2851
|
Carballido JM, Regairaz C, Rauld C, Raad L, Picard D, Kammüller M. The Emerging Jamboree of Transformative Therapies for Autoimmune Diseases. Front Immunol 2020; 11:472. [PMID: 32296421 PMCID: PMC7137386 DOI: 10.3389/fimmu.2020.00472] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 02/28/2020] [Indexed: 12/12/2022] Open
Abstract
Standard treatments for autoimmune and autoinflammatory disorders rely mainly on immunosuppression. These are predominantly symptomatic remedies that do not affect the root cause of the disease and are associated with multiple side effects. Immunotherapies are being developed during the last decades as more specific and safer alternatives to small molecules with broad immunosuppressive activity, but they still do not distinguish between disease-causing and protective cell targets and thus, they still have considerable risks of increasing susceptibility to infections and/or malignancy. Antigen-specific approaches inducing immune tolerance represent an emerging trend carrying the potential to be curative without inducing broad immunosuppression. These therapies are based on antigenic epitopes derived from the same proteins that are targeted by the autoreactive T and B cells, and which are administered to patients together with precise instructions to induce regulatory responses capable to restore homeostasis. They are not personalized medicines, and they do not need to be. They are precision therapies exquisitely targeting the disease-causing cells that drive pathology in defined patient populations. Immune tolerance approaches are truly transformative options for people suffering from autoimmune diseases.
Collapse
Affiliation(s)
- José M. Carballido
- Translational Medicine, Novartis Institutes for Biomedical Research, Basel, Switzerland
- Autoimmunity Transplantation and Inflammation, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Camille Regairaz
- Autoimmunity Transplantation and Inflammation, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Celine Rauld
- Autoimmunity Transplantation and Inflammation, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Layla Raad
- Autoimmunity Transplantation and Inflammation, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Damien Picard
- Translational Medicine, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Michael Kammüller
- Translational Medicine, Novartis Institutes for Biomedical Research, Basel, Switzerland
| |
Collapse
|
2852
|
Yang HH, Duan JX, Liu SK, Xiong JB, Guan XX, Zhong WJ, Sun CC, Zhang CY, Luo XQ, Zhang YF, Chen P, Hammock BD, Hwang SH, Jiang JX, Zhou Y, Guan CX. A COX-2/sEH dual inhibitor PTUPB alleviates lipopolysaccharide-induced acute lung injury in mice by inhibiting NLRP3 inflammasome activation. Theranostics 2020; 10:4749-4761. [PMID: 32308747 PMCID: PMC7163435 DOI: 10.7150/thno.43108] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/08/2020] [Indexed: 01/11/2023] Open
Abstract
Rationale: Dysregulation of arachidonic acid (ARA) metabolism results in inflammation; however, its role in acute lung injury (ALI) remains elusive. In this study, we addressed the role of dysregulated ARA metabolism in cytochromes P450 (CYPs) /cyclooxygenase-2 (COX-2) pathways in the pathogenesis of lipopolysaccharide (LPS)-induced ALI in mice. Methods: The metabolism of CYPs/COX-2-derived ARA in the lungs of LPS-induced ALI was investigated in C57BL/6 mice. The COX-2/sEH dual inhibitor PTUPB was used to establish the function of CYPs/COX-2 dysregulation in ALI. Primary murine macrophages were used to evaluate the underlying mechanism of PTUPB involved in the activation of NLRP3 inflammasome in vitro. Results: Dysregulation of CYPs/COX-2 metabolism of ARA occurred in the lungs and in primary macrophages under the LPS challenge. Decrease mRNA expression of Cyp2j9, Cyp2j6, and Cyp2j5 was observed, which metabolize ARA into epoxyeicosatrienoic acids (EETs). The expressions of COX-2 and soluble epoxide hydrolase (sEH), on the other hand, was significantly upregulated. Pre-treatment with the dual COX-2 and sEH inhibitor, PTUPB, attenuated the pathological injury of lung tissues and reduced the infiltration of inflammatory cells. Furthermore, PTUPB decreased the pro-inflammatory factors, oxidative stress, and activation of NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) inflammasome in LPS-induced ALI mice. PTUPB pre-treatment remarkably reduced the activation of macrophages and NLRP3 inflammasome in vitro. Significantly, both preventive and therapeutic treatment with PTUPB improved the survival rate of mice receiving a lethal dose of LPS. Conclusion: The dysregulation of CYPs/COX-2 metabolized ARA contributes to the uncontrolled inflammatory response in ALI. The dual COX-2 and sEH inhibitor PTUPB exerts anti-inflammatory effects in treating ALI by inhibiting the NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Hui-Hui Yang
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China
| | - Jia-Xi Duan
- Department of Pulmonary and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
- Hunan Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
| | - Shao-Kun Liu
- Department of Pulmonary and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
- Hunan Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
| | - Jian-Bing Xiong
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China
| | - Xin-Xin Guan
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China
| | - Wen-Jing Zhong
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China
| | - Chen-Chen Sun
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China
| | - Chen-Yu Zhang
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China
| | - Xiao-Qin Luo
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China
| | - Yan-Feng Zhang
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China
| | - Ping Chen
- Department of Pulmonary and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
- Hunan Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
| | - Bruce D. Hammock
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Sung Hee Hwang
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Jian-Xin Jiang
- State Key Laboratory of Trauma, Burns, and Combined Injury, Army Medical University, Chongqing, 400038, China
| | - Yong Zhou
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China
| | - Cha-Xiang Guan
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China
| |
Collapse
|
2853
|
Riteau N, Bernaudin JF. In addition to mTOR and JAK/STAT, NLRP3 inflammasome is another key pathway activated in sarcoidosis. Eur Respir J 2020; 55:55/3/2000149. [PMID: 32217622 DOI: 10.1183/13993003.00149-2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 02/10/2020] [Indexed: 12/30/2022]
Affiliation(s)
- Nicolas Riteau
- CNRS, INEM-UMR7355, University of Orleans, Orleans, France
| | - Jean-François Bernaudin
- Sorbonne Université, Paris, France.,INSERM UMR 1272 Université Paris 13, Bobigny, France.,Pneumology Dept, Hôpital Avicenne APHP, Bobigny, France
| |
Collapse
|
2854
|
de Carvalho RVH, Zamboni DS. Inflammasome Activation in Response to Intracellular Protozoan Parasites. Trends Parasitol 2020; 36:459-472. [PMID: 32298633 DOI: 10.1016/j.pt.2020.02.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 12/14/2022]
Abstract
Inflammasomes are cytosolic complexes that assemble in response to cellular stress or upon sensing microbial molecules, culminating in cytokine processing and an inflammatory form of cell death called pyroptosis. Inflammasomes are usually composed of a sensor molecule, an adaptor protein, and an inflammatory caspase, such as Caspase-1, which cleaves and activates multiple substrates, including Gasdermin-D, pro-IL-1β, and pro-IL-18. Ultimately, inflammasome activation promotes inflammation and restriction of the microbial infection. In recent years, many studies have addressed the role of inflammasomes during fungal, bacterial, viral, and parasitic diseases, revealing sophisticated aspects of the host-pathogen interaction. In this review, we summarize recent advances on inflammasome activation in response to intracellular parasites, including Leishmania spp., Plasmodium spp., Trypanosoma cruzi, and Toxoplasma gondii.
Collapse
Affiliation(s)
- Renan V H de Carvalho
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Dario S Zamboni
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
2855
|
Tao Y, Yang Y, Zhou R, Gong T. Golgi Apparatus: An Emerging Platform for Innate Immunity. Trends Cell Biol 2020; 30:467-477. [PMID: 32413316 DOI: 10.1016/j.tcb.2020.02.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/24/2020] [Accepted: 02/24/2020] [Indexed: 12/23/2022]
Abstract
The Golgi apparatus serves as a receiving station where proteins from the endoplasmic reticulum (ER) are further processed before being sent to other cellular compartments. In addition to its well-appreciated roles in vesicular trafficking and protein/lipid secretion, recent studies have demonstrated that the Golgi acts as a signaling platform to facilitate multiple innate immune pathways. Moreover, the membranous networks that connect the Golgi with the ER, mitochondria, endosomes, and autophagosomes provide convenient access to innate immune signal transduction and subsequent effector responses. Here, we review the emerging knowledge about the roles of the Golgi in the initiation and activation of innate immune signaling. Moreover, microbial hijacking strategies that inhibit Golgi-associated innate immune responses will also be discussed.
Collapse
Affiliation(s)
- Ye Tao
- Department of Otolaryngology-Head and Neck Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Science, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Yanqing Yang
- Department of Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| | - Rongbin Zhou
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Science, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230027, China.
| | - Tao Gong
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Science, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230027, China.
| |
Collapse
|
2856
|
Cao F, Tian X, Li Z, Lv Y, Han J, Zhuang R, Cheng B, Gong Y, Ying B, Jin S, Gao Y. Suppression of NLRP3 Inflammasome by Erythropoietin via the EPOR/JAK2/STAT3 Pathway Contributes to Attenuation of Acute Lung Injury in Mice. Front Pharmacol 2020; 11:306. [PMID: 32265704 PMCID: PMC7096553 DOI: 10.3389/fphar.2020.00306] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/28/2020] [Indexed: 11/13/2022] Open
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are common and devastating clinical disorders with high mortality and no specific therapy. An excessive inflammatory response results in the progression of ALI/ARDS, and the NLRP3 inflammasome is a key participant in inflammation. Erythropoietin (EPO), which is clinically used for anemia, reportedly exerts pleiotropic effects in ALI. However, whether EPO could protect against lipopolysaccharide (LPS)-induced ALI by regulating the NLRP3 inflammasome and its underlying mechanisms remain poorly elucidated. This study aimed to explore whether the therapeutic effects of EPO rely on the suppression of the NLRP3 inflammasome and the specific mechanisms in an LPS-induced ALI mouse model. ALI was induced in C57BL/6 mice by intraperitoneal (i.p.) injection of LPS (15 mg/kg). EPO was administered intraperitoneally at 5 U/g after LPS challenge. The mice were sacrificed 8 h later. Our findings indicated that application of EPO markedly diminished LPS-induced lung injury by restoring histopathological changes, lessened lung wet/dry (W/D) ratio, protein concentrations in bronchoalveolar lavage fluid (BALF) and myeloperoxidase (MPO) levels. Meanwhile, EPO evidently decreased interleukin-1β (IL-1β) and interleukin-18 (IL-18) secretion, the expression of NLRP3 inflammasome components including pro-IL-1β, NLRP3, and cleaved caspase-1 as well as phosphorylation of nuclear factor-κB (NF-κB) p65, which may be associated with activation of EPO receptor (EPOR), phosphorylation of Janus-tyrosine kinase 2 (JAK2) and signal transducer and activator of transcription 3 (STAT3). However, all the beneficial effects of EPO on ALI and modulation NLRP3 inflammasome were remarkably abrogated by the inhibition of EPOR/JAK2/STAT3 pathway and knockout (KO) of NLRP3 gene. Taken together, this study indicates that EPO can effectively attenuate LPS-induced lung injury in mice by suppressing the NLRP3 inflammasome, which is dependent upon activation of EPOR/JAK2/STAT3 signaling and inhibition of the NF-κB pathway.
