251
|
Abstract
Obesity poses a severe threat to human health, including the increased prevalence of hypertension, insulin resistance, diabetes mellitus, cancer, inflammation, sleep apnoea and other chronic diseases. Current therapies focus mainly on suppressing caloric intake, but the efficacy of this approach remains poor. A better understanding of the pathophysiology of obesity will be essential for the management of obesity and its complications. Knowledge gained over the past three decades regarding the aetiological mechanisms underpinning obesity has provided a framework that emphasizes energy imbalance and neurohormonal dysregulation, which are tightly regulated by autophagy. Accordingly, there is an emerging interest in the role of autophagy, a conserved homeostatic process for cellular quality control through the disposal and recycling of cellular components, in the maintenance of cellular homeostasis and organ function by selectively ridding cells of potentially toxic proteins, lipids and organelles. Indeed, defects in autophagy homeostasis are implicated in metabolic disorders, including obesity, insulin resistance, diabetes mellitus and atherosclerosis. In this Review, the alterations in autophagy that occur in response to nutrient stress, and how these changes alter the course of obesogenesis and obesity-related complications, are discussed. The potential of pharmacological modulation of autophagy for the management of obesity is also addressed.
Collapse
Affiliation(s)
- Yingmei Zhang
- Department of Cardiology, Fudan University Zhongshan Hospital, Shanghai, China.
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY, USA.
| | - James R Sowers
- Diabetes and Cardiovascular Research Center, University of Missouri-Columbia School of Medicine, Columbia, MO, USA
| | - Jun Ren
- Department of Cardiology, Fudan University Zhongshan Hospital, Shanghai, China.
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY, USA.
| |
Collapse
|
252
|
DNase II activated by the mitochondrial apoptotic pathway regulates RIP1-dependent non-apoptotic hepatocyte death via the TLR9/IFN-β signaling pathway. Cell Death Differ 2018; 26:470-486. [PMID: 29855540 DOI: 10.1038/s41418-018-0131-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 05/06/2018] [Accepted: 05/08/2018] [Indexed: 12/24/2022] Open
Abstract
Cell death, including apoptotic and non-apoptotic cell death, is frequently observed in liver disease. Upon activation of the mitochondrial apoptotic pathway, mitochondria release not only apoptogenic cytochrome c but also mitochondrial DNA (mtDNA) into the cytosol. The impact of DNase II, a lysosomal acid DNase that degrades mtDNA, on hepatocyte death remains unclear. Administration of ABT-737, a Bcl-xL inhibitor, upregulated DNase II activity in murine hepatocyte cell line BNL CL.2 cells and induced apoptosis. In cells treated with DNase II siRNA, ABT-737 led to accumulation of mtDNA in the cytosol and increased expression of interferon (IFN)-β and induction of propidium iodide (PI)-positive cells, in addition to apoptosis. Induced PI-positive cells were suppressed by RIP1 inhibitor, Necrostatin-1, but not by pan-caspase inhibitor, ZVAD-FMK, suggesting non-apoptotic cell death. Both the increase in IFN-β and the induction of non-apoptotic cell death were abolished by administering a TLR9 antagonist, ODN2088, or by the removal of mtDNA from cells with ethidium bromide. Hepatocyte-specific Mcl-1 knockout mice developed hepatocyte apoptosis accompanied by upregulated DNase II activity in their livers. Further knockout of DNase II induced IFN-β expression and RIP1-dependent non-apoptotic hepatocyte death, both of which were suppressed by the administration of ODN2088. Mice fed a high-fat diet (HFD), an obesity-associated fatty liver model, showed increased expression of IFN-β with suppression of DNase II activity in their livers and developed not only hepatocyte apoptosis but also non-apoptotic hepatocyte death. Hepatocyte-specific knockout of DNase II exacerbated HFD-induced non-apoptotic hepatocyte death and liver fibrosis. In conclusion, without DNase II, apoptotic stimulation on hepatocytes induces TLR9-dependent IFN-β production and RIP1-dependent non-apoptotic cell death originating from mtDNA. In fatty livers, DNase II activity is suppressed in contrast to simple inactivation of Bcl-xL or Mcl-1, and both apoptotic and non-apoptotic hepatocyte death can develop, leading to the progression of liver fibrosis.
Collapse
|
253
|
Okada H, Takabatake R, Honda M, Takegoshi K, Yamashita T, Nakamura M, Shirasaki T, Sakai Y, Shimakami T, Nagata N, Takamura T, Tanaka T, Kaneko S. Peretinoin, an acyclic retinoid, suppresses steatohepatitis and tumorigenesis by activating autophagy in mice fed an atherogenic high-fat diet. Oncotarget 2018; 8:39978-39993. [PMID: 28591717 PMCID: PMC5522259 DOI: 10.18632/oncotarget.18116] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 05/12/2017] [Indexed: 01/21/2023] Open
Abstract
The pathogenesis of non-alcoholic steatohepatitis (NASH) is still unclear and the prevention of the development of hepatocellular carcinoma (HCC) has not been established. We established an atherogenic and high-fat diet mouse model that develops hepatic steatosis, inflammation, fibrosis, and liver tumors at a high frequency. Using two NASH-HCC mouse models, we showed that peretinoin, an acyclic retinoid, significantly improved liver histology and reduced the incidence of liver tumors. Interestingly, we found that peretinoin induced autophagy in the liver of mice, which was characterized by the increased co-localized expression of microtubule-associated protein light chain 3B-II and lysosome-associated membrane protein 2, and increased autophagosome formation and autophagy flux in the liver. These findings were confirmed using primary mouse hepatocytes. Among representative autophagy pathways, the autophagy related (Atg) 5-Atg12-Atg16L1 pathway was impaired; especially, Atg16L1 was repressed at both the mRNA and protein level. Decreased Atg16L1 mRNA expression was also found in the liver of patients with NASH according to disease progression. Promoter analysis revealed that peretinoin activated the promoter of Atg16L1 by increasing the expression of CCAAT/enhancer-binding-protein-alpha. Interestingly, Atg16L1 overexpression in HepG2 cells inhibited palmitate-induced NF-kB activation and interleukin-6-induced STAT3 activation. We showed that Atg16L1 induced the de-phosphorylation of Gp130, a receptor subunit of interleukin-6 family cytokines, which subsequently repressed phosphorylated-STAT3 (Tyr705) levels, and this process might be independent of autophagy function. Thus, peretinoin prevents the progression of NASH and the development of HCC through activating the autophagy pathway by increased Atg16L1 expression, which is an essential regulator of autophagy and anti-inflammatory proteins.
