251
|
Wu Z, Gu C, Tembrock LR, Zhang D, Ge S. Characterization of the whole chloroplast genome of Chikusichloa mutica and its comparison with other rice tribe (Oryzeae) species. PLoS One 2017; 12:e0177553. [PMID: 28542519 PMCID: PMC5443529 DOI: 10.1371/journal.pone.0177553] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 04/28/2017] [Indexed: 11/19/2022] Open
Abstract
Chloroplast genomes are a significant genomic resource in plant species and have been used in many research areas. The complete genomic information from wild crop species could supply a valuable genetic reservoir for breeding. Chikusichloa mutica is one of the most important wild distant relatives of cultivated rice. In this study, we sequenced and characterized its complete chloroplast (cp) genome and compared it with other species in the same tribe. The whole cp genome sequence is 136,603 bp in size and exhibits a typical quadripartite structure with large and small single-copy regions (LSC, 82,327 bp; SSC, 12,598 bp) separated by a pair of 20,839-bp inverted repeats (IRA, B). A total of 110 unique genes are annotated, including 76 protein-coding genes, 4 ribosomal RNA genes and 30 tRNA genes. The genome structure, gene order, GC content, and other features are similar to those of other angiosperm cp genomes. When comparing the cp genomes between Oryzinae and Zizaniinae subtribes, the main differences were found between the junction regions and distribution of simple sequence repeats (SSRs). In comparing the two Chikusichloa species, the genomes were only 40 bp different in length and 108 polymorphic sites, including 83 single nucleotide substitutions (SNPs) and 25 insertion-deletions (Indels), were found between the whole cp genomes. The complete cp genome of C. mutica will be an important genetic tool for future breeding programs and understanding the evolution of wild rice relatives.
Collapse
Affiliation(s)
- Zhiqiang Wu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- * E-mail:
| | - Cuihua Gu
- School of Landscape and Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Luke R. Tembrock
- Department of Biology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Dong Zhang
- Department of Statistics, Iowa State University, Ames, Iowa, United States of America
| | - Song Ge
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
252
|
Xiao-Ming Z, Junrui W, Li F, Sha L, Hongbo P, Lan Q, Jing L, Yan S, Weihua Q, Lifang Z, Yunlian C, Qingwen Y. Inferring the evolutionary mechanism of the chloroplast genome size by comparing whole-chloroplast genome sequences in seed plants. Sci Rep 2017; 7:1555. [PMID: 28484234 PMCID: PMC5431534 DOI: 10.1038/s41598-017-01518-5] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 03/29/2017] [Indexed: 01/08/2023] Open
Abstract
The chloroplast genome originated from photosynthetic organisms and has retained the core genes that mainly encode components of photosynthesis. However, the causes of variations in chloroplast genome size in seed plants have only been thoroughly analyzed within small subsets of spermatophytes. In this study, we conducted the first comparative analysis on a large scale to examine the relationship between sequence characteristics and genome size in 272 seed plants based on cross-species and phylogenetic signal analysis. Our results showed that inverted repeat regions, large or small single copies, intergenic regions, and gene number can be attributed to the variations in chloroplast genome size among closely related species. However, chloroplast gene length underwent evolution affecting chloroplast genome size in seed plants irrespective of whether phylogenetic information was incorporated. Among chloroplast genes, atpA, accD and ycf1 account for 13% of the variation in genome size, and the average Ka/Ks values of homologous pairs of the three genes are larger than 1. The relationship between chloroplast genome size and gene length might be affected by selection during the evolution of spermatophytes. The variation in chloroplast genome size may influence energy generation and ecological strategy in seed plants.
Collapse
Affiliation(s)
- Zheng Xiao-Ming
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wang Junrui
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Feng Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Liu Sha
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Pang Hongbo
- College of Chemistry and Life Science, Shenyang Normal University, Shenyang, 110034, China
| | - Qi Lan
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Li Jing
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Sun Yan
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qiao Weihua
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhang Lifang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Cheng Yunlian
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yang Qingwen
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
253
|
Tonti-Filippini J, Nevill PG, Dixon K, Small I. What can we do with 1000 plastid genomes? THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:808-818. [PMID: 28112435 DOI: 10.1111/tpj.13491] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/17/2017] [Accepted: 01/17/2017] [Indexed: 05/21/2023]
Abstract
The plastid genome of plants is the smallest and most gene-rich of the three genomes in each cell and the one generally present in the highest copy number. As a result, obtaining plastid DNA sequence is a particularly cost-effective way of discovering genetic information about a plant. Until recently, the sequence information gathered in this way was generally limited to small portions of the genome amplified by polymerase chain reaction, but recent advances in sequencing technology have stimulated a substantial rate of increase in the sequencing of complete plastid genomes. Within the last year, the number of complete plastid genomes accessible in public sequence repositories has exceeded 1000. This sudden flood of data raises numerous challenges in data analysis and interpretation, but also offers the keys to potential insights across large swathes of plant biology. We examine what has been learnt so far, what more could be learnt if we look at the data in the right way, and what we might gain from the tens of thousands more genome sequences that will surely arrive in the next few years. The most exciting new discoveries are likely to be made at the interdisciplinary interfaces between molecular biology and ecology.
Collapse
Affiliation(s)
- Julian Tonti-Filippini
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Paul G Nevill
- Department of Environment and Agriculture, ARC Centre for Mine Site Restoration, Curtin University, Kent Street, Bentley, WA, 6102, Australia
| | - Kingsley Dixon
- Department of Environment and Agriculture, ARC Centre for Mine Site Restoration, Curtin University, Kent Street, Bentley, WA, 6102, Australia
| | - Ian Small
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| |
Collapse
|
254
|
Characterization of the influence of chlororespiration on the regulation of photosynthesis in the glaucophyte Cyanophora paradoxa. Sci Rep 2017; 7:46100. [PMID: 28387347 PMCID: PMC5384210 DOI: 10.1038/srep46100] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 03/10/2017] [Indexed: 01/19/2023] Open
Abstract
Glaucophytes are primary symbiotic algae with unique plastids called cyanelles, whose structure is most similar to ancestral cyanobacteria among plastids in photosynthetic organisms. Here we compare the regulation of photosynthesis in glaucophyte with that in cyanobacteria in the aim of elucidating the changes caused by the symbiosis in the interaction between photosynthetic electron transfer and other metabolic pathways. Chlorophyll fluorescence measurements of the glaucophyte Cyanophora paradoxa NIES-547 indicated that plastoquinone (PQ) pool in photosynthetic electron transfer was reduced in the dark by chlororespiration. The levels of nonphotochemical quenching of chlorophyll fluorescence was high in the dark but decreased under low light, and increased again under high light. This type of concave light dependence was quite similar to that observed in cyanobacteria. Moreover, the addition of ionophore hardly affected nonphotochemical quenching, suggesting state transition as a main component of the regulatory system in C. paradoxa. These results suggest that cyanelles of C. paradoxa retain many of the characteristics observed in their ancestral cyanobacteria. From the viewpoint of metabolic interactions, C. paradoxa is the primary symbiotic algae most similar to cyanobacteria than other lineages of photosynthetic organisms.
Collapse
|
255
|
Tao X, Ma L, Zhang Z, Liu W, Liu Z. Characterization of the complete chloroplast genome of alfalfa ( Medicago sativa ) (Leguminosae). GENE REPORTS 2017. [DOI: 10.1016/j.genrep.2016.12.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
256
|
Chloroplast and ITS phylogenies to understand the evolutionary history of southern South American Azorella, Laretia and Mulinum (Azorelloideae, Apiaceae). Mol Phylogenet Evol 2017; 108:1-21. [DOI: 10.1016/j.ympev.2017.01.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 01/27/2017] [Accepted: 01/29/2017] [Indexed: 12/30/2022]
|
257
|
Facella P, Carbone F, Placido A, Perrotta G. Cryptochrome 2 extensively regulates transcription of the chloroplast genome in tomato. FEBS Open Bio 2017; 7:456-471. [PMID: 28396831 PMCID: PMC5377390 DOI: 10.1002/2211-5463.12082] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 04/26/2016] [Accepted: 05/03/2016] [Indexed: 11/07/2022] Open
Abstract
Light plays a key role in the regulation of many physiological processes required for plant and chloroplast development. Plant cryptochromes (crys) play an important role in monitoring, capturing, and transmitting the light stimuli. In this study, we analyzed the effects of CRY2 overexpression on transcription of tomato chloroplast genome by a tiling array, containing about 90 000 overlapping probes (5‐nucleotide resolution). We profiled transcription in leaves of wild‐type and CRY2‐overexpressing plants grown in a diurnal cycle, to generate a comprehensive map of chloroplast transcription and to monitor potential specific modulations of the chloroplast transcriptome induced by the overexpression of CRY2. Our results demonstrate that CRY2 is a master gene of transcriptional regulation in the tomato chloroplast. In fact, it modulates the day/night mRNA abundance of about 58% of the 114 ORFs. The effect of CRY2 includes a differential extension of some transcripts at their 5′‐end, according to the period of the day. We observed that the influence of CRY2 on chloroplast transcription is not limited to coding RNA; a great number of putative noncoding micro RNA also showed differential accumulation pattern. To our knowledge, this is the first study that highlights how a photoreceptor affects the day/night transcription of the chloroplast genome.
Collapse
Affiliation(s)
| | - Fabrizio Carbone
- Council for Agricultural Research and Economics The Olive Growing and Olive Product Industry Research Centre Rende (CS) Italy
| | | | | |
Collapse
|
258
|
M. Salih RH, Majeský Ľ, Schwarzacher T, Gornall R, Heslop-Harrison P. Complete chloroplast genomes from apomictic Taraxacum (Asteraceae): Identity and variation between three microspecies. PLoS One 2017; 12:e0168008. [PMID: 28182646 PMCID: PMC5300115 DOI: 10.1371/journal.pone.0168008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 11/23/2016] [Indexed: 01/10/2023] Open
Abstract
Chloroplast DNA sequences show substantial variation between higher plant species, and less variation within species, so are typically excellent markers to investigate evolutionary, population and genetic relationships and phylogenies. We sequenced the plastomes of Taraxacum obtusifrons Markl. (O978); T. stridulum Trávniček ined. (S3); and T. amplum Markl. (A978), three apomictic triploid (2n = 3x = 24) dandelions from the T. officinale agg. We aimed to characterize the variation in plastomes, define relationships and correlations with the apomictic microspecies status, and refine placement of the microspecies in the evolutionary or phylogenetic context of the Asteraceae. The chloroplast genomes of accessions O978 and S3 were identical and 151,322 bp long (where the nuclear genes are known to show variation), while A978 was 151,349 bp long. All three genomes contained 135 unique genes, with an additional copy of the trnF-GGA gene in the LSC region and 20 duplicated genes in the IR region, along with short repeats, the typical major Inverted Repeats (IR1 and IR2, 24,431bp long), and Large and Small Single Copy regions (LSC 83,889bp and SSC 18,571bp in O978). Between the two Taraxacum plastomes types, we identified 28 SNPs. The distribution of polymorphisms suggests some parts of the Taraxacum plastome are evolving at a slower rate. There was a hemi-nested inversion in the LSC region that is common to Asteraceae, and an SSC inversion from ndhF to rps15 found only in some Asteraceae lineages. A comparative repeat analysis showed variation between Taraxacum and the phylogenetically close genus Lactuca, with many more direct repeats of 40bp or more in Lactuca (1% larger plastome than Taraxacum). When individual genes and non-coding regions were for Asteraceae phylogeny reconstruction, not all showed the same evolutionary scenario suggesting care is needed for interpretation of relationships if a limited number of markers are used. Studying genotypic diversity in plastomes is important to characterize the nature of evolutionary processes in nuclear and cytoplasmic genomes with the different selection pressures, population structures and breeding systems.
