream signaling pathways were activated by EGF. Interestingly, hypoxia activated Akt independent of EGF action. Together, these data demonstrate that the active form of CAIX in the MDA-MB-231 breast cancer cell line is dimeric but that neither lipid raft localization nor phosphorylation are likely required for its dimerization or activity.
Collapse
Affiliation(s)
- Ying Li
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610-0267, USA
| | | | | | | | | | | |
Collapse
|
2812
|
Preclinical evaluation of novel triphenylphosphonium salts with broad-spectrum activity. PLoS One 2010; 5. [PMID: 20957228 PMCID: PMC2949386 DOI: 10.1371/journal.pone.0013131] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Accepted: 09/03/2010] [Indexed: 12/18/2022] Open
Abstract
Background Recently, there has been a surge of interest in developing compounds selectively targeting mitochondria for the treatment of neoplasms. The critical role of mitochondria in cellular metabolism and respiration supports this therapeutic rationale. Dysfunction in the processes of energy production and metabolism contributes to attenuation of response to pro-apoptotic stimuli and increased ROS production both of which are implicated in the initiation and progression of most human cancers. Methodology/Principal Findings A high-throughput MTT-based screen of over 10,000 drug-like small molecules for anti-proliferative activity identified the phosphonium salts TP187, 197 and 421 as having IC50 concentrations in the submicromolar range. TP treatment induced cell cycle arrest independent of p53 status, as determined by analysis of DNA content in propidium iodide stained cells. In a mouse model of human breast cancer, TP-treated mice showed significantly decreased tumor growth compared to vehicle or paclitaxel treated mice. No toxicities or organ damage were observed following TP treatment. Immunohistochemical staining of tissue sections from TP187-treated tumors demonstrated a decrease in cellular proliferation and increased caspase-3 cleavage. The fluorescent properties of analog TP421 were exploited to assess subcellular uptake of TP compounds, demonstrating mitochondrial localization. Following mitochondrial uptake cells exhibited decreased oxygen consumption and concomittant increase in mitochondrial superoxide production. Proteomics analysis of results from a 600 target antibody microarray demonstrated that TP compounds significantly affected signaling pathways relevant to growth and proliferation. Conclusions/Significance Through our continued interest in designing compounds targeting cancer-cell metabolism, the Warburg effect, and mitochondria we recently discovered a series of novel, small-molecule compounds containing a triphenylphosphine moiety that show remarkable activity in a panel of cancer cell lines as well as in a mouse model of human breast cancer. The mechanism of action includes mitochondrial localization causing decreased oxygen consumption, increased superoxide production and attenuated growth factor signaling.
Collapse
|
2813
|
Rysman E, Brusselmans K, Scheys K, Timmermans L, Derua R, Munck S, Van Veldhoven PP, Waltregny D, Daniëls VW, Machiels J, Vanderhoydonc F, Smans K, Waelkens E, Verhoeven G, Swinnen JV. De novo lipogenesis protects cancer cells from free radicals and chemotherapeutics by promoting membrane lipid saturation. Cancer Res 2010; 70:8117-26. [PMID: 20876798 DOI: 10.1158/0008-5472.can-09-3871] [Citation(s) in RCA: 532] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Activation of de novo lipogenesis in cancer cells is increasingly recognized as a hallmark of aggressive cancers and has been implicated in the production of membranes for rapid cell proliferation. In the current report, we provide evidence that this activation has a more profound role. Using a mass spectrometry-based phospholipid analysis approach, we show that clinical tumor tissues that display the lipogenic phenotype show an increase in the degree of lipid saturation compared with nonlipogenic tumors. Reversal of the lipogenic switch in cancer cells by treatment with the lipogenesis inhibitor soraphen A or by targeting lipogenic enzymes with small interfering RNA leads to a marked decrease in saturated and mono-unsaturated phospholipid species and increases the relative degree of polyunsaturation. Because polyunsaturated acyl chains are more susceptible to peroxidation, inhibition of lipogenesis increases the levels of peroxidation end products and renders cells more susceptible to oxidative stress-induced cell death. As saturated lipids pack more densely, modulation of lipogenesis also alters lateral and transversal membrane dynamics as revealed by diffusion of membrane-targeted green fluorescent protein and by the uptake and response to doxorubicin. These data show that shifting lipid acquisition from lipid uptake toward de novo lipogenesis dramatically changes membrane properties and protects cells from both endogenous and exogenous insults. These findings provide important new insights into the role of de novo lipogenesis in cancer cells, and they provide a rationale for the use of lipogenesis inhibitors as antineoplastic agents and as chemotherapeutic sensitizers.
Collapse
Affiliation(s)
- Evelien Rysman
- Laboratory for Experimental Medicine and Endocrinology, K.U. Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2814
|
Watanabe M, Naraba H, Sakyo T, Kitagawa T. DNA damage-induced modulation of GLUT3 expression is mediated through p53-independent extracellular signal-regulated kinase signaling in HeLa cells. Mol Cancer Res 2010; 8:1547-57. [PMID: 20870738 DOI: 10.1158/1541-7786.mcr-10-0011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Many cancer cells exhibit increased rates of uptake and metabolism of glucose compared with normal cells. Glucose uptake in mammalian cells is mediated by the glucose transporter (GLUT) family. Here, we report that DNA-damaging anticancer agents such as Adriamycin and etoposide suppressed the expression of GLUT3, but not GLUT1, in HeLa cells and a tumorigenic HeLa cell hybrid. Suppression of GLUT3 expression determined by the real-time PCR was also evident with another DNA-damaging agent, camptothecin, which reduced the promoter's activity as determined with a luciferase-linked assay. The suppression by these agents seemed to be induced independently of p53, and it was evident when wild-type p53 was overproduced in these cells. In contrast, the mitogen-activated protein kinase/extracellular signal regulated kinase (MAPK/ERK) kinase (MEK) inhibitor U0126 (but not the phosphoinositide 3-kinase inhibitor LY294002) prevented the drug-induced suppression as determined by reverse transcription-PCR and promoter assays. Furthermore, overexpression of GLUT3 in HeLa cell hybrids increased resistance to these drugs, whereas depletion of the gene by small interfering RNA rendered the cells more sensitive to the drugs, decreasing glucose consumption. The results suggest that DNA-damaging agents reduce GLUT3 expression in cancer cells through activation of the MEK-ERK pathway independently of p53, leading to cell death or apoptosis. The findings may contribute to the development of new chemotherapeutic drugs based on the GLUT3-dependent metabolism of glucose.
Collapse
Affiliation(s)
- Masaru Watanabe
- Department of Cell Biology and Molecular Pathology, Iwate Medical University, School of Pharmacy, 2-1-1 Nishitokuta, Yahaba, Shiwa, Iwate 028-3694, Japan
| | | | | | | |
Collapse
|
2815
|
Dafni H, Larson PEZ, Hu S, Yoshihara HAI, Ward CS, Venkatesh HS, Wang C, Zhang X, Vigneron DB, Ronen SM. Hyperpolarized 13C spectroscopic imaging informs on hypoxia-inducible factor-1 and myc activity downstream of platelet-derived growth factor receptor. Cancer Res 2010; 70:7400-10. [PMID: 20858719 DOI: 10.1158/0008-5472.can-10-0883] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The recent development of hyperpolarized (13)C magnetic resonance spectroscopic imaging provides a novel method for in vivo metabolic imaging with potential applications for detection of cancer and response to treatment. Chemotherapy-induced apoptosis was shown to decrease the flux of hyperpolarized (13)C label from pyruvate to lactate due to depletion of NADH, the coenzyme of lactate dehydrogenase. In contrast, we show here that in PC-3MM2 tumors, inhibition of platelet-derived growth factor receptor with imatinib reduces the conversion of hyperpolarized pyruvate to lactate by lowering the expression of lactate dehydrogenase itself. This was accompanied by reduced expression of vascular endothelial growth factor and glutaminase, and is likely mediated by reduced expression of their transcriptional factors hypoxia-inducible factor-1 and c-Myc. Our results indicate that hyperpolarized (13)C MRSI could potentially detect the molecular effect of various cell signaling inhibitors, thus providing a radiation-free method to predict tumor response.