Collapse
Affiliation(s)
- Hikari Okada
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Riuta Takabatake
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Masao Honda
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan.,Department of Advanced Medical Technology, Kanazawa University Graduate School of Health Medicine, Kanazawa, Japan
| | - Kai Takegoshi
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Taro Yamashita
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Mikiko Nakamura
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Takayoshi Shirasaki
- Department of Advanced Medical Technology, Kanazawa University Graduate School of Health Medicine, Kanazawa, Japan
| | - Yoshio Sakai
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Tetsuro Shimakami
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Naoto Nagata
- Department of Cell Metabolism and Nutrition, Brain/Liver Interface Medicine Research Center, Kanazawa University, Kanazawa, Japan
| | - Toshinari Takamura
- Department of Disease Control and Homeostasis, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Takuji Tanaka
- The Tohkai Cytopathology Institute, Cancer Research and Prevention, Gifu, Japan
| | - Shuichi Kaneko
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan.,Department of Disease Control and Homeostasis, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| |
Collapse
|
254
|
Zhang T, Yan J, Wang N, Dai L, Wang Y, Cai W. Autophagy May Protect Against Parenteral Nutrition-Associated Liver Disease by Suppressing Endoplasmic Reticulum Stress. JPEN J Parenter Enteral Nutr 2018; 43:96-106. [PMID: 29761871 DOI: 10.1002/jpen.1173] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 03/19/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND The objectives of this study were to address the role of autophagy in the pathogenesis of parenteral nutrition (PN)-associated liver disease (PNALD) and its possible mechanism in vivo. METHODS Five-week-old male Sprague Dawley rats were fed Shoobree chow (Xietong Organism, Jiangsu, China) and administered intravenous 0.9% saline (sham group), PN (PN group), PN plus rapamycin (1 mg/kg; PN + Rapa group), or rapamycin (Rapa group) for 7 days. Before and after study, body weight, biochemical indicators, hepatic histology, level of autophagy, hepatocyte apoptosis, reactive oxygen species (ROS), and endoplasmic reticulum (ER) stress indicators including binding immunoglobulin protein (BIP), spliced X-box-binding protein-1 (sXBP1), and CCAAT-enhancer-binding protein homologous protein (CHOP) were measured. RESULTS Autophagy was suppressed in the PNALD model, which was demonstrated by less light chain 3 fluorescence (LC3) puncta and lower LC3II expression. Rapamycin effectively induced hepatic autophagy in PN rats. The PN + Rapa group presented improved hepatic function, decreased pathology scores, and less steatosis than the PN group. In addition, rapamycin treatment decreased terminal deoxynucleotidyl transferase dUTP nick end labeling and cleaved-caspase 3 expression, indicating a lower level of hepatocyte apoptosis. Compared with the PN group, the PN + Rapa group had lower levels of ROS and reduced expression of ER stress-related protein markers, such as BIP, sXBP1 and CHOP. CONCLUSIONS Autophagy was suppressed in the PNALD model. Rapamycin treatment induced autophagy and protected against PNALD, possibly by suppressing ROS-induced ER stress.
