251
|
Müller EG, Edwin TH, Stokke C, Navelsaker SS, Babovic A, Bogdanovic N, Knapskog AB, Revheim ME. Amyloid-β PET-Correlation with cerebrospinal fluid biomarkers and prediction of Alzheimer´s disease diagnosis in a memory clinic. PLoS One 2019; 14:e0221365. [PMID: 31430334 PMCID: PMC6701762 DOI: 10.1371/journal.pone.0221365] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/05/2019] [Indexed: 01/11/2023] Open
Abstract
Background Alzheimer’s disease (AD) remains a clinical diagnosis but biomarkers from cerebrospinal fluid (CSF) and more lately amyloid imaging with positron emission tomography (PET), are important to support a diagnosis of AD. Objective To compare amyloid-β (Aβ) PET imaging with biomarkers in CSF and evaluate the prediction of Aβ PET on diagnosis in a memory clinic setting. Methods We included 64 patients who had lumbar puncture and Aβ PET with 18F-Flutemetamol performed within 190 days. PET was binary classified (Flut+ or Flut-) and logistic regression analyses for correlation to each CSF biomarker; Aβ 42 (Aβ42), total tau (T-tau) and phosphorylated tau (P-tau), were performed. Cut-off values were assessed by receiver operating characteristic (ROC) curves. Logistic regression was performed for prediction of clinical AD diagnosis. We assessed the interrater agreement of PET classification as well as for diagnoses, which were made both with and without knowledge of PET results. Results Thirty-two of the 34 patients (94%) in the Flut+ group and nine of the 30 patients (30%) in the Flut- group had a clinical AD diagnosis. There were significant differences in all CSF biomarkers in the Flut+ and Flut- groups. Aβ42 showed the highest correlation with 18F-Flutemetamol PET with a cut-off value of 706.5 pg/mL, corresponding to sensitivity of 88% and specificity of 87%. 18F-Flutemetamol PET was the best predictor of a clinical AD diagnosis. We found a very high interrater agreement for both PET classification and diagnosis. Conclusions The present study showed an excellent correlation of Aβ42 in CSF and 18F-Flutemetamol PET and the presented cut-off value for Aβ42 yields high sensitivity and specificity for 18F-Flutemetamol PET. 18F-Flutemetamol PET was the best predictor of clinical AD diagnosis.
Collapse
Affiliation(s)
- Ebba Gløersen Müller
- Department of Nuclear Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- * E-mail:
| | - Trine Holt Edwin
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Geriatric Medicine, The Memory Clinic, Oslo University Hospital, Oslo, Norway
| | - Caroline Stokke
- Department of Diagnostic Physics, Oslo University Hospital, Oslo, Norway
- Department of Life Science and Health, Oslo Metropolitan University, Oslo, Norway
| | | | - Almira Babovic
- Department of Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Nenad Bogdanovic
- Department for Neurobiology, Caring Science and Society, Division of Clinical Geriatrics, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Anne Brita Knapskog
- Department of Geriatric Medicine, The Memory Clinic, Oslo University Hospital, Oslo, Norway
| | - Mona Elisabeth Revheim
- Department of Nuclear Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
252
|
Gossye H, Van Broeckhoven C, Engelborghs S. The Use of Biomarkers and Genetic Screening to Diagnose Frontotemporal Dementia: Evidence and Clinical Implications. Front Neurosci 2019; 13:757. [PMID: 31447625 PMCID: PMC6691066 DOI: 10.3389/fnins.2019.00757] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 07/08/2019] [Indexed: 12/12/2022] Open
Abstract
Within the wide range of neurodegenerative brain diseases, the differential diagnosis of frontotemporal dementia (FTD) frequently poses a challenge. Often, signs and symptoms are not characteristic of the disease and may instead reflect atypical presentations. Consequently, the use of disease biomarkers is of importance to correctly identify the patients. Here, we describe how neuropsychological characteristics, neuroimaging and neurochemical biomarkers and screening for causal gene mutations can be used to differentiate FTD from other neurodegenerative diseases as well as to distinguish between FTD subtypes. Summarizing current evidence, we propose a stepwise approach in the diagnostic evaluation. Clinical consensus criteria that take into account a full neuropsychological examination have relatively good accuracy (sensitivity [se] 75–95%, specificity [sp] 82–95%) to diagnose FTD, although misdiagnosis (mostly AD) is common. Structural brain MRI (se 70–94%, sp 89–99%) and FDG PET (se 47–90%, sp 68–98%) or SPECT (se 36–100%, sp 41–100%) brain scans greatly increase diagnostic accuracy, showing greater involvement of frontal and anterior temporal lobes, with sparing of hippocampi and medial temporal lobes. If these results are inconclusive, we suggest detecting amyloid and tau cerebrospinal fluid (CSF) biomarkers that can indicate the presence of AD with good accuracy (se 74–100%, sp 82–97%). The use of P-tau181 and the Aβ1–42/Aβ1–40 ratio significantly increases the accuracy of correctly identifying FTD vs. AD. Alternatively, an amyloid brain PET scan can be performed to differentiate FTD from AD. When autosomal dominant inheritance is suspected, or in early onset dementia, mutation screening of causal genes is indicated and may also be offered to at-risk family members. We have summarized genotype–phenotype correlations for several genes that are known to cause familial frontotemporal lobar degeneration, which is the neuropathological substrate of FTD. The genes most commonly associated with this disease (C9orf72, MAPT, GRN, TBK1) are discussed, as well as some less frequent ones (CHMP2B, VCP). Several other techniques, such as diffusion tensor imaging, tau PET imaging and measuring serum neurofilament levels, show promise for future implementation as diagnostic biomarkers.
Collapse
Affiliation(s)
- Helena Gossye
- Neurodegenerative Brain Diseases Group, Center for Molecular Neurology, VIB, Antwerp, Belgium.,Institute Born - Bunge, University of Antwerp, Antwerp, Belgium.,Department of Neurology and Center for Neurosciences, UZ Brussel and Vrije Universiteit Brussel, Brussels, Belgium
| | - Christine Van Broeckhoven
- Neurodegenerative Brain Diseases Group, Center for Molecular Neurology, VIB, Antwerp, Belgium.,Institute Born - Bunge, University of Antwerp, Antwerp, Belgium
| | - Sebastiaan Engelborghs
- Institute Born - Bunge, University of Antwerp, Antwerp, Belgium.,Department of Neurology and Center for Neurosciences, UZ Brussel and Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
253
|
Svenningsson AL, Stomrud E, Insel PS, Mattsson N, Palmqvist S, Hansson O. β-amyloid pathology and hippocampal atrophy are independently associated with memory function in cognitively healthy elderly. Sci Rep 2019; 9:11180. [PMID: 31371787 PMCID: PMC6671981 DOI: 10.1038/s41598-019-47638-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 07/11/2019] [Indexed: 11/25/2022] Open
Abstract
The independent effects of different brain pathologies on age-dependent cognitive decline are unclear. We examined this in 300 cognitively unimpaired elderly individuals from the BioFINDER study. Using cognition as outcome we studied the effects of cerebrospinal fluid biomarkers for amyloid-β (Aβ42/40), neuroinflammation (YKL-40), and neurodegeneration and tau pathology (T-tau and P-tau) as well as MRI measures of white-matter lesions, hippocampal volume (HV), and regional cortical thickness. We found that Aβ positivity and HV were independently associated with memory. Results differed depending on age, with memory being associated with HV (but not Aβ) in older participants (73.3–88.4 years), and with Aβ (but not HV) in relatively younger participants (65.2–73.2 years). This indicates that Aβ and atrophy are independent contributors to memory variability in cognitively healthy elderly and that Aβ mainly affects memory in younger elderly individuals. With advancing age, the effect of brain atrophy overshadows the effect of Aβ on memory function.
Collapse
Affiliation(s)
- Anna L Svenningsson
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Lund/Malmö, Sweden. .,Memory Clinic, Skåne University Hospital, Malmö, Sweden.
| | - Erik Stomrud
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Lund/Malmö, Sweden.,Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Philip S Insel
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Lund/Malmö, Sweden
| | - Niklas Mattsson
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Lund/Malmö, Sweden.,Department of Neurology, Skåne University Hospital, Lund University, Lund, Sweden
| | - Sebastian Palmqvist
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Lund/Malmö, Sweden.,Department of Neurology, Skåne University Hospital, Lund University, Lund, Sweden
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Lund/Malmö, Sweden.,Memory Clinic, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
254
|
Blennow K, Zetterberg H. Fluid biomarker-based molecular phenotyping of Alzheimer's disease patients in research and clinical settings. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 168:3-23. [PMID: 31699324 DOI: 10.1016/bs.pmbts.2019.07.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is very difficult to diagnose on pure clinical grounds, especially in the earlier phases of the disease. At the same time, lessons from recent clinical trials suggest that treatments have to be initiated very early, to have a chance to show clinical efficacy. Therefore, biomarkers reflecting core AD pathophysiology have a key position in clinical trials and clinical management. The core AD cerebrospinal fluid (CSF) biomarker toolbox include amyloid β (Aβ42 and the Aβ42/40 ratio) reflecting brain amyloidosis, total tau (T-tau) reflecting neurodegeneration intensity, and phosphorylated tau (P-tau) that is related to tau pathology. These CSF biomarkers have very consistently been found to have high diagnostic accuracy, also in earlier disease stages. Importantly, CSF Aβ42 and Aβ42/40 ratio show excellent agreement with amyloid PET readouts, indicating that these biomarker tests can be used interchangeably. Intense collaborative standardization efforts have given Certified Reference Materials (CRMs) to harmonize assay formats for CSF Aβ42, the most central AD biomarker, and CRMs for Aβ40 are under development. The core AD biomarkers are today available on high-precision fully automated analytical platforms, which will serve to introduce uniform cut-off levels and enable the large-scale introduction of CSF biomarkers for routine disease diagnosis. Of novel biomarker candidates, synaptic proteins, such as the dendritic protein neurogranin, show promise as tools to monitor synaptic degeneration, an important aspect of AD pathophysiology. Recent studies show that the core AD biomarkers also can be measured in blood samples. Ultra-sensitive assays that allow for quantification of neuronal proteins, such as tau and neurofilament light (NFL) in blood samples. Further, plasma Aβ42 and Aβ42/40 show high concordance with brain amyloidosis evaluated by PET scans. In the future, blood biomarkers may have value as screening tools, especially to rule out patients without biomarker evidence of AD pathology.
Collapse
Affiliation(s)
- Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology;the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology;the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; UK Dementia Research Institute at UCL, London, United Kingdom; Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom.
| |
Collapse
|
255
|
Janelidze S, Stomrud E, Brix B, Hansson O. Towards a unified protocol for handling of CSF before β-amyloid measurements. ALZHEIMERS RESEARCH & THERAPY 2019; 11:63. [PMID: 31324260 PMCID: PMC6642586 DOI: 10.1186/s13195-019-0517-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 07/08/2019] [Indexed: 12/16/2022]
Abstract
Background Widespread implementation of Alzheimer’s disease biomarkers in routine clinical practice requires the establishment of standard operating procedures for pre-analytical handling of cerebrospinal fluid (CSF). Methods Here, CSF collection and storage protocols were optimized for measurements of β-amyloid (Aβ). We investigated the effects of (1) storage temperature, (2) storage time, (3) centrifugation, (4) sample mixing, (5) blood contamination, and (6) collection gradient on CSF levels of Aβ. For each study participant, we used fresh CSF directly collected into a protein low binding (LoB) tube that was analyzed within hours after lumbar puncture (LP) as standard of truth. Aβ42 and Aβ40 were measured in de-identified CSF samples using EUROIMMUN and Mesoscale discovery assays. Results CSF Aβ42 and Aβ40 were stable for at least 72 h at room temperature (RT), 1 week at 4 °C, and 2 weeks at − 20 °C and − 80 °C. Centrifugation of non-blood-contaminated CSF or mixing of samples before the analysis did not affect Aβ levels. Addition of 0.1–10% blood to CSF that was stored at RT without centrifugation led to a dose- and time-dependent decrease in Aβ42 and Aβ40, while Aβ42/Aβ40 did not change. The effects of blood contamination were mitigated by centrifugation and/or storage at 4 °C or − 20 °C. Aβ levels did not differ between the first to fourth 5-ml portions of CSF. Conclusions CSF can be stored for up to 72 h at RT, 1 week at 4 °C, or at least 2 weeks at either − 20 °C or − 80 °C before Aβ measurements. Centrifugation of fresh non-blood-contaminated CSF after LP, or mixing before analysis, is not required. In case of visible blood contamination, centrifugation and storage at 4 °C or − 20 °C is recommended. After discarding the first 2 ml, any portion of up to 20 ml of CSF is suitable for Aβ analysis. These findings will be important for the development of a clinical routine protocol for pre-analytical handling of CSF. Electronic supplementary material The online version of this article (10.1186/s13195-019-0517-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shorena Janelidze
- Department of Clinical Sciences Malmö, Clinical Memory Research Unit, Lund University, Sölvegatan 19, BMC B11, 221 84, Lund, Sweden.
| | - Erik Stomrud
- Department of Clinical Sciences Malmö, Clinical Memory Research Unit, Lund University, Sölvegatan 19, BMC B11, 221 84, Lund, Sweden.,Memory Clinic, Skåne University Hospital, Simrisbanvägen 14, SE-20502, Malmö, Sweden
| | | | - Oskar Hansson
- Department of Clinical Sciences Malmö, Clinical Memory Research Unit, Lund University, Sölvegatan 19, BMC B11, 221 84, Lund, Sweden. .,Memory Clinic, Skåne University Hospital, Simrisbanvägen 14, SE-20502, Malmö, Sweden.
| |
Collapse
|
256
|
Stefaniak E, Bal W. Cu II Binding Properties of N-Truncated Aβ Peptides: In Search of Biological Function. Inorg Chem 2019; 58:13561-13577. [PMID: 31304745 DOI: 10.1021/acs.inorgchem.9b01399] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
As life expectancy increases, the number of people affected by progressive and irreversible dementia, Alzheimer's Disease (AD), is predicted to grow. No drug designs seem to be working in humans, apparently because the origins of AD have not been identified. Invoking amyloid cascade, metal ions, and ROS production hypothesis of AD, herein we share our point of view on Cu(II) binding properties of Aβ4-x, the most prevalent N-truncated Aβ peptide, currently known as the main constituent of amyloid plaques. The capability of Aβ4-x to rapidly take over copper from previously tested Aβ1-x peptides and form highly stable complexes, redox unreactive and resistant to copper exchange reactions, prompted us to propose physiological roles for these peptides. We discuss the new findings on the reactivity of Cu(II)Aβ4-x with coexisting biomolecules in the context of synaptic cleft; we suggest that the role of Aβ4-x peptides is to quench Cu(II) toxicity in the brain and maintain neurotransmission.
Collapse
Affiliation(s)
- Ewelina Stefaniak
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences , Pawińskiego 5a , 02-106 Warsaw , Poland
| | - Wojciech Bal
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences , Pawińskiego 5a , 02-106 Warsaw , Poland
| |
Collapse
|
257
|
Teipel SJ, Metzger CD, Brosseron F, Buerger K, Brueggen K, Catak C, Diesing D, Dobisch L, Fliebach K, Franke C, Heneka MT, Kilimann I, Kofler B, Menne F, Peters O, Polcher A, Priller J, Schneider A, Spottke A, Spruth EJ, Thelen M, Thyrian RJ, Wagner M, Düzel E, Jessen F, Dyrba M. Multicenter Resting State Functional Connectivity in Prodromal and Dementia Stages of Alzheimer's Disease. J Alzheimers Dis 2019; 64:801-813. [PMID: 29914027 DOI: 10.3233/jad-180106] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Alterations of intrinsic networks from resting state fMRI (rs-fMRI) have been suggested as functional biomarkers of Alzheimer's disease (AD). OBJECTIVE To determine the diagnostic accuracy of multicenter rs-fMRI for prodromal and preclinical stages of AD. METHODS We determined rs-fMRI functional connectivity based on Pearson's correlation coefficients and amplitude of low-frequency fluctuation in people with subjective cognitive decline, people with mild cognitive impairment, and people with AD dementia compared with healthy controls. We used data of 247 participants of the prospective DELCODE study, a longitudinal multicenter observational study, imposing a unified fMRI acquisition protocol across sites. We determined cross-validated discrimination accuracy based on penalized logistic regression to account for multicollinearity of predictors. RESULTS Resting state functional connectivity reached significant cross-validated group discrimination only for the comparison of AD dementia cases with healthy controls, but not for the other diagnostic groups. AD dementia cases showed alterations in a large range of intrinsic resting state networks, including the default mode and salience networks, but also executive and language networks. When groups were stratified according to their CSF amyloid status that was available in a subset of cases, diagnostic accuracy was increased for amyloid positive mild cognitive impairment cases compared with amyloid negative controls, but still inferior to the accuracy of hippocampus volume. CONCLUSION Even when following a strictly harmonized data acquisition protocol and rigorous scan quality control, widely used connectivity measures of multicenter rs-fMRI do not reach levels of diagnostic accuracy sufficient for a useful biomarker in prodromal stages of AD.
Collapse
Affiliation(s)
- Stefan J Teipel
- Department of Psychosomatic Medicine, University of Rostock, Rostock, Germany.,German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
| | - Coraline D Metzger
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University, Magdeburg, Germany.,Department of Psychiatry and Psychotherapy, Otto-von-Guericke University, Magdeburg, Germany.,German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Frederic Brosseron
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department for Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
| | - Katharina Buerger
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | | | - Cihan Catak
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Dominik Diesing
- Department of Psychiatry and Psychotherapy, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Laura Dobisch
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Klaus Fliebach
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department for Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
| | - Christiana Franke
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany.,German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Michael T Heneka
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department for Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
| | - Ingo Kilimann
- Department of Psychosomatic Medicine, University of Rostock, Rostock, Germany.,German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
| | - Barbara Kofler
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - Felix Menne
- Department of Psychiatry and Psychotherapy, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Berlin, Germany.,German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Oliver Peters
- Department of Psychiatry and Psychotherapy, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Berlin, Germany.,German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | | | - Josef Priller
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany.,German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Anja Schneider
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department for Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
| | - Annika Spottke
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department of Neurology, University of Bonn, Bonn, Germany
| | - Eike J Spruth
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany.,German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Manuela Thelen
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department of Psychiatry, University of Cologne, Cologne, Germany
| | - René J Thyrian
- German Center for Neurodegenerative Diseases (DZNE), Greifswald, Germany
| | - Michael Wagner
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department for Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
| | - Emrah Düzel
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University, Magdeburg, Germany.,German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Frank Jessen
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department of Psychiatry, University of Cologne, Cologne, Germany
| | - Martin Dyrba
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
| | | |
Collapse
|
258
|
Insel PS, Weiner M, Mackin RS, Mormino E, Lim YY, Stomrud E, Palmqvist S, Masters CL, Maruff PT, Hansson O, Mattsson N. Determining clinically meaningful decline in preclinical Alzheimer disease. Neurology 2019; 93:e322-e333. [PMID: 31289148 PMCID: PMC6669933 DOI: 10.1212/wnl.0000000000007831] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/17/2019] [Indexed: 11/15/2022] Open
Abstract
Objective To determine the time required for a preclinical Alzheimer disease population to decline in a meaningful way, use estimates of decline to update previous clinical trial design assumptions, and identify factors that modify β-amyloid (Aβ)–related decline. Methods In 1,120 cognitively unimpaired individuals from 3 international cohorts, we estimated the relationship between Aβ status and longitudinal changes across multiple cognitive domains and assessed interactions between Aβ and baseline factors. Power analyses were performed to explore sample size as a function of treatment effect. Results Cognitively unimpaired Aβ+ participants approach mild cognitive impairment (MCI) levels of performance 6 years after baseline, on average. Achieving 80% power in a simulated 4-year treatment trial, assuming a 25% treatment effect, required 2,000 participants/group. Multiple factors interacted with Aβ to predict cognitive decline; however, these findings were all cohort-specific. Despite design differences across the cohorts, with large sample sizes and sufficient follow-up time, the Aβ+ groups declined consistently on cognitive composite measures. Conclusions A preclinical AD population declines to the cognitive performance of an early MCI population in 6 years. Slowing this rate of decline by 40%–50% delays clinically relevant impairment by 3 years—a potentially meaningful treatment effect. However, assuming a 40%–50% drug effect highlights the difficulties in preclinical AD trial design, as a more commonly assumed treatment effect of 25% results in a required sample size of 2,000/group. Designers of preclinical AD treatment trials need to prepare for larger and longer trials than are currently being considered. Interactions with Aβ status were inconsistent and not readily generalizable.