Collapse
Affiliation(s)
- Hagit Dafni
- Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California 94158, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2816
|
Feron O. Challenges in pharmacology of anti-cancer drugs - the search for addictions. Front Pharmacol 2010; 1:120. [PMID: 21716602 PMCID: PMC3110913 DOI: 10.3389/fphar.2010.00120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 09/01/2010] [Indexed: 02/01/2023] Open
Affiliation(s)
- Olivier Feron
- Institute of Experimental and Clinical Research, Pole of Pharmacology, Université Catholique de Louvain Brussels, Belgium
| |
Collapse
|
2817
|
Wang JB, Erickson JW, Fuji R, Ramachandran S, Gao P, Dinavahi R, Wilson KF, Ambrosio ALB, Dias SMG, Dang CV, Cerione RA. Targeting mitochondrial glutaminase activity inhibits oncogenic transformation. Cancer Cell 2010; 18:207-19. [PMID: 20832749 PMCID: PMC3078749 DOI: 10.1016/j.ccr.2010.08.009] [Citation(s) in RCA: 651] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 04/20/2010] [Accepted: 07/19/2010] [Indexed: 12/18/2022]
Abstract
Rho GTPases impact a number of activities important for oncogenesis. We describe a small molecule inhibitor that blocks oncogenic transformation induced by various Rho GTPases in fibroblasts, and the growth of human breast cancer and B lymphoma cells, without affecting normal cells. We identify the target of this inhibitor to be the metabolic enzyme glutaminase, which catalyzes the hydrolysis of glutamine to glutamate. We show that transformed fibroblasts and breast cancer cells exhibit elevated glutaminase activity that is dependent on Rho GTPases and NF-κB activity, and is blocked by the small molecule inhibitor. These findings highlight a previously unappreciated connection between Rho GTPase activation and cellular metabolism and demonstrate that targeting glutaminase activity can inhibit oncogenic transformation.
Collapse
Affiliation(s)
- Jian-Bin Wang
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Jon W. Erickson
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Reina Fuji
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Sekar Ramachandran
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Ping Gao
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ramani Dinavahi
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kristin F. Wilson
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA
| | | | - Sandra M. G. Dias
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Chi V. Dang
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Richard A. Cerione
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
- Contact: , 607-253-3888 (tel), 607-253-3659 (fax)
| |
Collapse
|
2818
|
Aller MA, Arias JI, Arias J. Pathological axes of wound repair: gastrulation revisited. Theor Biol Med Model 2010; 7:37. [PMID: 20840764 PMCID: PMC2945962 DOI: 10.1186/1742-4682-7-37] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Accepted: 09/14/2010] [Indexed: 02/06/2023] Open
Abstract
Post-traumatic inflammation is formed by molecular and cellular complex mechanisms whose final goal seems to be injured tissue regeneration. In the skin -an exterior organ of the body- mechanical or thermal injury induces the expression of different inflammatory phenotypes that resemble similar phenotypes expressed during embryo development. Particularly, molecular and cellular mechanisms involved in gastrulation return. This is a developmental phase that delineates the three embryonic germ layers: ectoderm, endoderm and mesoderm. Consequently, in the post-natal wounded skin, primitive functions related with the embryonic mesoderm, i.e. amniotic and yolk sac-derived, are expressed. Neurogenesis and hematogenesis stand out among the primitive function mechanisms involved. Interestingly, in these phases of the inflammatory response, whose molecular and cellular mechanisms are considered as traces of the early phases of the embryonic development, the mast cell, a cell that is supposedly inflammatory, plays a key role. The correlation that can be established between the embryonic and the inflammatory events suggests that the results obtained from the research regarding both great fields of knowledge must be interchangeable to obtain the maximum advantage.
Collapse
Affiliation(s)
- Maria-Angeles Aller
- Surgery I Department, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | | | | |
Collapse
|
2819
|
Abstract
Aerobic glycolysis is defined as glucose utilization in excess of that used for oxidative phosphorylation despite sufficient oxygen to completely metabolize glucose to carbon dioxide and water. Aerobic glycolysis is present in the normal human brain at rest and increases locally during increased neuronal activity; yet its many biological functions have received scant attention because of a prevailing energy-centric focus on the role of glucose as substrate for oxidative phosphorylation. As an initial step in redressing this neglect, we measured the regional distribution of aerobic glycolysis with positron emission tomography in 33 neurologically normal young adults at rest. We show that the distribution of aerobic glycolysis in the brain is differentially present in previously well-described functional areas. In particular, aerobic glycolysis is significantly elevated in medial and lateral parietal and prefrontal cortices. In contrast, the cerebellum and medial temporal lobes have levels of aerobic glycolysis significantly below the brain mean. The levels of aerobic glycolysis are not strictly related to the levels of brain energy metabolism. For example, sensory cortices exhibit high metabolic rates for glucose and oxygen consumption but low rates of aerobic glycolysis. These striking regional variations in aerobic glycolysis in the normal human brain provide an opportunity to explore how brain systems differentially use the diverse cell biology of glucose in support of their functional specializations in health and disease.
Collapse
|
2820
|
Mason EF, Rathmell JC. Cell metabolism: an essential link between cell growth and apoptosis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1813:645-54. [PMID: 20816705 DOI: 10.1016/j.bbamcr.2010.08.011] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 08/20/2010] [Accepted: 08/24/2010] [Indexed: 12/12/2022]
Abstract
Growth factor-stimulated or cancerous cells require sufficient nutrients to meet the metabolic demands of cell growth and division. If nutrients are insufficient, metabolic checkpoints are triggered that lead to cell cycle arrest and the activation of the intrinsic apoptotic cascade through a process dependent on the Bcl-2 family of proteins. Given the connections between metabolism and apoptosis, the notion of targeting metabolism to induce cell death in cancer cells has recently garnered much attention. However, the signaling pathways by which metabolic stresses induce apoptosis have not as of yet been fully elucidated. Thus, the best approach to this promising therapeutic avenue remains unclear. This review will discuss the intricate links between metabolism, growth, and intrinsic apoptosis and will consider ways in which manipulation of metabolism might be exploited to promote apoptotic cell death in cancer cells. This article is part of a Special Issue entitled Mitochondria: the deadly organelle.
Collapse
Affiliation(s)
- Emily F Mason
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | | |
Collapse
|
2821
|
The metabolic switch and its regulation in cancer cells. SCIENCE CHINA-LIFE SCIENCES 2010; 53:942-58. [PMID: 20821293 DOI: 10.1007/s11427-010-4041-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Accepted: 05/07/2010] [Indexed: 02/05/2023]
Abstract
The primary features of cancer are maintained via intrinsically modified metabolic activity, which is characterized by enhanced nutrient supply, energy production, and biosynthetic activity to synthesize a variety of macromolecular components during each passage through the cell cycle. This metabolic shift in transformed cells, as compared with non-proliferating cells, involves aberrant activation of aerobic glycolysis, de novo lipid biosynthesis and glutamine-dependent anaplerosis to fuel robust cell growth and proliferation. Here, we discuss the unique metabolic characteristics of cancer, the constitutive regulation of metabolism through a variety of signal transduction pathways and/or enzymes involved in metabolic reprogramming in cancer cells, and their implications in cancer diagnosis and therapy.
