251
|
Meier MA, Xu G, Lopez-Guerrero MG, Li G, Smith C, Sigmon B, Herr JR, Alfano JR, Ge Y, Schnable JC, Yang J. Association analyses of host genetics, root-colonizing microbes, and plant phenotypes under different nitrogen conditions in maize. eLife 2022; 11:75790. [PMID: 35894213 PMCID: PMC9470161 DOI: 10.7554/elife.75790] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
The root-associated microbiome (rhizobiome) affects plant health, stress tolerance, and nutrient use efficiency. However, it remains unclear to what extent the composition of the rhizobiome is governed by intraspecific variation in host plant genetics in the field and the degree to which host plant selection can reshape the composition of the rhizobiome. Here we quantify the rhizosphere microbial communities associated with a replicated diversity panel of 230 maize (Zea mays L.) genotypes grown in agronomically relevant conditions under high N (+N) and low N (-N) treatments. We analyze the maize rhizobiome in terms of 150 abundant and consistently reproducible microbial groups and we show that the abundance of many root-associated microbes is explainable by natural genetic variation in the host plant, with a greater proportion of microbial variance attributable to plant genetic variation in -N conditions. Population genetic approaches identify signatures of purifying selection in the maize genome associated with the abundance of several groups of microbes in the maize rhizobiome. Genome-wide association study was conducted using the abundance of microbial groups as rhizobiome traits, and identified n = 622 plant loci that are linked to the abundance of n = 104 microbial groups in the maize rhizosphere. In 62/104 cases, which is more than expected by chance, the abundance of these same microbial groups was correlated with variation in plant vigor indicators derived from high throughput phenotyping of the same field experiment. We provide comprehensive datasets about the three-way interaction of host genetics, microbe abundance, and plant performance under two N treatments to facilitate targeted experiments towards harnessing the full potential of root-associated microbial symbionts in maize production.
Collapse
Affiliation(s)
- Michael A Meier
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, United States
| | - Gen Xu
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, United States
| | | | - Guangyong Li
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, United States
| | - Christine Smith
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, United States
| | - Brandi Sigmon
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, United States
| | - Joshua R Herr
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, United States
| | - James R Alfano
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, United States
| | - Yufeng Ge
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, United States
| | - James C Schnable
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, United States
| | - Jinliang Yang
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, United States
| |
Collapse
|
252
|
Wang X, Xu T, Zhang X, Zhao N, Hu L, Liu H, Zhang Q, Geng Y, Kang S, Xu S. The Response of Ruminal Microbiota and Metabolites to Different Dietary Protein Levels in Tibetan Sheep on the Qinghai-Tibetan Plateau. Front Vet Sci 2022; 9:922817. [PMID: 35847641 PMCID: PMC9277223 DOI: 10.3389/fvets.2022.922817] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Ruminal microbiota and metabolites play crucial roles in animal health and productivity. Exploring the dynamic changes and interactions between microbial community composition and metabolites is important for understanding ruminal nutrition and metabolism. Tibetan sheep (Ovis aries) are an important livestock resource on the Qinghai-Tibetan Plateau (QTP), and the effects of various dietary protein levels on ruminal microbiota and metabolites are still unknown. The aim of this study was to investigate the response of ruminal microbiota and metabolites to different levels of dietary protein in Tibetan sheep. Three diets with different protein levels (low protein 10.1%, medium protein 12.1%, and high protein 14.1%) were fed to Tibetan sheep. 16S rRNA gene sequencing and gas chromatography coupled with time-of-flight mass spectrometry (GC-TOF-MS) were used to study the profile changes in each group of ruminal microbes and metabolites, as well as the potential interaction between them. The rumen microbiota in all groups was dominated by the phyla Bacteroidetes and Firmicutes regardless of the dietary protein level. At the genus level, Prevotella_1, Rikenellaceae_RC9_gut_group and Prevotellaceae_UCG-001 were dominant. Under the same forage-to-concentrate ratio condition, the difference in the dietary protein levels had no significant impact on the bacterial alpha diversity index and relative abundance of the major phyla and genera in Tibetan sheep. Rumen metabolomics analysis revealed that dietary protein levels altered the concentrations of ruminal amino acids, carbohydrates and organic acids, and significantly affected tryptophan metabolism (p < 0.05). Correlation analysis of the microbiota and metabolites revealed positive and negative regulatory mechanisms. Overall, this study provides detailed information on rumen microorganisms and ruminal metabolites under different levels of dietary protein, which could be helpful in subsequent research for regulating animal nutrition and metabolism through nutritional interventions.
Collapse
Affiliation(s)
- Xungang Wang
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Tianwei Xu
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Xiaoling Zhang
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Na Zhao
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Linyong Hu
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Hongjin Liu
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Qian Zhang
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yuanyue Geng
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shengping Kang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Shixiao Xu
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| |
Collapse
|
253
|
Li J, Yang F, Xiao M, Li A. Advances and challenges in cataloging the human gut virome. Cell Host Microbe 2022; 30:908-916. [PMID: 35834962 DOI: 10.1016/j.chom.2022.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 11/17/2022]
Abstract
The human gut virome, which is often referred to as the "dark matter" of the gut microbiome, remains understudied. A better understanding of the composition and variations of the gut virome across populations is critical for exploring its impact on diseases and health. A series of advances in the characterization of human gut virome have unveiled high genetic diversity and various functional potentials of gut viruses. Here, we summarize the recently available human gut virome databases and discuss their features, procedures, and challenges with the intention to provide a reference to researchers to use while choosing a profiling database. We also propose a "best practice" for cataloging the viral population.
Collapse
Affiliation(s)
- Junhua Li
- BGI-Shenzhen, Shenzhen 518083, China; Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen 518083, China.
| | | | - Minfeng Xiao
- BGI-Shenzhen, Shenzhen 518083, China; Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen 518083, China.
| | - Aixin Li
- BGI-Shenzhen, Shenzhen 518083, China; Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen 518083, China
| |
Collapse
|
254
|
Xie W, Zhang H, Ni Y, Peng Y. Contrasting Diversity and Composition of Human Colostrum Microbiota in a Maternal Cohort With Different Ethnic Origins but Shared Physical Geography (Island Scale). Front Microbiol 2022; 13:934232. [PMID: 35903466 PMCID: PMC9315263 DOI: 10.3389/fmicb.2022.934232] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/22/2022] [Indexed: 12/19/2022] Open
Abstract
Colostrum represents an important source for the transfer of important commensal bacteria from mother to newborn and has a strong impact on the newborn’s health after birth. However, the composition of the colostrum microbiome is highly heterogeneous due to geographic factors and ethnicity (maternal, cultural, and subsistence factors). By analyzing the colostrum 16S rRNA gene full-length sequencing dataset in 97 healthy mothers (60 from Han, 37 from Li) from the Hainan island of China, we showed that the ethnic differences of the colostrum microbiome in a maternal cohort with different ethnic origins shared physical geography. Results indicated that the richness of microbial community in colostrum of Han women was higher than that of Li women, but there was no significant difference in Shannon index and invsimpson index between the two groups. Visualization analysis based on the distance showed an obvious ethnicity-associated structural segregation of colostrum microbiota. The relative abundance of Firmicutes was higher in the microbiota of the Han group than in Li’s, while Proteobacteria was on the contrary. At the genus level, the most dominant members of the Han and Li ethnic groups were Acinetobacter and Cupriavidus, two common environmental bacteria, respectively, although skin-derived Staphylococcus and Streptococcus were still subdominant taxa. Cupriavidus lacunae was the most dominant species in the Li group, accounting for 26.10% of the total bacterial community, but only 3.43% for the Han group with the most dominant Staphylococcus petrasii (25.54%), indicating that human colostrum microbiome was more susceptible to local living environmental factors. Hence, the ethnic origin of individuals may be an important factor to consider in human milk microbiome research and its potential clinical significance during the perinatal period in ethnic-diverse societies, even within a small geographic scale.
Collapse
Affiliation(s)
- Wanying Xie
- Department of Obstetrics and Gynecology, Hainan Medical University, Haikou, China
| | - Huimin Zhang
- School of Food Science and Technology, Shihezi University, Xinjiang, China
| | - Yongqing Ni
- School of Food Science and Technology, Shihezi University, Xinjiang, China
- *Correspondence: Yongqing Ni,
| | - Yunhua Peng
- Department of Obstetrics and Gynecology, Hainan Medical University, Haikou, China
- The First Affiliated Hospital of Hainan Medical University, Haikou, China
- Yunhua Peng,
| |
Collapse
|
255
|
Changes in the Mucosa-Associated Microbiome and Transcriptome across Gut Segments Are Associated with Obesity in a Metabolic Syndrome Porcine Model. Microbiol Spectr 2022; 10:e0071722. [PMID: 35862956 PMCID: PMC9430857 DOI: 10.1128/spectrum.00717-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Obesity is a major risk factor for metabolic syndrome, which is the most common cause of death worldwide, especially in developed countries. The link between obesity and gut mucosa-associated microbiota is unclear due to challenges associated with the collection of intestinal samples from humans.
Collapse
|
256
|
Wang K, Chen H, Fan RL, Lin ZG, Niu QS, Wang Z, Ji T. Effect of carbendazim on honey bee health: Assessment of survival, pollen consumption, and gut microbiome composition. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 239:113648. [PMID: 35605324 DOI: 10.1016/j.ecoenv.2022.113648] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/28/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Gut microbiota and nutrition play major roles in honey bee health. Recent reports have shown that pesticides can disrupt the gut microbiota and cause malnutrition in honey bees. Carbendazim is the most commonly used fungicide in China, but it is not clear whether carbendazim negatively affects the gut microbes and nutrient intake levels in honey bees. To address this research gap, we assessed the effects of carbendazim on the survival, pollen consumption, and sequenced 16 S rRNA gene to determine the bacterial composition in the midgut and hindgut. Our results suggest that carbendazim exposure does not cause acute death in honey bees even at high concentrations (5000 mg/L), which are extremely unlikely to exist under field conditions. Carbendazim does not disturb the microbiome composition in the gut of young worker bees during gut microbial colonization and adult worker bees with established gut communities in the mid and hindgut. However, carbendazim exposure significantly decreases pollen consumption in honey bees. Thus, exposure of bees to carbendazim can perturb their beneficial nutrition homeostasis, potentially reducing honey bee immunity and increasing their susceptibility to infection by pathogens, which influence effectiveness as pollinators, even colony health.
Collapse
Affiliation(s)
- Kang Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Heng Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Rong-Li Fan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Zhe-Guang Lin
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Qing-Sheng Niu
- Key Laboratory for Bee Genetics and Breeding, Jilin Provincial Institute of Apicultural Sciences, Jilin Province 132108, China
| | - Zhi Wang
- Key Laboratory for Bee Genetics and Breeding, Jilin Provincial Institute of Apicultural Sciences, Jilin Province 132108, China
| | - Ting Ji
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China.
| |
Collapse
|
257
|
Zarza E, López-Pastrana A, Damon A, Guillén-Navarro K, García-Fajardo LV. Fungal diversity in shade-coffee plantations in Soconusco, Mexico. PeerJ 2022; 10:e13610. [PMID: 35789660 PMCID: PMC9250310 DOI: 10.7717/peerj.13610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 05/29/2022] [Indexed: 01/17/2023] Open
Abstract
Background As forested natural habitats disappear in the world, traditional, shade-coffee plantations offer an opportunity to conserve biodiversity and ecosystem services. Traditional coffee plantations maintain a diversity of tree species that provide shade for coffee bushes and, at the same time, are important repositories for plants and animals that inhabited the original cloud forest. However, there is still little information about shade-coffee plantation's fungal diversity despite their relevance for ecosystem functioning as decomposers, symbionts and pathogens. Specifically, it is unknown if and what mycorrhizae-forming fungi can be found on the branches and trunks of coffee bushes and trees, which hold a diversity of epiphytes. Here, we evaluate fungal communities on specific plant microsites on both coffee bushes and shade trees. We investigate the ecological roles played by this diversity, with a special focus on mycorrhizae-forming fungi that may enable the establishment and development of epiphytic plants. Methods We collected 48 bark samples from coffee bushes and shade trees (coffee; tree), from four plant microsites (upper and lower trunks, branches and twigs), in two shade-coffee plantations in the Soconusco region in southern Mexico, at different altitudes. We obtained ITS amplicon sequences that served to estimate alpha and beta diversity, to assign taxonomy and to infer the potential ecological role played by the detected taxa. Results The bark of shade trees and coffee bushes supported high fungal diversity (3,783 amplicon sequence variants). There were no strong associations between community species richness and collection site, plant type or microsite. However, we detected differences in beta diversity between collection sites. All trophic modes defined by FUNGuild database were represented in both plant types. However, when looking into guilds that involve mycorrhizae formation, the CLAM test suggests that coffee bushes are more likely to host taxa that may function as mycorrhizae. Discussion We detected high fungal diversity in shade-coffee plantations in Soconusco, Chiapas, possibly remnants of the original cloud forest ecosystem. Several mycorrhiza forming fungi guilds occur on the bark of coffee bushes and shade trees in this agroecosystem, with the potential of supporting epiphyte establishment and development. Thus, traditional coffee cultivation could be part of an integrated strategy for restoration and conservation of epiphytic populations. This is particularly relevant for conservation of threatened species of Orchidaceae that are highly dependent on mycorrhizae formation.
