251
|
Non-coding RNAs in breast cancer: Implications for programmed cell death. Cancer Lett 2022; 550:215929. [DOI: 10.1016/j.canlet.2022.215929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/23/2022] [Accepted: 09/23/2022] [Indexed: 11/21/2022]
|
252
|
Du L, Wang X, Chen S, Guo X. The AIM2 inflammasome: A novel biomarker and target in cardiovascular disease. Pharmacol Res 2022; 186:106533. [PMID: 36332811 DOI: 10.1016/j.phrs.2022.106533] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/11/2022] [Accepted: 10/30/2022] [Indexed: 11/09/2022]
Abstract
Absent in melanoma 2 (AIM2) is a cytoplasmic sensor that recognises the double-strand DNA. AIM2 inflammasome is a protein platform in the cell that initiates innate immune responses by cleaving pro-caspase-1 and converting IL-1β and IL-18 to their mature forms. Additionally, AIM2 inflammasome promotes pyroptosis by converting Gasdermin-D (GSDMD) to GSDMD-N fragments. An increasing number of studies have indicated the important and decisive roles of the AIM2 inflammasome, IL-1β, and pyroptosis in cardiovascular diseases, such as coronary atherosclerosis, myocardial infarction, ischaemia/reperfusion injury, heart failure, aortic aneurysm and ischaemic stroke. Here, we review the molecular mechanism of the activation and effect of the AIM2 inflammasome in cardiovascular disease, revealing new insights into pathogenic factors that may be targeted to treat cardiovascular disease and related dysfunctions.
Collapse
Affiliation(s)
- Luping Du
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Xuyang Wang
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Siyuan Chen
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Xiaogang Guo
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
253
|
Tang S, Yang C, Li S, Ding Y, Zhu D, Ying S, Sun C, Shi Y, Qiao J, Fang H. Genetic and pharmacological targeting of GSDMD ameliorates systemic inflammation in macrophage activation syndrome. J Autoimmun 2022; 133:102929. [PMID: 36326513 DOI: 10.1016/j.jaut.2022.102929] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 09/29/2022] [Accepted: 10/07/2022] [Indexed: 11/05/2022]
Abstract
Macrophage activation syndrome (MAS), a potentially life-threatening complication of autoimmune/autoinflammatory diseases, is characterized by the excessive expansion and activation of macrophages and cytotoxic T lymphocytes in multiple organs. Most commonly, MAS occurs in patients with systemic juvenile idiopathic arthritis and in its adult equivalent, adult-onset Still's disease (AOSD). Gasdermin D (GSDMD) is a critical pore-forming effector protein that mediates pro-inflammatory cytokine secretion via releasing its N terminal fragments to form transmembrane pores. GSDMD has been implicated in various inflammatory diseases, however, its role in MAS remains elusive. Here, we unveiled that the serum levels of GSDMD-N were elevated in patients with AOSD compared to heathy controls. In addition, the emergence of MAS features in AOSD patients resulted in further elevation. The serum levels of GSDMD were positively correlated with ferritin and interleukin-18 (IL-18). Repeated toll-like receptor 9 stimulation with unmethylated cytosine-phosphate-guanine (CpG) induced MAS symptoms in wild-type mice, including body weight loss, pancytopenia and hepatosplenomegaly. Genetic deletion and pharmacological inhibition of GSDMD ameliorated MAS symptoms in mice with the concomitant reduction of splenic and hepatic macrophage infiltration and IL-18 production. Consistent with these in vivo results, bone marrow-derived macrophages obtained from GSDMD-/- mice or treated with GSDMD inhibitor disulfiram exhibited attenuated IL-18 expression after CpG stimulation. Collectively, our findings identified GSDMD as a novel marker for MAS complication and a promising target for MAS treatment.
Collapse
Affiliation(s)
- Shunli Tang
- Department of Dermatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Dermatology, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, China
| | - Changyi Yang
- Department of Dermatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Sheng Li
- Department of Dermatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuwei Ding
- Department of Dermatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dingxian Zhu
- Department of Dermatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuni Ying
- Department of Dermatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chuanyin Sun
- Department of Rheumatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu Shi
- Department of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Jianjun Qiao
- Department of Dermatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Hong Fang
- Department of Dermatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
254
|
Zhang RN, Sun ZJ, Zhang L. Pyroptosis in inflammatory bone diseases: Molecular insights and targeting strategies. FASEB J 2022; 36:e22670. [PMID: 36412502 DOI: 10.1096/fj.202201229r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/02/2022] [Accepted: 11/11/2022] [Indexed: 11/23/2022]
Abstract
Inflammatory bone diseases include osteoarthritis (OA) and rheumatoid arthritis (RA), which can cause severe bone damage in a chronic inflammation state, putting tremendous pressure on the patients' families and government agencies regarding medical costs. In addition, the complexity of osteoimmunology makes research on these diseases difficult. Hence, it is urgent to determine the potential mechanisms and find effective drugs to target inflammatory bone diseases to reduce the negative effects of these diseases. Recently, pyroptosis, a gasdermin-induced necrotic cell death featuring secretion of pro-inflammatory cytokines and lysis, has become widely known. Based on the effect of pyroptosis on immunity, this process has gradually emerged as a vital component in the etiopathogenesis of inflammatory bone diseases. Herein, we review the characteristics and mechanisms of pyroptosis and then focus on its clinical significance in inflammatory bone diseases. In addition, we summarize the current research progress of drugs targeting pyroptosis to enhance the therapeutic efficacy of inflammatory bone diseases and provide new insights for future directions.