Collapse
Affiliation(s)
- Rubar Hussein M. Salih
- Department of Genetics, University of Leicester, Leicester, United Kingdom
- Field crops department, Faculty of Agricultural Sciences, University of Sulaimani, Sulaimani, Kurdistan Region, Iraq
| | - Ľuboš Majeský
- Department of Botany, Faculty of Science, Palacky University in Olomouc, Olomouc, Olomouc-Holice, Czech Republic
| | - Trude Schwarzacher
- Department of Genetics, University of Leicester, Leicester, United Kingdom
| | - Richard Gornall
- Department of Genetics, University of Leicester, Leicester, United Kingdom
| | | |
Collapse
|
259
|
Jo S, Kim HW, Kim YK, Cheon SH, Kim KJ. The complete plastome sequence of Carissa macrocarpa (Eckl.) A. DC. (Apocynaceae). MITOCHONDRIAL DNA PART B-RESOURCES 2017; 2:26-28. [PMID: 33473704 PMCID: PMC7800814 DOI: 10.1080/23802359.2016.1233468] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In this study, we determined the complete plastome sequence of Carissa macrocarpa (Eckl.) A. DC. (Apocynaceae) (NCBI acc. no. KX364402). The gene order and structure of the C. macrocarpa plastome are similar to those of a typical angiosperm. The complete plastome is 155,297 bp in length, and consists of a large single-copy region of 85,586 bp and a small single-copy region of 18,131 bp, which are separated by two inverted repeats of 25,792 bp. The plastome contains 113 genes, of which 79 are protein-coding genes, 30 are tRNA genes and 4 are rRNA genes. Sixteen genes contained one intron and two genes have two introns. The average A–T content of the plastome is 62.0%. A total of 31 simple sequence repeat loci were identified within the genome. Phylogenetic analysis revealed that C. macrocarpa is a member of the paraphyletic subfamily Rauvolfioideae of Apocynaceae. The sister group relationship of C. macrocarpa to the Apocynoideae–Asclepiadoideae clade is supported by 100% bootstrap values.
Collapse
Affiliation(s)
- Sangjin Jo
- Division of Life Sciences, Korea University, Seoul, Korea
| | - Hoe-Won Kim
- Division of Life Sciences, Korea University, Seoul, Korea
| | - Young-Kee Kim
- Division of Life Sciences, Korea University, Seoul, Korea
| | - Se-Hwan Cheon
- Division of Life Sciences, Korea University, Seoul, Korea
| | - Ki-Joong Kim
- Division of Life Sciences, Korea University, Seoul, Korea
| |
Collapse
|
260
|
Gichira AW, Li Z, Saina JK, Long Z, Hu G, Gituru RW, Wang Q, Chen J. The complete chloroplast genome sequence of an endemic monotypic genus Hagenia (Rosaceae): structural comparative analysis, gene content and microsatellite detection. PeerJ 2017; 5:e2846. [PMID: 28097059 PMCID: PMC5228516 DOI: 10.7717/peerj.2846] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 11/29/2016] [Indexed: 11/20/2022] Open
Abstract
Hagenia is an endangered monotypic genus endemic to the topical mountains of Africa. The only species, Hagenia abyssinica (Bruce) J.F. Gmel, is an important medicinal plant producing bioactive compounds that have been traditionally used by African communities as a remedy for gastrointestinal ailments in both humans and animals. Complete chloroplast genomes have been applied in resolving phylogenetic relationships within plant families. We employed high-throughput sequencing technologies to determine the complete chloroplast genome sequence of H. abyssinica. The genome is a circular molecule of 154,961 base pairs (bp), with a pair of Inverted Repeats (IR) 25,971 bp each, separated by two single copies; a large (LSC, 84,320 bp) and a small single copy (SSC, 18,696). H. abyssinica's chloroplast genome has a 37.1% GC content and encodes 112 unique genes, 78 of which code for proteins, 30 are tRNA genes and four are rRNA genes. A comparative analysis with twenty other species, sequenced to-date from the family Rosaceae, revealed similarities in structural organization, gene content and arrangement. The observed size differences are attributed to the contraction/expansion of the inverted repeats. The translational initiation factor gene (infA) which had been previously reported in other chloroplast genomes was conspicuously missing in H. abyssinica. A total of 172 microsatellites and 49 large repeat sequences were detected in the chloroplast genome. A Maximum Likelihood analyses of 71 protein-coding genes placed Hagenia in Rosoideae. The availability of a complete chloroplast genome, the first in the Sanguisorbeae tribe, is beneficial for further molecular studies on taxonomic and phylogenomic resolution within the Rosaceae family.
Collapse
Affiliation(s)
- Andrew W Gichira
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China.,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
| | - Zhizhong Li
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Josphat K Saina
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China.,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
| | - Zhicheng Long
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Guangwan Hu
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
| | - Robert W Gituru
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China.,Department of Botany, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Qingfeng Wang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
| | - Jinming Chen
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
261
|
Shikanai T, Yamamoto H. Contribution of Cyclic and Pseudo-cyclic Electron Transport to the Formation of Proton Motive Force in Chloroplasts. MOLECULAR PLANT 2017; 10:20-29. [PMID: 27575692 DOI: 10.1016/j.molp.2016.08.004] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 07/28/2016] [Accepted: 08/08/2016] [Indexed: 05/05/2023]
Abstract
Photosynthetic electron transport is coupled to proton translocation across the thylakoid membrane, resulting in the formation of a trans-thylakoid proton gradient (ΔpH) and membrane potential (Δψ). Ion transporters and channels localized to the thylakoid membrane regulate the contribution of each component to the proton motive force (pmf). Although both ΔpH and Δψ contribute to ATP synthesis as pmf, only ΔpH downregulates photosynthetic electron transport via the acidification of the thylakoid lumen by inducing thermal dissipation of excessive absorbed light energy from photosystem II antennae and slowing down of the electron transport through the cytochrome b6f complex. To optimize the tradeoff between efficient light energy utilization and protection of both photosystems against photodamage, plants have to regulate the pmf amplitude and its components, ΔpH and Δψ. Cyclic electron transport around photosystem I (PSI) is a major regulator of the pmf amplitude by generating pmf independently of the net production of NADPH by linear electron transport. Chloroplast ATP synthase relaxes pmf for ATP synthesis, and its activity should be finely tuned for maintaining the size of the pmf during steady-state photosynthesis. Pseudo-cyclic electron transport mediated by flavodiiron protein (Flv) forms a large electron sink, which is essential for PSI photoprotection in fluctuating light in cyanobacteria. Flv is conserved from cyanobacteria to gymnosperms but not in angiosperms. The Arabidopsis proton gradient regulation 5 (pgr5) mutant is defective in the main pathway of PSI cyclic electron transport. By introducing Physcomitrella patens genes encoding Flvs, the function of PSI cyclic electron transport was substituted by that of Flv-dependent pseudo-cyclic electron transport. In transgenic plants, the size of the pmf was complemented to the wild-type level but the contribution of ΔpH to the total pmf was lower than that in the wild type. In the pgr5 mutant, the size of the pmf was drastically lowered by the absence of PSI cyclic electron transport. In the mutant, ΔpH occupied the majority of pmf, suggesting the presence of a mechanism for the homeostasis of luminal pH in the light. To avoid damage to photosynthetic electron transport by periods of excess solar energy, plants employ an intricate regulatory network involving alternative electron transport pathways, ion transporters/channels, and pH-dependent mechanisms for downregulating photosynthetic electron transport.
Collapse
Affiliation(s)
- Toshiharu Shikanai
- Department of Botany, Graduate School of Science, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502 Japan; CREST, Japan Science and Technology Agency, Chiyoda-ku, Tokyo 102-0076 Japan.
| | - Hiroshi Yamamoto
- Department of Botany, Graduate School of Science, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502 Japan; CREST, Japan Science and Technology Agency, Chiyoda-ku, Tokyo 102-0076 Japan
| |
Collapse
|
262
|
Sharwood RE. Engineering chloroplasts to improve Rubisco catalysis: prospects for translating improvements into food and fiber crops. THE NEW PHYTOLOGIST 2017; 213:494-510. [PMID: 27935049 DOI: 10.1111/nph.14351] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 09/10/2016] [Indexed: 05/19/2023]
Abstract
494 I. 495 II. 496 III. 496 IV. 499 V. 499 VI. 501 VII. 501 VIII. 502 IX. 505 X. 506 507 References 507 SUMMARY: The uncertainty of future climate change is placing pressure on cropping systems to continue to provide stable increases in productive yields. To mitigate future climates and the increasing threats against global food security, new solutions to manipulate photosynthesis are required. This review explores the current efforts available to improve carbon assimilation within plant chloroplasts by engineering Rubisco, which catalyzes the rate-limiting step of CO2 fixation. Fixation of CO2 and subsequent cycling of 3-phosphoglycerate through the Calvin cycle provides the necessary carbohydrate building blocks for maintaining plant growth and yield, but has to compete with Rubisco oxygenation, which results in photorespiration that is energetically wasteful for plants. Engineering improvements in Rubisco is a complex challenge and requires an understanding of chloroplast gene regulatory pathways, and the intricate nature of Rubisco catalysis and biogenesis, to transplant more efficient forms of Rubisco into crops. In recent times, major advances in Rubisco engineering have been achieved through improvement of our knowledge of Rubisco synthesis and assembly, and identifying amino acid catalytic switches in the L-subunit responsible for improvements in catalysis. Improving the capacity of CO2 fixation in crops such as rice will require further advances in chloroplast bioengineering and Rubisco biogenesis.
Collapse
Affiliation(s)
- Robert E Sharwood
- ARC Center of Excellence for Translational Photosynthesis, Research School of Biology, Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|
263
|
Yuan C, Zhong W, Mou F, Gong Y, Pu D, Ji P, Huang H, Yang Z, Zhang C. The complete chloroplast genome sequence and phylogenetic analysis of Chuanminshen ( Chuanminshenviolaceum Sheh et Shan). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2017; 23:35-41. [PMID: 28250582 PMCID: PMC5313399 DOI: 10.1007/s12298-016-0395-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 10/17/2016] [Accepted: 11/18/2016] [Indexed: 05/25/2023]
Abstract
Chloroplast genome sequences are very useful for species identification and phylogenetics. Chuanminshen (Chuanminshen violaceum Sheh et Shan) is an important traditional Chinese medicinal plant, for which the phylogenetic position is still controversial. In this study, the complete chloroplast genome of Chuanminshen violaceum Sheh et Shan was determined. The total size of Chuanminshen chloroplast genome was 154,529 bp with 37.8% GC content. It has the typical quadripartite structure, a large single copy (17,800 bp) and a small single copy (84,171 bp) and a pair of inverted repeats (26,279 bp). The whole genome harbors 132 genes, which includes 85 protein coding genes, 37 tRNA genes, eight rRNA genes, and two pseudogenes. Thirty-nine SSR loci, 32 tandem repeats and 49 dispersed repeats were found. Phylogenetic analyses results with the help of MEGA showed a new insight for the Chuanminshen phylogenetic relationship with the reported chloroplast genomes in Apiales plants.
