251
|
Konsman JP, Blomqvist A. Forebrain patterns of c-Fos and FosB induction during cancer-associated anorexia-cachexia in rat. Eur J Neurosci 2005; 21:2752-66. [PMID: 15926923 DOI: 10.1111/j.1460-9568.2005.04102.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Forebrain structures are necessary for the initiation of food intake and its coupling to energy expenditure. The cancer-related anorexia-cachexia syndrome is typified by a prolonged increase in metabolic rate resulting in body weight loss which, paradoxically, is accompanied by reduced food intake. The aim of the present work was to study the forebrain expression of Fos proteins as activation markers and thus to identify potential neurobiological mechanisms favouring catabolic processes or modulating food intake in rats suffering from cancer-related anorexia-cachexia. Neurons in forebrain structures showing most pronounced induction of Fos proteins were further identified neurochemically. To provoke anorexia-cachexia, cultured Morris hepatoma 7777 cells were injected subcutaneously in Buffalo rats. This resulted in a slowly growing tumour inducing approximately 7% body weight loss and a 20% reduction in food intake when the tumour represented 1-2% of body mass. Anorexia-cachexia in these animals was found to be accompanied by Fos induction in several hypothalamic nuclei including the paraventricular and ventromedial hypothalamus, in the parastrial nucleus, the amygdala, the bed nucleus of the stria terminalis, ventral striatal structures and the piriform and somatosensory cortices. Neurochemical identification revealed that the vast majority of FosB-positive neurons in the nucleus accumbens, ventral caudate-putamen and other ventral striatal structures contained prodynorphin or proenkephalin mRNA. These findings indicate that forebrain structures that are part of neuronal networks modulating catabolic pathways and food ingestion are activated during tumour-associated anorexia-cachexia and may contribute to the lack of compensatory eating in response to weight loss characterizing this syndrome.
Collapse
Affiliation(s)
- Jan Pieter Konsman
- Department of Cell Biology, Faculty of Health Sciences, University of Linköping, S-581 85 Linköping, Sweden.
| | | |
Collapse
|
252
|
Dumont EC, Williams JT. Noradrenaline triggers GABAA inhibition of bed nucleus of the stria terminalis neurons projecting to the ventral tegmental area. J Neurosci 2005; 24:8198-204. [PMID: 15385602 PMCID: PMC4011825 DOI: 10.1523/jneurosci.0425-04.2004] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The lateral part of the ventral bed nucleus of the stria terminalis (vlBNST) is a critical site for the antiaversive effects of noradrenergic drugs during opioid withdrawal. The objective of the present study is to identify the cellular action(s) of noradrenaline in the vlBNST after withdrawal from a 5d treatment with morphine. The vlBNST is a heterogeneous cell group with multiple efferent projections. Therefore, neurons projecting to the midbrain were identified by retrograde transport of fluorescent microspheres injected in the ventral tegmental area (VTA). Whole-cell voltage clamp recordings of these neurons and of those sharing physiological properties were done in brain slices. Noradrenaline activated alpha1-adrenergic receptors to increase GABA(A)-IPSC frequency. Noradrenaline produced a similar increase in GABA(A)-IPSCs during acute opioid withdrawal, but this increase resulted from activation of beta-adrenergic receptors, adenylyl cyclase, and protein kinase A, as well as alpha1-adrenergic receptors. Given that neurons in the vlBNST send an excitatory projection to the VTA, noradrenaline may reduce excitatory drive to mesolimbic dopamine cells. This mechanism might contribute to the withdrawal-induced inhibition of dopamine neurons and explain how noradrenergic drugs microinjected into the vlBNST reduce aversive aspects of opioid withdrawal.