Collapse
Affiliation(s)
- Eugenia Zarza
- Departamento de Ciencias de la Sustentabilidad, El Colegio de la Frontera Sur, Tapachula, Chiapas, Mexico,Investigadora-CONACYT, Consejo Nacional de Ciencia y Tecnología, Ciudad de México, Mexico
| | - Alejandra López-Pastrana
- Departamento de Conservación de la Biodiversidad, El Colegio de la Frontera Sur, Tapachula, Chiapas, Mexico
| | - Anne Damon
- Departamento de Conservación de la Biodiversidad, El Colegio de la Frontera Sur, Tapachula, Chiapas, Mexico
| | - Karina Guillén-Navarro
- Departamento de Ciencias de la Sustentabilidad, El Colegio de la Frontera Sur, Tapachula, Chiapas, Mexico
| | | |
Collapse
|
258
|
Abstract
It is important to understand the microbial features of the cerebral thrombus and its clinical relevance in stroke patients, of which data were scarce. We aimed to investigate the microbial features of cerebral thrombi retrieved via thrombectomy in stroke patients with large vessel occlusion (LVO) and their correlations with 3-month mortality. In a prospective cohort study, thrombus samples were collected during mechanical thrombectomy in LVO stroke patients with successful revascularization at a tertiary hospital. Oral, fecal, and isolated plasma samples were collected within 12 h of admission. The microbial compositions of all samples were compared using 16S rRNA gene amplicon next-generation sequencing. Fluorescent in situ hybridization (FISH) was used to detect bacteria in thrombus samples. The primary outcome was 3-month mortality. Perioperative adverse events (AEs) within 48 h were also recorded. Bacterial DNA was detected in 96.2% of thrombus samples from 104 patients, and clusters of bacterial signals were seen in the thrombi with FISH. Compared with fecal and oral samples, the thrombus microbiota was mainly characterized by excessive enrichment of Proteobacteria, mainly originating from plasma. The bacterial concentrations, dominant bacteria, and distribution patterns differed in thrombi obtained from cardioembolic and large-artery atherosclerotic strokes. Higher abundances of Acinetobacter and Enterobacteriaceae were associated with a higher risk of perioperative AEs, and a higher abundance of Acinetobacter was independently associated with a higher risk of 90-day mortality. This study demonstrated the presence of bacteria in cerebral thrombi retrieved with thrombectomy in LVO strokes, with some bacteria associated with patients’ prognoses.
Collapse
|
259
|
Medina-Paz F, Herrera-Estrella L, Heil M. All Set before Flowering: A 16S Gene Amplicon-Based Analysis of the Root Microbiome Recruited by Common Bean ( Phaseolus vulgaris) in Its Centre of Domestication. PLANTS (BASEL, SWITZERLAND) 2022; 11:1631. [PMID: 35807585 PMCID: PMC9269403 DOI: 10.3390/plants11131631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 04/18/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
Plant roots recruit most prokaryotic members of their root microbiota from the locally available inoculum, but knowledge on the contribution of native microorganisms to the root microbiota of crops in native versus non-native areas remains scarce. We grew common bean (Phaseolus vulgaris) at a field site in its centre of domestication to characterise rhizosphere and endosphere bacterial communities at the vegetative, flowering, and pod filling stage. 16S r RNA gene amplicon sequencing of ten samples yielded 9,401,757 reads, of which 8,344,070 were assigned to 17,352 operational taxonomic units (OTUs). Rhizosphere communities were four times more diverse than in the endosphere and dominated by Actinobacteria, Bacteroidetes, Crenarchaeota, and Proteobacteria (endosphere: 99% Proteobacteria). We also detected high abundances of Gemmatimonadetes (6%), Chloroflexi (4%), and the archaeal phylum Thaumarchaeota (Candidatus Nitrososphaera: 11.5%): taxa less frequently reported from common bean rhizosphere. Among 154 OTUs with different abundances between vegetative and flowering stage, we detected increased read numbers of Chryseobacterium in the endosphere and a 40-fold increase in the abundances of OTUs classified as Rhizobium and Aeromonas (equivalent to 1.5% and over 6% of all reads in the rhizosphere). Our results indicate that bean recruits specific taxa into its microbiome when growing 'at home'.
Collapse
Affiliation(s)
- Francisco Medina-Paz
- Laboratorio de Ecología de Plantas, Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados (CINVESTAV)—Unidad Irapuato, Irapuato 36824, GTO, Mexico;
| | - Luis Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados (CINVESTAV)—Unidad de Genómica Avanzada, Irapuato 36824, GTO, Mexico; or
- Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX 79424, USA
| | - Martin Heil
- Laboratorio de Ecología de Plantas, Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados (CINVESTAV)—Unidad Irapuato, Irapuato 36824, GTO, Mexico;
| |
Collapse
|
260
|
Xiao X, Wang JL, Li JJ, Li XL, Dai XJ, Shen RF, Zhao XQ. Distinct Patterns of Rhizosphere Microbiota Associated With Rice Genotypes Differing in Aluminum Tolerance in an Acid Sulfate Soil. Front Microbiol 2022; 13:933722. [PMID: 35783428 PMCID: PMC9247542 DOI: 10.3389/fmicb.2022.933722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 05/30/2022] [Indexed: 11/20/2022] Open
Abstract
Rhizosphere microbes are important for plant tolerance to various soil stresses. Rice is the most aluminum (Al)-tolerant small grain cereal crop species, but the link between rice Al tolerance and rhizosphere microbiota remains unclear. This study aimed to investigate the microbial community structure of aluminum-sensitive and Al-tolerant rice varieties in acid sulfate soil under liming and non-liming conditions. We analyzed the rice biomass and mineral element contents of rice plants as well as the chemical properties and microbial (archaea, bacteria, and fungi) communities of rhizosphere and bulk soil samples. The results showed that the Al-tolerant rice genotype grew better and was able to take up more phosphorus from the acid sulfate soil than the Al-sensitive genotype. Liming was the main factor altering the microbial diversity and community structure, followed by rhizosphere effects. In the absence of liming effects, the rice genotypes shifted the community structure of bacteria and fungi, which accounted for the observed variation in the rice biomass. The Al-tolerant rice genotype recruited specific bacterial and fungal taxa (Bacillus, Pseudomonas, Aspergillus, and Rhizopus) associated with phosphorus solubilization and plant growth promotion. The soil microbial co-occurrence network of the Al-tolerant rice genotype was more complex than that of the Al-sensitive rice genotype. In conclusion, the bacterial and fungal community in the rhizosphere has genotype-dependent effects on rice Al tolerance. Aluminum-tolerant rice genotypes recruit specific microbial taxa, especially phosphorus-solubilizing microorganisms, and are associated with complex microbial co-occurrence networks, which may enhance rice growth in acid sulfate soil.
Collapse
Affiliation(s)
- Xun Xiao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jia Lin Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiao Jiao Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiao Li Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xin Jun Dai
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- College of Land Resource and Environment, Jiangxi Agricultural University, Nanchang, China
| | - Ren Fang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xue Qiang Zhao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Xue Qiang Zhao,
| |
Collapse
|
261
|
Wang P, Song T, Bu J, Zhang Y, Liu J, Zhao J, Zhang T, Xi J, Xu J, Li L, Lin Y. Does bacterial community succession within the polyethylene mulching film plastisphere drive biodegradation? THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 824:153884. [PMID: 35182639 DOI: 10.1016/j.scitotenv.2022.153884] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/01/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Agricultural fields are severely contaminated with polyethylene mulching film (PMF) and this plastic in the natural environment can be colonized by biofilm-forming microorganisms that differ from those in the surrounding environment. In this study, we investigated the succession of the soil microbial communities in the PMF plastisphere using an artificial micro-ecosystem as well as exploring the degradation of PMF by plastisphere communities. The results indicated a significant and gradual decrease in the alpha diversity of the bacterial communities in the plastisphere and surrounding liquid. The community compositions in the plastisphere and surrounding liquid differed significantly from that in agricultural soil. Phyla and genera with the capacity to degrade polyethylene and hydrocarbon were enriched in the plastisphere, and some of these microorganisms were core members of the plastisphere community. Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) analysis detected increases in metabolism pathways for PMF plastisphere Xenobiotics Biodegradation and Metabolism, thereby suggesting the possibility of polyethylene degradation in the plastisphere. Observations by scanning electron microscopy (SEM) and confocal laser scanning microscopy demonstrated the formation of biofilms on the incubated PMF. SEM, atomic force microscopy, Fourier transform infrared spectroscopy and water contact angle detected significant changes in the surface microstructure, chemical composition and hydrophobicity change of the films, thereby suggesting that the plastisphere community degraded PMF during incubation. In conclusion, this study provides insights into the changes in agricultural soil microorganisms in the PMF plastisphere and the degradation of PMF.
Collapse
Affiliation(s)
- Peiyuan Wang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tianjiao Song
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jingshu Bu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yiqiong Zhang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiaxi Liu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jianbo Zhao
- College of Innovation and Experiment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tingkai Zhang
- College of Innovation and Experiment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiao Xi
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jing Xu
- College of Chemistry and Material Science, Shandong Agriculture University, Tai'an 271018, China
| | - Li Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Yanbing Lin
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
262
|
Shin J, Li T, Zhu L, Wang Q, Liang X, Li Y, Wang X, Zhao S, Li L, Li Y. Obese Individuals With and Without Phlegm-Dampness Constitution Show Different Gut Microbial Composition Associated With Risk of Metabolic Disorders. Front Cell Infect Microbiol 2022; 12:859708. [PMID: 35719350 PMCID: PMC9199894 DOI: 10.3389/fcimb.2022.859708] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundObesity is conventionally considered a risk factor for multiple metabolic diseases, such as dyslipidemia, type 2 diabetes, hypertension, and cardiovascular disease (CVD). However, not every obese patient will progress to metabolic disease. Phlegm-dampness constitution (PDC), one of the nine TCM constitutions, is considered a high-risk factor for obesity and its complications. Alterations in the gut microbiota have been shown to drive the development and progression of obesity and metabolic disease, however, key microbial changes in obese patients with PDC have a higher risk for metabolic disorders remain elusive.MethodsWe carried out fecal 16S rRNA gene sequencing in the present study, including 30 obese subjects with PDC (PDC), 30 individuals without PDC (non-PDC), and 30 healthy controls with balanced constitution (BC). Metagenomic functional prediction of bacterial taxa was achieved using PICRUSt.ResultsObese individuals with PDC had higher BMI, waist circumference, hip circumference, and altered composition of their gut microbiota compared to non-PDC obese individuals. At the phylum level, the gut microbiota was characterized by increased abundance of Bacteroidetes and decreased levels of Firmicutes and Firmicutes/Bacteroidetes ratio. At the genus level, Faecalibacterium, producing short-chain fatty acid, achieving anti-inflammatory effects and strengthening intestinal barrier functions, was depleted in the PDC group, instead, Prevotella was enriched. Most PDC-associated bacteria had a stronger correlation with clinical indicators of metabolic disorders rather than more severe obesity. The PICRUSt analysis demonstrated 70 significantly different microbiome community functions between the two groups, which were mainly involved in carbohydrate and amino acid metabolism, such as promoting Arachidonic acid metabolism, mineral absorption, and Lipopolysaccharide biosynthesis, reducing Arginine and proline metabolism, flavone and flavonol biosynthesis, Glycolysis/Gluconeogenesis, and primary bile acid biosynthesis. Furthermore, a disease classifier based on microbiota was constructed to accurately discriminate PDC individuals from all obese people.ConclusionOur study shows that obese individuals with PDC can be distinguished from non-PDC obese individuals based on gut microbial characteristics. The composition of the gut microbiome altered in obese with PDC may be responsible for their high risk of metabolic diseases.
Collapse
Affiliation(s)
- Juho Shin
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Tianxing Li
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Linghui Zhu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qi Wang
- National Institute of Traditional Chinese Medicine Constitution and Preventive Treatment of Diseases, Beijing University of Chinese Medicine, Beijing, China
| | - Xue Liang
- National Institute of Traditional Chinese Medicine Constitution and Preventive Treatment of Diseases, Beijing University of Chinese Medicine, Beijing, China
| | - Yanan Li
- People’s Medical Publishing House Co., Ltd., Chinese Medicine Center, Beijing, China
| | - Xin Wang
- Sanbo Brain Hospital of Capital Medical University, Beijing, China
| | - Shipeng Zhao
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lingru Li
- National Institute of Traditional Chinese Medicine Constitution and Preventive Treatment of Diseases, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Lingru Li, ; Yingshuai Li,
| | - Yingshuai Li
- National Institute of Traditional Chinese Medicine Constitution and Preventive Treatment of Diseases, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Lingru Li, ; Yingshuai Li,
| |
Collapse
|
263
|
Ding X, Jin F, Xu J, Zhang S, Chen D, Hu B, Hong Y. The impact of aquaculture system on the microbiome and gut metabolome of juvenile Chinese softshell turtle ( Pelodiscus sinensis). IMETA 2022; 1:e17. [PMID: 38868566 PMCID: PMC10989827 DOI: 10.1002/imt2.17] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/03/2022] [Accepted: 03/13/2022] [Indexed: 06/14/2024]
Abstract
The commercial aquatic animal microbiome may markedly affect the successful host's farming in various aquaculture systems. However, very little was known about it. Here, two different aquaculture systems, the rice-fish culture (RFC) and intensive pond culture (IPC) systems, were compared to deconstruct the skin, oral, and gut microbiome, as well as the gut metabolome of juvenile Chinese softshell turtle (Pelodiscus sinensis). Higher alpha-diversity and functional redundancy of P. sinensis microbial community were found in the RFC than those of the IPC. The aquaculture systems have the strongest influence on the gut microbiome, followed by the skin microbiome, and finally the oral microbiome. Source-tracking analysis showed that the RFC's microbial community originated from more unknown sources than that of the IPC across all body regions. Strikingly, the RFC's oral and skin microbiome exhibited a significantly higher proportion of generalists and broader habitat niche breadth than those of the IPC, but not the gut. Null model analysis revealed that the RFC's oral and skin microbial community assembly was governed by a significantly greater proportion of deterministic processes than that of the IPC, but not the gut. We further identified the key gene and microbial contribution to five significantly changed gut metabolites, 2-oxoglutarate, N-acetyl-d-mannosamine, cis-4-hydroxy-d-proline, nicotinamide, and l-alanine, which were significantly correlated with important categories of microbe-mediated processes, including the amino acid metabolism, GABAergic synapse, ABC transporters, biosynthesis of unsaturated fatty acids, as well as citrate cycle. Moreover, different aquaculture systems have a significant impact on the hepatic lipid metabolism and body shape of P. sinensis. Our results provide new insight into the influence of aquaculture systems on the microbial community structure feature and assembly mechanism in an aquatic animal, also highlighting the key microbiome and gene contributions to the metabolite variation in the gut microbiome-metabolome association.