Collapse
Affiliation(s)
- Ruo-Nan Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Endodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhi-Jun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral Maxillofacial-Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Lu Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Endodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
255
|
Cai X, Liang X, Wang K, Liu Y, Hao M, Li H, Dai X, Ding L. Pyroptosis-related lncRNAs: A novel prognosis signature of colorectal cancer. Front Oncol 2022; 12:983895. [PMID: 36531020 PMCID: PMC9748486 DOI: 10.3389/fonc.2022.983895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/19/2022] [Indexed: 08/25/2023] Open
Abstract
Pyroptosis is a newly discovered programmed cell death mechanism involved in tumorigenesis. Long non-coding RNAs (lncRNAs) have been implicated in colorectal cancer (CRC). However, the potential role of pyroptosis-related lncRNAs (PRLs) in CRC remains unelucidated. Therefore, we retrieved transcriptomic data of CRC patients from The Cancer Genome Atlas (TCGA). With the use of univariate and multivariate Cox proportional hazards regression models and the random forest algorithm, a new risk model was constructed based on eight PRLs: Z99289.2, FENDRR, CCDC144NL-ASL, TEX41, MNX1-AS1, NKILA, LINC02798, and LINC02381. Then, according to the Kaplan-Meier plots, the relationship of PRLs with the survival of CRC patients was explored and validated with our risk model in external datasets (Gene Expression Omnibus (GEO) databases; GEO17536, n = 177, and GSE161158, n = 250). To improve its clinical utility, a nomogram combining PRLs that could predict the clinical outcome of CRC patients was established. A full-spectrum immune landscape of CRC patients mediated by PRLs could be described. The PRLs were stratified into two molecular subtypes involved in immune modulators, immune infiltration of tumor immune microenvironment, and inflammatory pathways. Afterward, Tumor Immune Dysfunction and Exclusion (TIDE) and microsatellite instability (MSI) scores were analyzed. Three independent methods were applied to predict PRL-related sensitivity to chemotherapeutic drugs. Our comprehensive analysis of PRLs in CRC patients demonstrates a potential role of PRLs in predicting response to treatment and prognosis of CRC patients, which may provide a better understanding of molecular mechanisms underlying CRC pathogenesis and facilitate the development of effective immunotherapy.
Collapse
Affiliation(s)
- Xing Cai
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoqing Liang
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Kun Wang
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Yin Liu
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Mengdi Hao
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Huimin Li
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xiaofang Dai
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Ding
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
256
|
Zhao W, He C, Jiang J, Zhao Z, Yuan H, Wang F, Shen B. The role of discoid domain receptor 1 on renal tubular epithelial pyroptosis in diabetic nephropathy. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2022; 26:427-438. [PMID: 36302618 PMCID: PMC9614395 DOI: 10.4196/kjpp.2022.26.6.427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/13/2022] [Accepted: 04/13/2022] [Indexed: 11/07/2022]
Abstract
Pyroptosis, a form of cell death associated with inflammation, is known to be involved in diabetic nephropathy (DN), and discoid domain receptor 1 (DDR1), an inflammatory regulatory protein, is reported to be associated with diabetes. However, the mechanism underlying DDR1 regulation and pyroptosis in DN remains unknown. We aimed to investigate the effect of DDR1 on renal tubular epithelial cell pyroptosis and the mechanism underlying DN. In this study, we used high glucose (HG)-treated HK-2 cells and rats with a single intraperitoneal injection of streptozotocin as DN models. Subsequently, the expression of pyroptosis-related proteins (cleaved caspase-1, GSDMD-N, Interleukin-1β [IL-1β], and interleukin-18 [IL-18]), DDR1, phosphorylated NF-κB (p-NF-κB), and NLR family pyrin domain-containing 3 (NLRP3) inflammasomes were determined through Western blotting. IL-1β and IL-18 levels were determined using ELISA. The rate of pyroptosis was assessed by propidium iodide (PI) staining. The results revealed upregulated expression of pyroptosis-related proteins and increased concentration of IL-1β and IL-18, accompanied by DDR1, p-NF-κB, and NLRP3 upregulation in DN rat kidney tissues and HG-treated HK-2 cells. Moreover, DDR1 knockdown in the background of HG treatment resulted in inhibited expression of pyroptosis-related proteins and attenuation of IL-1β and IL-18 production and PI-positive cell frequency via the NF-κB/NLRP3 pathway in HK-2 cells. However, NLRP3 overexpression reversed the effect of DDR1 knockdown on pyroptosis. In conclusion, we demonstrated that DDR1 may be associated with pyroptosis, and DDR1 knockdown inhibited HG-induced renal tubular epithelial cell pyroptosis. The NF-κB/NLRP3 pathway is probably involved in the underlying mechanism of these findings.