Collapse
Affiliation(s)
- Can Yuan
- Industrial Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610300 China
| | - Wenjuan Zhong
- Industrial Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610300 China
| | - Fangsheng Mou
- Industrial Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610300 China
| | - Yiyun Gong
- Industrial Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610300 China
| | - Deqiang Pu
- Industrial Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610300 China
| | - Peicheng Ji
- Industrial Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610300 China
| | - Haiyan Huang
- Industrial Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610300 China
| | - Zehu Yang
- Industrial Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610300 China
| | - Chao Zhang
- Industrial Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610300 China
| |
Collapse
|
264
|
Xue X, Wang Q, Qu Y, Wu H, Dong F, Cao H, Wang HL, Xiao J, Shen Y, Wan Y. Development of the photosynthetic apparatus of Cunninghamia lanceolata in light and darkness. THE NEW PHYTOLOGIST 2017; 213:300-313. [PMID: 27401059 DOI: 10.1111/nph.14096] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 06/05/2016] [Indexed: 05/27/2023]
Abstract
Here, we compared the development of dark- and light-grown Chinese fir (Cunninghamia lanceolata) cotyledons, which synthesize chlorophyll in the dark, representing a different phenomenon from angiosperm model plants. We determined that the grana lamellar membranes were well developed in both chloroplasts and etiochloroplasts. The accumulation of thylakoid membrane protein complexes was similar between chloroplasts and etiochloroplasts. Measurement of chlorophyll fluorescence parameters indicated that photosystem II (PSII) had low photosynthetic activities, whereas the photosystem I (PSI)-driven cyclic electron flow (CEF) rate exceeded the rate of PSII-mediated photon harvesting in etiochloroplasts. Analysis of the protein contents in etiochloroplasts indicated that the light-harvesting complex II remained mostly in its monomeric conformation. The ferredoxin NADP+ oxidoreductase and NADH dehydrogenase-like complexes were relatively abundantly expressed in etiochloroplasts for Chinese fir. Our transcriptome analysis contributes a global expression database for Chinese fir cotyledons, providing background information on the regulatory mechanisms of different genes involved in the development of dark- and light-grown cotyledons. In conclusion, we provide a novel description of the early developmental status of the light-dependent and light-independent photosynthetic apparatuses in gymnosperms.
Collapse
Affiliation(s)
- Xian Xue
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
- College of Agriculture, Henan University of Science and Technology, Luoyang, 471003, China
| | - Qi Wang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Yanli Qu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Hongyang Wu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Fengqin Dong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Haoyan Cao
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Hou-Ling Wang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Jianwei Xiao
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Yingbai Shen
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Yinglang Wan
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
265
|
Jo S, Kim HW, Kim YK, Cheon SH, Kim KJ. The first complete plastome sequence from the family Sapotaceae, Pouteria campechiana (Kunth) Baehni. MITOCHONDRIAL DNA PART B-RESOURCES 2016; 1:734-736. [PMID: 33473609 PMCID: PMC7800956 DOI: 10.1080/23802359.2016.1233469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
In this study, we determined the complete plastome sequence of Pouteria campechiana (Kunth) Baehni (Sapotaceae) (NCBI acc. no. KX426215). This is the first time a plastome from the Sapotaceae has been sequenced. The gene order and structure of the P. campechiana plastome are collinear with those of the typical plastome of land plants. The complete plastome size is 157,922 bp in length and consists of a large single-copy region of 87,122 bp and a small single-copy region of 18,559 bp, which are separated by a pair of 26,120 bp-long inverted repeat regions. The overall A-T content of the plastome sequence is 63.2%. The plastome contains 113 genes, of which 79 are protein-coding genes, 30 are tRNA genes, and 4 are rRNA genes. Sixteen genes contain one intron and two genes have two introns. A total of 91 simple sequence repeat loci were identified within the genome. Phylogenetic analysis revealed that P. campechiana is a sister group of the Primulaceae-Ebenaceae clade with 100% bootstrap support.
Collapse
Affiliation(s)
- Sangjin Jo
- School of Life Sciences, Korea University, Seoul, Korea
| | - Hoe-Won Kim
- School of Life Sciences, Korea University, Seoul, Korea
| | - Young-Kee Kim
- School of Life Sciences, Korea University, Seoul, Korea
| | - Se-Hwan Cheon
- School of Life Sciences, Korea University, Seoul, Korea
| | - Ki-Joong Kim
- School of Life Sciences, Korea University, Seoul, Korea
| |
Collapse
|
266
|
Yi DK, Kim KJ. The two complete plastomes from Scrophularia (Scrophulariaceae): Scrophularia buergeriana and S. takesimensis. MITOCHONDRIAL DNA PART B-RESOURCES 2016; 1:710-712. [PMID: 33473602 PMCID: PMC7800856 DOI: 10.1080/23802359.2016.1225528] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The plastome sequences of Scrophularia buergeriana and S. takesimensis are completed in family Scrophulariaceae. The structure of two Scrophularia plastomes shows similar characteristic with the typical plastome of angiosperm. The lengths of two plastomes are 153,631bp and 152,436bp, respectively. They are divided into LSC region (84,454bp and 83,542bp) and SSC region (17,929bp and 17,938bp) by two IR regions (25,624bp and 25,478bp). Both plastomes contain 113 genes including 79 protein coding genes, 30 tRNA genes and 4 rRNA genes. Eight protein-coding, seven tRNA and four rRNA genes are duplicated in the IR regions. Eighteen genes have one or two intron(s). The overall A-T contents of two genomes are 62.0% and 61.9%, respectively. The A-T content in the non-coding (both 64.5%) is higher than in the coding (60.2% and 60.1%) region. Forty-four and forty-one simple sequence repeat (SSR) loci are identified in the S. buergeriana and S. takesimensis plastomes, respectively. In phylogenetic analysis, the genus Scrophularia shows closed relationship with Plantaginaceae.
Collapse
Affiliation(s)
- Dong-Keun Yi
- School of Life Sciences, Korea University, Seoul, Korea
| | - Ki-Joong Kim
- School of Life Sciences, Korea University, Seoul, Korea
| |
Collapse
|
267
|
Jo S, Kim HW, Kim YK, Cheon SH, Kim KJ. Complete plastome sequence of Psidium guajava L. (Myrtaceae). MITOCHONDRIAL DNA PART B-RESOURCES 2016; 1:612-614. [PMID: 33490414 PMCID: PMC7800272 DOI: 10.1080/23802359.2016.1209096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In this study, we determined the complete plastome sequence of Psidium guajava L. (Myrtaceae) (NCBI acc. no. KX364403). The gene order and structure of the P. guajava plastome are similar to those of a typical angiosperm. The complete plastome is 158,841 bp in length, and consists of a large single copy of 87,675 bp and a small single copy of 18,464 bp, separated by two inverted repeats of 26,351 bp. The overall AT content of the sequence is 63.0%. The plastome contains 112 genes, of which 78 are protein-coding genes, 30 are tRNA genes, and four are rRNA genes. Sixteen genes contain one intron and two genes have two introns. A total of 100 simple sequence loci were identified from the genome. Phylogenetic analysis revealed that P. guajava is a sister group of Eugenia uniflora with 100% bootstrap support.
Collapse
Affiliation(s)
- Sangjin Jo
- School of Life Sciences, Korea University, Seoul, Korea
| | - Hoe-Won Kim
- School of Life Sciences, Korea University, Seoul, Korea
| | - Young-Kee Kim
- School of Life Sciences, Korea University, Seoul, Korea
| | - Se-Hwan Cheon
- School of Life Sciences, Korea University, Seoul, Korea
| | - Ki-Joong Kim
- School of Life Sciences, Korea University, Seoul, Korea
| |
Collapse
|
268
|
Yi DK, Kim KJ. Two complete chloroplast genome sequences of genus Paulownia (Paulowniaceae): Paulownia coreana and P. tomentosa. MITOCHONDRIAL DNA PART B-RESOURCES 2016; 1:627-629. [PMID: 33473576 PMCID: PMC7800411 DOI: 10.1080/23802359.2016.1214546] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The nucleotide sequence of the two chloroplast (cp) genomes from Paulownia coreana and P. tomentosa are the first to be completed in genus Paulownia of family Paulowniaceae. The structure of two Paulownia cp genomes shows similar characteristic with general cp genome of angiosperms. The lengths of two cp genomes are 154,545 bp and 154,540 bp, respectively. The cp genomes are divided into LSC region (85,241 bp and 85,236 bp) and SSC region (17,736 bp and 17,736 bp) by two IR regions (25,784 bp and 25,784 bp). Both of two cp genomes contain 113 genes (79 protein coding genes, 30 tRNA genes and 4 rRNA genes), eight protein-coding genes, seven tRNA genes and four rRNA genes duplicated in the IR regions. Similar to the general cp genome of angiosperms, 18 of the genes in the two cp genomes have one or two introns. The overall A-T contents of two genomes are 62.0% which is similar with general angiosperms. The A-T content in the non-coding (64.6%) is higher than in the coding (60.1%) regions. Seventy-one and seventy simple sequence repeat (SSR) loci were identified in the P. coreana and P. tomentosa cp genomes, respectively. In phylogenetic analysis, genus Paulownia shows closed relationship with Lindenbergia philippensis of Orobanchaceae.
Collapse
Affiliation(s)
- Dong-Keun Yi
- School of Life Sciences, Korea University, Seoul, Korea
| | - Ki-Joong Kim
- School of Life Sciences, Korea University, Seoul, Korea
| |
Collapse
|
269
|
Jo S, Kim HW, Kim YK, Cheon SH, Kim KJ. Complete plastome sequence of Averrhoa carambola L. (Oxalidaceae). MITOCHONDRIAL DNA PART B-RESOURCES 2016; 1:609-611. [PMID: 33473569 PMCID: PMC7799573 DOI: 10.1080/23802359.2016.1209095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In this study, we determined the complete plastome sequence of Averrhoa carambola L. (Oxalidaceae) (NCBI acc. no. KX364202). To the best of our knowledge, this is the first reported complete plastome sequence from the order Oxalidales. The gene order and structure of the A. carambola plastome are collinear with the typical plastome of land plants. The complete plastome size is 155,965 bp in length and consists of a large single copy region of 87,217 bp and a small single copy region of 17,496 bp, which are separated by a pair of 25,626-bp-long inverted repeat regions. The overall A-T content of the plastome sequence is 61.2%. The plastome contains 111 genes, of which 77 are protein-coding genes, 30 are tRNA genes, and 4 are rRNA genes. Sixteen genes contain one intron and two genes have two introns. A total of 91 simple sequence loci were identified from the genome. Phylogenetic analysis revealed that A. carambola is a sister group of Euonymus japonicus with 100% bootstrap support.