Collapse
Affiliation(s)
- Xia Ding
- School of Life SciencesNanchang UniversityNanchangJiangxiChina
| | - Feng Jin
- School of Life SciencesNanchang UniversityNanchangJiangxiChina
| | - Jiawang Xu
- School of Life SciencesNanchang UniversityNanchangJiangxiChina
| | - Shulei Zhang
- School of Life SciencesNanchang UniversityNanchangJiangxiChina
| | - Dongxu Chen
- School of Life SciencesNanchang UniversityNanchangJiangxiChina
| | - Beijuan Hu
- School of Life SciencesNanchang UniversityNanchangJiangxiChina
| | - Yijiang Hong
- School of Life SciencesNanchang UniversityNanchangJiangxiChina
| |
Collapse
|
264
|
Li B, Zhong D, Qiao J, Jiang X. GNPI: Graph normalization to integrate phylogenetic information for metagenomic host phenotype prediction. Methods 2022; 205:11-17. [PMID: 35636652 DOI: 10.1016/j.ymeth.2022.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/17/2022] [Accepted: 05/26/2022] [Indexed: 11/24/2022] Open
Abstract
Microorganisms play important roles in our lives especially on metabolism and diseases. Determining the probability of human suffering from specific diseases and the severity of the disease based on microbial genes is the crucial research for understanding the relationship between microbes and diseases. Previous could extract the topological information of phylogenetic trees and integrate them to metagenomic datasets, thus enable classifiers to learn more information in limited datasets and thus improve the performance of the models. In this paper, we proposed a GNPI model to better learn the structure of phylogenetic trees. GNPI maintained the original vector format of metagenomic datasets, while previous research had to change the input form to matrices. The vector-like form of the input data can be easily adopted in the baseline machine learning models and is available for deep learning models. The datasets processed with GNPI help enhance the accuracy of machine learning and deep learning models in three different datasets. GNPI is an interpretable data processing method for host phenotype prediction and other bioinformatics tasks.
Collapse
Affiliation(s)
- Bojing Li
- Hubei Key Laboratory of Artificial Intelligence and Smart Learning, Central China Normal University, Wuhan, China; School of Computer, Central China Normal University, Wuhan, China
| | - Duo Zhong
- Hubei Key Laboratory of Artificial Intelligence and Smart Learning, Central China Normal University, Wuhan, China; School of Computer, Central China Normal University, Wuhan, China
| | - Jimei Qiao
- Mathematics and Science College, Shanghai Normal University, Shanghai, China
| | - Xingpeng Jiang
- Hubei Key Laboratory of Artificial Intelligence and Smart Learning, Central China Normal University, Wuhan, China; School of Computer, Central China Normal University, Wuhan, China; National Language Resources Monitoring & Research Center for Network Media, Central China Normal University, Wuhan, China.
| |
Collapse
|
265
|
Fusarium fruiting body microbiome member Pantoea agglomerans inhibits fungal pathogenesis by targeting lipid rafts. Nat Microbiol 2022; 7:831-843. [PMID: 35618775 DOI: 10.1038/s41564-022-01131-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 04/22/2022] [Indexed: 12/13/2022]
Abstract
Plant-pathogenic fungi form intimate interactions with their associated bacterial microbiota during their entire life cycle. However, little is known about the structure, functions and interaction mechanisms of bacterial communities associated with fungal fruiting bodies (perithecia). Here we examined the bacterial microbiome of perithecia formed by Fusarium graminearum, the major pathogenic fungus causing Fusarium head blight in cereals. A total of 111 shared bacterial taxa were identified in the microbiome of 65 perithecium samples collected from 13 geographic locations. Within a representative culture collection, 113 isolates exhibited antagonistic activity against F. graminearum, with Pantoea agglomerans ZJU23 being the most efficient in reducing fungal growth and infectivity. Herbicolin A was identified as the key antifungal compound secreted by ZJU23. Genetic and chemical approaches led to the discovery of its biosynthetic gene cluster. Herbicolin A showed potent in vitro and in planta efficacy towards various fungal pathogens and fungicide-resistant isolates, and exerted a fungus-specific mode of action by directly binding and disrupting ergosterol-containing lipid rafts. Furthermore, herbicolin A exhibited substantially higher activity (between 5- and 141-fold higher) against the human opportunistic fungal pathogens Aspergillus fumigatus and Candida albicans in comparison with the clinically used fungicides amphotericin B and fluconazole. Its mode of action, which is distinct from that of other antifungal drugs, and its efficacy make herbicolin A a promising antifungal drug to combat devastating fungal pathogens, both in agricultural and clinical settings.
Collapse
|
266
|
Guo X, Tang P, Hou C, Chong L, Zhang X, Liu P, Chen L, Liu Y, Zhang L, Li R. Integrated Microbiome and Host Transcriptome Profiles Link Parkinson’s Disease to Blautia Genus: Evidence From Feces, Blood, and Brain. Front Microbiol 2022; 13:875101. [PMID: 35722294 PMCID: PMC9204254 DOI: 10.3389/fmicb.2022.875101] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 04/20/2022] [Indexed: 01/01/2023] Open
Abstract
A link between the gut microbiome and Parkinson’s disease (PD) has been intensively studied, and more than 100 differential genera were identified across the studies. However, the predominant genera contributing to PD remain poorly understood. Inspired by recent advances showing microbiota distribution in the blood and brain, we, here, comprehensively investigated currently available fecal microbiome data (1,914 samples) to identify significantly altered genera, which were further validated by comparison to the results from microbiome analysis of blood (85 samples) and brain (268 samples). Our data showed that the composition of fecal microbiota was different from that of blood and brain. We found that Blautia was the unique genus consistently depleted across feces, blood, and brain samples of PD patients (P < 0.05), despite using rigorous criteria to remove contaminants. Moreover, enrichment analyses revealed that host genes correlated with Blautia genus abundance were mainly involved in mitochondrial function and energy metabolism, and mapped to neurodegenerative diseases (NDDs) and metabolic diseases. A random forest classifier constructed with fecal microbiota data demonstrated that Blautia genus was an important feature contributing to discriminating PD patients from controls [receiver operating characteristic (ROC)-area under curve (AUC) = 0.704, precision-recall curve (PRC)-AUC = 0.787]. Through the integration of microbiome and transcriptome, our study depicted microbial profiles in the feces, blood, and brain of PD patients, and identified Blautia genus as a potential genus linked to PD. Further studies are greatly encouraged to determine the role of Blautia genus in the pathogenesis of PD.
Collapse
Affiliation(s)
- Xingzhi Guo
- Department of Geriatric Neurology, Shaanxi Provincial People’s Hospital, Xi’an, China
- Shaanxi Provincial Clinical Research Center for Geriatric Medicine, Xi’an, China
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
| | - Peng Tang
- Department of Geriatric Neurology, Shaanxi Provincial People’s Hospital, Xi’an, China
- Shaanxi Provincial Clinical Research Center for Geriatric Medicine, Xi’an, China
| | - Chen Hou
- Department of Geriatric Neurology, Shaanxi Provincial People’s Hospital, Xi’an, China
- Shaanxi Provincial Clinical Research Center for Geriatric Medicine, Xi’an, China
| | - Li Chong
- Department of Geriatric Neurology, Shaanxi Provincial People’s Hospital, Xi’an, China
- Shaanxi Provincial Clinical Research Center for Geriatric Medicine, Xi’an, China
| | - Xin Zhang
- Department of Geriatric Neurology, Shaanxi Provincial People’s Hospital, Xi’an, China
- Shaanxi Provincial Clinical Research Center for Geriatric Medicine, Xi’an, China
| | - Peng Liu
- Department of Geriatric Neurology, Shaanxi Provincial People’s Hospital, Xi’an, China
- Shaanxi Provincial Clinical Research Center for Geriatric Medicine, Xi’an, China
| | - Li Chen
- Department of Geriatric Neurology, Shaanxi Provincial People’s Hospital, Xi’an, China
- Shaanxi Provincial Clinical Research Center for Geriatric Medicine, Xi’an, China
| | - Yue Liu
- Department of Geriatric Neurology, Shaanxi Provincial People’s Hospital, Xi’an, China
- Shaanxi Provincial Clinical Research Center for Geriatric Medicine, Xi’an, China
| | - Lina Zhang
- Department of Geriatric Neurology, Shaanxi Provincial People’s Hospital, Xi’an, China
- Shaanxi Provincial Clinical Research Center for Geriatric Medicine, Xi’an, China
| | - Rui Li
- Department of Geriatric Neurology, Shaanxi Provincial People’s Hospital, Xi’an, China
- Shaanxi Provincial Clinical Research Center for Geriatric Medicine, Xi’an, China
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
- *Correspondence: Rui Li,
| |
Collapse
|
267
|
Kohl KD, Dieppa-Colón E, Goyco-Blas J, Peralta-Martínez K, Scafidi L, Shah S, Zawacki E, Barts N, Ahn Y, Hedayati S, Secor SM, Rowe MP. Gut Microbial Ecology of Five Species of Sympatric Desert Rodents in Relation to Herbivorous and Insectivorous Feeding Strategies. Integr Comp Biol 2022; 62:237-251. [PMID: 35587374 DOI: 10.1093/icb/icac045] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
The gut microbial communities of mammals provide numerous benefits to their hosts. However, given the recent development of the microbiome field, we still lack a thorough understanding of the variety of ecological and evolutionary factors that structure these communities across species. Metabarcoding is a powerful technique that allows for multiple microbial ecology questions to be investigated simultaneously. Here, we employed DNA metabarcoding techniques, predictive metagenomics, and culture-dependent techniques to inventory the gut microbial communities of several species of rodent collected from the same environment that employ different natural feeding strategies [granivorous pocket mice (Chaetodipus penicillatus); granivorous kangaroo rats (Dipodomys merriami); herbivorous woodrats (Neotoma albigula); omnivorous cactus mice (Peromyscus eremicus), and insectivorous grasshopper mice (Onychomys torridus)]. Of particular interest were shifts in gut microbial communities in rodent species with herbivorous and insectivorous diets, given the high amounts of indigestible fibers and chitinous exoskeleton in these diets, respectively. We found that herbivorous woodrats harbored the greatest microbial diversity. Granivorous pocket mice and kangaroo rats had the highest abundances of the genus Ruminococcus and highest predicted abundances of genes related to the digestion of fiber, representing potential adaptations in these species to the fiber content of seeds and the limitations to digestion given their small body size. Insectivorous grasshopper mice exhibited the greatest inter-individual variation in the membership of their microbiomes, and also exhibited the highest predicted abundances of chitin-degrading genes. Culture-based approaches identified 178 microbial isolates (primarily Bacillus and Enterococcus) capable of degrading cellulose and chitin. We observed several instances of strain-level diversity in these metabolic capabilities across isolates, somewhat highlighting the limitations and hidden diversity underlying DNA metabarcoding techniques. However, these methods offer power in allowing the investigation of several questions concurrently, thus enhancing our understanding of gut microbial ecology.
Collapse
Affiliation(s)
- Kevin D Kohl
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh PA 15260
| | - Etan Dieppa-Colón
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh PA 15260.,Department of Bacteriology, University of Wisconsin - Madison, Madison WI 53706
| | - José Goyco-Blas
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh PA 15260
| | | | - Luke Scafidi
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh PA 15260
| | - Sarth Shah
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh PA 15260
| | - Emma Zawacki
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh PA 15260
| | - Nick Barts
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh PA 15260
| | - Young Ahn
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh PA 15260
| | - Stefanie Hedayati
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh PA 15260
| | - Stephen M Secor
- Department of Biological Sciences, University of Alabama, Tuscaloosa AL 35487
| | - Matthew P Rowe
- Department of Biological Sciences, University of Oklahoma, Norman OK 73019
| |
Collapse
|
268
|
Agostinetto G, Bozzi D, Porro D, Casiraghi M, Labra M, Bruno A. SKIOME Project: a curated collection of skin microbiome datasets enriched with study-related metadata. Database (Oxford) 2022; 2022:6586378. [PMID: 35576001 PMCID: PMC9216470 DOI: 10.1093/database/baac033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 02/25/2022] [Accepted: 05/09/2022] [Indexed: 04/07/2023]
Abstract
Large amounts of data from microbiome-related studies have been (and are currently being) deposited on international public databases. These datasets represent a valuable resource for the microbiome research community and could serve future researchers interested in integrating multiple datasets into powerful meta-analyses. However, this huge amount of data lacks harmonization and it is far from being completely exploited in its full potential to build a foundation that places microbiome research at the nexus of many subdisciplines within and beyond biology. Thus, it urges the need for data accessibility and reusability, according to findable, accessible, interoperable and reusable (FAIR) principles, as supported by National Microbiome Data Collaborative and FAIR Microbiome. To tackle the challenge of accelerating discovery and advances in skin microbiome research, we collected, integrated and organized existing microbiome data resources from human skin 16S rRNA amplicon-sequencing experiments. We generated a comprehensive collection of datasets, enriched in metadata, and organized this information into data frames ready to be integrated into microbiome research projects and advanced post-processing analyses, such as data science applications (e.g. machine learning). Furthermore, we have created a data retrieval and curation framework built on three different stages to maximize the retrieval of datasets and metadata associated with them. Lastly, we highlighted some caveats regarding metadata retrieval and suggested ways to improve future metadata submissions. Overall, our work resulted in a curated skin microbiome datasets collection accompanied by a state-of-the-art analysis of the last 10 years of the skin microbiome field. Database URL: https://github.com/giuliaago/SKIOMEMetadataRetrieval.