Collapse
Affiliation(s)
- Fei Cao
- Department of Anesthesia, Pain and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xinyi Tian
- Department of Anesthesia, Pain and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Zhongwang Li
- Department of Anesthesia, Pain and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Ya Lv
- Department of Anesthesia, Pain and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jun Han
- Department of Anesthesia, Pain and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Rong Zhuang
- Department of Anesthesia, Pain and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Bihuan Cheng
- Department of Anesthesia, Pain and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yuqiang Gong
- Department of Anesthesia, Pain and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Binyu Ying
- Department of Anesthesia, Pain and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Shengwei Jin
- Department of Anesthesia, Pain and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Ye Gao
- Department of Anesthesia, Pain and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
2857
|
Kralova J, Drobek A, Prochazka J, Spoutil F, Fabisik M, Glatzova D, Borna S, Pokorna J, Skopcova T, Angelisova P, Gregor M, Kovarik P, Sedlacek R, Brdicka T. Dysregulated NADPH Oxidase Promotes Bone Damage in Murine Model of Autoinflammatory Osteomyelitis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:1607-1620. [PMID: 32024700 DOI: 10.4049/jimmunol.1900953] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 01/13/2020] [Indexed: 12/13/2022]
Abstract
Autoinflammatory diseases are characterized by dysregulation of the innate immune system, leading to spontaneous inflammation. Pstpip2cmo mouse strain is a well-characterized model of this class of disorders. Because of the mutation leading to the lack of adaptor protein PSTPIP2, these animals suffer from autoinflammatory chronic multifocal osteomyelitis similar to several human syndromes. Current evidence suggests that it is driven by hyperproduction of IL-1β by neutrophil granulocytes. In this study, we show that in addition to IL-1β, PSTPIP2 also negatively regulates pathways governing reactive oxygen species generation by neutrophil NOX2 NADPH oxidase. Pstpip2cmo neutrophils display highly elevated superoxide production in response to a range of stimuli. Inactivation of NOX2 NADPH oxidase in Pstpip2cmo mice did not affect IL-1β levels, and the autoinflammatory process was initiated with similar kinetics. However, the bone destruction was almost completely alleviated, suggesting that dysregulated NADPH oxidase activity is a key factor promoting autoinflammatory bone damage in Pstpip2cmo mice.
Collapse
Affiliation(s)
- Jarmila Kralova
- Laboratory of Leukocyte Signalling, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic
| | - Ales Drobek
- Laboratory of Leukocyte Signalling, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic
| | - Jan Prochazka
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, 25242 Vestec, Czech Republic
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, 25242 Vestec, Czech Republic
| | - Frantisek Spoutil
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, 25242 Vestec, Czech Republic
| | - Matej Fabisik
- Laboratory of Leukocyte Signalling, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic
- Faculty of Science, Charles University, 12800 Prague, Czech Republic
| | - Daniela Glatzova
- Laboratory of Leukocyte Signalling, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic
- Faculty of Science, Charles University, 12800 Prague, Czech Republic
| | - Simon Borna
- Laboratory of Leukocyte Signalling, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic
- Faculty of Science, Charles University, 12800 Prague, Czech Republic
| | - Jana Pokorna
- Laboratory of Leukocyte Signalling, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic
| | - Tereza Skopcova
- Laboratory of Leukocyte Signalling, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic
| | - Pavla Angelisova
- Laboratory of Leukocyte Signalling, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic
| | - Martin Gregor
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic; and
| | - Pavel Kovarik
- Max F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria
| | - Radislav Sedlacek
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, 25242 Vestec, Czech Republic
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, 25242 Vestec, Czech Republic
| | - Tomas Brdicka
- Laboratory of Leukocyte Signalling, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic;
| |
Collapse
|
2858
|
Huang S, Che J, Chu Q, Zhang P. The Role of NLRP3 Inflammasome in Radiation-Induced Cardiovascular Injury. Front Cell Dev Biol 2020; 8:140. [PMID: 32226786 PMCID: PMC7080656 DOI: 10.3389/fcell.2020.00140] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/19/2020] [Indexed: 12/24/2022] Open
Abstract
The increasing risk of long-term adverse effects from radiotherapy on the cardiovascular structure is receiving increasing attention. However, the mechanisms underlying this increased risk remain poorly understood. Recently, the nucleotide-binding domain and leucine-rich-repeat-containing family pyrin 3 (NLRP3) inflammasome was suggested to play a critical role in radiation-induced cardiovascular injury. However, the relationship between ionizing radiation and the NLRP3 inflammasome in acute and chronic inflammation is complex. We reviewed literature detailing pathological changes and molecular mechanisms associated with radiation-induced damage to the cardiovascular structure, with a specific focus on NLRP3 inflammasome-related cardiovascular diseases. We also summarized possible therapeutic strategies for the prevention of radiation-induced heart disease (RIHD).
Collapse
Affiliation(s)
- Shanshan Huang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Che
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Qian Chu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2859
|
Smyth P, Sessler T, Scott CJ, Longley DB. FLIP(L): the pseudo-caspase. FEBS J 2020; 287:4246-4260. [PMID: 32096279 PMCID: PMC7586951 DOI: 10.1111/febs.15260] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/10/2020] [Accepted: 02/24/2020] [Indexed: 12/27/2022]
Abstract
Possessing structural homology with their active enzyme counterparts but lacking catalytic activity, pseudoenzymes have been identified for all major enzyme groups. Caspases are a family of cysteine‐dependent aspartate‐directed proteases that play essential roles in regulating cell death and inflammation. Here, we discuss the only human pseudo‐caspase, FLIP(L), a paralog of the apoptosis‐initiating caspases, caspase‐8 and caspase‐10. FLIP(L) has been shown to play a key role in regulating the processing and activity of caspase‐8, thereby modulating apoptotic signaling mediated by death receptors (such as TRAIL‐R1/R2), TNF receptor‐1 (TNFR1), and Toll‐like receptors. In this review, these canonical roles of FLIP(L) are discussed. Additionally, a range of nonclassical pseudoenzyme roles are described, in which FLIP(L) functions independently of caspase‐8. These nonclassical pseudoenzyme functions enable FLIP(L) to play key roles in the regulation of a wide range of biological processes beyond its canonical roles as a modulator of cell death.
Collapse
Affiliation(s)
- Peter Smyth
- The Patrick G Johnston Centre for Cancer Research, Queen's University, Belfast, UK
| | - Tamas Sessler
- The Patrick G Johnston Centre for Cancer Research, Queen's University, Belfast, UK
| | - Christopher J Scott
- The Patrick G Johnston Centre for Cancer Research, Queen's University, Belfast, UK
| | - Daniel B Longley
- The Patrick G Johnston Centre for Cancer Research, Queen's University, Belfast, UK
| |
Collapse
|
2860
|
Lo MS. A framework for understanding Kawasaki disease pathogenesis. Clin Immunol 2020; 214:108385. [PMID: 32173601 DOI: 10.1016/j.clim.2020.108385] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 02/06/2023]
Abstract
Kawasaki disease (KD) is a common vasculitis of childhood, typically affecting children under the age of five. Despite many aspects of its presentation that bear resemblence to acute infection, no causative infectious agent has been identified despite years of intense scrutiny. Unlike most infections, however, there are significant differences in racial predilection that suggest a strong genetic influence. The inflammatory response in KD specifically targets the coronary arteries, also unusual for an infectious condition. In this review, we discuss recent hypotheses on KD pathogenesis as well as new insights into the innate immune response and mechanisms behind vascular damage. The pathogenesis is complex, however, and remains inadequately understood.
Collapse
Affiliation(s)
- Mindy S Lo
- Division of Immunology, Boston Children's Hospital, 300 Longwood Ave, Boston, MA 02115, United States of America; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, United States of America.
| |
Collapse
|
2861
|
Shi C, Yang H, Zhang Z. Involvement of Nucleotide-Binding Oligomerization Domain-Like Receptor Family Pyrin Domain Containing 3 Inflammasome in the Pathogenesis of Liver Diseases. Front Cell Dev Biol 2020; 8:139. [PMID: 32211410 PMCID: PMC7075939 DOI: 10.3389/fcell.2020.00139] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/19/2020] [Indexed: 12/13/2022] Open
Abstract
The inflammasome is widely acknowledged for its crucial role in the pathogenesis of cancers and many neurodegenerative, metabolic, and auto-inflammatory diseases in recent years. Multiple types of inflammasomes exist. However, nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3) inflammasome is the most often investigated inflammasome and has come to limelight in recent studies. NLRP3 inflammasome is a multi-protein complex. Its activation can cause the cleavage of inactive pro-caspase-1 into activated caspase-1, that ultimately promotes the transformation of pro-interleukin (IL)-1β and pro-IL-18 into biologically-active IL-1β and IL-18, respectively. These processes lead to the local inflammatory responses and induce pyroptosis, causing disparaging effects. Recently, numerous studies have shown that NLRP3 inflammasome plays an important role in the pathogenesis of liver diseases, including non-alcoholic fatty liver disease, liver fibrosis, cirrhosis, and hepatocellular carcinoma. Liver diseases have become a severe health burden worldwide, and there is adequate evidence indicating that the regulation of NLRP3 inflammasome acts as a guard against hazard to liver. In this review, we provide a straightforward overview of NLRP3 inflammasome as well as several frequent liver diseases. We then discuss the contribution and regulation of NLRP3 inflammasome during the pathogenesis of liver diseases, which may provide an important indication for the prevention and treatment of various liver diseases.
Collapse
Affiliation(s)
- Congjian Shi
- Provincial Key Laboratory for Developmental Biology and Neurosciences, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Hongqin Yang
- Provincial Key Laboratory for Developmental Biology and Neurosciences, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Zhenghong Zhang
- Provincial Key Laboratory for Developmental Biology and Neurosciences, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| |
Collapse
|
2862
|
Takada E, Okubo K, Yano Y, Iida K, Someda M, Hirasawa A, Yonehara S, Matsuzaki K. Molecular Mechanism of Apoptosis by Amyloid β-Protein Fibrils Formed on Neuronal Cells. ACS Chem Neurosci 2020; 11:796-805. [PMID: 32056421 DOI: 10.1021/acschemneuro.0c00011] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aggregational states of amyloid β-protein (Aβ) are critical for its neurotoxicity, although they are not well-characterized, particularly after binding to the cell membranes. This is one reason why the mechanisms of Aβ neurotoxicity are controversial and elusive. In this study, the effects of toxic Aβ-(1-42) fibrils formed in the membrane on cellular processes were investigated using human neuroblastoma SH-SY5Y cells. Consistent with previous observations, fibrillar Aβs formed on the membranes induced activation of caspase-3, the effector caspase for apoptosis. Knockdown analyses of the initiator caspases, caspase-8 and caspase-9, indicated that the apoptosis was induced via activation of caspase-8, followed by activation of caspase-9 and caspase-3. We also found that inflammation signaling pathways including Toll-like receptors and inflammasomes NOD-, LRR-, and pyrin domain-containing protein 3 are involved in the initiation of apoptosis by the Aβ fibrils. These inflammation-related molecules are promising targets for the prevention of apoptotic cell death induced by Aβ.
Collapse
Affiliation(s)
- Eri Takada
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Kaori Okubo
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Yoshiaki Yano
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Keiko Iida
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Masataka Someda
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Akira Hirasawa
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Shin Yonehara
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Katsumi Matsuzaki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| |
Collapse
|
2863
|
Filippin KJ, de Souza KFS, de Araujo Júnior RT, Torquato HFV, Dias DA, Parisotto EB, Ferreira AT, Paredes-Gamero EJ. Involvement of P2 receptors in hematopoiesis and hematopoietic disorders, and as pharmacological targets. Purinergic Signal 2020; 16:1-15. [PMID: 31863258 PMCID: PMC7166233 DOI: 10.1007/s11302-019-09684-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/12/2019] [Indexed: 12/11/2022] Open
Abstract
Several reports have shown the presence of P2 receptors in hematopoietic stem cells (HSCs). These receptors are activated by extracellular nucleotides released from different sources. In the hematopoietic niche, the release of purines and pyrimidines in the milieu by lytic and nonlytic mechanisms has been described. The expression of P2 receptors from HSCs until maturity is still intriguing scientists. Several reports have shown the participation of P2 receptors in events associated with modulation of the immune system, but their participation in other physiological processes is under investigation. The presence of P2 receptors in HSCs and their ability to modulate this population have awakened interest in exploring the involvement of P2 receptors in hematopoiesis and their participation in hematopoietic disorders. Among the P2 receptors, the receptor P2X7 is of particular interest, because of its different roles in hematopoietic cells (e.g., infection, inflammation, cell death and survival, leukemias and lymphomas), making the P2X7 receptor a promising pharmacological target. Additionally, the role of P2Y12 receptor in platelet activation has been well-documented and is the main example of the importance of the pharmacological modulation of P2 receptor activity. In this review, we focus on the role of P2 receptors in the hematopoietic system, addressing these receptors as potential pharmacological targets.