Collapse
|
2822
|
Abstract
Although the notion that cancer is a disease caused by genetic and epigenetic alterations is now widely accepted, perhaps more emphasis has been given to the fact that cancer is a genetic disease. It should be noted that in the post-genome sequencing project period of the 21st century, the underlined phenomenon nevertheless could not be discarded towards the complete control of cancer disaster as the whole strategy, and in depth investigation of the factors associated with tumorigenesis is required for achieving it. Otto Warburg has won a Nobel Prize in 1931 for the discovery of tumor bioenergetics, which is now commonly used as the basis of positron emission tomography (PET), a highly sensitive noninvasive technique used in cancer diagnosis. Furthermore, the importance of the cancer stem cell (CSC) hypothesis in therapy-related resistance and metastasis has been recognized during the past 2 decades. Accumulating evidence suggests that tumor bioenergetics plays a critical role in CSC regulation; this finding has opened up a new era of cancer medicine, which goes beyond cancer genomics.
Collapse
Affiliation(s)
- Hideshi Ishii
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masaki Mori
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
2823
|
Abstract
Large-scale profiling methods have uncovered numerous gene and protein expression changes that correlate with tumorigenesis. However, determining the relevance of these expression changes and which biochemical pathways they affect has been hindered by our incomplete understanding of the proteome and its myriad functions and modes of regulation. Activity-based profiling platforms enable both the discovery of cancer-relevant enzymes and selective pharmacological probes to perturb and characterize these proteins in tumour cells. When integrated with other large-scale profiling methods, activity-based proteomics can provide insight into the metabolic and signalling pathways that support cancer pathogenesis and illuminate new strategies for disease diagnosis and treatment.
Collapse
Affiliation(s)
- Daniel K. Nomura
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Melissa M. Dix
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Benjamin F. Cravatt
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, USA
| |
Collapse
|
2824
|
Proteomics of colorectal cancer: Overview of discovery studies and identification of commonly identified cancer-associated proteins and candidate CRC serum markers. J Proteomics 2010; 73:1873-95. [DOI: 10.1016/j.jprot.2010.06.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 06/02/2010] [Accepted: 06/15/2010] [Indexed: 02/09/2023]
|
2825
|
Weljie AM, Jirik FR. Hypoxia-induced metabolic shifts in cancer cells: moving beyond the Warburg effect. Int J Biochem Cell Biol 2010; 43:981-9. [PMID: 20797448 DOI: 10.1016/j.biocel.2010.08.009] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 08/16/2010] [Accepted: 08/18/2010] [Indexed: 10/24/2022]
Abstract
Hypoxia has been recognized to play a role in promoting the invasive and metastatic behaviour of cancer cells. Largely via the transcription factor, hypoxia-induced factor 1, hypoxia exerts significant effects on cellular metabolism, with numerous downstream consequences. Energetically there is a significant shift away from oxidative phosphorylation in mitochondria towards glycolysis, a state also involved in the 'Warburg effect'. The proteins involved in mediating the altered metabolic pathways seen in tumour cells thus represent new targets for potential therapeutic intervention. Hypoxia has been associated with the development of aggressive phenotypes in cancer cells, and can be accompanied by changes in carbohydrate and lipid metabolism that impact tumour cell proliferation, adhesion, and angiogenesis. Herein, we examine glycolytic and other less investigated metabolic pathways in relation to cancer and hypoxia, with a focus on emerging tools for large-scale metabolite profiling ('metabolomics'). Metabolomic technologies permit the measurement of a wide range of metabolites in an untargeted manner, however, to date, this technology has been relatively under utilized for studying cellular responses to hypoxia. We detail some of the common experimental approaches employed in metabolomics experiments, including nuclear magnetic resonance and new mass spectrometry-based methods of analysis. Selected examples of the application of these technologies to the study of metabolic alterations brought about by hypoxia are provided, particularly as they relate to energy, carbohydrate, and lipid metabolism. Finally, the potential for therapeutic targeting of metabolic processes activated by hypoxia is presented.
Collapse
Affiliation(s)
- Aalim M Weljie
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada.
| | | |
Collapse
|
2826
|
Guha M, Fang JK, Monks R, Birnbaum MJ, Avadhani NG. Activation of Akt is essential for the propagation of mitochondrial respiratory stress signaling and activation of the transcriptional coactivator heterogeneous ribonucleoprotein A2. Mol Biol Cell 2010; 21:3578-89. [PMID: 20719961 PMCID: PMC2954122 DOI: 10.1091/mbc.e10-03-0192] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
This article shows that mitochondrial respiratory dysfunction activates a stress signaling that induces Akt1 activation. Akt1 activation occurs through calcineurin-mediated IGF1R/PI3-K pathway. Akt1-mediated phosphorylation of hnRNPA2 is a key requirement for the propagation of stress signaling and activation of nuclear target genes. Mitochondrial respiratory stress (also called mitochondrial retrograde signaling) activates a Ca2+/calcineurin-mediated signal that culminates in transcription activation/repression of a large number of nuclear genes. This signal is propagated through activation of the regulatory proteins NFκB c-Rel/p50, C/EBPδ, CREB, and NFAT. Additionally, the heterogeneous ribonucleoprotein A2 (hnRNPA2) functions as a coactivator in up-regulating the transcription of Cathepsin L, RyR1, and Glut-4, the target genes of stress signaling. Activation of IGF1R, which causes a metabolic switch to glycolysis, cell invasiveness, and resistance to apoptosis, is a phenotypic hallmark of C2C12 myoblasts subjected to mitochondrial stress. In this study, we report that mitochondrial stress leads to increased expression, activation, and nuclear localization of Akt1. Mitochondrial respiratory stress also activates Akt1-gene expression, which involves hnRNPA2 as a coactivator, indicating a complex interdependency of these two factors. Using Akt1−/− mouse embryonic fibroblasts and Akt1 mRNA-silenced C2C12 cells, we show that Akt1-mediated phosphorylation is crucial for the activation and recruitment of hnRNPA2 to the enhanceosome complex. Akt1 mRNA silencing in mtDNA-depleted cells resulted in reversal of the invasive phenotype, accompanied by sensitivity to apoptotic stimuli. These results show that Akt1 is an important regulator of the nuclear transcriptional response to mitochondrial stress.
Collapse
Affiliation(s)
- Manti Guha
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
2827
|
Hansen AE, Kristensen AT, Law I, Jørgensen JT, Engelholm SA. Hypoxia-inducible factors--regulation, role and comparative aspects in tumourigenesis. Vet Comp Oncol 2010; 9:16-37. [PMID: 21303451 DOI: 10.1111/j.1476-5829.2010.00233.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Hypoxia-inducible factors (HIFs) play a key role in the cellular response experienced in hypoxic tumours, mediating adaptive responses that allow hypoxic cells to survive in the hostile environment. Identification and understanding of tumour hypoxia and the influence on cellular processes carries important prognostic information and may help identify potential hypoxia circumventing and targeting strategies. This review summarizes current knowledge on HIF regulation and function in tumour cells and discusses the aspects of using companion animals as comparative spontaneous cancer models. Spontaneous tumours in companion animals hold a great research potential for the evaluation and understanding of tumour hypoxia and in the development of hypoxia-targeting therapeutics.