Collapse
Affiliation(s)
- Tian Zhang
- Department of Pediatric Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Institute of Pediatric Research, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, People's Republic of China
| | - Junkai Yan
- Shanghai Institute of Pediatric Research, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, People's Republic of China
| | - Nan Wang
- Department of Clinical Nutrition, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Institute of Pediatric Research, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, People's Republic of China
| | - Lina Dai
- Department of Pediatric Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Institute of Pediatric Research, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, People's Republic of China
| | - Ying Wang
- Department of Clinical Nutrition, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Institute of Pediatric Research, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, People's Republic of China
| | - Wei Cai
- Department of Pediatric Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Institute of Pediatric Research, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, People's Republic of China
| |
Collapse
|
255
|
Mulla MJ, Weel IC, Potter JA, Gysler SM, Salmon JE, Peraçoli MTS, Rothlin CV, Chamley LW, Abrahams VM. Antiphospholipid Antibodies Inhibit Trophoblast Toll-Like Receptor and Inflammasome Negative Regulators. Arthritis Rheumatol 2018; 70:891-902. [PMID: 29342502 DOI: 10.1002/art.40416] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 01/09/2018] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Women with antiphospholipid antibodies (aPL) are at risk for pregnancy complications associated with poor placentation and placental inflammation. Although these antibodies are heterogeneous, some anti-β2 -glycoprotein I (anti-β2 GPI) antibodies can activate Toll-like receptor 4 (TLR-4) and NLRP3 in human first-trimester trophoblasts. The objective of this study was to determine the role of negative regulators of TLR and inflammasome function in aPL-induced trophoblast inflammation. METHODS Human trophoblasts were not treated or were treated with anti-β2 GPI aPL or control IgG in the presence or absence of the common TAM (TYRO3, AXL, and Mer tyrosine kinase [MERTK]) receptor ligand growth arrest-specific protein 6 (GAS6) or the autophagy-inducer rapamycin. The expression and function of the TAM receptor pathway and autophagy were measured by quantitative reverse transcription-polymerase chain reaction (qRT-PCR), Western blotting, and enzyme-linked immunosorbent assay (ELISA). Antiphospholipid antibody-induced trophoblast inflammation was measured by qRT-PCR, activity assays, and ELISA. RESULTS Anti-β2 GPI aPL inhibited trophoblast TAM receptor function by reducing cellular expression of the receptor tyrosine kinases AXL and MERTK and the ligand GAS6. The addition of GAS6 blocked the effects of aPL on the TLR-4-mediated interleukin-8 (IL-8) response. However, the NLRP3 inflammasome-mediated IL-1β response was not affected by GAS6, suggesting that another regulatory pathway was involved. Indeed, anti-β2 GPI aPL inhibited basal trophoblast autophagy, and reversing this with rapamycin inhibited aPL-induced inflammasome function and IL-1β secretion. CONCLUSION Basal TAM receptor function and autophagy may serve to inhibit trophoblast TLR and inflammasome function, respectively. Impairment of TAM receptor signaling and autophagy by anti-β2 GPI aPL may allow subsequent TLR and inflammasome activity, leading to a robust inflammatory response.
Collapse
Affiliation(s)
| | - Ingrid C Weel
- Yale University, New Haven, Connecticut, and São Paulo State University, São Paulo, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
256
|
Resveratrol alleviates FFA and CCl4 induced apoptosis in HepG2 cells via restoring endoplasmic reticulum stress. Oncotarget 2018; 8:43799-43809. [PMID: 28415630 PMCID: PMC5546441 DOI: 10.18632/oncotarget.16460] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/15/2017] [Indexed: 12/21/2022] Open
Abstract
Cell apoptosis often induces inflammation and injury in the liver, with endoplasmic reticulum (ER) stress as the most possible reason. Resveratrol (RSV) has been shown to prevent hepatic steatosis and alleviate apoptosis, however, the exact mechanisms underlying the effects still need to be explored. Here we co-cultured HepG2 cells with free fatty acid (FFA) solution (oleic acid: palmitic acid = 2:1) and then exposed to a carbon tetrachloride (CCl4) solution to induce apoptosis. To evaluate the therapeutic effects, RSV (2.5 μM, 5 μM, 10 μM) was added to the cells. Results showed that HepG2 cells co-cultured with FFA exhibited lipid infiltration and were susceptible to apoptosis upon exposure to the CCl4 solution. The expression of molecules related to apoptosis (Caspases, Bcl-2/Bax) and ER stress (GRP78, IRE1, ATF6, PERK, et al.) was all significantly decreased upon RSV treatment. We further inhibited GRP78 by siRNA, results showed that the anti-apoptotic effect of RSV still maintained under GRP78 siRNA condition. Our data demonstrated that lipid accumulated HepG2 cells were susceptible to injury, and RSV could improve apoptosis in FFA and CCl4 stressed cells, which partially via restoring ER function.
Collapse
|
257
|
Piacentini M, Baiocchini A, Del Nonno F, Melino G, Barlev NA, Rossin F, D'Eletto M, Falasca L. Non-alcoholic fatty liver disease severity is modulated by transglutaminase type 2. Cell Death Dis 2018; 9:257. [PMID: 29449533 PMCID: PMC5833377 DOI: 10.1038/s41419-018-0292-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 12/14/2017] [Accepted: 12/15/2017] [Indexed: 02/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most important liver diseases worldwide. Currently, no effective treatment is available, and NAFLD pathogenesis is incompletely understood. Transglutaminase type 2 (TG2) is a ubiquitous enzyme whose dysregulation is implicated in the pathogenesis of various human diseases. Here we examined the impact of TG2 on NAFLD progression using the high-fat-diet-induced model in both wild-type and TG2-deficient mice. Animals were fed with a standard chow diet or a high-fat diet (42% of the energy from fat) for 16 weeks. Results demonstrated that the absence of a functional enzyme, which causes the impairment of autophagy/mitophagy, leads to worsening of disease progression. Data were confirmed by pharmacological inhibition of TG2 in WT animals. In addition, the analysis of human liver samples from NAFLD patients validated the enzyme’s involvement in the liver fat disease pathogenesis. Our findings strongly suggest that TG2 activation may offer protection in the context of NAFLD, thus representing a novel therapeutic target for tackling the NAFLD progression.