Collapse
Affiliation(s)
- Sangjin Jo
- School of Life Sciences, Korea University, Seoul, Korea
| | - Hoe-Won Kim
- School of Life Sciences, Korea University, Seoul, Korea
| | - Young-Kee Kim
- School of Life Sciences, Korea University, Seoul, Korea
| | - Se-Hwan Cheon
- School of Life Sciences, Korea University, Seoul, Korea
| | - Ki-Joong Kim
- School of Life Sciences, Korea University, Seoul, Korea
| |
Collapse
|
270
|
Jo S, Kim HW, Kim YK, Cheon SH, Kim KJ. The complete plastome sequence of Diospyros blancoi A. DC. (Ebenaceae). MITOCHONDRIAL DNA PART B-RESOURCES 2016; 1:690-692. [PMID: 33490416 PMCID: PMC7800293 DOI: 10.1080/23802359.2016.1219647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The plastome sequences of Diospyros blancoi A. DC. (Ebenaceae) were completed in this study (NCBI acc. no. KX426216). The gene order and structure of the D. blancoi plastome are collinear with the typical plastome of land plants. The complete plastome size is 157,745 bp in length and consists of a large single-copy region of 87,246 bp and a small single-copy region of 18,323 bp, which are separated by a pair of 26,088 bp-long inverted repeat regions. The overall A-T content of the plastome sequence is 62.6%. The plastome contains 113 genes, of which 79 are protein-coding genes, 30 are tRNA genes, and 4 are rRNA genes. Sixteen genes contain one intron and two genes have two introns. A total of 45 simple sequence loci were identified from the genome. Phylogenetic analysis revealed that D. blancoi is a sister group of Primulaceae with 100% bootstrap support.
Collapse
Affiliation(s)
- Sangjin Jo
- School of Life Sciences, Korea University, Seoul, Korea
| | - Hoe-Won Kim
- School of Life Sciences, Korea University, Seoul, Korea
| | - Young-Kee Kim
- School of Life Sciences, Korea University, Seoul, Korea
| | - Se-Hwan Cheon
- School of Life Sciences, Korea University, Seoul, Korea
| | - Ki-Joong Kim
- School of Life Sciences, Korea University, Seoul, Korea
| |
Collapse
|
271
|
Olejniczak SA, Łojewska E, Kowalczyk T, Sakowicz T. Chloroplasts: state of research and practical applications of plastome sequencing. PLANTA 2016; 244:517-27. [PMID: 27259501 PMCID: PMC4983300 DOI: 10.1007/s00425-016-2551-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 05/29/2016] [Indexed: 05/07/2023]
Abstract
This review presents origins, structure and expression of chloroplast genomes. It also describes their sequencing, analysis and modification, focusing on potential practical uses and biggest challenges of chloroplast genome modification. During the evolution of eukaryotes, cyanobacteria are believed to have merged with host heterotrophic cell. Afterward, most of cyanobacterial genes from cyanobacteria were transferred to cell nucleus or lost in the process of endosymbiosis. As a result of these changes, a primary plastid was established. Nowadays, plastid genome (plastome) is almost always circular, has a size of 100-200 kbp (120-160 in land plants), and harbors 100-120 highly conserved unique genes. Plastids have their own gene expression system, which is similar to one of their cyanobacterial ancestors. Two different polymerases, plastid-derived PEP and nucleus-derived NEP, participate in transcription. Translation is similar to the one observed in cyanobacteria, but it also utilizes protein translation factors and positive regulatory mRNA elements absent from bacteria. Plastoms play an important role in genetic transformation. Transgenes are introduced into them either via gene gun (in undamaged tissues) or polyethylene glycol treatment (when protoplasts are targeted). Antibiotic resistance markers are the most common tool used for selection of transformed plants. In recent years, plastome transformation emerged as a promising alternative to nuclear transformation because of (1) high yield of target protein, (2) removing the risk of outcrossing with weeds, (3) lack of silencing mechanisms, and (4) ability to engineer the entire metabolic pathways rather than single gene traits. Currently, the main directions of such research regard: developing efficient enzyme, vaccine antigen, and biopharmaceutical protein production methods in plant cells and improving crops by increasing their resistance to a wide array of biotic and abiotic stresses. Because of that, the detailed knowledge of plastome structure and mechanism of functioning started to play a major role.
Collapse
Affiliation(s)
- Szymon Adam Olejniczak
- Department of Genetics and Plant Molecular Biology and Biotechnology, The University of Lodz, Banacha Street 12/16, 90-237, Lodz, Poland.
| | - Ewelina Łojewska
- Department of Genetics and Plant Molecular Biology and Biotechnology, The University of Lodz, Banacha Street 12/16, 90-237, Lodz, Poland
| | - Tomasz Kowalczyk
- Department of Genetics and Plant Molecular Biology and Biotechnology, The University of Lodz, Banacha Street 12/16, 90-237, Lodz, Poland
| | - Tomasz Sakowicz
- Department of Genetics and Plant Molecular Biology and Biotechnology, The University of Lodz, Banacha Street 12/16, 90-237, Lodz, Poland
| |
Collapse
|
272
|
Shikanai T. Regulatory network of proton motive force: contribution of cyclic electron transport around photosystem I. PHOTOSYNTHESIS RESEARCH 2016; 129:253-60. [PMID: 26858094 DOI: 10.1007/s11120-016-0227-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 01/27/2016] [Indexed: 05/07/2023]
Abstract
Cyclic electron transport around photosystem I (PSI) generates ∆pH across the thylakoid membrane without net production of NADPH. In angiosperms, two pathways of PSI cyclic electron transport operate. The main pathway depends on PGR5/PGRL1 proteins and is likely identical to the historical Arnon's pathway. The minor pathway depends on chloroplast NADH dehydrogenase-like (NDH) complex. In assays of their rates in vivo, the two independent pathways are often mixed together. Theoretically, linear electron transport from water to NADP(+) cannot satisfy the ATP/NADPH production ratio required by the Calvin-Benson cycle and photorespiration. PGR5/PGRL1-dependent PSI cyclic electron transport contributes substantially to the supply of ATP for CO2 fixation, as does linear electron transport. Also, the contribution of chloroplast NDH cannot be ignored, especially at low light intensity, although the extent of the contribution depends on the plant species. An increase in proton conductivity of ATP synthase may compensate ATP synthesis to some extent in the pgr5 mutant. Combined with the decreased rate of ∆pH generation, however, this mechanism sacrifices homeostasis of the thylakoid lumen pH, seriously disturbing the pH-dependent regulation of photosynthetic electron transport, induction of qE, and downregulation of the cytochrome b 6 f complex. PGR5/PGRL1-dependent PSI cyclic electron transport produces sufficient proton motive force for ATP synthesis and the regulation of photosynthetic electron transport.
Collapse
Affiliation(s)
- Toshiharu Shikanai
- Department of Botany, Graduate School of Science, Kyoto University, Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan.
- CREST, Japan Science and Technology Agency, Chiyoda-ku, Tokyo, 102-0076, Japan.
| |
Collapse
|
273
|
Sanitá Lima M, Woods LC, Cartwright MW, Smith DR. The (in)complete organelle genome: exploring the use and nonuse of available technologies for characterizing mitochondrial and plastid chromosomes. Mol Ecol Resour 2016; 16:1279-1286. [PMID: 27482846 DOI: 10.1111/1755-0998.12585] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 06/23/2016] [Accepted: 06/23/2016] [Indexed: 02/04/2023]
Abstract
Not long ago, scientists paid dearly in time, money and skill for every nucleotide that they sequenced. Today, DNA sequencing technologies epitomize the slogan 'faster, easier, cheaper and more', and in many ways, sequencing an entire genome has become routine, even for the smallest laboratory groups. This is especially true for mitochondrial and plastid genomes. Given their relatively small sizes and high copy numbers per cell, organelle DNAs are currently among the most highly sequenced kind of chromosome. But accurately characterizing an organelle genome and the information it encodes can require much more than DNA sequencing and bioinformatics analyses. Organelle genomes can be surprisingly complex and can exhibit convoluted and unconventional modes of gene expression. Unravelling this complexity can demand a wide assortment of experiments, from pulsed-field gel electrophoresis to Southern and Northern blots to RNA analyses. Here, we show that it is exactly these types of 'complementary' analyses that are often lacking from contemporary organelle genome papers, particularly short 'genome announcement' articles. Consequently, crucial and interesting features of organelle chromosomes are going undescribed, which could ultimately lead to a poor understanding and even a misrepresentation of these genomes and the genes they express. High-throughput sequencing and bioinformatics have made it easy to sequence and assemble entire chromosomes, but they should not be used as a substitute for or at the expense of other types of genomic characterization methods.
Collapse
Affiliation(s)
- Matheus Sanitá Lima
- Department of Biology, University of Western Ontario, London, Ontario, Canada, N6A 5B7
| | - Laura C Woods
- Department of Biology, University of Western Ontario, London, Ontario, Canada, N6A 5B7
| | - Matthew W Cartwright
- Department of Biology, University of Western Ontario, London, Ontario, Canada, N6A 5B7
| | - David Roy Smith
- Department of Biology, University of Western Ontario, London, Ontario, Canada, N6A 5B7.
| |
Collapse
|
274
|
The Complete Chloroplast Genome Sequence of a Relict Conifer Glyptostrobus pensilis: Comparative Analysis and Insights into Dynamics of Chloroplast Genome Rearrangement in Cupressophytes and Pinaceae. PLoS One 2016; 11:e0161809. [PMID: 27560965 PMCID: PMC4999192 DOI: 10.1371/journal.pone.0161809] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 08/14/2016] [Indexed: 01/22/2023] Open
Abstract
Glyptostrobus pensilis, belonging to the monotypic genus Glyptostrobus (Family: Cupressaceae), is an ancient conifer that is naturally distributed in low-lying wet areas. Here, we report the complete chloroplast (cp) genome sequence (132,239 bp) of G. pensilis. The G. pensilis cp genome is similar in gene content, organization and genome structure to the sequenced cp genomes from other cupressophytes, especially with respect to the loss of the inverted repeat region A (IRA). Through phylogenetic analysis, we demonstrated that the genus Glyptostrobus is closely related to the genus Cryptomeria, supporting previous findings based on physiological characteristics. Since IRs play an important role in stabilize cp genome and conifer cp genomes lost different IR regions after splitting in two clades (cupressophytes and Pinaceae), we performed cp genome rearrangement analysis and found more extensive cp genome rearrangements among the species of cupressophytes relative to Pinaceae. Additional repeat analysis indicated that cupressophytes cp genomes contained less potential functional repeats, especially in Cupressaceae, compared with Pinaceae. These results suggested that dynamics of cp genome rearrangement in conifers differed since the two clades, Pinaceae and cupressophytes, lost IR copies independently and developed different repeats to complement the residual IRs. In addition, we identified 170 perfect simple sequence repeats that will be useful in future research focusing on the evolution of genetic diversity and conservation of genetic variation for this endangered species in the wild.
