251
|
Balzarini J, Van Laethem K, Hatse S, Froeyen M, Peumans W, Van Damme E, Schols D. Carbohydrate-binding Agents Cause Deletions of Highly Conserved Glycosylation Sites in HIV GP120. J Biol Chem 2005; 280:41005-14. [PMID: 16183648 DOI: 10.1074/jbc.m508801200] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mannose-binding proteins derived from several plants (i.e. Hippeastrum hybrid and Galanthus nivalis agglutinin) or prokaryotes (i.e. cyanovirin-N) inhibit human immunodeficiency virus (HIV) replication and select for drug-resistant viruses that show profound deletion of N-glycosylation sites in the GP120 envelope (Balzarini, J., Van Laethem, K., Hatse, S., Vermeire, K., De Clercq, E., Peumans, W., Van Damme, E., Vandamme, A.-M., Bolmstedt, A., and Schols, D. (2004) J. Virol. 78, 10617-10627; Balzarini, J., Van Laethem, K., Hatse, S., Froeyen, M., Van Damme, E., Bolmstedt, A., Peumans, W., De Clercq, E., and Schols, D. (2005) Mol. Pharmacol. 67, 1556-1565). Here we demonstrated that the N-acetylglucosamine-binding protein from Urtica dioica (UDA) prevents HIV entry and eventually selects for viruses in which conserved N-glycosylation sites in GP120 were deleted. In contrast to the mannose-binding proteins, which have a 50-100-fold decreased antiviral activity against the UDA-exposed mutant viruses, UDA has decreased anti-HIV activity to a very limited extent, even against those mutant virus strains that lack at least 9 of 22 ( approximately 40%) glycosylation sites in their GP120 envelope. Therefore, UDA represents the prototype of a new conceptual class of carbohydrate-binding agents with an unusually specific and targeted drug resistance profile. It forces HIV to escape drug pressure by deleting the indispensable glycans on its GP120, thereby obligatorily exposing previously hidden immunogenic epitopes on its envelope.
Collapse
Affiliation(s)
- Jan Balzarini
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Belgium.
| | | | | | | | | | | | | |
Collapse
|
252
|
Gramberg T, Hofmann H, Möller P, Lalor PF, Marzi A, Geier M, Krumbiegel M, Winkler T, Kirchhoff F, Adams DH, Becker S, Münch J, Pöhlmann S. LSECtin interacts with filovirus glycoproteins and the spike protein of SARS coronavirus. Virology 2005; 340:224-36. [PMID: 16051304 PMCID: PMC7111772 DOI: 10.1016/j.virol.2005.06.026] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2005] [Revised: 05/10/2005] [Accepted: 06/13/2005] [Indexed: 11/23/2022]
Abstract
Cellular attachment factors like the C-type lectins DC-SIGN and DC-SIGNR (collectively referred to as DC-SIGN/R) can augment viral infection and might promote viral dissemination in and between hosts. The lectin LSECtin is encoded in the same chromosomal locus as DC-SIGN/R and is coexpressed with DC-SIGNR on sinusoidal endothelial cells in liver and lymphnodes. Here, we show that LSECtin enhances infection driven by filovirus glycoproteins (GP) and the S protein of SARS coronavirus, but does not interact with human immunodeficiency virus type-1 and hepatitis C virus envelope proteins. Ligand binding to LSECtin was inhibited by EGTA but not by mannan, suggesting that LSECtin unlike DC-SIGN/R does not recognize high-mannose glycans on viral GPs. Finally, we demonstrate that LSECtin is N-linked glycosylated and that glycosylation is required for cell surface expression. In summary, we identified LSECtin as an attachment factor that in conjunction with DC-SIGNR might concentrate viral pathogens in liver and lymph nodes.
Collapse
Affiliation(s)
- Thomas Gramberg
- Institute for Clinical and Molecular Virology, University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Nikolaus-Fiebiger-Center, University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Heike Hofmann
- Institute for Clinical and Molecular Virology, University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Nikolaus-Fiebiger-Center, University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Peggy Möller
- Institute for Virology, Philipps-University Marburg, 35037 Marburg, Germany
| | - Patricia F. Lalor
- Liver Research Group, Institute for Biomedical Science, The University of Birmingham Medical School, Edgbaston, Birmingham, UK
- MRC Centre for Immune Regulation, The University of Birmingham Medical School, Edgbaston, Birmingham, UK
| | - Andrea Marzi
- Institute for Clinical and Molecular Virology, University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Nikolaus-Fiebiger-Center, University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Martina Geier
- Institute for Clinical and Molecular Virology, University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Nikolaus-Fiebiger-Center, University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Mandy Krumbiegel
- Institute for Clinical and Molecular Virology, University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Nikolaus-Fiebiger-Center, University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Thomas Winkler
- Nikolaus-Fiebiger-Center, University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Chair of Genetics, University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Frank Kirchhoff
- Department of Virology, Universitätsklinikum Ulm, 89081 Ulm, Germany
| | - David H. Adams
- Liver Research Group, Institute for Biomedical Science, The University of Birmingham Medical School, Edgbaston, Birmingham, UK
- MRC Centre for Immune Regulation, The University of Birmingham Medical School, Edgbaston, Birmingham, UK
| | - Stephan Becker
- Institute for Virology, Philipps-University Marburg, 35037 Marburg, Germany
| | - Jan Münch
- Department of Virology, Universitätsklinikum Ulm, 89081 Ulm, Germany
| | - Stefan Pöhlmann
- Institute for Clinical and Molecular Virology, University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Nikolaus-Fiebiger-Center, University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Corresponding author. Nikolaus-Fiebiger-Center, University Erlangen-Nürnberg, Glückstraße 6, 91054 Erlangen, Germany. Fax: +49 9131 8529111.
| |
Collapse
|
253
|
Ji X, Olinger GG, Aris S, Chen Y, Gewurz H, Spear GT. Mannose-binding lectin binds to Ebola and Marburg envelope glycoproteins, resulting in blocking of virus interaction with DC-SIGN and complement-mediated virus neutralization. J Gen Virol 2005; 86:2535-2542. [PMID: 16099912 DOI: 10.1099/vir.0.81199-0] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mannose-binding lectin (MBL), a serum lectin that mediates innate immune functions including activation of the lectin complement pathway, binds to carbohydrates expressed on some viral glycoproteins. In this study, the ability of MBL to bind to virus particles pseudotyped with Ebola and Marburg envelope glycoproteins was evaluated. Virus particles bearing either Ebola (Zaire strain) or Marburg (Musoke strain) envelope glycoproteins bound at significantly higher levels to immobilized MBL compared with virus particles pseudotyped with vesicular stomatitis virus glycoprotein or with no virus glycoprotein. As observed in previous studies, Ebola-pseudotyped virus bound to cells expressing the lectin DC-SIGN (dendritic cell-specific intercellular adhesion molecule 3-grabbing non-integrin). However, pre-incubation of virus with MBL blocked DC-SIGN-mediated binding to cells, suggesting that the two lectins bind at the same or overlapping sites on the Ebola glycoprotein. Neutralization experiments showed that virus pseudotyped with Ebola or Marburg (Musoke) glycoprotein was neutralized by complement, while the Marburg (Ravn strain) glycoprotein-pseudotyped virus was less sensitive to neutralization. Neutralization was partially mediated through the lectin complement pathway, since a complement source deficient in MBL was significantly less effective at neutralizing viruses pseudotyped with filovirus glycoproteins and addition of purified MBL to the MBL-deficient complement increased neutralization. These experiments demonstrated that MBL binds to filovirus envelope glycoproteins resulting in important biological effects and suggest that MBL can interact with filoviruses during infection in humans.