Collapse
Affiliation(s)
- Weichen Zhao
- Department of Pharmacy, Lu'an Hospital Affiliated to Anhui Medical University, Lu'an People's Hospital, Lu'an, Anhui 237005, China
| | - Chunyuan He
- Department of Pharmacy, Lu'an Hospital Affiliated to Anhui Medical University, Lu'an People's Hospital, Lu'an, Anhui 237005, China
| | - Junjie Jiang
- Department of Pharmacy, Lu'an Hospital Affiliated to Anhui Medical University, Lu'an People's Hospital, Lu'an, Anhui 237005, China
| | - Zongbiao Zhao
- Department of Pharmacy, Lu'an Hospital Affiliated to Anhui Medical University, Lu'an People's Hospital, Lu'an, Anhui 237005, China
| | - Hongzhong Yuan
- Department of Pharmacy, Lu'an Hospital Affiliated to Anhui Medical University, Lu'an People's Hospital, Lu'an, Anhui 237005, China
| | - Facai Wang
- Department of Pharmacy, Lu'an Hospital Affiliated to Anhui Medical University, Lu'an People's Hospital, Lu'an, Anhui 237005, China
| | - Bingxiang Shen
- Department of Pharmacy, Lu'an Hospital Affiliated to Anhui Medical University, Lu'an People's Hospital, Lu'an, Anhui 237005, China
| |
Collapse
|
257
|
Liu Y, Shu J, Liu T, Xie J, Li T, Li H, Li L. Nicorandil protects against coronary microembolization-induced myocardial injury by suppressing cardiomyocyte pyroptosis via the AMPK/TXNIP/NLRP3 signaling pathway. Eur J Pharmacol 2022; 936:175365. [DOI: 10.1016/j.ejphar.2022.175365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/25/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
|
258
|
Wan Y, Shen J, Ouyang J, Dong P, Hong Y, Liang L, Liu J. Bibliometric and visual analysis of neutrophil extracellular traps from 2004 to 2022. Front Immunol 2022; 13:1025861. [PMID: 36341351 PMCID: PMC9634160 DOI: 10.3389/fimmu.2022.1025861] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/10/2022] [Indexed: 12/27/2022] Open
Abstract
Background Neutrophil extracellular traps (NETs) are specialized structures formed by neutrophils that were initially found to be important in killing pathogenic bacteria during infection. With the development of related research, the relationship between NETs and diseases such as sepsis, cancer, and systemic lupus erythematosus has received close attention. However, there is a lack of reports that comprehensively and objectively present the current status of NETs-related studies. Therefore, this study aims to visually analyze the current status and trends of NETs-related research by means of bibliometrics and knowledge mapping. Methods NETs-related articles and reviews were retrieved using the Web of Science core collection subject search, and bibliometric analysis was performed in Excel 365, CiteSpace, VOSviewer, and Bibliometrix (R-Tool of R-Studio). Results A total of 4866 publications from 2004 to 2022 were included in the bibliometric analysis. The number of publications shows an increasing trend from year to year. Collaborative network analysis shows that the United States and Germany are the most influential countries in this field, with the highest number of publications and citations. The journal with the most publications is Frontiers in Immunology. Brinkmann Volker is an authoritative author in this field, and his publication "Neutrophil extracellular traps kill bacteria" is the most frequently cited. The literature and keyword analysis shows that the relationship between NETs and diseases (hematological diseases, sepsis, cancer, etc.) and cell death (apoptosis, necroptosis, pyroptosis, etc.) is a popular research topic. Currently, NETs and SARS-CoV-2-related studies are at the forefront of the field. Conclusion This study is the first to visualize the research in NETs-related fields using bibliometric methods, revealing the trends and frontiers of NETs research. This study will provide valuable references for scholars to find research focus questions and partners.
Collapse
Affiliation(s)
- Yantong Wan
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Junyi Shen
- The Second Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Jiafu Ouyang
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Peng Dong
- College of Anesthesiology, Southern Medical University, Guangzhou, China
| | - Yinghao Hong
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Lixin Liang
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jinghua Liu
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China,*Correspondence: Jinghua Liu,
| |
Collapse
|
259
|
Xu G, Guo Z, Liu Y, Yang Y, Lin Y, Li C, Huang Y, Fu Q. Gasdermin D protects against Streptococcus equi subsp. zooepidemicus infection through macrophage pyroptosis. Front Immunol 2022; 13:1005925. [PMID: 36311722 PMCID: PMC9614658 DOI: 10.3389/fimmu.2022.1005925] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/28/2022] [Indexed: 11/13/2022] Open
Abstract
Streptococcus equi subsp. zooepidemicus (S. zooepidemicus, SEZ) is an essential zoonotic bacterial pathogen that can cause various inflammation, such as meningitis, endocarditis, and pneumonia. Gasdermin D (GSDMD) is involved in cytokine release and cell death, indicating an important role in controlling the microbial infection. This study investigated the protective role of GSDMD in mice infected with SEZ and examined the role of GSDMD in peritoneal macrophages in the infection. GSDMD-deficient mice were more susceptible to intraperitoneal infection with SEZ, and the white pulp structure of the spleen was seriously damaged in GSDMD-deficient mice. Although the increased proportion of macrophages did not depend on GSDMD in both spleen and peritoneal lavage fluid (PLF), deficiency of GSDMD caused the minor release of the pro-inflammatory cytokines interleukin-1β (IL-1β) and interleukin-18 (IL-18) during the infection in vivo. In vitro, SEZ infection induced more release of IL-1β, IL-18, and lactate dehydrogenase (LDH) in wild-type macrophages than in GSDMD-deficient macrophages. Finally, we demonstrated that pore formation and pyroptosis of macrophages depended on GSDMD. Our findings highlight the host defense mechanisms of GSDMD against SEZ infection, providing a potential therapeutic target in SEZ infection.