Collapse
Affiliation(s)
- Mauro Piacentini
- National Institute for Infectious Diseases, IRCCS "Lazzaro Spallanzani", Rome, Italy. .,Department of Biology, University of Rome "Tor Vergata", Rome, Italy.
| | - Andrea Baiocchini
- National Institute for Infectious Diseases, IRCCS "Lazzaro Spallanzani", Rome, Italy
| | - Franca Del Nonno
- National Institute for Infectious Diseases, IRCCS "Lazzaro Spallanzani", Rome, Italy
| | - Gerry Melino
- Department Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | - Nickolai A Barlev
- Institute of Cytology Russian Academy of Sciences, Saint-Petersburg, Russian Federation
| | - Federica Rossin
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Manuela D'Eletto
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Laura Falasca
- National Institute for Infectious Diseases, IRCCS "Lazzaro Spallanzani", Rome, Italy.
| |
Collapse
|
258
|
Namkoong S, Cho CS, Semple I, Lee JH. Autophagy Dysregulation and Obesity-Associated Pathologies. Mol Cells 2018; 41:3-10. [PMID: 29370691 PMCID: PMC5792710 DOI: 10.14348/molcells.2018.2213] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 10/02/2017] [Accepted: 10/10/2017] [Indexed: 12/20/2022] Open
Abstract
Autophagy is one of the major degradative mechanisms that can eliminate excessive nutrients, toxic protein aggregates, damaged organelles and invading microorganisms. In response to obesity and obesity-associated lipotoxic, proteotoxic and oxidative stresses, autophagy plays an essential role in maintaining physiological homeostasis. However, obesity and its associated stress insults can often interfere with the autophagic process through various mechanisms, which result in further aggravation of obesity-related metabolic pathologies in multiple metabolic organs. Paradoxically, inhibition of autophagy, within specific contexts, indirectly produces beneficial effects that can alleviate several detrimental consequences of obesity. In this minireview, we will provide a brief discussion about our current understanding of the impact of obesity on autophagy and the role of autophagy dysregulation in modulating obesity-associated pathological outcomes.
Collapse
Affiliation(s)
- Sim Namkoong
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109-2200,
USA
| | - Chun-Seok Cho
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109-2200,
USA
| | - Ian Semple
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109-2200,
USA
| | - Jun Hee Lee
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109-2200,
USA
- Institute of Gerontology, University of Michigan, Ann Arbor, Michigan 48109-2200,
USA
| |
Collapse
|
259
|
Wong SW, Sil P, Martinez J. Rubicon: LC3-associated phagocytosis and beyond. FEBS J 2017; 285:1379-1388. [PMID: 29215797 DOI: 10.1111/febs.14354] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/06/2017] [Accepted: 12/04/2017] [Indexed: 02/07/2023]
Abstract
Rubicon (Rubcn) was initially identified as a component of the Class III PI3K complex and a negative regulator of canonical autophagy and endosomal trafficking. However, Rubicon has attracted the most notoriety because of its critical role in LC3-associated phagocytosis (LAP), a form of noncanonical autophagy that utilizes some components of the autophagy machinery to process extracellular cargo. Additionally, Rubicon has been identified as a key modulator of the inflammatory response and viral replication. In this review, we discuss the known functions of Rubicon in LAP and other signaling pathways and examine the disease pathologies associated with Rubicon dysfunction in animal models and humans.
Collapse
Affiliation(s)
- Sing-Wai Wong
- Immunity, Inflammation, and Disease Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, NC, USA.,Oral and Craniofacial Biomedicine Curriculum, School of Dentistry, University of North Carolina at Chapel Hill, NC, USA
| | - Payel Sil
- Immunity, Inflammation, and Disease Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, NC, USA
| | - Jennifer Martinez
- Immunity, Inflammation, and Disease Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, NC, USA
| |
Collapse
|
260
|
Zhang Z, Yao Z, Chen Y, Qian L, Jiang S, Zhou J, Shao J, Chen A, Zhang F, Zheng S. Lipophagy and liver disease: New perspectives to better understanding and therapy. Biomed Pharmacother 2017; 97:339-348. [PMID: 29091883 DOI: 10.1016/j.biopha.2017.07.168] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/10/2017] [Accepted: 07/30/2017] [Indexed: 02/07/2023] Open
Abstract
Intracellular lipid droplets (LDs) are remarkably dynamic and complex organelles that enact regulated storage and release of lipids to fulfil their fundamental roles in energy metabolism, membrane synthesis and provision of lipid-derived signaling molecules. The recent finding that LDs can be selectively degraded by the lysosomal pathway of autophagy through a process termed lipophagy has opened up a new understanding of how lipid metabolism regulates cellular physiology and pathophysiology. Many new functions for autophagic lipid metabolism have now been defined in various diseases including liver disease. Lipophagy was originally described in hepatocytes, where it is critical for maintaining cellular energy homeostasis in obesity and metabolic syndrome. In vitro and in vivo studies have demonstrated the selective uptake of LDs by autophagosomes, and inhibition of autophagy has been shown to reduce the β-oxidation of free fatty acids due to the increased accumulation of lipids and LDs. The identification of lipophagy as a new process dedicated to cellular lipid removal has mapped autophagy as an emerging player in cellular lipid metabolism. Pharmacological or genetic modulation of lipophagy might point to possible therapeutic strategies for combating a broad range of liver diseases. This review summarizes recent work focusing on lipophagy and liver disease as well as highlighting challenges and future directions of research. On the other hand, it also offers a glimpse into different strategies that have been used in experimental models to counteract excessive pathological lipophagy in the prevention and treatment of liver disease.