Collapse
|
275
|
Yi DK, Kim KJ. The complete chloroplast genome sequences of Pogostemon stellatus and Pogostemon yatabeanus (Lamiaceae). MITOCHONDRIAL DNA PART B-RESOURCES 2016; 1:571-573. [PMID: 33473558 PMCID: PMC7799714 DOI: 10.1080/23802359.2016.1192509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The nucleotide sequences of the two chloroplast (cp) genomes from Pogostemon stellatus and Pogostemon yatabeanus are the first to be completed in genus Pogostemon of family Lamiaceae. The structure of two Pogostemon cp genomes shows similar characteristic to the typical cp genome of angiosperms. The lengths of two cp genomes are 151,825bp and 152,707 bp, respectively. Two cp genomes are divided into LSC region (83,012 bp and 83,791 bp) and SSC region (17,524 bp and 17,568 bp) by two IR regions (25,644 bp and 25,674 bp). Both of two cp genomes contain 114 genes (80 protein-coding genes, 30 tRNA genes and 4 rRNA genes), 10 protein-coding genes and 7 tRNA genes duplicated in the IR regions. Similar to the typical cp genome of angiosperms, 18 of the genes in the Pogostemon cp genome have one or two introns. The overall A-T contents of two genomes are 61.8% which is also similar to general angiosperms. The A-T content in the non-coding (64.4%) is higher than in the coding (59.9%) regions. Sixty-seven and seventy-three simple sequence repeat (SSR) loci were identified in the P. stellatus and P. yatabeanus cp genomes, respectively. In phylogenetic analysis, genus Pogostemon shows closed relationship with Scutellaria baicalensis of Scutellarioideae
Collapse
Affiliation(s)
- Dong-Keun Yi
- School of Life Sciences, Korea University, Seoul, Korea
| | - Ki-Joong Kim
- School of Life Sciences, Korea University, Seoul, Korea
| |
Collapse
|
276
|
Shi C, Wang S, Xia EH, Jiang JJ, Zeng FC, Gao LZ. Full transcription of the chloroplast genome in photosynthetic eukaryotes. Sci Rep 2016; 6:30135. [PMID: 27456469 PMCID: PMC4960489 DOI: 10.1038/srep30135] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 06/28/2016] [Indexed: 11/09/2022] Open
Abstract
Prokaryotes possess a simple genome transcription system that is different from that of eukaryotes. In chloroplasts (plastids), it is believed that the prokaryotic gene transcription features govern genome transcription. However, the polycistronic operon transcription model cannot account for all the chloroplast genome (plastome) transcription products at whole-genome level, especially regarding various RNA isoforms. By systematically analyzing transcriptomes of plastids of algae and higher plants, and cyanobacteria, we find that the entire plastome is transcribed in photosynthetic green plants, and that this pattern originated from prokaryotic cyanobacteria - ancestor of the chloroplast genomes that diverged about 1 billion years ago. We propose a multiple arrangement transcription model that multiple transcription initiations and terminations combine haphazardly to accomplish the genome transcription followed by subsequent RNA processing events, which explains the full chloroplast genome transcription phenomenon and numerous functional and/or aberrant pre-RNAs. Our findings indicate a complex prokaryotic genome regulation when processing primary transcripts.
Collapse
Affiliation(s)
- Chao Shi
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming 650204, China.,University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Shuo Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650093, China
| | - En-Hua Xia
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming 650204, China.,University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Jian-Jun Jiang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650093, China
| | - Fan-Chun Zeng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650093, China
| | - Li-Zhi Gao
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming 650204, China.,Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650093, China
| |
Collapse
|
277
|
Allen CA, Håkansson G, Allen JF. Redox conditions specify the proteins synthesised by isolated chloroplasts and mitochondria. Redox Rep 2016; 1:119-23. [PMID: 27405554 DOI: 10.1080/13510002.1995.11746969] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
In chloroplasts and mitochondria isolated from pea leaves, (35)S-methionine incorporation reveals that different subsets of proteins are selected for synthesis in the presence of the external redox reagents ferricyanide, ascorbate, duroquinol, dithiothreitol and dithionite, and in the presence of different electron transport inhibitors in the light (in chloroplasts) or with respiratory substrates (in mitochondria). Redox state of specific electron carriers may therefore regulate expression of specific genes in chloroplasts and mitochondria. The results are consistent with the hypothesis that chloroplast and mitochondrial genomes encode proteins whose synthesis must be regulated by electron transport in photosynthesis and respiration.
Collapse
Affiliation(s)
- C A Allen
- a Department of Plant Cell Biology , Lund University , Lund , Sweden
| | - G Håkansson
- a Department of Plant Cell Biology , Lund University , Lund , Sweden
| | - J F Allen
- a Department of Plant Cell Biology , Lund University , Lund , Sweden
| |
Collapse
|
278
|
Shetty SM, Md Shah MU, Makale K, Mohd-Yusuf Y, Khalid N, Othman RY. Complete Chloroplast Genome Sequence of Corroborates Structural Heterogeneity of Inverted Repeats in Wild Progenitors of Cultivated Bananas and Plantains. THE PLANT GENOME 2016; 9. [PMID: 27898825 DOI: 10.3835/plantgenome2015.09.0089] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Complete genome sequencing of cytoplasmically inherited chloroplast DNA provides novel insights into the origins of clonally propagated crops such as banana and plantain ( spp.). This study describes the structural organization of the chloroplast genome of Colla and its phylogenetic relationship with other wild progenitors of the domesticated banana cultivars. The chloroplast genome was sequenced using Illumina HiSeq 2000 platform, followed by a combination of de novo short-read assembly and reference-guided mapping of contigs to generate complete plastome sequence. The chloroplast genome is 169,503 bp in length, exhibits a typical quadripartite structural organization with a large single-copy (LSC; 87,828 bp) region and a small single-copy (SSC; 11,547 bp) region interspersed between inverted repeat (IRa/b; 35,064 bp) regions. Overall, its gene content, size, and gene order were identical to that of Colla with extensive expansion of the inverted repeat-small single-copy (IR-SSC) junctions. Comparative analyses revealed the conserved IRa-SSC expansion in three wild species and members of the order Zingiberales. In contrast, IRb-SSC expansion was conspicuously absent in the sister taxon Nee and related species of Zingiberales. Interestingly, phylogenomic assessment based on whole-plastome and protein-coding gene sets have provided robust support for the association of and as a sister group, despite the variation in IRb-SSC expansion. Although the current study substantiates the infrageneric IRb-SSC fluctuations in Musaceae, extensive taxon sampling is necessary to confirm whether the accessions of section have undergone independent IRb-SSC expansion relative to section .
Collapse
|
279
|
Shikanai T. Chloroplast NDH: A different enzyme with a structure similar to that of respiratory NADH dehydrogenase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1015-22. [DOI: 10.1016/j.bbabio.2015.10.013] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 10/21/2015] [Accepted: 10/26/2015] [Indexed: 11/28/2022]
|
280
|
Evans DL, Joshi SV. Complete chloroplast genomes of Saccharum spontaneum, Saccharum officinarum and Miscanthus floridulus (Panicoideae: Andropogoneae) reveal the plastid view on sugarcane origins. SYST BIODIVERS 2016. [DOI: 10.1080/14772000.2016.1197336] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Dyfed Lloyd Evans
- South African Sugarcane Research Institute, 170 Flanders Drive, Private Bag X02, Mount Edgecombe, Durban, 4300, South Africa
- School of Life Sciences, College of Agriculture, Engineering and Science, University of Kwa-Zulu Natal, Private Bag X54001, Durban, 4000, South Africa
| | - Shailesh Vinay Joshi
- South African Sugarcane Research Institute, 170 Flanders Drive, Private Bag X02, Mount Edgecombe, Durban, 4300, South Africa
- School of Life Sciences, College of Agriculture, Engineering and Science, University of Kwa-Zulu Natal, Private Bag X54001, Durban, 4000, South Africa
| |
Collapse
|
281
|
Daniell H, Lin CS, Yu M, Chang WJ. Chloroplast genomes: diversity, evolution, and applications in genetic engineering. Genome Biol 2016; 17:134. [PMID: 27339192 PMCID: PMC4918201 DOI: 10.1186/s13059-016-1004-2] [Citation(s) in RCA: 869] [Impact Index Per Article: 96.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Chloroplasts play a crucial role in sustaining life on earth. The availability of over 800 sequenced chloroplast genomes from a variety of land plants has enhanced our understanding of chloroplast biology, intracellular gene transfer, conservation, diversity, and the genetic basis by which chloroplast transgenes can be engineered to enhance plant agronomic traits or to produce high-value agricultural or biomedical products. In this review, we discuss the impact of chloroplast genome sequences on understanding the origins of economically important cultivated species and changes that have taken place during domestication. We also discuss the potential biotechnological applications of chloroplast genomes.
Collapse
Affiliation(s)
- Henry Daniell
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, South 40th St, Philadelphia, PA, 19104-6030, USA.
| | - Choun-Sea Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Ming Yu
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, South 40th St, Philadelphia, PA, 19104-6030, USA
| | - Wan-Jung Chang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
282
|
Yi DK, Choi K, Joo M, Yang JC, Mustafina FU, Han JS, Son DC, Chang KS, Shin CH, Lee YM. The complete chloroplast genome sequence of Abies nephrolepis (Pinaceae: Abietoideae). JOURNAL OF ASIA-PACIFIC BIODIVERSITY 2016. [DOI: 10.1016/j.japb.2016.03.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
283
|
Yamori W, Shikanai T. Physiological Functions of Cyclic Electron Transport Around Photosystem I in Sustaining Photosynthesis and Plant Growth. ANNUAL REVIEW OF PLANT BIOLOGY 2016; 67:81-106. [PMID: 26927905 DOI: 10.1146/annurev-arplant-043015-112002] [Citation(s) in RCA: 319] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The light reactions in photosynthesis drive both linear and cyclic electron transport around photosystem I (PSI). Linear electron transport generates both ATP and NADPH, whereas PSI cyclic electron transport produces ATP without producing NADPH. PSI cyclic electron transport is thought to be essential for balancing the ATP/NADPH production ratio and for protecting both photosystems from damage caused by stromal overreduction. Two distinct pathways of cyclic electron transport have been proposed in angiosperms: a major pathway that depends on the PROTON GRADIENT REGULATION 5 (PGR5) and PGR5-LIKE PHOTOSYNTHETIC PHENOTYPE 1 (PGRL1) proteins, which are the target site of antimycin A, and a minor pathway mediated by the chloroplast NADH dehydrogenase-like (NDH) complex. Recently, the regulation of PSI cyclic electron transport has been recognized as essential for photosynthesis and plant growth. In this review, we summarize the possible functions and importance of the two pathways of PSI cyclic electron transport.
Collapse
Affiliation(s)
- Wataru Yamori
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan;
- Precursory Research for Embryonic Science and Technology (PRESTO) and
| | - Toshiharu Shikanai
- Core Research for Evolutionary Science and Technology (CREST), Japan Science and Technology Agency, Kawaguchi 332-0012, Japan
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
284
|
Peltier G, Aro EM, Shikanai T. NDH-1 and NDH-2 Plastoquinone Reductases in Oxygenic Photosynthesis. ANNUAL REVIEW OF PLANT BIOLOGY 2016; 67:55-80. [PMID: 26735062 DOI: 10.1146/annurev-arplant-043014-114752] [Citation(s) in RCA: 186] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Oxygenic photosynthesis converts solar energy into chemical energy in the chloroplasts of plants and microalgae as well as in prokaryotic cyanobacteria using a complex machinery composed of two photosystems and both membrane-bound and soluble electron carriers. In addition to the major photosynthetic complexes photosystem II (PSII), cytochrome b6f, and photosystem I (PSI), chloroplasts also contain minor components, including a well-conserved type I NADH dehydrogenase (NDH-1) complex that functions in close relationship with photosynthesis and likewise originated from the endosymbiotic cyanobacterial ancestor. Some plants and many microalgal species have lost plastidial ndh genes and a functional NDH-1 complex during evolution, and studies have suggested that a plastidial type II NADH dehydrogenase (NDH-2) complex substitutes for the electron transport activity of NDH-1. However, although NDH-1 was initially thought to use NAD(P)H as an electron donor, recent research has demonstrated that both chloroplast and cyanobacterial NDH-1s oxidize reduced ferredoxin. We discuss more recent findings related to the biochemical composition and activity of NDH-1 and NDH-2 in relation to the physiology and regulation of photosynthesis, particularly focusing on their roles in cyclic electron flow around PSI, chlororespiration, and acclimation to changing environments.