Collapse
Affiliation(s)
- Eric C Dumont
- Vollum Institute, Oregon Health Sciences University, Portland, Oregon 97239, USA
| | | |
Collapse
|
253
|
Grueter BA, Winder DG. Group II and III metabotropic glutamate receptors suppress excitatory synaptic transmission in the dorsolateral bed nucleus of the stria terminalis. Neuropsychopharmacology 2005; 30:1302-11. [PMID: 15812571 DOI: 10.1038/sj.npp.1300672] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Conditions such as anxiety, drug abuse, and post-traumatic stress disorder are thought to reflect alterations in central nervous system stress and reward circuitry. Recent evidence suggests a key component of this circuitry is the bed nucleus of the stria terminalis (BNST). In particular, regulation of glutamatergic transmission in the BNST plays a critical role in animal performance on anxiety tasks. Metabotropic glutamate receptors (mGluRs) have been implicated in stress and drug addiction and are known to regulate glutamatergic transmission in many brain regions. We have utilized both extracellular field potential and whole-cell patch-clamp recording in an in vitro slice preparation of mouse dorsal anterolateral BNST to determine whether G(i/o)-linked mGluRs modulate excitatory transmission in this region. We find that activation of group II and group III mGluRs in an in vitro slice preparation of the dBNST causes a depression of excitatory transmission. The depression evoked by group II mGluR activation may represent a form of synaptic plasticity as prolonged activation of the receptor produces a long-term depression of glutamatergic transmission. Based on paired-pulse ratio analysis, initiation of depression by group II and group III mGluR subfamilies appears to, at least in part, involve decreased glutamate release. In total, our data suggest a plausible site of action for some of the anxiolytic effects of group II and group III mGluR agonists.
Collapse
Affiliation(s)
- Brad A Grueter
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | |
Collapse
|
254
|
la Fleur SE, Manalo SL, Roy M, Houshyar H, Dallman MF. Hepatic vagotomy alters limbic and hypothalamic neuropeptide responses to insulin-dependent diabetes and voluntary lard ingestion. Eur J Neurosci 2005; 21:2733-42. [PMID: 15926921 DOI: 10.1111/j.1460-9568.2005.04125.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hypothalamic anorexigenic [corticotropin-releasing factor (CRF) and proopiomelanocortin] peptides decrease and the orexigen, neuropeptide Y, increases with diabetic hyperphagia. However, when diabetic rats are allowed to eat lard (saturated fat) as well as chow, both caloric intake and hypothalamic peptides normalize. These neuropeptide responses to lard require an intact hepatic vagus [la Fleur et al. (2003) Diabetes, 52, 2321-2330]. Here, we delineate temporal interactions after lard consumption +/- hepatic vagotomy (HV) between feeding and brain neuropeptide expression in insulin-dependent diabetic rats. CRF-mRNA was reduced in the paraventricular nuclei (PVN) by 6 h after presentation of lard, before caloric intake increased in HV-diabetic rats, and did not increase at 30 or 36 h, as it did in shamHV-diabetic rats eating lard. CRF-mRNA was increased in the bed nuclei of the stria terminalis of HV-diabetic rats compared with shamHV-diabetic rats only when caloric intake was high at 30 or 36 h. At 36 h, shamHV-diabetic rats eating chow had increased CRF-mRNA in the central amygdala but diabetic rats eating lard had decreased CRF-mRNA, whereas HV-diabetic rats eating chow or lard had normal CRF-mRNA in the central amygdala. We conclude that eating lard restores peptide expression to normal in the hypothalamus of diabetic rats, and because decreased CRF-mRNA in the PVN precedes the increase in caloric intake in HV-diabetic rats eating lard, that the loss of a hepatic vagal signal to PVN may be responsible for increased intake; moreover, CRF-mRNA in limbic structures is also sensitive to both HV and lard ingestion in diabetic rats.
Collapse
Affiliation(s)
- Susanne E la Fleur
- Department of Physiology & Program in Neurosciences, UCSF, San Francisco, CA 94143-0444, USA.