Collapse
Affiliation(s)
- Zili Zhang
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhen Yao
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yifan Chen
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Lei Qian
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shuoyi Jiang
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jingyi Zhou
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jiangjuan Shao
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Anping Chen
- Department of Pathology, School of Medicine, Saint Louis University, St Louis, MO 63104, USA
| | - Feng Zhang
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shizhong Zheng
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
261
|
Wang ME, Singh BK, Hsu MC, Huang C, Yen PM, Wu LS, Jong DS, Chiu CH. Increasing Dietary Medium-Chain Fatty Acid Ratio Mitigates High-fat Diet-Induced Non-Alcoholic Steatohepatitis by Regulating Autophagy. Sci Rep 2017; 7:13999. [PMID: 29070903 PMCID: PMC5656678 DOI: 10.1038/s41598-017-14376-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 10/09/2017] [Indexed: 12/12/2022] Open
Abstract
Previous studies have demonstrated that saturated fatty acids (SFAs) are more lipotoxic than unsaturated fatty acids (UFAs) in inhibiting hepatic autophagy and promoting non-alcoholic steatohepatitis (NASH). However, there have been few studies have investigated the effects of carbon chain length on SFA-induced autophagy impairment and lipotoxicity. To investigate whether SFAs with shorter carbon chain lengths have differential effects on hepatic autophagy and NASH development, we partially replaced lard with coconut oil to elevate the ratio of medium-chain fatty acids (MCFAs) to long-chain fatty acids (LCFAs) in a mouse high-fat diet (HFD) and fed mice for 16 weeks. In addition, we treated HepG2 cells with different combinations of fatty acids to study the mechanisms of MCFAs-mediated hepatic protections. Our results showed that increasing dietary MCFA/LCFA ratio mitigated HFD-induced Type 2 diabetes and NASH in mice. Importantly, we demonstrated that increased MCFA ratio exerted its protective effects by restoring Rubicon-suppressed autophagy. Our study suggests that the relative amount of LCFAs and MCFAs in the diet, in addition to the amount of SFAs, can significantly contribute to autophagy impairment and hepatic lipotoxicity. Collectively, we propose that increasing dietary MCFAs could be an alternative therapeutic and prevention strategy for Type 2 diabetes and NASH.
Collapse
Affiliation(s)
- Mu-En Wang
- Laboratory of Animal Physiology, Department of Animal Science and Technology, National Taiwan University, Taipei, 10617, Taiwan.,Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, 16987, Singapore
| | - Brijesh K Singh
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, 16987, Singapore
| | - Meng-Chieh Hsu
- Laboratory of Animal Physiology, Department of Animal Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Chien Huang
- Laboratory of Animal Physiology, Department of Animal Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Paul M Yen
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, 16987, Singapore
| | - Leang-Shin Wu
- Laboratory of Animal Physiology, Department of Animal Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - De-Shien Jong
- Laboratory of Animal Physiology, Department of Animal Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Chih-Hsien Chiu
- Laboratory of Animal Physiology, Department of Animal Science and Technology, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
262
|
Zhu J, Yu W, Liu B, Wang Y, Shao J, Wang J, Xia K, Liang C, Fang W, Zhou C, Tao H. Escin induces caspase-dependent apoptosis and autophagy through the ROS/p38 MAPK signalling pathway in human osteosarcoma cells in vitro and in vivo. Cell Death Dis 2017; 8:e3113. [PMID: 29022891 PMCID: PMC5682655 DOI: 10.1038/cddis.2017.488] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 08/05/2017] [Accepted: 08/09/2017] [Indexed: 02/06/2023]
Abstract
Osteosarcoma is one of the most malignant neoplasms in adolescents, and it generally develops multidrug resistance. Escin, a natural mixture of triterpene saponins isolated from Aesculus hippocastanum (horse chestnut), has demonstrated potent anti-tumour potential in vitro and in vivo. In the present study, we found that escin inhibited osteosarcoma proliferation in a dose- and time-dependent manner. Additionally, escin-induced apoptosis was evidenced by the increased expression of caspase-related proteins and the formation of apoptotic bodies. Escin also induced autophagy, with elevated LC3, ATG5, ATG12 and Beclin expression as well as autophagosome formation. Inhibition of escin-induced autophagy promoted apoptosis. Moreover, p38 mitogen-activated protein kinases (MAPKs) and reactive oxygen species (ROS) were activated by escin. A p38 MAPK inhibitor partially attenuated the autophagy and apoptosis triggered by escin, but a ROS scavenger showed a greater inhibitory effect. Finally, the therapeutic efficacy of escin against osteosarcoma was demonstrated in an orthotopic model. Overall, escin counteracted osteosarcoma by inducing autophagy and apoptosis via the activation of the ROS/p38 MAPK signalling pathway; these findings provide evidence for escin as a novel and potent therapeutic for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Jian Zhu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jie Fang Road, Hangzhou, Zhejiang 310009, PR China.,Orthopedics Research Institute of Zhejiang University, #88, Jiefang Road, Hangzhou 310009, PR China
| | - Wei Yu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jie Fang Road, Hangzhou, Zhejiang 310009, PR China.,Orthopedics Research Institute of Zhejiang University, #88, Jiefang Road, Hangzhou 310009, PR China
| | - Bing Liu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jie Fang Road, Hangzhou, Zhejiang 310009, PR China.,Orthopedics Research Institute of Zhejiang University, #88, Jiefang Road, Hangzhou 310009, PR China
| | - Yitian Wang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jie Fang Road, Hangzhou, Zhejiang 310009, PR China.,Orthopedics Research Institute of Zhejiang University, #88, Jiefang Road, Hangzhou 310009, PR China
| | - Jianlin Shao