Collapse
Affiliation(s)
- Gilles Peltier
- Institute of Environmental Biology and Biotechnology, CEA, CNRS, Aix-Marseille University, CEA Cadarache, 13018 Saint-Paul-lès-Durance, France;
| | - Eva-Mari Aro
- Department of Biochemistry, University of Turku, 20014 Turku, Finland;
| | | |
Collapse
|
285
|
Comparative Analysis of Begonia Plastid Genomes and Their Utility for Species-Level Phylogenetics. PLoS One 2016; 11:e0153248. [PMID: 27058864 PMCID: PMC4825977 DOI: 10.1371/journal.pone.0153248] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 03/26/2016] [Indexed: 11/19/2022] Open
Abstract
Recent, rapid radiations make species-level phylogenetics difficult to resolve. We used a multiplexed, high-throughput sequencing approach to identify informative genomic regions to resolve phylogenetic relationships at low taxonomic levels in Begonia from a survey of sixteen species. A long-range PCR method was used to generate draft plastid genomes to provide a strong phylogenetic backbone, identify fast evolving regions and provide informative molecular markers for species-level phylogenetic studies in Begonia.
Collapse
|
286
|
Gnanasekaran T, Karcher D, Nielsen AZ, Martens HJ, Ruf S, Kroop X, Olsen CE, Motawie MS, Pribil M, Møller BL, Bock R, Jensen PE. Transfer of the cytochrome P450-dependent dhurrin pathway from Sorghum bicolor into Nicotiana tabacum chloroplasts for light-driven synthesis. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2495-506. [PMID: 26969746 PMCID: PMC4809297 DOI: 10.1093/jxb/erw067] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Plant chloroplasts are light-driven cell factories that have great potential to act as a chassis for metabolic engineering applications. Using plant chloroplasts, we demonstrate how photosynthetic reducing power can drive a metabolic pathway to synthesise a bio-active natural product. For this purpose, we stably engineered the dhurrin pathway from Sorghum bicolor into the chloroplasts of Nicotiana tabacum (tobacco). Dhurrin is a cyanogenic glucoside and its synthesis from the amino acid tyrosine is catalysed by two membrane-bound cytochrome P450 enzymes (CYP79A1 and CYP71E1) and a soluble glucosyltransferase (UGT85B1), and is dependent on electron transfer from a P450 oxidoreductase. The entire pathway was introduced into the chloroplast by integrating CYP79A1, CYP71E1, and UGT85B1 into a neutral site of the N. tabacum chloroplast genome. The two P450s and the UGT85B1 were functional when expressed in the chloroplasts and converted endogenous tyrosine into dhurrin using electrons derived directly from the photosynthetic electron transport chain, without the need for the presence of an NADPH-dependent P450 oxidoreductase. The dhurrin produced in the engineered plants amounted to 0.1-0.2% of leaf dry weight compared to 6% in sorghum. The results obtained pave the way for plant P450s involved in the synthesis of economically important compounds to be engineered into the thylakoid membrane of chloroplasts, and demonstrate that their full catalytic cycle can be driven directly by photosynthesis-derived electrons.
Collapse
Affiliation(s)
- Thiyagarajan Gnanasekaran
- Copenhagen Plant Science Centre, Center for Synthetic Biology bioSYNergy, Villum Research Center "Plant Plasticity", Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | - Daniel Karcher
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Agnieszka Zygadlo Nielsen
- Copenhagen Plant Science Centre, Center for Synthetic Biology bioSYNergy, Villum Research Center "Plant Plasticity", Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | - Helle Juel Martens
- Copenhagen Plant Science Centre, Center for Synthetic Biology bioSYNergy, Villum Research Center "Plant Plasticity", Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | - Stephanie Ruf
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Xenia Kroop
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Carl Erik Olsen
- Copenhagen Plant Science Centre, Center for Synthetic Biology bioSYNergy, Villum Research Center "Plant Plasticity", Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | - Mohammed Saddik Motawie
- Copenhagen Plant Science Centre, Center for Synthetic Biology bioSYNergy, Villum Research Center "Plant Plasticity", Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | - Mathias Pribil
- Copenhagen Plant Science Centre, Center for Synthetic Biology bioSYNergy, Villum Research Center "Plant Plasticity", Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | - Birger Lindberg Møller
- Copenhagen Plant Science Centre, Center for Synthetic Biology bioSYNergy, Villum Research Center "Plant Plasticity", Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | - Ralph Bock
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Poul Erik Jensen
- Copenhagen Plant Science Centre, Center for Synthetic Biology bioSYNergy, Villum Research Center "Plant Plasticity", Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen, Denmark
| |
Collapse
|
287
|
Leister D. Towards understanding the evolution and functional diversification of DNA-containing plant organelles. F1000Res 2016; 5. [PMID: 26998248 PMCID: PMC4792205 DOI: 10.12688/f1000research.7915.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/10/2016] [Indexed: 12/27/2022] Open
Abstract
Plastids and mitochondria derive from prokaryotic symbionts that lost most of their genes after the establishment of endosymbiosis. In consequence, relatively few of the thousands of different proteins in these organelles are actually encoded there. Most are now specified by nuclear genes. The most direct way to reconstruct the evolutionary history of plastids and mitochondria is to sequence and analyze their relatively small genomes. However, understanding the functional diversification of these organelles requires the identification of their complete protein repertoires – which is the ultimate goal of organellar proteomics. In the meantime, judicious combination of proteomics-based data with analyses of nuclear genes that include interspecies comparisons and/or predictions of subcellular location is the method of choice. Such genome-wide approaches can now make use of the entire sequences of plant nuclear genomes that have emerged since 2000. Here I review the results of these attempts to reconstruct the evolution and functions of plant DNA-containing organelles, focusing in particular on data from nuclear genomes. In addition, I discuss proteomic approaches to the direct identification of organellar proteins and briefly refer to ongoing research on non-coding nuclear DNAs of organellar origin (specifically, nuclear mitochondrial DNA and nuclear plastid DNA).
Collapse
Affiliation(s)
- Dario Leister
- Plant Molecular Biology, Department Biology I, Ludwig-Maximilians-Universität, Planegg-Martinsried, 82152, Germany; Copenhagen Plant Science Center (CPSC), University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| |
Collapse
|
288
|
Sun Y, Moore MJ, Zhang S, Soltis PS, Soltis DE, Zhao T, Meng A, Li X, Li J, Wang H. Phylogenomic and structural analyses of 18 complete plastomes across nearly all families of early-diverging eudicots, including an angiosperm-wide analysis of IR gene content evolution. Mol Phylogenet Evol 2016; 96:93-101. [DOI: 10.1016/j.ympev.2015.12.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Revised: 12/01/2015] [Accepted: 12/09/2015] [Indexed: 11/27/2022]
|
289
|
Nakamura M, Hibi Y, Okamoto T, Sugiura M. Cooperation between the chloroplast psbA 5'-untranslated region and coding region is important for translational initiation: the chloroplast translation machinery cannot read a human viral gene coding region. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 85:772-80. [PMID: 26931095 DOI: 10.1111/tpj.13150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 02/15/2016] [Accepted: 02/17/2016] [Indexed: 06/05/2023]
Abstract
Chloroplast mRNA translation is regulated by the 5'-untranslated region (5'-UTR). Chloroplast 5'-UTRs also support translation of the coding regions of heterologous genes. Using an in vitro translation system from tobacco chloroplasts, we detected no translation from a human immunodeficiency virus tat coding region fused directly to the tobacco chloroplast psbA 5'-UTR. This lack of apparent translation could have been due to rapid degradation of mRNA templates or synthesized protein products. Replacing the psbA 5'-UTR with the E. coli phage T7 gene 10 5'-UTR, a highly active 5'-UTR, and substituting synonymous codons led to some translation of the tat coding region. The Tat protein thus synthesized was stable during translation reactions. No significant degradation of the added tat mRNAs was observed after translation reactions. These results excluded the above two possibilities and confirmed that the tat coding region prevented its own translation. The tat coding region was then fused to the psbA 5'-UTR with a cognate 5'-coding segment. Significant translation was detected from the tat coding region when fused after 10 or more codons. That is, translation could be initiated from the tat coding region once translation had started, indicating that the tat coding region inhibits translational initiation but not elongation. Hence, cooperation/compatibility between the 5'-UTR and its coding region is important for translational initiation.
Collapse
Affiliation(s)
- Masayuki Nakamura
- Graduate School of Natural Sciences, Nagoya City University, Yamanohata, Mizuho-ku, Nagoya, 467-8501, Japan
| | - Yurina Hibi
- Department of Molecular and Cellular Biology, Graduate School of Medical Sciences, Nagoya City University, Kawasumi, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Takashi Okamoto
- Department of Molecular and Cellular Biology, Graduate School of Medical Sciences, Nagoya City University, Kawasumi, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Masahiro Sugiura
- Graduate School of Natural Sciences, Nagoya City University, Yamanohata, Mizuho-ku, Nagoya, 467-8501, Japan
| |
Collapse
|
290
|
Shimamura M. Marchantia polymorpha: Taxonomy, Phylogeny and Morphology of a Model System. PLANT & CELL PHYSIOLOGY 2016; 57:230-56. [PMID: 26657892 DOI: 10.1093/pcp/pcv192] [Citation(s) in RCA: 203] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 11/25/2015] [Indexed: 05/06/2023]
Abstract
One of the classical research plants in plant biology, Marchantia polymorpha, is drawing attention as a new model system. Its ease of genetic transformation and a genome sequencing project have attracted attention to the species. Here I present a thorough assessment of the taxonomic status, anatomy and developmental morphology of each organ and tissue of the gametophyte and sporophyte on the basis of a thorough review of the literature and my own observations. Marchantia polymorpha has been a subject of intensive study for nearly 200 years, and the information summarized here offers an invaluable resource for future studies on this model plant.
Collapse
Affiliation(s)
- Masaki Shimamura
- Department of Biology, Graduate School of Science, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshim, 739-8526 Japan
| |
Collapse
|
291
|
Zhu W, Liu T, Liu C, Zhou F, Lai XE, Hu D, Chen J, Huang S. The complete chloroplast genome sequence of Cunninghamia lanceolata. Mitochondrial DNA A DNA Mapp Seq Anal 2016; 28:405-406. [PMID: 26730645 DOI: 10.3109/19401736.2015.1127366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We determined the complete chloroplast genome sequence of Cunninghamia lanceolata (GenBank accession: NC_021437.1) in this study. The total length of the chloroplast genome is 135 334 bp. The GC content is 35%. A total of 119 genes are successfully annotated, including 35 tRNA (20 tRNA species), 3 rRNA (3 rRNA species) and 81 protein-coding genes (81 PCG species). Twelve protein-coding genes (rps16, ycf3, rpoC1, atpF, rps12, ndhB, rpl2, rpl16, petD, petB, ndhA, rps15) contain one or two introns. A maximum likelihood phylogenetic analysis showed that this newly characterized Cunninghamia lanceolata chloroplast genome will provide essential data for further study on phylogenetic resolution, biodiversity for the genus Cunninghamia and Taxodiacea.