| | | | | | | | | |
Collapse
|
255
|
Brown CH, Stern JE, Jackson KLM, Bull PM, Leng G, Russell JA. Morphine withdrawal increases intrinsic excitability of oxytocin neurons in morphine-dependent rats. Eur J Neurosci 2005; 21:501-12. [PMID: 15673449 DOI: 10.1111/j.1460-9568.2005.03885.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
To determine whether intrinsic mechanisms drive supraoptic nucleus oxytocin neuron excitation during morphine withdrawal, we calculated the probability of action potential (spike) firing with time after each spike for oxytocin neurons in morphine-naive and morphine-dependent rats in vivo and measured changes in intrinsic membrane properties in vitro. The opioid receptor antagonist, naloxone, increased oxytocin neuron post-spike excitability in morphine-dependent rats; this increase was greater for short interspike intervals (<0.1 s). Naloxone had similar, but smaller (P=0.04), effects in oxytocin neurons in morphine-naive rats. The increased post-spike excitability for short interspike intervals was specific to naloxone, because osmotic stimulation increased excitability without potentiating excitability at short interspike intervals. By contrast to oxytocin neurons, neither morphine dependence nor morphine withdrawal increased post-spike excitability in neighbouring vasopressin neurons. To determine whether increased post-spike excitability in oxytocin neurons during morphine withdrawal reflected altered intrinsic membrane properties, we measured the in vitro effects of naloxone on transient outward rectification (TOR) and after-hyperpolarization (AHP), properties mediated by K+ channels and that affect supraoptic nucleus neuron post-spike excitability. Naloxone reduced the TOR and AHP (by 20% and 60%, respectively) in supraoptic nucleus neurons from morphine-dependent, but not morphine-naive, rats. In vivo, spike frequency adaptation (caused by activity-dependent AHP activation) was reduced by naloxone (from 27% to 3%) in vasopressin neurons in morphine-dependent, but not morphine-naive, rats. Thus, multiple K+ channel inhibition increases post-spike excitability for short interspike intervals, contributing to the increased firing of oxytocin neurons during morphine withdrawal.
Collapse
Affiliation(s)
- Colin H Brown
- School of Biomedical and Clinical Laboratory Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK.
| | | | | | | | | | | |
Collapse
|
256
|
Egli RE, Kash TL, Choo K, Savchenko V, Matthews RT, Blakely RD, Winder DG. Norepinephrine modulates glutamatergic transmission in the bed nucleus of the stria terminalis. Neuropsychopharmacology 2005; 30:657-68. [PMID: 15602500 DOI: 10.1038/sj.npp.1300639] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The bed nucleus of the stria terminalis (BNST) and its adrenergic input are key components in stress-induced reinstatement and maintenance of drug use. Intra-BNST injections of either beta-adrenergic receptor (beta-AR) antagonists or alpha2-adrenergic receptor (alpha2-AR) agonists can inhibit footshock-induced reinstatement and maintenance of cocaine- and morphine-seeking. Using electrophysiological recording methods in an in vitro slice preparation from C57/Bl6j adult male mouse BNST, we have examined the effects of adrenergic receptor activation on excitatory synaptic transmission in the lateral dorsal supracommissural BNST (dBNST) and subcommissural BNST (vBNST). Alpha2-AR activation via UK-14,304 (10 microM) results in a decrease in excitatory transmission in both dBNST and vBNST, an effect predominantly dependent upon the alpha2A-AR subtype. Beta-AR activation via isoproterenol (1 microM) results in an increase in excitatory transmission in dBNST, but not in vBNST. Consistent with the work with receptor subtype specific agonists, application of the endogenous ligand norepinephrine (NE, 100 microM) elicits two distinct effects on glutamatergic transmission. In dBNST, NE elicits an increase in transmission (62% of dBNST NE experiments) or a decrease in transmission (38% of dBNST NE experiments). In vBNST, NE elicits a decrease in transmission in 100% of the experiments. In dBNST, the NE-induced increase in synaptic transmission is blocked by beta1/beta2- and beta2-, but not beta1-specific antagonists. In addition, this increase is also reduced by the alpha2-AR antagonist yohimbine and is absent in the alpha2A-AR knockout mouse. In vBNST, the NE-induced decrease in synaptic transmission is markedly reduced in the alpha2A-AR knockout mouse. Further experiments demonstrate that the actions of NE on glutamatergic transmission can be correlated with beta-AR function.
