251
|
Corni Fructus Alleviates UUO-Induced Renal Fibrosis via TGF-β/Smad Signaling. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5780964. [PMID: 35572722 PMCID: PMC9106464 DOI: 10.1155/2022/5780964] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 04/20/2022] [Indexed: 11/18/2022]
Abstract
Renal fibrosis is a type of chronic kidney disease (CKD) induced by infiltration of inflammatory cells, myofibroblast accumulation, and ECM production in the kidney. From a long time ago, Corni Fructus (CF) is known to supplement the liver and kidney with its tepid properties. In this study, we investigated the renal protective mechanism of CF, which is known to supplement the kidney, in rat model of unilateral ureteral obstruction (UUO). After inducing UUO through surgery, the group was separated (
) and the drug was administered for 2 weeks; normal rats (normal), water-treated UUO rats (control), CF 100 mg/kg-treated UUO rats (CF100), and CF 200 mg/kg-treated UUO rats (CF200). As a result of histopathological examination of kidney tissue with H&E, MT, and PAS staining, it was confirmed that the infiltration of inflammatory cells and the erosion of collagen were relatively decreased in the kidneys treated with CF. Also, CF significantly reduced the levels of MDA and BUN in serum. As a result of confirming the expression of the factors through western blotting, CF treatment significantly reduced the expression of NADPH oxidase and significantly regulated the AMPK/LKB1/NF-κB pathway associated with inflammation. In addition, it downregulated the expression of major fibrotic signaling factors, such as α-SMA, collagen I, MMP-2, and TIMP-1, and significantly regulated the TGF-β1/Smad pathway, which is known as a major regulator of renal fibrosis. Taken together, these findings indicate that CF can alleviate renal fibrosis by regulating the TGF-β1/Smad pathway through inhibition of oxidative stress in UUO.
Collapse
|
252
|
Fang Y, Dawa Y, Wang Q, Lv Y, Yu W, Li G, Dang J. Targeted isolation of 1,1-diphenyl-2-picrylhydrazyl inhibitors from Saxifraga atrata and their antioxidant activities. J Sep Sci 2022; 45:2435-2445. [PMID: 35512260 DOI: 10.1002/jssc.202200040] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/26/2022] [Accepted: 04/29/2022] [Indexed: 11/11/2022]
Abstract
Saxifraga atrata is an important traditional Tibetan medicine used to treat cough and pneumonia, and has tremendous medicinal potential. In this study, we devised a technique to separate 1,1-diphenyl-2-picrylhydrazyl inhibitors from a methanol extract of Saxifraga atrata. The material was first processed using MCI GEL® CHP20P medium-pressure liquid chromatography, yielding 1.1 g of the target fraction Fr2. Subsequently, online hydrophilic interaction liquid chromatography-1,1-diphenyl-2-picrylhydrazyl assay was used to identify prospective 1,1-diphenyl-2-picrylhydrazyl inhibitors, and two 1,1-diphenyl-2-picrylhydrazyl inhibitor fractions (Fr24 and Fr25) were identified from Fr2. Then, medium-pressure preparation was continued using an XIon column to separate two 1,1-diphenyl-2-picrylhydrazyl inhibitor fractions (Fr24 and Fr25). The target compound was concentrated in fractions Fr24 and Fr25 using reverse-phase liquid chromatography during further separation procedures. Finally, the purity, structure, and 1,1-diphenyl-2-picrylhydrazyl inhibitory activity of the isolated 1,1-diphenyl-2-picrylhydrazyl inhibitors were determined. Two 1,1-diphenyl-2-picrylhydrazyl inhibitors (adenosine with the half maximal inhibitory concentration of 66.87 ± 14.33 μM and (-)-4-O-(E)-Caffeoyl-L-threonic acid with the half maximal inhibitory concentration of 59.06 ± 5.02 μM) were isolated with purities exceeding 95%. The results showed that this technology is effective in the targeted separation of antioxidants from natural products. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yan Fang
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai, 264005, P. R. China
| | - Yangzom Dawa
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Qilan Wang
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Key Laboratory of Tibetan Medicine Research, Chinese Academy of Sciences, Northwest Institute of Plateau Biology, Xining, 810001, P. R. China
| | - Yue Lv
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai, 264005, P. R. China
| | - Wei Yu
- Qinghai Food Inspection and Testing Institute, Xining, 810000, P. R. China
| | - Gang Li
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai, 264005, P. R. China
| | - Jun Dang
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Key Laboratory of Tibetan Medicine Research, Chinese Academy of Sciences, Northwest Institute of Plateau Biology, Xining, 810001, P. R. China
| |
Collapse
|
253
|
Antioxidant Effect of Thioredoxin and Vitamin D3 in Peritoneal Dialysis Patients. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2590944. [PMID: 35547357 PMCID: PMC9085327 DOI: 10.1155/2022/2590944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/14/2022] [Accepted: 03/31/2022] [Indexed: 11/18/2022]
Abstract
Background Among the chronic diseases, chronic kidney failure is one of diseases that have the most difficulty in coping with oxidative stress due to the deterioration of the antioxidant system balance in the body. Beyond being a vitamin, 1α,25-dihydroxycholecalciferol (vitamin D3) is a molecule that positively or negatively affects many enzymes which are in protein structures. Thioredoxin (TRX), which has an important role in the antioxidant system, is one of these proteins. By conducting this study, we wanted to emphasize the role of vitamin D3 in reducing the oxidative stress load on patients undergoing peritoneal dialysis (PD) via serum TRX level measurement. Methods In this study, we evaluated the medical treatments of 69 PD patients who were followed up routinely. The patients were divided into 2 groups according to whether they used vitamin D3 or not. 49 of our patients were using vitamin D3. While requesting routine laboratory tests, we reserved a separate serum sample to measure serum TRX levels by double-antibody sandwich enzyme-linked immunosorbent assay for all patients. Results Only one parameter has a significant statistical relationship with serum TRX level and the treatment protocol. The serum TRX level was significantly higher (211,62 U/l ± 314,46) in the group receiving vitamin D3 compared to the group which is not using Vitamin D3 (101,63 U/l ± 215,03) (p < 0,006). Conclusion This study highlights the importance of appropriate dose of vitamin D3 replacement especially in PD patients who are under intense oxidative stress compared to healthy individuals.
Collapse
|
254
|
Fan LL, Du R, Liu JS, Jin JY, Wang CY, Dong Y, He WX, Yan RQ, Xiang R. Loss of RTN3 phenocopies chronic kidney disease and results in activation of the IGF2-JAK2 pathway in proximal tubular epithelial cells. Exp Mol Med 2022; 54:653-661. [PMID: 35596061 PMCID: PMC9166791 DOI: 10.1038/s12276-022-00763-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/11/2022] [Accepted: 02/03/2022] [Indexed: 11/10/2022] Open
Abstract
Reticulon 3 (RTN3) is an endoplasmic reticulum protein that has previously been shown to play roles in neurodegenerative diseases, but little is known about its function in the kidneys. The aim of the present study was to clarify the roles of RTN3 in chronic kidney disease (CKD) and kidney fibrosis. In this study, RTN3 levels were measured in kidney tissues from healthy controls and CKD or kidney fibrosis patients. An RTN3-null mouse model was generated to explore the pathophysiological roles of RTN3 in the kidneys. The underlying mechanisms were studied in primary proximal tubular epithelial cells and HEK293 cells in vitro. The results showed that (1) a reduction in RTN3 in mice induces CKD and kidney fibrosis; (2) decreased RTN3 expression is found in patients with CKD; (3) RTN3 plays critical roles in regulating collagen biosynthesis and mitochondrial function; and (4) mechanistically, RTN3 regulates these phenotypes by interacting with GC-Rich Promoter Binding Protein 1 (GPBP1), which activates the IGF2-JAK2-STAT3 pathway. Our study indicates that RTN3 might play crucial roles in CKD and kidney fibrosis and that a reduction in RTN3 in the kidneys might be a risk factor for CKD and kidney fibrosis. A protein (RTN3) known to be involved in neurodegenerative diseases may play a causative role in kidney fibrosis or scarring, and chronic kidney disease (CKD). An estimated 20% of CKD cases may have genetic causes and identifying the genes involved may help find better treatments. Ri-Qiang Yan at the University of Connecticut Health, Farmington, USA, and Rong Xian at Central South University, China, noticed that mice in which the gene coding for RTN3 was inactivated had kidney fibrosis. The researchers showed that RTN3 levels were also lower in kidney tissues of patients with CKD than in healthy individuals and that RTN3 levels were inversely proportional to disease progression. Further investigation showed that decreased RTN3 caused extra collagen deposition and misshapen mitochondria, the cellular powerhouses, in the kidney. These results identify a potential novel risk factor for CKD.
Collapse
Affiliation(s)
- Liang-Liang Fan
- Department of Nephrology, Third Xiangya Hospital of Central South University, Changsha, 410013, China.,Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 410013, China.,Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, 410013, China
| | - Ran Du
- Department of Nephrology, Third Xiangya Hospital of Central South University, Changsha, 410013, China.,Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 410013, China
| | - Ji-Shi Liu
- Department of Nephrology, Third Xiangya Hospital of Central South University, Changsha, 410013, China.,Hunan Key Laboratory of Organ Fibrosis, Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Jie-Yuan Jin
- Department of Nephrology, Third Xiangya Hospital of Central South University, Changsha, 410013, China.,Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 410013, China
| | - Chen-Yu Wang
- Department of Nephrology, Third Xiangya Hospital of Central South University, Changsha, 410013, China.,Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 410013, China
| | - Yi Dong
- Department of Nephrology, Third Xiangya Hospital of Central South University, Changsha, 410013, China.,Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 410013, China
| | - Wan-Xia He
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, 06032, United States
| | - Ri-Qiang Yan
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, 06032, United States.
| | - Rong Xiang
- Department of Nephrology, Third Xiangya Hospital of Central South University, Changsha, 410013, China. .,Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 410013, China. .,Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, 410013, China. .,Hunan Key Laboratory of Organ Fibrosis, Third Xiangya Hospital of Central South University, Changsha, 410013, China.
| |
Collapse
|
255
|
Bignardi PR, Ido DH, Garcia FAL, Braga LM, Delfino VDA. Does uric acid-lowering treatment slow the progression of chronic kidney disease? A meta-analysis of randomized controlled trials. Nefrologia 2022. [DOI: 10.1016/j.nefro.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
256
|
Anti-Inflammatory Effect of Resveratrol Derivatives via the Downregulation of Oxidative-Stress-Dependent and c-Src Transactivation EGFR Pathways on Rat Mesangial Cells. Antioxidants (Basel) 2022; 11:antiox11050835. [PMID: 35624699 PMCID: PMC9138040 DOI: 10.3390/antiox11050835] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/16/2022] [Accepted: 04/22/2022] [Indexed: 12/04/2022] Open
Abstract
In Taiwan, the root extract of Vitis thunbergii Sieb. et Zucc. (Vitaceae, VT) is rich in stilbenes, with resveratrol (Res) and its derivatives being the most abundant. Previously, we showed that the effect of Res derivatives against tumor necrosis factor-α (TNF-α)-stimulated inflammatory responses occurs via cPLA2/COX-2/PGE2 inhibition. This study compared and explored the underlying anti-inflammatory pharmacological mechanisms. Before stimulation with TNF-α, RMCs were treated with/without pharmacological inhibitors of specific protein kinases. The expression of inflammatory mediators was determined by Western blotting, gelatin zymography, real-time PCR, and luciferase assay. Cellular and mitochondrial ROS were measured by H2DHFDA or DHE and MitoSOX™ Red staining, respectively. The RNS level was indirectly measured by Griess reagent assay. Kinase activation and association were assayed by immunoprecipitation followed by Western blotting. TNF-α binding to TNFR recruited Rac1 and p47phox, thus activating the NAPDH oxidase-dependent MAPK and NF-κB pathways. The TNF-α-induced NF-κB activation via c-Src-driven ROS was independent from the EGFR signaling pathway. The anti-inflammatory effects of Res derivatives occurred via the inhibition of ROS derived from mitochondria and NADPH oxidase; RNS derived from iNOS; and the activation of the ERK1/2, JNK1/2, and NF-κB pathways. Overall, this study provides an understanding of the various activities of Res derivatives and their pharmacological mechanisms. In the future, the application of the active molecules of VT to health foods and medicine in Taiwan may increase.
Collapse
|
257
|
Yu Z, Zhao J, Qin Y, Wang Y, Zhang Y, Sun S. Probiotics, Prebiotics, and Synbiotics Improve Uremic, Inflammatory, and Gastrointestinal Symptoms in End-Stage Renal Disease With Dialysis: A Network Meta-Analysis of Randomized Controlled Trials. Front Nutr 2022; 9:850425. [PMID: 35445065 PMCID: PMC9015659 DOI: 10.3389/fnut.2022.850425] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/28/2022] [Indexed: 11/25/2022] Open
Abstract
Background Probiotics, prebiotics, and synbiotics are three different supplements to treat end stage renal disease (ESRD) patients by targeting gut bacteria. The comprehensive comparison of the effectiveness of different supplements are lacking. Objectives The purpose of this network meta-analysis (NMA) is to assess and rank the efficacy of probiotics, prebiotics, and synbiotics on inflammatory factors, uremic toxins, and gastrointestinal symptoms (GI symptoms) in ESRD patients undergoing dialysis. Methods Randomized clinical trials were searched from the PubMed, Embase, and Cochrane Register of Controlled Trials databases, from their inception until 4 September 2021. Random-effect model were used to obtain all estimated outcomes in network meta-analysis (NMA). Effect estimates were presented as mean differences (Mean ± SD) with 95% confidence interval (CI). The comprehensive effects of all treatments were ranked by the surface under the cumulative ranking (SUCRA) probabilities. Results Twenty-five studies involved 1,106 participants were included. Prebiotics were superior in decreasing Interleukin-6 (IL-6; SMD –0.74, 95% CI [–1.32, –0.16]) and tumor-necrosis factor-α (TNF-α; SMD –0.59, 95% CI [–1.09, –0.08]), synbiotics were more effective in declining C-reactive protein (CRP; SMD –0.69, 95% CI [–1.14, –0.24]) and endotoxin (SMD –0.83, 95% CI [–1.38, –0.27]). Regarding uremic toxins, prebiotics ranked highest in reducing indoxyl sulfate (IS; SMD –0.43, 95% CI [–0.81, –0.05]), blood urea nitrogen (BUN; SMD –0.42, 95% CI [–0.78, –0.06]), and malondialdehyde (MDA; SMD –1.88, 95% CI [–3.02, –0.75]). Probiotics were rated as best in alleviating GI symptoms (SMD: –0.52, 95% CI [–0.93, –0.1]). Conclusion Our research indicated prebiotics were more effective in declining IL-6, TNF-α, IS, MDA, and BUN, synbiotics lowering CRP and endotoxin significantly, and probiotics were beneficial for alleviating GI symptoms, which may contribute to better clinical decisions. This study was registered in PROSPERO (Number: CRD42021277056). Systematic Review Registration [http://www.crd.york.ac.uk/PROSPERO], identifier [CRD42021277056].