Collapse
Affiliation(s)
- Guobin Xu
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Zheng Guo
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Yuxuan Liu
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Yalin Yang
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Yongjin Lin
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Chunliu Li
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Yunfei Huang
- School of Life Science and Engineering, Foshan University, Foshan, China
- Foshan University Veterinary Teaching Hospital, Foshan University, Foshan, China
| | - Qiang Fu
- School of Life Science and Engineering, Foshan University, Foshan, China
- Foshan University Veterinary Teaching Hospital, Foshan University, Foshan, China
- *Correspondence: Qiang Fu,
| |
Collapse
|
260
|
Jia X, Li Z, Guo Y, Ma H, Wang J, Xue Y, Li B, Cai Y, Yang Q. The potential mechanism of huazhuojiedu decoction in the treatment of ulcerative colitis based on network pharmacology and experimental validation. Front Pharmacol 2022; 13:1033874. [PMID: 36313293 PMCID: PMC9614068 DOI: 10.3389/fphar.2022.1033874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/03/2022] [Indexed: 11/19/2022] Open
Abstract
Huazhuojiedu decoction (HZJDD), a traditional Chinese medicine prescription, has been clinically proven to be an effective treatment for ulcerative colitis (UC). However, the mechanism of HZJDD in the treatment of UC remains unclear. This study combined network pharmacology with experimental validation to explore the potential mechanism of HZJDD on UC. First, the relationship network diagrams between HZJDD and UC were established based on multiple databases. Then, the HZJDD-UC intersection genes target network was constructed and Gene Ontology-Biological processes (GO-BP) analysis was performed to discover the potential pharmacological mechanism. Finally, the results of GO-BP were verified in dextran sulfate sodium salt (DSS) induced UC rats. The network pharmacology results showed that 119 active components and 146 potential targets were screened for HZJDD, and six of the top 15 biological processes belonged to inflammatory response, cellular response to hypoxia, and cellular response to lipopolysaccharide (LPS). The GO-BP results indicated that the mechanism of HZJDD treatment of UC was related to inflammation, oxidative stress, and the regulation of LPS. Animal experiments showed that HZJDD could significantly reduce the disease activity index (DAI) score, improve colon length, and effectively repair the histomorphological and micromorphological changes in DSS-induced UC rats. Moreover, HZJDD reduced the expressions of CRP, TNF-α, IL-6, LPS, IL-1β, and IL-18; downregulated the activity of MDA; and upregulated the activities of CAT, GSH, and SOD in DSS-induced UC rats. Furthermore, HZJDD suppressed the expression of the NLRP3/caspase-1 signaling pathway at the gene and protein levels to inhibit pyroptosis. Network pharmacology and animal experiments showed that HZJDD exerted a therapeutic effect on DSS-induced UC rats by reducing inflammation, oxidative stress, and restraining the NLRP3/caspase-1 signaling pathway to inhibit pyroptosis.
Collapse
Affiliation(s)
- Xuemei Jia
- The First Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang, China
- Department of Gastroenterology, Hebei Province Hospital of Chinese Medicine, Shijiazhuang, China
| | - Ze Li
- The First Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang, China
- Department of Gastroenterology, Hebei Province Hospital of Chinese Medicine, Shijiazhuang, China
| | - Yuxi Guo
- The First Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang, China
- Department of Gastroenterology, Hebei Province Hospital of Chinese Medicine, Shijiazhuang, China
| | - Hongyu Ma
- The First Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang, China
- Department of Traditional Chinese Medicine, Hebei General Hospital, Shijiazhuang, China
| | - Jie Wang
- The First Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang, China
- Department of Gastroenterology, Hebei Province Hospital of Chinese Medicine, Shijiazhuang, China
| | - Yucong Xue
- The First Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang, China
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Bolin Li
- The First Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang, China
- Department of Gastroenterology, Hebei Province Hospital of Chinese Medicine, Shijiazhuang, China
| | - Yanru Cai
- The First Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang, China
- Department of Gastroenterology, Hebei Province Hospital of Chinese Medicine, Shijiazhuang, China
- *Correspondence: Yanru Cai, ; Qian Yang,
| | - Qian Yang
- The First Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang, China
- Department of Gastroenterology, Hebei Province Hospital of Chinese Medicine, Shijiazhuang, China
- *Correspondence: Yanru Cai, ; Qian Yang,
| |
Collapse
|
261
|
Li L, Wu L, Yin X, Li C, Hua Z. Bulk and Single-Cell Transcriptome Analyses Revealed That the Pyroptosis of Glioma-Associated Macrophages Participates in Tumor Progression and Immunosuppression. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1803544. [PMID: 36199426 PMCID: PMC9529448 DOI: 10.1155/2022/1803544] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/13/2022] [Accepted: 08/31/2022] [Indexed: 11/18/2022]
Abstract
Glioma is the most common of all central nervous system (CNS) malignancies and is associated with a poor prognosis. Pyroptosis has been proven to be associated with the progression of multiple tumors and CNS diseases. However, the relationships between pyroptosis and clinical prognosis and immune cell infiltration are unclear in glioma. In this study, we conducted a comprehensive exploration of pyroptosis in glioma. First, prognosis-related genes were screened at each key regulatory locus in the pyroptosis pathway, and the prognostic ability and coexpression relationships of GSDMD and its upstream pathway genes NLRC4/CASP1/CASP4 were identified and well validated in multiple datasets. Tissue microarray-based immunohistochemistry results showed higher levels of NLRC4 and N-terminal GSDMD in high-grade gliomas, providing conclusive evidence of pyroptosis in gliomas. The robustness of the prognostic model based on these four genes was well validated in TCGA and CGGA cohorts. Bulk RNA-seq-based analysis showed that the group defined as the high-risk group according to the model showed activation of multiple inflammatory response pathways and impaired synaptic gene expression and had a higher infiltration of bone marrow-derived macrophages (BMDMs) and a hypersuppressed immune microenvironment. More importantly, three independent single-cell RNA-seq (scRNA-seq) datasets demonstrated that tumor-infiltrating macrophages, particularly BMDMs but not tissue-resident microglia, showed significant coexpression of the GSDMD and CASP genes, and BMDMs from high-grade gliomas accounted for a higher proportion of immune infiltrating cells and had higher expression of pyroptosis genes. Finally, we revealed the activation of pathways in response to LPS/bacteria and oxidative stress during BMDM development toward the pyroptosis cell fate by pseudotime trajectory analysis, suggesting potential BMDM pyroptosis initiators. The above results provide not only novel insights into the pathological mechanisms of glioma but also novel therapeutic targets for glioma, suggesting the potential application of pyroptosis inhibitors (e.g., disulfiram).