Collapse
Affiliation(s)
- Giulia Agostinetto
- *Corresponding author: Giulia Agostinetto. E-mail: and Antonia Bruno. Tel: +0039 0264483413; E-mail:
| | | | - Danilo Porro
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 2, Milan 20126, Italy
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), via Fratelli Cervi, 93, Segrate (MI) 20054, Italy
| | - Maurizio Casiraghi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 2, Milan 20126, Italy
| | - Massimo Labra
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 2, Milan 20126, Italy
| | - Antonia Bruno
- *Corresponding author: Giulia Agostinetto. E-mail: and Antonia Bruno. Tel: +0039 0264483413; E-mail:
| |
Collapse
|
269
|
Sun H, Huang X, Huo B, Tan Y, He T, Jiang X. Detecting sparse microbial association signals adaptively from longitudinal microbiome data based on generalized estimating equations. Brief Bioinform 2022; 23:6585623. [PMID: 35561307 DOI: 10.1093/bib/bbac149] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/11/2022] [Accepted: 04/02/2022] [Indexed: 12/18/2022] Open
Abstract
The association between the compositions of microbial communities and various host phenotypes is an important research topic. Microbiome association research addresses multiple domains, such as human disease and diet. Statistical methods for testing microbiome-phenotype associations have been studied recently to determine their ability to assess longitudinal microbiome data. However, existing methods fail to detect sparse association signals in longitudinal microbiome data. In this paper, we developed a novel method, namely aGEEMIHC, which is a data-driven adaptive microbiome higher criticism analysis based on generalized estimating equations to detect sparse microbial association signals from longitudinal microbiome data. aGEEMiHC adopts generalized estimating equations framework that fully considers the correlation among different observations from the same subject in longitudinal data. To be robust to diverse correlation structures for longitudinal data, aGEEMiHC integrates multiple microbiome higher criticism analyses based on generalized estimating equations with different working correlation structures. Extensive simulation experiments demonstrate that aGEEMiHC can control the type I error correctly and achieve superior performance according to a statistical power comparison. We also applied it to longitudinal microbiome data with various types of host phenotypes to demonstrate the stability of our method. aGEEMiHC is also utilized for real longitudinal microbiome data, and we found a significant association between the gut microbiome and Crohn's disease. In addition, our method ranks the significant factors associated with the host phenotype to provide potential biomarkers.
Collapse
Affiliation(s)
- Han Sun
- School of Mathematics and Statistics, Central China Normal University, Wuhan 430079, China.,Hubei Provincial Key Laboratory of Artificial Intelligence and Smart Learning, Central China Normal University, Wuhan 430079, China
| | - Xiaoyun Huang
- Hubei Provincial Key Laboratory of Artificial Intelligence and Smart Learning, Central China Normal University, Wuhan 430079, China.,Collaborative & Innovative Center for Educational Technology, Central China Normal University, Wuhan 430079, China
| | - Ban Huo
- Hubei Provincial Key Laboratory of Artificial Intelligence and Smart Learning, Central China Normal University, Wuhan 430079, China.,School of Computer, Central China Normal University, Wuhan 430079, China
| | - Yuting Tan
- School of Mathematics and Statistics, Central China Normal University, Wuhan 430079, China.,Hubei Provincial Key Laboratory of Artificial Intelligence and Smart Learning, Central China Normal University, Wuhan 430079, China
| | - Tingting He
- Hubei Provincial Key Laboratory of Artificial Intelligence and Smart Learning, Central China Normal University, Wuhan 430079, China.,School of Computer, Central China Normal University, Wuhan 430079, China.,National Language Resources Monitoring & Research Center for Network Media, Central China Normal University, Wuhan 430079, China
| | - Xingpeng Jiang
- Hubei Provincial Key Laboratory of Artificial Intelligence and Smart Learning, Central China Normal University, Wuhan 430079, China.,School of Computer, Central China Normal University, Wuhan 430079, China.,National Language Resources Monitoring & Research Center for Network Media, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
270
|
Identification of a protective Bacteroides strain of alcoholic liver disease and its synergistic effect with pectin. Appl Microbiol Biotechnol 2022; 106:3735-3749. [PMID: 35554627 DOI: 10.1007/s00253-022-11946-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 12/15/2022]
Abstract
The depletion of Bacteroides in the gut is closely correlated with the progression of alcoholic liver disease (ALD). This study aimed to identify Bacteroides strains with protective effects against ALD and evaluate the synergistic effects of Bacteroides and pectin in this disease. Mice were fed Lieber-DeCarli alcohol diet to establish an experimental ALD model and pre-treated with 4 Bacteroides strains. The severity of the liver injury, hepatic steatosis, and inflammation was evaluated through histological and biochemical assays. We found that Bacteroides fragilis ATCC25285 had the best protective effects against ALD strains by alleviating both ethanol-induced liver injury and steatosis. B. fragilis ATCC25285 could counteract inflammatory reactions in ALD by producing short-chain fat acids (SCFAs) and enhancing the intestinal barrier. In the subsequent experiment, the synbiotic combination of B. fragilis ATCC25285 and pectin was evaluated and the underlying mechanisms were investigated by metabolomic and microbiome analyses. The combination elicited superior anti-ALD effects than the individual agents used alone. The synergistic effects of B. fragilis ATCC25285 and pectin were driven by modulating gut microbiota, improving tryptophan metabolism, and regulating intestinal immune function. Based on our findings, the combination of B. fragilis ATCC25285 and pectin can be considered a potential treatment for ALD. KEY POINTS: • B. fragilis ATCC25285 was identified as a protective Bacteroides strain against ALD. • The synbiotic combination of B. fragilis and pectin has better anti-ALD effects. • The synbiotic combination modulates gut microbiota and tryptophan metabolism.
Collapse
|
271
|
Liu P, Hu S, He Z, Feng C, Dong G, An S, Liu R, Xu F, Chen Y, Ying X. Towards Strain-Level Complexity: Sequencing Depth Required for Comprehensive Single-Nucleotide Polymorphism Analysis of the Human Gut Microbiome. Front Microbiol 2022; 13:828254. [PMID: 35602026 PMCID: PMC9119422 DOI: 10.3389/fmicb.2022.828254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
Intestinal bacteria strains play crucial roles in maintaining host health. Researchers have increasingly recognized the importance of strain-level analysis in metagenomic studies. Many analysis tools and several cutting-edge sequencing techniques like single cell sequencing have been proposed to decipher strains in metagenomes. However, strain-level complexity is far from being well characterized up to date. As the indicator of strain-level complexity, metagenomic single-nucleotide polymorphisms (SNPs) have been utilized to disentangle conspecific strains. Lots of SNP-based tools have been developed to identify strains in metagenomes. However, the sufficient sequencing depth for SNP and strain-level analysis remains unclear. We conducted ultra-deep sequencing of the human gut microbiome and constructed an unbiased framework to perform reliable SNP analysis. SNP profiles of the human gut metagenome by ultra-deep sequencing were obtained. SNPs identified from conventional and ultra-deep sequencing data were thoroughly compared and the relationship between SNP identification and sequencing depth were investigated. The results show that the commonly used shallow-depth sequencing is incapable to support a systematic metagenomic SNP discovery. In contrast, ultra-deep sequencing could detect more functionally important SNPs, which leads to reliable downstream analyses and novel discoveries. We also constructed a machine learning model to provide guidance for researchers to determine the optimal sequencing depth for their projects (SNPsnp, https://github.com/labomics/SNPsnp). To conclude, the SNP profiles based on ultra-deep sequencing data extend current knowledge on metagenomics and highlights the importance of evaluating sequencing depth before starting SNP analysis. This study provides new ideas and references for future strain-level investigations.
Collapse
Affiliation(s)
- Pu Liu
- Center for Computational Biology, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Shuofeng Hu
- Center for Computational Biology, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Zhen He
- Center for Computational Biology, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Chao Feng
- Center for Computational Biology, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Guohua Dong
- Center for Computational Biology, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Sijing An
- Center for Computational Biology, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Runyan Liu
- Center for Computational Biology, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Fang Xu
- Yongkang First People’s Hospital, Yongkang, China
| | - Yaowen Chen
- Center for Computational Biology, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Xiaomin Ying
- Center for Computational Biology, Beijing Institute of Basic Medical Sciences, Beijing, China
| |
Collapse
|
272
|
Xiao L, Zheng H, Li J, Zeng M, He D, Liang J, Sun K, Luo Y, Li F, Ping B, Yuan W, Zhou H, Wang Q, Sun H. Targeting NLRP3 inflammasome modulates gut microbiota, attenuates corticospinal tract injury and ameliorates neurobehavioral deficits after intracerebral hemorrhage in mice. Biomed Pharmacother 2022; 149:112797. [PMID: 35279596 DOI: 10.1016/j.biopha.2022.112797] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/01/2022] [Accepted: 03/07/2022] [Indexed: 11/27/2022] Open
Abstract
Intracerebral hemorrhage (ICH) has a high mortality and disability rate. Fewer studies focus on white matter injury (WMI) after ICH, especially the corticospinal tract (CST) injury located in the spinal cord, which correlates with motor impairments. Recent studies have shown that gut microbiota dysbiosis occurs after ICH. Furthermore, NLRP3 inflammasome can be activated after ICH, resulting in inflammatory cascade reactions and aggravating brain injury. However, no direct and causal correlation among NLRP3 inflammasome inhibition, altered gut microbiota, and CST injury following ICH has been reported. This study aimed to investigate the effect of MCC950, a selective NLRP3 inflammasome inhibitor, on the gut microbiota and CST injury after ICH. We observed that compared with the sham group, the members of Firmicutes, such as Faecalibaculum and Dubosiella, were depleted in the ICH + Vehicle group, whereas the members of Proteobacteria and Campilobacterota were enriched, such as Enterobacter and Helicobacter. After treatment with MCC950, the Bacteroides, Bifidobacterium and Paenibacillus were relatively abundant in the gut flora of mice. Moreover, we observed CST injury located in cervical enlargement of the spinal cord, and MCC950 alleviated it. Furthermore, treatment with MCC950 decreased the mNSS score and brain water content in ICH. Taken together, the present study showed that MCC950 modulated gut microbiota, effectively attenuated CST injury located in cervical enlargement of the spinal cord, and ameliorated neurological deficits after ICH. This study provided a novel report that links NLRP3 inflammasome inhibition, gut microbiota alteration and CST injury following ICH and profound implications for ICH treatment.
Collapse
Affiliation(s)
- Linglong Xiao
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Huaping Zheng
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Jing Li
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Meiqin Zeng
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Dian He
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Jianhao Liang
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Kaijian Sun
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Yunhao Luo
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Feng Li
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Baohong Ping
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Wen Yuan
- Laboratory Animal Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Hongwei Zhou
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Qinghua Wang
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
| | - Haitao Sun
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China; Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Centre for Brain Science and BrainInspired Intelligence, Southern Medical University, Guangzhou, China.
| |
Collapse
|
273
|
Kang S, Kim KT, Choi J, Kim H, Cheong K, Bandara A, Lee YH. Genomics and Informatics, Conjoined Tools Vital for Understanding and Protecting Plant Health. PHYTOPATHOLOGY 2022; 112:981-995. [PMID: 34889667 DOI: 10.1094/phyto-10-21-0418-rvw] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Genomics' impact on crop production continuously expands. The number of sequenced plant and microbial species and strains representing diverse populations of individual species rapidly increases thanks to the advent of next-generation sequencing technologies. Their genomic blueprints revealed candidate genes involved in various functions and processes crucial for crop health and helped in understanding how the sequenced organisms have evolved at the genome level. Functional genomics quickly translates these blueprints into a detailed mechanistic understanding of how such functions and processes work and are regulated; this understanding guides and empowers efforts to protect crops from diverse biotic and abiotic threats. Metagenome analyses help identify candidate microbes crucial for crop health and uncover how microbial communities associated with crop production respond to environmental conditions and cultural practices, presenting opportunities to enhance crop health by judiciously configuring microbial communities. Efficient conversion of disparate types of massive genomics data into actionable knowledge requires a robust informatics infrastructure supporting data preservation, analysis, and sharing. This review starts with an overview of how genomics came about and has quickly transformed life science. We illuminate how genomics and informatics can be applied to investigate various crop health-related problems using selected studies. We end the review by noting why community empowerment via crowdsourcing is crucial to harnessing genomics to protect global food and nutrition security without continuously expanding the environmental footprint of crop production.
Collapse
Affiliation(s)
- Seogchan Kang
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Ki-Tae Kim
- Department of Agricultural Life Science, Sunchon National University, Suncheon 57922, Korea
| | - Jaeyoung Choi
- Korea Institute of Science and Technology Gangneung Institute of Natural Products, Gangneung 25451, Korea
| | - Hyun Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
| | - Kyeongchae Cheong
- Plant Immunity Research Center, Seoul National University, Seoul 08826, Korea
| | - Ananda Bandara
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
- Plant Immunity Research Center, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
274
|
Wurster JI, Peterson RL, Belenky P. Streptozotocin-Induced Hyperglycemia Is Associated with Unique Microbiome Metabolomic Signatures in Response to Ciprofloxacin Treatment. Antibiotics (Basel) 2022; 11:585. [PMID: 35625229 PMCID: PMC9137574 DOI: 10.3390/antibiotics11050585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 02/01/2023] Open
Abstract
It is well recognized that the microbiome plays key roles in human health, and that damage to this system by, for example, antibiotic administration has detrimental effects. With this, there is collective recognition that off-target antibiotic susceptibility within the microbiome is a particularly troublesome side effect that has serious impacts on host well-being. Thus, a pressing area of research is the characterization of antibiotic susceptibility determinants within the microbiome, as understanding these mechanisms may inform the development of microbiome-protective therapeutic strategies. In particular, metabolic environment is known to play a key role in the different responses of this microbial community to antibiotics. Here, we explore the role of host dysglycemia on ciprofloxacin susceptibility in the murine cecum. We used a combination of 16S rRNA sequencing and untargeted metabolomics to characterize changes in both microbiome taxonomy and environment. We found that dysglycemia minimally impacted ciprofloxacin-associated changes in microbiome structure. However, from a metabolic perspective, host hyperglycemia was associated with significant changes in respiration, central carbon metabolism, and nucleotide synthesis-related metabolites. Together, these data suggest that host glycemia may influence microbiome function during antibiotic challenge.