Collapse
Affiliation(s)
- Zixian Yu
- Department of Nephrology, Xijing Hospital, Air Force Military Medical University, Xi'an, China
| | - Jin Zhao
- Department of Nephrology, Xijing Hospital, Air Force Military Medical University, Xi'an, China
| | - Yunlong Qin
- Department of Nephrology, Xijing Hospital, Air Force Military Medical University, Xi'an, China
| | - Yuwei Wang
- Department of Nephrology, Xijing Hospital, Air Force Military Medical University, Xi'an, China
| | - Yumeng Zhang
- Department of Nephrology, Xijing Hospital, Air Force Military Medical University, Xi'an, China
| | - Shiren Sun
- Department of Nephrology, Xijing Hospital, Air Force Military Medical University, Xi'an, China
| |
Collapse
|
258
|
Wei M, Wang P, Wan Y, Jiang Y, Song W, He Z, Wang Q. Urinary parabens and their derivatives associated with oxidative stress biomarkers in children from South and Central China: Repeated measures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:152639. [PMID: 34971688 DOI: 10.1016/j.scitotenv.2021.152639] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/18/2021] [Accepted: 12/19/2021] [Indexed: 05/27/2023]
Abstract
Previous studies implied that elevated exposure to parabens may result in increased oxidative stress. However, the association between exposure to paraben derivatives and oxidative stress biomarkers in children has been rarely studied. This study examined the associations between exposure to paraben derivatives and oxidative stress biomarkers in Chinese children. Nine targeted compounds of parabens and their derivatives including methyl paraben (MeP), ethyl paraben (EtP), propyl paraben (PrP), butyl paraben (BuP), p-hydrox4ybenzoic acid (p-HB), 3,4-dihydroxy benzoic acid (3,4-DHB), benzoic acid, methyl 3,4-dihydroxybenzoate (rOH-MeP), and ethyl 3,4-dihydroxybenzoate (rOH-EtP) were detected in urine collected from 139 children from South and Central China. Additionally, 8-hydroxy-2'-deoxyguanosine (8-OHdG), 8-hydroxyguanosine (8-OHG), and 4-hydroxy-2-nonenal mercapturic acid (HNE-MA) were measured as oxidative stress biomarkers. All targeted compounds (except for BuP) were frequently detected in urine (detection frequencies ranged 80.8%-100%). Linear mixed effects model revealed that all targeted compounds (with detection frequencies >50%), except for EtP, were significantly associated with an increase in 8-OHdG. rOH-EtP was found to be significantly associated with 8-OHG (β = 0.12; 95% confidence interval [95% CI]: 0.08, 0.16) positively. In addition, PrP and benzoic acid were associated with elevated levels of HNE-MA. Weighted quantile sum regression revealed that co-exposure to the targeted compounds was positively associated with 8-OHdG (β = 0.17; 95% CI: 0.12, 0.22), 8-OHG (β = 0.14; 95% CI: 0.10, 0.18), and HNE-MA (β = 0.43; 95% CI: 0.27, 0.59); rOH-EtP and benzoic acid were the major contributors for the combined effects on oxidative stress of nucleic acids and lipid, respectively. Our findings provide new evidence for the effects of exposure to paraben derivatives on nucleic acid oxidative damage and lipid peroxidation in children.
Collapse
Affiliation(s)
- Muhong Wei
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Pei Wang
- Institute of Environmental Health, Wuhan Centers for Disease Control and Prevention, Wuhan, Hubei 430024, PR China
| | - Yanjian Wan
- Institute of Environmental Health, Wuhan Centers for Disease Control and Prevention, Wuhan, Hubei 430024, PR China.
| | - Ying Jiang
- Nanshan District Centers for Disease Control and Prevention, Shenzhen, Guangdong 518054, PR China
| | - Wenjing Song
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Zhenyu He
- Institute of Environmental Health, Wuhan Centers for Disease Control and Prevention, Wuhan, Hubei 430024, PR China
| | - Qi Wang
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| |
Collapse
|
259
|
Zhou Q, Han C, Wang Y, Fu S, Chen Y, Chen Q. The Effect of Chinese Medicinal Formulas on Biomarkers of Oxidative Stress in STZ-Induced Diabetic Kidney Disease Rats: A Meta-Analysis and Systematic Review. Front Med (Lausanne) 2022; 9:848432. [PMID: 35492300 PMCID: PMC9051386 DOI: 10.3389/fmed.2022.848432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/02/2022] [Indexed: 01/27/2023] Open
Abstract
Background Diabetic kidney disease (DKD), defined broadly as persistent proteinuria with low estimated glomerular filtration rate in patients with diabetes, is a main cause of end-stage renal disease. Excessive production of reactive oxygen species is an important mechanism underlying the pathogenesis of DKD and many antioxidants have been investigated as therapeutic agents. Among them, Chinese medicine antioxidative stress therapies have been widely used to combat DKD, which may offer new insights into therapeutic development of DKD. There are several discrepancies among the efficacy of Western medicine (WM) and Chinese medicinal formula (CMF) action. Methods We searched PubMed, Cochrane Library, the Web of Science databases, Embase, and Scopus from inception to December 2021 using relevant keywords and a comprehensive search for randomized controlled trials (RCTs) was performed. Calculating the pooled weighted mean difference (MD) and 95% CI by the method of inverse-variance with a random-effect. All the related statistical analyses were performed using Stata version 15.1 software (Stata Corporation) and Rvman version 5.3 (Nordic Cochrane Center). Results A total of 8 articles with the 9 groups including 106 in the model group, 105 in the CMF group, and 99 in the WM group. Pooled data from 8 studies (9 groups) showed a statistical improvement in superoxide dismutase compared with the model group [standardized MD (SMD) = 1.57; 95 CI: 1.16–1.98; P < 0.05] and the WM group (SMD = 0.56; 95 CI: 0.19–0.92; P < 0.05). For glutathione peroxidase (GSH-Px), it was significantly improved in the CMF group vs. the model group and the WM group. For malondialdehyde (MDA), it was significantly reduced in the CMF group (CMF vs. model group: SMD = −1.52; 95 CI: −1.88 −1.17; P < 0.05; CMF vs. WM group: SMD = −0.64; 95 CI: −0.95 −0.33; P < 0.05). Conclusion This systematic review and meta-analysis have demonstrated that the therapy of CMF had a notable curative effect on relieving oxidative stress in STZ-induced DKD rats and CMF was significantly more effective than the WM control group. For the clinical application, the results providing confidence and some theoretical reference for DKD via evaluating the efficacy of CMF to a certain extent. Systematic Review Registration [PROSPERO], identifier [CRD42022313737].
Collapse
Affiliation(s)
- Qian Zhou
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuyi Han
- Research Centre of Pharmaceutical Preparations and Nanomedicine, College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Yanmei Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shunlian Fu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yiding Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiu Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Qiu Chen
| |
Collapse
|
260
|
The Role of Oxidative Stress in Skeletal Muscle Myogenesis and Muscle Disease. Antioxidants (Basel) 2022; 11:antiox11040755. [PMID: 35453440 PMCID: PMC9026549 DOI: 10.3390/antiox11040755] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/28/2022] [Accepted: 03/28/2022] [Indexed: 02/06/2023] Open
Abstract
The contractile activity, high oxygen consumption and metabolic rate of skeletal muscle cause it to continuously produce moderate levels of oxidant species, such as reactive oxygen species (ROS) and reactive nitrogen species (RNS). Under normal physiological conditions, there is a dynamic balance between the production and elimination of ROS/RNS. However, when the oxidation products exceed the antioxidant defense capacity, the body enters a state of oxidative stress. Myogenesis is an important process to maintain muscle homeostasis and the physiological function of skeletal muscle. Accumulating evidence suggests that oxidative stress plays a key role in myogenesis and skeletal muscle physiology and pathology. In this review, we summarize the sources of reactive oxygen species in skeletal muscle and the causes of oxidative stress and analyze the key role of oxidative stress in myogenesis. Then, we discuss the relationship between oxidative stress and muscle homeostasis and physiopathology. This work systematically summarizes the role of oxidative stress in myogenesis and muscle diseases and provides targets for subsequent antioxidant therapy and repair of inflammatory damage in noninflammatory muscle diseases.
Collapse
|
261
|
Ma Z, Yang Z, Feng X, Deng J, He C, Li R, Zhao Y, Ge Y, Zhang Y, Song C, Zhong S. The Emerging Evidence for a Protective Role of Fucoidan from Laminaria japonica in Chronic Kidney Disease-Triggered Cognitive Dysfunction. Mar Drugs 2022; 20:258. [PMID: 35447931 PMCID: PMC9025131 DOI: 10.3390/md20040258] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 02/06/2023] Open
Abstract
This study aimed to explore the mechanism of fucoidan in chronic kidney disease (CKD)-triggered cognitive dysfunction. The adenine-induced ICR strain CKD mice model was applied, and RNA-Seq was performed for differential gene analysis between aged-CKD and normal mice. As a result, fucoidan (100 and 200 mg kg-1) significantly reversed adenine-induced high expression of urea, uric acid in urine, and creatinine in serum, as well as the novel object recognition memory and spatial memory deficits. RNA sequencing analysis indicated that oxidative and inflammatory signaling were involved in adenine-induced kidney injury and cognitive dysfunction; furthermore, fucoidan inhibited oxidative stress via GSK3β-Nrf2-HO-1 signaling and ameliorated inflammatory response through regulation of microglia/macrophage polarization in the kidney and hippocampus of CKD mice. Additionally, we clarified six hallmarks in the hippocampus and four in the kidney, which were correlated with CKD-triggered cognitive dysfunction. This study provides a theoretical basis for the application of fucoidan in the treatment of CKD-triggered memory deficits.
Collapse
Affiliation(s)
- Zhihui Ma
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Z.M.); (X.F.); (J.D.); (C.H.); (R.L.); (Y.Z.); (Y.Z.); (C.S.); (S.Z.)
| | - Zhiyou Yang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Z.M.); (X.F.); (J.D.); (C.H.); (R.L.); (Y.Z.); (Y.Z.); (C.S.); (S.Z.)
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Xinyue Feng
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Z.M.); (X.F.); (J.D.); (C.H.); (R.L.); (Y.Z.); (Y.Z.); (C.S.); (S.Z.)
| | - Jiahang Deng
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Z.M.); (X.F.); (J.D.); (C.H.); (R.L.); (Y.Z.); (Y.Z.); (C.S.); (S.Z.)
| | - Chuantong He
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Z.M.); (X.F.); (J.D.); (C.H.); (R.L.); (Y.Z.); (Y.Z.); (C.S.); (S.Z.)
| | - Rui Li
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Z.M.); (X.F.); (J.D.); (C.H.); (R.L.); (Y.Z.); (Y.Z.); (C.S.); (S.Z.)
| | - Yuntao Zhao
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Z.M.); (X.F.); (J.D.); (C.H.); (R.L.); (Y.Z.); (Y.Z.); (C.S.); (S.Z.)
| | - Yuewei Ge
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangdong Pharmaceutical University, Guangzhou 510006, China;
| | - Yongping Zhang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Z.M.); (X.F.); (J.D.); (C.H.); (R.L.); (Y.Z.); (Y.Z.); (C.S.); (S.Z.)
| | - Cai Song
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Z.M.); (X.F.); (J.D.); (C.H.); (R.L.); (Y.Z.); (Y.Z.); (C.S.); (S.Z.)
| | - Saiyi Zhong
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Z.M.); (X.F.); (J.D.); (C.H.); (R.L.); (Y.Z.); (Y.Z.); (C.S.); (S.Z.)
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
262
|
Guerreiro Í, Ferreira-Pêgo C, Carregosa D, Santos CN, Menezes R, Fernandes AS, Costa JG. Polyphenols and Their Metabolites in Renal Diseases: An Overview. Foods 2022; 11:foods11071060. [PMID: 35407148 PMCID: PMC8997953 DOI: 10.3390/foods11071060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 12/12/2022] Open
Abstract
Kidney diseases constitute a worldwide public health problem, contributing to morbidity and mortality. The present study aimed to provide an overview of the published data regarding the potential beneficial effects of polyphenols on major kidney diseases, namely acute kidney injury, chronic kidney disease, diabetic nephropathy, renal cancer, and drug-induced nephrotoxicity. This study consists of a bibliographical review including in vitro and in vivo studies dealing with the effects of individual compounds. An analysis of the polyphenol metabolome in human urine was also conducted to estimate those compounds that are most likely to be responsible for the kidney protective effects of polyphenols. The biological effects of polyphenols can be highly attributed to the modulation of specific signaling cascades including those involved in oxidative stress responses, anti-inflammation processes, and apoptosis. There is increasing evidence that polyphenols afford great potential in renal disease protection. However, this evidence (especially when in vitro studies are involved) should be considered with caution before its clinical translation, particularly due to the unfavorable pharmacokinetics and extensive metabolization that polyphenols undergo in the human body. Future research should consider polyphenols and their metabolites that indeed reach kidney tissues.