Collapse
Affiliation(s)
- Philip S Insel
- From the Center for Imaging of Neurodegenerative Diseases (M.W., R.S.M.), Department of Veterans Affairs Medical Center; Departments of Radiology and Biomedical Imaging (P.S.I., M.W.) and Psychiatry (P.S.I., R.S.M.), University of California, San Francisco; Clinical Memory Research Unit, Faculty of Medicine (P.S.I., E.S., S.P., O.H., N.M.), Memory Clinic (E.S., S.P., O.H.) and Department of Neurology (N.M.), Skåne University Hospital, and Wallenberg Center for Molecular Medicine (N.M.), Lund University, Sweden; Department of Neurology and Neurological Sciences (E.M.), Stanford University, CA; The Florey Institute (Y.Y.L., C.L.M., P.T.M.), The University of Melbourne; and CogState (P.T.M.), Melbourne, Australia.
| | - Michael Weiner
- From the Center for Imaging of Neurodegenerative Diseases (M.W., R.S.M.), Department of Veterans Affairs Medical Center; Departments of Radiology and Biomedical Imaging (P.S.I., M.W.) and Psychiatry (P.S.I., R.S.M.), University of California, San Francisco; Clinical Memory Research Unit, Faculty of Medicine (P.S.I., E.S., S.P., O.H., N.M.), Memory Clinic (E.S., S.P., O.H.) and Department of Neurology (N.M.), Skåne University Hospital, and Wallenberg Center for Molecular Medicine (N.M.), Lund University, Sweden; Department of Neurology and Neurological Sciences (E.M.), Stanford University, CA; The Florey Institute (Y.Y.L., C.L.M., P.T.M.), The University of Melbourne; and CogState (P.T.M.), Melbourne, Australia
| | - R Scott Mackin
- From the Center for Imaging of Neurodegenerative Diseases (M.W., R.S.M.), Department of Veterans Affairs Medical Center; Departments of Radiology and Biomedical Imaging (P.S.I., M.W.) and Psychiatry (P.S.I., R.S.M.), University of California, San Francisco; Clinical Memory Research Unit, Faculty of Medicine (P.S.I., E.S., S.P., O.H., N.M.), Memory Clinic (E.S., S.P., O.H.) and Department of Neurology (N.M.), Skåne University Hospital, and Wallenberg Center for Molecular Medicine (N.M.), Lund University, Sweden; Department of Neurology and Neurological Sciences (E.M.), Stanford University, CA; The Florey Institute (Y.Y.L., C.L.M., P.T.M.), The University of Melbourne; and CogState (P.T.M.), Melbourne, Australia
| | - Elizabeth Mormino
- From the Center for Imaging of Neurodegenerative Diseases (M.W., R.S.M.), Department of Veterans Affairs Medical Center; Departments of Radiology and Biomedical Imaging (P.S.I., M.W.) and Psychiatry (P.S.I., R.S.M.), University of California, San Francisco; Clinical Memory Research Unit, Faculty of Medicine (P.S.I., E.S., S.P., O.H., N.M.), Memory Clinic (E.S., S.P., O.H.) and Department of Neurology (N.M.), Skåne University Hospital, and Wallenberg Center for Molecular Medicine (N.M.), Lund University, Sweden; Department of Neurology and Neurological Sciences (E.M.), Stanford University, CA; The Florey Institute (Y.Y.L., C.L.M., P.T.M.), The University of Melbourne; and CogState (P.T.M.), Melbourne, Australia
| | - Yen Ying Lim
- From the Center for Imaging of Neurodegenerative Diseases (M.W., R.S.M.), Department of Veterans Affairs Medical Center; Departments of Radiology and Biomedical Imaging (P.S.I., M.W.) and Psychiatry (P.S.I., R.S.M.), University of California, San Francisco; Clinical Memory Research Unit, Faculty of Medicine (P.S.I., E.S., S.P., O.H., N.M.), Memory Clinic (E.S., S.P., O.H.) and Department of Neurology (N.M.), Skåne University Hospital, and Wallenberg Center for Molecular Medicine (N.M.), Lund University, Sweden; Department of Neurology and Neurological Sciences (E.M.), Stanford University, CA; The Florey Institute (Y.Y.L., C.L.M., P.T.M.), The University of Melbourne; and CogState (P.T.M.), Melbourne, Australia
| | - Erik Stomrud
- From the Center for Imaging of Neurodegenerative Diseases (M.W., R.S.M.), Department of Veterans Affairs Medical Center; Departments of Radiology and Biomedical Imaging (P.S.I., M.W.) and Psychiatry (P.S.I., R.S.M.), University of California, San Francisco; Clinical Memory Research Unit, Faculty of Medicine (P.S.I., E.S., S.P., O.H., N.M.), Memory Clinic (E.S., S.P., O.H.) and Department of Neurology (N.M.), Skåne University Hospital, and Wallenberg Center for Molecular Medicine (N.M.), Lund University, Sweden; Department of Neurology and Neurological Sciences (E.M.), Stanford University, CA; The Florey Institute (Y.Y.L., C.L.M., P.T.M.), The University of Melbourne; and CogState (P.T.M.), Melbourne, Australia
| | - Sebastian Palmqvist
- From the Center for Imaging of Neurodegenerative Diseases (M.W., R.S.M.), Department of Veterans Affairs Medical Center; Departments of Radiology and Biomedical Imaging (P.S.I., M.W.) and Psychiatry (P.S.I., R.S.M.), University of California, San Francisco; Clinical Memory Research Unit, Faculty of Medicine (P.S.I., E.S., S.P., O.H., N.M.), Memory Clinic (E.S., S.P., O.H.) and Department of Neurology (N.M.), Skåne University Hospital, and Wallenberg Center for Molecular Medicine (N.M.), Lund University, Sweden; Department of Neurology and Neurological Sciences (E.M.), Stanford University, CA; The Florey Institute (Y.Y.L., C.L.M., P.T.M.), The University of Melbourne; and CogState (P.T.M.), Melbourne, Australia
| | - Colin L Masters
- From the Center for Imaging of Neurodegenerative Diseases (M.W., R.S.M.), Department of Veterans Affairs Medical Center; Departments of Radiology and Biomedical Imaging (P.S.I., M.W.) and Psychiatry (P.S.I., R.S.M.), University of California, San Francisco; Clinical Memory Research Unit, Faculty of Medicine (P.S.I., E.S., S.P., O.H., N.M.), Memory Clinic (E.S., S.P., O.H.) and Department of Neurology (N.M.), Skåne University Hospital, and Wallenberg Center for Molecular Medicine (N.M.), Lund University, Sweden; Department of Neurology and Neurological Sciences (E.M.), Stanford University, CA; The Florey Institute (Y.Y.L., C.L.M., P.T.M.), The University of Melbourne; and CogState (P.T.M.), Melbourne, Australia
| | - Paul T Maruff
- From the Center for Imaging of Neurodegenerative Diseases (M.W., R.S.M.), Department of Veterans Affairs Medical Center; Departments of Radiology and Biomedical Imaging (P.S.I., M.W.) and Psychiatry (P.S.I., R.S.M.), University of California, San Francisco; Clinical Memory Research Unit, Faculty of Medicine (P.S.I., E.S., S.P., O.H., N.M.), Memory Clinic (E.S., S.P., O.H.) and Department of Neurology (N.M.), Skåne University Hospital, and Wallenberg Center for Molecular Medicine (N.M.), Lund University, Sweden; Department of Neurology and Neurological Sciences (E.M.), Stanford University, CA; The Florey Institute (Y.Y.L., C.L.M., P.T.M.), The University of Melbourne; and CogState (P.T.M.), Melbourne, Australia
| | - Oskar Hansson
- From the Center for Imaging of Neurodegenerative Diseases (M.W., R.S.M.), Department of Veterans Affairs Medical Center; Departments of Radiology and Biomedical Imaging (P.S.I., M.W.) and Psychiatry (P.S.I., R.S.M.), University of California, San Francisco; Clinical Memory Research Unit, Faculty of Medicine (P.S.I., E.S., S.P., O.H., N.M.), Memory Clinic (E.S., S.P., O.H.) and Department of Neurology (N.M.), Skåne University Hospital, and Wallenberg Center for Molecular Medicine (N.M.), Lund University, Sweden; Department of Neurology and Neurological Sciences (E.M.), Stanford University, CA; The Florey Institute (Y.Y.L., C.L.M., P.T.M.), The University of Melbourne; and CogState (P.T.M.), Melbourne, Australia
| | - Niklas Mattsson
- From the Center for Imaging of Neurodegenerative Diseases (M.W., R.S.M.), Department of Veterans Affairs Medical Center; Departments of Radiology and Biomedical Imaging (P.S.I., M.W.) and Psychiatry (P.S.I., R.S.M.), University of California, San Francisco; Clinical Memory Research Unit, Faculty of Medicine (P.S.I., E.S., S.P., O.H., N.M.), Memory Clinic (E.S., S.P., O.H.) and Department of Neurology (N.M.), Skåne University Hospital, and Wallenberg Center for Molecular Medicine (N.M.), Lund University, Sweden; Department of Neurology and Neurological Sciences (E.M.), Stanford University, CA; The Florey Institute (Y.Y.L., C.L.M., P.T.M.), The University of Melbourne; and CogState (P.T.M.), Melbourne, Australia
| |
Collapse
|
259
|
Biscetti L, Salvadori N, Farotti L, Cataldi S, Eusebi P, Paciotti S, Parnetti L. The added value of Aβ42/Aβ40 in the CSF signature for routine diagnostics of Alzheimer's disease. Clin Chim Acta 2019; 494:71-73. [DOI: 10.1016/j.cca.2019.03.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 03/01/2019] [Accepted: 03/02/2019] [Indexed: 01/09/2023]
|
260
|
Franzmeier N, Düzel E, Jessen F, Buerger K, Levin J, Duering M, Dichgans M, Haass C, Suárez-Calvet M, Fagan AM, Paumier K, Benzinger T, Masters CL, Morris JC, Perneczky R, Janowitz D, Catak C, Wolfsgruber S, Wagner M, Teipel S, Kilimann I, Ramirez A, Rossor M, Jucker M, Chhatwal J, Spottke A, Boecker H, Brosseron F, Falkai P, Fliessbach K, Heneka MT, Laske C, Nestor P, Peters O, Fuentes M, Menne F, Priller J, Spruth EJ, Franke C, Schneider A, Kofler B, Westerteicher C, Speck O, Wiltfang J, Bartels C, Araque Caballero MÁ, Metzger C, Bittner D, Weiner M, Lee JH, Salloway S, Danek A, Goate A, Schofield PR, Bateman RJ, Ewers M. Left frontal hub connectivity delays cognitive impairment in autosomal-dominant and sporadic Alzheimer's disease. Brain 2019; 141:1186-1200. [PMID: 29462334 PMCID: PMC5888938 DOI: 10.1093/brain/awy008] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 12/01/2017] [Indexed: 12/02/2022] Open
Abstract
Patients with Alzheimer’s disease vary in their ability to sustain cognitive abilities in the presence of brain pathology. A major open question is which brain mechanisms may support higher reserve capacity, i.e. relatively high cognitive performance at a given level of Alzheimer’s pathology. Higher functional MRI-assessed functional connectivity of a hub in the left frontal cortex is a core candidate brain mechanism underlying reserve as it is associated with education (i.e. a protective factor often associated with higher reserve) and attenuated cognitive impairment in prodromal Alzheimer’s disease. However, no study has yet assessed whether such hub connectivity of the left frontal cortex supports reserve throughout the evolution of pathological brain changes in Alzheimer’s disease, including the presymptomatic stage when cognitive decline is subtle. To address this research gap, we obtained cross-sectional resting state functional MRI in 74 participants with autosomal dominant Alzheimer’s disease, 55 controls from the Dominantly Inherited Alzheimer’s Network and 75 amyloid-positive elderly participants, as well as 41 amyloid-negative cognitively normal elderly subjects from the German Center of Neurodegenerative Diseases multicentre study on biomarkers in sporadic Alzheimer’s disease. For each participant, global left frontal cortex connectivity was computed as the average resting state functional connectivity between the left frontal cortex (seed) and each voxel in the grey matter. As a marker of disease stage, we applied estimated years from symptom onset in autosomal dominantly inherited Alzheimer’s disease and cerebrospinal fluid tau levels in sporadic Alzheimer’s disease cases. In both autosomal dominant and sporadic Alzheimer’s disease patients, higher levels of left frontal cortex connectivity were correlated with greater education. For autosomal dominant Alzheimer’s disease, a significant left frontal cortex connectivity × estimated years of onset interaction was found, indicating slower decline of memory and global cognition at higher levels of connectivity. Similarly, in sporadic amyloid-positive elderly subjects, the effect of tau on cognition was attenuated at higher levels of left frontal cortex connectivity. Polynomial regression analysis showed that the trajectory of cognitive decline was shifted towards a later stage of Alzheimer’s disease in patients with higher levels of left frontal cortex connectivity. Together, our findings suggest that higher resilience against the development of cognitive impairment throughout the early stages of Alzheimer’s disease is at least partially attributable to higher left frontal cortex-hub connectivity.
Collapse
Affiliation(s)
- Nicolai Franzmeier
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Feodor-Lynen Straße 17, 81377 Munich, Germany
| | - Emrah Düzel
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Frank Jessen
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Sigmund-Freud-Str. 27, 53127 Bonn, Germany.,Department of Psychiatry, University of Cologne, Medical Faculty, Kerpener Strasse 62, 50924 Cologne, Germany
| | - Katharina Buerger
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Feodor-Lynen Straße 17, 81377 Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE, Munich), Munich, Germany
| | - Johannes Levin
- German Center for Neurodegenerative Diseases (DZNE, Munich), Munich, Germany.,Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Marco Duering
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Feodor-Lynen Straße 17, 81377 Munich, Germany
| | - Martin Dichgans
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Feodor-Lynen Straße 17, 81377 Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE, Munich), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Christian Haass
- German Center for Neurodegenerative Diseases (DZNE, Munich), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Biomedical Center, Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Marc Suárez-Calvet
- German Center for Neurodegenerative Diseases (DZNE, Munich), Munich, Germany.,Biomedical Center, Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Anne M Fagan
- Department of Radiology, Washington University in St Louis, St Louis, Missouri, USA.,Knight Alzheimer's Disease Research Center, Washington University in St. Louis, St. Louis, MO, USA.,Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, MO, USA
| | - Katrina Paumier
- Department of Radiology, Washington University in St Louis, St Louis, Missouri, USA
| | - Tammie Benzinger
- Department of Radiology, Washington University in St Louis, St Louis, Missouri, USA.,Knight Alzheimer's Disease Research Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Colin L Masters
- The Florey Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - John C Morris
- Department of Radiology, Washington University in St Louis, St Louis, Missouri, USA.,Knight Alzheimer's Disease Research Center, Washington University in St. Louis, St. Louis, MO, USA.,Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, MO, USA
| | - Robert Perneczky
- German Center for Neurodegenerative Diseases (DZNE, Munich), Munich, Germany.,Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-Universität München, Nußbaumstr. 7, 80336 Munich, Germany.,Neuroepidemiology and Ageing Research Unit, School of Public Health, The Imperial College of Science, Technology and Medicine, Exhibition Road, SW7 2AZ London, UK.,West London Mental Health Trust, 13 Uxbridge Road, UB1 3EU London, UK
| | - Daniel Janowitz
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Feodor-Lynen Straße 17, 81377 Munich, Germany
| | - Cihan Catak
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Feodor-Lynen Straße 17, 81377 Munich, Germany
| | - Steffen Wolfsgruber
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Sigmund-Freud-Str. 27, 53127 Bonn, Germany.,Department of Psychiatry and Psychotherapy, University of Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| | - Michael Wagner
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Sigmund-Freud-Str. 27, 53127 Bonn, Germany.,Department of Psychiatry and Psychotherapy, University of Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany.,Department of Neurodegeneration and Geriatric Psychiatry, University of Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| | - Stefan Teipel
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany.,Department of Psychosomatic, University of Rostock, Gehlsheimer Str. 20, 18147 Rostock, Germany
| | - Ingo Kilimann
- Department of Neurodegeneration and Geriatric Psychiatry, University of Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany.,German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
| | - Alfredo Ramirez
- Department of Psychiatry, University of Cologne, Medical Faculty, Kerpener Strasse 62, 50924 Cologne, Germany.,Department of Psychiatry and Psychotherapy, University of Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany.,Institute of Human Genetics, University of Bonn, 53127, Bonn, Germany
| | - Martin Rossor
- Dementia Research Centre, University College London, Queen Square, London, UK
| | - Mathias Jucker
- Hertie Institute for Clinical Brain Research, Tübingen, Germany and German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Jasmeer Chhatwal
- Departments of Neurology, Massachusetts General Hospital, Charlestown HealthCare Center, Charlestown, Massachusetts 02129, USA.,Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown HealthCare Center, Charlestown, Massachusetts 02129, USA
| | - Annika Spottke
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Sigmund-Freud-Str. 27, 53127 Bonn, Germany.,Department of Neurology, University of Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| | - Henning Boecker
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Sigmund-Freud-Str. 27, 53127 Bonn, Germany.,Department of Radiology, University of Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| | - Frederic Brosseron
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Sigmund-Freud-Str. 27, 53127 Bonn, Germany.,Department of Neurodegeneration and Geriatric Psychiatry, University of Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| | - Peter Falkai
- German Center for Neurodegenerative Diseases (DZNE, Munich), Munich, Germany.,Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-Universität München, Nußbaumstr. 7, 80336 Munich, Germany
| | - Klaus Fliessbach
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Sigmund-Freud-Str. 27, 53127 Bonn, Germany.,Department of Neurodegeneration and Geriatric Psychiatry, University of Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| | - Michael T Heneka
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Sigmund-Freud-Str. 27, 53127 Bonn, Germany.,Department of Neurodegeneration and Geriatric Psychiatry, University of Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| | - Christoph Laske
- Dementia Research Centre, University College London, Queen Square, London, UK.,Section for Dementia Research, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Peter Nestor
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,Queensland Brain Institute, University of Queensland, Brisbane, Australia
| | - Oliver Peters
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany.,Department of Psychiatry and Psychotherapy, Charité, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Manuel Fuentes
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Felix Menne
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany.,Department of Psychiatry and Psychotherapy, Charité, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Josef Priller
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany.,Department of Neuropsychiatry, Charite - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Eike J Spruth
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany.,Department of Neuropsychiatry, Charite - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Christiana Franke
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany.,Department of Neuropsychiatry, Charite - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Anja Schneider
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Sigmund-Freud-Str. 27, 53127 Bonn, Germany.,Department of Neurodegeneration and Geriatric Psychiatry, University of Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| | - Barbara Kofler
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Sigmund-Freud-Str. 27, 53127 Bonn, Germany.,Department of Psychiatry and Psychotherapy, University of Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| | - Christine Westerteicher
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Sigmund-Freud-Str. 27, 53127 Bonn, Germany.,Department of Psychiatry and Psychotherapy, University of Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| | - Oliver Speck
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,Leibniz Institute for Neurobiology, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany.,Department of Biomedical Magnetic Resonance, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Jens Wiltfang
- German Center for Neurodegenerative Diseases (DZNE), Goettingen, Germany.,Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, University of Goettingen, Von-Siebold-Str. 5, 37075 Goettingen, Germany.,iBiMED, Medical Sciences Department, University of Aveiro, Aveiro, Portugal
| | - Claudia Bartels
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, University of Goettingen, Von-Siebold-Str. 5, 37075 Goettingen, Germany
| | - Miguel Ángel Araque Caballero
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Feodor-Lynen Straße 17, 81377 Munich, Germany
| | - Coraline Metzger
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Daniel Bittner
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Michael Weiner
- University of California at San Francisco, 505 Parnassus Ave, San Francisco, CA94143, USA
| | - Jae-Hong Lee
- Department of Neurology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Stephen Salloway
- Department of Neurology, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Adrian Danek
- German Center for Neurodegenerative Diseases (DZNE, Munich), Munich, Germany.,Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Alison Goate
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Ronald M. Loeb Center for Alzheimer's Disease, Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Peter R Schofield
- Neuroscience Research Australia, Barker Street Randwick, Sydney 2031, Australia.,School of Medical Sciences, University of New South Wales, Sydney 2052, Australia
| | - Randall J Bateman
- Department of Radiology, Washington University in St Louis, St Louis, Missouri, USA.,Knight Alzheimer's Disease Research Center, Washington University in St. Louis, St. Louis, MO, USA.,Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, MO, USA
| | - Michael Ewers
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Feodor-Lynen Straße 17, 81377 Munich, Germany
| |
Collapse
|
261
|
Neumann U, Ufer M, Jacobson LH, Rouzade-Dominguez ML, Huledal G, Kolly C, Lüönd RM, Machauer R, Veenstra SJ, Hurth K, Rueeger H, Tintelnot-Blomley M, Staufenbiel M, Shimshek DR, Perrot L, Frieauff W, Dubost V, Schiller H, Vogg B, Beltz K, Avrameas A, Kretz S, Pezous N, Rondeau JM, Beckmann N, Hartmann A, Vormfelde S, David OJ, Galli B, Ramos R, Graf A, Lopez Lopez C. The BACE-1 inhibitor CNP520 for prevention trials in Alzheimer's disease. EMBO Mol Med 2019; 10:emmm.201809316. [PMID: 30224383 PMCID: PMC6220303 DOI: 10.15252/emmm.201809316] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The beta‐site amyloid precursor protein cleaving enzyme‐1 (BACE‐1) initiates the generation of amyloid‐β (Aβ), and the amyloid cascade leading to amyloid plaque deposition, neurodegeneration, and dementia in Alzheimer's disease (AD). Clinical failures of anti‐Aβ therapies in dementia stages suggest that treatment has to start in the early, asymptomatic disease states. The BACE‐1 inhibitor CNP520 has a selectivity, pharmacodynamics, and distribution profile suitable for AD prevention studies. CNP520 reduced brain and cerebrospinal fluid (CSF) Aβ in rats and dogs, and Aβ plaque deposition in APP‐transgenic mice. Animal toxicology studies of CNP520 demonstrated sufficient safety margins, with no signs of hair depigmentation, retina degeneration, liver toxicity, or cardiovascular effects. In healthy adults ≥ 60 years old, treatment with CNP520 was safe and well tolerated and resulted in robust and dose‐dependent Aβ reduction in the cerebrospinal fluid. Thus, long‐term, pivotal studies with CNP520 have been initiated in the Generation Program.