Collapse
Affiliation(s)
- Kelly Juliana Filippin
- Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, 79070-900, Brazil
| | - Kamylla F S de Souza
- Departamento de Bioquímica, Universidade Federal de São Paulo, R. Três de Maio 100, São Paulo, SP, 04044-020, Brazil
| | | | - Heron Fernandes Vieira Torquato
- Departamento de Bioquímica, Universidade Federal de São Paulo, R. Três de Maio 100, São Paulo, SP, 04044-020, Brazil
- Universidade Braz Cubas, Av. Francisco Rodrigues Filho 1233, Mogi das Cruzes, SP, 08773-380, Brazil
| | - Dhébora Albuquerque Dias
- Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, 79070-900, Brazil
| | - Eduardo Benedetti Parisotto
- Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, 79070-900, Brazil
| | - Alice Teixeira Ferreira
- Departamento de Biofísica, Universidade Federal de São Paulo, R. Botucatu 862, São Paulo, SP, 04023-062, Brazil.
- Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição (FACFAN), Laboratório de Biologia Molecular e Culturas Celulares, Av. Costa e Silva, s/n Bairro Universitário, Campo Grande, MS, CEP: 79070-900, Brazil.
| | - Edgar J Paredes-Gamero
- Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, 79070-900, Brazil.
- Departamento de Bioquímica, Universidade Federal de São Paulo, R. Três de Maio 100, São Paulo, SP, 04044-020, Brazil.
- Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição (FACFAN), Laboratório de Biologia Molecular e Culturas Celulares, Av. Costa e Silva, s/n Bairro Universitário, Campo Grande, MS, CEP: 79070-900, Brazil.
| |
Collapse
|
2864
|
Kawashima M, Juvet SC. The role of innate immunity in the long-term outcome of lung transplantation. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:412. [PMID: 32355856 PMCID: PMC7186608 DOI: 10.21037/atm.2020.03.20] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Long-term survival after lung transplantation remains suboptimal due to chronic lung allograft dysfunction (CLAD), a progressive scarring process affecting the graft. Although anti-donor alloimmunity is central to the pathogenesis of CLAD, its underlying mechanisms are not fully elucidated and it is neither preventable nor treatable using currently available immunosuppression. Recent evidence has shown that innate immune stimuli are fundamental to the development of CLAD. Here, we examine long-standing assumptions and new concepts linking innate immune activation to late lung allograft fibrosis.
Collapse
Affiliation(s)
- Mitsuaki Kawashima
- Latner Thoracic Research Laboratories, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Stephen C Juvet
- Latner Thoracic Research Laboratories, University Health Network, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2865
|
Qi R, Zhang W, Zheng L, Xu M, Rong R, Zhu T, Yang C. Cyclic helix B peptide ameliorates renal tubulointerstitial fibrosis induced by unilateral ureter obstruction via inhibiting NLRP3 pathway. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:167. [PMID: 32309314 PMCID: PMC7154394 DOI: 10.21037/atm.2020.02.12] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Background Renal fibrosis is the inevitable outcome of all progressive chronic kidney diseases (CKD) and leads to a gradual loss of renal function. We previously reported cyclic helix B peptide (CHBP), a novel synthesized peptide derived from erythropoietin, had shown effective renoprotection. In this study, we investigated the anti-fibrotic and renoprotective effect of CHBP in a murine renal tubulointerstitial fibrosis model induced by unilateral ureter obstruction (UUO). Methods Mice were subjected to the UUO model and CHBP was given intraperitoneally. To assess the therapeutic effects of CHBP, pathological injury, deposition of extracellular matrix (ECM) and the progression of epithelial-mesenchymal transition (EMT) were examined in vivo. The anti-fibrotic effects of CHBP was validated in vitro using TCMK-1 cells treated with TGF-β1. Involvement of the NLRP3 pathway was demonstrated both in vivo and in vitro. Results CHBP significantly ameliorated renal tubulointerstitial injury and fibrosis in terms of ECM deposition. The EMT process was also alleviated after CHBP treatment. Similar therapeutic effects of CHBP were also observed in vitro in TGF-β1 treated tubular epithelial cells (TECs). NLRP3/caspase-1/IL-1β pathway was involved and activated upon injury, both in vivo and in vitro. While the activation of the NLRP3 pathway was found to be in negative correlation with CHBP treatment. CHBP could suppress the activation of NLRP3 and its downstream inflammatory mediators even with addition of extracellular ATP, a direct activator of the NLRP3 inflammasome. Conclusions Our results suggest that CHBP could effectively protect the kidney from renal tubulointerstitial fibrosis in the UUO model via counteracting the NLRP3/caspase-1/IL-1β pathway.
Collapse
Affiliation(s)
- Ruochen Qi
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Shanghai Medical College, Fudan University, Shanghai 200032, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai 200032, China
| | - Weitao Zhang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Shanghai Medical College, Fudan University, Shanghai 200032, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai 200032, China
| | - Long Zheng
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Shanghai Medical College, Fudan University, Shanghai 200032, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai 200032, China
| | - Ming Xu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai 200032, China
| | - Ruiming Rong
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai 200032, China.,Department of Transfusion, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Tongyu Zhu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai 200032, China
| | - Cheng Yang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai 200032, China
| |
Collapse
|
2866
|
Wang K, Sun Q, Zhong X, Zeng M, Zeng H, Shi X, Li Z, Wang Y, Zhao Q, Shao F, Ding J. Structural Mechanism for GSDMD Targeting by Autoprocessed Caspases in Pyroptosis. Cell 2020; 180:941-955.e20. [PMID: 32109412 DOI: 10.1016/j.cell.2020.02.002] [Citation(s) in RCA: 453] [Impact Index Per Article: 90.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/16/2019] [Accepted: 01/31/2020] [Indexed: 01/05/2023]
Abstract
The pyroptosis execution protein GSDMD is cleaved by inflammasome-activated caspase-1 and LPS-activated caspase-11/4/5. The cleavage unmasks the pore-forming domain from GSDMD-C-terminal domain. How the caspases recognize GSDMD and its connection with caspase activation are unknown. Here, we show site-specific caspase-4/11 autoprocessing, generating a p10 product, is required and sufficient for cleaving GSDMD and inducing pyroptosis. The p10-form autoprocessed caspase-4/11 binds the GSDMD-C domain with a high affinity. Structural comparison of autoprocessed and unprocessed capase-11 identifies a β sheet induced by the autoprocessing. In caspase-4/11-GSDMD-C complex crystal structures, the β sheet organizes a hydrophobic GSDMD-binding interface that is only possible for p10-form caspase-4/11. The binding promotes dimerization-mediated caspase activation, rendering a cleavage independently of the cleavage-site tetrapeptide sequence. Crystal structure of caspase-1-GSDMD-C complex shows a similar GSDMD-recognition mode. Our study reveals an unprecedented substrate-targeting mechanism for caspases. The hydrophobic interface suggests an additional space for developing inhibitors specific for pyroptotic caspases.
Collapse
Affiliation(s)
- Kun Wang
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, National Institute of Biological Sciences, 102206 Beijing, China; National Institute of Biological Sciences, Beijing, 102206 Beijing, China
| | - Qi Sun
- Research Unit of Pyroptosis and Immunity, Chinese Academy of Medical Sciences 2019RU076, 102206 Beijing, China; National Institute of Biological Sciences, Beijing, 102206 Beijing, China
| | - Xiu Zhong
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, National Institute of Biological Sciences, 102206 Beijing, China; National Institute of Biological Sciences, Beijing, 102206 Beijing, China
| | - Mengxue Zeng
- National Institute of Biological Sciences, Beijing, 102206 Beijing, China
| | - Huan Zeng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101 Beijing, China; National Institute of Biological Sciences, Beijing, 102206 Beijing, China
| | - Xuyan Shi
- National Institute of Biological Sciences, Beijing, 102206 Beijing, China
| | - Zilin Li
- Research Unit of Pyroptosis and Immunity, Chinese Academy of Medical Sciences 2019RU076, 102206 Beijing, China; National Institute of Biological Sciences, Beijing, 102206 Beijing, China
| | - Yupeng Wang
- Research Unit of Pyroptosis and Immunity, Chinese Academy of Medical Sciences 2019RU076, 102206 Beijing, China; National Institute of Biological Sciences, Beijing, 102206 Beijing, China
| | - Qiang Zhao
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, 510080 Guangzhou, China
| | - Feng Shao
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, National Institute of Biological Sciences, 102206 Beijing, China; Research Unit of Pyroptosis and Immunity, Chinese Academy of Medical Sciences 2019RU076, 102206 Beijing, China; National Institute of Biological Sciences, Beijing, 102206 Beijing, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, 102206 Beijing, China.
| | - Jingjin Ding
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101 Beijing, China; National Institute of Biological Sciences, Beijing, 102206 Beijing, China.
| |
Collapse
|
2867
|
Sano M, Shimazaki S, Kaneko Y, Karasawa T, Takahashi M, Ohkuchi A, Takahashi H, Kurosawa A, Torii Y, Iwata H, Kuwayama T, Shirasuna K. Palmitic acid activates NLRP3 inflammasome and induces placental inflammation during pregnancy in mice. J Reprod Dev 2020; 66:241-248. [PMID: 32101829 PMCID: PMC7297640 DOI: 10.1262/jrd.2020-007] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Maternal obesity is one of the major risk factors for pregnancy complications and is associated with low-grade chronic systemic inflammation due to higher levels of pro-inflammatory cytokines such as interleukin (IL)-1β. Pregnant women with obesity have abnormal lipid profiles, characterized by higher levels of free fatty acids, especially palmitic acid (PA). Previously, we reported that PA stimulated IL-1β secretion via activation of NLRP3 inflammasome in human placental cells. These observations led us to hypothesize that higher levels of PA induce NLRP3 inflammasome activation and placental inflammation, resulting in pregnancy complications. However, the effects of PA on NLRP3 inflammasome during pregnancy in vivo remain unclear. Therefore, PA solutions were administered intravenously into pregnant mice on day 12 of gestation. Maternal body weight was significantly decreased and absorption rates were significantly higher in PA-injected mice. The administration of PA significantly increased IL-1β protein and the mRNA expression of NLRP3 inflammasome components (NLRP3, ASC, and caspase-1) within the placenta. In murine placental cell culture, PA significantly stimulated IL-1β secretion, and this secretion was suppressed by a specific NLRP3 inhibitor (MCC950). Simultaneously, the number of macrophages/monocytes and neutrophils, together with the mRNA expression of these chemokines increased significantly in the placentas of PA-treated mice. Treatment with PA induced ASC assembling and IL-1β secretion in macrophages, and this PA-induced IL-1β secretion was significantly suppressed in NLRP3-knockdown macrophages. These results indicate that transient higher levels of PA exposure in pregnant mice activates NLRP3 inflammasome and induces placental inflammation, resulting in the incidence of absorption.