Collapse
Affiliation(s)
- Íris Guerreiro
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal; (Í.G.); (C.F.-P.); (R.M.); (A.S.F.)
| | - Cíntia Ferreira-Pêgo
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal; (Í.G.); (C.F.-P.); (R.M.); (A.S.F.)
| | - Diogo Carregosa
- CEDOC, Chronic Diseases Research Center, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; (D.C.); (C.N.S.)
| | - Cláudia N. Santos
- CEDOC, Chronic Diseases Research Center, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; (D.C.); (C.N.S.)
| | - Regina Menezes
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal; (Í.G.); (C.F.-P.); (R.M.); (A.S.F.)
- CEDOC, Chronic Diseases Research Center, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; (D.C.); (C.N.S.)
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
| | - Ana S. Fernandes
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal; (Í.G.); (C.F.-P.); (R.M.); (A.S.F.)
| | - João G. Costa
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal; (Í.G.); (C.F.-P.); (R.M.); (A.S.F.)
- Correspondence:
| |
Collapse
|
263
|
Figuer A, Alique M, Valera G, Serroukh N, Ceprían N, de Sequera P, Morales E, Carracedo J, Ramírez R, Bodega G. Nuevos mecanismos implicados en el desarrollo de la enfermedad cardiovascular en la enfermedad renal crónica. Nefrologia 2022. [DOI: 10.1016/j.nefro.2022.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
264
|
Rahman HH, Niemann D, Munson-McGee SH. Association of chronic kidney disease with exposure to polycyclic aromatic hydrocarbons in the US population. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:24024-24034. [PMID: 34822075 DOI: 10.1007/s11356-021-17479-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are environmental pollutants formed from the incomplete combustion of carbon-containing products. Exposure can occur through ingestion or inhalation and has been linked to depression, stroke, liver disease, asthma, diabetes, heart failure, and cancer. Few studies have investigated the association between exposure to PAHs and chronic kidney disease (CKD) in humans. This study aims to investigate the association between seven urinary PAH concentrations (1-hydroxynaphthalene, 2-hydroxynaphthalene, 3-hydroxyfluorene 2-hydroxyfluorene, 1-hydroxyphenanthrene, 1-hydroxypyrene, and 2 & 3-hydroxyphenanthrene) and CKD in the US adult population. A cross-sectional analysis using the 2015-2016 National Health and Nutrition Examination Survey (NHANES) dataset was conducted. CKD was defined with estimated glomerular filtration rate (eGFR) and albumin to creatinine ratio (ACR). Participants with an eGFR < 60 ml/min/1.73m2 or ACR > 30 mg/gm were considered to have CKD. A specialized complex survey design analysis package using R version 4.0.3 was used in the data analysis. Multivariate logistic regression was used to study the correlation between seven forms of urinary PAH concentrations and CKD associated with abnormal eGFR or ACR. The models were adjusted for lifestyle and demographic factors. The study included a total of 4117 adults aged ≥ 20 years, with 49.6% males and 50.4% females. Urinary 2-hydroxynaphthalene (OR: 1.600, 95% CI: 1.141, 2.243) was significantly associated with an increased odds of CKD; the other six forms of urinary PAHs were not associated with CKD. Non-Hispanic Black (OR: 1.569, 95% CI: 1.168, 2.108), age of 60 years and older (OR: 2.546, 95% CI: 1.865, 3.476), and BMIs of underweight (OR: 2.386, 95% CI: 1.259, 4.524) and obese (OR: 1.407, 95% CI: 1.113, 1.778) all had significantly increased odds for CKD. Our study concluded that urinary 2-hydroxynaphthalene, a form of PAH, is significantly associated with CKD.
Collapse
Affiliation(s)
| | - Danielle Niemann
- Burrell College of Osteopathic Medicine, 3501 Arrowhead Dr, Las Cruces, NM, 88003, USA
| | | |
Collapse
|
265
|
Curcumin supplementation improves oxidative stress and inflammation biomarkers in patients undergoing hemodialysis: a secondary analysis of a randomized controlled trial. Int Urol Nephrol 2022; 54:2645-2652. [DOI: 10.1007/s11255-022-03182-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 03/15/2022] [Indexed: 10/18/2022]
|
266
|
Almeida PP, de Moraes Thomasi BB, Menezes ÁC, Da Cruz BO, da Silva Costa N, Brito ML, D'Avila Pereira A, Castañon CR, Degani VAN, Magliano DC, Knauf C, Tavares-Gomes AL, Stockler-Pinto MB. 5/6 nephrectomy affects enteric glial cells and promotes impaired antioxidant defense in the colonic neuromuscular layer. Life Sci 2022; 298:120494. [PMID: 35339510 DOI: 10.1016/j.lfs.2022.120494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 10/18/2022]
Abstract
AIMS Chronic kidney disease (CKD) produces multiple repercussions in the gastrointestinal tract (GIT), such as alterations in motility, gut microbiota, intestinal permeability, and increased oxidative stress. However, despite enteric glial cells (EGC) having important neural and immune features in GIT physiology, their function in CKD remains unknown. The present study investigates colonic glial markers, inflammation, and antioxidant parameters in a CKD model. MAIN METHODS A 5/6 nephrectomized rat model was used to induce CKD in rats and Sham-operated animals as a control to suppress. Biochemical measures in plasma and neuromuscular layer such as glutathione peroxidase (GPx) and superoxide dismutase (SOD) activity were carried out. Kidney histopathology was evaluated. Colon morphology analysis and glial fibrillary acid protein (GFAP), connexin-43 (Cx43), nuclear factor-kappa B (NF-κB) p65, and GPx protein expression were performed. KEY FINDINGS The CKD group exhibited dilated tubules and tubulointerstitial fibrosis in the reminiscent kidney (p = 0.0002). CKD rats showed higher SOD activity (p = 0.004) in plasma, with no differences in neuromuscular layer (p = 0.9833). However, GPx activity was decreased in the CKD group in plasma (p = 0.013) and neuromuscular layer (p = 0.0338). Morphological analysis revealed alterations in colonic morphometry with inflammatory foci in the submucosal layer and neuromuscular layer straightness in CKD rats (p = 0.0291). In addition, GFAP, Cx43, NF-κBp65 protein expression were increased, and GPx decreased in the neuromuscular layer of the CKD group (p < 0.05). SIGNIFICANCE CKD animals present alterations in colonic cytoarchitecture and decreased layer thickness. Moreover, CKD affects the enteric glial network of the neuromuscular layer, associated with decreased antioxidant activity and inflammation.
Collapse
Affiliation(s)
- Patricia Pereira Almeida
- Cardiovascular Sciences Post Graduate Program, Fluminense Federal University (UFF), Niterói, RJ, Brazil.
| | | | - Ágatha Cristie Menezes
- Cardiovascular Sciences Post Graduate Program, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Beatriz Oliveira Da Cruz
- Cardiovascular Sciences Post Graduate Program, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Nathalia da Silva Costa
- Cardiovascular Sciences Post Graduate Program, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Michele Lima Brito
- Nutrition Graduation, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | | | - Cecília Ribeiro Castañon
- Clinic and Animal Reproduction Post Graduate Program, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | | | - D'Angelo Carlo Magliano
- Cardiovascular Sciences Post Graduate Program, Fluminense Federal University (UFF), Niterói, RJ, Brazil; Morphology Department, Biomedical Institute, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Claude Knauf
- Institut de Recherche en Santé Digestive, Université Paul Sabatier (UPS), Toulouse, France
| | - Ana Lúcia Tavares-Gomes
- Neuroscience Post Graduate Program, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Milena Barcza Stockler-Pinto
- Cardiovascular Sciences Post Graduate Program, Fluminense Federal University (UFF), Niterói, RJ, Brazil; Nutrition Sciences Post Graduate Program, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| |
Collapse
|
267
|
Gonzalez P, Lozano P, Solano F. Unraveling the Metabolic Hallmarks for the Optimization of Protein Intake in Pre-Dialysis Chronic Kidney Disease Patients. Nutrients 2022; 14:nu14061182. [PMID: 35334840 PMCID: PMC8954715 DOI: 10.3390/nu14061182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/28/2022] [Accepted: 03/10/2022] [Indexed: 02/04/2023] Open
Abstract
The daily amount and quality of protein that should be administered by enteral nutrition in pre-dialysis chronic kidney disease (CKD) patients is a widely studied but still controversial issue. This is due to a compromise between the protein necessary to maintain muscular proteostasis avoiding sarcopenia, and the minimal amount required to prevent uremia and the accumulation of nitrogenous toxic substances in blood because of the renal function limitations. This review underlines some intracellular and extracellular features that should be considered to reconcile those two opposite factors. On one hand, the physiological conditions and usual side effects associated with CKD, mTOR and other proteins and nutrients involved in the regulation of protein synthesis in the muscular tissue are discussed. On the other hand, the main digestive features of the most common proteins used for enteral nutrition formulation (i.e., whey, casein and soy protein) are highlighted, due to the importance of supplying key amino acids to serum and tissues to maintain their concentration above the anabolic threshold needed for active protein synthesis, thereby minimizing the catabolic pathways leading to urea formation.
Collapse
Affiliation(s)
- Patricia Gonzalez
- Project Manager, Fresenius Kabi España, Sociedad Anonima Unipersonal, Marina 16-18, 08005 Barcelona, Spain
- Correspondence: (P.G.); (F.S.)
| | - Pedro Lozano
- Department of Biochemistry and Molecular Biology “B” and Immunology, Faculty of Chemistry, Campus de Espinardo, University of Murcia, 30100 Murcia, Spain;
| | - Francisco Solano
- Department of Biochemistry and Molecular Biology “B” and Immunology, IMIB (Murcian Institute of Health Research), Faculty of Medicine, Campus de Espinardo, University of Murcia, 30100 Murcia, Spain
- Correspondence: (P.G.); (F.S.)
| |
Collapse
|
268
|
R S, Saharia GK, Panda S, Mangaraj M. Evaluation of Homocysteine and Gamma-Glutamyl Transferase Concentrations As Markers of Chronic Kidney Disease: An Indian Perspective. Cureus 2022; 14:e22959. [PMID: 35411265 PMCID: PMC8989248 DOI: 10.7759/cureus.22959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2022] [Indexed: 01/09/2023] Open
Abstract
Background Chronic kidney disease (CKD) involves a gradual loss of kidney function over months to years. Oxidative stress plays a critical role in the pathogenesis of CKD. Homocysteine (Hcy), an amino acid derivative, is a known risk factor for oxidative stress and endothelial damage. Gamma-glutamyl transferase (GGT), an enzyme abundant on the cell surface of liver and kidney cells, is raised during oxidative stress. The objectives of this study were to estimate the concentrations of serum Hcy and GGT among CKD patients and healthy controls and to determine whether there is an association between serum Hcy and GGT levels in CKD. Methodology A total of 246 participants were needed to meet the calculated sample size. A total of 123 CKD patients meeting the inclusion and exclusion criteria were recruited as cases from the Nephrology outpatient department of our institute. Equal numbers of age- and sex-matched healthy volunteers were recruited as controls. Biophysical profiling of participants was done. Baseline investigations were recorded. A blood sample was collected from each participant and analyzed for GGT and Hcy along with other routine parameters. Results Hcy and GGT concentrations were significantly high in CKD patients compared to healthy controls. There was a significant positive correlation between serum GGT and Hcy levels (r = 0.357). Conclusions Elevated levels of GGT and Hcy in CKD patients compared to healthy controls demonstrated the oxidative stress associated with the disease. GGT and Hcy can be used as prognostic markers of the disease.
Collapse
|
269
|
GlyNAC (Glycine and N-Acetylcysteine) Supplementation in Mice Increases Length of Life by Correcting Glutathione Deficiency, Oxidative Stress, Mitochondrial Dysfunction, Abnormalities in Mitophagy and Nutrient Sensing, and Genomic Damage. Nutrients 2022; 14:nu14051114. [PMID: 35268089 PMCID: PMC8912885 DOI: 10.3390/nu14051114] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 02/01/2023] Open
Abstract
Determinants of length of life are not well understood, and therefore increasing lifespan is a challenge. Cardinal theories of aging suggest that oxidative stress (OxS) and mitochondrial dysfunction contribute to the aging process, but it is unclear if they could also impact lifespan. Glutathione (GSH), the most abundant intracellular antioxidant, protects cells from OxS and is necessary for maintaining mitochondrial health, but GSH levels decline with aging. Based on published human studies where we found that supplementing glycine and N-acetylcysteine (GlyNAC) improved/corrected GSH deficiency, OxS and mitochondrial dysfunction, we hypothesized that GlyNAC supplementation could increase longevity. We tested our hypothesis by evaluating the effect of supplementing GlyNAC vs. placebo in C57BL/6J mice on (a) length of life; and (b) age-associated GSH deficiency, OxS, mitochondrial dysfunction, abnormal mitophagy and nutrient-sensing, and genomic-damage in the heart, liver and kidneys. Results showed that mice receiving GlyNAC supplementation (1) lived 24% longer than control mice; (2) improved/corrected impaired GSH synthesis, GSH deficiency, OxS, mitochondrial dysfunction, abnormal mitophagy and nutrient-sensing, and genomic-damage. These studies provide proof-of-concept that GlyNAC supplementation can increase lifespan and improve multiple age-associated defects. GlyNAC could be a novel and simple nutritional supplement to improve lifespan and healthspan, and warrants additional investigation.