Collapse
Affiliation(s)
- A E Hansen
- Department of Small Animal Clinical Sciences, The Faculty of Life Sciences, University of Copenhagen, Frederiksberg, Denmark.
| | | | | | | | | |
Collapse
|
2828
|
Chen G, Wang F, Trachootham D, Huang P. Preferential killing of cancer cells with mitochondrial dysfunction by natural compounds. Mitochondrion 2010; 10:614-25. [PMID: 20713185 DOI: 10.1016/j.mito.2010.08.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 08/03/2010] [Accepted: 08/04/2010] [Indexed: 01/06/2023]
Abstract
Mitochondria play essential roles in cellular metabolism, redox homeostasis, and regulation of cell death. Emerging evidences suggest that cancer cells exhibit various degrees of mitochondrial dysfunctions and metabolic alterations, which may serve as a basis to develop therapeutic strategies to preferentially kill the malignant cells. Mitochondria as a therapeutic target for cancer treatment is gaining much attention in the recent years, and agents that impact mitochondria with anticancer activity have been identified and tested in vitro and in vivo using various experimental systems. Anticancer agents that directly target mitochondria or indirectly affect mitochondrial functions are collectively classified as mitocans. This review article focuses on several natural compounds that preferentially kill cancer cells with mitochondrial dysfunction, and discusses the possible underlying mechanisms and their therapeutic implications in cancer treatment. Mitocans that have been comprehensively reviewed recently are not included in this article. Important issues such as therapeutic selectivity and the relevant biochemical basis are discussed in the context of future perspectives.
Collapse
Affiliation(s)
- Gang Chen
- Department of Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | | | | | | |
Collapse
|
2829
|
Sirtuin 1 modulates cellular responses to hypoxia by deacetylating hypoxia-inducible factor 1alpha. Mol Cell 2010; 38:864-78. [PMID: 20620956 DOI: 10.1016/j.molcel.2010.05.023] [Citation(s) in RCA: 587] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Revised: 02/22/2010] [Accepted: 05/10/2010] [Indexed: 02/06/2023]
Abstract
To survive in hypoxic environments, organisms must be able to cope with redox imbalance and oxygen deficiency. The SIRT1 deacetylase and the HIF-1alpha transcription factor act as redox and oxygen sensors, respectively. Here, we found that SIRT1 binds to HIF-1alpha and deacetylates it at Lys674, which is acetylated by PCAF. By doing so, SIRT1 inactivated HIF-1alpha by blocking p300 recruitment and consequently repressed HIF-1 target genes. During hypoxia, SIRT1 was downregulated due to decreased NAD(+) levels, which allowed the acetylation and activation of HIF-1alpha. Conversely, when the redox change was attenuated by blocking glycolysis, SIRT1 was upregulated, leading to the deacetylation and inactivation of HIF-1alpha even in hypoxia. In addition, we confirmed the SIRT1-HIF-1alpha interaction in hypoxic mouse tissues and observed in vivo that SIRT1 has negative effects on tumor growth and angiogenesis. Our results suggest that crosstalk between oxygen- and redox-responsive signal transducers occurs through the SIRT1-HIF-1alpha interaction.
Collapse
|
2830
|
Metabolic flexibility and cell hierarchy in metastatic cancer. Mitochondrion 2010; 10:584-8. [PMID: 20709626 DOI: 10.1016/j.mito.2010.08.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Revised: 07/28/2010] [Accepted: 08/04/2010] [Indexed: 01/26/2023]
Abstract
Cancer is characterized by disturbed homeostasis of self-renewing cell populations, and their ability to seed and grow in multiple microenvironments. This overarching cellular property of metastatic cancer emerges from the contentious cancer stem cell hypothesis that underpins the more generic hallmarks of cancer (Hanahan and Weinberg, 2000) and its subsequent add-ons. An additional characteristic, metabolic flexibility, is related to concepts developed by Warburg and to subsequent work by mid 20th century biochemists who elucidated the bioenergetic workings of mitochondria. Metabolic flexibility may circumvent limitations inherent in the increasingly popular but erroneous view that aerobic glycolysis is a universal property of cancer cells. Cancer research in the second half of the 20th century was largely the domain of geneticists and molecular biologists using reductionist approaches. Integrated approaches that address cancer cell hierarchy and complexity, and how cancer cells adapt their metabolism according to their changing environment are now beginning to emerge, and these approaches promise to address the poor mortality statistics of metastatic cancer.
Collapse
|
2831
|
Abstract
The importance of cancer metabolism has been appreciated for many years, but the intricacies of how metabolic pathways interconnect with oncogenic signaling are not fully understood. With a clear understanding of how metabolism contributes to tumorigenesis, we will be better able to integrate the targeting of these fundamental biochemical pathways into patient care. The mevalonate (MVA) pathway, paced by its rate-limiting enzyme, hydroxymethylglutaryl coenzyme A reductase (HMGCR), is required for the generation of several fundamental end-products including cholesterol and isoprenoids. Despite years of extensive research from the perspective of cardiovascular disease, the contribution of a dysregulated MVA pathway to human cancer remains largely unexplored. We address this issue directly by showing that dysregulation of the MVA pathway, achieved by ectopic expression of either full-length HMGCR or its novel splice variant, promotes transformation. Ectopic HMGCR accentuates growth of transformed and nontransformed cells under anchorage-independent conditions or as xenografts in immunocompromised mice and, importantly, cooperates with RAS to drive the transformation of primary mouse embryonic fibroblasts cells. We further explore whether the MVA pathway may play a role in the etiology of human cancers and show that high mRNA levels of HMGCR and additional MVA pathway genes correlate with poor prognosis in a meta-analysis of six microarray datasets of primary breast cancer. Taken together, our results suggest that HMGCR is a candidate metabolic oncogene and provide a molecular rationale for further exploring the statin family of HMGCR inhibitors as anticancer agents.
Collapse
|
2832
|
Abstract
Hyperactivity of the Myc oncogenic transcription factor dramatically reprograms gene expression to facilitate cellular proliferation and tumorigenesis. To elicit these effects, Myc coordinates the activation and repression of an extensive network of protein-coding genes and, as has recently been appreciated, noncoding RNAs including microRNAs (miRNAs). Consistent with their ability to potently influence cancer phenotypes, the regulation of miRNAs by Myc affects virtually all aspects of the Myc oncogenic program, including proliferation, survival, metabolism, angiogenesis, and metastasis. This review will summarize the current understanding of the mechanisms underlying Myc-dependent transcriptional and posttranscriptional control of miRNAs and the resultant effects on tumorigenesis. As miRNAs are integral nodes in the transcriptional network controlled by Myc, modulating their activity represents a promising new approach for cancer therapy.