Collapse
Affiliation(s)
- Regula E Egli
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232-0615, USA
| | | | | | | | | | | | | |
Collapse
|
257
|
Forray MI, Gysling K. Role of noradrenergic projections to the bed nucleus of the stria terminalis in the regulation of the hypothalamic-pituitary-adrenal axis. ACTA ACUST UNITED AC 2005; 47:145-60. [PMID: 15572169 DOI: 10.1016/j.brainresrev.2004.07.011] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2004] [Indexed: 10/26/2022]
Abstract
The bed nucleus of the stria terminalis (BNST) plays an important role in the regulation of the hypothalamic-pituitary-adrenal (HPA) axis during stress and it is a major extrahypothalamic relay to the paraventricular nucleus of the hypothalamus (PVN) from the amygdala and the hippocampus. In this review, we discuss the anatomical, neurochemical and behavioral evidence that substantiate a role for noradrenergic terminals of the anterior BNST in the regulation of the HPA axis. We propose the hypothesis that BNST noradrenaline (NA) participates in the regulation of the hippocampal inhibitory influence on the HPA axis activation. The observation that NA exerts a tonic inhibitory effect upon glutamatergic transmission in the anterior BNST supports this hypothesis. We also discuss the known mechanisms involved in the regulation of BNST NA extracellular levels and the possible interactions between NA and corticotropin-releasing hormone (CRH), and of CRH with glutamate (GLU) in the regulation of the HPA axis activity exerted by the BNST. The evidence discussed in the present review situates the BNST as a key extrahypothalamic center that relays and integrates limbic and autonomic information related to stress responses suggesting that dysregulation in the functioning of the BNST may underlie the pathophysiology of stress-related psychiatric disorders.
Collapse
Affiliation(s)
- María Inés Forray
- Department of Pharmacy, Faculty of Chemistry, Catholic University of Chile, Santiago, Chile.
| | | |
Collapse
|
258
|
Dumont EC, Mark GP, Mader S, Williams JT. Self-administration enhances excitatory synaptic transmission in the bed nucleus of the stria terminalis. Nat Neurosci 2005; 8:413-4. [PMID: 15735642 PMCID: PMC4011824 DOI: 10.1038/nn1414] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Accepted: 02/01/2005] [Indexed: 11/08/2022]
Abstract
Understanding the neurobiology of motivation might help in reducing compulsive behaviors such as drug addiction or eating disorders. This study shows that excitatory synaptic transmission was enhanced in the bed nucleus of the stria terminalis of rats that performed an operant task to obtain cocaine or palatable food. There was no effect when cocaine or food was delivered passively, suggesting that synaptic plasticity in this area is involved in reward-seeking behaviors.
Collapse
Affiliation(s)
- Eric C Dumont
- The Vollum Institute and Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon 97239, USA
| | | | | | | |
Collapse
|
259
|
Nakagawa T, Yamamoto R, Fujio M, Suzuki Y, Minami M, Satoh M, Kaneko S. Involvement of the bed nucleus of the stria terminalis activated by the central nucleus of the amygdala in the negative affective component of morphine withdrawal in rats. Neuroscience 2005; 134:9-19. [PMID: 15939543 DOI: 10.1016/j.neuroscience.2005.03.029] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2005] [Revised: 03/12/2005] [Accepted: 03/25/2005] [Indexed: 11/22/2022]
Abstract
The central nucleus of the amygdala (Ce) and the bed nucleus of the stria terminalis (BST) are key structures of the extended amygdala, which is suggested to be involved in drug addiction and reward. We have previously reported that the Ce plays a crucial role in the negative affective component of morphine withdrawal. In the present study, we examined the involvement of the neural pathway between the Ce and the BST in the negative affective component of morphine withdrawal in rats. Rats were rendered morphine dependent by s.c. implantation of a 75-mg morphine pellet for 3 days, and morphine withdrawal was precipitated by an i.p. injection of naloxone (0.3 mg/kg). In the place-conditioning paradigm, discrete bilateral excitotoxic lesions of the Ce or the BST significantly reduced naloxone-precipitated morphine withdrawal-induced conditioned place aversion. On the other hand, they had little effect on morphine withdrawal-induced somatic signs. In an immunohistochemical study for c-Fos protein, naloxone-precipitated morphine withdrawal dramatically induced c-Fos-immunoreactive neurons in the capsular part of the Ce, and the lateral and medial divisions of the BST. Bilateral excitotoxic lesion of the Ce reduced the number of morphine withdrawal-induced c-Fos-immunoreactive neurons in the lateral and medial BST, with significant decreases in the posterior, ventral and juxtacapsular parts of lateral division, and anterior part of the medial division, but not in the ventral part of the medial division of the BST. On the other hand, bilateral excitotoxic lesion of the BST had no effect on such c-Fos induction within the capsular part, nor the ventral and medial divisions of the Ce. These results suggest that activation of the BST mediated through the neural pathway from the Ce contributes to the negative affective component of morphine withdrawal.