Collapse
Affiliation(s)
- Xin Ji
- Rush St Luke's Medical Center, Department of Immunology and Microbiology, 1653 W. Congress Parkway, Chicago, IL 60612, USA
| | - Gene G Olinger
- United States Army Medical Research Institute of Infectious Diseases, Division of Virology, 1425 Porter Street, Frederick, MD 21702-5011, USA
| | - Sheena Aris
- Rush St Luke's Medical Center, Department of Immunology and Microbiology, 1653 W. Congress Parkway, Chicago, IL 60612, USA
| | - Ying Chen
- Rush St Luke's Medical Center, Department of Immunology and Microbiology, 1653 W. Congress Parkway, Chicago, IL 60612, USA
| | - Henry Gewurz
- Rush St Luke's Medical Center, Department of Immunology and Microbiology, 1653 W. Congress Parkway, Chicago, IL 60612, USA
| | - Gregory T Spear
- Rush St Luke's Medical Center, Department of Immunology and Microbiology, 1653 W. Congress Parkway, Chicago, IL 60612, USA
| |
Collapse
|
254
|
Snyder GA, Ford J, Torabi-Parizi P, Arthos JA, Schuck P, Colonna M, Sun PD. Characterization of DC-SIGN/R interaction with human immunodeficiency virus type 1 gp120 and ICAM molecules favors the receptor's role as an antigen-capturing rather than an adhesion receptor. J Virol 2005; 79:4589-98. [PMID: 15795245 PMCID: PMC1069580 DOI: 10.1128/jvi.79.8.4589-4598.2005] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The dendritic cell (DC)-specific intercellular adhesion molecule 3 (ICAM-3)-grabbing nonintegrin binding receptor (DC-SIGN) was shown to bind human immunodeficiency virus type 1 (HIV-1) viral envelope protein gp120 and proposed to function as a Trojan horse to enhance trans-virus infection to host T cells. To better understand the mechanism by which DC-SIGN and DC-SIGNR selectively bind HIV-1 gp120, we constructed a series of deletion mutations in the repeat regions of both receptors. Different truncated receptors exist in different oligomeric forms. The carbohydrate binding domain without any repeats was monomeric, whereas the full extracellular receptors existed as tetramers. All reconstituted receptors retained their ability to bind gp120. The dissociation constant, however, differed drastically from micromolar values for the monomeric receptors to nanomolar values for the tetrameric receptors, suggesting that the repeat region of these receptors contributes to the avidity of gp120 binding. Such oligomerization may provide a mechanism for the receptor to selectively recognize pathogens containing multiple high-mannose-concentration carbohydrates. In contrast, the receptors bound to ICAMs with submicromolar affinities that are similar to those of two nonspecific cell surface glycoproteins, FcgammaRIIb and FcgammaRIII, and the oligomerization of DC-SIGNR resulted in no increase in binding affinity to ICAM-3. These findings suggest that DC-SIGN may not discriminate other cell surface glycoproteins from ICAM-3 binding. The pH dependence in DC-SIGN binding to gp120 showed that the receptor retained high-affinity gp120 binding at neutral pH but lost gp120 binding at pH 5, suggesting a release mechanism of HIV in the acidic endosomal compartment by DC-SIGN. Our work contradicts the function of DC-SIGN as a Trojan horse to facilitate HIV-1 infection; rather, it supports the function of DC-SIGN/R (a designation referring to both DC-SIGN and DC-SIGNR) as an antigen-capturing receptor.
Collapse
Affiliation(s)
- Greg A Snyder
- Laboratory of Immunogenetics, Structural Immunology Section, NIAID, NIH, Twinbrook II, 12441 Parklawn Dr., Rockville, MD 20852, USA
| | | | | | | | | | | | | |
Collapse
|
255
|
Manicassamy B, Wang J, Jiang H, Rong L. Comprehensive analysis of ebola virus GP1 in viral entry. J Virol 2005; 79:4793-805. [PMID: 15795265 PMCID: PMC1069533 DOI: 10.1128/jvi.79.8.4793-4805.2005] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ebola virus infection is initiated by interactions between the viral glycoprotein GP1 and its cognate receptor(s), but little is known about the structure and function of GP1 in viral entry, partly due to the concern about safety when working with the live Ebola virus and the difficulty of manipulating the RNA genome of Ebola virus. In this study, we have used a human immunodeficiency virus-based pseudotyped virus as a surrogate system to dissect the role of Ebola virus GP1 in viral entry. Analysis of more than 100 deletion and amino acid substitution mutants of GP1 with respect to protein expression, processing, viral incorporation, and viral entry has allowed us to map the region of GP1 responsible for viral entry to the N-terminal 150 residues. Furthermore, six amino acids in this region have been identified as critical residues for early events in Ebola virus entry, and among these, three are clustered and are implicated as part of a potential receptor-binding pocket. In addition, substitutions of some 30 residues in GP1 are shown to adversely affect GP1 expression, processing, and viral incorporation, suggesting that these residues are involved in the proper folding and/or overall conformation of GP. Sequence comparison of the GP1 proteins suggests that the majority of the critical residues for GP folding and viral entry identified in Ebola virus GP1 are conserved in Marburg virus. These results provide information for elucidating the structural and functional roles of the filoviral glycoproteins and for developing potential therapeutics to block viral entry.
Collapse
Affiliation(s)
- Balaji Manicassamy
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, E829 MSB, 835 S. Wolcott Ave., Chicago, IL 60612, USA
| | | | | | | |
Collapse
|
256
|
Burnett JC, Henchal EA, Schmaljohn AL, Bavari S. The evolving field of biodefence: therapeutic developments and diagnostics. Nat Rev Drug Discov 2005; 4:281-97. [PMID: 15803193 PMCID: PMC7096857 DOI: 10.1038/nrd1694] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Bioweapons are a clear threat to both military and civilian populations. Here, the latest advances in the pursuit of inhibitors against biothreat threat toxins, current therapeutic strategies for treating biodefence related pathogens, and strategies for improving detection and exposure survivability are covered. There are numerous lead therapeutics that have emerged from drug discovery efforts. However, many of these are toxic and/or fail to possess conventional drug-like properties. One clear advantage of small (non-peptidic) molecules is that they possess scaffolds that are inherently more likely to evolve into real therapeutics. One of the major obstacles impeding the translation of these lead therapeutics into viable drugs is the lack of involvement of the pharmaceutical industry, which has been discovering leads and translating them into drugs for decades. The expertise of the pharmaceutical industry therefore needs to be more effectively engaged in developing drugs against biothreat agents. New methods for rapidly detecting and diagnosing biothreat agents are also in development. The detection and diagnosis of biothreats is inherently linked with treatment. The means for detecting the release of bioweapons are being deployed, and new technologies are shortening the timeframe between initial sample collection and conclusive agent determination. However, the organization of this process is imperfect. At present, a unifying entity that orchestrates the biodefence response is clearly needed to reduce the time-to-drug process and redundancies in drug development efforts. Such a central entity could formulate and implement plans to coordinate all participants, including academic institutions, government agencies and the private sector. This could accelerate the development of countermeasures against high probability biothreat agents.
The threat of bioterrorism and the potential use of biological weapons against both military and civilian populations has become a major concern for governments around the world. For example, in 2001 anthrax-tainted letters resulted in several deaths, caused widespread public panic and exerted a heavy economic toll. If such a small-scale act of bioterrorism could have such a huge impact, then the effects of a large-scale attack would be catastrophic. This review covers recent progress in developing therapeutic countermeasures against, and diagnostics for, such agents.
Collapse
Affiliation(s)
- James C. Burnett
- Developmental Therapeutics Program, Target Structure-Based Drug Discovery Group, National Cancer Institute-SAIC, Frederick, 21702 Maryland USA
| | - Erik A. Henchal
- United States Army Medical Research Institute of Infectious Diseases, Frederick, 21702 Maryland USA
| | - Alan L. Schmaljohn
- United States Army Medical Research Institute of Infectious Diseases, Frederick, 21702 Maryland USA
| | - Sina Bavari
- United States Army Medical Research Institute of Infectious Diseases, Frederick, 21702 Maryland USA
| |
Collapse
|
257
|
Snyder GA, Colonna M, Sun PD. The structure of DC-SIGNR with a portion of its repeat domain lends insights to modeling of the receptor tetramer. J Mol Biol 2005; 347:979-89. [PMID: 15784257 PMCID: PMC7094344 DOI: 10.1016/j.jmb.2005.01.063] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2004] [Revised: 01/17/2005] [Accepted: 01/26/2005] [Indexed: 11/29/2022]
Abstract
The dendritic cell-specific ICAM-3 non-integrin (DC-SIGN) and its close relative DC-SIGNR recognize various glycoproteins, both pathogenic and cellular, through the receptor lectin domain-mediated carbohydrate recognition. While the carbohydrate-recognition domains (CRD) exist as monomers and bind individual carbohydrates with low affinity and are permissive in nature, the full-length receptors form tetramers through their repeat domain and recognize specific ligands with high affinity. To understand the tetramer-based ligand binding avidity, we determined the crystal structure of DC-SIGNR with its last repeat region. Compared to the carbohydrate-bound CRD structure, the structure revealed conformational changes in the calcium and carbohydrate coordination loops of CRD, an additional disulfide bond between the N and the C termini of the CRD, and a helical conformation for the last repeat. On the basis of the current crystal structure and other published structures with sequence homology to the repeat domain, we generated a tetramer model for DC-SIGN/R using homology modeling and propose a ligand-recognition index to identify potential receptor ligands.