Collapse
Affiliation(s)
- Thi V Bui
- Howard Hughes Medical Institute and McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | |
Collapse
|
2833
|
Energy Metabolic Phenotype of the Cardiomyocyte During Development, Differentiation, and Postnatal Maturation. J Cardiovasc Pharmacol 2010; 56:130-40. [DOI: 10.1097/fjc.0b013e3181e74a14] [Citation(s) in RCA: 410] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
2834
|
Van Dang C, McMahon SB. Emerging Concepts in the Analysis of Transcriptional Targets of the MYC Oncoprotein: Are the Targets Targetable? Genes Cancer 2010; 1:560-567. [PMID: 21533016 DOI: 10.1177/1947601910379011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Activation of the MYC oncoprotein is among the most ubiquitous events in human cancer. MYC functions in part as a sequence-specific regulator of transcription. Although early searches for direct downstream target genes that explain MYC's potent biological activity were met with enthusiasm, the postgenomic decade has brought the realization that MYC regulates the transcription of not just a manageably small handful of target genes but instead up to 15% of all active loci. As the dust has begun to settle, two important concepts have emerged that reignite hope that understanding MYC's downstream targets might still prove valuable for defining critical nodes for therapeutic intervention in cancer patients. First, it is now clear that MYC target genes are not a random sampling of the cellular transcriptome but instead fall into specific, critical biochemical pathways such as metabolism, chromatin structure, and protein translation. In retrospect, we should not have been surprised to discover that MYC rewires cell physiology in a manner designed to provide the tumor cell with greater biosynthetic properties. However, the specific details that have emerged from these studies are likely to guide the development of new clinical tools and strategies. This raises the second concept that instills renewed optimism regarding MYC target genes. It is now clear that not all MYC target genes are of equal functional relevance. Thus, it may be possible to discern, from among the thousands of potential MYC target genes, those whose inhibition will truly debilitate the tumor cell. In short, targeting the targets may ultimately be a realistic approach after all.
Collapse
Affiliation(s)
- Chi Van Dang
- Kimmel Cancer Center, Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | | |
Collapse
|
2835
|
Igal RA. Stearoyl-CoA desaturase-1: a novel key player in the mechanisms of cell proliferation, programmed cell death and transformation to cancer. Carcinogenesis 2010; 31:1509-15. [PMID: 20595235 DOI: 10.1093/carcin/bgq131] [Citation(s) in RCA: 227] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
As part of a shift toward macromolecule production to support continuous cell proliferation, cancer cells coordinate the activation of lipid biosynthesis and the signaling networks that stimulate this process. A ubiquitous metabolic event in cancer is the constitutive activation of the fatty acid biosynthetic pathway, which produces saturated fatty acids (SFAs) and monounsaturated fatty acids (MUFAs) to sustain the increasing demand of new membrane phospholipids with appropriate acyl composition. In cancer cells, the tandem activation of the fatty acid biosynthetic enzymes adenosine triphosphate citrate lyase, acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS) leads to increased synthesis of SFA and their further conversion into MUFA by stearoyl-CoA desaturase (SCD) 1. The roles of adenosine triphosphate citrate lyase, ACC and FAS in the pathogenesis of cancer have been a subject of extensive investigation. However, despite early experimental and epidemiological observations reporting elevated levels of MUFA in cancer cells and tissues, the involvement of SCD1 in the mechanisms of carcinogenesis remains surprisingly understudied. Over the past few years, a more detailed picture of the functional relevance of SCD1 in cell proliferation, survival and transformation to cancer has begun to emerge. The present review addresses the mounting evidence that argues for a key role of SCD1 in the coordination of the intertwined pathways of lipid biosynthesis, energy sensing and the transduction signals that influence mitogenesis and tumorigenesis, as well as the potential value of this enzyme as a target for novel pharmacological approaches in cancer interventions.
Collapse
Affiliation(s)
- R Ariel Igal
- Department of Nutritional Sciences and Rutgers Center for Lipid Research, Rutgers, the State University of New Jersey, 96 Lipman Drive, New Brunswick, NJ 08901-8525, USA.
| |
Collapse
|
2836
|
Hess D, Chisholm JW, Igal RA. Inhibition of stearoylCoA desaturase activity blocks cell cycle progression and induces programmed cell death in lung cancer cells. PLoS One 2010; 5:e11394. [PMID: 20613975 PMCID: PMC2894866 DOI: 10.1371/journal.pone.0011394] [Citation(s) in RCA: 155] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2010] [Accepted: 06/02/2010] [Indexed: 01/22/2023] Open
Abstract
Lung cancer is the most frequent form of cancer. The survival rate for patients with metastatic lung cancer is approximately 5%, hence alternative therapeutic strategies to treat this disease are critically needed. Recent studies suggest that lipid biosynthetic pathways, particularly fatty acid synthesis and desaturation, are promising molecular targets for cancer therapy. We have previously reported that inhibition of stearoylCoA desaturase-1 (SCD1), the enzyme that produces monounsaturated fatty acids (MUFA), impairs lung cancer cell proliferation, survival and invasiveness, and dramatically reduces tumor formation in mice. In this report, we show that inhibition of SCD activity in human lung cancer cells with the small molecule SCD inhibitor CVT-11127 reduced lipid synthesis and impaired proliferation by blocking the progression of cell cycle through the G(1)/S boundary and by triggering programmed cell death. These alterations resulting from SCD blockade were fully reversed by either oleic (18:1n-9), palmitoleic acid (16:1n-7) or cis-vaccenic acid (18:1n-7) demonstrating that cis-MUFA are key molecules for cancer cell proliferation. Additionally, co-treatment of cells with CVT-11127 and CP-640186, a specific acetylCoA carboxylase (ACC) inhibitor, did not potentiate the growth inhibitory effect of these compounds, suggesting that inhibition of ACC or SCD1 affects a similar target critical for cell proliferation, likely MUFA, the common fatty acid product in the pathway. This hypothesis was further reinforced by the observation that exogenous oleic acid reverses the anti-growth effect of SCD and ACC inhibitors. Finally, exogenous oleic acid restored the globally decreased levels of cell lipids in cells undergoing a blockade of SCD activity, indicating that active lipid synthesis is required for the fatty acid-mediated restoration of proliferation in SCD1-inhibited cells. Altogether, these observations suggest that SCD1 controls cell cycle progression and apoptosis and, consequently, the overall rate of proliferation in cancer cells through MUFA-mediated activation of lipid synthesis.
Collapse
Affiliation(s)
- Daniel Hess
- Department of Nutritional Sciences and Rutgers Center for Lipid Research, Rutgers, the State University of New Jersey, New Brunswick, New Jersey, United States of America
| | - Jeffrey W. Chisholm
- Biology, Gilead Sciences Inc., Palo Alto, California, United States of America
| | - R. Ariel Igal
- Department of Nutritional Sciences and Rutgers Center for Lipid Research, Rutgers, the State University of New Jersey, New Brunswick, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
2837
|
Abstract
Cancer cells have different metabolic requirements from their normal counterparts. Understanding the consequences of this differential metabolism requires a detailed understanding of glucose metabolism and its relation to energy production in cancer cells. A recent study in BMC Systems Biology by Vasquez et al. developed a mathematical model to assess some features of this altered metabolism. Here, we take a broader look at the regulation of energy metabolism in cancer cells, considering their anabolic as well as catabolic needs. See research article: http://www.biomedcentral.com/1752-0509/4/58/
Collapse
Affiliation(s)
- Jason W Locasale
- Department of Systems Biology, Harvard Medical School, Boston, MA 02215, USA.