Collapse
Affiliation(s)
- Wenjuan Zhu
- a Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm & College of Forestry and Landscape Architecture , South China Agricultural University , Guangzhou , China
| | - Taiyi Liu
- a Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm & College of Forestry and Landscape Architecture , South China Agricultural University , Guangzhou , China
| | - Chunxin Liu
- a Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm & College of Forestry and Landscape Architecture , South China Agricultural University , Guangzhou , China
| | - Feng Zhou
- b College of Life Sciences , Guangzhou , China
| | - Xu En Lai
- c Longshan Forestry Farm of Lechang City , Lechang , China
| | - Dehuo Hu
- d Guangzhou Academy of Forestry , Guangzhou , China
| | - Jiehu Chen
- e Science Corporation of Gene , GuangZhou , China
| | - Shaowei Huang
- a Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm & College of Forestry and Landscape Architecture , South China Agricultural University , Guangzhou , China
| |
Collapse
|
292
|
Naumann J, Der JP, Wafula EK, Jones SS, Wagner ST, Honaas LA, Ralph PE, Bolin JF, Maass E, Neinhuis C, Wanke S, dePamphilis CW. Detecting and Characterizing the Highly Divergent Plastid Genome of the Nonphotosynthetic Parasitic Plant Hydnora visseri (Hydnoraceae). Genome Biol Evol 2016; 8:345-63. [PMID: 26739167 PMCID: PMC4779604 DOI: 10.1093/gbe/evv256] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2015] [Indexed: 11/14/2022] Open
Abstract
Plastid genomes of photosynthetic flowering plants are usually highly conserved in both structure and gene content. However, the plastomes of parasitic and mycoheterotrophic plants may be released from selective constraint due to the reduction or loss of photosynthetic ability. Here we present the greatly reduced and highly divergent, yet functional, plastome of the nonphotosynthetic holoparasite Hydnora visseri (Hydnoraceae, Piperales). The plastome is 27 kb in length, with 24 genes encoding ribosomal proteins, ribosomal RNAs, tRNAs, and a few nonbioenergetic genes, but no genes related to photosynthesis. The inverted repeat and the small single copy region are only approximately 1.5 kb, and intergenic regions have been drastically reduced. Despite extreme reduction, gene order and orientation are highly similar to the plastome of Piper cenocladum, a related photosynthetic plant in Piperales. Gene sequences in Hydnora are highly divergent and several complementary approaches using the highest possible sensitivity were required for identification and annotation of this plastome. Active transcription is detected for all of the protein-coding genes in the plastid genome, and one of two introns is appropriately spliced out of rps12 transcripts. The whole-genome shotgun read depth is 1,400× coverage for the plastome, whereas the mitochondrial genome is covered at 40× and the nuclear genome at 2×. Despite the extreme reduction of the genome and high sequence divergence, the presence of syntenic, long transcriptionally active open-reading frames with distant similarity to other plastid genomes and a high plastome stoichiometry relative to the mitochondrial and nuclear genomes suggests that the plastome remains functional in H. visseri. A four-stage model of gene reduction, including the potential for complete plastome loss, is proposed to account for the range of plastid genomes in nonphotosynthetic plants.
Collapse
Affiliation(s)
- Julia Naumann
- Institut für Botanik, Technische Universität Dresden, Germany Department of Biology and Institute of Molecular Evolutionary Genetics, The Pennsylvania State University
| | - Joshua P Der
- Department of Biology and Institute of Molecular Evolutionary Genetics, The Pennsylvania State University Department of Biological Science, California State University Fullerton
| | - Eric K Wafula
- Department of Biology and Institute of Molecular Evolutionary Genetics, The Pennsylvania State University
| | - Samuel S Jones
- Department of Biology and Institute of Molecular Evolutionary Genetics, The Pennsylvania State University Intercollege Graduate Program in Plant Biology, The Pennsylvania State University
| | - Sarah T Wagner
- Institut für Botanik, Technische Universität Dresden, Germany
| | - Loren A Honaas
- Department of Biology and Institute of Molecular Evolutionary Genetics, The Pennsylvania State University
| | - Paula E Ralph
- Department of Biology and Institute of Molecular Evolutionary Genetics, The Pennsylvania State University
| | | | - Erika Maass
- Department of Biological Sciences, University of Namibia, Windhoek, Namibia
| | | | - Stefan Wanke
- Institut für Botanik, Technische Universität Dresden, Germany
| | - Claude W dePamphilis
- Department of Biology and Institute of Molecular Evolutionary Genetics, The Pennsylvania State University Intercollege Graduate Program in Plant Biology, The Pennsylvania State University
| |
Collapse
|
293
|
Li Q, Yao ZJ, Mi H. Alleviation of Photoinhibition by Co-ordination of Chlororespiration and Cyclic Electron Flow Mediated by NDH under Heat Stressed Condition in Tobacco. FRONTIERS IN PLANT SCIENCE 2016; 7:285. [PMID: 27066014 PMCID: PMC4811903 DOI: 10.3389/fpls.2016.00285] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 02/22/2016] [Indexed: 05/06/2023]
Abstract
With increase of temperature, F o gradually rose in both WT and the mutant inactivated in the type 1 NAD(P)H dehydrogenase (NDH), a double mutant disrupted the genes of ndhJ and ndhK (ΔndhJK) or a triple mutant disrupted the genes of ndhC, ndhJ, and ndhK (ΔndhCJK). The temperature threshold of Fo rise was about 3-5°C lower in the mutants than in WT, indicating ΔndhJK and ΔndhCJK were more sensitive to elevated temperature. The F o rise after the threshold was slower and the reached maximal level was lower in the mutants than in WT, implying the chlororespiratory pathway was suppressed when NDH was inactivated. Meanwhile, the maximum quantum efficiency of photosystem II (PS II) (F v /F m) decreased to a similar extent below 50°C in WT and mutants. However, the decline was sharper in WT when temperature rose above 55°C, indicating a down regulation of PS II photochemical activity by the chlororespiratory pathway in response to elevated temperature. On the other hand, in the presence of n-propyl gallate, an inhibitor of plastid terminal oxidase (PTOX), the less evident increase in F o while the more decrease in F v /F m in ΔndhCJK than in WT after incubation at 50°C for 6 h suggest the increased sensitivity to heat stress when both NDH and chlororespiratory pathways are suppressed. Moreover, the net photosynthetic rate and photo-efficiency decreased more significantly in ΔndhJK than in WT under the heat stressed conditions. Compared to the light-oxidation of P700, the difference in the dark-reduction of P700(+) between WT and ndhJK disruptant was much less under the heat stressed conditions, implying significantly enhanced cyclic electron flow in light and the competition for electron from PQ between PTOX and photosystem I in the dark at the elevated temperature. Heat-stimulated expression of both NdhK and PTOX significantly increased in WT, while the expression of PTOX was less in ΔndhJK than in WT. Meanwhile, the amount of active form of Rubisco activase decreased much more in the mutant. The results suggest that chlororespiration and cyclic electron flow mediated by NDH may coordinate to alleviate the over-reduction of stroma, thus to keep operation of CO2 assimilation at certain extent under heat stress condition.
Collapse
|
294
|
Pawełkowicz M, Zieliński K, Zielińska D, Pląder W, Yagi K, Wojcieszek M, Siedlecka E, Bartoszewski G, Skarzyńska A, Przybecki Z. Next generation sequencing and omics in cucumber (Cucumis sativus L.) breeding directed research. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 242:77-88. [PMID: 26566826 DOI: 10.1016/j.plantsci.2015.07.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 06/29/2015] [Accepted: 07/28/2015] [Indexed: 05/10/2023]
Abstract
In the post-genomic era the availability of genomic tools and resources is leading us to novel generation methods in plant breeding, as they facilitate the study of the genotype and its relationship with the phenotype, in particular for complex traits. In this study we have mainly concentrated on the Cucumis sativus and (but much less) Cucurbitaceae family several important vegetable crops. There are many reports on research conducted in Cucurbitaceae plant breeding programs on the ripening process, phloem transport, disease resistance, cold tolerance and fruit quality traits. This paper presents the role played by new omic technologies in the creation of knowledge on the mechanisms of the formation of the breeding features. The analysis of NGS (NGS-next generation sequencing) data allows the discovery of new genes and regulatory sequences, their positions, and makes available large collections of molecular markers. Genome-wide expression studies provide breeders with an understanding of the molecular basis of complex traits. Firstly a high density map should be created for the reference genome, then each re-sequencing data could be mapped and new markers brought out into breeding populations. The paper also presents methods that could be used in the future for the creation of variability and genomic modification of the species in question. It has been shown also the state and usefulness in breeding the chloroplastomic and mitochondriomic study.
Collapse
Affiliation(s)
- Magdalena Pawełkowicz
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Konrad Zieliński
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Dorota Zielińska
- Department of Food Gastronomy and Food Hygiene, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Wojciech Pląder
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Kouhei Yagi
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Michał Wojcieszek
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Ewa Siedlecka
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Grzegorz Bartoszewski
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Agnieszka Skarzyńska
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Zbigniew Przybecki
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland.
| |
Collapse
|
295
|
Kaila T, Chaduvla PK, Saxena S, Bahadur K, Gahukar SJ, Chaudhury A, Sharma TR, Singh NK, Gaikwad K. Chloroplast Genome Sequence of Pigeonpea ( Cajanus cajan (L.) Millspaugh) and Cajanus scarabaeoides (L.) Thouars: Genome Organization and Comparison with Other Legumes. FRONTIERS IN PLANT SCIENCE 2016; 7:1847. [PMID: 28018385 PMCID: PMC5145887 DOI: 10.3389/fpls.2016.01847] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 11/23/2016] [Indexed: 05/09/2023]
Abstract
Pigeonpea (Cajanus cajan (L.) Millspaugh), a diploid (2n = 22) legume crop with a genome size of 852 Mbp, serves as an important source of human dietary protein especially in South East Asian and African regions. In this study, the draft chloroplast genomes of Cajanus cajan and Cajanus scarabaeoides (L.) Thouars were generated. Cajanus scarabaeoides is an important species of the Cajanus gene pool and has also been used for developing promising CMS system by different groups. A male sterile genotype harboring the C. scarabaeoides cytoplasm was used for sequencing the plastid genome. The cp genome of C. cajan is 152,242bp long, having a quadripartite structure with LSC of 83,455 bp and SSC of 17,871 bp separated by IRs of 25,398 bp. Similarly, the cp genome of C. scarabaeoides is 152,201bp long, having a quadripartite structure in which IRs of 25,402 bp length separates 83,423 bp of LSC and 17,854 bp of SSC. The pigeonpea cp genome contains 116 unique genes, including 30 tRNA, 4 rRNA, 78 predicted protein coding genes and 5 pseudogenes. A 50 kb inversion was observed in the LSC region of pigeonpea cp genome, consistent with other legumes. Comparison of cp genome with other legumes revealed the contraction of IR boundaries due to the absence of rps19 gene in the IR region. Chloroplast SSRs were mined and a total of 280 and 292 cpSSRs were identified in C. scarabaeoides and C. cajan respectively. RNA editing was observed at 37 sites in both C. scarabaeoides and C. cajan, with maximum occurrence in the ndh genes. The pigeonpea cp genome sequence would be beneficial in providing informative molecular markers which can be utilized for genetic diversity analysis and aid in understanding the plant systematics studies among major grain legumes.