Collapse
Affiliation(s)
| | | | - Peter Belenky
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02906, USA; (J.I.W.); (R.L.P.)
| |
Collapse
|
275
|
Deng J, Xiao T, Fan W, Ning Z, Xiao E. Relevance of the microbial community to Sb and As biogeochemical cycling in natural wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151826. [PMID: 34822895 DOI: 10.1016/j.scitotenv.2021.151826] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/07/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
Mining activities lead to elevated levels of antimony (Sb) and arsenic (As) in river systems, having adverse effects on the aquatic environment and human health. Microbes inhabiting river sediment can mediate the transformation of Sb and As, thus changing the toxicity and mobility of Sb and As. Compared to river sediments, natural wetlands could introduce distinct geochemical conditions, leading to the formation of different sedimentary microbial compositions between river sediments and wetland sediments. However, whether such changes in microbial composition could influence the microbially mediated geochemical behavior of Sb or As remains poorly understood. In this study, we collected samples from a river contaminated by Sb tailings and a downstream natural wetland to study the influence of microorganisms on the geochemical behavior of Sb and As after the Sb/As-contaminated river entered the natural wetland. We found that the microbial compositions in the natural wetland soil differed from those in the river sediment. The Sb/As contaminant components (Sb(III), As(III), As(V), Asexe) and nutrients (TC) were important determinants of the difference in the compositions of the microbial communities in the two environments. Taxonomic groups were differentially enriched between the river sediment and wetland soil. For example, the taxonomic groups Xanthomonadales, Clostridiales and Desulfuromonadales were important in the wetland and were likely to involve in Sb/As reduction, sulfate reduction and Fe(III) reduction, whereas Burkholderiales, Desulfobacterales, Hydrogenophilales and Rhodocyclales were important taxonomic groups in the river sediments and were reported to involve in Sb/As oxidation and sulfide oxidation. Our results suggest that microorganisms in both river sediments and natural wetlands can affect the geochemical behavior of Sb/As, but the mechanisms of action are different.
Collapse
Affiliation(s)
- Jinmei Deng
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Tangfu Xiao
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China
| | - Wenjun Fan
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Zengping Ning
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Enzong Xiao
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
276
|
Fu A, Yao B, Dong T, Chen Y, Yao J, Liu Y, Li H, Bai H, Liu X, Zhang Y, Wang C, Guo Y, Li N, Cai S. Tumor-resident intracellular microbiota promotes metastatic colonization in breast cancer. Cell 2022; 185:1356-1372.e26. [PMID: 35395179 DOI: 10.1016/j.cell.2022.02.027] [Citation(s) in RCA: 332] [Impact Index Per Article: 166.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/10/2022] [Accepted: 02/24/2022] [Indexed: 12/12/2022]
Abstract
Tumor-resident intracellular microbiota is an emerging tumor component that has been documented for a variety of cancer types with unclear biological functions. Here, we explored the functional significance of these intratumor bacteria, primarily using a murine spontaneous breast-tumor model MMTV-PyMT. We found that depletion of intratumor bacteria significantly reduced lung metastasis without affecting primary tumor growth. During metastatic colonization, intratumor bacteria carried by circulating tumor cells promoted host-cell survival by enhancing resistance to fluid shear stress by reorganizing actin cytoskeleton. We further showed that intratumor administration of selected bacteria strains isolated from tumor-resident microbiota promoted metastasis in two murine tumor models with significantly different levels of metastasis potential. Our findings suggest that tumor-resident microbiota, albeit at low biomass, play an important role in promoting cancer metastasis, intervention of which might therefore be worth exploring for advancing oncology care.
Collapse
Affiliation(s)
- Aikun Fu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China
| | - Bingqing Yao
- School of Life Sciences, Fudan University, Shanghai, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Tingting Dong
- School of Life Sciences, Fudan University, Shanghai, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Yongyi Chen
- Department of Clinical Laboratory, Zhejiang Cancer Hospital, Hangzhou, Zhejiang Province, 310000, China
| | - Jia Yao
- Department of Breast Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Yu Liu
- Department of Breast Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Hang Li
- Westlake University High-Performance Computing Center, Westlake University, Hangzhou, Zhejiang, China
| | - Huiru Bai
- School of Life Sciences, Fudan University, Shanghai, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Xiaoqin Liu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; School of Life Sciences, Fudan University, Shanghai, China
| | - Yue Zhang
- School of Life Sciences, Fudan University, Shanghai, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Chunhui Wang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Westlake Disease Modeling lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Yajing Guo
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Nan Li
- Westlake University High-Performance Computing Center, Westlake University, Hangzhou, Zhejiang, China
| | - Shang Cai
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Westlake Disease Modeling lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
277
|
An Integrative View of the Phyllosphere Mycobiome of Native Rubber Trees in the Brazilian Amazon. J Fungi (Basel) 2022; 8:jof8040373. [PMID: 35448604 PMCID: PMC9025378 DOI: 10.3390/jof8040373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/17/2022] [Accepted: 03/20/2022] [Indexed: 02/04/2023] Open
Abstract
The rubber tree, Hevea brasiliensis, is a neotropical Amazonian species. Despite its high economic value and fungi associated with native individuals, in its original area in Brazil, it has been scarcely investigated and only using culture-dependent methods. Herein, we integrated in silico approaches with novel field/experimental approaches and a case study of shotgun metagenomics and small RNA metatranscriptomics of an adult individual. Scientific literature, host fungus, and DNA databases are biased to fungal taxa, and are mainly related to rubber tree diseases and in non-native ecosystems. Metabarcoding retrieved specific phyllospheric core fungal communities of all individuals, adults, plantlets, and leaves of the same plant, unravelling hierarchical structured core mycobiomes. Basidiomycotan yeast-like fungi that display the potential to produce antifungal compounds and a complex of non-invasive ectophytic parasites (Sooty Blotch and Flyspeck fungi) co-occurred in all samples, encompassing the strictest core mycobiome. The case study of the same adult tree (previously studied using culture-dependent approach) analyzed by amplicon, shotgun metagenomics, and small RNA transcriptomics revealed a high relative abundance of insect parasite-pathogens, anaerobic fungi and a high expression of Trichoderma (a fungal genus long reported as dominant in healthy wild rubber trees), respectively. Altogether, our study unravels new and intriguing information/hypotheses of the foliar mycobiome of native H. brasiliensis, which may also occur in other native Amazonian trees.
Collapse
|
278
|
Zhou S, Rajput AP, Mao T, Liu Y, Ellepola G, Herath J, Yang J, Meegaskumbura M. Adapting to Novel Environments Together: Evolutionary and Ecological Correlates of the Bacterial Microbiome of the World's Largest Cavefish Diversification (Cyprinidae, Sinocyclocheilus). Front Microbiol 2022; 13:823254. [PMID: 35359710 PMCID: PMC8964274 DOI: 10.3389/fmicb.2022.823254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 02/09/2022] [Indexed: 11/27/2022] Open
Abstract
The symbiosis between a host and its microbiome is essential for host fitness, and this association is a consequence of the host’s physiology and habitat. Sinocyclocheilus, the largest cavefish diversification of the world, an emerging multi-species model system for evolutionary novelty, provides an excellent opportunity for examining correlates of host evolutionary history, habitat, and gut-microbial community diversity. From the diversification-scale patterns of habitat occupation, major phylogenetic clades (A–D), geographic distribution, and knowledge from captive-maintained Sinocyclocheilus populations, we hypothesize habitat to be the major determinant of microbiome diversity, with phylogeny playing a lesser role. For this, we subject environmental water samples and fecal samples (representative of gut-microbiome) from 24 Sinocyclocheilus species, both from the wild and after being in captivity for 6 months, to bacterial 16S rRNA gene profiling using Illumina sequencing. We see significant differences in the gut microbiota structure of Sinocyclocheilus, reflective of the three habitat types; gut microbiomes too, were influenced by host-related factors. There is no significant association between the gut microbiomes and host phylogeny. However, there is some microbiome related structure at the clade level, with the most geographically distant clades (A and D) being the most distinct, and the two overlapping clades (B and C) showing similarities. Microbes inhabiting water were not a cause for significant differences in fish-gut microbiota, but water quality parameters were. Transferring from wild to captivity, the fish microbiomes changed significantly and became homogenized, signifying plastic changes and highlighting the importance of environmental factors (habitat) in microbiome community assembly. The core microbiome of this group, at higher taxonomic scale, resembled that of other teleost fishes. Our results suggest that divergent natural environments giving rise to evolutionary novelties underlying host adaptations, also includes the microbiome of these fishes.
Collapse
Affiliation(s)
- Shipeng Zhou
- Eco-Evo-Devo Laboratory, Guangxi Key Laboratory in Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, China
| | - Amrapali P Rajput
- Eco-Evo-Devo Laboratory, Guangxi Key Laboratory in Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, China
| | - Tingru Mao
- Eco-Evo-Devo Laboratory, Guangxi Key Laboratory in Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, China
| | - Yewei Liu
- Eco-Evo-Devo Laboratory, Guangxi Key Laboratory in Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, China
| | - Gajaba Ellepola
- Eco-Evo-Devo Laboratory, Guangxi Key Laboratory in Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, China
| | - Jayampathi Herath
- Eco-Evo-Devo Laboratory, Guangxi Key Laboratory in Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, China
| | - Jian Yang
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Nanning Normal University, Nanning, China
| | - Madhava Meegaskumbura
- Eco-Evo-Devo Laboratory, Guangxi Key Laboratory in Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, China
| |
Collapse
|
279
|
Singh N, Haider NB. Microbiota, Microbiome, and Retinal Diseases. Int Ophthalmol Clin 2022; 62:197-214. [PMID: 35325919 DOI: 10.1097/iio.0000000000000418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
280
|
Zhou Y, Liu M, Yang J. Recovering metagenome-assembled genomes from shotgun metagenomic sequencing data: methods, applications, challenges, and opportunities. Microbiol Res 2022; 260:127023. [DOI: 10.1016/j.micres.2022.127023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/07/2022] [Accepted: 04/05/2022] [Indexed: 12/12/2022]
|
281
|
Wensel CR, Pluznick JL, Salzberg SL, Sears CL. Next-generation sequencing: insights to advance clinical investigations of the microbiome. J Clin Invest 2022; 132:e154944. [PMID: 35362479 PMCID: PMC8970668 DOI: 10.1172/jci154944] [Citation(s) in RCA: 143] [Impact Index Per Article: 71.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Next-generation sequencing (NGS) technology has advanced our understanding of the human microbiome by allowing for the discovery and characterization of unculturable microbes with prediction of their function. Key NGS methods include 16S rRNA gene sequencing, shotgun metagenomic sequencing, and RNA sequencing. The choice of which NGS methodology to pursue for a given purpose is often unclear for clinicians and researchers. In this Review, we describe the fundamentals of NGS, with a focus on 16S rRNA and shotgun metagenomic sequencing. We also discuss pros and cons of each methodology as well as important concepts in data variability, study design, and clinical metadata collection. We further present examples of how NGS studies of the human microbiome have advanced our understanding of human disease pathophysiology across diverse clinical contexts, including the development of diagnostics and therapeutics. Finally, we share insights as to how NGS might further be integrated into and advance microbiome research and clinical care in the coming years.
Collapse
Affiliation(s)
| | - Jennifer L. Pluznick
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Steven L. Salzberg
- Department of Biomedical Engineering
- Department of Computer Science, and
- Department of Biostatistics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Cynthia L. Sears
- Department of Medicine and
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
282
|
La X, Jiang H, Chen A, Zheng H, Shen L, Chen W, Yang F, Zhang L, Cai X, Mao H, Cheng L. Profile of the oral microbiota from preconception to the third trimester of pregnancy and its association with oral hygiene practices. J Oral Microbiol 2022; 14:2053389. [PMID: 35341210 PMCID: PMC8942530 DOI: 10.1080/20002297.2022.2053389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background The oral microbiota plays vital roles in both oral and systemic health, but limited studies have explored the transition of the female oral microbiota from preconception to pregnancy along with pronounced hormonal fluctuations. Aim To characterize the oral microbiota among women in preconception and pregnancy through a prospective study and to explore the associations between the oral microbiota and oral hygiene practices. Methods A total of 202 unstimulated saliva samples were collected from 101 women in both preconception and late pregnancy. The oral microbiota was analyzed using 16S rRNA gene sequencing. Results The Ace and phylogenetic diversity (PD) index were significantly lower in the third trimester than preconception. The pathogenic taxa Prevotella and Atopobium parvulum were significantly higher during late pregnancy than preconception. Women with overall better oral hygiene practice showed lower richness and diversity in preconception compared to women with poorer oral hygiene practice. The abundance of pathogens such as Dialister during both preconception and pregnancy decreased among women with better oral hygiene practice. Conclusions The composition of the oral microbiota changed slightly from preconception to late pregnancy, with more pathogens in saliva samples during pregnancy. Improving oral hygiene practices has the potential to maintain oral micro-ecological balance.