Collapse
|
270
|
Luan P, Zhang H, Chen X, Zhu Y, Hu G, Cai J, Zhang Z. Melatonin relieves 2,2,4,4-tetrabromodiphenyl ether (BDE-47)-induced apoptosis and mitochondrial dysfunction through the AMPK-Sirt1-PGC-1α axis in fish kidney cells (CIK). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 232:113276. [PMID: 35123185 DOI: 10.1016/j.ecoenv.2022.113276] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/15/2022] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) exist in aquatic environments with nephrotoxicity to non-target aquatic species. Melatonin (MT) exhibits an inhibitory effect of oxidative stress and apoptosis in various diseases. 2, 2', 4, 4'-tetrabromodiphenyl ether (BDE-47) is the main homolog of PBDE samples. Therefore, we investigated the toxic mechanism of BDE-47 and the alleviation effect of MT, the ctenopharyngodon idellus kidney (CIK) cells were treated with BDE-47 (100 μM) and/or MT (60 μM) for 24 h. Firstly, BDE-47 exposure could inhibit oxidative stress-related antioxidant enzymes (T-AOC, SOD, CAT and GPx) and increase the content of malondialdehyde (MDA) to cause oxidative stress. Secondly, BDE-47 enhanced mitochondrial division and inhibited fusion to induce mitochondrial membrane potential in CIK cells. BDE-47 enhanced the mRNA and protein levels of mitochondrial-pathway apoptosis related genes (Cas 3, Cyt-c, and BAX). Thirdly, BDE-47 treatment decreased the expression levels of mitochondrial-related regulatory factors AMPK-Sirt1-PGC-1α signal pathway. Intriguingly, BDE-47-induced oxidative stress, mitochondrial pathway apoptosis and mitochondrial dynamics disorder could be alleviated by MT treatment. Overall, we concluded that MT could relieve BDE-47-induced oxidative stress, mitochondrial dysfunction and apoptosis through the AMPK-Sirt1-PGC-1α axis. These results enrich the mechanisms of BDE-47 poisoning and reveal that MT treatment may be a potential strategy for solving BDE-47 poisoning.
Collapse
Affiliation(s)
- Peixian Luan
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 0150070, PR China; Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150070, PR China
| | - Haoran Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiaoming Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yue Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Guo Hu
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 0150070, PR China; Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150070, PR China.
| | - Jingzeng Cai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| | - Ziwei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
271
|
Effects of Expanded Hemodialysis with Medium Cut-Off Membranes on Maintenance Hemodialysis Patients: A Review. MEMBRANES 2022; 12:membranes12030253. [PMID: 35323729 PMCID: PMC8953230 DOI: 10.3390/membranes12030253] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 02/04/2023]
Abstract
Kidney failure is associated with high morbidity and mortality. Hemodialysis, the most prevalent modality of renal replacement therapy, uses the principle of semipermeable membranes to remove solutes and water in the plasma of patients with kidney failure. With the evolution of hemodialysis technology over the last half century, the clearance of small water-soluble molecules in such patients is adequate. However, middle molecules uremic toxins are still retained in the plasma and cause cardiovascular events, anemia, and malnutrition, which significantly contribute to poor quality of life and high mortality in maintenance hemodialysis patients. A new class of membrane, defined as a medium cut-off (MCO) membrane, has emerged in recent years. Expanded hemodialysis with MCO membranes is now recognized as the artificial kidney model closest to natural kidney physiology. This review summarizes the unique morphological characteristics and internal filtration–backfiltration mechanism of MCO membranes, and describes their effects on removing uremic toxins, alleviating inflammation and cardiovascular risk, and improving quality of life in maintenance hemodialysis patients.
Collapse
|
272
|
Ojeda ML, Carreras O, Nogales F. The Role of Selenoprotein Tissue Homeostasis in MetS Programming: Energy Balance and Cardiometabolic Implications. Antioxidants (Basel) 2022; 11:antiox11020394. [PMID: 35204276 PMCID: PMC8869711 DOI: 10.3390/antiox11020394] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 11/16/2022] Open
Abstract
Selenium (Se) is an essential trace element mainly known for its antioxidant, anti-inflammatory, and anti-apoptotic properties, as it is part of the catalytic center of 25 different selenoproteins. Some of them are related to insulin resistance (IR) and metabolic syndrome (MetS) generation, modulating reactive oxygen species (ROS), and the energetic sensor AMP-activated protein kinase (AMPK); they can also regulate the nuclear transcription factor kappa-B (NF-kB), leading to changes in inflammation production. Selenoproteins are also necessary for the correct synthesis of insulin and thyroid hormones. They are also involved in endocrine central regulation of appetite and energy homeostasis, affecting growth and development. MetS, a complex metabolic disorder, can appear during gestation and lactation in mothers, leading to energetic and metabolic changes in their offspring that, according to the metabolic programming theory, will produce cardiovascular and metabolic diseases later in life. However, there is a gap concerning Se tissue levels and selenoproteins’ implications in MetS generation, which is even greater during MetS programming. This narrative review also provides an overview of the existing evidence, based on experimental research from our laboratory, which strengthens the fact that maternal MetS leads to changes in Se tissue deposits and antioxidant selenoproteins’ expression in their offspring. These changes contribute to alterations in tissues’ oxidative damage, inflammation, energy balance, and tissue function, mainly in the heart. Se imbalance also could modulate appetite and endocrine energy balance, affecting pups’ growth and development. MetS pups present a profile similar to that of diabetes type 1, which also appeared when dams were exposed to low-Se dietary supply. Maternal Se supplementation should be taken into account if, during gestation and/or lactation periods, there are suspicions of endocrine energy imbalance in the offspring, such as MetS. It could be an interesting therapy to induce heart reprogramming. However, more studies are necessary.
Collapse
|
273
|
Domazetovic V, Falsetti I, Ciuffi S, Iantomasi T, Marcucci G, Vincenzini MT, Brandi ML. Effect of Oxidative Stress-Induced Apoptosis on Active FGF23 Levels in MLO-Y4 Cells: The Protective Role of 17-β-Estradiol. Int J Mol Sci 2022; 23:ijms23042103. [PMID: 35216216 PMCID: PMC8879671 DOI: 10.3390/ijms23042103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 12/04/2022] Open
Abstract
The discovery that osteocytes secrete phosphaturic fibroblast growth factor 23 (FGF23) has defined bone as an endocrine organ. However, the autocrine and paracrine functions of FGF23 are still unknown. The present study focuses on the cellular and molecular mechanisms involved in the complex control of FGF23 production and local bone remodeling functions. FGF23 was assayed using ELISA kit in the presence or absence of 17β–estradiol in starved MLO-Y4 osteocytes. In these cells, a relationship between oxidative stress-induced apoptosis and up-regulation of active FGF23 levels due to MAP Kinases activation with involvement of the transcriptional factor (NF-kB) has been demonstrated. The active FGF23 increase can be due to up-regulation of its expression and post-transcriptional modifications. 17β–estradiol prevents the increase of FGF23 by inhibiting JNK and NF-kB activation, osteocyte apoptosis and by the down-regulation of osteoclastogenic factors, such as sclerostin. No alteration in the levels of dentin matrix protein 1, a FGF23 negative regulator, has been determined. The results of this study identify biological targets on which drugs and estrogen may act to control active FGF23 levels in oxidative stress-related bone and non-bone inflammatory diseases.
Collapse
Affiliation(s)
- Vladana Domazetovic
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy; (V.D.); (I.F.); (S.C.); (T.I.); (G.M.); (M.T.V.)
| | - Irene Falsetti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy; (V.D.); (I.F.); (S.C.); (T.I.); (G.M.); (M.T.V.)
| | - Simone Ciuffi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy; (V.D.); (I.F.); (S.C.); (T.I.); (G.M.); (M.T.V.)
| | - Teresa Iantomasi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy; (V.D.); (I.F.); (S.C.); (T.I.); (G.M.); (M.T.V.)
| | - Gemma Marcucci
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy; (V.D.); (I.F.); (S.C.); (T.I.); (G.M.); (M.T.V.)
| | - Maria Teresa Vincenzini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy; (V.D.); (I.F.); (S.C.); (T.I.); (G.M.); (M.T.V.)
| | - Maria Luisa Brandi
- Fondazione Italiana Ricerca sulle Malattie dell’Osso (FIRMO Onlus), 50141 Florence, Italy
- Correspondence:
| |
Collapse
|
274
|
Network Pharmacology and Molecular Docking Analysis on Pharmacological Mechanisms of Astragalus membranaceus in the Treatment of Gastric Ulcer. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9007396. [PMID: 35140802 PMCID: PMC8820867 DOI: 10.1155/2022/9007396] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/09/2021] [Accepted: 01/12/2022] [Indexed: 12/18/2022]
Abstract
BACKGROUND Astragalus membranaceus (AM, family: Leguminosae) exerts significant therapeutic effect on gastric ulcer (GU); however, there are scarce studies on its molecular mechanism against GU. This study aims to explore the key ingredients, key targets, and potential mechanisms of AM in the treatment of GU by utilizing network pharmacology and molecular docking. METHODS Several public databases were used to predict the targets of AM and GU, respectively, and the drug and disease targets were intersected to obtain the common targets. Next, the key ingredients and key targets were identified by constructing ingredient-target network and protein-protein-interaction (PPI) network. Gene Ontology biological processes (GOBP) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were carried out on the common targets in order to ascertain the biological processes and signaling pathways involved. Finally, molecular docking was conducted to verify the binding affinity between the key ingredients and key targets. RESULTS A total of 552 predicted targets were obtained from 23 screened active ingredients, of which 203 targets were the common targets with GU. Quercetin, kaempferol, and isorhamnetin were identified as the key ingredients by constructing ingredient-target network, and TP53, AKT1, VEGFA, IL6, TNF, CASP3, and EGFR were selected as the key targets by constructing PPI network. GOBP and KEGG pathway enrichment analysis suggested that the therapeutic effect of AM on GU involved multiple biological processes and signaling pathways related to inflammation, oxidative stress, apoptosis, cell proliferation, and angiogenesis. Molecular docking validation demonstrated that all key ingredients had good binding affinity with the key targets. CONCLUSION This study revealed the key ingredients, key targets, and potential mechanisms of AM against GU, and these data may provide some crucial references for subsequent research and development of drugs for treating GU.
Collapse
|
275
|
Oxidative Stress in Human Pathology and Aging: Molecular Mechanisms and Perspectives. Cells 2022; 11:cells11030552. [PMID: 35159361 PMCID: PMC8833991 DOI: 10.3390/cells11030552] [Citation(s) in RCA: 195] [Impact Index Per Article: 97.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 02/04/2023] Open
Abstract
Reactive oxygen and nitrogen species (RONS) are generated through various endogenous and exogenous processes; however, they are neutralized by enzymatic and non-enzymatic antioxidants. An imbalance between the generation and neutralization of oxidants results in the progression to oxidative stress (OS), which in turn gives rise to various diseases, disorders and aging. The characteristics of aging include the progressive loss of function in tissues and organs. The theory of aging explains that age-related functional losses are due to accumulation of reactive oxygen species (ROS), their subsequent damages and tissue deformities. Moreover, the diseases and disorders caused by OS include cardiovascular diseases [CVDs], chronic obstructive pulmonary disease, chronic kidney disease, neurodegenerative diseases and cancer. OS, induced by ROS, is neutralized by different enzymatic and non-enzymatic antioxidants and prevents cells, tissues and organs from damage. However, prolonged OS decreases the content of antioxidant status of cells by reducing the activities of reductants and antioxidative enzymes and gives rise to different pathological conditions. Therefore, the aim of the present review is to discuss the mechanism of ROS-induced OS signaling and their age-associated complications mediated through their toxic manifestations in order to devise effective preventive and curative natural therapeutic remedies.
Collapse
|
276
|
Mitochondrial Pathophysiology on Chronic Kidney Disease. Int J Mol Sci 2022; 23:ijms23031776. [PMID: 35163697 PMCID: PMC8836100 DOI: 10.3390/ijms23031776] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 02/04/2023] Open
Abstract
In healthy kidneys, interstitial fibroblasts are responsible for the maintenance of renal architecture. Progressive interstitial fibrosis is thought to be a common pathway for chronic kidney diseases (CKD). Diabetes is one of the boosters of CKD. There is no effective treatment to improve kidney function in CKD patients. The kidney is a highly demanding organ, rich in redox reactions occurring in mitochondria, making it particularly vulnerable to oxidative stress (OS). A dysregulation in OS leads to an impairment of the Electron transport chain (ETC). Gene deficiencies in the ETC are closely related to the development of kidney disease, providing evidence that mitochondria integrity is a key player in the early detection of CKD. The development of novel CKD therapies is needed since current methods of treatment are ineffective. Antioxidant targeted therapies and metabolic approaches revealed promising results to delay the progression of some markers associated with kidney disease. Herein, we discuss the role and possible origin of fibroblasts and the possible potentiators of CKD. We will focus on the important features of mitochondria in renal cell function and discuss their role in kidney disease progression. We also discuss the potential of antioxidants and pharmacologic agents to delay kidney disease progression.