Collapse
Affiliation(s)
- Tanvi Kaila
- ICAR-National Research Centre on Plant BiotechnologyNew Delhi, India
- Department of Bio & Nanotechnology, Guru Jambheshwar University of Science & TechnologyHisar, India
| | - Pavan K. Chaduvla
- ICAR-National Research Centre on Plant BiotechnologyNew Delhi, India
| | - Swati Saxena
- ICAR-National Research Centre on Plant BiotechnologyNew Delhi, India
| | | | - Santosh J. Gahukar
- Biotechnology Department, Biotechnology Centre, Dr. Panjabrao Deshmukh Krishi VidyapeethAkola, India
| | - Ashok Chaudhury
- Department of Bio & Nanotechnology, Guru Jambheshwar University of Science & TechnologyHisar, India
| | - T. R. Sharma
- ICAR-National Research Centre on Plant BiotechnologyNew Delhi, India
| | - N. K. Singh
- ICAR-National Research Centre on Plant BiotechnologyNew Delhi, India
| | - Kishor Gaikwad
- ICAR-National Research Centre on Plant BiotechnologyNew Delhi, India
- *Correspondence: Kishor Gaikwad
| |
Collapse
|
296
|
Cheon KS, Yang JC, Kim KA, Jang SK, Yoo KO. The first complete chloroplast genome sequence from Violaceae (Viola seoulensis). Mitochondrial DNA A DNA Mapp Seq Anal 2015; 28:67-68. [PMID: 26710250 DOI: 10.3109/19401736.2015.1110801] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The complete chloroplast genome of Viola seoulensis, an endemic species to Korea, was determined in this study. The total genome size was 156 507 bp in length, containing a pair of inverted repeats (IRs) of 26 404 bp, which were separated by large single copy (LSC) and small single copy (SSC) of 85 691 and 18 008 bp, respectively. The overall GC contents of the plastid genome were 36.3%. One hundred and thirty genes were annotated, including 85 protein-coding genes, 37 tRNA genes, and 8 rRNA genes. In these genes, 17 genes contained one or two introns. A phylogenetic tree showed that Violaceae was closely related to Salicaceae.
Collapse
Affiliation(s)
- Kyeong-Sik Cheon
- a Department of Biological Sciences , Kangwon National University , Chuncheon , Gangwon , Korea
| | - Jong-Cheol Yang
- b Korea National Arboretum , Pocheon , Gyeonggi , Korea , and
| | - Kyung-Ah Kim
- a Department of Biological Sciences , Kangwon National University , Chuncheon , Gangwon , Korea
| | - Su-Kil Jang
- c Department of Marine Molecular Biotechnology , Gangneung-Wonju National University , Gangneung , Gangwon , Korea
| | - Ki-Oug Yoo
- a Department of Biological Sciences , Kangwon National University , Chuncheon , Gangwon , Korea
| |
Collapse
|
297
|
Ni L, Zhao Z, Xu H, Chen S, Dorje G. The complete chloroplast genome of Gentiana straminea (Gentianaceae), an endemic species to the Sino-Himalayan subregion. Gene 2015; 577:281-8. [PMID: 26680100 DOI: 10.1016/j.gene.2015.12.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 10/24/2015] [Accepted: 12/04/2015] [Indexed: 11/17/2022]
Abstract
Endemic to the Sino-Himalayan subregion, the medicinal alpine plant Gentiana straminea is a threatened species. The genetic and molecular data about it is deficient. Here we report the complete chloroplast (cp) genome sequence of G. straminea, as the first sequenced member of the family Gentianaceae. The cp genome is 148,991bp in length, including a large single copy (LSC) region of 81,240bp, a small single copy (SSC) region of 17,085bp and a pair of inverted repeats (IRs) of 25,333bp. It contains 112 unique genes, including 78 protein-coding genes, 30 tRNAs and 4 rRNAs. The rps16 gene lacks exon2 between trnK-UUU and trnQ-UUG, which is the first rps16 pseudogene found in the nonparasitic plants of Asterids clade. Sequence analysis revealed the presence of 13 forward repeats, 13 palindrome repeats and 39 simple sequence repeats (SSRs). An entire cp genome comparison study of G. straminea and four other species in Gentianales was carried out. Phylogenetic analyses using maximum likelihood (ML) and maximum parsimony (MP) were performed based on 69 protein-coding genes from 36 species of Asterids. The results strongly supported the position of Gentianaceae as one member of the order Gentianales. The complete chloroplast genome sequence will provide intragenic information for its conservation and contribute to research on the genetic and phylogenetic analyses of Gentianales and Asterids.
Collapse
Affiliation(s)
- Lianghong Ni
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, China
| | - Zhili Zhao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, China.
| | - Hongxi Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, China
| | - Shilin Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 16 Nanxiao street, Beijing, China
| | - Gaawe Dorje
- Tibetan Traditional Medical College, 10 Dangre Middle Road, Lhasa, China
| |
Collapse
|
298
|
Bosacchi M, Gurdon C, Maliga P. Plastid Genotyping Reveals the Uniformity of Cytoplasmic Male Sterile-T Maize Cytoplasms. PLANT PHYSIOLOGY 2015; 169:2129-37. [PMID: 26336091 PMCID: PMC4634089 DOI: 10.1104/pp.15.01147] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 09/01/2015] [Indexed: 05/12/2023]
Abstract
Cytoplasmic male-sterile (CMS) lines in maize (Zea mays) have been classified by their response to specific restorer genes into three categories: cms-C, cms-S, and cms-T. A mitochondrial genome representing each of the CMS cytotypes has been sequenced, and male sterility in the cms-S and cms-T cytotypes is linked to chimeric mitochondrial genes. To identify markers for plastid genotyping, we sequenced the plastid genomes of three fertile maize lines (B37, B73, and A188) and the B37 cms-C, cms-S, and cms-T cytoplasmic substitution lines. We found that the plastid genomes of B37 and B73 lines are identical. Furthermore, the fertile and CMS plastid genomes are conserved, differing only by zero to three single-nucleotide polymorphisms (SNPs) in coding regions and by eight to 22 SNPs and 10 to 21 short insertions/deletions in noncoding regions. To gain insight into the origin and transmission of the cms-T trait, we identified three SNPs unique to the cms-T plastids and tested the three diagnostic SNPs in 27 cms-T lines, representing the HA, I, Q, RS, and T male-sterile cytoplasms. We report that each of the tested 27 cms-T group accessions have the same three diagnostic plastid SNPs, indicating a single origin and maternal cotransmission of the cms-T mitochondria and plastids to the seed progeny. Our data exclude exceptional pollen transmission of organelles or multiple horizontal gene transfer events as the source of the mitochondrial urf13-T (unidentified reading frame encoding 13-kD cms-T protein) gene in the cms-T cytoplasms. Plastid genotyping enables a reassessment of the evolutionary relationships of cytoplasms in cultivated maize.
Collapse
Affiliation(s)
- Massimo Bosacchi
- Waksman Institute of Microbiology, Rutgers, Piscataway, New Jersey 08854-8020
| | - Csanad Gurdon
- Waksman Institute of Microbiology, Rutgers, Piscataway, New Jersey 08854-8020
| | - Pal Maliga
- Waksman Institute of Microbiology, Rutgers, Piscataway, New Jersey 08854-8020
| |
Collapse
|
299
|
Raman G, Park S. Analysis of the Complete Chloroplast Genome of a Medicinal Plant, Dianthus superbus var. longicalyncinus, from a Comparative Genomics Perspective. PLoS One 2015; 10:e0141329. [PMID: 26513163 PMCID: PMC4626046 DOI: 10.1371/journal.pone.0141329] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 10/06/2015] [Indexed: 11/18/2022] Open
Abstract
Dianthus superbus var. longicalycinus is an economically important traditional Chinese medicinal plant that is also used for ornamental purposes. In this study, D. superbus was compared to its closely related family of Caryophyllaceae chloroplast (cp) genomes such as Lychnis chalcedonica and Spinacia oleracea. D. superbus had the longest large single copy (LSC) region (82,805 bp), with some variations in the inverted repeat region A (IRA)/LSC regions. The IRs underwent both expansion and constriction during evolution of the Caryophyllaceae family; however, intense variations were not identified. The pseudogene ribosomal protein subunit S19 (rps19) was identified at the IRA/LSC junction, but was not present in the cp genome of other Caryophyllaceae family members. The translation initiation factor IF-1 (infA) and ribosomal protein subunit L23 (rpl23) genes were absent from the Dianthus cp genome. When the cp genome of Dianthus was compared with 31 other angiosperm lineages, the infA gene was found to have been lost in most members of rosids, solanales of asterids and Lychnis of Caryophyllales, whereas rpl23 gene loss or pseudogization had occurred exclusively in Caryophyllales. Nevertheless, the cp genome of Dianthus and Spinacia has two introns in the proteolytic subunit of ATP-dependent protease (clpP) gene, but Lychnis has lost introns from the clpP gene. Furthermore, phylogenetic analysis of individual protein-coding genes infA and rpl23 revealed that gene loss or pseudogenization occurred independently in the cp genome of Dianthus. Molecular phylogenetic analysis also demonstrated a sister relationship between Dianthus and Lychnis based on 78 protein-coding sequences. The results presented herein will contribute to studies of the evolution, molecular biology and genetic engineering of the medicinal and ornamental plant, D. superbus var. longicalycinus.
Collapse
Affiliation(s)
- Gurusamy Raman
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongsan-buk, Republic of Korea
| | - SeonJoo Park
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongsan-buk, Republic of Korea
- * E-mail:
| |
Collapse
|
300
|
Zhang L, Wang X, Liu T, Wang G, Chi S, Liu C, Wang H. Complete Plastid Genome Sequence of the Brown Alga Undaria pinnatifida. PLoS One 2015; 10:e0139366. [PMID: 26426800 PMCID: PMC4591262 DOI: 10.1371/journal.pone.0139366] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 09/10/2015] [Indexed: 01/13/2023] Open
Abstract
In this study, we fully sequenced the circular plastid genome of a brown alga, Undaria pinnatifida. The genome is 130,383 base pairs (bp) in size; it contains a large single-copy (LSC, 76,598 bp) and a small single-copy region (SSC, 42,977 bp), separated by two inverted repeats (IRa and IRb: 5,404 bp). The genome contains 139 protein-coding, 28 tRNA, and 6 rRNA genes; none of these genes contains introns. Organization and gene contents of the U. pinnatifida plastid genome were similar to those of Saccharina japonica. There is a co-linear relationship between the plastid genome of U. pinnatifida and that of three previously sequenced large brown algal species. Phylogenetic analyses of 43 taxa based on 23 plastid protein-coding genes grouped all plastids into a red or green lineage. In the large brown algae branch, U. pinnatifida and S. japonica formed a sister clade with much closer relationship to Ectocarpus siliculosus than to Fucus vesiculosus. For the first time, the start codon ATT was identified in the plastid genome of large brown algae, in the atpA gene of U. pinnatifida. In addition, we found a gene-length change induced by a 3-bp repetitive DNA in ycf35 and ilvB genes of the U. pinnatifida plastid genome.
Collapse
Affiliation(s)
- Lei Zhang
- Laboratory of Genetics and Breeding of Marine Organism, College of Marine Life Sciences, Ocean University of China, Qingdao, People’s Republic of China
| | - Xumin Wang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Tao Liu
- Laboratory of Genetics and Breeding of Marine Organism, College of Marine Life Sciences, Ocean University of China, Qingdao, People’s Republic of China
| | - Guoliang Wang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Shan Chi
- Laboratory of Genetics and Breeding of Marine Organism, College of Marine Life Sciences, Ocean University of China, Qingdao, People’s Republic of China
| | - Cui Liu
- Laboratory of Genetics and Breeding of Marine Organism, College of Marine Life Sciences, Ocean University of China, Qingdao, People’s Republic of China
| | - Haiyang Wang
- Laboratory of Genetics and Breeding of Marine Organism, College of Marine Life Sciences, Ocean University of China, Qingdao, People’s Republic of China
| |
Collapse
|