Collapse
Affiliation(s)
- Xuena La
- School of Public Health, Key Laboratory of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Xuhui District, Shanghai,China.,Department of Non-communicable Diseases Surveillance, Shanghai Municipal Center for Disease Control and Prevention (SCDC), Changning District, Shanghai,China
| | - Hong Jiang
- School of Public Health, Key Laboratory of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Xuhui District, Shanghai,China
| | - An Chen
- Institute of Healthcare Engineering, Management and Architecture (HEMA), Department of Industrial Engineering and Management, Aalto University, Espoo, Finland
| | - Huajun Zheng
- NHC Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Xuhui District, Shanghai,China
| | - Liandi Shen
- Department of Administrative Office, Jiading Maternal and Child Health Care Hospital, Jiading District, Shanghai,China
| | - Weiyi Chen
- School of Public Health, Key Laboratory of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Xuhui District, Shanghai,China
| | - Fengyun Yang
- Department of Administrative Office, Jiading Maternal and Child Health Care Hospital, Jiading District, Shanghai,China
| | - Lifeng Zhang
- Department of Administrative Office, Jiading Maternal and Child Health Care Hospital, Jiading District, Shanghai,China
| | - Xushan Cai
- Department of Woman Health care, Jiading Maternal and Child Health Care Hospital, Jiading District, Shanghai, China
| | - Hongfang Mao
- Department of Woman Health care, Jiading Maternal and Child Health Care Hospital, Jiading District, Shanghai, China
| | - Lu Cheng
- Department of Computer Science, Aalto University, Espoo, Finland
| |
Collapse
|
283
|
Song S, Wang X, Wang Y, Li T, Huang J. NO 3- is an important driver of nitrite-dependent anaerobic methane oxidation bacteria and CH 4 fluxes in the reservoir riparian zone. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:16138-16151. [PMID: 34647205 DOI: 10.1007/s11356-021-16914-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/03/2021] [Indexed: 06/13/2023]
Abstract
Nitrite-dependent anaerobic methane oxidation (N-DAMO) is an important biological process that combines microbial nitrogen and carbon cycling and is mainly carried out by nitrite-dependent anaerobic methane-oxidizing bacteria. The discovery of this microbial process has changed the conventional view of methane oxidation and nitrogen loss. In this study, the abundance, diversity, and community structure of N-DAMO bacteria were investigated based on high-throughput sequencing and fluorescence quantitative PCR measurements. We examined environmental factors driving the variations of CH4 fluxes and N-DAMO bacterial using correlation analysis and redundancy analysis. We found low CH4 fluxes and abundant N-DAMO bacteria in the riparian zone. After decomposing the effects of single variables and exploring them, NO3- was the only significant factor that significantly correlated with the abundance and richness of the N-DAMO community and gas fluxes (p < 0.05). Under the influence of three different land use types, the increase in NO3- (grassland vs. woodland and sparse woods, + 132.81% and + 106.25%) caused structural changes in the composition of the N-DAMO bacterial community, increasing its abundance (- 9.58% and + 21.19%), thus promoting the oxidation of CH4 and reduced CH4 emissions (+ 4.78% and + 35.63%) from the riparian zone. Appropriate NO3- input helps maintain the existing low methane emission fluxes in the riparian zone of the reservoir.
Collapse
Affiliation(s)
- Shuang Song
- College of Resources, Environment and Tourism, Capital Normal University, Beijing, 100048, China
| | - Xiaoyan Wang
- College of Resources, Environment and Tourism, Capital Normal University, Beijing, 100048, China.
| | - Yubing Wang
- College of Resources, Environment and Tourism, Capital Normal University, Beijing, 100048, China
| | - Tingting Li
- College of Resources, Environment and Tourism, Capital Normal University, Beijing, 100048, China
| | - Jingyu Huang
- College of Resources, Environment and Tourism, Capital Normal University, Beijing, 100048, China
| |
Collapse
|
284
|
Jiao S, Chu H, Zhang B, Wei X, Chen W, Wei G. Linking soil fungi to bacterial community assembly in arid ecosystems. IMETA 2022; 1:e2. [PMID: 38867731 PMCID: PMC10989902 DOI: 10.1002/imt2.2] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/11/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2024]
Abstract
Revealing the roles of biotic factors in driving community assembly, which is crucial for the understanding of biodiversity and ecosystem functions, is a fundamental but infrequently investigated subject in microbial ecology. Here, combining a cross-biome observational study with an experimental microcosm study, we provided evidence to reveal the major roles of biotic factors (i.e., soil fungi and cross-kingdom species associations) in determining soil bacterial biogeography and community assembly in complex terrestrial ecosystems of the arid regions of northwest China. The results showed that the soil fungal richness mediates the balance of assembly processes of bacterial communities, and stochastic assembly processes decreased with increasing fungal richness. Our results further suggest that the predicted increase in aridity conditions due to climate change will reduce bacterial α-diversity, particularly in desert soils and subsurface layer, and induce more negative species associations. Together, our study represents a significant advance in linking soil fungi to the mechanisms underlying bacterial biogeographic patterns and community assembly in arid ecosystems under climate aridity and land-use change scenarios.
Collapse
Affiliation(s)
- Shuo Jiao
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life SciencesNorthwest A&F UniversityYanglingChina
| | - Haiyan Chu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil ScienceChinese Academy of SciencesNanjingChina
| | - Baogang Zhang
- State Key Laboratory of Subtropical SilvicultureZhejiang A&F UniversityHangzhouChina
| | - Xiaorong Wei
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess PlateauNorthwest A&F UniversityYanglingShaanxiChina
| | - Weimin Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life SciencesNorthwest A&F UniversityYanglingChina
| | - Gehong Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life SciencesNorthwest A&F UniversityYanglingChina
| |
Collapse
|
285
|
Chen Y, Li J, Zhang Y, Zhang M, Sun Z, Jing G, Huang S, Su X. Parallel-Meta Suite: Interactive and rapid microbiome data analysis on multiple platforms. IMETA 2022; 1:e1. [PMID: 38867729 PMCID: PMC10989749 DOI: 10.1002/imt2.1] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/13/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2024]
Abstract
Massive microbiome sequencing data has been generated, which elucidates associations between microbes and their environmental phenotypes such as host health or ecosystem status. Outstanding bioinformatic tools are the basis to decipher the biological information hidden under microbiome data. However, most approaches placed difficulties on the accessibility to nonprofessional users. On the other side, the computing throughput has become a significant bottleneck of many analytical pipelines in processing large-scale datasets. In this study, we introduce Parallel-Meta Suite (PMS), an interactive software package for fast and comprehensive microbiome data analysis, visualization, and interpretation. It covers a wide array of functions for data preprocessing, statistics, visualization by state-of-the-art algorithms in a user-friendly graphical interface, which is accessible to diverse users. To meet the rapidly increasing computational demands, the entire procedure of PMS has been optimized by a parallel computing scheme, enabling the rapid processing of thousands of samples. PMS is compatible with multiple platforms, and an installer has been integrated for full-automatic installation.
Collapse
Affiliation(s)
- Yuzhu Chen
- College of Computer Science and TechnologyQingdao UniversityQingdaoShandongChina
| | - Jian Li
- College of Computer Science and TechnologyQingdao UniversityQingdaoShandongChina
| | - Yufeng Zhang
- College of Computer Science and TechnologyQingdao UniversityQingdaoShandongChina
| | - Mingqian Zhang
- College of Computer Science and TechnologyQingdao UniversityQingdaoShandongChina
| | - Zheng Sun
- Single‐Cell Center, Qingdao Institute of BioEnergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoShandongChina
| | - Gongchao Jing
- Single‐Cell Center, Qingdao Institute of BioEnergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoShandongChina
| | - Shi Huang
- Faculty of DentistryThe University of Hong KongHong KongHong Kong SARChina
| | - Xiaoquan Su
- College of Computer Science and TechnologyQingdao UniversityQingdaoShandongChina
- Single‐Cell Center, Qingdao Institute of BioEnergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoShandongChina
| |
Collapse
|
286
|
Chen T, Liu Y, Huang L. ImageGP: An easy-to-use data visualization web server for scientific researchers. IMETA 2022; 1:e5. [PMID: 38867732 PMCID: PMC10989750 DOI: 10.1002/imt2.5] [Citation(s) in RCA: 206] [Impact Index Per Article: 103.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/18/2022] [Accepted: 01/22/2022] [Indexed: 06/14/2024]
Abstract
Data visualization plays a crucial role in illustrating results and sharing knowledge among researchers. Though many types of visualization tools are widely used, most of them require enough coding experience or are designed for specialized usages, or are not free. Here, we present ImageGP, a specialized visualization platform designed for biology and chemistry data illustration. ImageGP could generate generalized plots like lines, bars, scatters, boxes, sets, heatmaps, and histograms with the most common input content in a user-friendly interface. Normally plotting using ImageGP only needs a few mouse clicks. For some plots, one only needs to just paste data and click submit to get the visualization results. Additionally, ImageGP supplies up to 26 parameters to meet customizable requirements. ImageGP also contains specialized plots like volcano plot, functional enrichment plot for most omics-data analysis, and other four specialized functions for microbiome analysis. Since 2017, ImageGP has been running for nearly 5 years and serving 336,951 visits from all over the world. Together, ImageGP (http://www.ehbio.com/ImageGP/) is an effective and efficient tool for experimental researchers to comprehensively visualize and interpret data generated from wet-lab and dry-lab.
Collapse
Affiliation(s)
- Tong Chen
- State Key Laboratory Breeding Base of Dao‐di HerbsNational Resource Center for Chinese Materia Medica, China Academy of Chinese Medical SciencesBeijingChina
| | - Yong‐Xin Liu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed DesignChinese Academy of SciencesBeijingChina
- CAS Center for Excellence in Biotic InteractionsUniversity of Chinese Academy of SciencesBeijingChina
- CAS‐JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Luqi Huang
- State Key Laboratory Breeding Base of Dao‐di HerbsNational Resource Center for Chinese Materia Medica, China Academy of Chinese Medical SciencesBeijingChina
| |
Collapse
|
287
|
Wang Z, Song Y. Toward understanding the genetic bases underlying plant-mediated "cry for help" to the microbiota. IMETA 2022; 1:e8. [PMID: 38867725 PMCID: PMC10989820 DOI: 10.1002/imt2.8] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/29/2022] [Accepted: 01/29/2022] [Indexed: 06/14/2024]
Abstract
Canonical plant stress biology research has focused mainly on the dynamic regulation of internal genetic pathways in stress responses. Increasingly more studies suggest that plant-mediated timely reshaping of the microbiota could also confer benefits in responding to certain biotic and abiotic stresses. This has led to the "cry for help" hypothesis, which is supported by the identification of plant genetic regulators integrating biotic/abiotic stress signaling and microbiota sculpting. Although diverse genetic mutants have been reported to affect microbiota composition, it has been challenging to confirm the causal link between specific microbiota changes and plant phenotypic outputs (e.g., fitness benefits) due to the complexity of microbial community composition. This limits the understanding of the relevance of plant-mediated microbiota changes. We reviewed the genetic bases of host-mediated reshaping of beneficial microbiota in response to biotic and abiotic stresses, and summarized the practical approaches linking microbiota changes and "functional outputs" in plants. Further understanding of the key regulators and pathways governing the assembly of stress-alleviating microbiota would benefit the design of crops that could dynamically enlist beneficial microbiota under conditions of stress.
Collapse
Affiliation(s)
- Zhenghong Wang
- Institute of Plant and Food Science, Department of BiologyUniversity of Science and TechnologyShenzhenChina
| | - Yi Song
- Institute of Plant and Food Science, Department of BiologyUniversity of Science and TechnologyShenzhenChina
| |
Collapse
|
288
|
Zhao Y, Zhang R, Jing L, Wang W. Performance of basalt fiber-periphyton in deep-level nutrient removal: A study concerned periphyton cultivation, characterization and application. CHEMOSPHERE 2022; 291:133044. [PMID: 34826450 DOI: 10.1016/j.chemosphere.2021.133044] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/12/2021] [Accepted: 11/21/2021] [Indexed: 06/13/2023]
Abstract
Nutrients in centralized discharge area of treated sewage can cause high ecological risks to aquatic systems, thus a deep-level nutrient removal is necessary. Recently, periphyton has attracted increasing interests for its excellent performance in nutrient removal. In this study, the suitability and durability of basalt fiber (BF) as a new green carrier of periphyton was evaluated, and development process of basalt fiber-periphtyon (BFP) was tracked with bacterial community succession and physiological indicators. Then, well-developed BFP was applied to deeply purify water containing the same concentration of nutrient as the treated sewage. Results showed the periphyton could adapt to BF and formed in large quantities. In addition, the tensile strength of BF after being used as a carrier was still strong. Bacterial community and physiological indicators indicated that BFP was well developed in 40-50 days. LEfSE and random forest analysis revealed that Deinococcus-Deinococci, Spartobacteria and Chlamydiia at class-level, Rhizobiales and Rhodobacterales at order-level were the biomarkers for development of BFP. Moreover, application results showed BFP efficiently removed nitrogen and phosphorus from water and promoted the transformation of ammonia to nitrate. The concentration of ammonia and phosphorus severely decreased from 4.90 ± 0.11 mg/L to 0.51 ± 0.20 mg/L, from 0.66 ± 0.016 mg/L to 0.023 ± 0.013 mg/L, respectively. The efficient nutrient removal was attributed to accumulation of nitrogen and phosphorus metabolism related organisms in BFP as well as favorable water physic-chemical conditions created by BFP. These results suggest that BF is a suitable and durable green carrier of periphyton, and BFP could efficiently reduce ecological risk to aquatic systems receiving treated sewage.
Collapse
Affiliation(s)
- Yue Zhao
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, China; Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, China
| | - Run Zhang
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, China; Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, China
| | - Liandong Jing
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, China; Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, China.
| | - Wenjing Wang
- Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 7 Chunhui Road, Yantai, 264003, China
| |
Collapse
|
289
|
Liu Y, Chen T, Li D, Fu J, Liu S. iMeta: Integrated meta-omics for biology and environments. IMETA 2022; 1:e15. [PMID: 38867730 PMCID: PMC10989748 DOI: 10.1002/imt2.15] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 03/05/2022] [Indexed: 06/14/2024]
Abstract
The cover of iMeta's inaugural issue. The galaxy represents the complexity and value of bioinformatics and metagenomics. DNA, which represents genetic components that guide biological diversity, is at the center of the galaxy. The spiral arms are the microbiome welcoming scientists from all over the world to make novel discoveries. Let us usher in the metaverse era of the microbiome.