Collapse
MESH Headings
- Amino Acid Sequence
- Binding Sites
- Calcium/metabolism
- Carbohydrate Metabolism
- Cell Adhesion Molecules/chemistry
- Cell Adhesion Molecules/genetics
- Cell Adhesion Molecules/metabolism
- Crystallography, X-Ray
- Humans
- Lectins, C-Type/chemistry
- Lectins, C-Type/genetics
- Lectins, C-Type/metabolism
- Ligands
- Models, Molecular
- Molecular Sequence Data
- Protein Binding
- Protein Structure, Quaternary
- Protein Structure, Tertiary
- Receptors, Cell Surface/chemistry
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Sequence Alignment
Collapse
Affiliation(s)
- Greg A. Snyder
- Laboratory of Immunogenetics, Structural Immunology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Twinbrook II, 12441 Parklawn Drive, Rockville, MD 20852, USA
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, IL 60208, USA
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Peter D. Sun
- Laboratory of Immunogenetics, Structural Immunology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Twinbrook II, 12441 Parklawn Drive, Rockville, MD 20852, USA
- Corresponding author.
| |
Collapse
|
258
|
Chandran K, Sullivan NJ, Felbor U, Whelan SP, Cunningham JM. Endosomal proteolysis of the Ebola virus glycoprotein is necessary for infection. Science 2005; 308:1643-5. [PMID: 15831716 PMCID: PMC4797943 DOI: 10.1126/science.1110656] [Citation(s) in RCA: 668] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ebola virus (EboV) causes rapidly fatal hemorrhagic fever in humans and there is currently no effective treatment. We found that the infection of African green monkey kidney (Vero) cells by vesicular stomatitis viruses bearing the EboV glycoprotein (GP) requires the activity of endosomal cysteine proteases. Using selective protease inhibitors and protease-deficient cell lines, we identified an essential role for cathepsin B (CatB) and an accessory role for cathepsin L (CatL) in EboV GP-dependent entry. Biochemical studies demonstrate that CatB and CatL mediate entry by carrying out proteolysis of the EboV GP subunit GP1 and support a multistep mechanism that explains the relative contributions of these enzymes to infection. CatB and CatB/CatL inhibitors diminish the multiplication of infectious EboV-Zaire in cultured cells and may merit investigation as anti-EboV drugs.
Collapse
Affiliation(s)
- Kartik Chandran
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Nancy J. Sullivan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ute Felbor
- Institute of Human Genetics, Biozentrum, Am Hubland, D-97074 Würzburg, Germany
| | - Sean P. Whelan
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - James M. Cunningham
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115, USA
- To whom correspondence should be addressed:
| |
Collapse
|
259
|
Abstract
The agents causing viral hemorrhagic fever (VHF) are a taxonomically diverse group of viruses that may share commonalities in the process whereby they produce systemic and frequently fatal disease. Significant progress has been made in understanding the biology of the Ebola virus, one of the best known examples. This knowledge has guided our thinking about other VHF agents, including Marburg, Lassa, the South American arenaviruses, yellow fever, Crimean-Congo and Rift Valley fever viruses. Comparisons among VHFs show that a common pathogenic feature is their ability to disable the host immune response by attacking and manipulating the cells that initiate the antiviral response. Of equal importance, these comparisons highlight critical gaps in our knowledge of these pathogens.
Collapse
Affiliation(s)
- Thomas W Geisbert
- Virology Division, US Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Maryland 21702-5011, USA.
| | | |
Collapse
|
260
|
Abstract
The envelope protein (gp120/gp41) of HIV-1 is highly glycosylated with about half of the molecular mass of gp120 consisting of N-linked carbohydrates. While glycosylation of HIV gp120/gp41 provides a formidable barrier for development of strong antibody responses to the virus, it also provides a potential site of attack by the innate immune system through the C-type lectin mannose binding lectin (MBL) (also called mannan binding lectin or mannan binding protein). A number of studies have clearly shown that MBL binds to HIV. Binding of MBL to HIV is dependent on the high-mannose glycans on gp120 while host cell glycans incorporated into virions do not contribute substantially to this interaction. It is notable that MBL, due to its specificity for the types of glycans that are abundant on gp120, has been shown to interact with all tested HIV strains. While direct neutralization of HIV produced in T cell lines by MBL has been reported, neutralization is relatively low for HIV primary isolates. However, drugs that alter processing of carbohydrates enhance neutralization of HIV primary isolates by MBL. Complement activation on gp120 and opsonization of HIV due to MBL binding have also been observed but these immune mechanisms have not been studied in detail. MBL has also been shown to block the interaction between HIV and DC-SIGN. Clinical studies show that levels of MBL, an acute-phase protein, increase during HIV disease. The effects of MBL on HIV disease progression and transmission are equivocal with some studies showing positive effects and other showing no effect or negative effects. Because of apparently universal reactivity with HIV strains, MBL clearly represents an important mechanism for recognition of HIV by the immune system. However, further studies are needed to define the in vivo contribution of MBL to clearance and destruction of HIV, the reasons for low neutralization by MBL and ways that MBL anti-viral effects can be augmented.
Collapse
Affiliation(s)
- Xin Ji
- Department of Immunology/Microbiology, Rush-Presbyterian-St. Luke's Medical Center, 1653 W. Congress Pkwy., Chicago, IL 60612, USA
| | | | | |
Collapse
|
261
|
Peyrefitte CN, Pastorino B, Grau GE, Lou J, Tolou H, Couissinier-Paris P. Dengue virus infection of human microvascular endothelial cells from different vascular beds promotes both common and specific functional changes. J Med Virol 2005; 78:229-42. [PMID: 16372301 DOI: 10.1002/jmv.20532] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Dengue shock syndrome (DSS), the major life threatening outcome of severe dengue disease, which occurs in some patients in the course of dengue infection, is the consequence of plasma leakage in the microvascular territories. Data from clinical and in vitro studies suggest that an inadequate immunological response is partly responsible for the pathophysiology of DSS, but few is known concerning the consequences of direct infection of endothelial cells by dengue virus per se. In this study, an attempt was made to study the response of two microvascular human cell lines originating, respectively, from liver and dermis to infection by a dengue type 2 virus, by analyzing the virus-induced modulation of functional markers. It is shown that the two microvascular cell lines exhibit both common and specific behaviors upon infection. In particular, LSEC and HMEC-1 replicate efficiently the low-passage virus and respond to infection by over-producing inflammatory mediators involved in the cross talk with circulating immune cells. However, direct infection modulates differently the cell surface expression of molecules critically involved in the interactions between endothelial and inflammatory cells. ICAM-1 and HLA-I are up regulated as a consequence of infection in LSEC whereas direct infection results in downregulation of ICAM-1 in HMEC-1. The present results show that infection of human microvascular cells by unadapted dengue virus results in both common and specific activation patterns depending likely on the tissue origin of the cells, thus suggesting that endothelia from different territories may contribute differently to the pathophysiological events in the course of dengue infection.
Collapse
Affiliation(s)
- Christophe N Peyrefitte
- Unité de virologie tropicale, Institut de Médecine Tropicale du Service de Santé des Armées, Marseille, France
| | | | | | | | | | | |
Collapse
|
262
|
Abstract
Myeloid and plasmacytoid dendritic cells, a family of professional antigen presenting cells, are crucial in generating and maintaining anti-viral immunity. Many viruses have evolved to avoid, subvert, and even counterattack them. In this article, we focus on the tuning of innate and adaptive responses induced by human dendritic cells, and on the inhibition of their functions by viruses of medical significance. A constant "tug of war" goes on between dendritic cells and viruses and a main dendritic cell countermeasure is cross-presentation/priming.