Collapse
Affiliation(s)
- Michiya Sano
- Laboratory of Animal Reproduction, Department of Agriculture, Tokyo University of Agriculture, Kanagawa 243-0034, Japan
| | - Sayaka Shimazaki
- Laboratory of Animal Reproduction, Department of Agriculture, Tokyo University of Agriculture, Kanagawa 243-0034, Japan
| | - Yasuaki Kaneko
- Laboratory of Animal Reproduction, Department of Agriculture, Tokyo University of Agriculture, Kanagawa 243-0034, Japan
| | - Tadayoshi Karasawa
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | - Masafumi Takahashi
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | - Akihide Ohkuchi
- Department of Obstetrics and Gynecology, Jichi Medical University, Tochigi 329-0498, Japan
| | - Hironori Takahashi
- Department of Obstetrics and Gynecology, Jichi Medical University, Tochigi 329-0498, Japan
| | - Akira Kurosawa
- Laboratory of Animal Nutrition, Department of Agriculture, Tokyo University of Agriculture, Kanagawa 243-0034, Japan
| | - Yasushi Torii
- Laboratory of Animal Health, Department of Agriculture, Tokyo University of Agriculture, Kanagawa 243-0034, Japan
| | - Hisataka Iwata
- Laboratory of Animal Reproduction, Department of Agriculture, Tokyo University of Agriculture, Kanagawa 243-0034, Japan
| | - Takehito Kuwayama
- Laboratory of Animal Reproduction, Department of Agriculture, Tokyo University of Agriculture, Kanagawa 243-0034, Japan
| | - Koumei Shirasuna
- Laboratory of Animal Reproduction, Department of Agriculture, Tokyo University of Agriculture, Kanagawa 243-0034, Japan
| |
Collapse
|
2868
|
Li X, Tang L, Ye Myat Thu, Chen D. Titanium Ions Play a Synergistic Role in the Activation of NLRP3 Inflammasome in Jurkat T Cells. Inflammation 2020; 43:1269-1278. [DOI: 10.1007/s10753-020-01206-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
2869
|
Theis KR, Romero R, Motomura K, Galaz J, Winters AD, Pacora P, Miller D, Slutsky R, Florova V, Levenson D, Para R, Varrey A, Kacerovsky M, Hsu CD, Gomez-Lopez N. Microbial burden and inflammasome activation in amniotic fluid of patients with preterm prelabor rupture of membranes. J Perinat Med 2020; 48:115-131. [PMID: 31927525 PMCID: PMC7147952 DOI: 10.1515/jpm-2019-0398] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 12/01/2019] [Indexed: 02/07/2023]
Abstract
Background Intra-amniotic inflammation, which is associated with adverse pregnancy outcomes, can occur in the presence or absence of detectable microorganisms, and involves activation of the inflammasome. Intra-amniotic inflammasome activation has been reported in clinical chorioamnionitis at term and preterm labor with intact membranes, but it has not yet been investigated in women with preterm prelabor rupture of membranes (preterm PROM) in the presence/absence of detectable microorganisms. The aim of this study was to determine whether, among women with preterm PROM, there is an association between detectable microorganisms in amniotic fluid and intra-amniotic inflammation, and whether intra-amniotic inflammasome activation correlates with microbial burden. Methods Amniotic fluids from 59 cases of preterm PROM were examined for the presence/absence of microorganisms through culture and 16S ribosomal RNA (rRNA) gene quantitative real-time polymerase chain reaction (qPCR), and concentrations of interleukin-6 (IL-6) and ASC [apoptosis-associated spec-like protein containing a caspase recruitment domain (CARD)], an indicator of inflammasome activation, were determined. Results qPCR identified more microbe-positive amniotic fluids than culture. Greater than 50% of patients with a negative culture and high IL-6 concentration in amniotic fluid yielded a positive qPCR signal. ASC concentrations were greatest in patients with high qPCR signals and elevated IL-6 concentrations in amniotic fluid (i.e. intra-amniotic infection). ASC concentrations tended to increase in patients without detectable microorganisms but yet with elevated IL-6 concentrations (i.e. sterile intra-amniotic inflammation) compared to those without intra-amniotic inflammation. Conclusion qPCR is a valuable complement to microbiological culture for the detection of microorganisms in the amniotic cavity in women with preterm PROM, and microbial burden is associated with the severity of intra-amniotic inflammatory response, including inflammasome activation.
Collapse
Affiliation(s)
- Kevin R. Theis
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
- Detroit Medical Center, Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Florida International University, Miami, Florida, USA
| | - Kenichiro Motomura
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Jose Galaz
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Andrew D. Winters
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Percy Pacora
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Derek Miller
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Rebecca Slutsky
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
| | - Violetta Florova
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Dustyn Levenson
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Robert Para
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Aneesha Varrey
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Marian Kacerovsky
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Chaur-Dong Hsu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
2870
|
Zhao C, Zhao W. NLRP3 Inflammasome-A Key Player in Antiviral Responses. Front Immunol 2020; 11:211. [PMID: 32133002 PMCID: PMC7040071 DOI: 10.3389/fimmu.2020.00211] [Citation(s) in RCA: 290] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/27/2020] [Indexed: 01/19/2023] Open
Abstract
The NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) inflammasome is an oligomeric complex comprised of the NOD-like receptor NLRP3, the adaptor ASC, and caspase-1. This complex is crucial to the host's defense against microbes as it promotes IL-1β and IL-18 secretion and induces pyroptosis. NLRP3 recognizes variety of pathogen-associated molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs) generated during viral replication that triggers the NLRP3 inflammasome-dependent antiviral immune responses and facilitates viral eradication. Meanwhile, several viruses have evolved elaborate strategies to evade the immune system by targeting the NLRP3 inflammasome. In this review, we will focus on the crosstalk between the NLRP3 inflammasome and viruses, provide an overview of viral infection-induced NLRP3 inflammasome activation, and the immune escape strategies of viruses through their modulation of the NLRP3 inflammasome activity.
Collapse
Affiliation(s)
- Chunyuan Zhao
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Science, Shandong University, Jinan, China.,State Key Laboratory of Microbial Technology, Shandong University, Jinan, China.,Department of Cell Biology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Wei Zhao
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Science, Shandong University, Jinan, China.,State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| |
Collapse
|
2871
|
NLRP3 Inflammasome and Inflammatory Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4063562. [PMID: 32148650 PMCID: PMC7049400 DOI: 10.1155/2020/4063562] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/14/2020] [Accepted: 01/17/2020] [Indexed: 02/06/2023]
Abstract
Almost all human diseases are strongly associated with inflammation, and a deep understanding of the exact mechanism is helpful for treatment. The NLRP3 inflammasome composed of the NLRP3 protein, procaspase-1, and ASC plays a vital role in regulating inflammation. In this review, NLRP3 regulation and activation, its proinflammatory role in inflammatory diseases, interactions with autophagy, and targeted therapeutic approaches in inflammatory diseases will be summarized.
Collapse
|
2872
|
Advances in the molecular mechanisms of NLRP3 inflammasome activators and inactivators. Biochem Pharmacol 2020; 175:113863. [PMID: 32081791 DOI: 10.1016/j.bcp.2020.113863] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/13/2020] [Indexed: 12/15/2022]
Abstract
NLRP3 inflammasome is an intracellular protein complex that initiates cellular injury via assembly of NLRP3, ASC and caspase-1 in response to microbial infection and sterile stressors. The importance of NLRP3 inflammasome in immunity and human diseases has been well documented. Up to now, targeted inhibition of the assembly of NLRP3 inflammasome complex and of its activation was thought to be therapeutic strategy for associated diseases. Recent studies show that a host of molecules such as NIMA-related kinase 7 (Nek7) and DEAD-box helicase 3 X-linked (DDX3X) and a large number of biological mediators including cytokines, microRNAs, nitric oxide, carbon monoxide, nuclear factor erythroid-2 related factor 2 (Nrf2) and cellular autophagy participate in the activation and inactivation of NLRP3 inflammasome. This review summarizes current understanding of the molecular basis of NLRP3 inflammasome activation and inactivation. This knowledge may lead to development of new therapies directed at NLRP3 inflammasome related diseases.
Collapse
|
2873
|
Lai HJ, Hsu YH, Lee GY, Chiang HS. Microtubule-Mediated NLRP3 Inflammasome Activation Is Independent of Microtubule-Associated Innate Immune Factor GEF-H1 in Murine Macrophages. Int J Mol Sci 2020; 21:ijms21041302. [PMID: 32075101 PMCID: PMC7072875 DOI: 10.3390/ijms21041302] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/08/2020] [Accepted: 02/12/2020] [Indexed: 11/16/2022] Open
Abstract
Inflammasomes are intracellular multiple protein complexes that mount innate immune responses to tissue damage and invading pathogens. Their excessive activation is crucial in the development and pathogenesis of inflammatory disorders. Microtubules have been reported to provide the platform for mediating the assembly and activation of NLRP3 inflammasome. Recently, we have identified the microtubule-associated immune molecule guanine nucleotide exchange factor-H1 (GEF-H1) that is crucial in coupling microtubule dynamics to the initiation of microtubule-mediated immune responses. However, whether GEF-H1 also controls the activation of other immune receptors that require microtubules is still undefined. Here we employed GEF-H1-deficient mouse bone marrow-derived macrophages (BMDMs) to interrogate the impact of GEF-H1 on the activation of NLRP3 inflammasome. NLRP3 but not NLRC4 or AIM2 inflammasome-mediated IL-1β production was dependent on dynamic microtubule network in wild-type (WT) BMDMs. However, GEF-H1 deficiency did not affect NLRP3-driven IL-1β maturation and secretion in macrophages. Moreover, α-tubulin acetylation and mitochondria aggregations were comparable between WT and GEF-H1-deficient BMDMs in response to NLRP3 inducers. Further, GEF-H1 was not required for NLRP3-mediated immune defense against Salmonella typhimurium infection. Collectively, these findings suggest that the microtubule-associated immune modulator GEF-H1 is dispensable for microtubule-mediated NLRP3 activation and host defense in mouse macrophages.
Collapse
Affiliation(s)
- Hsuan-Ju Lai
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Yi-Hsuan Hsu
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Guan-Ying Lee
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Hao-Sen Chiang
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University, Taipei 10617, Taiwan
- Correspondence: ; Tel.: +886-2-3366-2454
| |
Collapse
|
2874
|
Nosaka N, Martinon D, Moreira D, Crother TR, Arditi M, Shimada K. Autophagy Protects Against Developing Increased Lung Permeability and Hypoxemia by Down Regulating Inflammasome Activity and IL-1β in LPS Plus Mechanical Ventilation-Induced Acute Lung Injury. Front Immunol 2020; 11:207. [PMID: 32117318 PMCID: PMC7033480 DOI: 10.3389/fimmu.2020.00207] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/27/2020] [Indexed: 01/04/2023] Open
Abstract
Targeting inflammasome activation to modulate interleukin (IL)-1β is a promising treatment strategy against acute respiratory distress syndrome and ventilator-induced lung injury (VILI). Autophagy is a key regulator of inflammasome activation in macrophages. Here, we investigated the role of autophagy in the development of acute lung injury (ALI) induced by lipopolysaccharide (LPS) and mechanical ventilation (MV). Two hours before starting MV, 0.2 mg/kg LPS was administered to mice intratracheally. Mice were then placed on high-volume MV (30 ml/kg with 3 cmH2O positive end-expiratory pressure for 2.5 h without additional oxygen application). Mice with myeloid-specific deletion of the autophagic protein ATG16L1 (Atg16l1fl/flLysMCre) suffered severe hypoxemia (adjusted p < 0.05) and increased lung permeability (p < 0.05, albumin level in bronchoalveolar lavage fluid) with significantly higher IL-1β release into alveolar space (p < 0.05). Induction of autophagy by fasting-induced starvation led to improved arterial oxygenation (adjusted p < 0.0001) and lung permeability (p < 0.05), as well as significantly suppressed IL-1β production (p < 0.01). Intratracheal treatment with anti-mouse IL-1β monoclonal antibody (mAb; 2.5 mg/kg) significantly improved arterial oxygenation (adjusted p < 0.01) as well as lung permeability (p < 0.05). On the other hand, deletion of IL-1α gene or use of anti-mouse IL-1α mAb (2.5 mg/kg) provided no significant protection, suggesting that the LPS and MV-induced ALI is primarily dependent on IL-1β, but independent of IL-1α. These observations suggest that autophagy has a protective role in controlling inflammasome activation and production of IL-1β, which plays a critical role in developing hypoxemia and increased lung permeability in LPS plus MV-induced acute lung injury.