Collapse
Affiliation(s)
- Yong‐Xin Liu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed DesignChinese Academy of SciencesBeijingChina
| | - Tong Chen
- State Key Laboratory Breeding Base of Dao‐di Herbs, National Resource Center for Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
| | - Danyi Li
- Beijing Rexinchang Biotechnology Research Institute Co., Ltd.BeijingChina
| | - Jingyuan Fu
- Department of GeneticsUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Shuang‐Jiang Liu
- State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- State Key Laboratory of Microbial TechnologyShandong UniversityQingdaoChina
| |
Collapse
|
290
|
Zheng X, Wang L, You L, Liu Y, Cohen M, Tian S, Li W, Li X. Dietary licorice enhances in vivo cadmium detoxification and modulates gut microbial metabolism in mice. IMETA 2022; 1:e7. [PMID: 38867726 PMCID: PMC10989944 DOI: 10.1002/imt2.7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 12/27/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2024]
Abstract
Mass cadmium (Cd) poisoning is a serious health problem in many parts of the world. We propose that dietary intervention can be a practical solution to this problem. This study aimed to identify effective dietary products from traditional Chinese herbs that can detoxify Cd. Five candidate herbal foods with detoxifying potential were selected and subjected to mouse toxicological tests. The chemical composition and dose-response effects of licorice on mouse hepatocytes were determined. Licorice was selected for further tests to examine its effects on growth, tissue Cd accumulation, and gut and liver fitness of mice. The expression of hepatic metallothionein (Mt) genes was quantified in vitro in hepatocytes and in vivo in liver tissues of mice. The results showed that licorice dietary intervention was effective in reducing blood Cd by >50% within 1 month. Cd was also substantially reduced in the heart and lung tissues, but increased 2.1-fold in the liver. The liver of Cd poisoned mice improved with licorice intervention. Licorice treatment significantly induced Cd accumulation and expression of the Mt1 gene in hepatic cells both in vitro and in vivo. Licorice intake substantially altered gut microbial structure and enriched Parabacteroides distasonis. Omics results showed that licorice improved gut metabolism, particularly the metabolic pathways for glycyrrhizin, bile acids, and amino acids. Dietary licorice effectively reduced mouse blood Cd and had a profound impact on liver and gut fitness. We conclude that herbal licorice can be used as a dietary intervention for mass Cd poisoning.
Collapse
Affiliation(s)
- Xin Zheng
- Hebei Key Laboratory of Soil Ecology, Centre for Agricultural Resources Research, Institute of Genetics and Developmental BiologyChinese Academy of SciencesShijiazhuangChina
| | - Likun Wang
- Hebei Key Laboratory of Soil Ecology, Centre for Agricultural Resources Research, Institute of Genetics and Developmental BiologyChinese Academy of SciencesShijiazhuangChina
| | - Linhao You
- Laboratory of Molecular Iron Metabolism, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life ScienceHebei Normal UniversityShijiazhuangChina
| | - Yong‐Xin Liu
- Institute of Genetics and Developmental Biology, State Key Laboratory of Plant GenomicsChinese Academy of SciencesBeijingChina
| | - Michael Cohen
- Department of BiologySonoma State UniversityRohnert ParkCaliforniaUSA
| | - Siyu Tian
- Laboratory of Molecular Iron Metabolism, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life ScienceHebei Normal UniversityShijiazhuangChina
| | - Wenjun Li
- Hebei Key Laboratory of Soil Ecology, Centre for Agricultural Resources Research, Institute of Genetics and Developmental BiologyChinese Academy of SciencesShijiazhuangChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xiaofang Li
- Hebei Key Laboratory of Soil Ecology, Centre for Agricultural Resources Research, Institute of Genetics and Developmental BiologyChinese Academy of SciencesShijiazhuangChina
| |
Collapse
|
291
|
Huang J, Wei S, Jiang C, Xiao Z, Liu J, Peng W, Zhang B, Li W. Involvement of Abnormal Gut Microbiota Composition and Function in Doxorubicin-Induced Cardiotoxicity. Front Cell Infect Microbiol 2022; 12:808837. [PMID: 35281446 PMCID: PMC8913537 DOI: 10.3389/fcimb.2022.808837] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/01/2022] [Indexed: 11/18/2022] Open
Abstract
Objectives Doxorubicin (Dox), a chemotherapeutic anthracycline agent for the treatment of a variety of malignancies, has a limitation in clinical application for dose-dependent cardiotoxicity. The purpose of this study was to explore the relationship between the composition/function of the gut microbiota and Dox-induced cardiotoxicity (DIC). Methods C57BL/6J mice were injected intraperitoneally with 15 mg/kg of Dox, with or without antibiotics (Abs) administration. The M-mode echocardiograms were performed to assess cardiac function. The histopathological analysis was conducted by H&E staining and TUNEL kit assay. The serum levels of creatine kinase (CK), CK-MB (CK-MB), lactic dehydrogenase (LDH), and cardiac troponin T (cTnT) were analyzed by an automatic biochemical analyzer. 16S rRNA gene and metagenomic sequencing of fecal samples were used to explore the gut microbiota composition and function. Key Findings Dox caused left ventricular (LV) dilation and reduced LV contractility. The levels of cardiomyocyte apoptosis and myocardial enzymes were elevated in Dox-treated mice compared with the control (Con) group. 16S rRNA gene sequencing results revealed significant differences in microbial composition between the two groups. In the Dox group, the relative abundances of Allobaculum, Muribaculum, and Lachnoclostridium were significantly decreased, whereas Faecalibaculum, Dubosiella, and Lachnospiraceae were significantly increased compared with the Con group at the genus level. Functional enrichment with Cluster of orthologous groups of proteins (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed that the Dox mice displayed different clusters of cellular processes and metabolism from the Con mice. The different species and their functions between the two groups were associated with the clinical factors of cardiac enzymes. Moreover, depletion of the gut microbiota could alleviate Dox-induced myocardial injury and cardiomyocyte apoptosis. Conclusions The study here shows that composition imbalance and functional changes of the gut microbiota can be one of the etiological mechanisms underlying DIC. The gut microbiota may serve as new targets for the treatment of cardiotoxicity and cardiovascular diseases.
Collapse
Affiliation(s)
- Jie Huang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Shanshan Wei
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Chuanhao Jiang
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zijun Xiao
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Jian Liu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Weijun Peng
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Bikui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- *Correspondence: Bikui Zhang, ; Wenqun Li,
| | - Wenqun Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- *Correspondence: Bikui Zhang, ; Wenqun Li,
| |
Collapse
|
292
|
Sheng C, Yang K, He B, Du W, Cai Y, Han Y. Combination of gut microbiota and plasma amyloid-β as a potential index for identifying preclinical Alzheimer's disease: a cross-sectional analysis from the SILCODE study. Alzheimers Res Ther 2022; 14:35. [PMID: 35164860 PMCID: PMC8843023 DOI: 10.1186/s13195-022-00977-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 02/06/2022] [Indexed: 12/15/2022]
Abstract
Background Plasma amyloid-β (Aβ) may facilitate identification of individuals with brain amyloidosis. Gut microbial dysbiosis in Alzheimer’s disease (AD) is increasingly being recognized. However, knowledge about alterations of gut microbiota in preclinical AD, as well as whether the combination of plasma Aβ and gut microbiota could identify preclinical AD, remains largely unknown. Methods This study recruited 34 Aβ-negative cognitively normal (CN−) participants, 32 Aβ-positive cognitively normal (CN+) participants, and 22 patients with cognitive impairment (CI), including 11 patients with mild cognitive impairment (MCI) and 11 AD dementia patients. All participants underwent neuropsychological assessments and fecal microbiota analysis through 16S ribosomal RNA (rRNA) Illumina Miseq sequencing technique. Meso Scale Discovery (MSD) kits were used to quantify the plasma Aβ40, Aβ42, and Aβ42/Aβ40 in CN− and CN+ participants. Using Spearman’s correlation analysis, the associations of global standard uptake value rate (SUVR) with altered gut microbiota and plasma Aβ markers were separately evaluated. Furthermore, the discriminative power of the combination of gut microbiota and plasma Aβ markers for identifying CN+ individuals was investigated. Results Compared with the CN− group, the CN+ group showed significantly reduced plasma Aβ42 (p = 0.011) and Aβ42/Aβ40 (p = 0.003). The relative abundance of phylum Bacteroidetes was significantly enriched, whereas phylum Firmicutes and class Deltaproteobacteria were significantly decreased in CN+ individuals in comparison with that in CN− individuals. Particularly, the relative abundance of phylum Firmicutes and its corresponding SCFA-producing bacteria exhibited a progressive decline tendency from CN− to CN+ and CI. Besides, the global brain Aβ burden was negatively associated with the plasma Aβ42/Aβ40 (r = −0.298, p = 0.015), family Desulfovibrionaceae (r = −0.331, p = 0.007), genus Bilophila (r = −0.247, p = 0.046), and genus Faecalibacterium (r = −0.291, p = 0.018) for all CN participants. Finally, the combination of plasma Aβ markers, altered gut microbiota, and cognitive performance reached a relatively good discriminative power in identifying individuals with CN+ from CN− (AUC = 0.869, 95% CI 0.782 ~ 0.955). Conclusions This study provided the evidence that the gut microbial composition was altered in preclinical AD. The combination of plasma Aβ and gut microbiota may serve as a non-invasive, cost-effective diagnostic tool for early AD screening. Targeting the gut microbiota may be a novel therapeutic strategy for AD. Trial registration This study has been registered in ClinicalTrials.gov (NCT03370744, https://www.clinicaltrials.gov) in November 15, 2017. Supplementary Information The online version contains supplementary material available at 10.1186/s13195-022-00977-x.
Collapse
Affiliation(s)
- Can Sheng
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Kun Yang
- Evidence-Based Medicine Center, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China.,Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Beiqi He
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, 570228, China
| | - Wenying Du
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Yanning Cai
- Department of Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China.,Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Beijing, 100053, China.,Department of Biobank, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Ying Han
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China. .,Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, 570228, China. .,Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, 100053, China. .,National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China.
| |
Collapse
|
293
|
Shen J, Hu Y, Lv J, Zhao H, Wang B, Yang S, Du A, Liu S, An Y. Lung Microbiota Signature and Corticosteroid Responses in Pneumonia-Associated Acute Respiratory Distress Syndrome in Hematological Patients. J Inflamm Res 2022; 15:1317-1329. [PMID: 35237062 PMCID: PMC8884712 DOI: 10.2147/jir.s353662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 02/15/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Jiawei Shen
- Department of Critical Care Medicine, Peking University People’s Hospital, Beijing, People’s Republic of China
| | - Yan Hu
- Department of Respiratory and Critical Care Medicine, Peking University International Hospital, Beijing, People’s Republic of China
| | - Jie Lv
- Department of Critical Care Medicine, Peking University People’s Hospital, Beijing, People’s Republic of China
| | - Huiying Zhao
- Department of Critical Care Medicine, Peking University People’s Hospital, Beijing, People’s Republic of China
| | - Bin Wang
- Department of Critical Care Medicine, Peking University People’s Hospital, Beijing, People’s Republic of China
| | - Shuguang Yang
- Department of Critical Care Medicine, Peking University People’s Hospital, Beijing, People’s Republic of China
| | - Anqi Du
- Department of Critical Care Medicine, Peking University People’s Hospital, Beijing, People’s Republic of China
| | - Shuang Liu
- Department of Respiratory and Critical Care Medicine, Peking University International Hospital, Beijing, People’s Republic of China
| | - Youzhong An
- Department of Critical Care Medicine, Peking University People’s Hospital, Beijing, People’s Republic of China
- Correspondence: Youzhong An, Department of Critical Care Medicine, Peking University People’s Hospital, Beijing, People’s Republic of China, Email
| |
Collapse
|
294
|
Xu Y, Lei B, Zhang Q, Lei Y, Li C, Li X, Yao R, Hu R, Liu K, Wang Y, Cui Y, Wang L, Dai J, Li L, Ni W, Zhou P, Liu ZX, Hu S. ADDAGMA: A Database for Domestic Animal Gut Microbiome Atlas. Comput Struct Biotechnol J 2022; 20:891-898. [PMID: 35222847 PMCID: PMC8858777 DOI: 10.1016/j.csbj.2022.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
We curated all publicly available high-throughput sequencing data on gut microbiomes for four domestic animal species. We compiled data for multiple levels of microbial taxa and classified the associated animal phenotypes in detail. Exhibiting the dynamic changes of animal gut microbes under different conditions. We developed a user-friendly website for browsing, searching, and displaying dynamic changes in animal gut microbes under different conditions.
Animal gut microbiomes play important roles in the health, diseases, and production of animal hosts. The volume of animal gut metagenomic data, including both 16S amplicon and metagenomic sequencing data, has been increasing exponentially in recent years, making it increasingly difficult for researchers to query, retrieve, and reanalyze experimental data and explore new hypotheses. We designed a database called the domestic animal gut microbiome atlas (ADDAGMA) to house all publicly available, high-throughput sequencing data for the gut microbiome in domestic animals. ADDAGMA enhances the availability and accessibility of the rapidly growing body of metagenomic data. We annotated microbial and metadata from four domestic animals (cattle, horse, pig, and chicken) from 356 published papers to construct a comprehensive database that is equipped with browse and search functions, enabling users to make customized, complicated, biologically relevant queries. Users can quickly and accurately obtain experimental information on sample types, conditions, and sequencing platforms, and experimental results including microbial relative abundances, microbial taxon-associated host phenotype, and P-values for gut microbes of interest. The current version of ADDAGMA includes 290,422 quantification events (changes in abundance) for 3215 microbial taxa associated with 48 phenotypes. ADDAGMA presently covers gut microbiota sequencing data from pig, cattle, horse, and chicken, but will be expanded to include other domestic animals. ADDAGMA is freely available at (http://addagma.omicsbio.info/).