Collapse
Affiliation(s)
- Marie Larsson
- NYU School of Medicine, 550 First Avenue, MSB507, New York, NY 10016, USA
| | | | | |
Collapse
|
263
|
Marzi A, Gramberg T, Simmons G, Möller P, Rennekamp AJ, Krumbiegel M, Geier M, Eisemann J, Turza N, Saunier B, Steinkasserer A, Becker S, Bates P, Hofmann H, Pöhlmann S. DC-SIGN and DC-SIGNR interact with the glycoprotein of Marburg virus and the S protein of severe acute respiratory syndrome coronavirus. J Virol 2004; 78:12090-5. [PMID: 15479853 PMCID: PMC523257 DOI: 10.1128/jvi.78.21.12090-12095.2004] [Citation(s) in RCA: 291] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The lectins DC-SIGN and DC-SIGNR can augment viral infection; however, the range of pathogens interacting with these attachment factors is incompletely defined. Here we show that DC-SIGN and DC-SIGNR enhance infection mediated by the glycoprotein (GP) of Marburg virus (MARV) and the S protein of severe acute respiratory syndrome coronavirus and might promote viral dissemination. SIGNR1, a murine DC-SIGN homologue, also enhanced infection driven by MARV and Ebola virus GP and could be targeted to assess the role of attachment factors in filovirus infection in vivo.
Collapse
Affiliation(s)
- Andrea Marzi
- Institute for Clinical and Molecular Virology, University Erlangen-Nürnberg, Nikolaus-Fiebiger-Center, Glückstrasse 6, D-91054 Erlangen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
264
|
Jeffers SA, Tusell SM, Gillim-Ross L, Hemmila EM, Achenbach JE, Babcock GJ, Thomas WD, Thackray LB, Young MD, Mason RJ, Ambrosino DM, Wentworth DE, Demartini JC, Holmes KV. CD209L (L-SIGN) is a receptor for severe acute respiratory syndrome coronavirus. Proc Natl Acad Sci U S A 2004; 101:15748-53. [PMID: 15496474 PMCID: PMC524836 DOI: 10.1073/pnas.0403812101] [Citation(s) in RCA: 454] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2004] [Accepted: 09/23/2004] [Indexed: 01/03/2023] Open
Abstract
Angiotensin-converting enzyme 2 (ACE2) is a receptor for SARS-CoV, the novel coronavirus that causes severe acute respiratory syndrome [Li, W. Moore, M. J., Vasilieva, N., Sui, J., Wong, S. K., Berne, M. A., Somasundaran, M., Sullivan, J. L., Luzuriaga, K., Greenough, T. C., et al. (2003) Nature 426, 450-454]. We have identified a different human cellular glycoprotein that can serve as an alternative receptor for SARS-CoV. A human lung cDNA library in vesicular stomatitis virus G pseudotyped retrovirus was transduced into Chinese hamster ovary cells, and the cells were sorted for binding of soluble SARS-CoV spike (S) glycoproteins, S(590) and S(1180). Clones of transduced cells that bound SARS-CoV S glycoprotein were inoculated with SARS-CoV, and increases in subgenomic viral RNA from 1-16 h or more were detected by multiplex RT-PCR in four cloned cell lines. Sequencing of the human lung cDNA inserts showed that each of the cloned cell lines contained cDNA that encoded human CD209L, a C-type lectin (also called L-SIGN). When the cDNA encoding CD209L from clone 2.27 was cloned and transfected into Chinese hamster ovary cells, the cells expressed human CD209L glycoprotein and became susceptible to infection with SARS-CoV. Immunohistochemistry showed that CD209L is expressed in human lung in type II alveolar cells and endothelial cells, both potential targets for SARS-CoV. Several other enveloped viruses including Ebola and Sindbis also use CD209L as a portal of entry, and HIV and hepatitis C virus can bind to CD209L on cell membranes but do not use it to mediate virus entry. Our data suggest that the large S glycoprotein of SARS-CoV may use both ACE2 and CD209L in virus infection and pathogenesis.
Collapse
Affiliation(s)
- Scott A Jeffers
- Department of Microbiology and Molecular Biology Program, University Colorado Health Sciences Center, 4200 East 9th Avenue, Denver, CO 80262, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
265
|
Raftery MJ, Wieland D, Gronewald S, Kraus AA, Giese T, Schönrich G. Shaping phenotype, function, and survival of dendritic cells by cytomegalovirus-encoded IL-10. THE JOURNAL OF IMMUNOLOGY 2004; 173:3383-91. [PMID: 15322202 DOI: 10.4049/jimmunol.173.5.3383] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Human dendritic cells (DCs) are essential for the antiviral immune response and represent a strategically important target for immune evasion of viruses, including human CMV (HCMV). Recently, HCMV has been discovered to encode a unique IL-10 homologue (cmvIL-10). In this study we investigated the capacity of cmvIL-10 to shape phenotype, function, and survival of DCs. For comparison we included human IL-10 and another IL-10 homologue encoded by EBV, which does not directly target DCs. Interestingly, cmvIL-10 strongly activated STAT3 in immature DCs despite its low sequence identity with human IL-10. For most molecules cmvIL-10 blocked LPS-induced surface up-regulation, confirming its role as an inhibitor of maturation. However, a small number of molecules on LPS-treated DCs including IDO, a proposed tolerogenic molecule, showed a different behavior and were up-regulated in response to cmvIL-10. Intriguingly, the expression of C-type lectin DC-specific ICAM-grabbing nonintegrin, a receptor for HCMV infection found exclusively on DCs, was also enhanced by cmvIL-10. This phenotypic change was mirrored by the efficiency of HCMV infection. Moreover, DCs stimulated with LPS and simultaneously treated with cmvIL-10 retained the function of immature DCs. Finally, cmvIL-10 increased apoptosis associated with DC maturation by blocking up-regulation of the antiapoptotic long form cellular FLIP. Taken together, these findings show potential mechanisms by which cmvIL-10 could assist HCMV to infect DCs and to impair DC function and survival.
Collapse
|
266
|
Abstract
The filoviruses, marburgvirus and ebolavirus, cause epidemics of haemorrhagic fever with high case-fatality rates. The severe illness results from a complex of pathogenetic mechanisms that enable the virus to suppress innate and adaptive immune responses, infect and kill a broad variety of cell types, and elicit strong inflammatory responses and disseminated intravascular coagulation, producing a syndrome resembling septic shock. Most experimental data have been obtained on Zaire ebolavirus, which causes uniformly lethal disease in experimentally infected non-human primates but produces a broader range of outcomes in naturally infected human beings. 10-30% of patients can survive the illness by mobilising adaptive immune responses, and there is limited evidence that mild or symptomless infections also occur. The other filoviruses that have caused human disease, Sudan ebolavirus, Ivory Coast ebolavirus, and marburgvirus, produce a similar illness but with somewhat lower case-fatality rates. Variations in outcome during an epidemic might be due partly to genetically determined differences in innate immune responses to the viruses. Recent studies in non-human primates have shown that blocking of certain host responses, such as the coagulation cascade, can result in reduced viral replication and improved host survival.
Collapse
Affiliation(s)
- Siddhartha Mahanty
- Malaria Vaccine Development Unit, at the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | | |
Collapse
|
267
|
van Kooyk Y, Engering A, Lekkerkerker AN, Ludwig IS, Geijtenbeek TBH. Pathogens use carbohydrates to escape immunity induced by dendritic cells. Curr Opin Immunol 2004; 16:488-93. [PMID: 15245744 DOI: 10.1016/j.coi.2004.05.010] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Dendritic cells (DCs) play a central role in balancing immune responses between tolerance induction and immune activation. Under steady state conditions DCs continuously sample antigens, leading to tolerance, whereas inflammatory conditions activate DCs, inducing immune activation. DCs express C-type lectin receptors (CLRs) for antigen capture and presentation, whereas Toll-like receptors (TLRs) are involved in pathogen recognition and DC activation. Recent data demonstrate that communication between TLRs and CLRs can affect the direction of immune responses. Several pathogens specifically target CLRs to subvert this communication to escape immune surveillance, either by inducing tolerance or skewing the protective immune responses.