Collapse
Affiliation(s)
- Nobuyuki Nosaka
- Division of Infectious Diseases and Immunology, Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Daisy Martinon
- Division of Infectious Diseases and Immunology, Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Debbie Moreira
- Division of Infectious Diseases and Immunology, Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Timothy R Crother
- Division of Infectious Diseases and Immunology, Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, CA, United States.,Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Moshe Arditi
- Division of Infectious Diseases and Immunology, Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, CA, United States.,Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Kenichi Shimada
- Division of Infectious Diseases and Immunology, Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, CA, United States.,Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
2875
|
Horn P, Newsome PN. Emerging therapeutic targets for NASH: key innovations at the preclinical level. Expert Opin Ther Targets 2020; 24:175-186. [PMID: 32053033 DOI: 10.1080/14728222.2020.1728742] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: nonalcoholic steatohepatitis (NASH) is a globally emerging health problem, mainly caused by increasing trends in the prevalence of obesity and metabolic syndrome. Patients with NASH are mainly affected by cardiovascular risk and extrahepatic cancer, but a significant proportion of patients will develop advanced liver disease, eventually resulting in liver failure or hepatocellular carcinoma. Recent research has yielded a better understanding of the underlying mechanisms and potential targetability for drug development.Areas covered: This review focuses on the role of fructose metabolism, de novo lipogenesis (DNL), endoplasmic reticulum (ER) stress, NLRP3 inflammasome, bone morphogenetic protein (BMP) signaling and platelets in the pathophysiology of NASH. We discuss the suitability of these substrates for targeting liver disease as well as cardiovascular health in patients with NASH. A non-systematic literature search was performed on PubMed and ClinicalTrials.gov.Expert opinion: Targeting fructose metabolism, DNL, ER stress, NLRP3 inflammasome, BMP signaling and platelets are promising therapeutic strategies, warranting further preclinical and clinical investigation. The discussed approaches might not only benefit liver-related outcomes but improve cardiovascular disease as well. Amidst the euphoria of advances in drug development for NASH, parallel endeavors need to address the underlying causes of obesity and metabolic syndrome to prevent NASH.
Collapse
Affiliation(s)
- Paul Horn
- National Institute for Health Research Birmingham Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust and the University of Birmingham, Birmingham, UK.,Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK.,Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Phlip N Newsome
- National Institute for Health Research Birmingham Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust and the University of Birmingham, Birmingham, UK.,Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK.,Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| |
Collapse
|
2876
|
Refolo G, Vescovo T, Piacentini M, Fimia GM, Ciccosanti F. Mitochondrial Interactome: A Focus on Antiviral Signaling Pathways. Front Cell Dev Biol 2020; 8:8. [PMID: 32117959 PMCID: PMC7033419 DOI: 10.3389/fcell.2020.00008] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 01/10/2020] [Indexed: 01/10/2023] Open
Abstract
In the last years, proteomics has represented a valuable approach to elucidate key aspects in the regulation of type I/III interferons (IFNs) and autophagy, two main processes involved in the response to viral infection, to unveil the molecular strategies that viruses have evolved to counteract these processes. Besides their main metabolic roles, mitochondria are well recognized as pivotal organelles in controlling signaling pathways essential to restrain viral infections. In particular, a major role in antiviral defense is played by mitochondrial antiviral signaling (MAVS) protein, an adaptor protein that coordinates the activation of IFN inducing pathways and autophagy at the mitochondrial level. Here, we provide an overview of how mass spectrometry-based studies of protein–protein interactions and post-translational modifications (PTMs) have fostered our understanding of the molecular mechanisms that control the mitochondria-mediated antiviral immunity.
Collapse
Affiliation(s)
- Giulia Refolo
- Lazzaro Spallanzani, National Institute for Infectious Diseases - IRCCS, Rome, Italy
| | - Tiziana Vescovo
- Lazzaro Spallanzani, National Institute for Infectious Diseases - IRCCS, Rome, Italy
| | - Mauro Piacentini
- Lazzaro Spallanzani, National Institute for Infectious Diseases - IRCCS, Rome, Italy.,Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Gian Maria Fimia
- Lazzaro Spallanzani, National Institute for Infectious Diseases - IRCCS, Rome, Italy.,Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Fabiola Ciccosanti
- Lazzaro Spallanzani, National Institute for Infectious Diseases - IRCCS, Rome, Italy
| |
Collapse
|
2877
|
Wang L, Negro R, Wu H. TRPM2, linking oxidative stress and Ca 2+ permeation to NLRP3 inflammasome activation. Curr Opin Immunol 2020; 62:131-135. [PMID: 32058297 DOI: 10.1016/j.coi.2020.01.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/12/2022]
Abstract
The NLRP3 inflammasome is an innate immune platform that senses various pathogens and sterile insults. NLRP3 stimulation leads to activation of caspase-1, the secretion of pro-inflammatory cytokines and an inflammatory cell death called pyroptosis. Effectors of the NLRP3 inflammasome efficiently drive an immune response, not only providing protection in physiological settings but also promoting pathology when over activated. Generation of reactive oxygen species (ROS) and intracellular calcium mobilization can activate the NLRP3 inflammasome. Recent studies suggest that TRPM2 is a calcium-permeable cation channel mediating ROS-dependent NLRP3 activation. Here, we review the role of TRPM2 in NLRP3 inflammasome activation and provide an update on new functional and structural discoveries. Understanding the molecular mechanism of TRPM2 dependent NLRP3 inflammasome activation will shed lights on this complex pathway and help the developing of therapeutic strategies.
Collapse
Affiliation(s)
- Longfei Wang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Roberto Negro
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
2878
|
Patterns of partnership: surveillance and mimicry in host-microbiota mutualisms. Curr Opin Microbiol 2020; 54:87-94. [PMID: 32062152 DOI: 10.1016/j.mib.2020.01.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 01/14/2020] [Indexed: 02/07/2023]
Abstract
The repertoire of microbial cues monitored by animal and plant tissues encompasses not just molecules but also microbial activities. These include typical pathogen strategies of injuring membranes, degrading cellular material, and scavenging resources. These activities, however, are not exclusive to pathogens. Instead, they characterize the competitive strategies of microbes living in multispecies communities, like those typically found colonizing host tissues. Similar activities are also deployed by host tissues to keep microbes in check. We propose that host surveillance and mimicry of Microbial-Associated Competitive Activities (MACAs), derived from an evolutionary history of living in mixed microbial communities, has shaped contemporary animal and plant tissue programs of defense, repair, metabolism, and development.
Collapse
|
2879
|
Blockade of the Phagocytic Receptor MerTK on Tumor-Associated Macrophages Enhances P2X7R-Dependent STING Activation by Tumor-Derived cGAMP. Immunity 2020; 52:357-373.e9. [PMID: 32049051 DOI: 10.1016/j.immuni.2020.01.014] [Citation(s) in RCA: 260] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 12/03/2019] [Accepted: 01/22/2020] [Indexed: 12/19/2022]
Abstract
Clearance of apoptotic cells by macrophages prevents excessive inflammation and supports immune tolerance. Here, we examined the effect of blocking apoptotic cell clearance on anti-tumor immune response. We generated an antibody that selectively inhibited efferocytosis by phagocytic receptor MerTK. Blockade of MerTK resulted in accumulation of apoptotic cells within tumors and triggered a type I interferon response. Treatment of tumor-bearing mice with anti-MerTK antibody stimulated T cell activation and synergized with anti-PD-1 or anti-PD-L1 therapy. The anti-tumor effect induced by anti-MerTK treatment was lost in Stinggt/gt mice, but not in Cgas-/- mice. Abolishing cGAMP production in Cgas-/- tumor cells, depletion of extracellular ATP, or inactivation of the ATP-gated P2X7R channel also compromised the effects of MerTK blockade. Mechanistically, extracellular ATP acted via P2X7R to enhance the transport of extracellular cGAMP into macrophages and subsequent STING activation. Thus, MerTK blockade increases tumor immunogenicity and potentiates anti-tumor immunity, which has implications for cancer immunotherapy.
Collapse
|
2880
|
Vemuganti R, Arumugam TV. Molecular Mechanisms of Intermittent Fasting-induced Ischemic Tolerance. CONDITIONING MEDICINE 2020; 3:9-17. [PMID: 34278242 PMCID: PMC8281895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Diet is a significant factor in determining human well-being. Excessive eating and/or diets with higher than needed amounts of carbohydrates, salt, and fat are known to cause metabolic disorders and functional changes in the body. To compensate the ill effects, many designer diets including the Mediterranean diet, the Okinawa diet, vegetarian/vegan diets, keto diet, anti-inflammatory diet, and the anti-oxidant diet have been introduced in the past 2 decades. While these diets are either enriched or devoid of one or more specific components, a better way to control diet is to limit the amount of food consumed. Caloric restriction (CR), which involves limiting the amount of food consumed rather than eliminating any specific type of food, as well as intermittent fasting (IF), which entails limiting the time during which food can be consumed on a given day, have gained popularity because of their positive effects on human health. While the molecular mechanisms of these 2 dietary regimens have not been fully deciphered, they are known to prolong the life span, control blood pressure, and blood glucose levels. Furthermore, CR and IF were both shown to decrease the incidence of heart attack and stroke, as well as their ill effects. In particular, IF is thought to promote metabolic switching by altering gene expression profiles leading to reduced inflammation and oxidative stress, while increasing plasticity and regeneration.
Collapse
Affiliation(s)
- Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
- William S. Middleton VA Hospital, Madison, WI, USA
| | | |
Collapse
|
2881
|
Yi Y. Functional crosstalk between non-canonical caspase-11 and canonical NLRP3 inflammasomes during infection-mediated inflammation. Immunology 2020; 159:142-155. [PMID: 31630388 PMCID: PMC6954705 DOI: 10.1111/imm.13134] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/25/2019] [Accepted: 10/15/2019] [Indexed: 12/11/2022] Open
Abstract
Inflammation is a part of the body's immune response for protection against pathogenic infections and other cellular damages; however, chronic inflammation is a major cause of various diseases. One key step in the inflammatory response is the activation of inflammasomes, intracellular protein complexes comprising pattern recognition receptors and other inflammatory molecules. The role of the NLRP3 inflammasome in inflammatory responses has been extensively investigated; however, the caspase-11 inflammasome has been recently identified and has been classified as a 'non-canonical' inflammasome, and emerging studies have highlighted its role in inflammatory responses. Because the ligands and the mechanisms for the activation of these two inflammasomes are different, studies to date have separately described their roles, although recent studies have reported the functional cooperation between these two inflammasomes during an inflammatory response. This review discusses the studies investigating the functional crosstalk between non-canonical caspase-11 and canonical NLRP3 inflammasomes in the context of inflammatory responses; moreover, it provides insight for the development of novel anti-inflammatory therapeutics to prevent and treat infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Young‐Su Yi
- Department of Pharmaceutical and Biomedical EngineeringCheongju UniversityCheongjuKorea
| |
Collapse
|
2882
|
Yue J, He J, Wei Y, Shen K, Wu K, Yang X, Liu S, Zhang C, Yang H. Decreased expression of Rev-Erbα in the epileptic foci of temporal lobe epilepsy and activation of Rev-Erbα have anti-inflammatory and neuroprotective effects in the pilocarpine model. J Neuroinflammation 2020; 17:43. [PMID: 32005256 PMCID: PMC6993411 DOI: 10.1186/s12974-020-1718-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 01/19/2020] [Indexed: 02/06/2023] Open
Abstract
Background A hallmark of temporal lobe epilepsy (TLE) is brain inflammation accompanied by neuronal demise. Accumulating evidence demonstrates that Rev-Erbα is involved in regulating neuroinflammation and determining the fate of neurons. Therefore, we studied the expression and cellular distribution of Rev-Erbα in the epileptogenic zone of TLE and the effect of treatment with the Rev-Erbα specific agonist SR9009 in the pilocarpine model. Methods The expression pattern of Rev-Erbα was investigated by western blotting, immunohistochemistry, and immunofluorescence labeling in patients with TLE. Next, the effects of SR9009 on neuroinflammation, neuronal apoptosis, and neuronal loss in the mouse hippocampus 7 days after status epilepticus (SE) were assessed by western blotting, immunofluorescence labeling staining, and TUNEL staining. Results The western blotting, immunohistochemistry, and immunofluorescence labeling results revealed that Rev-Erbα was downregulated in the epileptogenic zone of TLE patients and mainly localized in neurons, astrocytes, and presumably microglia. Meanwhile, the expression of Rev-Erbα was decreased in the hippocampus and temporal neocortex of mice treated with pilocarpine in the early post-SE and chronic phases. Interestingly, the expression of Rev-Erbα in the normal hippocampus showed a 24-h rhythm; however, the rhythmicity was disturbed in the early phase after SE, and this disturbance was still present in epileptic animals. Our further findings revealed that treatment with SR9009 inhibited NLRP3 inflammasome activation, inflammatory cytokine (IL-1β, IL-18, IL-6, and TNF-α) production, astrocytosis, microgliosis, and neuronal damage in the hippocampus after SE. Conclusions Taken together, these results suggested that a decrease in Rev-Erbα in the epileptogenic zone may contribute to the process of TLE and that the activation of Rev-Erbα may have anti-inflammatory and neuroprotective effects.