| | | |
Collapse
|
2838
|
Carr EL, Kelman A, Wu GS, Gopaul R, Senkevitch E, Aghvanyan A, Turay AM, Frauwirth KA. Glutamine uptake and metabolism are coordinately regulated by ERK/MAPK during T lymphocyte activation. THE JOURNAL OF IMMUNOLOGY 2010; 185:1037-44. [PMID: 20554958 DOI: 10.4049/jimmunol.0903586] [Citation(s) in RCA: 605] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Activation of a naive T cell is a highly energetic event, which requires a substantial increase in nutrient metabolism. Upon stimulation, T cells increase in size, rapidly proliferate, and differentiate, all of which lead to a high demand for energetic and biosynthetic precursors. Although amino acids are the basic building blocks of protein biosynthesis and contribute to many other metabolic processes, the role of amino acid metabolism in T cell activation has not been well characterized. We have found that glutamine in particular is required for T cell function. Depletion of glutamine blocks proliferation and cytokine production, and this cannot be rescued by supplying biosynthetic precursors of glutamine. Correlating with the absolute requirement for glutamine, T cell activation induces a large increase in glutamine import, but not glutamate import, and this increase is CD28-dependent. Activation coordinately enhances expression of glutamine transporters and activities of enzymes required to allow the use of glutamine as a Krebs cycle substrate in T cells. The induction of glutamine uptake and metabolism requires ERK function, providing a link to TCR signaling. Together, these data indicate that regulation of glutamine use is an important component of T cell activation. Thus, a better understanding of glutamine sensing and use in T cells may reveal novel targets for immunomodulation.
Collapse
Affiliation(s)
- Erikka L Carr
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742, USA
| | | | | | | | | | | | | | | |
Collapse
|
2839
|
Ye J, Kumanova M, Hart LS, Sloane K, Zhang H, De Panis DN, Bobrovnikova-Marjon E, Diehl JA, Ron D, Koumenis C. The GCN2-ATF4 pathway is critical for tumour cell survival and proliferation in response to nutrient deprivation. EMBO J 2010; 29:2082-96. [PMID: 20473272 PMCID: PMC2892366 DOI: 10.1038/emboj.2010.81] [Citation(s) in RCA: 532] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Accepted: 04/07/2010] [Indexed: 01/11/2023] Open
Abstract
The transcription factor ATF4 regulates the expression of genes involved in amino acid metabolism, redox homeostasis and ER stress responses, and it is overexpressed in human solid tumours, suggesting that it has an important function in tumour progression. Here, we report that inhibition of ATF4 expression blocked proliferation and survival of transformed cells, despite an initial activation of cytoprotective macroautophagy. Knockdown of ATF4 significantly reduced the levels of asparagine synthetase (ASNS) and overexpression of ASNS or supplementation of asparagine in trans, reversed the proliferation block and increased survival in ATF4 knockdown cells. Both amino acid and glucose deprivation, stresses found in solid tumours, activated the upstream eukaryotic initiation factor 2alpha (eIF2alpha) kinase GCN2 to upregulate ATF4 target genes involved in amino acid synthesis and transport. GCN2 activation/overexpression and increased phospho-eIF2alpha were observed in human and mouse tumours compared with normal tissues and abrogation of ATF4 or GCN2 expression significantly inhibited tumour growth in vivo. We conclude that the GCN2-eIF2alpha-ATF4 pathway is critical for maintaining metabolic homeostasis in tumour cells, making it a novel and attractive target for anti-tumour approaches.
Collapse
Affiliation(s)
- Jiangbin Ye
- Department of Radiation Oncology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Monika Kumanova
- Department of Radiation Oncology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Lori S Hart
- Department of Radiation Oncology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Kelly Sloane
- Department of Radiation Oncology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Haiyan Zhang
- Department of Radiation Oncology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Diego N De Panis
- Department of Radiation Oncology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Ekaterina Bobrovnikova-Marjon
- Department of Cancer Biology and Abramson Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - J Alan Diehl
- Department of Cancer Biology and Abramson Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - David Ron
- Department of Medicine, Skirball Institute of Biomolecular Medicine, New York School of Medicine, New York, NY, USA
| | - Constantinos Koumenis
- Department of Radiation Oncology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
2840
|
Formentini L, Martínez-Reyes I, Cuezva JM. The mitochondrial bioenergetic capacity of carcinomas. IUBMB Life 2010; 62:554-60. [DOI: 10.1002/iub.352] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
2841
|
Choo AY, Kim SG, Vander Heiden MG, Mahoney SJ, Vu H, Yoon SO, Cantley LC, Blenis J. Glucose addiction of TSC null cells is caused by failed mTORC1-dependent balancing of metabolic demand with supply. Mol Cell 2010; 38:487-99. [PMID: 20513425 DOI: 10.1016/j.molcel.2010.05.007] [Citation(s) in RCA: 219] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Revised: 11/16/2009] [Accepted: 03/05/2010] [Indexed: 12/11/2022]
Abstract
The mTORC1-signaling pathway integrates environmental conditions into distinct signals for cell growth by balancing anabolic and catabolic processes. Accordingly, energetic stress inhibits mTORC1 signaling predominantly through AMPK-dependent activation of TSC1/2. Thus, TSC1/2-/- cells are hypersensitive to glucose deprivation, and this has been linked to increased p53 translation and activation of apoptosis. Herein, we show that mTORC1 inhibition during glucose deprivation prevented not only the execution of death, but also induction of energetic stress. mTORC1 inhibition during glucose deprivation decreased AMPK activation and allowed ATP to remain high, which was both necessary and sufficient for protection. This effect was not due to increased catabolic activities such as autophagy, but rather exclusively due to decreased anabolic processes, reducing energy consumption. Specifically, TSC1/2-/- cells become highly dependent on glutamate dehydrogenase-dependent glutamine metabolism via the TCA cycle for survival. Therefore, mTORC1 inhibition during energetic stress is primarily to balance metabolic demand with supply.
Collapse
Affiliation(s)
- Andrew Y Choo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
2842
|
Abstract
Chronic liver inflammation after murine bile duct ligation could evolve according to three interrelated phenotypes, which would have different metabolic, functional and histologic characteristics. Liver injury secondary to extrahepatic cholestasis would induce an early ischemic-reperfusion phenotype with cholangiocyte depolarization, abnormal ion transport, hypometabolism with anaerobic glycolysis and hepatocytic apoptosis. This phenotype, in turn, could trigger the switch to a leukocytic phenotype by the cholangiocytes, with an intense anaplerotic activity, hypermetabolism, extracellular matrix degradation and moderated proliferation to create a pseudotissue with metabolic autonomy and paracrine functions. In the long-term cholestasis-drive tumorigenesis, the tumorous tissue would principally consist of cholangiocyte parenchyma, with an impressive biosynthetic activity through the tricarboxylic cell cycle. In terms of the tumorous stroma, made up by fibroplasia and angiogenesis, it would favor the tumor trophism. In conclusion, the great intensity and persistence in the expression of these phenotypes by the cholestatic cholangiocyte would favor chronic inflammatory tumorigenesis.