Collapse
Affiliation(s)
- T Nakagawa
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan.
| | | | | | | | | | | | | |
Collapse
|
260
|
Weitlauf C, Egli RE, Grueter BA, Winder DG. High-frequency stimulation induces ethanol-sensitive long-term potentiation at glutamatergic synapses in the dorsolateral bed nucleus of the stria terminalis. J Neurosci 2004; 24:5741-7. [PMID: 15215296 PMCID: PMC6729219 DOI: 10.1523/jneurosci.1181-04.2004] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Anatomical and functional data support a critical role for the bed nucleus of the stria terminalis (BNST) in the interaction between stress and alcohol/substance abuse. We report here that neurons of the dorsal anterolateral BNST respond to glutamatergic synaptic input in a synchronized way, such that an interpretable extracellular synaptic field potential can be readily measured. High-frequency stimulation of these glutamatergic inputs evoked NMDA receptor (NMDAR)-dependent long-term potentiation (LTP). We found that an early portion of this LTP is reduced by acute exposure to ethanol in a GABA(A) receptor-dependent manner. This effect of ethanol is accompanied by a significant and reversible dose-dependent attenuation of isolated NMDAR signaling and is mimicked by incomplete NMDAR blockade.
Collapse
Affiliation(s)
- Carl Weitlauf
- Neuroscience Graduate Program, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0615, USA
| | | | | | | |
Collapse
|
261
|
Dong HW, Swanson LW. Projections from bed nuclei of the stria terminalis, posterior division: implications for cerebral hemisphere regulation of defensive and reproductive behaviors. J Comp Neurol 2004; 471:396-433. [PMID: 15022261 DOI: 10.1002/cne.20002] [Citation(s) in RCA: 213] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The posterior division of the bed nuclei of the stria terminalis has three major nuclei: principal, interfascicular, and transverse, which receive topographically ordered inputs from the medial amygdalar nucleus. The overall pattern of axonal projections from each nucleus was determined in male rats with the Phaseolus vulgaris-leucoagglutinin method. Together, these nuclei project topographically back to the medial amygdalar nucleus, to the adjacent lateral septal nucleus, to the nucleus accumbens and substantia innominata, to hypothalamic parts of the behavior control column, and to the hypothalamic periventricular region, which controls patterned neuroendocrine and autonomic responses. The principal nucleus preferentially innervates septal and hypothalamic regions that control reproductive behavior and visceromotor responses, confirming a similar analysis by Gu et al. (J Comp Neurol [2003] 460:542-562). In contrast, the interfascicular and transverse nuclei differentially innervate septal and hypothalamic regions that control defensive as well as reproductive behaviors. In addition, the transverse nucleus projects significantly to midbrain parts of the behavior control column concerned with foraging/exploratory behavior. All three posterior division nuclei also project to thalamocortical feedback loops (by means of the nucleus reuniens and paraventricular nucleus). These structural data may be interpreted to suggest that the bed nuclei posterior division forms part (pallidal) of a corticostriatopallidal system involved in controlling two major classes of social (defensive and reproductive) behavior.
Collapse
Affiliation(s)
- Hong-Wei Dong
- Neuroscience Program and Department of Biological Sciences, University of Southern California, Los Angeles, California 90089-2520, USA
| | | |
Collapse
|