Collapse
Affiliation(s)
- Lin Li
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Leyang Wu
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- Changzhou High-Tech Research Institute of Nanjing University and Jiangsu Target Pharma Laboratories Inc., Changzhou, China
| | - Xingpeng Yin
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Chenyang Li
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Zichun Hua
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- Changzhou High-Tech Research Institute of Nanjing University and Jiangsu Target Pharma Laboratories Inc., Changzhou, China
- School of Biopharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
262
|
Chen N, Deng J, Zhang Z, Feng X, Wang H, Chen J, Li L, Cao Y, Jia C, Cao Y. Oxidative stress-triggered pyroptosis mediates Candida albicans susceptibility in diabetic foot. Microb Pathog 2022; 172:105765. [PMID: 36087690 DOI: 10.1016/j.micpath.2022.105765] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/25/2022]
Abstract
An accumulating trend of research demonstrates that diabetic patients are susceptible to skin infections with Candida albicans, but the mechanism still remains unclear. The intense oxidative stress (OS) responses were occurred in the lesion of diabetic mice footpads after C. albicans infection. Localised skin infections would lead to more severe complications while the severity of the condition worsens or the inadequate treatment. Notably, in this study, through the investigation of murine diabetic footpad C. albicans infection model and molecular biotechnology, including histopathological staining, immunofluorescence (IF) staining, quantitative real-time PCR (qPCR), western blot (WB), flow cytometry (FCM), sandwich enzyme-linked immunosorbent assay (ELISA) assays, we found that intense OS responses in the footpad tissue not only mediated the activation of NF-κB protein complex, but also triggered downstream pyroptosis and apoptosis through NLRP3 inflammasome, which is one of the potential reasons for the severe condition of infectious skin injuries in diabetic mice. Caspase-1, a classical signal pathway protein in pyroptosis, could promote pore formation on cell membranes and the release of the cytokine after NLRP3 inflammasome activation. With intense immune-inflammatory responses, the organism also stimulates immune organs such as the spleen and lymph nodes to produce negative feedback regulation and generate CD4+CD25+Foxp3+ Treg cells to rectify the process. Therefore, combined with the results of this work, it is possible to design and screen relevant drugs for NLRP3 inflammasomes as core targets to keep the OS response at a low level in the footpad tissues.
Collapse
Affiliation(s)
- Nan Chen
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200082, China
| | - Jie Deng
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200082, China
| | - Zhihui Zhang
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200082, China
| | - Xia Feng
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200082, China
| | - Hongkang Wang
- Department of Physiology and Pharmacology,School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Jian Chen
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200082, China
| | - Ling Li
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200082, China
| | - Yemin Cao
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200082, China
| | - Chenglin Jia
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200082, China.
| | - Yongbing Cao
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200082, China.
| |
Collapse
|
263
|
KDM3A Attenuates Myocardial Ischemic and Reperfusion Injury by Ameliorating Cardiac Microvascular Endothelial Cell Pyroptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4622520. [PMID: 36092165 PMCID: PMC9463006 DOI: 10.1155/2022/4622520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/22/2022] [Indexed: 12/30/2022]
Abstract
Cardiac microvascular endothelial cell ischemia-reperfusion (CMEC I/R) injury occurs in approximately 50% of acute myocardial infarction patients subjected to successful revascularization therapy. This injury leads to cardiac microcirculatory system dysfunctions, which seriously affect cardiac functions and long-term prognostic outcomes. Previously, we elucidated the role of lysine-specific demethylase 3A (KDM3A) in protecting cardiomyocytes from I/R injury; however, its roles in CMEC I/R injuries have yet to be fully established. In this study, hypoxia/reoxygenation (H/R) treatment significantly impaired CMEC functions and induced their pyroptosis, accompanied by KDM3A downregulation. Then, gain- and loss-of-function assays were performed to investigate the roles of KDM3A in CMEC H/R injury in vitro. KDM3A knockout enhanced CMEC malfunctions and accelerated the expressions of pyroptosis-associated proteins, such as NLRP3, cleaved-caspase-1, ASC, IL-1β, GSDMD-N, and IL-18. Conversely, KDM3A overexpression developed ameliorated alternations in CMEC H/R injury. In vivo, KDM3A knockout resulted in the deterioration of cardiac functions and decreased the no-reflow area as well as capillary density. Mechanistically, KDM3A activated the PI3K/Akt signaling pathway and ameliorated I/R-mediated CMEC pyroptosis. In conclusion, KDM3A is a promising treatment target for alleviating CMEC I/R injury.
Collapse
|
264
|
El-Gamal R, Abdelrahim M, El-Sherbiny M, Enan ET, El-Nablaway M. Gasdermin D: A potential mediator and prognostic marker of bladder cancer. Front Mol Biosci 2022; 9:972087. [PMID: 36120543 PMCID: PMC9474890 DOI: 10.3389/fmolb.2022.972087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/25/2022] [Indexed: 12/24/2022] Open
Abstract
Background: Bladder cancer is considered one of the commonest widespread cancers, its presentation ranges from non-muscle invasive form to being muscle-invasive. The gasdermin family of proteins consists of six proteins. Members of gasdermin family are involved in pyroptosis; which is considered as type of inflammatory apoptosis via participation of gasdermin D and inflammatory caspases. Purpose: The goal of this research was to look into the potential involvement of gasdermin D in pathogenesis of bladder cancer, In addition, to investigate its potential role as a prognostic marker of bladder cancer. Methods: Gasdermin D gene and protein expression was examined in fresh frozen 80 bladder cancer specimens (30 NMIBC, and 50 MIBC) and the matching 80 control tissue samples utilizing real-time polymerase chain reaction and western blotting. Furthermore, the immunoreactivity of gasdermin D protein was also detected by immunohistochemistry. Results: Gasdermin D gene and protein expression showed a highly significant difference between the control and the two bladder cancer groups (p < 0.001), as demonstrated by real-time PCR, western blotting and immunohistochemistry. Cox proportional hazards regression models showed that lower gasdermin D gene expression in cancer patients (≤1.58-fold), and younger age (≤53 years) were linked with a higher risk of local tumor recurrence. Moreover, higher gasdermin D gene expression (>2.18-fold), and lymph nodes’ involvement were associated with an increased mortality. Conclusion: Gasdermin D is involved in the pathogenesis of bladder cancer and muscle invasion, in addition, tissue gasdermin D expression may be used as useful tool to predict local tumor recurrence.