Collapse
|
277
|
Differentially Expressed Hepatic Genes Revealed by Transcriptomics in Pigs with Different Liver Lipid Contents. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2315575. [PMID: 35132345 PMCID: PMC8817107 DOI: 10.1155/2022/2315575] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 12/24/2021] [Accepted: 01/11/2022] [Indexed: 12/16/2022]
Abstract
The liver is the center for uptake, synthesis, packaging, and secretion of lipids and lipoproteins. The research on lipid metabolism in pigs is limited. The objective of the present study is to identify the genes related to lipid metabolism and oxidative stress in pigs by using transcriptomic analysis. Liver segments were collected from 60 Jinhua pigs for the determination of liver lipid content. The 7 pigs with the highest and lowest liver lipid content were set as group H and group L, respectively. Liver segments and serum samples were collected from each pig of the H and L groups for RNA sequencing and the determination of triglycerides (TG) content and high-density lipoprotein cholesterol (HDL) content, respectively. The HDL content in the serum of pigs in the H group was significantly higher than the L group (
). From transcriptomic sequencing, 6162 differentially expressed genes (DEGs) were identified, among which 2962 were upregulated and 3200 downregulated genes with the increase in the liver content of Jinhua pigs. After GO enrichment and KEGG analyses, lipid modification, cellular lipid metabolic process, cholesterol biosynthetic process, fatty acid metabolic process, oxidoreduction coenzyme metabolic process, oxidoreductase activity, acting on CH-OH group of donors, response to oxidative stress, nonalcoholic fatty liver disease (NAFLD), sphingolipid metabolism, and oxidative phosphorylation pathways were involved in lipid metabolism and oxidative stress in Jinhua pigs. For further validation, we selected 10 DEGs including 7 upregulated genes (APOE, APOA1, APOC3, LCAT, CYP2E1, GPX1, and ROMO1) and 4 downregulated genes (PPARA, PPARGC1A, and TXNIP) for RT-qPCR verification. To validate these results in other pig species, we analyzed these 10 DEGs in the liver of Duroc×Landrace×Yorkshire pigs. Similar expression patterns of these 10 DEGs were observed. These data would provide an insight to understand the gene functions regulating lipid metabolism and oxidative stress and would potentially provide theoretical basis for the development of strategies to modulate lipid metabolism and even control human diabetes and obesity by gene regulations.
Collapse
|
278
|
Tserga A, Pouloudi D, Saulnier-Blache JS, Stroggilos R, Theochari I, Gakiopoulou H, Mischak H, Zoidakis J, Schanstra JP, Vlahou A, Makridakis M. Proteomic Analysis of Mouse Kidney Tissue Associates Peroxisomal Dysfunction with Early Diabetic Kidney Disease. Biomedicines 2022; 10:biomedicines10020216. [PMID: 35203426 PMCID: PMC8869654 DOI: 10.3390/biomedicines10020216] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 02/01/2023] Open
Abstract
Background: The absence of efficient inhibitors for diabetic kidney disease (DKD) progression reflects the gaps in our understanding of DKD molecular pathogenesis. Methods: A comprehensive proteomic analysis was performed on the glomeruli and kidney cortex of diabetic mice with the subsequent validation of findings in human biopsies and omics datasets, aiming to better understand the underlying molecular biology of early DKD development and progression. Results: LC–MS/MS was employed to analyze the kidney proteome of 2 DKD models: Ins2Akita (early and late DKD) and db/db mice (late DKD). The abundance of detected proteins was defined. Pathway analysis of differentially expressed proteins in the early and late DKD versus the respective controls predicted dysregulation in DKD hallmarks (peroxisomal lipid metabolism and β-oxidation), supporting the functional relevance of the findings. Comparing the observed protein changes in early and late DKD, the consistent upregulation of 21 and downregulation of 18 proteins was detected. Among these were downregulated peroxisomal and upregulated mitochondrial proteins. Tissue sections from 16 DKD patients were analyzed by IHC confirming our results. Conclusion: Our study shows an extensive differential expression of peroxisomal proteins in the early stages of DKD that persists regardless of the disease severity, providing new perspectives and potential markers of diabetic kidney dysfunction.
Collapse
Affiliation(s)
- Aggeliki Tserga
- Department of Biotechnology, Biomedical Research Foundation, Academy of Athens, Soranou Efessiou 4, 11527 Athens, Greece; (A.T.); (R.S.); (J.Z.)
| | - Despoina Pouloudi
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (D.P.); (I.T.); (H.G.)
| | - Jean Sébastien Saulnier-Blache
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France;
- Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| | - Rafael Stroggilos
- Department of Biotechnology, Biomedical Research Foundation, Academy of Athens, Soranou Efessiou 4, 11527 Athens, Greece; (A.T.); (R.S.); (J.Z.)
| | - Irene Theochari
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (D.P.); (I.T.); (H.G.)
| | - Harikleia Gakiopoulou
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (D.P.); (I.T.); (H.G.)
| | | | - Jerome Zoidakis
- Department of Biotechnology, Biomedical Research Foundation, Academy of Athens, Soranou Efessiou 4, 11527 Athens, Greece; (A.T.); (R.S.); (J.Z.)
| | - Joost Peter Schanstra
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France;
- Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
- Correspondence: (J.P.S.); (A.V.); (M.M.); Tel.: +33-5-31224078 (J.P.S.); +30-210-6597506 (A.V.); +30-210-6597485 (M.M.)
| | - Antonia Vlahou
- Department of Biotechnology, Biomedical Research Foundation, Academy of Athens, Soranou Efessiou 4, 11527 Athens, Greece; (A.T.); (R.S.); (J.Z.)
- Correspondence: (J.P.S.); (A.V.); (M.M.); Tel.: +33-5-31224078 (J.P.S.); +30-210-6597506 (A.V.); +30-210-6597485 (M.M.)
| | - Manousos Makridakis
- Department of Biotechnology, Biomedical Research Foundation, Academy of Athens, Soranou Efessiou 4, 11527 Athens, Greece; (A.T.); (R.S.); (J.Z.)
- Correspondence: (J.P.S.); (A.V.); (M.M.); Tel.: +33-5-31224078 (J.P.S.); +30-210-6597506 (A.V.); +30-210-6597485 (M.M.)
| |
Collapse
|
279
|
Zhou T, He Y, Qin Y, Wang B, Zhang H, Ding S. Exposure to a combination of MWCNTs and DBP causes splenic toxicity in mice. Toxicology 2022; 465:153057. [PMID: 34864091 DOI: 10.1016/j.tox.2021.153057] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/25/2021] [Accepted: 11/30/2021] [Indexed: 01/08/2023]
Abstract
The large conjugated π bond in the molecular structure of carbon nanotubes (CNTs) interacts with the benzene ring structure in di (n-butyl) phthalates (DBP) through a π - π bond. Compounds of CNTs and DBP form easily, becoming another environmental pollutant of concern. We explore whether CNTs entering animals slow down the degradation of the DBP adsorbed in the CNT cavity, thereby prolonging the "hormonal activity" of DBP. In our study, male BALb/c mice were used as experimental subjects divided into four groups: the control group; the multi-walled carbon nanotubes (MWCNTs) exposure group (10mg/kg/d); the DBP exposure group (2.15 mg/kg/d); and the compound exposure group (MWCNTs + DBP). After 30 days of exposure, the mice were sacrificed and their spleens used for immunotoxicology study. The results showed that the exposure groups exhibited splenomegaly and suffered severe oxidative damage to the spleen. In the compound exposure group: levels of IgA and IgG in the serum of the mice changed, and were significantly different from levels in both the MWCNTs and DBP exposure groups (p <0.05); the pathological sections of the spleen showed that the boundary between the white pulp area (WP) and the red pulp area (RP) was blurred, that the cell arrangement was loose, and that more red blood cells were retained in the spleen. Proteomics mass spectrometry analysis showed that compared with the control group, 70 proteins were up-regulated and 27 proteins were down-regulated in the MWCNTs group, 36 proteins were up-regulated and 23 proteins were down-regulated in the DBP group, 87 proteins were up-regulated and 21 proteins were down-regulated in the compound exposure group. The results of GO enrichment analysis and KEGG enrichment analysis of the differentially expressed proteins showed that the compound exposure harmed the spleen antigen recognition, processing, and presentation, inhibited the activation and proliferation of B cells and T cells, and hindered the adaptive immune responses. Our results showed that MWCNTs and DBP compounds can damage the spleen, and impair the innate and adaptive immune functions of the body.
Collapse
Affiliation(s)
- Tingting Zhou
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China
| | - Yueyan He
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China
| | - Yujie Qin
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China
| | - Bing Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China
| | - Hongmao Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China.
| | - Shumao Ding
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China.
| |
Collapse
|
280
|
Age-Related Mitochondrial Impairment and Renal Injury Is Ameliorated by Sulforaphane via Activation of Transcription Factor NRF2. Antioxidants (Basel) 2022; 11:antiox11010156. [PMID: 35052660 PMCID: PMC8772968 DOI: 10.3390/antiox11010156] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 12/27/2022] Open
Abstract
Age is one of the major risk factors for the development of chronic pathologies, including kidney diseases. Oxidative stress and mitochondrial dysfunction play a pathogenic role in aging kidney disease. Transcription factor NRF2, a master regulator of redox homeostasis, is altered during aging, but the exact implications of altered NRF2 signaling on age-related renal mitochondrial impairment are not yet clear. Herein, we investigated the role of sulforaphane, a well-known NRF2 activator, on age-related mitochondrial and kidney dysfunction. Young (2–4 month) and aged (20–24 month) male Fischer 344 rats were treated with sulforaphane (15 mg/kg body wt/day) in drinking water for four weeks. We observed significant impairment in renal cortical mitochondrial function along with perturbed redox homeostasis, decreased kidney function and marked impairment in NRF2 signaling in aged Fischer 344 rats. Sulforaphane significantly improved mitochondrial function and ameliorated kidney injury by increasing cortical NRF2 expression and activity and decreasing protein expression of KEAP1, an NRF2 repressor. Sulforaphane treatment did not affect the renal NRF2 expression or activity and mitochondrial function in young rats. Taken together, our results provide novel insights into the protective role of the NRF2 pathway in kidneys during aging and highlight the therapeutic potential of sulforaphane in mitigating kidney dysfunction in elders.
Collapse
|
281
|
Alamandine alleviates hypertension and renal damage via oxidative-stress attenuation in Dahl rats. Cell Death Dis 2022; 8:22. [PMID: 35022384 PMCID: PMC8755846 DOI: 10.1038/s41420-022-00822-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/09/2021] [Accepted: 01/04/2022] [Indexed: 11/08/2022]
Abstract
Alamandine (Ala) is a novel member of the renin-angiotensin-system (RAS) family. The present study aimed to explore the effects of Ala on hypertension and renal damage of Dahl salt-sensitive (SS) rats high-salt diet-induced, and the mechanisms of Ala on renal-damage alleviation. Dahl rats were fed with high-salt diets to induce hypertension and renal damage in vivo, and HK-2 cells were treated with sodium chloride (NaCl) to induce renal injury in vitro. Ala administration alleviated the high-salt diet-induced hypertension, renal dysfunction, and renal fibrosis and apoptosis in Dahl SS rats. The HK-2 cells' damage, and the increases in the levels of cleaved (c)-caspase3, c-caspase8, and c-poly(ADP-ribose) polymerase (PARP) induced by NaCl were inhibited by Ala. Ala attenuated the NaCl-induced oxidative stress in the kidney and HK-2 cells. DETC, an inhibitor of SOD, reversed the inhibitory effect of Ala on the apoptosis of HK-2 cells induced by NaCl. The NaCl-induced increase in the PKC level was suppressed by Ala in HK-2 cells. Notably, PKC overexpression reversed the moderating effects of Ala on the NaCl-induced apoptosis of HK-2 cells. These results show that Ala alleviates high-salt diet-induced hypertension and renal dysfunction. Ala attenuates the renal damage via inhibiting the PKC/reactive oxygen species (ROS) signaling pathway, thereby suppressing the apoptosis in renal tubular cells.
Collapse
|
282
|
Ertuglu L, Yildiz A, Gamboa J, Ikizler TA. Skeletal muscle energetics in patients with moderate to advanced kidney disease. Kidney Res Clin Pract 2022; 41:14-21. [PMID: 35108768 PMCID: PMC8816417 DOI: 10.23876/j.krcp.21.175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/05/2021] [Indexed: 11/04/2022] Open
Abstract
Sarcopenia, defined as decrease in muscle function and mass, is common in patients with moderate to advanced chronic kidney disease (CKD) and is associated with poor clinical outcomes. Muscle mitochondrial dysfunction is proposed as one of the mechanisms underlying sarcopenia. Patients with moderate to advanced CKD have decreased muscle mitochondrial content and oxidative capacity along with suppressed activity of various mitochondrial enzymes such as mitochondrial electron transport chain complexes and pyruvate dehydrogenase, leading to impaired energy production. Other mitochondrial abnormalities found in this population include defective beta-oxidation of fatty acids and mitochondrial DNA mutations. These changes are noticeable from the early stages of CKD and correlate with severity of the disease. Damage induced by uremic toxins, oxidative stress, and systemic inflammation has been implicated in the development of mitochondrial dysfunction in CKD patients. Given that mitochondrial function is an important determinant of physical activity and performance, its modulation is a potential therapeutic target for sarcopenia in patients with kidney disease. Coenzyme Q, nicotinamide, and cardiolipin-targeted peptides have been tested as therapeutic interventions in early studies. Aerobic exercise, a well-established strategy to improve muscle function and mass in healthy adults, is not as effective in patients with advanced kidney disease. This might be due to reduced expression or impaired activation of peroxisome proliferator-activated receptor-gamma coactivator 1α, the master regulator of mitochondrial biogenesis. Further studies are needed to broaden our understanding of the pathogenesis of mitochondrial dysfunction and to develop mitochondrial-targeted therapies for prevention and treatment of sarcopenia in patients with CKD.