Collapse
Affiliation(s)
- Ulf Neumann
- Neuroscience, Novartis Institute for BioMedical Research, Basel, Switzerland
| | - Mike Ufer
- Translational Medicine, Novartis Institute for BioMedical Research, Basel, Switzerland
| | - Laura H Jacobson
- Neuroscience, Novartis Institute for BioMedical Research, Basel, Switzerland
| | | | - Gunilla Huledal
- PK Sciences, Novartis Institute for BioMedical Research, Basel, Switzerland
| | - Carine Kolly
- Preclinical Safety, Novartis Institute for BioMedical Research, Basel, Switzerland
| | - Rainer M Lüönd
- Global Discovery Chemistry, Novartis Institute for BioMedical Research, Basel, Switzerland
| | - Rainer Machauer
- Global Discovery Chemistry, Novartis Institute for BioMedical Research, Basel, Switzerland
| | - Siem J Veenstra
- Global Discovery Chemistry, Novartis Institute for BioMedical Research, Basel, Switzerland
| | - Konstanze Hurth
- Global Discovery Chemistry, Novartis Institute for BioMedical Research, Basel, Switzerland
| | - Heinrich Rueeger
- Global Discovery Chemistry, Novartis Institute for BioMedical Research, Basel, Switzerland
| | | | | | - Derya R Shimshek
- Neuroscience, Novartis Institute for BioMedical Research, Basel, Switzerland
| | - Ludovic Perrot
- Neuroscience, Novartis Institute for BioMedical Research, Basel, Switzerland
| | - Wilfried Frieauff
- Preclinical Safety, Novartis Institute for BioMedical Research, Basel, Switzerland
| | - Valerie Dubost
- Preclinical Safety, Novartis Institute for BioMedical Research, Basel, Switzerland
| | - Hilmar Schiller
- PK Sciences, Novartis Institute for BioMedical Research, Basel, Switzerland
| | - Barbara Vogg
- PK Sciences, Novartis Institute for BioMedical Research, Basel, Switzerland
| | - Karen Beltz
- PK Sciences, Novartis Institute for BioMedical Research, Basel, Switzerland
| | - Alexandre Avrameas
- Biomarker Discovery, Novartis Institute for BioMedical Research, Basel, Switzerland
| | - Sandrine Kretz
- Biomarker Discovery, Novartis Institute for BioMedical Research, Basel, Switzerland
| | - Nicole Pezous
- Translational Medicine, Novartis Institute for BioMedical Research, Basel, Switzerland
| | - Jean-Michel Rondeau
- Chemical Biology and Therapeutics, Novartis Institute for BioMedical Research, Basel, Switzerland
| | - Nicolau Beckmann
- Musculoskeletal Diseases, Novartis Institute for BioMedical Research, Basel, Switzerland
| | - Andreas Hartmann
- Preclinical Safety, Novartis Institute for BioMedical Research, Basel, Switzerland
| | - Stefan Vormfelde
- Translational Medicine, Novartis Institute for BioMedical Research, Basel, Switzerland
| | | | - Bruno Galli
- Global Drug Development, Novartis, Basel, Switzerland
| | - Rita Ramos
- Global Drug Development, Novartis, Basel, Switzerland
| | - Ana Graf
- Global Drug Development, Novartis, Basel, Switzerland
| | | |
Collapse
|
262
|
Abstract
Following the development of the first methods to measure the core Alzheimer’s disease (AD) cerebrospinal fluid (CSF) biomarkers total-tau (T-tau), phosphorylated tau (P-tau) and the 42 amino acid form of amyloid-β (Aβ42), there has been an enormous expansion of this scientific research area. Today, it is generally acknowledged that these biochemical tests reflect several central pathophysiological features of AD and contribute diagnostically relevant information, also for prodromal AD. In this article in the 20th anniversary issue of the Journal of Alzheimer’s Disease, we review the AD biomarkers, from early assay development to their entrance into diagnostic criteria. We also summarize the long journey of standardization and the development of assays on fully automated instruments, where we now have high precision and stable assays that will serve as the basis for common cut-off levels and a more general introduction of these diagnostic tests in clinical routine practice. We also discuss the latest expansion of the AD CSF biomarker toolbox that now also contains synaptic proteins such as neurogranin, which seemingly is specific for AD and predicts rate of future cognitive deterioration. Last, we are at the brink of having blood biomarkers that may be implemented as screening tools in the early clinical management of patients with cognitive problems and suspected AD. Whether this will become true, and whether it will be plasma Aβ42, the Aβ42/40 ratio, or neurofilament light, or a combination of these, remains to be established in future clinical neurochemical studies.
Collapse
Affiliation(s)
- Kaj Blennow
- Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden
| |
Collapse
|
263
|
Bjerke M, Engelborghs S. Cerebrospinal Fluid Biomarkers for Early and Differential Alzheimer's Disease Diagnosis. J Alzheimers Dis 2019; 62:1199-1209. [PMID: 29562530 PMCID: PMC5870045 DOI: 10.3233/jad-170680] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An accurate and early diagnosis of Alzheimer’s disease (AD) is important to select optimal patient care and is critical in current clinical trials targeting core AD neuropathological features. The past decades, much progress has been made in the development and validation of cerebrospinal fluid (CSF) biomarkers for the biochemical diagnosis of AD, including standardization and harmonization of (pre-) analytical procedures. This has resulted in three core CSF biomarkers for AD diagnostics, namely the 42 amino acid long amyloid-beta peptide (Aβ1-42), total tau protein (T-tau), and tau phosphorylated at threonine 181 (P-tau181). These biomarkers have been incorporated into research diagnostic criteria for AD and have an added value in the (differential) diagnosis of AD and related disorders, including mixed pathologies, atypical presentations, and in case of ambiguous clinical dementia diagnoses. The implementation of the CSF Aβ1-42/Aβ1-40 ratio in the core biomarker panel will improve the biomarker analytical variability, and will also improve early and differential AD diagnosis through a more accurate reflection of pathology. Numerous biomarkers are being investigated for their added value to the core AD biomarkers, aiming at the AD core pathological features like the amyloid mismetabolism, tau pathology, or synaptic or neuronal degeneration. Others aim at non-AD neurodegenerative, vascular or inflammatory hallmarks. Biomarkers are essential for an accurate identification of preclinical AD in the context of clinical trials with potentially disease-modifying drugs. Therefore, a biomarker-based early diagnosis of AD offers great opportunities for preventive treatment development in the near future.
Collapse
Affiliation(s)
- Maria Bjerke
- Reference Center for Biological Markers of Dementia (BIODEM), Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Sebastiaan Engelborghs
- Reference Center for Biological Markers of Dementia (BIODEM), Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Department of Neurology and Memory Clinic, Hospital Network Antwerp (ZNA) Middelheim and Hoge Beuken, Antwerp, Belgium
| |
Collapse
|
264
|
Diagnosis of Alzheimer's disease utilizing amyloid and tau as fluid biomarkers. Exp Mol Med 2019; 51:1-10. [PMID: 31073121 PMCID: PMC6509326 DOI: 10.1038/s12276-019-0250-2] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 12/26/2018] [Indexed: 01/01/2023] Open
Abstract
Current technological advancements in clinical and research settings have permitted a more intensive and comprehensive understanding of Alzheimer’s disease (AD). This development in knowledge regarding AD pathogenesis has been implemented to produce disease-modifying drugs. The potential for accessible and effective therapeutic methods has generated a need for detecting this neurodegenerative disorder during early stages of progression because such remedial effects are more profound when implemented during the initial, prolonged prodromal stages of pathogenesis. The aggregation of amyloid-β (Aβ) and tau isoforms are characteristic of AD; thus, they are considered core candidate biomarkers. However, research attempting to establish the reliability of Aβ and tau as biomarkers has culminated in an amalgamation of contradictory results and theories regarding the biomarker concentrations necessary for an accurate diagnosis. In this review, we consider the capabilities and limitations of fluid biomarkers collected from cerebrospinal fluid, blood, and oral, ocular, and olfactory secretions as diagnostic tools for AD, along with the impact of the integration of these biomarkers in clinical settings. Furthermore, the evolution of diagnostic criteria and novel research findings are discussed. This review is a summary and reflection of the ongoing concerted efforts to establish fluid biomarkers as a diagnostic tool and implement them in diagnostic procedures. Markers from body fluids could help clinicians diagnose Alzheimer’s disease before cognitive decline appears. After numerous setbacks in treating advanced Alzheimer’s, researchers are eager to identify biological indicators that facilitate earlier disease detection and interception. A review by YoungSoo Kim and colleagues at Yonsei University in South Korea, explores the promise of ‘fluid biomarkers,’ which enables diagnosis using cerebrospinal fluid (CSF), blood, oral, ocular, and olfactory fluid samples. Shifts in CSF levels of amyloid beta and tau, two proteins central to Alzheimer’s pathology, can reliably monitor at-risk individuals. Although CSF collection is unpleasant for patients, it remains more promising than blood, where current data for candidate fluid biomarkers are relatively inconclusive. In this review, investigations to discover safer, cheaper, and more reliable diagnostic tools to shift treatment from alleviation to prevention are introduced.
Collapse
|
265
|
Antibody-free detection of amyloid beta peptides biomarkers in cerebrospinal fluid using capillary isotachophoresis coupled with mass spectrometry. J Chromatogr A 2019; 1601:350-356. [PMID: 31101465 DOI: 10.1016/j.chroma.2019.05.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/26/2019] [Accepted: 05/06/2019] [Indexed: 12/14/2022]
Abstract
This study reports a capillary isotachophoresis (ITP) - electrospray ionization mass spectrometry (ESI-MS) method for the determination of several amyloid β (Aβ) peptides, which are biomarkers of Alzheimer's disease (AD) in cerebrospinal fluids (CSF). For the first time, these peptides have been detected directly from CSF by MS without recourse to an immunocapture-based sample pre-treatment. The antibody-free approach is based on the marriage between capillary ITP, a powerful on-line electrokinetic preconcentration technique, and MS for simultaneous detection of different Aβ peptides. To ensure a good performance, the ITP process of fluorescently labelled Aβ peptides was for the first time implemented and verified with laser induced fluorescent detection, prior to methodology transfer to MS detection. Better detection sensitivity was achieved with labelled Aβ peptides for both detection modes. Using hydroxyl ions as the terminating and acetate as the leading ions, our method allows efficient ITP preconcentration under alkaline conditions of the slowly migrating Aβ peptides to reach quantifiable concentration down to 50 pM. The developed ITP-MS approach allows reliable quantification of different fluorescently derivatized Aβ peptides, i.e. Aβ 1-42, Aβ 1-40 and Aβ 1-38 down to sub nM ranges in CSF samples from AD and non-demented (healthy control) patients. Good agreement (<20% deviation) for the determination of Aβ 1-42/Aβ 1-40 ratio in CSF was achieved between results obtained with this new ITP-MS and our recently developed method based on large volume sample stacking coupled to CE. Discrimination of one AD patient from two healthy controls was successfully made with the Aβ 1-42/Aβ 1-40 ratio obtained by the developed ITP-MS method for the tested cerebrospinal fluid samples.
Collapse
|
266
|
Hansson O, Lehmann S, Otto M, Zetterberg H, Lewczuk P. Advantages and disadvantages of the use of the CSF Amyloid β (Aβ) 42/40 ratio in the diagnosis of Alzheimer's Disease. ALZHEIMERS RESEARCH & THERAPY 2019; 11:34. [PMID: 31010420 PMCID: PMC6477717 DOI: 10.1186/s13195-019-0485-0] [Citation(s) in RCA: 356] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The cerebrospinal fluid (CSF) biochemical markers (biomarkers) Amyloidβ 42 (Aβ42), total Tau (T-tau) and Tau phosphorylated at threonine 181 (P-tau181) have proven diagnostic accuracy for mild cognitive impairment and dementia due to Alzheimer’s Disease (AD). In an effort to improve the accuracy of an AD diagnosis, it is important to be able to distinguish between AD and other types of dementia (non-AD). The concentration ratio of Aβ42 to Aβ40 (Aβ42/40 Ratio) has been suggested to be superior to the concentration of Aβ42 alone when identifying patients with AD. This article reviews the available evidence on the use of the CSF Aβ42/40 ratio in the diagnosis of AD. Based on the body of evidence presented herein, it is the conclusion of the current working group that the CSF Aβ42/40 ratio, rather than the absolute value of CSF Aβ42, should be used when analysing CSF AD biomarkers to improve the percentage of appropriately diagnosed patients.
Collapse
Affiliation(s)
- Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden.,Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Sylvain Lehmann
- Center of Excellence for Neurodegenerative disorders (COEN) of Montpellier, Montpellier University, CHU Montpellier, INSERM, Montpellier, France
| | - Markus Otto
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK.,UK Dementia Research Institute, London, UK
| | - Piotr Lewczuk
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen and Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany. .,Department of Neurodegeneration Diagnostics, Medical University of Bialystok, Bialystok, Poland. .,Lab for Clinical Neurochemistry and Neurochemical Dementia Diagnostics, Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, Schwabachanlage 6, 91054, Erlangen, Germany.
| |
Collapse
|
267
|
Merluzzi AP, Vogt NM, Norton D, Jonaitis E, Clark LR, Carlsson CM, Johnson SC, Asthana S, Blennow K, Zetterberg H, Bendlin BB. Differential effects of neurodegeneration biomarkers on subclinical cognitive decline. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2019; 5:129-138. [PMID: 31011623 PMCID: PMC6462765 DOI: 10.1016/j.trci.2019.02.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
INTRODUCTION Neurodegeneration appears to be the biological mechanism most proximate to cognitive decline in Alzheimer's disease. We test whether t-tau and alternative biomarkers of neurodegeneration-neurogranin and neurofilament light protein (NFL)-add value in predicting subclinical cognitive decline. METHODS One hundred fifty cognitively unimpaired participants received a lumbar puncture for cerebrospinal fluid and at least two neuropsychological examinations (mean age at first visit = 59.3 ± 6.3 years; 67% female). Linear mixed effects models were used with cognitive composite scores as outcomes. Neurodegeneration interactions terms were the primary predictors of interest: age × NFL or age × neurogranin or age × t-tau. Models were compared using likelihood ratio tests. RESULTS Age × NFL accounted for a significant amount of variation in longitudinal change on preclinical Alzheimer's cognitive composite scores, memory composite scores, and learning scores, whereas age × neurogranin and age × t-tau did not. DISCUSSION These data suggest that NFL may be more sensitive to subclinical cognitive decline compared to other proposed biomarkers for neurodegeneration.
Collapse
Affiliation(s)
- Andrew P. Merluzzi
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin–Madison, Madison, WI, USA
| | - Nicholas M. Vogt
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin–Madison, Madison, WI, USA
| | - Derek Norton
- Department of Biostatistics and Medical Informatics, University of Wisconsin–Madison, Madison, WI, USA
| | - Erin Jonaitis
- Department of Biostatistics and Medical Informatics, University of Wisconsin–Madison, Madison, WI, USA
| | - Lindsay R. Clark
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin–Madison, Madison, WI, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veteran's Hospital, Madison, WI, USA
| | - Cynthia M. Carlsson
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin–Madison, Madison, WI, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veteran's Hospital, Madison, WI, USA
| | - Sterling C. Johnson
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin–Madison, Madison, WI, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veteran's Hospital, Madison, WI, USA
| | - Sanjay Asthana
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin–Madison, Madison, WI, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veteran's Hospital, Madison, WI, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Institute of Neurology, University College London, Queen Square, London, UK
- UK Dementia Research Institute, London, UK
| | - Barbara B. Bendlin
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin–Madison, Madison, WI, USA
| |
Collapse
|
268
|
Hrubešová K, Fousková M, Habartová L, Fišar Z, Jirák R, Raboch J, Setnička V. Search for biomarkers of Alzheimer's disease: Recent insights, current challenges and future prospects. Clin Biochem 2019; 72:39-51. [PMID: 30953619 DOI: 10.1016/j.clinbiochem.2019.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 04/03/2019] [Indexed: 12/12/2022]
Abstract
Due to the trend of prolonged lifespan leading to higher incidence of age-related diseases, the demand for reliable biomarkers of dementia rises. In this review, we present novel biomarkers of high potential, especially those found in blood, urine or saliva, which could lead to a more comfortable patient experience and better time- and cost-effectivity, compared to the currently used diagnostic methods. We focus on biomarkers that might allow for the detection of Alzheimer's disease before its clinical manifestations. Such biomarkers might be helpful for better understanding the etiology of the disease and identifying its risk factors. Moreover, it could be a base for developing new treatment or at least help to prolong the presymptomatic stage in patients suffering from Alzheimer's disease. As potential candidates, we present, for instance, neurofilament light in both cerebrospinal fluid and blood plasma or amyloid β in plasma. Above all, we provide an overview of different approaches to the diagnostics, analyzing patient's biofluids as a whole using molecular spectroscopy. Infrared and Raman spectroscopy and especially chiroptical methods provide information not only on the chemical composition, but also on molecular structure. Therefore, these techniques are promising for the diagnostics of Alzheimer's disease, as the accumulation of amyloid β in abnormal conformation is one of the hallmarks of this disease.
Collapse
Affiliation(s)
- Kateřina Hrubešová
- Department of Analytical Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Markéta Fousková
- Department of Analytical Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Lucie Habartová
- Department of Analytical Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Zdeněk Fišar
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00 Prague 2, Czech Republic
| | - Roman Jirák
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00 Prague 2, Czech Republic
| | - Jiří Raboch
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00 Prague 2, Czech Republic
| | - Vladimír Setnička
- Department of Analytical Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic.
| |
Collapse
|
269
|
Leuzy A, Savitcheva I, Chiotis K, Lilja J, Andersen P, Bogdanovic N, Jelic V, Nordberg A. Clinical impact of [ 18F]flutemetamol PET among memory clinic patients with an unclear diagnosis. Eur J Nucl Med Mol Imaging 2019; 46:1276-1286. [PMID: 30915522 PMCID: PMC6486908 DOI: 10.1007/s00259-019-04297-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 02/25/2019] [Indexed: 12/11/2022]
Abstract
Purpose To investigate the impact of amyloid PET with [18F]flutemetamol on diagnosis and treatment management in a cohort of patients attending a tertiary memory clinic in whom, despite extensive cognitive assessment including neuropsychological testing, structural imaging, CSF biomarker analysis and in some cases [18F]FDG PET, the diagnosis remained unclear. Methods The study population consisted of 207 patients with a clinical diagnosis prior to [18F]flutemetamol PET including mild cognitive impairment (MCI; n = 131), Alzheimer’s disease (AD; n = 41), non-AD (n = 10), dementia not otherwise specified (dementia NOS; n = 20) and subjective cognitive decline (SCD; n = 5). Results Amyloid positivity was found in 53% of MCI, 68% of AD, 20% of non-AD, 20% of dementia NOS, and 60% of SCD patients. [18F]Flutemetamol PET led, overall, to a change in diagnosis in 92 of the 207 patients (44%). A high percentage of patients with a change in diagnosis was observed in the MCI group (n = 67, 51%) and in the dementia NOS group (n = 11; 55%), followed by the non-AD and AD (30% and 20%, respectively). A significant increase in cholinesterase inhibitor treatment was observed after [18F]flutemetamol PET (+218%, 34 patients before and 108 patients after). Conclusion The present study lends support to the clinical value of amyloid PET in patients with an uncertain diagnosis in the tertiary memory clinic setting.