Collapse
Affiliation(s)
- Randa El-Gamal
- Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Medical Experimental Research Center (MERC), Faculty of Medicine, Mansoura University, Mansoura, Egypt
- *Correspondence: Randa El-Gamal, ,
| | - Mona Abdelrahim
- Consultant of Pathology, Urology and Nephrology Center, Mansoura University, Mansoura, Egypt
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, Anatomy Unit, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
| | - Eman T. Enan
- Department of Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mohammad El-Nablaway
- Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Medical Biochemistry Unit, Department of Basic Medical Sciences, College of Medicine, Almaarefa University, Riyad, Saudi Arabia
| |
Collapse
|
265
|
Yang B, Zhang T, Wei L, Zhao B, Wang Q, Yao Z, Yi S. Glucocorticoid induces GSDMD-dependent pyrolysis in PC12 cells via endoplasmic reticulum stress. PLoS One 2022; 17:e0274057. [PMID: 36048803 PMCID: PMC9436126 DOI: 10.1371/journal.pone.0274057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 08/18/2022] [Indexed: 11/18/2022] Open
Abstract
Objective The present study explored whether pyroptosis is involved in the injury process of PC12 cells induced by glucocorticoid (GC) and the regulatory relationship between endoplasmic reticulum stress (ERS) and pyrolysis. Methods LDH leakage of PC12 cells was detected by LDH assay. The number of dead cells was detected by SYTOX green nucleic acid staining. The levels of IL-1β and IL-18 in the supernatants was detected by ELSIA assay. The expression levels of glucose regulated protein 78 (GRP78), cleaved gasdermin D-NT (cleaved-GSDMD-NT), NLR-pyrin domain-containing 3 (NLRP3) and cleaved-caspase-1 were observed by immunofluorescence staining and western blot. Results The LDH assay revealed that GC exposure significantly increased the release of LDH. The results of SYTOX green acid staining showed that GC exposure significantly increased the number of SYTOX green acid-positive cells. The ELSIA assay revealed that GC exposure significantly increased the levels of IL-1β and IL-18 in the supernatants. The results of immunofluorescence staining and western blot showed that GC exposure significantly increased the expression of GRP78, cleaved-GSDMD-NT, NLRP3 and cleaved caspase-1. Treatment with the ERS inhibitor tauroursodeoxycholate (TUDCA) and siRNA GSDMD attenuated related damage and downregulated the expression of the abovementioned proteins. Conclusion The present study clearly demonstrated that GC exposure can induce GSDMD-dependent pyrolysis, and ERS is involved in the above damage process.
Collapse
Affiliation(s)
- Bin Yang
- Xinxiang Key Laboratory of Forensic Toxicology, School of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan, China
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Mental Hospital, Xinxiang, Henan, China
- Lifestyle Science Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Tengteng Zhang
- Xinxiang Key Laboratory of Forensic Toxicology, School of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Lai Wei
- Xinxiang Key Laboratory of Forensic Toxicology, School of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Bin Zhao
- Xinxiang Key Laboratory of Forensic Toxicology, School of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Qingzhi Wang
- Xinxiang Key Laboratory of Forensic Toxicology, School of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Zhijun Yao
- School of Basic Medical Science, Xinxiang Medical University, Xinxiang, Henan, China
| | - Shanyong Yi
- Xinxiang Key Laboratory of Forensic Toxicology, School of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan, China
- * E-mail:
| |
Collapse
|
266
|
Xue Y, Chen C, Tan R, Zhang J, Fang Q, Jin R, Mi X, Sun D, Xue Y, Wang Y, Xiong R, Lu H, Tan W. Artificial Intelligence-Assisted Bioinformatics, Microneedle, and Diabetic Wound Healing: A "New Deal" of an Old Drug. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37396-37409. [PMID: 35913266 DOI: 10.1021/acsami.2c08994] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Diabetic wounds severely influence life, facing grand challenges in clinical treatments. The demand for better treatment is growing dramatically. Diabetic wound healing is challenging because of inflammation, angiogenesis disruptions, and tissue remodeling. Based on sequencing results of diabetic patients' skins and artificial intelligence (AI)-assisted bioinformatics, we excavate a potential therapeutic agent Trichostatin A (TSA) and a potential target histone deacetylase 4 (HDAC4) for diabetic wound healing. The molecular docking simulation reveals the favorable interaction between TSA and HDAC4. Taking advantage of the microneedle (MN) minimally invasive way to pierce the skin barrier for drug administration, we develop a swelling modified MN-mediated patch loaded with TSA to reduce the probability of injection-caused iatrogenic secondary damage. The MN-mediated TSA patch has been demonstrated to reduce inflammation, promote tissue regeneration, and inhibit HDAC4, which provides superior results in diabetic wound healing. We envisage that our explored specific drug TSA and the related MN-mediated drug delivery system can provide an innovative approach for diabetic wound treatment with simple, effective, and safe features and find a broad spectrum of applications in related biomedical fields.