Collapse
Affiliation(s)
- Jiong Yue
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), 183 Xinqiao Main Street, Shapingba District, Chongqing, 400037, China
| | - Jiaojiang He
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, China
| | - Yujia Wei
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), 183 Xinqiao Main Street, Shapingba District, Chongqing, 400037, China
| | - Kaifeng Shen
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), 183 Xinqiao Main Street, Shapingba District, Chongqing, 400037, China
| | - Kefu Wu
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), 183 Xinqiao Main Street, Shapingba District, Chongqing, 400037, China
| | - Xiaolin Yang
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), 183 Xinqiao Main Street, Shapingba District, Chongqing, 400037, China
| | - Shiyong Liu
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), 183 Xinqiao Main Street, Shapingba District, Chongqing, 400037, China
| | - Chunqing Zhang
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), 183 Xinqiao Main Street, Shapingba District, Chongqing, 400037, China.
| | - Hui Yang
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), 183 Xinqiao Main Street, Shapingba District, Chongqing, 400037, China.
| |
Collapse
|
2883
|
Wang Y, Mishra A, Brinton RD. Transitions in metabolic and immune systems from pre-menopause to post-menopause: implications for age-associated neurodegenerative diseases. F1000Res 2020; 9. [PMID: 32047612 PMCID: PMC6993821 DOI: 10.12688/f1000research.21599.1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/22/2020] [Indexed: 12/13/2022] Open
Abstract
The brain undergoes two aging programs: chronological and endocrinological. This is particularly evident in the female brain, which undergoes programs of aging associated with reproductive competency. Comprehensive understanding of the dynamic metabolic and neuroinflammatory aging process in the female brain can illuminate windows of opportunities to promote healthy brain aging. Bioenergetic crisis and chronic low-grade inflammation are hallmarks of brain aging and menopause and have been implicated as a unifying factor causally connecting genetic risk factors for Alzheimer's disease and other neurodegenerative diseases. In this review, we discuss metabolic phenotypes of pre-menopausal, peri-menopausal, and post-menopausal aging and their consequent impact on the neuroinflammatory profile during each transition state. A critical aspect of the aging process is the dynamic metabolic neuro-inflammatory profiles that emerge during chronological and endocrinological aging. These dynamic systems of biology are relevant to multiple age-associated neurodegenerative diseases and provide a therapeutic framework for prevention and delay of neurodegenerative diseases of aging. While these findings are based on investigations of the female brain, they have a broader fundamental systems of biology strategy for investigating the aging male brain. Molecular characterization of alterations in fuel utilization and neuroinflammatory mechanisms during these neuro-endocrine transition states can inform therapeutic strategies to mitigate the risk of Alzheimer's disease in women. We further discuss a precision hormone replacement therapy approach to target symptom profiles during endocrine and chronological aging to reduce risk for age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Yiwei Wang
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, 85721, USA
| | - Aarti Mishra
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, 85721, USA
| | - Roberta Diaz Brinton
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, 85721, USA
| |
Collapse
|
2884
|
Yan J, Li XY, Roman Aguilera A, Xiao C, Jacoberger-Foissac C, Nowlan B, Robson SC, Beers C, Moesta AK, Geetha N, Teng MWL, Smyth MJ. Control of Metastases via Myeloid CD39 and NK Cell Effector Function. Cancer Immunol Res 2020; 8:356-367. [PMID: 31992567 DOI: 10.1158/2326-6066.cir-19-0749] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/04/2019] [Accepted: 01/14/2020] [Indexed: 11/16/2022]
Abstract
Natural killer (NK) cell protection from tumor metastases is a critical feature of the host immune response to cancer, but various immunosuppression mechanisms limit NK cell effector function. The ectoenzyme, CD39, expressed on tumor-infiltrating myeloid cells, granulocytes, and lymphocytes, including NK cells, converts extracellular ATP (eATP) into AMP and, thus, potentially suppresses eATP-mediated proinflammatory responses. A CD39-targeting monoclonal antibody (mAb) that inhibits the mouse ectoenzyme CD39 suppressed experimental and spontaneous metastases in a number of different tumor models and displayed superior antimetastatic activity compared with the CD39 inhibitor POM1 and inhibitors and mAbs that block other members of the adenosinergic family (e.g., A2AR and CD73). The antimetastatic activity of anti-CD39 was NK cell and IFNγ dependent, and anti-CD39 enhanced the percentage and quantity of IFNγ produced and CD107a expression in lung-infiltrating NK cells following tumor challenge and anti-CD39 therapy. Using conditional Cd39 gene-targeted mouse strains and adoptive NK cell transfers, we showed that CD39 expressed on bone marrow-derived myeloid cells was essential for anti-CD39's antimetastatic activity, but NK cell expression of CD39 was not critical. The eATP receptor P2X7 and the NALP3 inflammasome, including downstream IL18, were critical in the mechanism of action of anti-CD39, and the frequency of P2X7 and CD39 coexpressing lung alveolar macrophages was specifically reduced 1 day after anti-CD39 therapy. The data provide a mechanism of action involving NK cells and myeloid cells, and anti-CD39 combined with anti-PD-1, NK cell-activating cytokines IL15 or IL2, or an inhibitor of A2AR to effectively suppress tumor metastases.
Collapse
Affiliation(s)
- Juming Yan
- Cancer Immunoregulation and Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Xian-Yang Li
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Amelia Roman Aguilera
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Christos Xiao
- Cancer Immunoregulation and Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Celia Jacoberger-Foissac
- Cancer Immunoregulation and Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Bianca Nowlan
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Simon C Robson
- Departments of Medicine and Anesthesia, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | | | | | - Nishamol Geetha
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Michele W L Teng
- Cancer Immunoregulation and Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Mark J Smyth
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia.
| |
Collapse
|
2885
|
Avian Pattern Recognition Receptor Sensing and Signaling. Vet Sci 2020; 7:vetsci7010014. [PMID: 32012730 PMCID: PMC7157566 DOI: 10.3390/vetsci7010014] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 01/16/2020] [Accepted: 01/23/2020] [Indexed: 02/07/2023] Open
Abstract
Pattern recognition receptors (PRRs) are a class of immune sensors that play a critical role in detecting and responding to several conserved patterns of microorganisms. As such, they play a major role in the maintenance of immune homeostasis and anti-microbial defense. Fundamental knowledge pertaining to the discovery of PRR functions and their ligands continue to advance the understanding of immune system and disease resistance, which led to the rational design and/or application of various PRR ligands as vaccine adjuvants. In addition, the conserved nature of many PRRs throughout the animal kingdom has enabled the utilization of the comparative genomics approach in PRR identification and the study of evolution, structural features, and functions in many animal species including avian. In the present review, we focused on PRR sensing and signaling functions in the avian species, domestic chicken, mallard, and domestic goose. In addition to summarizing recent advances in the understanding of avian PRR functions, the present review utilized a comparative biology approach to identify additional PRRs, whose functions have been well studied in mammalians but await functional characterization in avian.
Collapse
|
2886
|
Hsieh CY, Li LH, Lam Y, Fang Z, Gan CH, Rao YK, Chiu HW, Wong WT, Ju TC, Chen FH, Chernikov OV, Liu ML, Hsu CH, Hua KF. Synthetic 4-Hydroxy Auxarconjugatin B, a Novel Autophagy Inducer, Attenuates Gouty Inflammation by Inhibiting the NLRP3 Inflammasome. Cells 2020; 9:cells9020279. [PMID: 31979265 PMCID: PMC7072356 DOI: 10.3390/cells9020279] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 12/29/2022] Open
Abstract
Gouty arthritis results from the generation of uric acid crystals within the joints. These uric acid crystals activate the NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome, which is involved in chronic inflammatory diseases, including gouty arthritis. This study identified the polyenylpyrrole derivative 4-hydroxy auxarconjugatin B (4-HAB), a novel autophagy inducer, which attenuated uric acid crystals-mediated activation of the NLRP3 inflammasome in vitro and in vivo. 4-HAB dose-dependently reduced the release of interleukin (IL)-1β, IL-18, active caspase-1 and apoptosis-associated speck-like protein (ASC) in uric acid crystals-activated macrophages. In a mechanistic study, 4-HAB was shown to inhibit uric acid crystals-induced mitochondrial damage, lysosomal rupture and ASC oligomerization. Additionally, 4-HAB inhibited the NLRP3 inflammasome through Sirt1-dependent autophagy induction. Furthermore, the anti-inflammatory properties of 4-HAB were confirmed in a mouse model of uric acid crystals-mediated peritonitis by the reduced levels of neutrophil influx, IL-1β, active caspase-1, IL-6 and MCP-1 in lavage fluids. In conclusion, 4-HAB attenuates gouty inflammation, in part by attenuating activation of the NLRP3 inflammasome through the Sirt1/autophagy induction pathway.
Collapse
Affiliation(s)
- Chih-Yu Hsieh
- Department of Biotechnology and Animal Science, National Ilan University, Ilan 260, Taiwan; (C.-Y.H.); (Y.K.R.); (H.-W.C.); (W.-T.W.)
| | - Lan-Hui Li
- Department of Laboratory Medicine, Linsen, Chinese Medicine and Kunming Branch, Taipei City Hospital, Taipei 10844, Taiwan;
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11483, Taiwan
| | - Yulin Lam
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore; (Y.L.); (Z.F.); (C.H.G.)
| | - Zhanxiong Fang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore; (Y.L.); (Z.F.); (C.H.G.)
| | - Chin Heng Gan
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore; (Y.L.); (Z.F.); (C.H.G.)
| | - Yerra Koteswara Rao
- Department of Biotechnology and Animal Science, National Ilan University, Ilan 260, Taiwan; (C.-Y.H.); (Y.K.R.); (H.-W.C.); (W.-T.W.)
| | - Hsiao-Wen Chiu
- Department of Biotechnology and Animal Science, National Ilan University, Ilan 260, Taiwan; (C.-Y.H.); (Y.K.R.); (H.-W.C.); (W.-T.W.)
| | - Wei-Ting Wong
- Department of Biotechnology and Animal Science, National Ilan University, Ilan 260, Taiwan; (C.-Y.H.); (Y.K.R.); (H.-W.C.); (W.-T.W.)
| | - Tz-Chuen Ju
- Department of Animal Science and Biotechnology, Tunghai University, Taichung 407, Taiwan;
| | - Fang-Hsin Chen
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan 33302, Taiwan;
| | - Oleg V. Chernikov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry FEB RAS, Vladivostok 690022, Russia;
| | - May-Lan Liu
- Department of Nutritional Science, Toko University, Chiayi 61363, Taiwan;
| | - Chung-Hua Hsu
- Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan;
- Department of Chinese Medicine, Linsen, Chinese Medicine and Kunming Branch, Taipei City Hospital, Taipei 10844, Taiwan
| | - Kuo-Feng Hua
- Department of Biotechnology and Animal Science, National Ilan University, Ilan 260, Taiwan; (C.-Y.H.); (Y.K.R.); (H.-W.C.); (W.-T.W.)