Collapse
Affiliation(s)
- Antoine Leuzy
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics Center for Alzheimer Research, Karolinska Institutet, Neo, 7th floor, 141 83, Huddinge, Sweden
| | - Irina Savitcheva
- Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Konstantinos Chiotis
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics Center for Alzheimer Research, Karolinska Institutet, Neo, 7th floor, 141 83, Huddinge, Sweden
| | - Johan Lilja
- Department of Surgical Sciences, Radiology, Nuclear Medicine and PET, Uppsala University, Uppsala, Sweden.,Hermes Medical Solutions, Stockholm, Sweden
| | - Pia Andersen
- Clinic for Cognitive Disorders, Theme Aging, Karolinska University Hospital, Stockholm, Sweden
| | - Nenad Bogdanovic
- Clinic for Cognitive Disorders, Theme Aging, Karolinska University Hospital, Stockholm, Sweden
| | - Vesna Jelic
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics Center for Alzheimer Research, Karolinska Institutet, Neo, 7th floor, 141 83, Huddinge, Sweden.,Clinic for Cognitive Disorders, Theme Aging, Karolinska University Hospital, Stockholm, Sweden
| | - Agneta Nordberg
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics Center for Alzheimer Research, Karolinska Institutet, Neo, 7th floor, 141 83, Huddinge, Sweden. .,Clinic for Cognitive Disorders, Theme Aging, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
270
|
Jankeviciute S, Psemeneckiene G, Morkuniene R, Grusauskiene E, Petrikonis K, Rastenyte D, Borutaite V. Cerebrospinal fluids from Alzheimer's disease patients exhibit neurotoxic effects on neuronal cell cultures. Eur J Neurosci 2019; 50:1994-2006. [DOI: 10.1111/ejn.14389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 02/06/2019] [Accepted: 02/08/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Silvija Jankeviciute
- Neuroscience Institute Lithuanian University of Health Sciences Kaunas Lithuania
| | - Greta Psemeneckiene
- Department of Neurology Medical Academy Lithuanian University of Health Sciences Kaunas Lithuania
| | - Ramune Morkuniene
- Neuroscience Institute Lithuanian University of Health Sciences Kaunas Lithuania
| | - Evelina Grusauskiene
- Department of Neurology Medical Academy Lithuanian University of Health Sciences Kaunas Lithuania
| | - Kestutis Petrikonis
- Department of Neurology Medical Academy Lithuanian University of Health Sciences Kaunas Lithuania
| | - Daiva Rastenyte
- Department of Neurology Medical Academy Lithuanian University of Health Sciences Kaunas Lithuania
| | - Vilmante Borutaite
- Neuroscience Institute Lithuanian University of Health Sciences Kaunas Lithuania
| |
Collapse
|
271
|
Dehghani C, Frost S, Jayasena R, Masters CL, Kanagasingam Y. Ocular Biomarkers of Alzheimer's Disease: The Role of Anterior Eye and Potential Future Directions. Invest Ophthalmol Vis Sci 2019; 59:3554-3563. [PMID: 30025102 DOI: 10.1167/iovs.18-24694] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Globally, Alzheimer's disease (AD) is a growing health and economic challenge that has no effective cure. Recent clinical trials indicate that preclinical treatment may be required but a routine screening tool for AD has been elusive. Hence, a simple, yet sensitive biomarker for preclinical AD, when the disease is most likely to be amenable to treatment, is lacking. Due to several features, the eye has been explored for this purpose and, among the ocular tissues, the retina has received the most attention. Currently, major works investigating the potential AD diagnosis by detecting amyloid-β (Aβ) signatures in the retinal tissue are underway, while the anterior eye is more accessible for in vivo imaging and examination. This report provides a concise review of current literature on the anterior eye components, including the crystalline lens, cornea, and aqueous humor, in AD. We also discuss the potential for assessment of the corneal nerve structure and regeneration as well as conjunctival tissue for AD-related alterations. The crystalline lens has received considerable attention, but further research is required to confirm whether Aβ accumulates in the lens and whether it mirrors brain neuropathologic changes, particularly in preclinical AD. The rich corneal neural network and conjunctival vasculature also merit exploration in future studies to shed light on their potential association with AD pathologic changes.
Collapse
Affiliation(s)
- Cirous Dehghani
- Australian e-Health Research Center, CSIRO, Parkville, Australia
| | - Shaun Frost
- Australian e-Health Research Center, CSIRO, Perth, Australia
| | - Rajiv Jayasena
- Australian e-Health Research Center, CSIRO, Parkville, Australia
| | - Colin L Masters
- The Florey Institute, The University of Melbourne, Parkville, Australia
| | | |
Collapse
|
272
|
Bouter C, Vogelgsang J, Wiltfang J. Comparison between amyloid-PET and CSF amyloid-β biomarkers in a clinical cohort with memory deficits. Clin Chim Acta 2019; 492:62-68. [PMID: 30735665 DOI: 10.1016/j.cca.2019.02.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/04/2019] [Accepted: 02/04/2019] [Indexed: 11/25/2022]
Abstract
With increasing prevalence of Alzheimer's disease (AD) and advances in research of therapeutic approaches, an early and accurate in-vivo diagnosis is crucial. Different biomarkers that are able to identify AD are currently in focus. However, whether and to which extend results of cerebrospinal fluid (CSF) and imaging biomarkers are comparable, is unclear. This study aims to correlate CSF and amyloid imaging biomarkers comparing them to cognitive measurements in order to determine whether these methods provide identical or complementary information. The study comprises 33 consecutive patients with suspected cognitive decline that underwent lumbar puncture for CSF biomarker analysis and Amyloid-PET/CT within the diagnostic evaluation of memory impairment. Amyloid PET/CTs were evaluated visually and quantitatively. CSF and imaging data were retrospectively evaluated and results were compared to cognition tests, age, gender, and ApoE status. Global cortex SUVr levels correlated highly with CSF Aβ42/40 and moderately with Aβ42 but not with Aβ40. Global cortex SUVr and Aβ42/40 correlated with mini mental status examination. This study indicates that Amyloid-PET and CSF biomarkers might not reflect identical clinical information and a combination of both seems to be the most accurate way to characterize clinically unclear cognitive decline.
Collapse
Affiliation(s)
- Caroline Bouter
- University Medical Center Goettingen (UMG), Georg-August-University, Dept. of Nuclear Medicine, Robert-Koch-Str. 40, D-37075 Goettingen, Germany.
| | - Jonathan Vogelgsang
- University Medical Center Goettingen (UMG), Georg-August-University, Dept. of Psychiatry and Psychotherapy, Von-Siebold-Str. 5, D-37075 Goettingen, Germany
| | - Jens Wiltfang
- University Medical Center Goettingen (UMG), Georg-August-University, Dept. of Psychiatry and Psychotherapy, Von-Siebold-Str. 5, D-37075 Goettingen, Germany; German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, D-37075 Goettingen, Germany; iBiMED, Medical Science Department, University of Aveiro, Portugal
| |
Collapse
|
273
|
Abstract
Neurodegenerative diseases represent a daunting challenge in clinical diagnosis and management. Biomarkers that might aid in the diagnosis of these devastating and globally important diseases are urgently sought and required. Here we describe the application and state of development of a range of cerebrospinal fluid biomarkers in common neurodegenerative disorders including Alzheimer's disease, frontotemporal dementia and prion diseases.
Collapse
Affiliation(s)
- Thalia T Robey
- Neurodegenerative Disorders Research Pty Ltd, 4 Lawrence Avenue, West Perth, Western Australia 6005, Australia
| | - Peter K Panegyres
- Neurodegenerative Disorders Research Pty Ltd, 4 Lawrence Avenue, West Perth, Western Australia 6005, Australia
| |
Collapse
|
274
|
Cilento EM, Jin L, Stewart T, Shi M, Sheng L, Zhang J. Mass spectrometry: A platform for biomarker discovery and validation for Alzheimer's and Parkinson's diseases. J Neurochem 2019; 151:397-416. [PMID: 30474862 DOI: 10.1111/jnc.14635] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/15/2018] [Accepted: 11/19/2018] [Indexed: 12/16/2022]
Abstract
Accurate, reliable, and objective biomarkers for Alzheimer's disease (AD), Parkinson's disease (PD), and related age-associated neurodegenerative disorders are urgently needed to assist in both diagnosis, particularly at early stages, and monitoring of disease progression. Technological advancements in protein detection platforms over the last few decades have resulted in a plethora of reported molecular biomarker candidates for both AD and PD; however, very few of these candidates are developed beyond the discovery phase of the biomarker development pipeline, a reflection of the current bottleneck within the field. In this review, the expanded use of selected reaction monitoring (SRM) targeted mass spectrometry will be discussed in detail as a platform for systematic verification of large panels of protein biomarker candidates prior to costly validation testing. We also advocate for the coupling of discovery-based proteomics with modern targeted MS-based approaches (e.g., SRM) within a single study in future workflows to expedite biomarker development and validation for AD and PD. It is our hope that improving the efficiency within the biomarker development process by use of an SRM pipeline may ultimately hasten the development of biomarkers that both decrease misdiagnosis of AD and PD and ultimately lead to detection at early stages of disease and objective assessment of disease progression. This article is part of the special issue "Proteomics".
Collapse
Affiliation(s)
- Eugene M Cilento
- Department of Pathology, University of Washington, School of Medicine, Seattle, Washington, USA
| | - Lorrain Jin
- Department of Pathology, University of Washington, School of Medicine, Seattle, Washington, USA
| | - Tessandra Stewart
- Department of Pathology, University of Washington, School of Medicine, Seattle, Washington, USA
| | - Min Shi
- Department of Pathology, University of Washington, School of Medicine, Seattle, Washington, USA
| | - Lifu Sheng
- Department of Pathology, University of Washington, School of Medicine, Seattle, Washington, USA
| | - Jing Zhang
- Department of Pathology, University of Washington, School of Medicine, Seattle, Washington, USA.,Department of Pathology, School of Basic Medicine, Peking University Health Science Center, Peking University Third Hospital and Peking Key Laboratory for Early Diagnosis of Neurodegenerative Disorders, Beijing, China
| |
Collapse
|
275
|
Lleó A, Parnetti L, Belbin O, Wiltfang J. Has the time arrived for cerebrospinal fluid biomarkers in psychiatric disorders? Clin Chim Acta 2019; 491:81-84. [PMID: 30682327 DOI: 10.1016/j.cca.2019.01.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/16/2019] [Accepted: 01/18/2019] [Indexed: 01/13/2023]
Abstract
Psychiatric disorders are currently classified, in the majority of cases, by clinical syndromes. However, advances over the last decade in imaging and biochemical biomarkers in several Central Nervous System (CNS) disorders anticipate the incorporation of some of these markers in the diagnostic work-up of psychiatric conditions. In particular, CSF biomarkers offer the possibility of detecting a wide range of pathophysiological processes in the CNS. Newer CSF markers can measure axonal and synaptic damage, glial activation, and oxidative stress in CNS disorders with high precision. The possibility that these markers can be applied in the differential diagnosis of common psychiatric disorders such as Schizophrenia, Major Depressive or Bipolar Disorders not only to rule out neurodegenerative diseases but also to identify specific biomarker signatures has yet to be explored. In particular, synaptic proteins in CSF could be useful as markers of synaptic and neurotransmitter transmission impairment since these are key molecular features of psychiatric conditions. In this paper we outline the current and potential applications of CSF biomarkers in psychiatric disorders.
Collapse
Affiliation(s)
- Alberto Lleó
- Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain; Centre of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain.
| | - Lucilla Parnetti
- Centre for Memory Disturbances, Section of Neurology, Lab of Clinical Neurochemistry, University of Perugia, Perugia, Italy
| | - Olivia Belbin
- Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain; Centre of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen (UMG), Goettingen, Germany; German Center for Neurodegenerative Diseases (DZNE), Goettingen, Germany
| |
Collapse
|
276
|
Delaby C, Muñoz L, Torres S, Nadal A, Le Bastard N, Lehmann S, Lleó A, Alcolea D. Impact of CSF storage volume on the analysis of Alzheimer's disease biomarkers on an automated platform. Clin Chim Acta 2018; 490:98-101. [PMID: 30579960 DOI: 10.1016/j.cca.2018.12.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 01/04/2023]
Abstract
OBJECTIVES To assess the potential influence of the ratio between the storage tube surface area and the volume of cerebrospinal fluid (CSF) (surface/volume) on the quantifications of four Alzheimer's disease (AD) biomarkers on the Lumipulse G600II automated platform. METHODS CSF samples of 10 consecutive patients were stored in 2 ml polypropylene tubes containing four different CSF volumes: 1.5 ml, 1 ml, 0.5 ml and 0.25 ml. Concentration of CSF Aβ1-42, Aβ1-40, t-Tau and p-Tau were measured in all aliquots using the LUMIPULSE G600II automated platform from Fujirebio. RESULTS Levels of CSF Aβ1-42 and Aβ1-40 were lower in samples stored with lower volumes (higher surface/volume ratios). This decrease was partly compensated by using the ratio Aβ1-42/Aβ1-40. Quantification of t-Tau and p-Tau were not influenced by this pre-analytical condition. CONCLUSION The surface/volume ratio can potentially influence the results of amyloid AD biomarkers. It appears essential to take into account the surface/volume ratio of the storage tubes when quantifying CSF biomarkers in clinical routine.
Collapse
Affiliation(s)
- Constance Delaby
- Université de Montpellier, CHU de Montpellier, Laboratoire de Biochimie-Protéomique clinique, INSERM U1183, Montpellier, France.; Sant Pau Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau, Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Laia Muñoz
- Sant Pau Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau, Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, CIBERNED, Spain
| | - Soraya Torres
- Sant Pau Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau, Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, CIBERNED, Spain
| | | | | | - Sylvain Lehmann
- Université de Montpellier, CHU de Montpellier, Laboratoire de Biochimie-Protéomique clinique, INSERM U1183, Montpellier, France
| | - Alberto Lleó
- Sant Pau Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau, Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, CIBERNED, Spain
| | - Daniel Alcolea
- Sant Pau Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau, Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, CIBERNED, Spain.
| |
Collapse
|
277
|
Baiardi S, Abu-Rumeileh S, Rossi M, Zenesini C, Bartoletti-Stella A, Polischi B, Capellari S, Parchi P. Antemortem CSF A β42/A β40 ratio predicts Alzheimer's disease pathology better than A β42 in rapidly progressive dementias. Ann Clin Transl Neurol 2018; 6:263-273. [PMID: 30847359 PMCID: PMC6389744 DOI: 10.1002/acn3.697] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 10/23/2018] [Indexed: 12/13/2022] Open
Abstract
Objective Despite the critical importance of pathologically confirmed samples for biomarker validation, only a few studies have correlated CSF Aβ42 values in vivo with postmortem Alzheimer's disease (AD) pathology, while none evaluated the CSF Aβ42/Aβ40 ratio. We compared CSF Aβ42 and Aβ42/Aβ40 ratio as biomarkers predicting AD neuropathological changes in patients with a short interval between lumbar puncture and death. Methods We measured CSF Aβ40 and Aβ42 and assessed AD pathology in 211 subjects with rapidly progressive dementia (RPD) and a definite postmortem diagnosis of Creutzfeldt-Jakob disease (n = 159), AD (n = 12), dementia with Lewy bodies (DLB, n = 4), AD/DLB mixed pathologies (n = 5), and various other pathologies (n = 31). Results The score reflecting the severity of Aβ pathology showed a better correlation with ln(Aβ42/Aβ40) (R 2 = 0.506, β = -0.713, P < 0.001) than with ln(Aβ42) (R 2 = 0.206, β = -0.458, P < 0.001), which was confirmed after adjusting for covariates. Aβ42/Aβ40 ratio showed significantly higher accuracy than Aβ42 in the distinction between cases with or without AD pathology (AUC 0.818 ± 0.028 vs. 0.643 ± 0.039), especially in patients with Aβ42 levels ≤495 pg/mL (AUC 0.888 ± 0.032 vs. 0.518 ± 0.064). Using a cut-off value of 0.810, the analysis of Aβ42/Aβ40 ratio yielded 87.0% sensitivity, 88.2% specificity in the distinction between cases with an intermediate-high level of AD pathology and those with low level or no AD pathology. Interpretation The present data support the use of CSF Aβ42/Aβ40 ratio as a biomarker of AD pathophysiology and noninvasive screener for Aβ pathology burden, and its introduction in the research diagnostic criteria for AD.
Collapse
Affiliation(s)
- Simone Baiardi
- Department of Biomedical and Neuromotor Sciences University of Bologna Bologna 40123 Italy
| | - Samir Abu-Rumeileh
- Department of Biomedical and Neuromotor Sciences University of Bologna Bologna 40123 Italy
| | - Marcello Rossi
- IRCCS Istituto delle Scienze Neurologiche di Bologna Bologna 40139 Italy
| | - Corrado Zenesini
- IRCCS Istituto delle Scienze Neurologiche di Bologna Bologna 40139 Italy
| | | | - Barbara Polischi
- IRCCS Istituto delle Scienze Neurologiche di Bologna Bologna 40139 Italy
| | - Sabina Capellari
- Department of Biomedical and Neuromotor Sciences University of Bologna Bologna 40123 Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna Bologna 40139 Italy
| | - Piero Parchi
- IRCCS Istituto delle Scienze Neurologiche di Bologna Bologna 40139 Italy.,Department of Experimental, Diagnostic and Specialty Medicine (DIMES) University of Bologna Bologna 40138 Italy
| |
Collapse
|
278
|
Molinuevo JL, Ayton S, Batrla R, Bednar MM, Bittner T, Cummings J, Fagan AM, Hampel H, Mielke MM, Mikulskis A, O'Bryant S, Scheltens P, Sevigny J, Shaw LM, Soares HD, Tong G, Trojanowski JQ, Zetterberg H, Blennow K. Current state of Alzheimer's fluid biomarkers. Acta Neuropathol 2018; 136:821-853. [PMID: 30488277 PMCID: PMC6280827 DOI: 10.1007/s00401-018-1932-x] [Citation(s) in RCA: 362] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/05/2018] [Accepted: 11/07/2018] [Indexed: 12/12/2022]
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disease with a complex and heterogeneous pathophysiology. The number of people living with AD is predicted to increase; however, there are no disease-modifying therapies currently available and none have been successful in late-stage clinical trials. Fluid biomarkers measured in cerebrospinal fluid (CSF) or blood hold promise for enabling more effective drug development and establishing a more personalized medicine approach for AD diagnosis and treatment. Biomarkers used in drug development programmes should be qualified for a specific context of use (COU). These COUs include, but are not limited to, subject/patient selection, assessment of disease state and/or prognosis, assessment of mechanism of action, dose optimization, drug response monitoring, efficacy maximization, and toxicity/adverse reactions identification and minimization. The core AD CSF biomarkers Aβ42, t-tau, and p-tau are recognized by research guidelines for their diagnostic utility and are being considered for qualification for subject selection in clinical trials. However, there is a need to better understand their potential for other COUs, as well as identify additional fluid biomarkers reflecting other aspects of AD pathophysiology. Several novel fluid biomarkers have been proposed, but their role in AD pathology and their use as AD biomarkers have yet to be validated. In this review, we summarize some of the pathological mechanisms implicated in the sporadic AD and highlight the data for several established and novel fluid biomarkers (including BACE1, TREM2, YKL-40, IP-10, neurogranin, SNAP-25, synaptotagmin, α-synuclein, TDP-43, ferritin, VILIP-1, and NF-L) associated with each mechanism. We discuss the potential COUs for each biomarker.