Collapse
Affiliation(s)
- Yanan Xue
- State Key Laboratory of Industrial Control and Technology, Zhejiang University, Hangzhou 310027, China
- Institute of Cyber-Systems and Control, the Department of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University of Medicine, Hangzhou 310016, China
| | - Cheng Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Rong Tan
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Jingyu Zhang
- State Key Laboratory of Industrial Control and Technology, Zhejiang University, Hangzhou 310027, China
- Institute of Cyber-Systems and Control, the Department of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Qin Fang
- State Key Laboratory of Industrial Control and Technology, Zhejiang University, Hangzhou 310027, China
- Institute of Cyber-Systems and Control, the Department of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Rui Jin
- State Key Laboratory of Industrial Control and Technology, Zhejiang University, Hangzhou 310027, China
- Institute of Cyber-Systems and Control, the Department of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xiangyu Mi
- State Key Laboratory of Industrial Control and Technology, Zhejiang University, Hangzhou 310027, China
- Institute of Cyber-Systems and Control, the Department of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Danying Sun
- State Key Laboratory of Industrial Control and Technology, Zhejiang University, Hangzhou 310027, China
- Institute of Cyber-Systems and Control, the Department of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yinan Xue
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yue Wang
- State Key Laboratory of Industrial Control and Technology, Zhejiang University, Hangzhou 310027, China
- Institute of Cyber-Systems and Control, the Department of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Rong Xiong
- State Key Laboratory of Industrial Control and Technology, Zhejiang University, Hangzhou 310027, China
- Institute of Cyber-Systems and Control, the Department of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Haojian Lu
- State Key Laboratory of Industrial Control and Technology, Zhejiang University, Hangzhou 310027, China
- Institute of Cyber-Systems and Control, the Department of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Weiqiang Tan
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University of Medicine, Hangzhou 310016, China
| |
Collapse
|
267
|
Wu YL, Zhang CH, Teng Y, Pan Y, Liu NC, Liu PX, Zhu X, Su XL, Lin J. Propionate and butyrate attenuate macrophage pyroptosis and osteoclastogenesis induced by CoCrMo alloy particles. Mil Med Res 2022; 9:46. [PMID: 35996168 PMCID: PMC9396885 DOI: 10.1186/s40779-022-00404-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 07/21/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Wear particles-induced osteolysis is a major long-term complication after total joint arthroplasty. Up to now, there is no effective treatment for wear particles-induced osteolysis except for the revision surgery, which is a heavy psychological and economic burden to patients. A metabolite of gut microbiota, short chain fatty acids (SCFAs), has been reported to be beneficial for many chronic inflammatory diseases. This study aimed to investigate the therapeutic effect of SCFAs on osteolysis. METHODS A model of inflammatory osteolysis was established by applying CoCrMo alloy particles to mouse calvarium. After two weeks of intervention, the anti-inflammatory effects of SCFAs on wear particle-induced osteolysis were evaluated by Micro-CT analysis and immunohistochemistry staining. In vitro study, lipopolysaccharide (LPS) primed bone marrow-derived macrophages (BMDMs) and Tohoku Hospital Pediatrics-1 (THP-1) macrophages were stimulated with CoCrMo particles to activate inflammasome in the presence of acetate (C2), propionate (C3), and butyrate (C4). Western blotting, Enzyme-linked immunosorbent assay, and immunofluorescence were used to detect the activation of NLRP3 inflammasome. The effects of SCFAs on osteoclasts were evaluate by qRT-PCR, Western blotting, immunofluorescence, and tartrate-resistant acid phosphatase (TRAP) staining. Additionally, histone deacetylase (HDAC) inhibitors, agonists of GPR41, GPR43, and GPR109A were applied to confirm the underlying mechanism of SCFAs on the inflammasome activation of macrophages and osteoclastogenesis. RESULTS C3 and C4 but not C2 could alleviate wear particles-induced osteolysis with fewer bone erosion pits (P < 0.001), higher level of bone volume to tissue volume (BV/TV, P < 0.001), bone mineral density (BMD, P < 0.001), and a lower total porosity (P < 0.001). C3 and C4 prevented CoCrMo alloy particles-induced ASC speck formation and nucleation-induced oligomerization, suppressing the cleavage of caspase-1 (P < 0.05) and IL-1β (P < 0.05) stimulated by CoCrMo alloy particles. C3 and C4 also inhibited the generation of Gasdermin D-N-terminal fragment (GSDMD-NT) to regulate pyroptosis. Besides, C3 and C4 have a negative impact on osteoclast differentiation (P < 0.05) and its function (P < 0.05), affecting the podosome arrangement and morphologically normal podosome belts formation. CONCLUSION Our work showed that C3 and C4 are qualified candidates for the treatment of wear particle-induced osteolysis.
Collapse
Affiliation(s)
- Yang-Lin Wu
- Department of Orthopaedics, Suzhou Dushu Lake Hospital, Dushu Lake Hospital Affiliated to Soochow University, Medical Centre of Soochow University, Suzhou, 215001, Jiangsu, China.,Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, Jiangsu, China
| | - Chen-Hui Zhang
- Department of Orthopaedics, Suzhou Dushu Lake Hospital, Dushu Lake Hospital Affiliated to Soochow University, Medical Centre of Soochow University, Suzhou, 215001, Jiangsu, China
| | - Yun Teng
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, Jiangsu, China
| | - Ying Pan
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Nai-Cheng Liu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, Jiangsu, China
| | - Pei-Xin Liu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, Jiangsu, China
| | - Xu Zhu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, Jiangsu, China
| | - Xin-Lin Su
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, Jiangsu, China
| | - Jun Lin
- Department of Orthopaedics, Suzhou Dushu Lake Hospital, Dushu Lake Hospital Affiliated to Soochow University, Medical Centre of Soochow University, Suzhou, 215001, Jiangsu, China.