Collapse
|
2843
|
Straadt IK, Young JF, Petersen BO, Duus JØ, Gregersen N, Bross P, Oksbjerg N, Bertram HC. Metabolic profiling of heat or anoxic stress in mouse C2C12 myotubes using multinuclear magnetic resonance spectroscopy. Metabolism 2010; 59:814-23. [PMID: 20005546 DOI: 10.1016/j.metabol.2009.09.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Revised: 08/19/2009] [Accepted: 09/29/2009] [Indexed: 10/20/2022]
Abstract
In the present study, the metabolic effects of heat and anoxic stress in myotubes from the mouse cell line C2C12 were investigated by using a combination of (13)C, (1)H, and (31)P nuclear magnetic resonance (NMR) spectroscopy and enrichment with [(13)C]-glucose. Both the (13)C and the (1)H NMR spectra showed reduced levels of the amino acids alanine, glutamate, and aspartate after heat or anoxic stress. The decreases were smallest at 42 degrees C, larger at 45 degrees C, and most pronounced after anoxic conditions. In addition, in both the (1)H and the (31)P NMR spectra, decreases in the high-energy phosphate compounds adenosine triphosphate and phosphocreatine with increasing severity of stress were identified. At anoxic conditions, an increase in (13)C-labeled lactate and appearance of glycerol-3-phosphate were observed. Accumulation of lactate and glycerol-3-phosphate is in agreement with a shift to anaerobic metabolism due to inhibition of the aerobic pathway in the mitochondria. Conversely, lower levels of unlabeled ((12)C) lactate were apparent at increasing severity of stress, which indicate that lactate is released from the myotubes to the medium. In conclusion, the metabolites identified in the present study may be useful markers for identifying severity of stress in muscles.
Collapse
Affiliation(s)
- Ida K Straadt
- Department of Food Science, Faculty of Agricultural Sciences, University of Aarhus, P.O. Box 50, DK-8830 Tjele, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
2844
|
Jiang JK, Boxer MB, Vander Heiden MG, Shen M, Skoumbourdis AP, Southall N, Veith H, Leister W, Austin CP, Park HW, Inglese J, Cantley LC, Auld DS, Thomas CJ. Evaluation of thieno[3,2-b]pyrrole[3,2-d]pyridazinones as activators of the tumor cell specific M2 isoform of pyruvate kinase. Bioorg Med Chem Lett 2010; 20:3387-93. [PMID: 20451379 PMCID: PMC2874658 DOI: 10.1016/j.bmcl.2010.04.015] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 04/05/2010] [Accepted: 04/07/2010] [Indexed: 11/21/2022]
Abstract
Cancer cells have distinct metabolic needs that are different from normal cells and can be exploited for development of anti-cancer therapeutics. Activation of the tumor specific M2 form of pyruvate kinase (PKM2) is a potential strategy for returning cancer cells to a metabolic state characteristic of normal cells. Here, we describe activators of PKM2 based upon a substituted thieno[3,2-b]pyrrole[3,2-d]pyridazinone scaffold. The synthesis of these agents, structure-activity relationships, analysis of activity at related targets (PKM1, PKR and PKL) and examination of aqueous solubility are investigated. These agents represent the second reported chemotype for activation of PKM2.
Collapse
Affiliation(s)
- Jian-kang Jiang
- NIH Chemical Genomics Center, National Human Genome Research Institute, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, USA
| | - Matthew B. Boxer
- NIH Chemical Genomics Center, National Human Genome Research Institute, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, USA
| | - Matthew G. Vander Heiden
- Koch Institute at MIT, Cambridge, Massachusetts 02139 USA
- Dana Farber Cancer Institute, Boston, Massachusetts 02115 USA
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115 USA
| | - Min Shen
- NIH Chemical Genomics Center, National Human Genome Research Institute, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, USA
| | - Amanda P. Skoumbourdis
- NIH Chemical Genomics Center, National Human Genome Research Institute, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, USA
| | - Noel Southall
- NIH Chemical Genomics Center, National Human Genome Research Institute, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, USA
| | - Henrike Veith
- NIH Chemical Genomics Center, National Human Genome Research Institute, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, USA
| | - William Leister
- NIH Chemical Genomics Center, National Human Genome Research Institute, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, USA
| | - Christopher P. Austin
- NIH Chemical Genomics Center, National Human Genome Research Institute, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, USA
| | - Hee Won Park
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada M5G 1L5
- Department of Pharmacology, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - James Inglese
- NIH Chemical Genomics Center, National Human Genome Research Institute, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, USA
| | - Lewis C. Cantley
- Dana Farber Cancer Institute, Boston, Massachusetts 02115 USA
- Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02115, USA
| | - Douglas S. Auld
- NIH Chemical Genomics Center, National Human Genome Research Institute, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, USA
| | - Craig J. Thomas
- NIH Chemical Genomics Center, National Human Genome Research Institute, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, USA
| |
Collapse
|
2845
|
Fritz V, Fajas L. Metabolism and proliferation share common regulatory pathways in cancer cells. Oncogene 2010; 29:4369-77. [PMID: 20514019 DOI: 10.1038/onc.2010.182] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cancer development involves major alterations in cells' metabolism. Enhanced glycolysis and de novo fatty acids synthesis are indeed characteristic features of cancer. Cell proliferation and metabolism are tightly linked cellular processes. Others and we have previously shown a close relationship between metabolic responses and proliferative stimuli. In addition to trigger proliferative and survival signaling pathways, most oncoproteins also trigger metabolic changes to transform the cell. We present herein the view that participation of cell-cycle regulators and oncogenic proteins to cancer development extend beyond the control of cell proliferation, and discuss how these new functions may be implicated in metabolic alterations concomitant to the pathogenesis of human cancers.
Collapse
Affiliation(s)
- V Fritz
- Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
| | | |
Collapse
|
2846
|
Aller MA, Arias JI, Alonso-Poza A, Arias J. A review of metabolic staging in severely injured patients. Scand J Trauma Resusc Emerg Med 2010; 18:27. [PMID: 20478066 PMCID: PMC2883961 DOI: 10.1186/1757-7241-18-27] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Accepted: 05/17/2010] [Indexed: 02/07/2023] Open
Abstract
An interpretation of the metabolic response to injury in patients with severe accidental or surgical trauma is made. In the last century, various authors attributed a meaning to the post-traumatic inflammatory response by using teleological arguments. Their interpretations of this response, not only facilitates integrating the knowledge, but also the flow from the bench to the bedside, which is the main objective of modern translational research. The goal of the current review is to correlate the metabolic changes with the three phenotypes -ischemia-reperfusion, leukocytic and angiogenic- that the patients express during the evolution of the systemic inflammatory response. The sequence in the expression of multiple metabolic systems that becomes progressively more elaborate and complex in severe injured patients urges for more detailed knowledge in order to establish the most adequate metabolic support according to the evolutive phase. Thus, clinicians must employ different treatment strategies based on the different metabolic phases when caring for this challenging patient population. Perhaps, the best therapeutic option would be to favor early hypometabolism during the ischemia-reperfusion phase, to boost the antienzymatic metabolism and to reduce hypermetabolism during the leukocytic phase through the early administration of enteral nutrition and the modulation of the acute phase response. Lastly, the early epithelial regeneration of the injured organs and tissues by means of an oxidative metabolism would reduce the fibrotic sequelae in these severely injured patients.