Collapse
Affiliation(s)
- José Luis Molinuevo
- BarcelonaBeta Brain Research Center, Fundació Pasqual Maragall, Universitat Pompeu Fabra, Barcelona, Spain
- Unidad de Alzheimer y otros trastornos cognitivos, Hospital Clinic-IDIBAPS, Barcelona, Spain
| | - Scott Ayton
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Richard Batrla
- Roche Centralised and Point of Care Solutions, Roche Diagnostics International, Rotkreuz, Switzerland
| | - Martin M Bednar
- Neuroscience Therapeutic Area Unit, Takeda Development Centre Americas Ltd, Cambridge, MA, USA
| | - Tobias Bittner
- Genentech, A Member of the Roche Group, Basel, Switzerland
| | - Jeffrey Cummings
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
| | - Anne M Fagan
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Harald Hampel
- AXA Research Fund and Sorbonne University Chair, Paris, France
- Sorbonne University, GRC No 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
- Brain and Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Paris, France
- Department of Neurology, Institute of Memory and Alzheimer's Disease (IM2A), Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| | - Michelle M Mielke
- Departments of Epidemiology and Neurology, Mayo Clinic, Rochester, MN, USA
| | | | - Sid O'Bryant
- Department of Pharmacology and Neuroscience; Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Philip Scheltens
- Department of Neurology and Alzheimer Center, VU University Medical Center, Amsterdam, The Netherlands
| | - Jeffrey Sevigny
- Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland
| | - Leslie M Shaw
- Department of Pathology and Laboratory Medicine, and Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, PA, USA
| | - Holly D Soares
- Clinical Development Neurology, AbbVie, North Chicago, IL, USA
| | | | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Mölndal Campus, Sahlgrenska University Hospital, 431 80, Mölndal, Sweden
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.
- Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Mölndal Campus, Sahlgrenska University Hospital, 431 80, Mölndal, Sweden.
| |
Collapse
|
279
|
Blennow K, Zetterberg H. Biomarkers for Alzheimer's disease: current status and prospects for the future. J Intern Med 2018; 284:643-663. [PMID: 30051512 DOI: 10.1111/joim.12816] [Citation(s) in RCA: 573] [Impact Index Per Article: 81.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Accumulating data from the clinical research support that the core Alzheimer's disease (AD) cerebrospinal fluid (CSF) biomarkers amyloid-β (Aβ42), total tau (T-tau), and phosphorylated tau (P-tau) reflect key elements of AD pathophysiology. Importantly, a large number of clinical studies very consistently show that these biomarkers contribute with diagnostically relevant information, also in the early disease stages. Recent technical developments have made it possible to measure these biomarkers using fully automated assays with high precision and stability. Standardization efforts have given certified reference materials for CSF Aβ42, with the aim to harmonize results between assay formats that would allow for uniform global reference limits and cut-off values. These encouraging developments have led to that the core AD CSF biomarkers have a central position in the novel diagnostic criteria for the disease and in the recent National Institute on Aging and Alzheimer's Association biological definition of AD. Taken together, this progress will likely serve as the basis for a more general introduction of these diagnostic tests in clinical routine practice. However, the heterogeneity of pathology in late-onset AD calls for an expansion of the AD CSF biomarker toolbox with additional biomarkers reflecting additional aspects of AD pathophysiology. One promising candidate is the synaptic protein neurogranin that seems specific for AD and predicts future rate of cognitive deterioration. Further, recent studies bring hope for easily accessible and cost-effective screening tools in the early diagnostic evaluation of patients with cognitive problems (and suspected AD) in primary care. In this respect, technical developments with ultrasensitive immunoassays and novel mass spectrometry techniques give promise of biomarkers to monitor brain amyloidosis (the Aβ42/40 or APP669-711/Aβ42 ratios) and neurodegeneration (tau and neurofilament light proteins) in plasma samples, but future studies are warranted to validate these promising results further.
Collapse
Affiliation(s)
- K Blennow
- Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden
| | - H Zetterberg
- Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden
| |
Collapse
|
280
|
Schauer SP, Mylott WR, Yuan M, Jenkins RG, Rodney Mathews W, Honigberg LA, Wildsmith KR. Preanalytical approaches to improve recovery of amyloid-β peptides from CSF as measured by immunological or mass spectrometry-based assays. ALZHEIMERS RESEARCH & THERAPY 2018; 10:118. [PMID: 30486870 PMCID: PMC6264029 DOI: 10.1186/s13195-018-0445-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 10/30/2018] [Indexed: 01/13/2023]
Abstract
Background Amyloid-β 1–42 (Aβ1–42) peptide is a well-established cerebrospinal fluid (CSF) biomarker for Alzheimer’s disease (AD). Reduced levels of Aβ1–42 are indicative of AD, but significant variation in the absolute concentrations of this analyte has been described for both healthy and diseased populations. Preanalytical factors such as storage tube type are reported to impact Aβ recovery and quantification accuracy. Using complementary immunological and mass spectrometry-based approaches, we identified and characterized preanalytical factors that influence measured concentrations of CSF Aβ peptides in stored samples. Methods CSF from healthy control subjects and patients with AD was aliquoted into polypropylene tubes at volumes of 0.1 ml and 0.5 ml. CSF Aβ1–42 concentrations were initially measured by immunoassay; subsequent determinations of CSF Aβ1–42, Aβ1–40, Aβ1–38, Aβ1–37, and Aβ1–34 concentrations were made with an absolute quantitative mass spectrometry assay. In a second study, CSF from healthy control subjects and patients with dementia was denatured with guanidine hydrochloride (GuHCl) at different stages of the CSF collection and aliquoting process and then measured with the mass spectrometry assay. Results Two distinct immunoassays demonstrated that CSF Aβ1–42 concentrations measured from 0.5-ml aliquots were higher than those from 0.1-ml aliquots. Tween-20 surfactant supplementation increased Aβ1–42 recovery but did not effectively resolve measured concentration differences associated with aliquot size. A CSF Aβ peptide mass spectrometry assay confirmed that Aβ peptide recovery was linked to sample volume. Unlike the immunoassay experiments, measured differences were consistently eliminated when aliquots were denatured in the original sample tube. Recovery from a panel of low-retention polypropylene tubes was assessed, and 1.5-ml Eppendorf LoBind® tubes were determined to be the least absorptive for Aβ1–42. A comparison of CSF collection and processing methods suggested that Aβ peptide recovery was improved by denaturing CSF earlier in the collection/aliquoting process and that the Aβ1–42/Aβ1–40 ratio was a useful method to reduce variability. Conclusions Analyte loss due to nonspecific sample tube adsorption is a significant preanalytical factor that can compromise the accuracy of CSF Aβ1–42 measurements. Sample denaturation during aliquoting increases recovery of Aβ peptides and improves measurement accuracy. The Aβ1–42/Aβ1–40 ratio can overcome some of the quantitative variability precipitated by preanalytical factors affecting recovery. Electronic supplementary material The online version of this article (10.1186/s13195-018-0445-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stephen P Schauer
- Division of Development Sciences, Department of OMNI Biomarker Development, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | | | - Moucun Yuan
- PPD® Laboratories, 2240 Dabney Road, Richmond, VA, 23230, USA
| | - Rand G Jenkins
- PPD® Laboratories, 2240 Dabney Road, Richmond, VA, 23230, USA
| | - W Rodney Mathews
- Division of Development Sciences, Department of OMNI Biomarker Development, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Lee A Honigberg
- Division of Development Sciences, Department of OMNI Biomarker Development, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Kristin R Wildsmith
- Division of Development Sciences, Department of OMNI Biomarker Development, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA.
| |
Collapse
|
281
|
Andreasson U, Kuhlmann J, Pannee J, Umek RM, Stoops E, Vanderstichele H, Matzen A, Vandijck M, Dauwe M, Leinenbach A, Rutz S, Portelius E, Zegers I, Zetterberg H, Blennow K. Commutability of the certified reference materials for the standardization of β-amyloid 1-42 assay in human cerebrospinal fluid: lessons for tau and β-amyloid 1-40 measurements. ACTA ACUST UNITED AC 2018; 56:2058-2066. [DOI: 10.1515/cclm-2018-0147] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 05/29/2018] [Indexed: 01/11/2023]
Abstract
Abstract
Background:
The core Alzheimer’s disease cerebrospinal fluid (CSF) biomarkers total tau (T-tau), phosphorylated tau (P-tau), β-amyloid 1-42 (Aβ42) and β-amyloid 1-40 (Aβ40) are increasing in importance and are now part of the research criteria for the diagnosis of the disease. The main aim of this study is to evaluate whether a set of certified reference materials (CRMs) are commutable for Aβ42 and to serve as a feasibility study for the other markers. This property is a prerequisite for the establishment of CRMs which will then be used by manufacturers to calibrate their assays against. Once the preanalytical factors have been standardized and proper selection criteria are available for subject cohorts this harmonization between methods will allow for universal cut-offs to be determined.
Methods:
Thirty-four individual CSF samples and three different CRMs where analyzed for T-tau, P-tau, Aβ42 and Aβ40, using up to seven different commercially available methods. For Aβ40 and Aβ42 a mass spectrometry-based procedure was also employed.
Results:
There were strong pairwise correlations between the different methods (Spearman’s ρ>0.92) for all investigated analytes and the CRMs were not distinguishable from the individual samples.
Conclusions:
This study shows that the CRMs are commutable for the different assays for Aβ42. For the other analytes the results show that it would be feasible to also produce CRMs for these. However, additional studies are needed as the concentration interval for the CRMs were selected based on Aβ42 concentrations only and did in general not cover satisfactory large concentration intervals for the other analytes.
Collapse
|
282
|
Mollenhauer B, Bowman FD, Drake D, Duong J, Blennow K, El-Agnaf O, Shaw LM, Masucci J, Taylor P, Umek RM, Dunty JM, Smith CL, Stoops E, Vanderstichele H, Schmid AW, Moniatte M, Zhang J, Kruse N, Lashuel HA, Teunissen C, Schubert T, Dave KD, Hutten SJ, Zetterberg H. Antibody-based methods for the measurement of α-synuclein concentration in human cerebrospinal fluid - method comparison and round robin study. J Neurochem 2018; 149:126-138. [PMID: 30125936 PMCID: PMC6587944 DOI: 10.1111/jnc.14569] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/06/2018] [Accepted: 08/15/2018] [Indexed: 01/12/2023]
Abstract
α‐Synuclein is the major component of Lewy bodies and a candidate biomarker for neurodegenerative diseases in which Lewy bodies are common, including Parkinson's disease and dementia with Lewy bodies. A large body of literature suggests that these disorders are characterized by reduced concentrations of α‐synuclein in cerebrospinal fluid (CSF), with overlapping concentrations compared to healthy controls and variability across studies. Several reasons can account for this variability, including technical ones, such as inter‐assay and inter‐laboratory variation (reproducibility). We compared four immunochemical methods for the quantification of α‐synuclein concentration in 50 unique CSF samples. All methods were designed to capture most of the existing α‐synuclein forms in CSF (‘total’ α‐synuclein). Each of the four methods showed high analytical precision, excellent correlation between laboratories (R2 0.83–0.99), and good correlation with each other (R2 0.64–0.93), although the slopes of the regression lines were different between the four immunoassays. The use of common reference CSF samples decreased the differences in α‐synuclein concentration between detection methods and technologies. Pilot data on an immunoprecipitation mass spectrometry (IP‐MS) method is also presented. Our results suggest that the four immunochemical methods and the IP‐MS method measure similar forms of α‐synuclein and that a common reference material would allow harmonization of results between immunoassays. ![]()
Collapse
Affiliation(s)
- Brit Mollenhauer
- Paracelsus-Elena-Klinik, Kassel, Germany.,Department of Neurology, University Medical Center, Goettingen, Germany
| | - Frederick DuBois Bowman
- Department of Biostatistics, Columbia University, Mailman School of Public Health, New York City, New York, USA
| | - Daniel Drake
- Department of Biostatistics, Columbia University, Mailman School of Public Health, New York City, New York, USA
| | - Jimmy Duong
- Department of Biostatistics, Columbia University, Mailman School of Public Health, New York City, New York, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Omar El-Agnaf
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), and College of Science and Engineering, HBKU, Education City, Qatar Foundation, Doha, Qatar
| | - Leslie M Shaw
- Department of Pathology & Laboratory Medicine and Center for Neurodegenerative Disease Research, Institute on Aging, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | - Adrian W Schmid
- Proteomics Core Facility, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Marc Moniatte
- Proteomics Core Facility, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Jing Zhang
- University of Washington, Seattle, WA, USA
| | - Niels Kruse
- Institute of Neuropathology, University Medical Center, Goettingen, Germany
| | - Hilal A Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, Institute of Physics of Biological Systems, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | | | | | - Kuldip D Dave
- Michael J. Fox Foundation for Parkinson's Research, New York City, New York, USA
| | - Samantha J Hutten
- Michael J. Fox Foundation for Parkinson's Research, New York City, New York, USA
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Molecular Neuroscience, UCL Institute of Neurology, Queens Square, London, UK.,UK Dementia Research Institute at UCL, London, UK
| |
Collapse
|
283
|
Khalid S, Zahid MA, Ali H, Kim YS, Khan S. Biaryl scaffold-focused virtual screening for anti-aggregatory and neuroprotective effects in Alzheimer's disease. BMC Neurosci 2018; 19:74. [PMID: 30424732 PMCID: PMC6234579 DOI: 10.1186/s12868-018-0472-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 11/03/2018] [Indexed: 02/06/2023] Open
Abstract
Background Alzheimer’s disease (AD) is a primary cause of dementia in ageing population affecting more than 35 million people around the globe. It is a chronic neurodegenerative disease caused by defected folding and aggregation of amyloid beta (Aβ) protein. Aβ is formed by the cleavage of membrane embedded amyloid precursor protein (APP) by using enzyme ‘transmembrane aspartyl protease, β-secretase’. Inhibition of β-secretase is a viable strategy to prevent neurotoxicity in AD. Another strategy in the treatment of AD is inhibition of acetylcholinesterase. This inhibition reduces the degradation of acetylcholine and temporarily restores the cholinergic function of neurons and improves cognitive function. Monoamine oxidase and higher glutamate levels are also found to be linked with Aβ peptide related oxidative stress. Oxidative stress leads to reduced activity of glutamate synthase resulting in significantly higher level of glutamate in brain. The aim of this study is to perform in silico screening of a virtual library of biaryl scaffold containing compounds potentially used for the treatment of AD. Screening was done against the primary targets of AD therapeutics, acetylcholinesterase, β-secretase (BACE1), Monoamine oxidases (MAO) and N-Methyl-D-aspartate (NMDA) receptor. Compounds were screened for their inhibitory potential by employing molecular docking approach using AutoDock vina. Binding energy scores were embodied in the heatmap to display varies strengths of interactions of the ligands targeting AD. Results Several ligands showed notable interaction with at least two targets, but the strong interaction with all the targets is shown by very few ligands. The pharmacokinetics of the interacting ligands was also predicted. The interacting ligands have good drug-likeness and brain availability essential for drugs with intracranial targets. Conclusion These results suggest that biaryl scaffold may be pliable to drug development for neuroprotection in AD and that the synthesis of further analogues to optimize these properties should be considered. Electronic supplementary material The online version of this article (10.1186/s12868-018-0472-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sidra Khalid
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Muhammad Ammar Zahid
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.,Department of Biotechnology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Hussain Ali
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Yeong S Kim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Salman Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
284
|
Brinkmalm A, Portelius E, Brinkmalm G, Pannee J, Dahlén R, Gobom J, Blennow K, Zetterberg H. Fluid-based proteomics targeted on pathophysiological processes and pathologies in neurodegenerative diseases. J Neurochem 2018; 151:417-434. [PMID: 30238462 DOI: 10.1111/jnc.14594] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/05/2018] [Accepted: 09/15/2018] [Indexed: 12/12/2022]
Abstract
Neurodegenerative dementias constitute a broad group of diseases in which abnormally folded proteins accumulate in specific brain regions and result in tissue reactions that eventually cause neuronal dysfunction and degeneration. Depending on where in the brain this happens, symptoms appear which may be used to classify the disorders on clinical grounds. However, brain changes in neurodegenerative dementias start to accumulate many years prior to symptom onset and there is a poor correlation between the clinical picture and what pathology that is the most likely to cause it. Thus, novel drug candidates having disease-modifying effects that is targeting the underlying pathology and changes the course of the disease needs to be defined using objective biomarker-based measures since the clinical symptoms are often non-specific and overlap between different disorders. Furthermore, the treatment should ideally be initiated as soon as symptoms are evident or when biomarkers confirm an underlying pathology (pre-clinical phase of the disease) to reduce irreversible damage to, for example, neurons, synapses and axons. Clinical trials in the pre-clinical phase bring a greater importance to biomarkers since by definition the clinical effects are difficult or slow to discern in a population that is not yet clinically affected. Here, we discuss neuropathological changes that may underlie neurodegenerative dementias, including how they can be detected and quantified using currently available biofluid-based biomarkers and how more of them could be identified using targeted proteomics approaches. This article is part of the special issue "Proteomics".
Collapse
Affiliation(s)
- Ann Brinkmalm
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Erik Portelius
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Gunnar Brinkmalm
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Josef Pannee
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Rahil Dahlén
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Johan Gobom
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK.,UK Dementia Research Institute at UCL, London, UK
| |
Collapse
|
285
|
Casaletto KB, Elahi FM, Fitch R, Walters S, Fox E, Staffaroni AM, Bettcher BM, Zetterberg H, Karydas A, Rojas JC, Boxer AL, Kramer JH. A comparison of biofluid cytokine markers across platform technologies: Correspondence or divergence? Cytokine 2018; 111:481-489. [PMID: 29908923 PMCID: PMC6289877 DOI: 10.1016/j.cyto.2018.05.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/12/2018] [Accepted: 05/29/2018] [Indexed: 11/25/2022]
Abstract
BACKGROUND Quantification of biofluid cytokines is a rapidly growing area of translational research. However, comparability across the expanding number of available assay platforms for detection of the same proteins remains to be determined. We aimed to directly compare a panel of commonly measured cytokines in plasma of typically aging adults across two high sensitivity quantification platforms, Meso Scale Discovery high performance electrochemiluminiscence (HPE) and single-molecule immunosorbent assays (Simoa) by Quanterix. METHODS 57 community-dwelling older adults completed a blood draw, neuropsychological assessment, and brain MRI as part of a healthy brain aging study. Plasma samples from the same draw dates were analyzed for IL-10, IP-10, IL-6, TNFα, and IL-1β on HPE and Simoa, separately. Reliable detectability (coefficient of variance (CV) < 20% and outliers 3 interquartiles above the median removed), intra-assay precision, absolute concentrations, reproducibility across platforms, and concurrent associations with external variables of interest (e.g., demographics, peripheral markers of vascular health, and brain health) were examined. RESULTS The proportion of cytokines reliably measured on HPE (87.7-93.0%) and Simoa (75.4-93.0%) did not differ (ps > 0.32), with the exception of IL-1β which was only reliably measured using Simoa (68.4%). On average, CVs were acceptable at <8% across both platforms. Absolute measured concentrations were higher using Simoa for IL-10, IL-6, and TNFα (ps < 0.05). HPE and Simoa shared only small-to-moderate proportions of variance with one another on the same cytokine proteins (range: r = 0.26 for IL-10 to r = 0.64 for IL-6), though platform agreement did not dependent on cytokine concentrations. Cytokine ratios within each platform demonstrated similar relative patterns of up- and down-regulation across HPE and Simoa, though still significantly differed (ps < 0.001). Supporting concurrent validity, all 95% confidence intervals of the correlations between cytokines and external variables overlapped between the two platforms. Moreover, most associations were in expected directions and consistently so across platforms (e.g., IL-6 and TNFα), though with several notable exceptions for IP-10 and IL-10. CONCLUSIONS HPE and Simoa showed comparable detectability and intra-assay precision measuring a panel of commonly examined cytokine proteins, with the exception of IL-1β which was not reliably detected on HPE. However, Simoa demonstrated overall higher concentrations and the two platforms did not show agreement when directly compared against one another. Relative cytokine ratios and associations demonstrated similar patterns across platforms. Absolute cytokine concentrations may not be directly comparable across platforms, may be analyte dependent, and interpretation may be best limited to discussion of relative associations.