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Junjie Wang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jie Fang Road, Hangzhou, Zhejiang 310009, PR China.,Orthopedics Research Institute of Zhejiang University, #88, Jiefang Road, Hangzhou 310009, PR China
| | - Kaishun Xia
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jie Fang Road, Hangzhou, Zhejiang 310009, PR China.,Orthopedics Research Institute of Zhejiang University, #88, Jiefang Road, Hangzhou 310009, PR China
| | - Chengzhen Liang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jie Fang Road, Hangzhou, Zhejiang 310009, PR China.,Orthopedics Research Institute of Zhejiang University, #88, Jiefang Road, Hangzhou 310009, PR China
| | - Weijing Fang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jie Fang Road, Hangzhou, Zhejiang 310009, PR China.,Orthopedics Research Institute of Zhejiang University, #88, Jiefang Road, Hangzhou 310009, PR China
| | - Chenhe Zhou
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jie Fang Road, Hangzhou, Zhejiang 310009, PR China.,Orthopedics Research Institute of Zhejiang University, #88, Jiefang Road, Hangzhou 310009, PR China
| | - Huimin Tao
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jie Fang Road, Hangzhou, Zhejiang 310009, PR China.,Orthopedics Research Institute of Zhejiang University, #88, Jiefang Road, Hangzhou 310009, PR China
| |
Collapse
|
263
|
Affiliation(s)
- Charles E Sparks
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | | |
Collapse
|
264
|
Zhang X, Wu WKK, Xu W, Man K, Wang X, Han J, Leung WY, Wu R, Liu K, Yu J. C-X-C Motif Chemokine 10 Impairs Autophagy and Autolysosome Formation in Non-alcoholic Steatohepatitis. Am J Cancer Res 2017; 7:2822-2836. [PMID: 28824718 PMCID: PMC5562218 DOI: 10.7150/thno.19068] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 05/09/2017] [Indexed: 12/18/2022] Open
Abstract
C-X-C motif chemokine 10 (CXCL10) is a crucial pro-inflammatory factor in chronic hepatitis. Autophagy dysregulation is known to contribute to hepatic inflammatory injury. Hence, we investigated the regulatory effect of CXCL10 on the autophagosome-lysosome system during non-alcoholic fatty liver disease (NAFLD) development. The effect of CXCL10 ablation by neutralizing monoclonal antibody (mAb) or genetic knockout on autophagic flux was evaluated in cultured hepatocytes and animal models of NAFLD. Results demonstrated that CXCL10 ablation protected against hepatocyte injury in vitro and steatohepatitis development in mice. Autophagic flux impairment was rectified by CXCL10 inhibition using anti-CXCL10 mAb in AML-12 and HepG2 liver cell lines and primary hepatocytes as evidenced by the attenuated accumulation of p62/SQSTM1 and LC3-II proteins and increased autophagic protein degradation. Impaired autophagic flux was significantly restored by CXCL10 knockout or anti-CXCL10 mAb in mice. Bafilomycin A1, an inhibitor of autolysosome formation, abolished the rectifying effect of anti-CXCL10 mAb or CXCL10 knockdown in AML-12 and primary hepatocytes, indicating CXCL10 impaired late-stage autophagy in NAFLD. Anti-CXCL10 mAb treatment also increased the fusion of LC3-positive autophagosomes with lysosomes in HepG2 cells challenged with palmitic acid, suggesting that CXCL10 ablation restored autolysosome formation. Consistently, the number of autolysosomes was significantly increased by CXCL10 knockout in mice as shown by electron microscopy. In conclusion, upregulated CXCL10 in steatohepatitis impairs autophagic flux by reducing autolysosome formation, thereby inhibiting autophagic protein degradation and the accumulation of ubiquitinated proteins, leading to the development of steatohepatitis.
Collapse
|
265
|
Schulze RJ, Sathyanarayan A, Mashek DG. Breaking fat: The regulation and mechanisms of lipophagy. Biochim Biophys Acta Mol Cell Biol Lipids 2017. [PMID: 28642194 DOI: 10.1016/j.bbalip.2017.06.008] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Lipophagy is defined as the autophagic degradation of intracellular lipid droplets (LDs). While the field of lipophagy research is relatively young, an expansion of research in this area over the past several years has greatly advanced our understanding of lipophagy. Since its original characterization in fasted liver, the contribution of lipophagy is now recognized in various organisms, cell types, metabolic states and disease models. Moreover, recent studies provide exciting new insights into the underlying mechanisms of lipophagy induction as well as the consequences of lipophagy on cell metabolism and signaling. This review summarizes recent work focusing on LDs and lipophagy as well as highlighting challenges and future directions of research as our understanding of lipophagy continues to grow and evolve. This article is part of a Special Issue entitled: Recent Advances in Lipid Droplet Biology edited by Rosalind Coleman and Matthijs Hesselink.
Collapse
Affiliation(s)
- Ryan J Schulze
- Department of Biochemistry and Molecular Biology and the Center for Digestive Diseases, Mayo Clinic, Rochester, MN, United States
| | - Aishwarya Sathyanarayan
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, United States
| | - Douglas G Mashek
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, United States; Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, University of Minnesota, Minneapolis, MN, United States.
| |
Collapse
|
266
|
Zhao SP, Wu ZS, Chen Y, Liang X, Bao L, Li P, Sun RR, Wu YL, Li LR, Wang Q. Protective effect of Hua Tan Qu Shi decoction against liver injury in rats with nonalcoholic fatty liver disease. Biomed Pharmacother 2017; 91:181-190. [PMID: 28458156 DOI: 10.1016/j.biopha.2017.04.099] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/10/2017] [Accepted: 04/13/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD), is currently a worldwide health problem. None of the existing treatment medications had got a satisfactory effect. Hua Tan Qu Shi (HTQS) decoction is a Chinese herbal formula, which has been used clinically to treat NAFLD for years. However, the underlying mechanisms are still unclear. METHODS High-fat diet (HFD) induced non-alcoholic fatty liver disease rats treated with or without HTQS decoction by gavage for 10 weeks and examined by serology, 24-h albuminuria, histology, immunohistochemistry, and molecular analyses.