Collapse
Affiliation(s)
- Yvette van Kooyk
- Department of Molecular Cell Biology and Immunology, Vrije Universiteit Medical Center Amsterdam, van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
268
|
Sanders DA. Ebola virus glycoproteins: guidance devices for targeting gene therapy vectors. Expert Opin Biol Ther 2004; 4:329-36. [PMID: 15006727 DOI: 10.1517/14712598.4.3.329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Replacing the native viral envelope protein on the surface of a retrovirus or lentivirus with the glycoprotein of a foreign enveloped virus, a process called pseudotyping, can expand the set of potential target cells for a viral vector or can restrict entry to specific cells. The Ebola virus glycoprotein, because of its evolutionary origins and the route of viral entry promoted by it, possesses distinct advantages in forming the outer shell of such pseudotyped retroviruses for gene therapy applications. Studies of the transduction of human airway epithelia by lentivirus pseudotyped with a modified Ebola virus glycoprotein from which the region of O- glycosylation has been removed have demonstrated that such recombinant viruses possess particular promise for the treatment of cystic fibrosis. This result highlights the synergism between basic studies of virus entry and gene therapy advances.
Collapse
Affiliation(s)
- David A Sanders
- Markey Center for Structural Biology, Department of Biological Sciences, Lilly Hall, Purdue University, 915 W. State Street, West Lafayette, IN 47907-2054, USA.
| |
Collapse
|
269
|
Abstract
Discrimination between beneficial commensal organisms and potentially harmful pathogens is a central component of the essential role that gut immune cells play in maintaining the balance between immune activation and tolerance. Antigen presenting cells (APC) are the key to this process, and the type of APC, including epithelial cells, B cells, macrophages, and dendritic cells (DC), in the gut is varied. The purpose of this review is to focus on the vast amount of data that has recently been generated on gastrointestinal dendritic cells in the context of their potential function and contribution to mucosal immunity, tolerance, and disease.
Collapse
Affiliation(s)
- Janine Bilsborough
- Department of Autoimmunity and Vascular Biology, Amgen, Seattle, Washington, USA
| | | |
Collapse
|
270
|
Hofmann H, Hattermann K, Marzi A, Gramberg T, Geier M, Krumbiegel M, Kuate S, Uberla K, Niedrig M, Pöhlmann S. S protein of severe acute respiratory syndrome-associated coronavirus mediates entry into hepatoma cell lines and is targeted by neutralizing antibodies in infected patients. J Virol 2004; 78:6134-42. [PMID: 15163706 PMCID: PMC416513 DOI: 10.1128/jvi.78.12.6134-6142.2004] [Citation(s) in RCA: 161] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The severe acute respiratory syndrome-associated coronavirus (SARS-CoV) causes severe pneumonia with a fatal outcome in approximately 10% of patients. SARS-CoV is not closely related to other coronaviruses but shares a similar genome organization. Entry of coronaviruses into target cells is mediated by the viral S protein. We functionally analyzed SARS-CoV S using pseudotyped lentiviral particles (pseudotypes). The SARS-CoV S protein was found to be expressed at the cell surface upon transient transfection. Coexpression of SARS-CoV S with human immunodeficiency virus-based reporter constructs yielded viruses that were infectious for a range of cell lines. Most notably, viral pseudotypes harboring SARS-CoV S infected hepatoma cell lines but not T- and B-cell lines. Infection of the hepatoma cell line Huh-7 was also observed with replication-competent SARS-CoV, indicating that hepatocytes might be targeted by SARS-CoV in vivo. Inhibition of vacuolar acidification impaired infection by SARS-CoV S-bearing pseudotypes, indicating that S-mediated entry requires low pH. Finally, infection by SARS-CoV S pseudotypes but not by vesicular stomatitis virus G pseudotypes was efficiently inhibited by a rabbit serum raised against SARS-CoV particles and by sera from SARS patients, demonstrating that SARS-CoV S is a target for neutralizing antibodies and that such antibodies are generated in SARS-CoV-infected patients. Our results show that viral pseudotyping can be employed for the analysis of SARS-CoV S function. Moreover, we provide evidence that SARS-CoV infection might not be limited to lung tissue and can be inhibited by the humoral immune response in infected patients.
Collapse
Affiliation(s)
- Heike Hofmann
- Institute for Clinical and Molecular Virology, University Erlangen-Nürnberg, Nikolaus-Fiebiger-Center, Glückstrasse 6, D-91054 Erlangen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
271
|
Guo Y, Feinberg H, Conroy E, Mitchell DA, Alvarez R, Blixt O, Taylor ME, Weis WI, Drickamer K. Structural basis for distinct ligand-binding and targeting properties of the receptors DC-SIGN and DC-SIGNR. Nat Struct Mol Biol 2004; 11:591-8. [PMID: 15195147 DOI: 10.1038/nsmb784] [Citation(s) in RCA: 477] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2004] [Accepted: 04/15/2004] [Indexed: 12/19/2022]
Abstract
Both the dendritic cell receptor DC-SIGN and the closely related endothelial cell receptor DC-SIGNR bind human immunodeficiency virus and enhance infection. However, biochemical and structural comparison of these receptors now reveals that they have very different physiological functions. By screening an extensive glycan array, we demonstrated that DC-SIGN and DC-SIGNR have distinct ligand-binding properties. Our structural and mutagenesis data explain how both receptors bind high-mannose oligosaccharides on enveloped viruses and why only DC-SIGN binds blood group antigens, including those present on microorganisms. DC-SIGN mediates endocytosis, trafficking as a recycling receptor and releasing ligand at endosomal pH, whereas DC-SIGNR does not release ligand at low pH or mediate endocytosis. Thus, whereas DC-SIGN has dual ligand-binding properties and functions both in adhesion and in endocytosis of pathogens, DC-SIGNR binds a restricted set of ligands and has only the properties of an adhesion receptor.
Collapse
Affiliation(s)
- Yuan Guo
- Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
272
|
Turner BC, Hemmila EM, Beauchemin N, Holmes KV. Receptor-dependent coronavirus infection of dendritic cells. J Virol 2004; 78:5486-90. [PMID: 15113927 PMCID: PMC400329 DOI: 10.1128/jvi.78.10.5486-5490.2004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In several mammalian species, including humans, coronavirus infection can modulate the host immune response. We show a potential role of dendritic cells (DC) in murine coronavirus-induced immune modulation and pathogenesis by demonstrating that the JAW SII DC line and primary DC from BALB/c mice and p/p mice with reduced expression of the murine coronavirus receptor, murine CEACAM1a, are susceptible to murine coronavirus infection by a receptor-dependent pathway.
Collapse
Affiliation(s)
- Brian C Turner
- Department of Microbiology, University of Colorado Health Sciences Center, 4200 East 9th Avenue, Denver, CO 80262, USA
| | | | | | | |
Collapse
|
273
|
Abstract
Viruses replicate within living cells and use the cellular machinery for the synthesis of their genome and other components. To gain access, they have evolved a variety of elegant mechanisms to deliver their genes and accessory proteins into the host cell. Many animal viruses take advantage of endocytic pathways and rely on the cell to guide them through a complex entry and uncoating program. In the dialogue between the cell and the intruder, the cell provides critical cues that allow the virus to undergo molecular transformations that lead to successful internalization, intra-cellular transport, and uncoating.
Collapse
Affiliation(s)
- Alicia E Smith
- Institute of Biochemistry, Swiss Federal Institute of Technology-Zurich, CH-8093 Zurich, Switzerland
| | | |
Collapse
|
274
|
Takada A, Fujioka K, Tsuiji M, Morikawa A, Higashi N, Ebihara H, Kobasa D, Feldmann H, Irimura T, Kawaoka Y. Human macrophage C-type lectin specific for galactose and N-acetylgalactosamine promotes filovirus entry. J Virol 2004; 78:2943-7. [PMID: 14990712 PMCID: PMC353724 DOI: 10.1128/jvi.78.6.2943-2947.2004] [Citation(s) in RCA: 204] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Filoviruses cause lethal hemorrhagic disease in humans and nonhuman primates. An initial target of filovirus infection is the mononuclear phagocytic cell. Calcium-dependent (C-type) lectins such as dendritic cell- or liver/lymph node-specific ICAM-3 grabbing nonintegrin (DC-SIGN or L-SIGN, respectively), as well as the hepatic asialoglycoprotein receptor, bind to Ebola or Marburg virus glycoprotein (GP) and enhance the infectivity of these viruses in vitro. Here, we demonstrate that a recently identified human macrophage galactose- and N-acetylgalactosamine-specific C-type lectin (hMGL), whose ligand specificity differs from DC-SIGN and L-SIGN, also enhances the infectivity of filoviruses. This enhancement was substantially weaker for the Reston and Marburg viruses than for the highly pathogenic Zaire virus. We also show that the heavily glycosylated, mucin-like domain on the filovirus GP is required for efficient interaction with this lectin. Furthermore, hMGL, like DC-SIGN and L-SIGN, is present on cells known to be major targets of filoviruses (i.e., macrophages and dendritic cells), suggesting a role for these C-type lectins in viral replication in vivo. We propose that filoviruses use different C-type lectins to gain cellular entry, depending on the cell type, and promote efficient viral replication.