Collapse
Affiliation(s)
- K B Casaletto
- Memory and Aging Center, University of California, San Francisco, Department of Neurology, 675 Nelson Rising Lane, San Francisco, CA 94158, United States.
| | - F M Elahi
- Memory and Aging Center, University of California, San Francisco, Department of Neurology, 675 Nelson Rising Lane, San Francisco, CA 94158, United States
| | - R Fitch
- Memory and Aging Center, University of California, San Francisco, Department of Neurology, 675 Nelson Rising Lane, San Francisco, CA 94158, United States
| | - S Walters
- Memory and Aging Center, University of California, San Francisco, Department of Neurology, 675 Nelson Rising Lane, San Francisco, CA 94158, United States
| | - E Fox
- Memory and Aging Center, University of California, San Francisco, Department of Neurology, 675 Nelson Rising Lane, San Francisco, CA 94158, United States
| | - A M Staffaroni
- Memory and Aging Center, University of California, San Francisco, Department of Neurology, 675 Nelson Rising Lane, San Francisco, CA 94158, United States
| | - B M Bettcher
- University of Colorado, Denver Anschutz Medical Center, 13001 E 17th Fl, Aurora, CO 80045, United States
| | - H Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Sahlgrenska University Hospital, SE-43180 Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, SE-43180 Mölndal, Sweden; Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, United Kingdom; UK Dementia Research Institute at UCL, London WC1N 3BG, United Kingdom
| | - A Karydas
- Memory and Aging Center, University of California, San Francisco, Department of Neurology, 675 Nelson Rising Lane, San Francisco, CA 94158, United States
| | - J C Rojas
- Memory and Aging Center, University of California, San Francisco, Department of Neurology, 675 Nelson Rising Lane, San Francisco, CA 94158, United States
| | - A L Boxer
- Memory and Aging Center, University of California, San Francisco, Department of Neurology, 675 Nelson Rising Lane, San Francisco, CA 94158, United States
| | - J H Kramer
- Memory and Aging Center, University of California, San Francisco, Department of Neurology, 675 Nelson Rising Lane, San Francisco, CA 94158, United States
| |
Collapse
|
286
|
Abnormal CSF amyloid-β42 and tau levels in hip fracture patients without dementia. PLoS One 2018; 13:e0204695. [PMID: 30252906 PMCID: PMC6155555 DOI: 10.1371/journal.pone.0204695] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 09/12/2018] [Indexed: 11/29/2022] Open
Abstract
Background There is strong association of Alzheimer’s disease (AD) pathology with gait disorder and falls in older adults without dementia. The goal of the study was to examine the prevalence and severity of AD pathology in older adults without dementia who fall and sustain hip fracture. Methods Cerebrospinal fluid (CSF) was obtained from 168 hip fracture patients. CSF Aβ42/40 ratio, p-tau, and t-tau measures were dichotomized into normal vs. abnormal, and categorized according to the A/T/N classification. Results Among the hip fracture patients, 88.6% of the cognitively normal (Clinical Dementia Rating-CDR 0; n = 70) and 98.8% with mild cognitive impairment (CDR 0.5; n = 81) fell in the abnormal biomarker categories by the A/T/N classification. Conclusions A large proportion of older hip fracture patients have CSF evidence of AD pathology. Preoperative determination of AD biomarkers may play a crucial role in identifying persons without dementia who have underlying AD pathology in perioperative settings.
Collapse
|
287
|
Sancesario GM, Bernardini S. Diagnosis of neurodegenerative dementia: where do we stand, now? ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:340. [PMID: 30306079 DOI: 10.21037/atm.2018.08.04] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
After many years of large efforts made for understanding the pathogenesis of dementias, the early diagnosis of these degenerative diseases remains an open challenge. Alzheimer's disease (AD) represents the most common form of dementia, followed by Lewy body disease and frontotemporal degeneration. Actually, different pathological processes can determine similar and overlapping clinical syndrome. To detect in vivo the pathological process underlying progressive cognitive and behavior impairment, the Internationals guidelines recommend the use of biological and topographical markers, which can reflect neuropathological modifications in brain. In cerebrospinal fluid (CSF), decrease of amyloid beta 1-42 (Aβ42) and a low ratio of Aβ42 with amyloid beta 1-40 (Aβ42/Aβ40), together with the increase of both total tau protein (t-tau) and phosphorylated tau (p-tau), contribute to define the "Alzheimer's signature". This review points out on the evolution of the concept for early diagnosis of AD, and on the current use of CSF proteins for research purposes and in clinical setting. Then, we discuss the limitations and drawbacks in wide application of CSF biomarkers for diagnosing degenerative dementias, and on the role of laboratory medicine to convey these biomarkers from "research" toward "clinical practice".
Collapse
Affiliation(s)
- Giulia M Sancesario
- IRCCS Santa Lucia Foundation, Department of Clinical and Behavioural Neurology, Rome, Italy
| | - Sergio Bernardini
- Department of Experimental Medicine, Tor Vergata University General Hospital, Rome, Italy
| |
Collapse
|
288
|
Data driven diagnostic classification in Alzheimer's disease based on different reference regions for normalization of PiB-PET images and correlation with CSF concentrations of Aβ species. NEUROIMAGE-CLINICAL 2018; 20:603-610. [PMID: 30186764 PMCID: PMC6120605 DOI: 10.1016/j.nicl.2018.08.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 07/01/2018] [Accepted: 08/17/2018] [Indexed: 12/13/2022]
Abstract
Positron emission tomography (PET) neuroimaging with the Pittsburgh Compound_B (PiB) is widely used to assess amyloid plaque burden. Standard quantification approaches normalize PiB-PET by mean cerebellar gray matter uptake. Previous studies suggested similar pons and white-matter uptake in Alzheimer's disease (AD) and healthy controls (HC), but lack exhaustive comparison of normalization across the three regions, with data-driven diagnostic classification. We aimed to compare the impact of distinct reference regions in normalization, measured by data-driven statistical analysis, and correlation with cerebrospinal fluid (CSF) amyloid β (Aβ) species concentrations. 243 individuals with clinical diagnosis of AD, HC, mild cognitive impairment (MCI) and other dementias, from the Biomarkers for Alzheimer's/Parkinson's Disease (BIOMARKAPD) initiative were included. PiB-PET images and CSF concentrations of Aβ38, Aβ40 and Aβ42 were submitted to classification using support vector machines. Voxel-wise group differences and correlations between normalized PiB-PET images and CSF Aβ concentrations were calculated. Normalization by cerebellar gray matter and pons yielded identical classification accuracy of AD (accuracy-96%, sensitivity-96%, specificity-95%), and significantly higher than Aβ concentrations (best accuracy 91%). Normalization by the white-matter showed decreased extent of statistically significant multivoxel patterns and was the only method not outperforming CSF biomarkers, suggesting statistical inferiority. Aβ38 and Aβ40 correlated negatively with PiB-PET images normalized by the white-matter, corroborating previous observations of correlations with non-AD-specific subcortical changes in white-matter. In general, when using the pons as reference region, higher voxel-wise group differences and stronger correlation with Aβ42, the Aβ42/Aβ40 or Aβ42/Aβ38 ratios were found compared to normalization based on cerebellar gray matter. Direct multivariate comparison of distinct reference regions in normalization of PET amyloid markers Using the pons as ROI, higher voxel-wise group differences emerge Using the pons as ROIs stronger correlation with Aβ42, the Aβ42/Aβ40 or Aβ42/Aβ38 ratios were found. Evidence for statistical inferiority of CSF biomarkers Aβ38 and Aβ40 correlated negatively with PiB-PET white-matter normalized images.
Collapse
|
289
|
Janelidze S, Mattsson N, Stomrud E, Lindberg O, Palmqvist S, Zetterberg H, Blennow K, Hansson O. CSF biomarkers of neuroinflammation and cerebrovascular dysfunction in early Alzheimer disease. Neurology 2018; 91:e867-e877. [PMID: 30054439 PMCID: PMC6133624 DOI: 10.1212/wnl.0000000000006082] [Citation(s) in RCA: 237] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 05/29/2018] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE To measure CSF levels of biomarkers reflecting microglia and astrocytes activation, neuroinflammation, and cerebrovascular changes and study their associations with the core biomarkers of Alzheimer disease (AD) pathology (β-amyloid [Aβ] and tau), structural imaging correlates, and clinical disease progression over time. METHODS The study included cognitively unimpaired elderly (n = 508), patients with mild cognitive impairment (MCI, n = 256), and patients with AD dementia (n = 57) from the longitudinal Swedish BioFINDER cohort. CSF samples were analyzed for YKL-40, interleukin (IL)-6, IL-7, IL-8, IL-15, IP-10, monocyte chemoattractant protein 1, intercellular adhesion molecule 1 (ICAM-1), vascular adhesion molecule 1 (VCAM-1), placental growth factor, and fms-related tyrosine kinase 1 (Flt-1). MRI data were available from 677 study participants. Longitudinal clinical assessments were conducted in control individuals and patients with MCI (mean follow-up 3 years, range 1-6 years). RESULTS CSF levels of YKL-40, ICAM-1, VCAM-1, IL-15, and Flt-1 were increased during the preclinical, prodromal, and dementia stages of AD. High levels of these biomarkers were associated with increased CSF levels of total tau, with the associations, especially for YKL-40, being stronger in Aβ-positive individuals. The results were similar for associations between phosphorylated tau and YKL-40, ICAM-1, and VCAM-1. High levels of the biomarkers were also associated with cortical thinning (primarily in the precuneus and superior parietal regions) and with subsequent cognitive deterioration in patients without dementia as measured with Mini-Mental State Examination (YKL-40) and Clinical Dementia Rating Sum of Boxes (YKL-40, ICAM-1, VCAM-1 and IL-15). Finally, higher levels of CSF YKL-40, ICAM-1, and Flt-1 increased risk of development of AD dementia in patients without dementia. CONCLUSIONS Neuroinflammation and cerebrovascular dysfunction are early events occurring already at presymptomatic stages of AD and contribute to disease progression.
Collapse
Affiliation(s)
- Shorena Janelidze
- From the Clinical Memory Research Unit (S.J., N.M., E.S., O.L., S.P., O.H.), Department of Clinical Sciences, Lund University; Department of Neurology (N.M., S.P.) and Memory Clinic (E.S., O.H.), Skåne University Hospital; Institute of Neuroscience and Physiology (H.Z., K.B.), Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Sweden; Department of Molecular Neuroscience (H.Z.), UCL Institute of Neurology; and UK Dementia Research Institute at UCL (H.Z.), London
| | - Niklas Mattsson
- From the Clinical Memory Research Unit (S.J., N.M., E.S., O.L., S.P., O.H.), Department of Clinical Sciences, Lund University; Department of Neurology (N.M., S.P.) and Memory Clinic (E.S., O.H.), Skåne University Hospital; Institute of Neuroscience and Physiology (H.Z., K.B.), Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Sweden; Department of Molecular Neuroscience (H.Z.), UCL Institute of Neurology; and UK Dementia Research Institute at UCL (H.Z.), London
| | - Erik Stomrud
- From the Clinical Memory Research Unit (S.J., N.M., E.S., O.L., S.P., O.H.), Department of Clinical Sciences, Lund University; Department of Neurology (N.M., S.P.) and Memory Clinic (E.S., O.H.), Skåne University Hospital; Institute of Neuroscience and Physiology (H.Z., K.B.), Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Sweden; Department of Molecular Neuroscience (H.Z.), UCL Institute of Neurology; and UK Dementia Research Institute at UCL (H.Z.), London
| | - Olof Lindberg
- From the Clinical Memory Research Unit (S.J., N.M., E.S., O.L., S.P., O.H.), Department of Clinical Sciences, Lund University; Department of Neurology (N.M., S.P.) and Memory Clinic (E.S., O.H.), Skåne University Hospital; Institute of Neuroscience and Physiology (H.Z., K.B.), Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Sweden; Department of Molecular Neuroscience (H.Z.), UCL Institute of Neurology; and UK Dementia Research Institute at UCL (H.Z.), London
| | - Sebastian Palmqvist
- From the Clinical Memory Research Unit (S.J., N.M., E.S., O.L., S.P., O.H.), Department of Clinical Sciences, Lund University; Department of Neurology (N.M., S.P.) and Memory Clinic (E.S., O.H.), Skåne University Hospital; Institute of Neuroscience and Physiology (H.Z., K.B.), Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Sweden; Department of Molecular Neuroscience (H.Z.), UCL Institute of Neurology; and UK Dementia Research Institute at UCL (H.Z.), London
| | - Henrik Zetterberg
- From the Clinical Memory Research Unit (S.J., N.M., E.S., O.L., S.P., O.H.), Department of Clinical Sciences, Lund University; Department of Neurology (N.M., S.P.) and Memory Clinic (E.S., O.H.), Skåne University Hospital; Institute of Neuroscience and Physiology (H.Z., K.B.), Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Sweden; Department of Molecular Neuroscience (H.Z.), UCL Institute of Neurology; and UK Dementia Research Institute at UCL (H.Z.), London
| | - Kaj Blennow
- From the Clinical Memory Research Unit (S.J., N.M., E.S., O.L., S.P., O.H.), Department of Clinical Sciences, Lund University; Department of Neurology (N.M., S.P.) and Memory Clinic (E.S., O.H.), Skåne University Hospital; Institute of Neuroscience and Physiology (H.Z., K.B.), Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Sweden; Department of Molecular Neuroscience (H.Z.), UCL Institute of Neurology; and UK Dementia Research Institute at UCL (H.Z.), London
| | - Oskar Hansson
- From the Clinical Memory Research Unit (S.J., N.M., E.S., O.L., S.P., O.H.), Department of Clinical Sciences, Lund University; Department of Neurology (N.M., S.P.) and Memory Clinic (E.S., O.H.), Skåne University Hospital; Institute of Neuroscience and Physiology (H.Z., K.B.), Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Sweden; Department of Molecular Neuroscience (H.Z.), UCL Institute of Neurology; and UK Dementia Research Institute at UCL (H.Z.), London.
| |
Collapse
|
290
|
Doecke JD, Rembach A, Villemagne VL, Varghese S, Rainey-Smith S, Sarros S, Evered LA, Fowler CJ, Pertile KK, Rumble RL, Trounson B, Taddei K, Laws SM, Macaulay SL, Bush AI, Ellis KA, Martins R, Ames D, Silbert B, Vanderstichele H, Masters CL, Darby DG, Li QX, Collins S. Concordance Between Cerebrospinal Fluid Biomarkers with Alzheimer's Disease Pathology Between Three Independent Assay Platforms. J Alzheimers Dis 2018; 61:169-183. [PMID: 29171991 DOI: 10.3233/jad-170128] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND To enhance the accuracy of clinical diagnosis for Alzheimer's disease (AD), pre-mortem biomarkers have become increasingly important for diagnosis and for participant recruitment in disease-specific treatment trials. Cerebrospinal fluid (CSF) biomarkers provide a low-cost alternative to positron emission tomography (PET) imaging for in vivo quantification of different AD pathological hallmarks in the brains of affected subjects; however, consensus around the best platform, most informative biomarker and correlations across different methodologies are controversial. OBJECTIVE Assessing levels of Aβ-amyloid and tau species determined using three different versions of immunoassays, the current study explored the ability of CSF biomarkers to predict PET Aβ-amyloid (32 Aβ-amyloid-and 45 Aβ-amyloid+), as well as concordance between CSF biomarker levels and PET Aβ-amyloid imaging. METHODS Prediction and concordance analyses were performed using a sub-cohort of 77 individuals (48 healthy controls, 15 with mild cognitive impairment, and 14 with AD) from the Australian Imaging Biomarker and Lifestyle study of aging. RESULTS Across all three platforms, the T-tau/Aβ42 ratio biomarker had modestly higher correlation with SUVR/BeCKeT (ρ= 0.69-0.8) as compared with Aβ42 alone (ρ= 0.66-0.75). Differences in CSF biomarker levels between the PET Aβ-amyloid-and Aβ-amyloid+ groups were strongest for the Aβ42/Aβ40 and T-tau/Aβ42 ratios (p < 0.0001); however, comparison of predictive models for PET Aβ-amyloid showed no difference between Aβ42 alone and the T-tau/Aβ42 ratio. CONCLUSION This study confirms strong concordance between CSF biomarkers and PET Aβ-amyloid status is independent of immunoassay platform, supporting their utility as biomarkers in clinical practice for the diagnosis of AD and for participant enrichment in clinical trials.
Collapse
Affiliation(s)
- James D Doecke
- CSIRO Health and Biosecurity/Australian e-Health Research Centre, Brisbane, QLD, Australia.,Cooperative Research Centre for Mental Health, Parkville, VIC, Australia
| | - Alan Rembach
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, VIC, Australia
| | - Victor L Villemagne
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, VIC, Australia.,Department of Nuclear Medicine and Centre for PET, Austin Health, Heidelberg, VIC, Australia
| | - Shiji Varghese
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, VIC, Australia.,National Dementia Diagnostics Laboratory, The University of Melbourne, VIC, Australia
| | - Stephanie Rainey-Smith
- Sir James McCusker Alzheimer's Disease Research Unit (Hollywood Private Hospital), Perth, WA, Australia
| | - Shannon Sarros
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, VIC, Australia.,National Dementia Diagnostics Laboratory, The University of Melbourne, VIC, Australia
| | - Lisbeth A Evered
- Department of Anaesthesia and Perioperative Pain Medicine, Centre for Anaesthesia and Cognitive Function, St Vincent's Hospital, Melbourne, Australia
| | - Christopher J Fowler
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, VIC, Australia
| | - Kelly K Pertile
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, VIC, Australia
| | - Rebecca L Rumble
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, VIC, Australia
| | - Brett Trounson
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, VIC, Australia
| | - Kevin Taddei
- Sir James McCusker Alzheimer's Disease Research Unit (Hollywood Private Hospital), Perth, WA, Australia
| | - Simon M Laws
- Sir James McCusker Alzheimer's Disease Research Unit (Hollywood Private Hospital), Perth, WA, Australia
| | - S Lance Macaulay
- CSIRO Health and Biosecurity/Australian e-Health Research Centre, Brisbane, QLD, Australia
| | - Ashley I Bush
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, VIC, Australia
| | - Kathryn A Ellis
- Academic Unit for Psychiatry of Old Age, The University of Melbourne, Melbourne, Australia
| | - Ralph Martins
- Sir James McCusker Alzheimer's Disease Research Unit (Hollywood Private Hospital), Perth, WA, Australia
| | - David Ames
- Academic Unit for Psychiatry of Old Age, The University of Melbourne, Melbourne, Australia
| | - Brendan Silbert
- Department of Anaesthesia and Perioperative Pain Medicine, Centre for Anaesthesia and Cognitive Function, St Vincent's Hospital, Melbourne, Australia
| | | | - Colin L Masters
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, VIC, Australia.,National Dementia Diagnostics Laboratory, The University of Melbourne, VIC, Australia
| | - David G Darby
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, VIC, Australia
| | - Qiao-Xin Li
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, VIC, Australia.,National Dementia Diagnostics Laboratory, The University of Melbourne, VIC, Australia
| | - Steven Collins
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, VIC, Australia.,Department of Medicine (RMH), The University of Melbourne, Parkville, Australia.,National Dementia Diagnostics Laboratory, The University of Melbourne, VIC, Australia
| | | |
Collapse
|
291
|
Effects of APOE ε4 on neuroimaging, cerebrospinal fluid biomarkers, and cognition in prodromal Alzheimer's disease. Neurobiol Aging 2018; 71:81-90. [PMID: 30107289 DOI: 10.1016/j.neurobiolaging.2018.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 06/06/2018] [Accepted: 07/04/2018] [Indexed: 01/06/2023]
Abstract
Apolipoprotein (APOE) ε4 is a major genetic risk factor for Alzheimer's disease (AD), but its importance for the clinical and biological heterogeneity in AD is unclear, particularly at the prodromal stage. We analyzed 151 prodromal AD patients (44 APOE ε4-negative and 107 APOE ε4-positive) from the BioFINDER study. We tested cognition, 18F-flutemetamol β-amyloid (Aβ) positron emission tomography, cerebrospinal fluid biomarkers of Aβ, tau and neurodegeneration, and magnetic resonance imaging of white matter pathology and brain structure. Despite having similar cortical Aβ-load and baseline global cognition (mini mental state examination), APOE ε4-negative prodromal AD had more nonamnestic cognitive impairment, higher cerebrospinal fluid levels of Aβ-peptides and neuronal injury biomarkers, more white matter pathology, more cortical atrophy, and faster decline of mini mental state examination, compared to APOE ε4-positive prodromal AD. The absence of APOE ε4 is associated with an atypical phenotype of prodromal AD. This suggests that APOE ε4 may impact both the diagnostics of AD in early stages and potentially also effects of disease-modifying treatments.