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11483, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
- Correspondence: ; Tel.: +886-3931-7630
| |
Collapse
|
2887
|
Chen Y, Li R, Wang Z, Hou X, Wang C, Ai Y, Shi W, Zhan X, Wang JB, Xiao X, Bai Z, Sun H, Xu G. Dehydrocostus lactone inhibits NLRP3 inflammasome activation by blocking ASC oligomerization and prevents LPS-mediated inflammation in vivo. Cell Immunol 2020; 349:104046. [PMID: 32057354 DOI: 10.1016/j.cellimm.2020.104046] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 01/13/2020] [Accepted: 01/20/2020] [Indexed: 12/11/2022]
Abstract
Uncontrolled activation of NLRP3 inflammasome initiates a series of human inflammatory diseases. Targeting NLRP3 inflammasome has attracted considerable attention in developing potential therapeutic interventions. Here, we reported that dehydrocostus lactone (DCL), a main component of Saussurea lappa from the traditional Chinese medicine, inhibited NLRP3 inflammasome-mediated caspase-1 activation and subsequent interleukin (IL)-1β production in primary mouse macrophages and human peripheral blood mononuclear cells and exerted an inhibitory effect on NLRP3-driven inflammation. Mechanistically, DCL significantly blocked the ASC oligomerization, which is essential for the assembly of activated inflammasome. Importantly, in vivo experiments showed that DCL reduced IL-1β secretion and peritoneal neutrophils recruitment in LPS-mediated inflammation mouse model, which is demonstrated to be NLRP3 dependent. These results suggest that DCL is a potent pharmacological inhibitor of NLRP3 inflammasome and may be developed as a therapeutic drug for treating NLRP3-associated diseases.
Collapse
Affiliation(s)
- Yuanyuan Chen
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China; Integrative Medical Center, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Ruisheng Li
- Research Center for Clinical and Translational Medicine, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Zhilei Wang
- Integrative Medical Center, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Xiaorong Hou
- Integrative Medical Center, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Chunyu Wang
- Integrative Medical Center, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Yongqiang Ai
- Integrative Medical Center, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Wei Shi
- Integrative Medical Center, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Xiaoyan Zhan
- Integrative Medical Center, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Jia-Bo Wang
- Integrative Medical Center, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Xiaohe Xiao
- Integrative Medical Center, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China; China Military Institute of Chinese Materia, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Zhaofang Bai
- Integrative Medical Center, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China; China Military Institute of Chinese Materia, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Hongsheng Sun
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China; Department of Pharmacy, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Guang Xu
- Integrative Medical Center, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China; China Military Institute of Chinese Materia, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
2888
|
Spel L, Martinon F. Inflammasomes contributing to inflammation in arthritis. Immunol Rev 2020; 294:48-62. [DOI: 10.1111/imr.12839] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Lotte Spel
- Departement of Biochemistry University of Lausanne Epalinges Switzerland
| | - Fabio Martinon
- Departement of Biochemistry University of Lausanne Epalinges Switzerland
| |
Collapse
|
2889
|
Li C, Guo S, Pang W, Zhao Z. Crosstalk Between Acid Sphingomyelinase and Inflammasome Signaling and Their Emerging Roles in Tissue Injury and Fibrosis. Front Cell Dev Biol 2020; 7:378. [PMID: 32010692 PMCID: PMC6971222 DOI: 10.3389/fcell.2019.00378] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 12/17/2019] [Indexed: 12/15/2022] Open
Abstract
Inflammasomes are a group of protein complexes that are assembled by pattern recognition receptors following the recognition of invading pathogens or host-derived danger signals. Inflammasomes such as NLRP3 mediate the activation of caspase-1 and the production of the proinflammatory cytokines IL-18 and IL-1β. Regulation of inflammasome signaling is critical for host defense against infections and maintenance of cellular homeostasis upon exposure to multiple harmful stimuli. Recent studies have highlighted an important role of acid sphingomyelinase (ASM) in regulating inflammasome activation. ASM hydrolyzes sphingomyelin to ceramide, which further fuses to large ceramide-enriched platforms functioning in stabilizing and amplifying molecules and receptors. Here, we will discuss the current understanding of the ASM-ceramide system in inflammasome activation, and how it contributes to multiple diseases. Insights into such mechanisms would pave the way for further exploration of novel diagnostic, preventative, and therapeutic targets against tissue injury and fibrosis.
Collapse
Affiliation(s)
- Cao Li
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shanshan Guo
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wenyuan Pang
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Clinical Pharmacology, School of Pharmaceutical Sciences, Capital Medical University, Beijing, China
| | - Zhigang Zhao
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
2890
|
Rudloff I, Ung HK, Dowling JK, Mansell A, D’Andrea L, Ellisdon AM, Whisstock JC, Berger PJ, Nold-Petry CA, Nold MF. Parsing the IL-37-Mediated Suppression of Inflammasome Function. Cells 2020; 9:cells9010178. [PMID: 31936823 PMCID: PMC7017287 DOI: 10.3390/cells9010178] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/20/2022] Open
Abstract
Interleukin (IL)-37 is a member of the IL-1 family of cytokines. Although its broad anti-inflammatory properties are well described, the effects of IL-37 on inflammasome function remain poorly understood. Performing gene expression analyses, ASC oligomerization/speck assays and caspase-1 assays in bone marrow-derived macrophages (BMDM), and employing an in vivo endotoxemia model, we studied how IL-37 affects the expression and maturation of IL-1β and IL-18, inflammasome activation, and pyroptosis in detail. IL-37 inhibited IL-1β production by NLRP3 and AIM2 inflammasomes, and IL-18 production by the NLRP3 inflammasome. This inhibition was partially attributable to effects on gene expression: whereas IL-37 did not affect lipopolysaccharide (LPS)-induced mRNA expression of Il18 or inflammasome components, IL-37-transgenic BMDM displayed an up to 83% inhibition of baseline and LPS-stimulated Il1b compared to their wild-type counterparts. Importantly, we observed that IL-37 suppresses nigericin- and silica-induced ASC oligomerization/speck formation (a step in inflammasome activation and subsequent caspase-1 activation), and pyroptosis (-50%). In mice subjected to endotoxemia, IL-37 inhibited plasma IL-1β (-78% compared to wild-type animals) and IL-18 (-61%). Thus, our study adds suppression of inflammasome activity to the portfolio of anti-inflammatory pathways employed by IL-37, highlighting this cytokine as a potential tool for treating inflammasome-driven diseases.
Collapse
Affiliation(s)
- Ina Rudloff
- Department of Paediatrics, Monash University, Clayton, Victoria 3168, Australia; (I.R.); (H.K.U.); (P.J.B.); (C.A.N.-P.)
- Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
| | - Holly K. Ung
- Department of Paediatrics, Monash University, Clayton, Victoria 3168, Australia; (I.R.); (H.K.U.); (P.J.B.); (C.A.N.-P.)
- Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
| | - Jennifer K. Dowling
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, 123 St Stephens Green, Dublin 2, Ireland;
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia;
- Department of Molecular and Translational Sciences, Monash University, Clayton, Victoria 3168, Australia
| | - Ashley Mansell
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia;
- Department of Molecular and Translational Sciences, Monash University, Clayton, Victoria 3168, Australia
| | - Laura D’Andrea
- Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3168, Australia; (L.D.); (A.M.E.); (J.C.W.)
| | - Andrew M. Ellisdon
- Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3168, Australia; (L.D.); (A.M.E.); (J.C.W.)
| | - James C. Whisstock
- Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3168, Australia; (L.D.); (A.M.E.); (J.C.W.)
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3168, Australia
| | - Philip J. Berger
- Department of Paediatrics, Monash University, Clayton, Victoria 3168, Australia; (I.R.); (H.K.U.); (P.J.B.); (C.A.N.-P.)
- Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
| | - Claudia A. Nold-Petry
- Department of Paediatrics, Monash University, Clayton, Victoria 3168, Australia; (I.R.); (H.K.U.); (P.J.B.); (C.A.N.-P.)
- Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
| | - Marcel F. Nold
- Department of Paediatrics, Monash University, Clayton, Victoria 3168, Australia; (I.R.); (H.K.U.); (P.J.B.); (C.A.N.-P.)
- Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
- Monash Newborn, Monash Children’s Hospital, Clayton, Victoria 3168, Australia
- Correspondence: ; Tel.: +61-3-8572-2815
| |
Collapse
|
2891
|
Abstract
Sepsis, a life threating syndrome characterized by organ failure after infection, is the most common cause of death in hospitalized patients. The treatment of sepsis is generally supportive in nature, involving the administration of intravenous fluids, vasoactive substances and oxygen plus antibiotics to eliminate the pathogen. No drugs have been approved specifically for the treatment of sepsis, and clinical trials of potential therapies have failed to reduce mortality - suggesting that new approaches are needed. Abnormalities in the immune response elicited by the pathogen, ranging from excessive inflammation to immunosuppression, contribute to disease pathogenesis. Although hundreds of immunomodulatory agents are potentially available, it remains unclear which patient benefits from which immune therapy at a given time point. Results indicate the importance of personalized therapy, specifically the need to identify the type of intervention required by each individual patient at a given point in the disease process. To address this issue will require using biomarkers to stratify patients based on their individual immune status. This article reviews recent and ongoing clinical investigations using immunostimulatory or immunosuppressive therapies against sepsis including non-pharmacological and novel preclinical approaches.
Collapse
|
2892
|
Kim J, Ahn H, Yu S, Ahn JH, Ko HJ, Kweon MN, Hong EJ, An BS, Lee E, Lee GS. IκBζ controls NLRP3 inflammasome activation via upregulation of the Nlrp3 gene. Cytokine 2020; 127:154983. [PMID: 31918161 DOI: 10.1016/j.cyto.2019.154983] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 12/12/2019] [Accepted: 12/31/2019] [Indexed: 01/05/2023]
Abstract
Inflammasome activation induces the maturation and secretion of interleukin (IL)-1β and -18, and is dependent on NF-κB signaling to induce the transcription of the inflammasome components, called the priming step. This study elucidated the role of IκBζ, an atypical IκBs (inhibitor of κB) and a coactivator of NF-κB target genes, on the activation of inflammasome. Bone marrow-derived macrophages (BMDMs) that originated from IκBζ-encoding Nfkbiz gene depletion mice presented a defect in NLRP3 inflammasome activation. In addition, the Nfkbiz+/- and Nfkbiz-/- mice significantly attenuated serum IL-1β secretion in response to a monosodium urate injection, a NLRP3 trigger, when compared with Nfkbiz-+/+ mice. The lack of IκBζ in BMDMs produced a disability in the expression of Nlrp3 and pro-Il1β mRNAs during the priming step. In addition, ectopic IκBζ expression enhanced the Nlrp3 promoter activity, and Nlrp3 and pro-Il1β transcription. Overall, IκBζ controlled the activation of NLRP3 inflammasome by upregulating the Nlrp3 gene during the priming step.