Collapse
Affiliation(s)
- Lale Ertuglu
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Abdulmecit Yildiz
- Division of Nephrology, Department of Medicine, Uludag University, Bursa, Turkey
| | - Jorge Gamboa
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - T. Alp Ikizler
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, TN, USA
- Veterans Health Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA
- Correspondence: T. Alp Ikizler Division of Nephrology, Vanderbilt University Medical Center, 1161 21st Avenue South, S-3223 Medical Center North, Nashville 37232, TN, USA. E-mail:
| |
Collapse
|
283
|
Chen Y, Huang T, Yu Z, Yu Q, Wang Y, Hu J, Shi J, Yang G. The functions and roles of sestrins in regulating human diseases. Cell Mol Biol Lett 2022; 27:2. [PMID: 34979914 PMCID: PMC8721191 DOI: 10.1186/s11658-021-00302-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
Sestrins (Sesns), highly conserved stress-inducible metabolic proteins, are known to protect organisms against various noxious stimuli including DNA damage, oxidative stress, starvation, endoplasmic reticulum (ER) stress, and hypoxia. Sesns regulate metabolism mainly through activation of the key energy sensor AMP-dependent protein kinase (AMPK) and inhibition of mammalian target of rapamycin complex 1 (mTORC1). Sesns also play pivotal roles in autophagy activation and apoptosis inhibition in normal cells, while conversely promoting apoptosis in cancer cells. The functions of Sesns in diseases such as metabolic disorders, neurodegenerative diseases, cardiovascular diseases, and cancer have been broadly investigated in the past decades. However, there is a limited number of reviews that have summarized the functions of Sesns in the pathophysiological processes of human diseases, especially musculoskeletal system diseases. One aim of this review is to discuss the biological functions of Sesns in the pathophysiological process and phenotype of diseases. More significantly, we include some new evidence about the musculoskeletal system. Another purpose is to explore whether Sesns could be potential biomarkers or targets in the future diagnostic and therapeutic process.
Collapse
Affiliation(s)
- Yitong Chen
- Department of Orthodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, Zhejiang, China
| | - Tingben Huang
- Department of Implantology, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, Zhejiang, China
| | - Zhou Yu
- Department of Implantology, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, Zhejiang, China
| | - Qiong Yu
- Department of Implantology, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, Zhejiang, China
| | - Ying Wang
- Department of Oral Medicine, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, Zhejiang, China
| | - Ji'an Hu
- Department of Oral Pathology, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, Zhejiang, China.
| | - Jiejun Shi
- Department of Orthodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, Zhejiang, China.
| | - Guoli Yang
- Department of Implantology, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, Zhejiang, China.
| |
Collapse
|
284
|
Zhao Y, Li W, Zhang K, Xu M, Zou Y, Qiu X, Lu T, Gao B. Revealing oxidative stress-related genes in osteoporosis and advanced structural biological study for novel natural material discovery regarding MAPKAPK2. Front Endocrinol (Lausanne) 2022; 13:1052721. [PMID: 36479222 PMCID: PMC9720258 DOI: 10.3389/fendo.2022.1052721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/24/2022] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVES This study aimed to find novel oxidative stress (OS)-related biomarkers of osteoporosis (OP), together with targeting the macromolecule Mitogen-activated protein kinase-activated protein kinase 2 (MAPKAPK2) protein to further discover potential novel materials based on an advanced structural biology approach. METHODS Gene expression profiles of GSE35958 were obtained from the Gene Expression Omnibus (GEO) database, which were included for weighted gene co-expression network analysis (WGCNA) and differential analysis to identify the most correlated module, to identify OS-related hub genes in the progression of OP. Functional annotations were also analyzed on the interested module to get a comprehensive understanding of these genes. Then, a series of advanced structural biology methods, including high-throughput screening, pharmacological characteristic prediction, precise molecular docking, molecular dynamics simulation, etc., was implemented to discover novel natural inhibitor materials against the MAPKAPK2 protein. RESULTS The brown module containing 720 genes was identified as the interested module, and a group set of genes was determined as the hub OS-related genes, including PPP1R15A, CYB5R3, BCL2L1, ABCD1, MAPKAPK2, HSP90AB1, CSF1, RELA, P4HB, AKT1, HSP90B1, and CTNNB1. Functional analysis demonstrated that these genes were primarily enriched in response to chemical stress and several OS-related functions. Then, Novel Materials Discovery demonstrated that two compounds, ZINC000014951634 and ZINC000040976869, were found binding to MAPKAPK2 with a favorable interaction energy together with a high binding affinity, relatively low hepatoxicity and carcinogenicity, high aqueous solubility and intestinal absorption levels, etc., indicating that the two compounds were ideal potential inhibitor materials targeting MAPKAPK2. CONCLUSION This study found a group set of OS-related biomarkers of OP, providing further insights for OS functions in the development of OP. This study then focused on one of the macromolecules, MAPKAPK2, to further discover potential novel materials, which was of great significance in guiding the screening of MAPKAPK2 potential materials.
Collapse
Affiliation(s)
- Yingjing Zhao
- Department of Critical Care Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Weihang Li
- Department of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Kuo Zhang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi’an, China
| | - Meng Xu
- Department of Aerospace Medical Training, School of Aerospace Medicine, Air Force Medical University, Xi’an, China
- Key Lab of Aerospace Medicine, Chinese Ministry of Education, Xi’an, China
| | - Yujia Zou
- College of Clinical Medicine, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Xiaotong Qiu
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Key Laboratory of Liver Disease Research, Guangdong Engineering Laboratory for Transplantation, Guangzhou, China
| | - Tianxing Lu
- Zonglian College, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Bo Gao
- Department of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
- *Correspondence: Bo Gao,
| |
Collapse
|
285
|
Sagmeister MS, Harper L, Hardy RS. Cortisol excess in chronic kidney disease - A review of changes and impact on mortality. Front Endocrinol (Lausanne) 2022; 13:1075809. [PMID: 36733794 PMCID: PMC9886668 DOI: 10.3389/fendo.2022.1075809] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/27/2022] [Indexed: 01/18/2023] Open
Abstract
Chronic kidney disease (CKD) describes the long-term condition of impaired kidney function from any cause. CKD is common and associated with a wide array of complications including higher mortality, cardiovascular disease, hypertension, insulin resistance, dyslipidemia, sarcopenia, osteoporosis, aberrant immune function, cognitive impairment, mood disturbances and poor sleep quality. Glucocorticoids are endogenous pleiotropic steroid hormones and their excess produces a pattern of morbidity that possesses considerable overlap with CKD. Circulating levels of cortisol, the major active glucocorticoid in humans, are determined by a complex interplay between several processes. The hypothalamic-pituitary-adrenal axis (HPA) regulates cortisol synthesis and release, 11β-hydroxysteroid dehydrogenase enzymes mediate metabolic interconversion between active and inactive forms, and clearance from the circulation depends on irreversible metabolic inactivation in the liver followed by urinary excretion. Chronic stress, inflammatory states and other aspects of CKD can disturb these processes, enhancing cortisol secretion via the HPA axis and inducing tissue-resident amplification of glucocorticoid signals. Progressive renal impairment can further impact on cortisol metabolism and urinary clearance of cortisol metabolites. Consequently, significant interest exists to precisely understand the dysregulation of cortisol in CKD and its significance for adverse clinical outcomes. In this review, we summarize the latest literature on alterations in endogenous glucocorticoid regulation in adults with CKD and evaluate the available evidence on cortisol as a mechanistic driver of excess mortality and morbidity. The emerging picture is one of subclinical hypercortisolism with blunted diurnal decline of cortisol levels, impaired negative feedback regulation and reduced cortisol clearance. An association between cortisol and adjusted all-cause mortality has been reported in observational studies for patients with end-stage renal failure, but further research is required to assess links between cortisol and clinical outcomes in CKD. We propose recommendations for future research, including therapeutic strategies that aim to reduce complications of CKD by correcting or reversing dysregulation of cortisol.
Collapse
Affiliation(s)
- Michael S. Sagmeister
- Institute for Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
- Renal Medicine, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
- *Correspondence: Michael S. Sagmeister,
| | - Lorraine Harper
- Renal Medicine, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
- Institute for Applied Health Research, University of Birmingham, Birmingham, United Kingdom
| | - Rowan S. Hardy
- Institute for Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
- Research into Inflammatory Arthritis Centre Versus Arthritis, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
- Institute of Clinical Science, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
286
|
Chang R. Research advances in the protective effect of sulforaphane against kidney injury and related mechanisms. BIO WEB OF CONFERENCES 2022. [DOI: 10.1051/bioconf/20225501006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Kidney injury and related diseases have become quite common in recent years, and have attracted more attention. Sulforaphane, a kind of isothiocyanate, is widely distributed in cruciferous plants and it is a common antioxidant. Specifically, sulforaphane can reduce oxidative damage by preventing cells from freeradical damage, preventing cells from degeneration, and acting as an anti-inflammation, etc. This study summarized the investigations of the effects of sulforaphane on kidney injury. This study discussed the mechanisms of sulforaphane on immune, renal ischemia-reperfusion, diabetic nephropathy, age-related, and other factors-induced kidney injury models and discussed the potential and relative mechanisms of sulforaphane for kidney injury protection.
Collapse
|
287
|
Votava JA, Reese SR, Deck KM, Nizzi CP, Anderson SA, Djamali A, Eisenstein RS. Dysregulation of the sensory and regulatory pathways controlling cellular iron metabolism in unilateral obstructive nephropathy. Am J Physiol Renal Physiol 2022; 322:F89-F103. [PMID: 34843656 PMCID: PMC8742730 DOI: 10.1152/ajprenal.00537.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/16/2021] [Accepted: 11/23/2021] [Indexed: 01/03/2023] Open
Abstract
Chronic kidney disease involves disturbances in iron metabolism including anemia caused by insufficient erythropoietin (EPO) production. However, underlying mechanisms responsible for the dysregulation of cellular iron metabolism are incompletely defined. Using the unilateral ureteral obstruction (UUO) model in Irp1+/+ and Irp1-/- mice, we asked if iron regulatory proteins (IRPs), the central regulators of cellular iron metabolism and suppressors of EPO production, contribute to the etiology of anemia in kidney failure. We identified a significant reduction in IRP protein level and RNA binding activity that associates with a loss of the iron uptake protein transferrin receptor 1 (TfR1), increased expression of the iron storage protein subunits H- and L-ferritin, and a low but overall variable level of stainable iron in the obstructed kidney. This reduction in IRP RNA binding activity and ferritin RNA levels suggests the concomitant rise in ferritin expression and iron content in kidney failure is IRP dependent. In contrast, the reduction in the Epo mRNA level in the obstructed kidney was not rescued by genetic ablation of IRP1, suggesting disruption of normal hypoxia-inducible factor (HIF)-2α regulation. Furthermore, reduced expression of some HIF-α target genes in UUO occurred in the face of increased expression of HIF-α proteins and prolyl hydroxylases 2 and 1, the latter of which is not known to be HIF-α mediated. Our results suggest that the IRP system drives changes in cellular iron metabolism that are associated with kidney failure in UUO but that the impact of IRPs on EPO production is overridden by disrupted hypoxia signaling.NEW & NOTEWORTHY This study demonstrates that iron metabolism and hypoxia signaling are dysregulated in unilateral obstructive nephropathy. Expression of iron regulatory proteins (IRPs), central regulators of cellular iron metabolism, and the iron uptake (transferrin receptor 1) and storage (ferritins) proteins they target is strongly altered. This suggests a role of IRPs in previously observed changes in iron metabolism in progressive renal disease. Hypoxia signaling is disrupted and appeared to dominate the action of IRP1 in controlling erythropoietin expression.
Collapse
Affiliation(s)
- James A Votava
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - Shannon R Reese
- Division of Nephrology, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Kathryn M Deck
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - Christopher P Nizzi
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - Sheila A Anderson
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - Arjang Djamali
- Division of Nephrology, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin
- Division of Transplant, Department of Surgery, University of Wisconsin-Madison, Madison, Wisconsin
| | - Richard S Eisenstein
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin
- Morgridge Institute for Research, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
288
|
Severe Glutathione Deficiency, Oxidative Stress and Oxidant Damage in Adults Hospitalized with COVID-19: Implications for GlyNAC (Glycine and N-Acetylcysteine) Supplementation. Antioxidants (Basel) 2021; 11:antiox11010050. [PMID: 35052554 PMCID: PMC8773164 DOI: 10.3390/antiox11010050] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 12/15/2022] Open
Abstract
Humanity is battling a respiratory pandemic pneumonia named COVID-19 which has resulted in millions of hospitalizations and deaths. COVID-19 exacerbations occur in waves that continually challenge healthcare systems globally. Therefore, there is an urgent need to understand all mechanisms by which COVID-19 results in health deterioration to facilitate the development of protective strategies. Oxidative stress (OxS) is a harmful condition caused by excess reactive-oxygen species (ROS) and is normally neutralized by antioxidants among which Glutathione (GSH) is the most abundant. GSH deficiency results in amplified OxS due to compromised antioxidant defenses. Because little is known about GSH or OxS in COVID-19 infection, we measured GSH, TBARS (a marker of OxS) and F2-isoprostane (marker of oxidant damage) concentrations in 60 adult patients hospitalized with COVID-19. Compared to uninfected controls, COVID-19 patients of all age groups had severe GSH deficiency, increased OxS and elevated oxidant damage which worsened with advancing age. These defects were also present in younger age groups, where they do not normally occur. Because GlyNAC (combination of glycine and N-acetylcysteine) supplementation has been shown in clinical trials to rapidly improve GSH deficiency, OxS and oxidant damage, GlyNAC supplementation has implications for combating these defects in COVID-19 infected patients and warrants urgent investigation.