Collapse
Affiliation(s)
- Maria-Angeles Aller
- Surgery I Department, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | | | | | | |
Collapse
|
2847
|
Role of cellular bioenergetics in smooth muscle cell proliferation induced by platelet-derived growth factor. Biochem J 2010; 428:255-67. [PMID: 20331438 DOI: 10.1042/bj20100090] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Abnormal smooth muscle cell proliferation is a hallmark of vascular disease. Although growth factors are known to contribute to cell hyperplasia, the changes in metabolism associated with this response, particularly mitochondrial respiration, remain unclear. Given the increased energy requirements for proliferation, we hypothesized that PDGF (platelet-derived growth factor) would stimulate glycolysis and mitochondrial respiration and that this elevated bioenergetic capacity is required for smooth muscle cell hyperplasia. To test this hypothesis, cell proliferation, glycolytic flux and mitochondrial oxygen consumption were measured after treatment of primary rat aortic VSMCs (vascular smooth muscle cells) with PDGF. PDGF increased basal and maximal rates of glycolytic flux and mitochondrial oxygen consumption; enhancement of these bioenergetic pathways led to a substantial increase in the mitochondrial reserve capacity. Interventions with the PI3K (phosphoinositide 3-kinase) inhibitor LY-294002 or the glycolysis inhibitor 2-deoxy-D-glucose abrogated PDGF-stimulated proliferation and prevented augmentation of glycolysis and mitochondrial reserve capacity. Similarly, when L-glucose was substituted for D-glucose, PDGF-dependent proliferation was abolished, as were changes in glycolysis and mitochondrial respiration. Interestingly, LDH (lactate dehydrogenase) protein levels and activity were significantly increased after PDGF treatment. Moreover, substitution of L-lactate for D-glucose was sufficient to increase mitochondrial reserve capacity and cell proliferation after treatment with PDGF; these effects were inhibited by the LDH inhibitor oxamate. These results suggest that glycolysis, by providing substrates that enhance the mitochondrial reserve capacity, plays an essential role in PDGF-induced cell proliferation, underscoring the integrated metabolic response required for proliferation of VSMCs in the diseased vasculature.
Collapse
|
2848
|
Bobrovnikova-Marjon E, Grigoriadou C, Pytel D, Zhang F, Ye J, Koumenis C, Cavener D, Diehl JA. PERK promotes cancer cell proliferation and tumor growth by limiting oxidative DNA damage. Oncogene 2010; 29:3881-95. [PMID: 20453876 PMCID: PMC2900533 DOI: 10.1038/onc.2010.153] [Citation(s) in RCA: 228] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
To proliferate and expand in an environment with limited nutrients, cancer cells co-opt cellular regulatory pathways that facilitate adaptation and thereby maintain tumor growth and survival potential. The endoplasmic reticulum (ER) is uniquely positioned to sense nutrient deprivation stress and subsequently engage signaling pathways that promote adaptive strategies. As such, components of the ER stress-signaling pathway represent potential antineoplastic targets. However, recent investigations into the role of the ER resident protein kinase, RNA-dependent protein kinase (PKR)-like ER kinase (PERK) have paradoxically suggested both pro- and anti-tumorigenic properties. We have used animal models of mammary carcinoma to interrogate the contribution of PERK in the neoplastic process. The ablation of PERK in tumor cells resulted in impaired regeneration of intracellular antioxidants and accumulation of reactive oxygen species triggering oxidative DNA damage. Ultimately, PERK deficiency impeded progression through the cell cycle because of the activation of the DNA damage checkpoint. Our data reveal that PERK-dependent signaling is used during both tumor initiation and expansion to maintain redox homeostasis, thereby facilitating tumor growth.
Collapse
Affiliation(s)
- E Bobrovnikova-Marjon
- The Leonard and Madlyn Abramson Family Cancer Research Institute and Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | | | | | | | |
Collapse
|
2849
|
Smolková K, Plecitá-Hlavatá L, Bellance N, Benard G, Rossignol R, Ježek P. Waves of gene regulation suppress and then restore oxidative phosphorylation in cancer cells. Int J Biochem Cell Biol 2010; 43:950-68. [PMID: 20460169 DOI: 10.1016/j.biocel.2010.05.003] [Citation(s) in RCA: 171] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 03/05/2010] [Accepted: 05/04/2010] [Indexed: 12/17/2022]
Abstract
We posit the following hypothesis: Independently of whether malignant tumors are initiated by a fundamental reprogramming of gene expression or seeded by stem cells, "waves" of gene expression that promote metabolic changes occur during carcinogenesis, beginning with oncogene-mediated changes, followed by hypoxia-induced factor (HIF)-mediated gene expression, both resulting in the highly glycolytic "Warburg" phenotype and suppression of mitochondrial biogenesis. Because high proliferation rates in malignancies cause aglycemia and nutrient shortage, the third (second oncogene) "wave" of adaptation stimulates glutaminolysis, which in certain cases partially re-establishes oxidative phosphorylation; this involves the LKB1-AMPK-p53, PI3K-Akt-mTOR axes and MYC dysregulation. Oxidative glutaminolysis serves as an alternative pathway compensating for cellular ATP. Together with anoxic glutaminolysis it provides pyruvate, lactate, and the NADPH pool (alternatively to pentose phosphate pathway). Retrograde signaling from revitalized mitochondria might constitute the fourth "wave" of gene reprogramming. In turn, upon reversal of the two Krebs cycle enzymes, glutaminolysis may partially (transiently) function even during anoxia, thereby further promoting malignancy. The history of the carcinogenic process within each malignant tumor determines the final metabolic phenotype of the selected surviving cells, resulting in distinct cancer bioenergetic phenotypes ranging from the highly glycolytic "classic Warburg" to partial or enhanced oxidative phosphorylation. We discuss the bioenergetically relevant functions of oncogenes, the involvement of mitochondrial biogenesis/degradation in carcinogenesis, the yet unexplained Crabtree effect of instant glucose blockade of respiration, and metabolic signaling stemming from the accumulation of succinate, fumarate, pyruvate, lactate, and oxoglutarate by interfering with prolyl hydroxylase domain enzyme-mediated hydroxylation of HIFα prolines.
Collapse
Affiliation(s)
- Katarína Smolková
- Department of Membrane Transport Biophysics, Institute of Physiology, vvi, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | | | | | | |
Collapse
|
2850
|
D'Anselmi F, Valerio M, Cucina A, Galli L, Proietti S, Dinicola S, Pasqualato A, Manetti C, Ricci G, Giuliani A, Bizzarri M. Metabolism and cell shape in cancer: a fractal analysis. Int J Biochem Cell Biol 2010; 43:1052-8. [PMID: 20460170 DOI: 10.1016/j.biocel.2010.05.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 01/11/2010] [Accepted: 05/04/2010] [Indexed: 10/19/2022]
Abstract
Fractal analysis in cancer cell investigation provided meaningful insights into the relationship between morphology and phenotype. Some reports demonstrated that changes in cell shape precede and trigger dramatic modifications in both gene expression and enzymatic function. Nonetheless, metabolomic pattern in cells undergoing shape changes have been not still reported. Our study was aimed to investigate if modifications in cancer cell morphology are associated to relevant transition in tumour metabolome, analyzed by nuclear magnetic resonance spectroscopy and principal component analysis. MCF-7 and MDA-MB-231 breast cancer cells, exposed to an experimental morphogenetic field, undergo a dramatic change in their membrane profiles. Both cell lines recover a more rounded shape, loosing spindle and invasive protrusions, acquiring a quite "normal" morphology. This result, quantified by fractal analysis, shows that normalized bending energy (a global shape characterization expressing the amount of energy needed to transform a specific shape into its lowest energy state) decreases after 48 h. Later on, a significant shift from a high to a low glycolytic phenotype was observed on both cell lines: glucose flux begins to drop off at 48 h, leading to reduced lactate accumulation, and fatty acids and citrate synthesis slow-down after 72 h. Moreover, de novo lipidogenesis is inhibited and nucleotide synthesis is reduced, as indicated by the positive correlation between glucose and formate. In conclusion, these data indicate that the reorganization of cell membrane architecture, induced by environmental cues, is followed by a relevant transition of the tumour metabolome, suggesting cells undergo a dramatic phenotypic reversion.
Collapse
|