Collapse
Affiliation(s)
- Ayato Takada
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
275
|
Simmons G, Lee A, Rennekamp AJ, Fan X, Bates P, Shen H. Identification of murine T-cell epitopes in Ebola virus nucleoprotein. Virology 2004; 318:224-30. [PMID: 14972550 DOI: 10.1016/j.virol.2003.09.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2003] [Accepted: 09/04/2003] [Indexed: 11/23/2022]
Abstract
CD8 T cells play an important role in controlling Ebola infection and in mediating vaccine-induced protective immunity, yet little is known about antigenic targets in Ebola that are recognized by CD8 T cells. Overlapping peptides were used to identify major histocompatibility complex class I-restricted epitopes in mice immunized with vectors encoding Ebola nucleoprotein (NP). CD8 T-cell responses were mapped to a H-2(d)-restricted epitope (NP279-288) and two H-2(b)-restricted epitopes (NP44-52 and NP288-296). The identification of these epitopes will facilitate studies of immune correlates of protection and the evaluation of vaccine strategies in murine models of Ebola infection.
Collapse
Affiliation(s)
- Graham Simmons
- Department of Microbiology, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6076, USA
| | | | | | | | | | | |
Collapse
|
276
|
Abstract
DC-SIGN, a dendritic Cell-specific adhesion receptor and a type II transmembrane mannose-binding C-type lectin, is very important in the function of DC, both in mediating naive T cell interactions through ICAM-3 and as a rolling receptor that mediates the DC-specific ICAM-2-dependent migration processes. It can be used by viral and bacterial pathogens including Human Immunodeficiency Virus (HIV), HCV, Ebola Virus, CMV and Mycobacterium tuberculosis to facilitate infection. Both DC-SIGN and DC-SIGNR can act either in cis, by concentrating virus on target cells, or in trans, by transmission of bound virus to a target cell expressing appropropriate entry receptors. Recent work showed that DC-SIGN are high-affinity binding receptors for HCV. Besides playing a role in entry into DC, HCV E2 interaction with DC-SIGN might also be detrimental for the interaction of DC with T cells during antigen presentation. The clinical strategies that target DC-SIGN may be successful in restricting HCV dissemination and pathogenesis as well as directing the migration of DCs to manipulate appropriate immune responses in autoimmunity and tumorigenic situations.
Collapse
Affiliation(s)
- Zhi-Hua Feng
- The Center of Diagnosis and Treatment for Infectious Diseases of PLA, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, Shaanxi Province, China.
| | | | | | | | | |
Collapse
|
277
|
Geijtenbeek TBH, van Vliet SJ, Engering A, 't Hart BA, van Kooyk Y. Self- and nonself-recognition by C-type lectins on dendritic cells. Annu Rev Immunol 2004; 22:33-54. [PMID: 15032573 DOI: 10.1146/annurev.immunol.22.012703.104558] [Citation(s) in RCA: 364] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Dendritic cells (DCs) are highly efficient antigen-presenting cells (APCs) that collect antigen in body tissues and transport them to draining lymph nodes. Antigenic peptides are loaded onto major histocompatibility complex (MHC) molecules for presentation to naive T cells, resulting in the induction of cellular and humoral immune responses. DCs take up antigen through phagocytosis, pinocytosis, and endocytosis via different groups of receptor families, such as Fc receptors for antigen-antibody complexes, C-type lectin receptors (CLRs) for glycoproteins, and pattern recognition receptors, such as Toll-like receptors (TLRs), for microbial antigens. Uptake of antigen by CLRs leads to presentation of antigens on MHC class I and II molecules. DCs are well equipped to distinguish between self- and nonself-antigens by the variable expression of cell-surface receptors such as CLRs and TLRs. In the steady state, DCs are not immunologically quiescent but use their antigen-handling capacities to maintain peripheral tolerance. DCs are continuously sampling and presenting self- and harmless environmental proteins to silence immune activation. Uptake of self-components in the intestine and airways are good examples of sites where continuous presentation of self- and foreign antigens occurs without immune activation. In contrast, efficient antigen-specific immune activation occurs upon encounter of DCs with nonself-pathogens. Recognition of pathogens by DCs triggers specific receptors such as TLRs that result in DC maturation and subsequently immune activation. Here we discuss the concept that cross talk between TLRs and CLRs, differentially expressed by subsets of DCs, accounts for the different pathways to peripheral tolerance, such as deletion and suppression, and immune activation.
Collapse
Affiliation(s)
- Teunis B H Geijtenbeek
- Department of Molecular Cell Biology and Immunology, Vrije Universiteit Medical Center Amsterdam, 1081 BT Amsterdam, Netherlands
| | | | | | | | | |
Collapse
|
278
|
Su SV, Hong P, Baik S, Negrete OA, Gurney KB, Lee B. DC-SIGN binds to HIV-1 glycoprotein 120 in a distinct but overlapping fashion compared with ICAM-2 and ICAM-3. J Biol Chem 2004; 279:19122-32. [PMID: 14970226 DOI: 10.1074/jbc.m400184200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
DC-SIGN is a C-type lectin that binds to endogenous adhesion molecules ICAM-2 and ICAM-3 as well as the viral envelope glycoprotein human immunodeficiency virus, type 1, glycoprotein (gp) 120. We wished to determine whether DC-SIGN binds differently to its endogenous ligands ICAM-2 and ICAM-3 versus HIV-1 gp120. We found that recombinant soluble DC-SIGN bound to gp120-Fc more than 100- and 50-fold better than ICAM-2-Fc and ICAM-3-Fc, respectively. This relative difference was maintained using DC-SIGN expressed on three different CD4-negative cell lines. Although the cell surface affinity for gp120 varied by up to 4-fold on the cell lines examined, the affinity for gp120 was not a correlate of the ability of the cell line to transfer virus. Monosaccharides with equatorial 4-OH groups competed as well as D-mannose for gp120 binding to DC-SIGN, regardless of how the other hydroxyl groups were positioned. Disaccharide competitors and glycan chip analysis showed that DC-SIGN has a preference for oligosaccharides linked in an alpha-anomeric configuration. Alanine-scanning mutagenesis of DC-SIGN revealed that highly conserved residues that coordinate calcium (Asp-366) and/or are involved in both calcium and specific carbohydrate interactions (Glu-347, Asn-349, Glu-354, and Asp-355) significantly compromised binding to all three ligands. Mutating non-conserved residues (Asn-311, Arg-345, Val-351, Gly-352, Glu-353, Ser-360, Gly-361, and Asn-362) minimally affected binding except for the Asp-367 mutant, which enhanced gp120 binding but diminished ICAM-2 and ICAM-3 binding. Conversely, mutating the moderately conserved residue (Gly-346) abrogated gp120 binding but enhanced ICAM-2 and ICAM-3 binding. Thus, DC-SIGN appears to bind in a distinct but overlapping manner to gp120 when compared with ICAM-2 and ICAM-3.