Collapse
|
292
|
Merluzzi AP, Carlsson CM, Johnson SC, Schindler SE, Asthana S, Blennow K, Zetterberg H, Bendlin BB. Neurodegeneration, synaptic dysfunction, and gliosis are phenotypic of Alzheimer dementia. Neurology 2018; 91:e436-e443. [PMID: 29959263 DOI: 10.1212/wnl.0000000000005901] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 04/27/2018] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE To test the hypothesis that cognitively unimpaired individuals with Alzheimer disease (AD) neuropathology differ from individuals with AD dementia on biomarkers of neurodegeneration, synaptic dysfunction, and glial activation. METHODS In a cross-sectional study, adult participants >70 years old (n = 79, age 77.1 ± 5.3 years) underwent comprehensive cognitive evaluation and CSF collection, which was assayed for markers of amyloid, phosphorylated tau (p-tau), neurodegeneration (neurofilament light protein [NFL] and total tau), synaptic dysfunction (neurogranin), and glial activation (chitinase-3-like protein 1 [YKL-40]). Participants were divided into 3 groups based on diagnosis and p-tau/β-amyloid42 (Aβ42): those with low p-tau/Aβ42 and unimpaired cognition were classified as controls (n = 25); those with high p-tau/Aβ42 diagnosed with AD-dementia or AD-mild cognitive impairment were classified as AD-Dementia (n = 40); and those with high p-tau/Aβ42 but unimpaired cognition were classified as mismatches (n = 14). A similar, secondary analysis was performed with no age exclusion criteria (n = 411). RESULTS In both the primary and secondary analyses, biomarker levels between groups were compared with the use of analysis of covariance while controlling for age and demographic variables. Despite p-tau/Aβ42 and Aβ42/Aβ40 levels comparable to those of the AD-Dementia group, mismatches had significantly lower levels of NFL and total tau. While not significantly lower than the AD-Dementia group on YKL-40 and neurogranin, mismatches were also not significantly different from controls. CONCLUSIONS These results provide evidence that, in the absence of significant neurodegenerative processes, individuals who harbor AD neuropathology may remain cognitively unimpaired. This finding provides insight into the biological processes phenotypic of dementia and supports monitoring multiple biomarkers in individuals positive for AD neuropathology.
Collapse
Affiliation(s)
- Andrew P Merluzzi
- From the Department of Medicine (A.P.M., C.M.C., S.C.J., S.A., B.B.B.), Wisconsin Alzheimer's Disease Research Center, and Neuroscience and Public Policy Program (A.P.M.), University of Wisconsin; Geriatric Research Education and Clinical Center (C.M.C., S.C.J., S.A.), William S. Middleton Memorial Veteran's Hospital; Wisconsin Alzheimer's Institute (S.C.J.), Madison; Department of Neurology (S.E.S.), Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO; Department of Psychiatry and Neurochemistry (K.B., H.Z.), Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital, Mölndal, Sweden; Institute of Neurology (H.Z.), University College London, Queen Square; and UK Dementia Research Institute (H.Z.), London.
| | - Cynthia M Carlsson
- From the Department of Medicine (A.P.M., C.M.C., S.C.J., S.A., B.B.B.), Wisconsin Alzheimer's Disease Research Center, and Neuroscience and Public Policy Program (A.P.M.), University of Wisconsin; Geriatric Research Education and Clinical Center (C.M.C., S.C.J., S.A.), William S. Middleton Memorial Veteran's Hospital; Wisconsin Alzheimer's Institute (S.C.J.), Madison; Department of Neurology (S.E.S.), Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO; Department of Psychiatry and Neurochemistry (K.B., H.Z.), Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital, Mölndal, Sweden; Institute of Neurology (H.Z.), University College London, Queen Square; and UK Dementia Research Institute (H.Z.), London
| | - Sterling C Johnson
- From the Department of Medicine (A.P.M., C.M.C., S.C.J., S.A., B.B.B.), Wisconsin Alzheimer's Disease Research Center, and Neuroscience and Public Policy Program (A.P.M.), University of Wisconsin; Geriatric Research Education and Clinical Center (C.M.C., S.C.J., S.A.), William S. Middleton Memorial Veteran's Hospital; Wisconsin Alzheimer's Institute (S.C.J.), Madison; Department of Neurology (S.E.S.), Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO; Department of Psychiatry and Neurochemistry (K.B., H.Z.), Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital, Mölndal, Sweden; Institute of Neurology (H.Z.), University College London, Queen Square; and UK Dementia Research Institute (H.Z.), London
| | - Suzanne E Schindler
- From the Department of Medicine (A.P.M., C.M.C., S.C.J., S.A., B.B.B.), Wisconsin Alzheimer's Disease Research Center, and Neuroscience and Public Policy Program (A.P.M.), University of Wisconsin; Geriatric Research Education and Clinical Center (C.M.C., S.C.J., S.A.), William S. Middleton Memorial Veteran's Hospital; Wisconsin Alzheimer's Institute (S.C.J.), Madison; Department of Neurology (S.E.S.), Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO; Department of Psychiatry and Neurochemistry (K.B., H.Z.), Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital, Mölndal, Sweden; Institute of Neurology (H.Z.), University College London, Queen Square; and UK Dementia Research Institute (H.Z.), London
| | - Sanjay Asthana
- From the Department of Medicine (A.P.M., C.M.C., S.C.J., S.A., B.B.B.), Wisconsin Alzheimer's Disease Research Center, and Neuroscience and Public Policy Program (A.P.M.), University of Wisconsin; Geriatric Research Education and Clinical Center (C.M.C., S.C.J., S.A.), William S. Middleton Memorial Veteran's Hospital; Wisconsin Alzheimer's Institute (S.C.J.), Madison; Department of Neurology (S.E.S.), Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO; Department of Psychiatry and Neurochemistry (K.B., H.Z.), Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital, Mölndal, Sweden; Institute of Neurology (H.Z.), University College London, Queen Square; and UK Dementia Research Institute (H.Z.), London
| | - Kaj Blennow
- From the Department of Medicine (A.P.M., C.M.C., S.C.J., S.A., B.B.B.), Wisconsin Alzheimer's Disease Research Center, and Neuroscience and Public Policy Program (A.P.M.), University of Wisconsin; Geriatric Research Education and Clinical Center (C.M.C., S.C.J., S.A.), William S. Middleton Memorial Veteran's Hospital; Wisconsin Alzheimer's Institute (S.C.J.), Madison; Department of Neurology (S.E.S.), Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO; Department of Psychiatry and Neurochemistry (K.B., H.Z.), Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital, Mölndal, Sweden; Institute of Neurology (H.Z.), University College London, Queen Square; and UK Dementia Research Institute (H.Z.), London
| | - Henrik Zetterberg
- From the Department of Medicine (A.P.M., C.M.C., S.C.J., S.A., B.B.B.), Wisconsin Alzheimer's Disease Research Center, and Neuroscience and Public Policy Program (A.P.M.), University of Wisconsin; Geriatric Research Education and Clinical Center (C.M.C., S.C.J., S.A.), William S. Middleton Memorial Veteran's Hospital; Wisconsin Alzheimer's Institute (S.C.J.), Madison; Department of Neurology (S.E.S.), Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO; Department of Psychiatry and Neurochemistry (K.B., H.Z.), Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital, Mölndal, Sweden; Institute of Neurology (H.Z.), University College London, Queen Square; and UK Dementia Research Institute (H.Z.), London
| | - Barbara B Bendlin
- From the Department of Medicine (A.P.M., C.M.C., S.C.J., S.A., B.B.B.), Wisconsin Alzheimer's Disease Research Center, and Neuroscience and Public Policy Program (A.P.M.), University of Wisconsin; Geriatric Research Education and Clinical Center (C.M.C., S.C.J., S.A.), William S. Middleton Memorial Veteran's Hospital; Wisconsin Alzheimer's Institute (S.C.J.), Madison; Department of Neurology (S.E.S.), Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO; Department of Psychiatry and Neurochemistry (K.B., H.Z.), Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital, Mölndal, Sweden; Institute of Neurology (H.Z.), University College London, Queen Square; and UK Dementia Research Institute (H.Z.), London
| |
Collapse
|
293
|
Vos SJ, Visser PJ. Preclinical Alzheimer’s Disease: Implications for Refinement of the Concept. J Alzheimers Dis 2018; 64:S213-S227. [DOI: 10.3233/jad-179943] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Stephanie J.B. Vos
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Alzheimer Center Limburg, Maastricht University, Maastricht, Netherlands
| | - Pieter Jelle Visser
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Alzheimer Center Limburg, Maastricht University, Maastricht, Netherlands
- Department of Neurology, Alzheimer Center, VU University Medical Center, Amsterdam, Netherlands
| |
Collapse
|
294
|
Mattsson N, Schöll M, Strandberg O, Smith R, Palmqvist S, Insel PS, Hägerström D, Ohlsson T, Zetterberg H, Jögi J, Blennow K, Hansson O. 18F-AV-1451 and CSF T-tau and P-tau as biomarkers in Alzheimer's disease. EMBO Mol Med 2018; 9:1212-1223. [PMID: 28743782 PMCID: PMC5582410 DOI: 10.15252/emmm.201707809] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
To elucidate the relationship between cerebrospinal fluid (CSF) total-tau (T-tau) and phosphorylated tau (P-tau) with the tau PET ligand 18F-AV-1451 in Alzheimer's disease (AD), we examined 30 cognitively healthy elderly (15 with preclinical AD), 14 prodromal AD, and 39 AD dementia patients. CSF T-tau and P-tau were highly correlated (R = 0.92, P < 0.001), but they were only moderately associated with retention of 18F-AV-1451, and mainly in demented AD patients. 18F-AV-1451, but not CSF T-tau or P-tau, was strongly associated with atrophy and cognitive impairment. CSF tau was increased in preclinical AD, despite normal 18F-AV-1451 retention. However, not all dementia AD patients exhibited increased CSF tau, even though 18F-AV-1451 retention was always increased at this disease stage. We conclude that CSF T-tau and P-tau mainly behave as biomarkers of "disease state", since they appear to be increased in many cases of AD at all disease stages, already before the emergence of tau aggregates. In contrast, 18F-AV-1451 is a biomarker of "disease stage", since it is increased in clinical stages of the disease, and is associated with brain atrophy and cognitive decline.
Collapse
Affiliation(s)
- Niklas Mattsson
- Clinical Memory Research Unit, Faculty of Medicine, Lund University, Lund, Sweden .,Memory Clinic, Skåne University Hospital, Lund, Sweden.,Department of Neurology, Skåne University Hospital, Lund, Sweden
| | - Michael Schöll
- Clinical Memory Research Unit, Faculty of Medicine, Lund University, Lund, Sweden.,MedTech West and the Department of Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Olof Strandberg
- Clinical Memory Research Unit, Faculty of Medicine, Lund University, Lund, Sweden
| | - Ruben Smith
- Clinical Memory Research Unit, Faculty of Medicine, Lund University, Lund, Sweden.,Department of Neurology, Skåne University Hospital, Lund, Sweden
| | - Sebastian Palmqvist
- Clinical Memory Research Unit, Faculty of Medicine, Lund University, Lund, Sweden.,Department of Neurology, Skåne University Hospital, Lund, Sweden
| | - Philip S Insel
- Clinical Memory Research Unit, Faculty of Medicine, Lund University, Lund, Sweden.,Department of Veterans Affairs Medical Center, Center for Imaging of Neurodegenerative Diseases, San Francisco, CA, USA.,Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Douglas Hägerström
- Department of Clinical Neurophysiology, Skåne University Hospital, Lund, Sweden
| | - Tomas Ohlsson
- Department of Radiation physics, Skåne University Hospital, Lund, Sweden
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Molecular Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Jonas Jögi
- Department of Clinical Physiology and Nuclear Medicine, Skåne University Hospital, Lund, Sweden
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Molecular Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Oskar Hansson
- Clinical Memory Research Unit, Faculty of Medicine, Lund University, Lund, Sweden .,Memory Clinic, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
295
|
Schultz N, Brännström K, Byman E, Moussaud S, Nielsen HM, Olofsson A, Wennström M. Amyloid-beta 1-40 is associated with alterations in NG2+ pericyte population ex vivo and in vitro. Aging Cell 2018; 17:e12728. [PMID: 29453790 PMCID: PMC5946076 DOI: 10.1111/acel.12728] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/24/2017] [Indexed: 12/17/2022] Open
Abstract
The population of brain pericytes, a cell type important for vessel stability and blood brain barrier function, has recently been shown altered in patients with Alzheimer's disease (AD). The underlying reason for this alteration is not fully understood, but progressive accumulation of the AD characteristic peptide amyloid‐beta (Aβ) has been suggested as a potential culprit. In the current study, we show reduced number of hippocampal NG2+ pericytes and an association between NG2+ pericyte numbers and Aβ1‐40 levels in AD patients. We further demonstrate, using in vitro studies, an aggregation‐dependent impact of Aβ1‐40 on human NG2+ pericytes. Fibril‐EP Aβ1‐40 exposure reduced pericyte viability and proliferation and increased caspase 3/7 activity. Monomer Aβ1‐40 had quite the opposite effect: increased pericyte viability and proliferation and reduced caspase 3/7 activity. Oligomer‐EP Aβ1‐40 had no impact on either of the cellular events. Our findings add to the growing number of studies suggesting a significant impact on pericytes in the brains of AD patients and suggest different aggregation forms of Aβ1‐40 as potential key regulators of the brain pericyte population size.
Collapse
Affiliation(s)
- Nina Schultz
- Clinical Memory Research Unit; Department of Clinical Sciences Malmö; Lund University; Malmö Sweden
| | | | - Elin Byman
- Clinical Memory Research Unit; Department of Clinical Sciences Malmö; Lund University; Malmö Sweden
| | - Simon Moussaud
- Department of Neurochemistry; Stockholm University; Stockholm Sweden
| | | | - Anders Olofsson
- Department of Medical Biochemistry and Biophysics; Umeå University; Umeå Sweden
| | - Malin Wennström
- Clinical Memory Research Unit; Department of Clinical Sciences Malmö; Lund University; Malmö Sweden
| | | |
Collapse
|
296
|
Lewczuk P, Riederer P, O’Bryant SE, Verbeek MM, Dubois B, Visser PJ, Jellinger KA, Engelborghs S, Ramirez A, Parnetti L, Jack CR, Teunissen CE, Hampel H, Lleó A, Jessen F, Glodzik L, de Leon MJ, Fagan AM, Molinuevo JL, Jansen WJ, Winblad B, Shaw LM, Andreasson U, Otto M, Mollenhauer B, Wiltfang J, Turner MR, Zerr I, Handels R, Thompson AG, Johansson G, Ermann N, Trojanowski JQ, Karaca I, Wagner H, Oeckl P, van Waalwijk van Doorn L, Bjerke M, Kapogiannis D, Kuiperij HB, Farotti L, Li Y, Gordon BA, Epelbaum S, Vos SJB, Klijn CJM, Van Nostrand WE, Minguillon C, Schmitz M, Gallo C, Mato AL, Thibaut F, Lista S, Alcolea D, Zetterberg H, Blennow K, Kornhuber J, Riederer P, Gallo C, Kapogiannis D, Mato AL, Thibaut F. Cerebrospinal fluid and blood biomarkers for neurodegenerative dementias: An update of the Consensus of the Task Force on Biological Markers in Psychiatry of the World Federation of Societies of Biological Psychiatry. World J Biol Psychiatry 2018; 19:244-328. [PMID: 29076399 PMCID: PMC5916324 DOI: 10.1080/15622975.2017.1375556] [Citation(s) in RCA: 196] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the 12 years since the publication of the first Consensus Paper of the WFSBP on biomarkers of neurodegenerative dementias, enormous advancement has taken place in the field, and the Task Force takes now the opportunity to extend and update the original paper. New concepts of Alzheimer's disease (AD) and the conceptual interactions between AD and dementia due to AD were developed, resulting in two sets for diagnostic/research criteria. Procedures for pre-analytical sample handling, biobanking, analyses and post-analytical interpretation of the results were intensively studied and optimised. A global quality control project was introduced to evaluate and monitor the inter-centre variability in measurements with the goal of harmonisation of results. Contexts of use and how to approach candidate biomarkers in biological specimens other than cerebrospinal fluid (CSF), e.g. blood, were precisely defined. Important development was achieved in neuroimaging techniques, including studies comparing amyloid-β positron emission tomography results to fluid-based modalities. Similarly, development in research laboratory technologies, such as ultra-sensitive methods, raises our hopes to further improve analytical and diagnostic accuracy of classic and novel candidate biomarkers. Synergistically, advancement in clinical trials of anti-dementia therapies energises and motivates the efforts to find and optimise the most reliable early diagnostic modalities. Finally, the first studies were published addressing the potential of cost-effectiveness of the biomarkers-based diagnosis of neurodegenerative disorders.