Collapse
Affiliation(s)
- Shi Peng Zhao
- Center for Studies in Constitution Research of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zhi Sheng Wu
- Beijing University of Chinese Medicine, Beijing, 100102, China; Beijing Key Laboratory for Basic and Development Research on Chinese Medicine, Beijing, 100102, China; Key Laboratory of TCM-information Engineering of State Administration of TCM, Beijing, China
| | - Yu Chen
- Center for Studies in Constitution Research of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xue Liang
- Center for Studies in Constitution Research of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Lei Bao
- Center for Studies in Constitution Research of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Pin Li
- Center for Studies in Constitution Research of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Ran Ran Sun
- Center for Studies in Constitution Research of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yan Ling Wu
- Center for Studies in Constitution Research of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Ling Ru Li
- Center for Studies in Constitution Research of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Qi Wang
- Center for Studies in Constitution Research of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
267
|
Bacterial secretion system skews the fate of Legionella-containing vacuoles towards LC3-associated phagocytosis. Sci Rep 2017; 7:44795. [PMID: 28317932 PMCID: PMC5357938 DOI: 10.1038/srep44795] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 02/14/2017] [Indexed: 01/17/2023] Open
Abstract
The evolutionarily conserved processes of endosome-lysosome maturation and macroautophagy are established mechanisms that limit survival of intracellular bacteria. Similarly, another emerging mechanism is LC3-associated phagocytosis (LAP). Here we report that an intracellular vacuolar pathogen, Legionella dumoffii, is specifically targeted by LAP over classical endocytic maturation and macroautophagy pathways. Upon infection, the majority of L. dumoffii resides in ER-like vacuoles and replicate within this niche, which involves inhibition of classical endosomal maturation. The establishment of the replicative niche requires the bacterial Dot/Icm type IV secretion system (T4SS). Intriguingly, the remaining subset of L. dumoffii transiently acquires LC3 to L. dumoffii-containing vacuoles in a Dot/Icm T4SS-dependent manner. The LC3-decorated vacuoles are bound by an apparently undamaged single membrane, and fail to associate with the molecules implicated in selective autophagy, such as ubiquitin or adaptors. The process requires toll-like receptor 2, Rubicon, diacylglycerol signaling and downstream NADPH oxidases, whereas ULK1 kinase is dispensable. Together, we have discovered an intracellular pathogen, the survival of which in infected cells is limited predominantly by LAP. The results suggest that L. dumoffii is a valuable model organism for examining the mechanistic details of LAP, particularly induced by bacterial infection.
Collapse
|
268
|
Gual P, Gilgenkrantz H, Lotersztajn S. Autophagy in chronic liver diseases: the two faces of Janus. Am J Physiol Cell Physiol 2017; 312:C263-C273. [PMID: 27903585 DOI: 10.1152/ajpcell.00295.2016] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 11/22/2016] [Accepted: 11/22/2016] [Indexed: 02/07/2023]
Abstract
Alcoholic liver disease (ALD) and nonalcoholic fatty liver disease (NAFLD) are the leading causes of cirrhosis and increase the risk of hepatocellular carcinoma and liver-related death. ALD and NAFLD share common pathogenic features extending from isolated steatosis to steatohepatitis and steatofibrosis, which can progress to cirrhosis and hepatocellular carcinoma. The pathophysiological mechanisms of the progression of NAFLD and ALD are complex and still unclear. Important links between the regulation of autophagy (macroautophagy and chaperone-mediated autophagy) and chronic liver diseases have been reported. Autophagy may protect against steatosis and progression to steatohepatitis by limiting hepatocyte injury and reducing M1 polarization, as well as promoting liver regeneration. Its role in fibrosis and hepatocarcinogenesis is more complex. It has pro- and antifibrogenic properties depending on the hepatic cell type concerned, and beneficial and deleterious effects on hepatocarcinogenesis at initiating and late phases, respectively. This review summarizes the latest advances on the role of autophagy in different stages of fatty liver disease progression and describes its divergent and cell-specific effects during chronic liver injury.