Collapse
Affiliation(s)
- Stephen V Su
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, USA
| | | | | | | | | | | |
Collapse
|
279
|
N/A, 卢 丙, 李 军, 张 岩, 贾 战, 白 宪. N/A. Shijie Huaren Xiaohua Zazhi 2004; 12:209-211. [DOI: 10.11569/wcjd.v12.i1.209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/05/2023] Open
|
280
|
Geisbert TW, Young HA, Jahrling PB, Davis KJ, Larsen T, Kagan E, Hensley LE. Pathogenesis of Ebola hemorrhagic fever in primate models: evidence that hemorrhage is not a direct effect of virus-induced cytolysis of endothelial cells. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 163:2371-82. [PMID: 14633609 PMCID: PMC1892396 DOI: 10.1016/s0002-9440(10)63592-4] [Citation(s) in RCA: 235] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Ebola virus (EBOV) infection causes a severe and often fatal hemorrhagic disease in humans and nonhuman primates. Whether infection of endothelial cells is central to the pathogenesis of EBOV hemorrhagic fever (HF) remains unknown. To clarify the role of endothelial cells in EBOV HF, we examined tissues of 21 EBOV-infected cynomolgus monkeys throughout time, and also evaluated EBOV infection of primary human umbilical vein endothelial cells and primary human lung-derived microvascular endothelial cells in vitro. Results showed that endothelial cells were not early cellular targets of EBOV in vivo, as viral replication was not consistently observed until day 5 after infection, a full day after the onset of disseminated intravascular coagulation. Moreover, the endothelium remained relatively intact even at terminal stages of disease. Although human umbilical vein endothelial cells and human lung-derived microvascular endothelial cells were highly permissive to EBOV replication, significant cytopathic effects were not observed. Analysis of host cell gene response at 24 to 144 hours after infection showed some evidence of endothelial cell activation, but changes were unremarkable considering the extent of viral replication. Together, these data suggest that coagulation abnormalities associated with EBOV HF are not the direct result of EBOV-induced cytolysis of endothelial cells, and are likely triggered by immune-mediated mechanisms.
Collapse
Affiliation(s)
- Thomas W Geisbert
- United States Army Medical Institute of Infectious Diseases, Fort Detrick, MD 21702-5011, USA.
| | | | | | | | | | | | | |
Collapse
|
281
|
Lasala F, Arce E, Otero JR, Rojo J, Delgado R. Mannosyl glycodendritic structure inhibits DC-SIGN-mediated Ebola virus infection in cis and in trans. Antimicrob Agents Chemother 2004; 47:3970-2. [PMID: 14638512 PMCID: PMC296220 DOI: 10.1128/aac.47.12.3970-3972.2003] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have designed a glycodendritic structure, BH30sucMan, that blocks the interaction between dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin (DC-SIGN) and Ebola virus (EBOV) envelope. BH30sucMan inhibits DC-SIGN-mediated EBOV infection at nanomolar concentrations. BH30sucMan may counteract important steps of the infective process of EBOV and, potentially, of microorganisms shown to exploit DC-SIGN for cell entry and infection.
Collapse
Affiliation(s)
- Fátima Lasala
- Laboratorio de Microbiología Molecular, Servicio de Microbiología, Hospital Universitario 12 de Octubre, Madrid, Spain
| | | | | | | | | |
Collapse
|
282
|
Simmons G, Rennekamp AJ, Chai N, Vandenberghe LH, Riley JL, Bates P. Folate receptor alpha and caveolae are not required for Ebola virus glycoprotein-mediated viral infection. J Virol 2004; 77:13433-8. [PMID: 14645601 PMCID: PMC296046 DOI: 10.1128/jvi.77.24.13433-13438.2003] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Folate receptor alpha (FRalpha) has been described as a factor involved in mediating Ebola virus entry into cells (6). Furthermore, it was suggested that interaction with FRalpha results in internalization and subsequent viral ingress into the cytoplasm via caveolae (9). Descriptions of cellular receptors for Ebola virus and its entry mechanisms are of fundamental importance, particularly with the advent of vectors bearing Ebola virus glycoprotein (GP) being utilized for gene transfer into cell types such as airway epithelial cells. Thus, the ability of FRalpha to mediate efficient entry of viral pseudotypes carrying GP was investigated. We identified cell lines and primary cell types such as macrophages that were readily infected by GP pseudotypes despite lacking detectable surface FRalpha, indicating that this receptor is not essential for Ebola virus infection. Furthermore, we find that T-cell lines stably expressing FRalpha are not infectible, suggesting that FRalpha is also not sufficient to mediate entry. T-cell lines lack caveolae, the predominant route of FRalpha-mediated folate metabolism. However, the coexpression of FRalpha with caveolin-1, the major structural protein of caveolae, was not able to rescue infectivity in a T-cell line. In addition, other cell types lacking caveolae are fully infectible by GP pseudotypes. Finally, a panel of ligands to and soluble analogues of FRalpha were unable to inhibit infection on a range of cell lines, questioning the role of FRalpha as an important factor for Ebola virus entry.
Collapse
Affiliation(s)
- Graham Simmons
- Department of Microbiology. Abramson Family Cancer Research Institute, University of Pennsylvania, School of Medicine, Philadelphia, Pennsylvania 19104-6076, USA
| | | | | | | | | | | |
Collapse
|
283
|
Klimstra WB, Nangle EM, Smith MS, Yurochko AD, Ryman KD. DC-SIGN and L-SIGN can act as attachment receptors for alphaviruses and distinguish between mosquito cell- and mammalian cell-derived viruses. J Virol 2003; 77:12022-32. [PMID: 14581539 PMCID: PMC254289 DOI: 10.1128/jvi.77.22.12022-12032.2003] [Citation(s) in RCA: 182] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
C-type lectins such as DC-SIGN and L-SIGN, which bind mannose-enriched carbohydrate modifications of host and pathogen proteins, have been shown to bind glycoproteins of several viruses and facilitate either cis or trans infection. DC-SIGN and L-SIGN are expressed in several early targets of arbovirus infection, including dendritic cells (DCs) and cells of the reticuloendothelial system. In the present study, we show that DC-SIGN and L-SIGN can function as attachment receptors for Sindbis (SB) virus, an arbovirus of the Alphavirus genus. Human monocytic THP-1 cells stably transfected with DC-SIGN or L-SIGN were permissive for SB virus replication, while untransfected controls were essentially nonpermissive. The majority of control THP-1 cells were permissive when attachment and entry steps were eliminated through electroporation of virus transcripts. Infectivity for the DC-SIGN/L-SIGN-expressing cells was largely blocked by yeast mannan, EDTA, or a DC-SIGN/L-SIGN-specific monoclonal antibody. Infection of primary human DCs by SB virus was also dependent upon SIGN expression by similar criteria. Furthermore, production of virus particles in either C6/36 mosquito cells or CHO mammalian cells under conditions that limited complex carbohydrate content greatly increased SB virus binding to and infection of THP-1 cells expressing these lectins. C6/36-derived virus also was much more infectious for primary human DCs than CHO-derived virus. These results suggest that (i) lectin molecules such as DC-SIGN and L-SIGN may represent common attachment receptor molecules for arthropod-borne viruses, (ii) arbovirus particles produced in and delivered by arthropod vectors may preferentially target vertebrate host cells bearing these or similar lectin molecules, and (iii) a cell line has been identified that can productively replicate alphaviruses but is deficient in attachment receptors.
Collapse
Affiliation(s)
- William B Klimstra
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130-3932, USA.
| | | | | | | | | |
Collapse
|
284
|
Chehimi J, Luo Q, Azzoni L, Shawver L, Ngoubilly N, June R, Jerandi G, Farabaugh M, Montaner LJ. HIV-1 transmission and cytokine-induced expression of DC-SIGN in human monocyte-derived macrophages. J Leukoc Biol 2003; 74:757-63. [PMID: 12960240 DOI: 10.1189/jlb.0503231] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN) has been described as an attachment molecule for human immunodeficiency virus type 1 (HIV-1) with the potential to mediate its transmission. We examined DC-SIGN expression in monocyte-derived macrophages (MDM) and its role in viral transmission when MDM were exposed to interleukin (IL)-13, IL-4, or interferon-gamma (IFN-gamma). We show that IL-13 and IL-4 increase transcripts, total protein, and cell-surface expression of DC-SIGN in all MDM tested, IFN-gamma results ranged from no change to up-regulation of surface expression, and message and total protein were, respectively, induced in all and 86% of donors tested. Transmission experiments of HIV-1 X4 between cytokine-treated MDM to Sup-T1 cells showed no association between total transmission and DC-SIGN up-regulation. IL-4 but not IL-13 resulted in a less than twofold increase in MDM viral transmission to CD4+ T cells in spite of a fourfold up-regulation in DC-SIGN expression by either cytokine. In contrast, IFN-gamma treatment induced a decrease in total transmission by at least two-thirds, despite its induction of DC-SIGN. Soluble mannan resulted in a greater inhibition of viral transmission to CD4+ T cells than neutralizing anti-DC-SIGN monoclonal antibody (67-75% vs. 39-48%), supporting the role of mannose-binding receptors in viral transmission. Taken together, results show that DC-SIGN regulation in MDM does not singly predict the transmission potential of this cell type.