Collapse
Affiliation(s)
- Yueren Xu
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Bingbing Lei
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Qingfeng Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yunjiao Lei
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Cunyuan Li
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Xiaoyue Li
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Rui Yao
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Ruirui Hu
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Kaiping Liu
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Yue Wang
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Yuying Cui
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Limin Wang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, Xinjiang 832003, China
| | - Jihong Dai
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Lei Li
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Wei Ni
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Ping Zhou
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, Xinjiang 832003, China
- Corresponding authors.
| | - Ze-Xian Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Corresponding authors.
| | - Shengwei Hu
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China
- Corresponding authors.
| |
Collapse
|
295
|
Wang H, Elyamine AM, Liu Y, Liu W, Chen Q, Xu Y, Peng T, Hu Z. Hyunsoonleella sp. HU1-3 Increased the Biomass of Ulva fasciata. Front Microbiol 2022; 12:788709. [PMID: 35173690 PMCID: PMC8841488 DOI: 10.3389/fmicb.2021.788709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 12/09/2021] [Indexed: 11/13/2022] Open
Abstract
Green algae are photosynthetic organisms and play an important role in coastal environment. The microbial community on the surface of green algae has an effect on the health and nutrition of the host. However, few species of epiphytic microbiota have been reported to play a role in promoting the growth of algae. In this study, 16S rDNA sequencing was used to study the changes of microbial composition on the surface of Ulva fasciata at different growth stages. Some growth promoting bacteria were identified. The possible growth-promoting behavior of the strains were verified by co-culture of pure bacteria obtained from the surface of U. fasciata with its sterile host. Among the identified species, a new bacterial species, Hyunsoonleella sp. HU1-3 (belonging to the family Flavobacteriaceae) significantly promoted the growth of U. fasciata. The results also showed that there were many genes involved in the synthesis of growth hormone and cytokinin in the genome of Hyunsoonleella sp. HU1-3. This study identified the bacterium Hyunsoonleella sp. HU1-3 for the first time, in which this bacterium has strong growth-promoting effects on U. fasciata. Our findings not only provide insights on the establishment of the surface microbiota of U. fasciata, but also indicate that Hyunsoonleella sp. HU1-3 is one of the important species to promote the growth of U. fasciata.
Collapse
Affiliation(s)
- Han Wang
- Key Laboratory of Resources and Environmental Microbiology, Department of Biology, Shantou University, Shantou, China
| | - Ali Mohamed Elyamine
- Key Laboratory of Resources and Environmental Microbiology, Department of Biology, Shantou University, Shantou, China
| | - Yuchun Liu
- Key Laboratory of Resources and Environmental Microbiology, Department of Biology, Shantou University, Shantou, China
| | - Wei Liu
- Key Laboratory of Resources and Environmental Microbiology, Department of Biology, Shantou University, Shantou, China
| | - Qixuan Chen
- Key Laboratory of Resources and Environmental Microbiology, Department of Biology, Shantou University, Shantou, China
| | - Yan Xu
- Key Laboratory of Resources and Environmental Microbiology, Department of Biology, Shantou University, Shantou, China
- Heyuan Polytechnic, Heyuan, China
| | - Tao Peng
- Key Laboratory of Resources and Environmental Microbiology, Department of Biology, Shantou University, Shantou, China
| | - Zhong Hu
- Key Laboratory of Resources and Environmental Microbiology, Department of Biology, Shantou University, Shantou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| |
Collapse
|
296
|
Yang J, Fu Y, Liu H. Microbiomes of air dust collected during the ground-based closed bioregenerative life support experiment "Lunar Palace 365". ENVIRONMENTAL MICROBIOME 2022; 17:4. [PMID: 35081988 PMCID: PMC8793263 DOI: 10.1186/s40793-022-00399-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/07/2022] [Indexed: 05/07/2023]
Abstract
BACKGROUND Understanding the dynamics of airborne microbial communities and antibiotic resistance genes (ARGs) in space life support systems is important because potential pathogens and antibiotic resistance pose a health risk to crew that can lead to mission failure. There have been few reports on the distribution patterns of microbiomes and ARGs in space life support systems. In particular, there have been no detailed investigations of microbiomes and/or antibiotic resistance based on molecular methods in long-term confined bioregenerative life support systems (BLSSs). Therefore, in the present study, we collected air dust samples from two crew shifts, different areas, and different time points in the "Lunar Palace 365" experiment. We evaluated microbial diversity, species composition, functional potential, and antibiotic resistance by combining cultivation-independent analyses (amplicon, shot-gun sequencing, and qPCR). RESULTS We found that the bacterial community diversity in the Lunar Palace1 (LP1) system was higher than that in a controlled environment but lower than that in an open environment. Personnel exchange led to significant differences in bacterial community diversity, and source tracking analysis revealed that most bacteria in the air derived from the cabin crew and plants, but no differences in microbial function or antibiotic resistance were observed. Thus, human presence had the strongest effect on the succession of microbial diversity in the BLSSs. CONCLUSIONS Our results highlight that microbial diversity in BLSSs is heavily influenced by changes in crew and is unique from other open and controlled environments. Our findings can be used to help develop safe, enclosed BLSS that meet the requirements of human survival and habitation in outer space. In addition, our results can further enhance our understanding of the indoor air microbial community and effectively maintain a safe working and living environment, including plant growth.
Collapse
Affiliation(s)
- Jianlou Yang
- Key Laboratory for Biomechanics and Mechanobiology of the Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, No. 37 Xueyuan Road, Beijing, 100191, China
| | - Yuming Fu
- Key Laboratory for Biomechanics and Mechanobiology of the Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, No. 37 Xueyuan Road, Beijing, 100191, China.
- State Key Laboratory of Virtual Reality Technology and Systems, School of Computer Science and Engineering, Beihang University, Beijing, 100191, China.
- International Joint Research Center of Aerospace Biotechnology and Medical Engineering, Beihang University, Beijing, 100191, China.
| | - Hong Liu
- Key Laboratory for Biomechanics and Mechanobiology of the Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, No. 37 Xueyuan Road, Beijing, 100191, China.
- State Key Laboratory of Virtual Reality Technology and Systems, School of Computer Science and Engineering, Beihang University, Beijing, 100191, China.
- International Joint Research Center of Aerospace Biotechnology and Medical Engineering, Beihang University, Beijing, 100191, China.
| |
Collapse
|
297
|
López-García A, Saborío-Montero A, Gutiérrez-Rivas M, Atxaerandio R, Goiri I, García-Rodríguez A, Jiménez-Montero JA, González C, Tamames J, Puente-Sánchez F, Serrano M, Carrasco R, Óvilo C, González-Recio O. Fungal and ciliate protozoa are the main rumen microbes associated with methane emissions in dairy cattle. Gigascience 2022; 11:6514927. [PMID: 35077540 PMCID: PMC8848325 DOI: 10.1093/gigascience/giab088] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/18/2021] [Accepted: 11/30/2021] [Indexed: 12/13/2022] Open
Abstract
Background Mitigating the effects of global warming has become the main challenge for humanity in recent decades. Livestock farming contributes to greenhouse gas emissions, with an important output of methane from enteric fermentation processes, mostly in ruminants. Because ruminal microbiota is directly involved in digestive fermentation processes and methane biosynthesis, understanding the ecological relationships between rumen microorganisms and their active metabolic pathways is essential for reducing emissions. This study analysed whole rumen metagenome using long reads and considering its compositional nature in order to disentangle the role of rumen microbes in methane emissions. Results The β-diversity analyses suggested a subtle association between methane production and overall microbiota composition (0.01 < R2 < 0.02). Differential abundance analysis identified 36 genera and 279 KEGGs as significantly associated with methane production (Padj < 0.05). Those genera associated with high methane production were Eukaryota from Alveolata and Fungi clades, while Bacteria were associated with low methane emissions. The genus-level association network showed 2 clusters grouping Eukaryota and Bacteria, respectively. Regarding microbial gene functions, 41 KEGGs were found to be differentially abundant between low- and high-emission animals and were mainly involved in metabolic pathways. No KEGGs included in the methane metabolism pathway (ko00680) were detected as associated with high methane emissions. The KEGG network showed 3 clusters grouping KEGGs associated with high emissions, low emissions, and not differentially abundant in either. A deeper analysis of the differentially abundant KEGGs revealed that genes related with anaerobic respiration through nitrate degradation were more abundant in low-emission animals. Conclusions Methane emissions are largely associated with the relative abundance of ciliates and fungi. The role of nitrate electron acceptors can be particularly important because this respiration mechanism directly competes with methanogenesis. Whole metagenome sequencing is necessary to jointly consider the relative abundance of Bacteria, Archaea, and Eukaryota in the statistical analyses. Nutritional and genetic strategies to reduce CH4 emissions should focus on reducing the relative abundance of Alveolata and Fungi in the rumen. This experiment has generated the largest ONT ruminal metagenomic dataset currently available.
Collapse
Affiliation(s)
- Adrián López-García
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Crta. de la Coruña km 7.5, 28040 Madrid, Spain
| | - Alejandro Saborío-Montero
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Crta. de la Coruña km 7.5, 28040 Madrid, Spain.,Escuela de Zootecnia y Centro de Investigación en Nutrición Animal, Universidad de Costa Rica, 11501 San José, Costa Rica
| | - Mónica Gutiérrez-Rivas
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Crta. de la Coruña km 7.5, 28040 Madrid, Spain
| | - Raquel Atxaerandio
- NEIKER - Instituto Vasco de Investigación y Desarrollo Agrario. Basque Research and Technology Alliance (BRTA), Campus Agroalimentario de Arkaute s/n, 01192 Arkaute, Spain
| | - Idoia Goiri
- NEIKER - Instituto Vasco de Investigación y Desarrollo Agrario. Basque Research and Technology Alliance (BRTA), Campus Agroalimentario de Arkaute s/n, 01192 Arkaute, Spain
| | - Aser García-Rodríguez
- NEIKER - Instituto Vasco de Investigación y Desarrollo Agrario. Basque Research and Technology Alliance (BRTA), Campus Agroalimentario de Arkaute s/n, 01192 Arkaute, Spain
| | - Jose A Jiménez-Montero
- Confederación de Asociaciones de Frisona Española (CONAFE), Ctra. de Andalucía km 23600 Valdemoro, 28340 Madrid, Spain
| | - Carmen González
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Crta. de la Coruña km 7.5, 28040 Madrid, Spain
| | - Javier Tamames
- Departamento de Biología de Sistemas, Centro Nacional de Biotecnología, CSIC, Madrid, 28049 Madrid, Spain
| | - Fernando Puente-Sánchez
- Departamento de Biología de Sistemas, Centro Nacional de Biotecnología, CSIC, Madrid, 28049 Madrid, Spain
| | - Magdalena Serrano
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Crta. de la Coruña km 7.5, 28040 Madrid, Spain
| | - Rafael Carrasco
- Departamento de Periodismo y Nuevos Medios, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Cristina Óvilo
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Crta. de la Coruña km 7.5, 28040 Madrid, Spain
| | - Oscar González-Recio
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Crta. de la Coruña km 7.5, 28040 Madrid, Spain.,Departamento de Producción Agraria, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| |
Collapse
|
298
|
Licht P, Mailänder V. Transcriptional Heterogeneity and the Microbiome of Cutaneous T-Cell Lymphoma. Cells 2022; 11:cells11030328. [PMID: 35159138 PMCID: PMC8834405 DOI: 10.3390/cells11030328] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/31/2021] [Accepted: 01/13/2022] [Indexed: 11/16/2022] Open
Abstract
Cutaneous T-Cell Lymphomas (CTCL) presents with substantial clinical variability and transcriptional heterogeneity. In the recent years, several studies paved the way to elucidate aetiology and pathogenesis of CTCL using sequencing methods. Several T-cell subtypes were suggested as the source of disease thereby explaining clinical and transcriptional heterogeneity of CTCL entities. Several differentially expressed pathways could explain disease progression. However, exogenous triggers in the skin microenvironment also seem to affect CTCL status. Especially Staphylococcus aureus was shown to contribute to disease progression. Only little is known about the complex microbiome patterns involved in CTCL and how microbial shifts might impact this malignancy. Nevertheless, first hints indicate that the microbiome might at least in part explain transcriptional heterogeneity and that microbial approaches could serve in diagnosis and prognosis. Shaping the microbiome could be a treatment option to maintain stable disease. Here, we review current knowledge of transcriptional heterogeneity of and microbial influences on CTCL. We discuss potential benefits of microbial applications and microbial directed therapies to aid patients with CTCL burden.
Collapse
Affiliation(s)
- Philipp Licht
- Dermatology Clinic, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany;
| | - Volker Mailänder
- Dermatology Clinic, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany;
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Correspondence:
| |
Collapse
|
299
|
Xu R, Zhang M, Lin H, Gao P, Yang Z, Wang D, Sun X, Li B, Wang Q, Sun W. Response of soil protozoa to acid mine drainage in a contaminated terrace. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126790. [PMID: 34358973 DOI: 10.1016/j.jhazmat.2021.126790] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/28/2021] [Accepted: 07/28/2021] [Indexed: 05/28/2023]
Abstract
Acid mine drainage (AMD) system represents one of the most unfavorable habitats for microorganisms due to its low pH and high concentrations of metals. Compared to bacteria and fungi, our understanding regarding the response of soil protozoa to such extremely acidic environments remains limited. This study characterized the structures of protozoan communities inhabiting a terrace heavily contaminated by AMD. The sharp environmental gradient of this terrace was generated by annual flooding from an AMD lake located below, which provided a natural setting to unravel the environment-protozoa interactions. Previously unrecognized protozoa, such as Apicomplexa and Euglenozoa, dominated the extremely acidic soils, rather than the commonly recognized members (e.g., Ciliophora and Cercozoa). pH was the most important factor regulating the abundance of protozoan taxa. Metagenomic analysis of protozoan metabolic potential showed that many functional genes encoding for the alleviation of acid stress and various metabolic pathways were enriched, which may facilitate the survival and adaptation of protozoa to acidic environments. In addition, numerous co-occurrences between protozoa and bacterial or fungal taxa were observed, suggesting shared environmental preferences or potential bio-interactions among them. Future studies are required to confirm the ecological roles of these previously unrecognized protozoa as being important soil microorganisms.
Collapse
Affiliation(s)
- Rui Xu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Miaomiao Zhang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Hanzhi Lin
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Pin Gao
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Zhaohui Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xiaoxu Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Baoqin Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Qi Wang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Weimin Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; School of Environment, Henan Normal University, PR China; Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, PR China.
| |
Collapse
|
300
|
Love CJ, Masson BA, Gubert C, Hannan AJ. The microbiota-gut-brain axis in Huntington's disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 167:141-184. [DOI: 10.1016/bs.irn.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|