Collapse
Affiliation(s)
- Philippe Gual
- Inserm-U1065, C3M, Team 8 “Hepatic complications in obesity,” Nice, France
- Université Nice Côte d’Azur, Inserm, C3M, Nice, France
| | - Hélène Gilgenkrantz
- Institut Cochin, Inserm-U1016, CNRS UMR 8104, Université Paris-Descartes, Paris, France
| | - Sophie Lotersztajn
- Inserm-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, Paris, France; and
- Sorbonne Paris Cité, Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Université Paris Diderot, Paris, France
| |
Collapse
|
269
|
Gu HF, Li HZ, Xie XJ, Tang YL, Tang XQ, Nie YX, Liao DF. Oxidized low-density lipoprotein induced mouse hippocampal HT-22 cell damage via promoting the shift from autophagy to apoptosis. CNS Neurosci Ther 2017; 23:341-349. [PMID: 28233453 DOI: 10.1111/cns.12680] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/16/2017] [Accepted: 01/23/2017] [Indexed: 12/18/2022] Open
Abstract
AIMS Although oxidized low-density lipoprotein (ox-LDL) in the brain induces neuronal death, the mechanism underlying the damage effects remains largely unknown. Given that the ultimate outcome of a cell is depended on the balance between autophagy and apoptosis, this study was performed to explore whether ox-LDL induced HT-22 neuronal cell damage via autophagy impairment and apoptosis enhancement. METHODS Flow cytometry and transmission electron microscopy (TEM) were used to evaluate changes in cell apoptosis and autophagy, respectively. The protein expression of LC3-II, p62, Bcl-2, and Bax in HT-22 cells was measured by Western bolt analysis. RESULTS Our study confirmed that 100 μg/mL of ox-LDL not only promoted TH-22 cell apoptosis, characterized by elevated cell apoptosis rate and Bax protein expression, decreased Bcl-2 protein expression, and damaged cellular ultrastructures, but also impaired autophagy as indicated by the decreased LC3-II levels and the increased p62 levels. Importantly, all of these effects of ox-LDL were significantly aggravated by cotreatment with chloroquine (an inhibitor of autophagy flux). In contrast, cotreatment with rapamycin (an inducer of autophagy) remarkably reversed these effects of ox-LDL. CONCLUSIONS Taken together, our results indicated that ox-LDL-induced shift from autophagy to apoptosis contributes to HT-22 cell damage.
Collapse
Affiliation(s)
- Hong-Feng Gu
- Department of Physiology & Institute of Neuroscience, University of South China, Hengyang, China
| | - Hai-Zhe Li
- Department of Neurology of the First Affiliated Hospital, University of South China, Hengyang, China
| | - Xue-Jiao Xie
- Division of Stem Cell Regulation and Application, State Key Laboratory of Chinese Medicine Powder and Medicine Innovation in Hunan, Hunan University of Chinese Medicine, Changsha, China
| | - Ya-Ling Tang
- Department of Physiology & Institute of Neuroscience, University of South China, Hengyang, China
| | - Xiao-Qing Tang
- Department of Physiology & Institute of Neuroscience, University of South China, Hengyang, China
| | - Ya-Xiong Nie
- Department of Neurology of the First Affiliated Hospital, University of South China, Hengyang, China
| | - Duan-Fang Liao
- Division of Stem Cell Regulation and Application, State Key Laboratory of Chinese Medicine Powder and Medicine Innovation in Hunan, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
270
|
Zhang Z, Zhao S, Yao Z, Wang L, Shao J, Chen A, Zhang F, Zheng S. Autophagy regulates turnover of lipid droplets via ROS-dependent Rab25 activation in hepatic stellate cell. Redox Biol 2016; 11:322-334. [PMID: 28038427 PMCID: PMC5199192 DOI: 10.1016/j.redox.2016.12.021] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/19/2016] [Accepted: 12/19/2016] [Indexed: 12/22/2022] Open
Abstract
Activation of hepatic stellate cells (HSCs) is a pivotal event in liver fibrosis, characterized by dramatic disappearance of lipid droplets (LDs). Although LD disappearance has long been considered one of the hallmarks of HSC activation, the underlying molecular mechanisms are largely unknown. In this study, we sought to investigate the role of autophagy in the process of LD disappearance, and to further examine the underlying mechanisms in this molecular context. We found that LD disappearance during HSC activation was associated with a coordinate increase in autophagy. Inhibition or depletion of autophagy by Atg5 siRNA impaired LD disappearance of quiescent HSCs, and also restored lipocyte phenotype of activated HSCs. In contrast, induction of autophagy by Atg5 plasmid accelerated LD loss of quiescent HSCs. Importantly, our study also identified a crucial role for reactive oxygen species (ROS) in the facilitation of autophagy activation. Antioxidants, such as glutathione and N-acetyl cysteine, significantly abrogated ROS production, and in turn, prevented autophagosome generation and autophagic flux during HSC activation. Besides, we found that HSC activation triggered Rab25 overexpression, and promoted the combination of Rab25 and PI3KCIII, which direct autophagy to recognize, wrap and degrade LDs. Down-regulation of Rab25 activity, using Rab25 siRNA, blocked the target recognition of autophagy on LDs, and inhibited LD disappearance of quiescent HSCs. Moreover, the scavenging of excessive ROS could disrupt the interaction between autophagy and Rab25, and increase intracellular lipid content. Overall, these results provide novel implications to reveal the molecular mechanism of LD disappearance during HSC activation, and also identify ROS-Rab25-dependent autophagy as a potential target for the treatment of liver fibrosis. Autophagosome generation and autophagic flux are increased during HSC activation. The inhibition of autophagy blocks LD disappearance of quiescent HSCs. The induction of autophagy accelerates LD disappearance of quiescent HSCs. Rab25 activation is required for autophagy to degrade LDs during HSC activation. Mitochondrial H2O2 production triggers autophagy activation during HSC activation.
Collapse
Affiliation(s)
- Zili Zhang
- Department of Pharmacology, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Shifeng Zhao
- Department of Pharmacology, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Zhen Yao
- Department of Pharmacology, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Ling Wang
- Department of Pharmacology, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Jiangjuan Shao
- Department of Pharmacy, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Anping Chen
- Department of Pathology, School of Medicine, Saint Louis University, St Louis., MO 63104, USA
| | - Feng Zhang
- Department of Pharmacology, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Shizhong Zheng
- Department of Pharmacology, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, PR China.
| |
Collapse
|