Collapse
Affiliation(s)
- Piotr Lewczuk
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, and Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, and Department of Biochemical Diagnostics, University Hospital of Białystok, Białystok, Poland
| | - Peter Riederer
- Center of Mental Health, Clinic and Policlinic of Psychiatry, Psychosomatics and Psychotherapy, University Hospital Würzburg, Würzburg, Germany
| | - Sid E. O’Bryant
- Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Marcel M. Verbeek
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Center, Nijmegen, The Netherlands
- Department of Laboratory Medicine, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer center, Nijmegen, The Netherlands
| | - Bruno Dubois
- Institut de la Mémoire et de la Maladie d’Alzheimer (IM2A), Salpêtrièrie Hospital, INSERM UMR-S 975 (ICM), Paris 6 University, Paris, France
| | - Pieter Jelle Visser
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Alzheimer Center Limburg, Maastricht University, Maastricht, The Netherlands
- Department of Neurology, Alzheimer Centre, Amsterdam Neuroscience VU University Medical Centre, Amsterdam, The Netherlands
| | | | - Sebastiaan Engelborghs
- Reference Center for Biological Markers of Dementia (BIODEM), University of Antwerp, Antwerp, Belgium
- Department of Neurology and Memory Clinic, Hospital Network Antwerp (ZNA) Middelheim and Hoge Beuken, Antwerp, Belgium
| | - Alfredo Ramirez
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
| | - Lucilla Parnetti
- Section of Neurology, Center for Memory Disturbances, Lab of Clinical Neurochemistry, University of Perugia, Perugia, Italy
| | | | - Charlotte E. Teunissen
- Neurochemistry Lab and Biobank, Department of Clinical Chemistry, Amsterdam Neuroscience, VU University Medical Center Amsterdam, Amsterdam, The Netherlands
| | - Harald Hampel
- AXA Research Fund & UPMC Chair, Sorbonne Universités, Université Pierre et Marie Curie (UPMC) Paris 06, Inserm, CNRS, Institut du Cerveau et de la Moelle Épinière (ICM), Département de Neurologie, Institut de la Mémoire et de la Maladie d’Alzheimer (IM2A), Hôpital Pitié-Salpêtrière, Boulevard de l’hôpital, Paris, France
| | - Alberto Lleó
- Department of Neurology, Institut d’Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, CIBERNED, Spain
| | - Frank Jessen
- Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
- German Center for Neurodegenerative Disorders (DZNE), Bonn, Germany
| | - Lidia Glodzik
- Center for Brain Health, Department of Psychiatry, NYU Langone Medical Center, New York, NY, USA
| | - Mony J. de Leon
- Center for Brain Health, Department of Psychiatry, NYU Langone Medical Center, New York, NY, USA
| | - Anne M. Fagan
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO, USA
| | - José Luis Molinuevo
- Barcelonabeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain
- Alzheimer’s Disease and Other Cognitive Disorders Unit, Hospital Clínic, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Willemijn J. Jansen
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Alzheimer Center Limburg, Maastricht University, Maastricht, The Netherlands
| | - Bengt Winblad
- Karolinska Institutet, Department NVS, Center for Alzheimer Research, Division of Neurogeriatrics, Huddinge, Sweden
| | - Leslie M. Shaw
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ulf Andreasson
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Markus Otto
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Brit Mollenhauer
- Paracelsus-Elena-Klinik, Kassel and University Medical Center Göttingen, Department of Neurology, Göttingen, Germany
| | - Jens Wiltfang
- Department of Psychiatry & Psychotherapy, University of Göttingen, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
- iBiMED, Medical Sciences Department, University of Aveiro, Aveiro, Portugal
| | - Martin R. Turner
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Inga Zerr
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
- Clinical Dementia Centre, Department of Neurology, University Medical School, Göttingen, Germany
| | - Ron Handels
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Alzheimer Center Limburg, Maastricht University, Maastricht, The Netherlands
- Karolinska Institutet, Department NVS, Center for Alzheimer Research, Division of Neurogeriatrics, Huddinge, Sweden
| | | | - Gunilla Johansson
- Karolinska Institutet, Department NVS, Center for Alzheimer Research, Division of Neurogeriatrics, Huddinge, Sweden
| | - Natalia Ermann
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, and Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - John Q. Trojanowski
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ilker Karaca
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - Holger Wagner
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - Patrick Oeckl
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Linda van Waalwijk van Doorn
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Center, Nijmegen, The Netherlands
- Department of Laboratory Medicine, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer center, Nijmegen, The Netherlands
| | - Maria Bjerke
- Reference Center for Biological Markers of Dementia (BIODEM), University of Antwerp, Antwerp, Belgium
| | - Dimitrios Kapogiannis
- Laboratory of Neurosciences, National Institute on Aging/National Institutes of Health (NIA/NIH), Baltimore, MD, USA
| | - H. Bea Kuiperij
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Center, Nijmegen, The Netherlands
- Department of Laboratory Medicine, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer center, Nijmegen, The Netherlands
| | - Lucia Farotti
- Section of Neurology, Center for Memory Disturbances, Lab of Clinical Neurochemistry, University of Perugia, Perugia, Italy
| | - Yi Li
- Center for Brain Health, Department of Psychiatry, NYU Langone Medical Center, New York, NY, USA
| | - Brian A. Gordon
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Stéphane Epelbaum
- Institut de la Mémoire et de la Maladie d’Alzheimer (IM2A), Salpêtrièrie Hospital, INSERM UMR-S 975 (ICM), Paris 6 University, Paris, France
| | - Stephanie J. B. Vos
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Alzheimer Center Limburg, Maastricht University, Maastricht, The Netherlands
| | - Catharina J. M. Klijn
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Center, Nijmegen, The Netherlands
| | | | - Carolina Minguillon
- Barcelonabeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain
| | - Matthias Schmitz
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
- Clinical Dementia Centre, Department of Neurology, University Medical School, Göttingen, Germany
| | - Carla Gallo
- Departamento de Ciencias Celulares y Moleculares/Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Andrea Lopez Mato
- Chair of Psychoneuroimmunoendocrinology, Maimonides University, Buenos Aires, Argentina
| | - Florence Thibaut
- Department of Psychiatry, University Hospital Cochin-Site Tarnier 89 rue d’Assas, INSERM 894, Faculty of Medicine Paris Descartes, Paris, France
| | - Simone Lista
- AXA Research Fund & UPMC Chair, Sorbonne Universités, Université Pierre et Marie Curie (UPMC) Paris 06, Inserm, CNRS, Institut du Cerveau et de la Moelle Épinière (ICM), Département de Neurologie, Institut de la Mémoire et de la Maladie d’Alzheimer (IM2A), Hôpital Pitié-Salpêtrière, Boulevard de l’hôpital, Paris, France
| | - Daniel Alcolea
- Department of Neurology, Institut d’Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, CIBERNED, Spain
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, and Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | | | | | | | | |
Collapse
|
297
|
Lehmann S, Delaby C, Boursier G, Catteau C, Ginestet N, Tiers L, Maceski A, Navucet S, Paquet C, Dumurgier J, Vanmechelen E, Vanderstichele H, Gabelle A. Relevance of Aβ42/40 Ratio for Detection of Alzheimer Disease Pathology in Clinical Routine: The PLM R Scale. Front Aging Neurosci 2018; 10:138. [PMID: 29892221 PMCID: PMC5985301 DOI: 10.3389/fnagi.2018.00138] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 04/24/2018] [Indexed: 12/13/2022] Open
Abstract
Background: Cerebrospinal fluid (CSF) biomarkers (Aβ peptides and tau proteins) improved the diagnosis of Alzheimer's disease (AD) in research and clinical settings. We previously described the PLM-scale (Paris-Lille-Montpellier study), which combines Aβ42, tau, and phosphorylated ptau(181) biomarkers in an easy to use and clinically relevant way. The purpose of this work is to evaluate an optimized PLMR-scale (PLM ratio scale) that now includes the Aβ42/Aβ40 ratio to detect AD versus non-AD (NAD) participants in clinical routine of memory centers. Methods: Both scales were compared using 904 participants with cognitive impairment recruited from two independent cohorts (Mtp-1 and Mtp-2). The CSF Aβ42/Aβ40 ratio was measured systematically in Mtp-1, and only on biologically discordant cases in Mtp-2. Two different ELISA kit providers were also employed. The distribution of AD and NAD patients and the discrepancies of biomarker profiles were computed. Receiver Operating Characteristic curves were used to represent clinical sensitivity and specificity for AD detection. The classification of patients with the net reclassification index (NRI) was also evaluated. Results: Nine hundred and four participants (342 AD and 562 NAD) were studied; 400 in Mtp-1 and 504 in Mtp-2. For AD patients, the mean CSF Aβ42 and CSF Aβ42/40 ratio was 553 ± 216 pg/mL and 0.069 ± 0.022 pg/mL in Mtp-1 and 702 ± 335 pg/mL and 0.045 ± 0.020 pg/mL in Mtp-2. The distribution of AD and NAD differed between the PLM and the PLMR scales (p < 0.0001). The percentage AD well-classified (class 3) increased with PLMR from 38 to 83% in Mpt-1 and from 33 to 53% in Mpt-2. A sharp reduction of the discordant profiles going from 34 to 16.3% and from 37.5 to 19.8%, for Mtp-1 and Mtp-2 respectively, was also observed. The AUC of the PLMR scale was 0.94 in Mtp-1 and 0.87 in Mtp-2. In both cohorts, the PLMR outperformed CSF Aβ42 or Aβ42/40 ratio. The diagnostic performance was improved with the PLMR with an NRI equal to 44.3% in Mtp-1 and 28.8% in Mtp-2. Conclusion: The integration of the Aβ42/Aβ40 ratio in the PLMR scale resulted in an easy-to-use tool which reduced the discrepancies in biologically doubtful cases and increased the confidence in the diagnosis in memory center.
Collapse
Affiliation(s)
- Sylvain Lehmann
- Laboratoire de Biochimie Protéomique Clinique, Institute of Regenerative Medicine and Biotherapies, Centre Hospitalier Universitaire de Montpellier, Montpellier, France.,Université de Montpellier, Montpellier, France
| | - Constance Delaby
- Laboratoire de Biochimie Protéomique Clinique, Institute of Regenerative Medicine and Biotherapies, Centre Hospitalier Universitaire de Montpellier, Montpellier, France.,Université de Montpellier, Montpellier, France
| | - Guilaine Boursier
- Laboratoire de Biochimie Protéomique Clinique, Institute of Regenerative Medicine and Biotherapies, Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | - Cindy Catteau
- Laboratoire de Biochimie Protéomique Clinique, Institute of Regenerative Medicine and Biotherapies, Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | - Nelly Ginestet
- Laboratoire de Biochimie Protéomique Clinique, Institute of Regenerative Medicine and Biotherapies, Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | - Laurent Tiers
- Laboratoire de Biochimie Protéomique Clinique, Institute of Regenerative Medicine and Biotherapies, Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | - Aleksandra Maceski
- Laboratoire de Biochimie Protéomique Clinique, Institute of Regenerative Medicine and Biotherapies, Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | - Sophie Navucet
- Département de Neurologie, Centre Mémoire de Ressources et de Recherche de Montpellier, Montpellier University Hospital, Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | - Claire Paquet
- Groupe Hospitalier Lariboisière Fernand-Widal, INSERM U942, Centre de Neurologie Cognitive, Université Paris Diderot, Paris, France
| | - Julien Dumurgier
- Groupe Hospitalier Lariboisière Fernand-Widal, INSERM U942, Centre de Neurologie Cognitive, Université Paris Diderot, Paris, France
| | | | | | - Audrey Gabelle
- Laboratoire de Biochimie Protéomique Clinique, Institute of Regenerative Medicine and Biotherapies, Centre Hospitalier Universitaire de Montpellier, Montpellier, France.,Université de Montpellier, Montpellier, France.,Département de Neurologie, Centre Mémoire de Ressources et de Recherche de Montpellier, Montpellier University Hospital, Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| |
Collapse
|
298
|
Spitzer P, Lang R, Oberstein TJ, Lewczuk P, Ermann N, Huttner HB, Masouris I, Kornhuber J, Ködel U, Maler JM. A Specific Reduction in Aβ 1-42 vs. a Universal Loss of Aβ Peptides in CSF Differentiates Alzheimer's Disease From Meningitis and Multiple Sclerosis. Front Aging Neurosci 2018; 10:152. [PMID: 29881343 PMCID: PMC5976781 DOI: 10.3389/fnagi.2018.00152] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/04/2018] [Indexed: 11/23/2022] Open
Abstract
A reduced concentration of Aβ1−42 in CSF is one of the established biomarkers of Alzheimer's disease. Reduced CSF concentrations of Aβ1−42 have also been shown in multiple sclerosis, viral encephalitis and bacterial meningitis. As neuroinflammation is one of the neuropathological hallmarks of Alzheimer's disease, an infectious origin of the disease has been proposed. According to this hypothesis, amyloid pathology is a consequence of a microbial infection and the resulting immune defense. Accordingly, changes in CSF levels of amyloid-β peptides should be similar in AD and inflammatory brain diseases. Aβ1−42 and Aβ1−40 levels were measured in cerebrospinal fluid by ELISA and Western blotting in 34 patients with bacterial meningitis (n = 9), multiple sclerosis (n = 5) or Alzheimer's disease (n = 9) and in suitable controls (n = 11). Reduced concentrations of Aβ1−42 were detected in patients with bacterial meningitis, multiple sclerosis and Alzheimer's disease. However, due to a concurrent reduction in Aβ1−40 in multiple sclerosis and meningitis patients, the ratio of Aβ1−42/Aβ1−40 was reduced only in the CSF of Alzheimer's disease patients. Urea-SDS-PAGE followed by Western blotting revealed that all Aβ peptide variants are reduced in bacterial meningitis, whereas in Alzheimer's disease, only Aβ1−42 is reduced. These results have two implications. First, they confirm the discriminatory diagnostic power of the Aβ1−42/Aβ1−40 ratio. Second, the differential pattern of Aβ peptide reductions suggests that the amyloid pathology in meningitis and multiple sclerosis differs from that in AD and does not support the notion of AD as an infection-triggered immunopathology.
Collapse
Affiliation(s)
- Philipp Spitzer
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| | - Roland Lang
- Institute of Clinical Microbiology, Immunology and Hygiene, Friedrich-Alexander-University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| | - Timo J Oberstein
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| | - Piotr Lewczuk
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany.,Department of Neurodegeneration Diagnostics, Medical University of Bialystok, Bialystok, Poland
| | - Natalia Ermann
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| | - Hagen B Huttner
- Department of Neurology, Friedrich-Alexander-University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| | - Ilias Masouris
- Department of Neurology, Ludwig-Maximilian-University, Munich, Germany
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| | - Uwe Ködel
- Department of Neurology, Ludwig-Maximilian-University, Munich, Germany
| | - Juan M Maler
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
299
|
Nobili F, Cagnin A, Calcagni ML, Chincarini A, Guerra UP, Morbelli S, Padovani A, Paghera B, Pappatà S, Parnetti L, Sestini S, Schillaci O. Emerging topics and practical aspects for an appropriate use of amyloid PET in the current Italian context. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF RADIOPHARMACEUTICAL CHEMISTRY AND BIOLOGY 2018; 63:83-92. [PMID: 29697220 DOI: 10.23736/s1824-4785.18.03069-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In May 2017 some representatives of the Italian nuclear medicine and neurological communities spontaneously met to discuss the issues emerged during the first two years of routine application of amyloid PET with fluorinated radiopharmaceuticals in the real world. The limitations of a binary classification of scans, the possibility to obtain early images as a surrogate marker of regional cerebral bloos flow, the need for (semi-)quantification and, thus, the opportunity of ranking brain amyloidosis, the correlation with Aβ42 levels in the cerebrospinal fluid, the occurrence and biological meaning of uncertain/boderline scans, the issue of incidental amyloidosis, the technical pittfalls leading to false negative/positive results, the position of the tool in the diagnostic flow-chart in the national reality, are the main topics that have been discussed. Also, a card to justify the examination to be filled by the dementia specialist and a card for the nuclear medicine physician to report the exam in detail have been approved and are available in the web, which should facilitate the creation of a national register, as previewed by the 2015 intersocietal recommendation on the use of amyloid PET in Italy. The content of this discussion could stimulate both public institutions and companies to support further research on these topics.
Collapse
Affiliation(s)
- Flavio Nobili
- Department of Neuroscience (DINOGMI), University of Genoa and Neurology Clinic, San Martino Polyclinic Hospital, Genoa, Italy -
| | - Annachiara Cagnin
- Department of Neurosciences (DNS), University of Padua, Padua, Italy.,San Camillo IRCCS Hospital, Venice, Italy
| | - Maria L Calcagni
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Università Cattolica del Sacro Cuore, Rome, Italy
| | - Andrea Chincarini
- National Institute for Nuclear Physics (INFN), Genoa Section, Genoa, Italy
| | - Ugo P Guerra
- Unit of Nuclear Medicine, Poliambulanza Fundation, Brescia, Italy
| | - Silvia Morbelli
- Unit of Nuclear Medicine, Department of Health Sciences (DISSAL), Polyclinic San Martino Hospital, University of Genoa, Genoa, Italy
| | - Alessandro Padovani
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.,Neurology Clinic, Spedali Civili, Brescia, Italy
| | - Barbara Paghera
- Unit of Nuclear Medicine, ASST-Spedali Civili, University of Brescia, Brescia, Italy
| | - Sabina Pappatà
- Institute of Biostructure and Bioimaging, National Research Council, Naples, Italy
| | - Lucilla Parnetti
- Center for Memory Disorders, Laboratory of Clinical Neurochemistry, Neurology Clinic, University of Perugia, Perugia, Italy
| | - Stelvio Sestini
- Unit of Nuclear Medicine, Department of Diagnostic Imaging, N.O.P. - S. Stefano, U.S.L. Toscana Centro, Prato, Italy
| | - Orazio Schillaci
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy.,IRCCS Neuromed, Rome, Italy
| |
Collapse
|
300
|
Niemantsverdriet E, Ottoy J, Somers C, De Roeck E, Struyfs H, Soetewey F, Verhaeghe J, Van den Bossche T, Van Mossevelde S, Goeman J, De Deyn PP, Mariën P, Versijpt J, Sleegers K, Van Broeckhoven C, Wyffels L, Albert A, Ceyssens S, Stroobants S, Staelens S, Bjerke M, Engelborghs S. The Cerebrospinal Fluid Aβ1-42/Aβ1-40 Ratio Improves Concordance with Amyloid-PET for Diagnosing Alzheimer's Disease in a Clinical Setting. J Alzheimers Dis 2018; 60:561-576. [PMID: 28869470 PMCID: PMC5611891 DOI: 10.3233/jad-170327] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background: Evidence suggests that the concordance between amyloid-PET and cerebrospinal fluid (CSF) amyloid-β (Aβ) increases when the CSF Aβ1–42/Aβ1–40 ratio is used as compared to CSF Aβ1–42 levels alone. Objective: In order to test this hypothesis, we set up a prospective longitudinal study comparing the concordance between different amyloid biomarkers for Alzheimer’s disease (AD) in a clinical setting. Methods: Seventy-eight subjects (AD dementia (n = 17), mild cognitive impairment (MCI, n = 48), and cognitively healthy controls (n = 13)) underwent a [18F]Florbetapir ([18F]AV45) PET scan, [18F]FDG PET scan, MRI scan, and an extensive neuropsychological examination. In a large subset (n = 67), a lumbar puncture was performed and AD biomarkers were analyzed (Aβ1–42, Aβ1–40, T-tau, P-tau181). Results: We detected an increased concordance in the visual and quantitative (standardized uptake value ratio (SUVR) and total volume of distribution (VT)) [18F]AV45 PET measures when the CSF Aβ1–42/Aβ1–40 was applied compared to Aβ1–42 alone. CSF biomarkers were stronger associated to [18F]AV45 PET for SUVR values when considering the total brain white matter as reference region instead of cerebellar grey matter Conclusions: The concordance between CSF Aβ and [18F]AV45 PET increases when the CSF Aβ1–42/Aβ1–40 ratio is applied. This finding is of most importance for the biomarker-based diagnosis of AD as well as for selection of subjects for clinical trials with potential disease-modifying therapies for AD.
Collapse
Affiliation(s)
- Ellis Niemantsverdriet
- Reference Center for Biological Markers of Dementia (BIODEM), Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, UAntwerp, Antwerp, Belgium
| | - Julie Ottoy
- Molecular Imaging Center Antwerp (MICA), UAntwerp, Antwerp, Belgium
| | - Charisse Somers
- Reference Center for Biological Markers of Dementia (BIODEM), Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, UAntwerp, Antwerp, Belgium
| | - Ellen De Roeck
- Reference Center for Biological Markers of Dementia (BIODEM), Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, UAntwerp, Antwerp, Belgium.,Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussels, Brussels, Belgium
| | - Hanne Struyfs
- Reference Center for Biological Markers of Dementia (BIODEM), Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, UAntwerp, Antwerp, Belgium
| | - Femke Soetewey
- Reference Center for Biological Markers of Dementia (BIODEM), Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, UAntwerp, Antwerp, Belgium
| | - Jeroen Verhaeghe
- Molecular Imaging Center Antwerp (MICA), UAntwerp, Antwerp, Belgium
| | - Tobi Van den Bossche
- VIB-UAntwerp Center for Molecular Neurology, Antwerp, Belgium.,Laboratory of Neurogenetics, Institute Born-Bunge, UAntwerp, Antwerp, Belgium.,Department of Neurology and Memory Clinic, Hospital Network Antwerp (ZNA) Middelheim and Hoge Beuken, Antwerp, Belgium
| | - Sara Van Mossevelde
- VIB-UAntwerp Center for Molecular Neurology, Antwerp, Belgium.,Laboratory of Neurogenetics, Institute Born-Bunge, UAntwerp, Antwerp, Belgium.,Department of Neurology and Memory Clinic, Hospital Network Antwerp (ZNA) Middelheim and Hoge Beuken, Antwerp, Belgium
| | - Johan Goeman
- Department of Neurology and Memory Clinic, Hospital Network Antwerp (ZNA) Middelheim and Hoge Beuken, Antwerp, Belgium
| | - Peter Paul De Deyn
- Reference Center for Biological Markers of Dementia (BIODEM), Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, UAntwerp, Antwerp, Belgium.,Department of Neurology and Memory Clinic, Hospital Network Antwerp (ZNA) Middelheim and Hoge Beuken, Antwerp, Belgium
| | - Peter Mariën
- Department of Neurology and Memory Clinic, Hospital Network Antwerp (ZNA) Middelheim and Hoge Beuken, Antwerp, Belgium.,Clinical and Experimental Neurolinguistics, CLIN, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Jan Versijpt
- Vrije Universiteit Brussel(VUB), University Hospital Brussels (UZ Brussel), Department of Neurology, Brussels, Belgium
| | - Kristel Sleegers
- VIB-UAntwerp Center for Molecular Neurology, Antwerp, Belgium.,Laboratory of Neurogenetics, Institute Born-Bunge, UAntwerp, Antwerp, Belgium
| | - Christine Van Broeckhoven
- VIB-UAntwerp Center for Molecular Neurology, Antwerp, Belgium.,Laboratory of Neurogenetics, Institute Born-Bunge, UAntwerp, Antwerp, Belgium
| | - Leonie Wyffels
- Molecular Imaging Center Antwerp (MICA), UAntwerp, Antwerp, Belgium.,Departmentof Nuclear Medicine, Antwerp University Hospital, Antwerp, Belgium
| | - Adrien Albert
- Departmentof Nuclear Medicine, Antwerp University Hospital, Antwerp, Belgium
| | - Sarah Ceyssens
- Departmentof Nuclear Medicine, Antwerp University Hospital, Antwerp, Belgium
| | - Sigrid Stroobants
- Molecular Imaging Center Antwerp (MICA), UAntwerp, Antwerp, Belgium.,Departmentof Nuclear Medicine, Antwerp University Hospital, Antwerp, Belgium
| | - Steven Staelens
- Molecular Imaging Center Antwerp (MICA), UAntwerp, Antwerp, Belgium
| | - Maria Bjerke
- Reference Center for Biological Markers of Dementia (BIODEM), Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, UAntwerp, Antwerp, Belgium
| | - Sebastiaan Engelborghs
- Reference Center for Biological Markers of Dementia (BIODEM), Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, UAntwerp, Antwerp, Belgium.,Department of Neurology and Memory Clinic, Hospital Network Antwerp (ZNA) Middelheim and Hoge Beuken, Antwerp, Belgium
| |
Collapse
|