Collapse
Affiliation(s)
- Jeongeun Kim
- College of Veterinary Medicine and Institute of Veterinary Science, College of Pharmacy, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Huijeong Ahn
- College of Veterinary Medicine and Institute of Veterinary Science, College of Pharmacy, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Sangjung Yu
- College of Veterinary Medicine and Institute of Veterinary Science, College of Pharmacy, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Jae-Hee Ahn
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Hyun-Jeong Ko
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Mi-Na Kweon
- Mucosal Immunology Laboratory, Department of Convergence Medicine, University of Ulsan College of Medicine/Asan Medical Center, Seoul 05505, Republic of Korea
| | - Eui-Ju Hong
- College of Veterinary Medicine and Institute of Veterinary Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Beum-Soo An
- Department of Biomaterial Science, College of Natural Resources and Life Science, Pusan National University, Gyeongsangnam-do 50612, Republic of Korea
| | - Eunsong Lee
- College of Veterinary Medicine and Institute of Veterinary Science, College of Pharmacy, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Geun-Shik Lee
- College of Veterinary Medicine and Institute of Veterinary Science, College of Pharmacy, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea.
| |
Collapse
|
2893
|
Cox LA. Dose-response modeling of NLRP3 inflammasome-mediated diseases: asbestos, lung cancer, and malignant mesothelioma as examples. Crit Rev Toxicol 2020; 49:614-635. [PMID: 31905042 DOI: 10.1080/10408444.2019.1692779] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Can a single fiber of amphibole asbestos increase the risk of lung cancer or malignant mesothelioma (MM)? Traditional linear no-threshold (LNT) risk assessment assumptions imply that the answer is yes: there is no safe exposure level. This paper draws on recent scientific progress in inflammation biology, especially elucidation of the activation thresholds for NLRP3 inflammasomes and resulting chronic inflammation, to model dose-response relationships for malignant mesothelioma and lung cancer risks caused by asbestos exposures. The modeling integrates a physiologically based pharmacokinetics (PBPK) front end with inflammation-driven two-stage clonal expansion (I-TSCE) models of carcinogenesis to describe how exposure leads to chronic inflammation, which in turn promotes carcinogenesis. Together, the combined PBPK and I-TSCE modeling predict that there are practical thresholds for exposure concentration below which asbestos exposure does not cause chronic inflammation in less than a lifetime, and therefore does not increase chronic inflammation-dependent cancer risks. Quantitative examples using model parameter estimates drawn from the literature suggest that practical thresholds may be within about a factor of 2 of some past exposure levels for some workers. The I-TSCE modeling framework explains previous puzzling aspects of asbestos epidemiology, such as why age at first exposure is a better predictor of lifetime MM risk than exposure duration. It may be a valuable tool for risk analysts when LNT assumptions are not justified due to inflammation response thresholds mediating dose-response relationships.
Collapse
|
2894
|
Li JY, Wang YY, Shao T, Fan DD, Lin AF, Xiang LX, Shao JZ. The zebrafish NLRP3 inflammasome has functional roles in ASC-dependent interleukin-1β maturation and gasdermin E–mediated pyroptosis. J Biol Chem 2020. [DOI: 10.1016/s0021-9258(17)49920-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
2895
|
Martínez J, Marmisolle I, Tarallo D, Quijano C. Mitochondrial Bioenergetics and Dynamics in Secretion Processes. Front Endocrinol (Lausanne) 2020; 11:319. [PMID: 32528413 PMCID: PMC7256191 DOI: 10.3389/fendo.2020.00319] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/27/2020] [Indexed: 12/12/2022] Open
Abstract
Secretion is an energy consuming process that plays a relevant role in cell communication and adaptation to the environment. Among others, endocrine cells producing hormones, immune cells producing cytokines or antibodies, neurons releasing neurotransmitters at synapsis, and more recently acknowledged, senescent cells synthesizing and secreting multiple cytokines, growth factors and proteases, require energy to successfully accomplish the different stages of the secretion process. Calcium ions (Ca2+) act as second messengers regulating secretion in many of these cases. In this setting, mitochondria appear as key players providing ATP by oxidative phosphorylation, buffering Ca2+ concentrations and acting as structural platforms. These tasks also require the concerted actions of the mitochondrial dynamics machinery. These proteins mediate mitochondrial fusion and fission, and are also required for transport and tethering of mitochondria to cellular organelles where the different steps of the secretion process take place. Herein we present a brief overview of mitochondrial energy metabolism, mitochondrial dynamics, and the different steps of the secretion processes, along with evidence of the interaction between these pathways. We also analyze the role of mitochondria in secretion by different cell types in physiological and pathological settings.
Collapse
|
2896
|
Wang J, Wu X, Liang W, Chen M, Zhao C, Wang X. Objective Short Sleep Duration is Related to the Peripheral Inflammasome Dysregulation in Patients with Chronic Insomnia. Nat Sci Sleep 2020; 12:759-766. [PMID: 33117011 PMCID: PMC7585267 DOI: 10.2147/nss.s270045] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/24/2020] [Indexed: 01/20/2023] Open
Abstract
OBJECTIVE Insomnia with objective short sleep duration (IOSSD) is associated with an increased risk of cardiovascular morbidity, diabetes, neurocognitive impairment, and mortality. Inflammation is believed to be one of the main links between IOSSD and these diseases. The role of nucleotide-binding domain and leucine-rich repeat protein-3 (NLRP3) inflammasome in inducing activation of inflammatory signaling in IOSSD is not clear. In this study, we investigated the expression of NLRP3 inflammasome in patients with IOSSD to clarify this issue. METHODS Thirty-six patients with insomnia and 20 age- and sex-matched healthy controls were sequentially recruited. Subjects were categorized into three groups: IOSSD (sleep duration < 6h, n=20), insomnia with objective normal sleep duration (IONSD, sleep duration ≥ 6h, n=16) and healthy controls (n=20). Objective sleep parameters were measured by overnight polysomnography. Peripheral NLRP3 inflammasome protein levels [NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC), caspase l] and cytokines [interleukin (IL)-1β and IL-18] were assessed by Western blotting and ELISA, respectively. RESULTS IOSSD group showed significantly increased protein expressions of ASC and caspase-1 compared to IONSD and healthy controls and significantly increased IL-18 levels compared to healthy controls. On correlation analysis, total sleep time showed an inverse correlation with NLRP3, ASC, IL-18, and IL-1β levels. Wake after sleep onset (WASO) showed a positive correlation with NLRP3, ASC, caspase-1, and IL-1β levels. N3 sleep ratio showed a significant negative correlation with NLRP3, ASC, and IL-18 levels. CONCLUSION The current study demonstrated upregulation of NLRP3 inflammasome in IOSSD. Short sleep duration, decreased slow wave sleep, and sleep fragmentation may contribute to dysregulation of NLRP3 inflammasome.
Collapse
Affiliation(s)
- Jihui Wang
- Department of Psychiatry, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, People's Republic of China
| | - Xiaoli Wu
- Department of Psychiatry, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, People's Republic of China
| | - Wenjing Liang
- Department of Psychiatry, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, People's Republic of China
| | - Minhua Chen
- Department of Psychiatry, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, People's Republic of China
| | - Chongbang Zhao
- Department of Psychiatry, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, People's Republic of China
| | - Xianglan Wang
- Department of Psychiatry, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, People's Republic of China
| |
Collapse
|
2897
|
Affiliation(s)
| | - John C Newman
- Buck Institute for Research on Aging, Novato, CA, USA.
- Division of Geriatrics, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
2898
|
Abstract
Being originally discovered as cellular recycling bins, lysosomes are today recognized as versatile signaling organelles that control a wide range of cellular functions that are essential not only for the well-being of normal cells but also for malignant transformation and cancer progression. In addition to their core functions in waste disposal and recycling of macromolecules and energy, lysosomes serve as an indispensable support system for malignant phenotype by promoting cell growth, cytoprotective autophagy, drug resistance, pH homeostasis, invasion, metastasis, and genomic integrity. On the other hand, malignant transformation reduces the stability of lysosomal membranes rendering cancer cells sensitive to lysosome-dependent cell death. Notably, many clinically approved cationic amphiphilic drugs widely used for the treatment of other diseases accumulate in lysosomes, interfere with their cancer-promoting and cancer-supporting functions and destabilize their membranes thereby opening intriguing possibilities for cancer therapy. Here, we review the emerging evidence that supports the supplementation of current cancer therapies with lysosome-targeting cationic amphiphilic drugs.
Collapse
|
2899
|
Land WG. Role of Damage-Associated Molecular Patterns in Light of Modern Environmental Research: A Tautological Approach. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH 2020; 14:583-604. [PMID: 32837525 PMCID: PMC7415330 DOI: 10.1007/s41742-020-00276-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/30/2020] [Accepted: 08/01/2020] [Indexed: 05/06/2023]
Abstract
Two prominent models emerged as a result of intense interdisciplinary discussions on the environmental health paradigm, called the "exposome" concept and the "adverse outcome pathway" (AOP) concept that links a molecular initiating event to the adverse outcome via key events. Here, evidence is discussed, suggesting that environmental stress/injury-induced damage-associated molecular patterns (DAMPs) may operate as an essential integrating element of both environmental health research paradigms. DAMP-promoted controlled/uncontrolled innate/adaptive immune responses reflect the key events of the AOP concept. The whole process starting from exposure to a distinct environmental stress/injury-associated with the presence/emission of DAMPs-up to the manifestation of a disease may be regarded as an exposome. Clinical examples of such a scenario are briefly sketched, in particular, a model in relation to the emerging COVID-19 pandemic, where the interaction of noninfectious environmental factors (e.g., particulate matter) and infectious factors (SARS CoV-2) may promote SARS case fatality via superimposition of both exogenous and endogenous DAMPs.
Collapse
Affiliation(s)
- Walter Gottlieb Land
- German Academy for Transplantation Medicine, Munich, Germany
- Molecular ImmunoRheumatology, Laboratory of Excellence Transplantex, Faculty of Medicine, INSERM UMR_S1109, University of Strasbourg, Strasbourg, France
| |
Collapse
|
2900
|
Trageser KJ, Sebastian-Valverde M, Naughton SX, Pasinetti GM. The Innate Immune System and Inflammatory Priming: Potential Mechanistic Factors in Mood Disorders and Gulf War Illness. Front Psychiatry 2020; 11:704. [PMID: 32848904 PMCID: PMC7396635 DOI: 10.3389/fpsyt.2020.00704] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/03/2020] [Indexed: 12/17/2022] Open
Abstract
Gulf War Illness is a chronic multisystem disorder affecting approximately a third of the Veterans of the Gulf War, manifesting with physical and mental health symptoms such as cognitive impairment, neurological abnormalities, and dysregulation of mood. Among the leading theories into the etiology of this multisystem disorder is environmental exposure to the various neurotoxins encountered in the Gulf Theatre, including organophosphates, nerve agents, pyridostigmine bromide, smoke from oil well fires, and depleted uranium. The relationship of toxin exposure and the pathogenesis of Gulf War Illness converges on the innate immune system: a nonspecific form of immunity ubiquitous in nature that acts to respond to both exogenous and endogenous insults. Activation of the innate immune system results in inflammation mediated by the release of cytokines. Cytokine mediated neuroinflammation has been demonstrated in a number of psychiatric conditions and may help explain the larger than expected population of Gulf War Veterans afflicted with a mood disorder. Several of the environmental toxins encountered by soldiers during the first Gulf War have been shown to cause upregulation of inflammatory mediators after chronic exposure, even at low levels. This act of inflammatory priming, by which repeated exposure to chronic subthreshold insults elicits robust responses, even after an extended period of latency, is integral in the connection of Gulf War Illness and comorbid mood disorders. Further developing the understanding of the relationship between environmental toxin exposure, innate immune activation, and pathogenesis of disease in the Gulf War Veterans population, may yield novel therapeutic targets, and a greater understanding of disease pathology and subsequently prevention.
Collapse
Affiliation(s)
- Kyle J Trageser
- Department of Neurology, Mount Sinai School of Medicine, New York, NY, United States
| | | | - Sean X Naughton
- Department of Neurology, Mount Sinai School of Medicine, New York, NY, United States
| | - Giulio Maria Pasinetti
- Department of Neurology, Mount Sinai School of Medicine, New York, NY, United States.,Geriatric Research, Education and Clinical Center, James J. Peters Veterans Affairs Medical Center, Bronx, NY, United States
| |
Collapse
|