Collapse
Affiliation(s)
- Jihed Chehimi
- HIV Immunopathogenesis Laboratory, The Wistar Institute, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
285
|
Affiliation(s)
- Nancy Sullivan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Building 40, Room 4502, MSC 3005, 40 Convent Drive, Bethesda, MD 20892-3005, USA
| | | | | |
Collapse
|
286
|
Abstract
Dendritic cells (DCs) are crucial in the defence against pathogens. Invading pathogens are recognized by Toll-like receptors (TLRs) and receptors such as C-type lectins expressed on the surface of DCs. However, it is becoming evident that some pathogens, including viruses, such as HIV-1, and non-viral pathogens, such as Mycobacterium tuberculosis, subvert DC functions to escape immune surveillance by targeting the C-type lectin DC-SIGN (DC-specific intercellular adhesion molecule-grabbing nonintegrin). Notably, these pathogens misuse DC-SIGN by distinct mechanisms that either circumvent antigen processing or alter TLR-mediated signalling, skewing T-cell responses. This implies that adaptation of pathogens to target DC-SIGN might support pathogen survival.
Collapse
Affiliation(s)
- Yvette van Kooyk
- Department of Molecular Cell Biology and Immunology Vrije Universiteit Medical Center Amsterdam, v.d. Boechorststraat 7, 1081 BT Amsterdam, The Netherlands.
| | | |
Collapse
|
287
|
Abstract
Ebola and Marburg viruses belong to the family Filoviridae, and cause acute, frequently fatal, haemorrhagic fever in humans and non-human primates. No vaccines are available for human use. This review describes the status of research efforts to develop vaccines for these viruses and to identify the immune mechanisms of protection. The vaccine approaches discussed include DNA-based vaccines, and subunit vaccines vectored by adenovirus, alphavirus replicons, and vaccinia virus.
Collapse
Affiliation(s)
- Mary Kate Hart
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Frederick, MD 21702-5011, USA.
| |
Collapse
|
288
|
Pöhlmann S, Zhang J, Baribaud F, Chen Z, Leslie GJ, Lin G, Granelli-Piperno A, Doms RW, Rice CM, McKeating JA. Hepatitis C virus glycoproteins interact with DC-SIGN and DC-SIGNR. J Virol 2003; 77:4070-80. [PMID: 12634366 PMCID: PMC150620 DOI: 10.1128/jvi.77.7.4070-4080.2003] [Citation(s) in RCA: 310] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
DC-SIGN and DC-SIGNR are two closely related membrane-associated C-type lectins that bind human immunodeficiency virus (HIV) envelope glycoprotein with high affinity. Binding of HIV to cells expressing DC-SIGN or DC-SIGNR can enhance the efficiency of infection of cells coexpressing the specific HIV receptors. DC-SIGN is expressed on some dendritic cells, while DC-SIGNR is localized to certain endothelial cell populations, including hepatic sinusoidal endothelial cells. We found that soluble versions of the hepatitis C virus (HCV) E2 glycoprotein and retrovirus pseudotypes expressing chimeric forms of both HCV E1 and E2 glycoproteins bound efficiently to DC-SIGN and DC-SIGNR expressed on cell lines and primary human endothelial cells but not to other C-type lectins tested. Soluble E2 bound to immature and mature human monocyte-derived dendritic cells (MDDCs). Binding of E2 to immature MDDCs was dependent on DC-SIGN interactions, while binding to mature MDDCs was partly independent of DC-SIGN, suggesting that other cell surface molecules may mediate HCV glycoprotein interactions. HCV interactions with DC-SIGN and DC-SIGNR may contribute to the establishment or persistence of infection both by the capture and delivery of virus to the liver and by modulating dendritic cell function.
Collapse
Affiliation(s)
- Stefan Pöhlmann
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
289
|
Gorski A, Dabrowska K, Switala-Jeleń K, Nowaczyk M, Weber-Dabrowska B, Boratynski J, Wietrzyk J, Opolski A. New insights into the possible role of bacteriophages in host defense and disease. MEDICAL IMMUNOLOGY (LONDON, ENGLAND) 2003; 2:2. [PMID: 12625836 PMCID: PMC151275 DOI: 10.1186/1476-9433-2-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/03/2003] [Accepted: 02/14/2003] [Indexed: 12/30/2022]
Abstract
BACKGROUND: While the ability of bacteriophages to kill bacteria is well known and has been used in some centers to combat antibiotics - resistant infections, our knowledge about phage interactions with mammalian cells is very limited and phages have been believed to have no intrinsic tropism for those cells. PRESENTATION OF THE HYPOTHESIS: At least some phages (e.g., T4 coliphage) express Lys-Arg-Gly (KGD) sequence which binds beta3 integrins (primarily alphaIIbbeta3). Therefore, phages could bind beta3+ cells (platelets, monocytes, some lymphocytes and some neoplastic cells) and downregulate activities of those cells by inhibiting integrin functions. TESTING THE HYPOTHESIS: Binding of KGD+ phages to beta3 integrin+ cells may be detected using standard techniques involving phage - mediated bacterial lysis and plaque formation. Furthermore, the binding may be visualized by electron microscopy and fluorescence using labelled phages. Binding specificity can be confirmed with the aid of specific blocking peptides and monoclonal antibodies. In vivo effects of phage - cell interactions may be assessed by examining the possible biological effects of beta3 blockade (e.g., anti-metastatic activity). IMPLICATION OF THE HYPOTHESIS: If, indeed, phages can modify functions of beta3+ cells (platelets, monocytes, lymphocytes, cancer cells) they could be important biological response modifiers regulating migration and activities of those cells. Such novel understanding of their role could open novel perspectives in their potential use in treatment of cardiovascular and autoimmune disease, graft rejection and cancer.
Collapse
Affiliation(s)
- Andrzej Gorski
- L.Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
- Transplantation Institute, The Medical Academy of Warsaw, 02-006 Warsaw, Poland
| | - Krystyna Dabrowska
- L.Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - Kinga Switala-Jeleń
- L.Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - Maria Nowaczyk
- Transplantation Institute, The Medical Academy of Warsaw, 02-006 Warsaw, Poland
| | - Beata Weber-Dabrowska
- L.Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - Janusz Boratynski
- L.Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - Joanna Wietrzyk
- L.Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - Adam Opolski
- L.Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| |
Collapse
|
290
|
Lin G, Simmons G, Pöhlmann S, Baribaud F, Ni H, Leslie GJ, Haggarty BS, Bates P, Weissman D, Hoxie JA, Doms RW. Differential N-linked glycosylation of human immunodeficiency virus and Ebola virus envelope glycoproteins modulates interactions with DC-SIGN and DC-SIGNR. J Virol 2003; 77:1337-46. [PMID: 12502850 PMCID: PMC140807 DOI: 10.1128/jvi.77.2.1337-1346.2003] [Citation(s) in RCA: 198] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The C-type lectins DC-SIGN and DC-SIGNR [collectively referred to as DC-SIGN(R)] bind and transmit human immunodeficiency virus (HIV) and simian immunodeficiency virus to T cells via the viral envelope glycoprotein (Env). Other viruses containing heavily glycosylated glycoproteins (GPs) fail to interact with DC-SIGN(R), suggesting some degree of specificity in this interaction. We show here that DC-SIGN(R) selectively interact with HIV Env and Ebola virus GPs containing more high-mannose than complex carbohydrate structures. Modulation of N-glycans on Env or GP through production of viruses in different primary cells or in the presence of the mannosidase I inhibitor deoxymannojirimycin dramatically affected DC-SIGN(R) infectivity enhancement. Further, murine leukemia virus, which typically does not interact efficiently with DC-SIGN(R), could do so when produced in the presence of deoxymannojirimycin. We predict that other viruses containing GPs with a large proportion of high-mannose N-glycans will efficiently interact with DC-SIGN(R), whereas those with solely complex N-glycans will not. Thus, the virus-producing cell type is an important factor in dictating both N-glycan status and virus interactions with DC-SIGN(R), which may impact virus tropism and transmissibility in vivo.
Collapse
Affiliation(s)
- George Lin
- Hematology-Oncology Division, Department of Medicine, University of Pennsylvania, Philadelphia 19104, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|