Collapse
|
289
|
Chen S, Chen J, Li S, Guo F, Li A, Wu H, Chen J, Pan Q, Liao S, Liu HF, Pan Q. High-Fat Diet-Induced Renal Proximal Tubular Inflammatory Injury: Emerging Risk Factor of Chronic Kidney Disease. Front Physiol 2021; 12:786599. [PMID: 34950058 PMCID: PMC8688947 DOI: 10.3389/fphys.2021.786599] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/16/2021] [Indexed: 01/01/2023] Open
Abstract
Nowadays, with the improvements in living standards and changes in living habits, high-fat diet (HFD) has become much more common in the populations worldwide. Recent studies have shown that HFD could induce lipid accumulation, and structural and functional abnormalities, accompanied by the release of large amounts of pro-inflammatory cytokines, in proximal tubular epithelial cells (PTECs). These findings indicate that, as an emerging risk factor, PTEC injury-induced by HFD may be closely related to inflammation; however, the potential mechanisms underlying this phenomenon is still not well-known, but may involve the several inflammatory pathways, including oxidative stress-related signaling pathways, mitochondrial dysfunction, the myeloid differentiation factor 2/Toll like receptor 4 (MD2/TLR4) signaling pathway, the ERK1/2-kidney injury molecule 1 (KIM-1)-related pathway, and nuclear factor-κB (NF-κB) activation, etc., and the detailed molecular mechanisms underlying these pathways still need further investigated in the future. Based on lipid abnormalities-induced inflammation is closely related to the development and progression of chronic kidney disease (CKD), to summarize the potential mechanisms underlying HFD-induced renal proximal tubular inflammatory injury, may provide novel approaches for CKD treatment.
Collapse
Affiliation(s)
- Shuxian Chen
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jinxia Chen
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Shangmei Li
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Fengbiao Guo
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Aifen Li
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Han Wu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jiaxuan Chen
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Quanren Pan
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Shuzhen Liao
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Hua-Feng Liu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Qingjun Pan
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
290
|
Wang R, Kairen C, Li L, Zhang L, Gong H, Huang X. Overexpression of NDUFV1 alleviates renal damage by improving mitochondrial function in unilateral ureteral obstruction model mice. Cell Biol Int 2021; 46:381-390. [PMID: 34936716 DOI: 10.1002/cbin.11736] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/27/2021] [Accepted: 12/04/2021] [Indexed: 12/30/2022]
Abstract
Mitochondrial homeostasis plays essential role for the proper functioning of the kidney. NADH-ubiquinone oxidoreductase core subunit V1 (NDUFV1) is an enzyme in the complex I of electron transport chain (ETC) in mitochondria. In the present study, we examined the effects of NDUFV1 on renal function in unilateral ureteral obstruction (UUO) model mice. Our data showed that increased expression of NDUFV1 improves kidney function as evidenced by the decreases in blood urea nitrogen and serum creatinine in UUO mice. Moreover, NDUFV1 also maintains renal structures and alleviates renal fibrosis induced by UUO surgery. Mechanistically, NDUFV1 mitigates the increased oxidative stress in the kidney in UUO model mice. Meanwhile, increased expression of NDUFV1 in the kidney improves the integrity of the complex I and potentiates the complex I activity. Overall, these results indicate that the ETC complex I plays a beneficial role against renal dysfunction induced by acute kidney injury such as UUO. Therefore, NDUFV1 might be a druggable target for developing agents for dealing with disabled mitochondria-associated renal diseases.
Collapse
Affiliation(s)
- Ruiting Wang
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Chen Kairen
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Lu Li
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Lingling Zhang
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Haifeng Gong
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Xinzhong Huang
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
291
|
Akter T, Rahman MA, Moni A, Apu MAI, Fariha A, Hannan MA, Uddin MJ. Prospects for Protective Potential of Moringa oleifera against Kidney Diseases. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122818. [PMID: 34961289 PMCID: PMC8706354 DOI: 10.3390/plants10122818] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Kidney diseases are regarded as one of the major public health issues in the world. The objectives of this study were: (i) to investigate the causative factors involved in kidney disease and the therapeutic aspects of Moringa oleifera, as well as (ii) the effectiveness of M. oleifera in the anti-inflammation and antioxidant processes of the kidney while minimizing all potential side effects. In addition, we proposed a hypothesis to improve M. oleifera based drug development. This study was updated by searching the key words M. oleifera on kidney diseases and M. oleifera on oxidative stress, inflammation, and fibrosis in online research databases such as PubMed and Google Scholar. The following validation checking and scrutiny analysis of the recently published articles were used to explore this study. The recent existing research has found that M. oleifera has a plethora of health benefits. Individual medicinal properties of M. oleifera leaf extract, seed powder, stem extract, and the whole extract (ethanol/methanol) can up-increase the activity of antioxidant enzymes like superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH), while decreasing the activity of inflammatory cytokines such as TNF-α, IL-1β, IL-6, and COX-2. In our study, we have investigated the properties of this plant against kidney diseases based on existing knowledge with an updated review of literature. Considering the effectiveness of M. oleifera, this study would be useful for further research into the pharmacological potential and therapeutic insights of M. oleifera, as well as prospects of Moringa-based effective medicine development for human benefits.
Collapse
Affiliation(s)
- Tanzina Akter
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (T.A.); (M.A.R.); (A.M.); (M.A.I.A.); (A.F.); (M.A.H.)
| | - Md Atikur Rahman
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (T.A.); (M.A.R.); (A.M.); (M.A.I.A.); (A.F.); (M.A.H.)
| | - Akhi Moni
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (T.A.); (M.A.R.); (A.M.); (M.A.I.A.); (A.F.); (M.A.H.)
| | - Md. Aminul Islam Apu
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (T.A.); (M.A.R.); (A.M.); (M.A.I.A.); (A.F.); (M.A.H.)
| | - Atqiya Fariha
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (T.A.); (M.A.R.); (A.M.); (M.A.I.A.); (A.F.); (M.A.H.)
| | - Md. Abdul Hannan
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (T.A.); (M.A.R.); (A.M.); (M.A.I.A.); (A.F.); (M.A.H.)
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md Jamal Uddin
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (T.A.); (M.A.R.); (A.M.); (M.A.I.A.); (A.F.); (M.A.H.)
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
292
|
Krata N, Foroncewicz B, Zagożdżon R, Moszczuk B, Zielenkiewicz M, Pączek L, Mucha K. Peroxiredoxins as Markers of Oxidative Stress in IgA Nephropathy, Membranous Nephropathy and Lupus Nephritis. Arch Immunol Ther Exp (Warsz) 2021; 70:3. [PMID: 34914001 PMCID: PMC8677691 DOI: 10.1007/s00005-021-00638-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/12/2021] [Indexed: 01/31/2023]
Abstract
IgA nephropathy (IgAN), membranous nephropathy (MN), and lupus nephritis (LN) represent important causes of chronic kidney disease. They belong to the immune-mediated glomerulonephritis (GNs), and have distinct pathogenesis, distinct clinical courses, and variable responses to treatment. Therefore, specific diagnostic procedures are necessary for more effective patient management. Recently, a role for oxidative stress has been proposed in various renal disorders. Thus, molecules related to oxidative stress, such as 2-Cys-peroxiredoxins (PRDXs), may represent plausible candidates for biomarkers in renal pathologies. The aim of this study was to assess whether there are differences between individual GNs and healthy controls in the context of PRDXs serum concentration. We enrolled 108 patients with biopsy-proven IgAN (47), MN (26), LN (35) and 30 healthy age- and sex-matched controls. The serum concentrations of PRDX 1-5 were measured with ELISA assays and correlated with demographic and clinical data. The PRDXs' concentration varied depending on the GN type. We also observed an association of PRDXs with lower estimated glomerular filtration rates, complement, hemoglobin, and body mass index. Our study indicates that individual PRDX can play roles in pathophysiology of selected GNs and that their serum concentrations may become useful as a new supplementary diagnostic markers in IgAN, MN as well as LN. The results of this study open a new avenue for prospective research on PRDXs in renal diseases.
Collapse
Affiliation(s)
- Natalia Krata
- Department of Immunology, Transplantology and Internal Diseases, Medical University of Warsaw, Warsaw, Poland.,ProMix Center (ProteogenOmix in Medicine) at the Department of Immunology, Transplantology and Internal Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Bartosz Foroncewicz
- Department of Immunology, Transplantology and Internal Diseases, Medical University of Warsaw, Warsaw, Poland.,ProMix Center (ProteogenOmix in Medicine) at the Department of Immunology, Transplantology and Internal Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Radosław Zagożdżon
- ProMix Center (ProteogenOmix in Medicine) at the Department of Immunology, Transplantology and Internal Diseases, Medical University of Warsaw, Warsaw, Poland.,Department of Clinical Immunology, Medical University of Warsaw, Warsaw, Poland.,Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Barbara Moszczuk
- ProMix Center (ProteogenOmix in Medicine) at the Department of Immunology, Transplantology and Internal Diseases, Medical University of Warsaw, Warsaw, Poland.,Department of Clinical Immunology, Medical University of Warsaw, Warsaw, Poland
| | | | - Leszek Pączek
- Department of Immunology, Transplantology and Internal Diseases, Medical University of Warsaw, Warsaw, Poland.,ProMix Center (ProteogenOmix in Medicine) at the Department of Immunology, Transplantology and Internal Diseases, Medical University of Warsaw, Warsaw, Poland.,Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Krzysztof Mucha
- Department of Immunology, Transplantology and Internal Diseases, Medical University of Warsaw, Warsaw, Poland. .,ProMix Center (ProteogenOmix in Medicine) at the Department of Immunology, Transplantology and Internal Diseases, Medical University of Warsaw, Warsaw, Poland. .,Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
293
|
Zhou TT, Hu B, Meng XL, Sun L, Li HB, Xu PR, Cheng BJ, Sheng J, Tao FB, Yang LS, Wu QS. The associations between urinary metals and metal mixtures and kidney function in Chinese community-dwelling older adults with diabetes mellitus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 226:112829. [PMID: 34592520 DOI: 10.1016/j.ecoenv.2021.112829] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/11/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Previous studies have found associations between single toxic metals, such as arsenic and cadmium, and kidney function in adults with diabetes. However, studies with regards to other metals and metal mixtures are still limited. OBJECTIVE Our study aimed to investigate the associations between urinary concentrations of 5 selected metals and metal mixtures and kidney function using a sample of older adults with diabetes mellitus in Chinese communities. METHODS In a sample of older adults (n = 5186), 592 eligible subjects were included in this study. Urinary concentrations of 5 metals, i.e., arsenic (As), cadmium (Cd), vanadium (V), cobalt (Co), and thallium (Tl), were measured by inductively coupled plasma mass spectrometer (ICP-MS). Estimated glomerular filtration rate (eGFR) was calculated and dichotomized into indicator of chronic kidney disease (CKD). Logistic analysis and Bayesian kernel machine regression (BKMR) were used to explore the associations between single metals and metal mixtures and CKD, respectively. RESULTS Urinary levels of As and V were positively correlated with CKD (OR=2.37, 95% CI: 1.31-4.30 for As; OR=2.24, 95% CI: 1.25-4.03 for V), when compared the 4th quartile with the 1st quartile. After adjustment for potential confounders, the significant association between As and CKD still existed (OR=2.73, 95% CI: 1.23-6.07). BKMR analyses showed strong linear positive associations between As and V and CKD. Higher urinary levels of the mixture were significantly associated with higher odds of CKD in a dose-response pattern. As and V showed the highest posterior inclusion probabilities. CONCLUSION Urine As and V were positively associated with CKD in older adults with diabetes mellitus, separately and in a mixture. The metals mixture showed a linear dose-response association with the odds of CKD. The analyses of mixtures, rather than of single metals, may provide a real-world perspective on the relationship between metals and kidney function.
Collapse
Affiliation(s)
- Ting-Ting Zhou
- School of Public Health, Department of Hygiene Inspection and Quarantine, Anhui Medical University, Hefei, Anhui 230032, China
| | - Bing Hu
- Fuyang Center for Disease Control and Prevention, Fuyang, Anhui 236069, China
| | - Xiang-Long Meng
- School of Public Health, Department of Epidemiology and Health Statistics, Anhui Medical University, Hefei, Anhui 230032, China
| | - Liang Sun
- Fuyang Center for Disease Control and Prevention, Fuyang, Anhui 236069, China
| | - Huai-Biao Li
- Fuyang Center for Disease Control and Prevention, Fuyang, Anhui 236069, China
| | - Pei-Ru Xu
- School of Public Health, Department of Epidemiology and Health Statistics, Anhui Medical University, Hefei, Anhui 230032, China
| | - Bei-Jing Cheng
- School of Public Health, Department of Epidemiology and Health Statistics, Anhui Medical University, Hefei, Anhui 230032, China
| | - Jie Sheng
- School of Public Health, Experimental Center for Public Health, Anhui Medical University, Hefei, Anhui 230032, China
| | - Fang-Biao Tao
- School of Health Services Management, Anhui Medical University, Hefei, Anhui 230032, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, Anhui 230032, China
| | - Lin-Sheng Yang
- School of Public Health, Department of Epidemiology and Health Statistics, Anhui Medical University, Hefei, Anhui 230032, China.
| | - Qing-Si Wu
- School of Public Health, Department of Hygiene Inspection and Quarantine, Anhui Medical University, Hefei, Anhui 230032, China; Department of Clinical Laboratory, The Second People's Hospital of Hefei, Hefei, Anhui 230011, China.
| |
Collapse
|
294
|
Ebert T, Neytchev O, Witasp A, Kublickiene K, Stenvinkel P, Shiels PG. Inflammation and Oxidative Stress in Chronic Kidney Disease and Dialysis Patients. Antioxid Redox Signal 2021; 35:1426-1448. [PMID: 34006115 DOI: 10.1089/ars.2020.8184] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Significance: Chronic kidney disease (CKD) can be regarded as a burden of lifestyle disease that shares common underpinning features and risk factors with the aging process; it is a complex constituted by several adverse components, including chronic inflammation, oxidative stress, early vascular aging, and cellular senescence. Recent Advances: A systemic approach to tackle CKD, based on mitigating the associated inflammatory, cell stress, and damage processes, has the potential to attenuate the effects of CKD, but it also preempts the development and progression of associated morbidities. In effect, this will enhance health span and compress the period of morbidity. Pharmacological, nutritional, and potentially lifestyle-based interventions are promising therapeutic avenues to achieve such a goal. Critical Issues: In the present review, currents concepts of inflammation and oxidative damage as key patho-mechanisms in CKD are addressed. In particular, potential beneficial but also adverse effects of different systemic interventions in patients with CKD are discussed. Future Directions: Senotherapeutics, the nuclear factor erythroid 2-related factor 2-kelch-like ECH-associated protein 1 (NRF2-KEAP1) signaling pathway, the endocrine klotho axis, inhibitors of the sodium-glucose cotransporter 2 (SGLT2), and live bio-therapeutics have the potential to reduce the burden of CKD and improve quality of life, as well as morbidity and mortality, in this fragile high-risk patient group. Antioxid. Redox Signal. 35, 1426-1448.
Collapse
Affiliation(s)
- Thomas Ebert
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Ognian Neytchev
- Institute of Cancer Sciences, College of Medical, Veterinary & Life Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Anna Witasp
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Karolina Kublickiene
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Paul G Shiels
- Institute of Cancer Sciences, College of Medical, Veterinary & Life Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
295
|
Bourgonje AR, Abdulle AE, Bourgonje MF, Binnenmars SH, Gordijn SJ, Bulthuis MLC, la Bastide-van Gemert S, Kieneker LM, Gansevoort RT, Bakker SJL, Mulder DJ, Pasch A, de Borst MH, van Goor H. Serum free sulfhydryl status associates with new-onset chronic kidney disease in the general population. Redox Biol 2021; 48:102211. [PMID: 34896941 PMCID: PMC8671125 DOI: 10.1016/j.redox.2021.102211] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/27/2021] [Accepted: 11/20/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Serum sulfhydryl groups (R-SH, free thiols) reliably reflect the systemic redox status in health and disease. As oxidation of R-SH occurs rapidly by reactive oxygen species (ROS), oxidative stress is accompanied by reduced levels of free thiols. Oxidative stress has been implicated in the pathophysiology of chronic kidney disease (CKD), in which redox imbalance may precede the onset of CKD. Therefore, we aimed to investigate associations between serum free thiols and the risk of incident CKD as defined by renal function decline and albuminuria in a population-based cohort study. METHODS Subjects without CKD (n = 4,745) who participated in the Prevention of REnal and Vascular ENd-stage Disease (PREVEND) study, a prospective, population-based cohort study in the Netherlands, were included. Baseline protein-adjusted serum free thiols were studied for their associations with the development of CKD, defined as a composite outcome of an estimated glomerular filtration rate (eGFR) < 60 mL/min/1.73m2, urinary 24-h albumin excretion (UAE) > 30 mg/24-h, or both. RESULTS Median level of protein-adjusted serum free thiols at baseline was 5.14 μmol/g of protein (interquartile range [IQR]: 4.50-5.75 μmol/g) and median eGFR was 96 mL/min/1.73 m2 [IQR: 85-106]. Protein-adjusted serum free thiols were significantly associated with incident CKD (hazard ratio [HR] per doubling 0.42 [95% confidence interval [CI]: 0.36-0.52, P < 0.001), even after adjustment for traditional risk factors (HR 0.67 [95% CI: 0.47-0.94], P=0.022). In secondary analyses, the highest tertile of protein-adjusted serum free thiols was inversely associated with incident UAE >30 mg/24-h after full adjustment for confounding factors (HR per doubling 0.70 [95% CI: 0.51-0.96], P=0.028). CONCLUSION Higher levels of serum R-SH, reflecting less oxidative stress, are associated with a decreased risk of developing CKD in subjects from the general population. This association is primarily driven by incident CKD as defined by UAE.
Collapse
Affiliation(s)
- Arno R Bourgonje
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| | - Amaal E Abdulle
- Department of Internal Medicine, Division of Vascular Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Martin F Bourgonje
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - S Heleen Binnenmars
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Sanne J Gordijn
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Marian L C Bulthuis
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Sacha la Bastide-van Gemert
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Lyanne M Kieneker
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Ron T Gansevoort
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Stephan J L Bakker
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Douwe J Mulder
- Department of Internal Medicine, Division of Vascular Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Andreas Pasch
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Linz, Austria
| | - Martin H de Borst
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Harry van Goor
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
296
|
Sekhar RV. GlyNAC Supplementation Improves Glutathione Deficiency, Oxidative Stress, Mitochondrial Dysfunction, Inflammation, Aging Hallmarks, Metabolic Defects, Muscle Strength, Cognitive Decline, and Body Composition: Implications for Healthy Aging. J Nutr 2021; 151:3606-3616. [PMID: 34587244 DOI: 10.1093/jn/nxab309] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/10/2021] [Accepted: 08/19/2021] [Indexed: 12/14/2022] Open
Abstract
Cellular increases in oxidative stress (OxS) and decline in mitochondrial function are identified as key defects in aging, but underlying mechanisms are poorly understood and interventions are lacking. Defects linked to OxS and impaired mitochondrial fuel oxidation, such as inflammation, insulin resistance, endothelial dysfunction, and aging hallmarks, are present in older humans and are associated with declining strength and cognition, as well as the development of sarcopenic obesity. Investigations on the origins of elevated OxS and mitochondrial dysfunction in older humans led to the discovery that deficiencies of the antioxidant tripeptide glutathione (GSH) and its precursor amino acids glycine and cysteine may be contributory. Supplementation with GlyNAC (combination of glycine and N-acetylcysteine as a cysteine precursor) was found to improve/correct cellular glycine, cysteine, and GSH deficiencies; lower OxS; and improve mitochondrial function, inflammation, insulin resistance, endothelial dysfunction, genotoxicity, and multiple aging hallmarks; and improve muscle strength, exercise capacity, cognition, and body composition. This review discusses evidence from published rodent studies and human clinical trials to provide a detailed summary of available knowledge regarding the effects of GlyNAC supplementation on age-associated defects and aging hallmarks, as well as discussing why GlyNAC supplementation could be effective in promoting healthy aging. It is particularly exciting that GlyNAC supplementation appears to reverse multiple aging hallmarks, and if confirmed in a randomized clinical trial, it could introduce a transformative paradigm shift in aging and geriatrics. GlyNAC supplementation could be a novel nutritional approach to improve age-associated defects and promote healthy aging, and existing data strongly support the need for additional studies to explore the role and impact of GlyNAC supplementation in aging.
Collapse
Affiliation(s)
- Rajagopal V Sekhar
- Translational Metabolism Unit, Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
297
|
Wu MT, Wu CF, Liu CC, Tsai YC, Chen CC, Wang YH, Hsieh TJ. Melamine and oxalate coexposure induces early kidney tubular injury through mitochondrial aberrations and oxidative stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 225:112756. [PMID: 34507040 DOI: 10.1016/j.ecoenv.2021.112756] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/09/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Exposure to melamine, which is ubiquitous in daily life, is linked to adverse kidney outcomes. The melamine tolerable daily intake in humans is based on the no-observed-effect-level (NOEL) established in a single-toxicant murine model. However, humans are often simultaneously exposed to multiple environmental nephrotoxicants. The NOEL of melamine during coexposure with other toxicants needs to be evaluated. Oxalate is a potentially nephrotoxic terminal metabolite, and hyperoxaluria is reportedly associated with chronic kidney disease. We explored whether these two potential nephrotoxicants can interact and enhance kidney injury. We established a Sprague-Dawley rat model of coexposure to the melamine NOEL (63 mg/kg/day) and 2% hydroxy-L-proline (HLP, an oxalate precursor) in drinking water to simulate human environmental melamine exposure. Melamine/oxalate coexposure increased proximal tubular cell mitochondrial reactive oxygen species levels, lipid peroxidation and oxidative DNA damage. The degrees of mitochondrial damage, tubular cell apoptosis, tubular atrophy, and interstitial fibrosis were elevated in coexposed rat kidneys. The evidence indicated that exposure to the melamine NOEL can cause renal tubular injury via oxidative stress and that this effect may be enhanced via interaction of melamine with other environmental factors, such as oxalate. Thus, melamine risk assessment and toxicity prevention should be conducted carefully in different susceptible populations.
Collapse
Affiliation(s)
- Ming-Tsang Wu
- Ph.D. Program of Environmental and Occupational Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Family Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Chia-Fang Wu
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Chia-Chu Liu
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Urology, Pingtung Hospital, Ministry of Health and Welfare, Pingtung City, Taiwan.
| | - Yi-Chun Tsai
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Divisions of Nephrology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Chu-Chih Chen
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Institute of Population Health Sciences, National Health Research Institutes, Miaoli, Taiwan.
| | - Yin-Han Wang
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli, Taiwan.
| | - Tusty-Jiuan Hsieh
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Marine Biotechnology and Resources, College of Marine Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| |
Collapse
|
298
|
Qin D, Yang F, Hu Z, Liu J, Wu Q, Luo Y, Yang L, Han S, Luo F. Peptide T8 isolated from yak milk residue ameliorates H2O2-induced oxidative stress through Nrf2 signaling pathway in HUVEC cells. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101408] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
299
|
Ha M, Yang Y, Shi Y, Lu Y, Chen K, Zhang S, Luo Y. Efficacy of Tai Chi on Patients With Chronic Kidney Disease. Biol Res Nurs 2021; 24:115-122. [PMID: 34825589 DOI: 10.1177/10998004211047993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Previous systematic reviews elucidate the efficacy of Tai Chi on the rehabilitation and treatment for various chronic diseases. Yet, no consensus has been reached on its efficacy and safety from those with chronic kidney disease (CKD). Therefore, we conducted a systematic review to critically summarize what is already known about the prevailing benefits of Tai Chi for CKD patients. There was no evidence that Tai Chi had adverse effects on CKD patients. Long-term Tai Chi exercises could improve quality of life, cardiorespiratory fitness, and physical motor function for the end-stage renal disease (ERSD) patients undergoing dialysis. Regular Tai Chi exercises might exert modest influences in delaying CKD progression for mild-moderate CKD patients. However, there is insufficient evidence to demonstrate positive effects of Tai Chi exercises on bone health of the ESRD patients. Accordingly, rigorously designed, longer-term studies of Tai Chi are warranted to identify its efficacy on CKD patients across different stages, especially targeting potential mechanisms in terms of Tai Chi altering biological gene profile expressions.
Collapse
Affiliation(s)
- Mei Ha
- School of Nursing, 12525Army Medical University, Chongqing, China.,Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Yuhui Yang
- School of Nursing, 12525Army Medical University, Chongqing, China
| | - Yu Shi
- Department of Nephrology, 12525Xinqiao Hospital of Army Medical University, Chongqing, China
| | - Ya Lu
- School of Nursing, 12525Army Medical University, Chongqing, China
| | - Kun Chen
- School of Nursing, 12525Army Medical University, Chongqing, China
| | - Suofei Zhang
- School of Nursing, 12525Army Medical University, Chongqing, China
| | - Yu Luo
- School of Nursing, 12525Army Medical University, Chongqing, China
| |
Collapse
|
300
|
Gautam G, Parveen B, Umar Khan M, Sharma I, Kumar Sharma A, Parveen R, Ahmad S. A systematic review on nephron protective AYUSH drugs as constituents of NEERI-KFT (A traditional Indian polyherbal formulation) for the management of chronic kidney disease. Saudi J Biol Sci 2021; 28:6441-6453. [PMID: 34764761 PMCID: PMC8568826 DOI: 10.1016/j.sjbs.2021.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/30/2021] [Accepted: 07/04/2021] [Indexed: 12/24/2022] Open
Abstract
Chronic Kidney Disease (CKD) is a major health problem characterized by kidney dysfunction with progressive segmental glomerulosclerosis to end-stage renal disease (ESRD). Due to lack of scientific data and comprehensive reports, the current systematic review provides an inclusive understanding and prospective associated with phytopharmacology of NEERI-KFT in CKD. The data was collected from more than five databases such as Science Direct, Google Scholar, Elsevier, PubMed, Springer, ACS publication etc using keywords like CKD/Kidney disease, epidemiology/prevalence, modern therapies for CKD management, NEERI-KFT and its role in kidney disease. The study was performed based on scientific reports screened by experts according to inclusion and exclusion criteria. The pre-clinical and clinical findings suggested that NEERI-KFT has promising effects as nephroprotective and considered safe and well effective in primary care of kidney against disease. Phytopharmacological evaluation of NEERI-KFT suggest that it exhibit substantial potential against oxidative and inflammatory stress induced apoptosis by exerting antioxidants, nephroprotective and immunomodulatory effects. Hence, it can be enlighten that NEERI-KFT have potential herbs which exerts significant antioxidants, nephroprotective and immunomodulatory effects in the patients associated with renal dysfunction or CKD thus improving altered renal architecture and renal physiology. Clinically, it is concluded that NEERI-KFT works kidney malfunction and cease ESRD progression or even reduce the number of dialysis.
Collapse
Affiliation(s)
- Gaurav Gautam
- Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Bushra Parveen
- Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohammad Umar Khan
- Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Ikshit Sharma
- AIMIL Pharmaceuticals (India) Ltd, Saini Majra, Ropar Nalagarh Rd, Tehsil Nalagarh, Solan District, H.P 174101, India
| | - Anil Kumar Sharma
- AIMIL Pharmaceuticals (India) Ltd, Saini Majra, Ropar Nalagarh Rd, Tehsil Nalagarh, Solan District, H.P 174101, India
| | - Rabea Parveen
- Human Genetics Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Sayeed Ahmad
- Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| |
Collapse
|