| |
Collapse
|
268
|
Zhang D, Li Y, Du C, Sang L, Liu L, Li Y, Wang F, Fan W, Tang P, Zhang S, Chen D, Wang Y, Wang X, Xie X, Jiang Z, Song Y, Guo R. Evidence of pyroptosis and ferroptosis extensively involved in autoimmune diseases at the single-cell transcriptome level. J Transl Med 2022; 20:363. [PMID: 35962439 PMCID: PMC9373312 DOI: 10.1186/s12967-022-03566-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/01/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Approximately 8-9% of the world's population is affected by autoimmune diseases, and yet the mechanism of autoimmunity trigger is largely understudied. Two unique cell death modalities, ferroptosis and pyroptosis, provide a new perspective on the mechanisms leading to autoimmune diseases, and development of new treatment strategies. METHODS Using scRNA-seq datasets, the aberrant trend of ferroptosis and pyroptosis-related genes were analyzed in several representative autoimmune diseases (psoriasis, atopic dermatitis, vitiligo, multiple sclerosis, systemic sclerosis-associated interstitial lung disease, Crohn's disease, and experimental autoimmune orchitis). Cell line models were also assessed using bulk RNA-seq and qPCR. RESULTS A substantial difference was observed between normal and autoimmune disease samples involving ferroptosis and pyroptosis. In the present study, ferroptosis and pyroptosis showed an imbalance in different keratinocyte lineages of psoriatic skinin addition to a unique pyroptosis-sensitive keratinocyte subset in atopic dermatitis (AD) skin. The results also revealed that pyroptosis and ferroptosis are involved in epidermal melanocyte destruction in vitiligo. Aberrant ferroptosis has been detected in multiple sclerosis, systemic sclerosis-associated interstitial lung disease, Crohn's disease, and autoimmune orchitis. Cell line models adopted in the study also identified pro-inflammatory factors that can drive changes in ferroptosis and pyroptosis. CONCLUSION These results provide a unique perspective on the involvement of ferroptosis and pyroptosis in the pathological process of autoimmune diseases at the scRNA-seq level. IFN-γ is a critical inducer of pyroptosis sensitivity, and has been identified in two cell line models.
Collapse
Affiliation(s)
- Danfeng Zhang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yadan Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Science, Henan Medical College of Zhengzhou University, Zhengzhou, Henan, China
- Laboratory Animal Center, School of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Chunyan Du
- Laboratory Animal Center, School of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Lina Sang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Liu Liu
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yingmei Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Fang Wang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wenjuan Fan
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ping Tang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Sidong Zhang
- Department of Pediatric Hematology and Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dandan Chen
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yanmei Wang
- Department of Hematology, Zhengzhou People's Hospital, Zhengzhou, Henan, China
| | - Xiaoyi Wang
- Department of Pediatric Hematology and Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinsheng Xie
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Zhongxing Jiang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Yongping Song
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Rongqun Guo
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- Academy of Medical Science, Henan Medical College of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
269
|
miR-181a-5p Inhibits Pyroptosis in Sepsis-Induced Acute Kidney Injury through Downregulation of NEK7. J Immunol Res 2022; 2022:1825490. [PMID: 35991122 PMCID: PMC9385359 DOI: 10.1155/2022/1825490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/27/2022] [Accepted: 07/07/2022] [Indexed: 11/23/2022] Open
Abstract
Sepsis is a life-threatening organ dysfunction caused by the uncontrolled inflammation, easily affecting the kidney. Sepsis-induced acute kidney injury (S-AKI) has high morbidity and mortality, of which the pathophysiological mechanisms have not been completely illuminated, leading to nonspecific therapies. Specific microRNAs were related with the pathogenesis of AKI. However, only limited studies focused on the pyroptosis in the context of S-AKI. The in vitro LPS-induced HK-2 cell model and in vivo CLP-induced mouse model were established. qRT-PCR, Western blot, ELISA, and RNA pulldown were used for expression examination. Multiple biological databases were used for miRNA screening. H&E staining and IHC staining were performed. The LPS-induced HK-2 cells showed significantly increased (P < 0.01) fluorescence intensity of N-GSDMD and ASC compared with the HK-2 cells. The expression of NLRP3, NEK7, ASC, active caspase-1, and N-GSDMD was significantly enhanced (P < 0.05) and the inflammatory factors including IL-18, IL-1β, and THF-α were all increased in LPS-induced HK-2 cells and CLP-induced mice. Renal edema, serum Cr and BUN, and expression of KIM-1 and NGAL were significantly higher (P < 0.05) in CLP-induced S-AKI mice than the sham group. miR-101-3p, miR-144-3p, miR-181a-5p, miR-4262, and miR-513b-5p could inhibit NEK7. NEK7 is an interacting protein of miRNA-181a-5p. miR-181a-5p inhibits pyroptosis of the LPS-induced HK-2 cells through downregulation of NEK7. Pyroptosis of HK-2 cells promotes inflammation. miR-181a-5p inhibits pyroptosis through downregulation of NEK7 in LPS-induced HK-2 cells and CLP-induced mice. Our study indicated miR-181a-5p as a new potential therapeutic target for S-AKI therapy.
Collapse
|
270
|
Shen Y, Qian L, Luo H, Li X, Ruan Y, Fan R, Si Z, Chen Y, Li L, Liu Y. The Significance of NLRP Inflammasome in Neuropsychiatric Disorders. Brain Sci 2022; 12:brainsci12081057. [PMID: 36009120 PMCID: PMC9406040 DOI: 10.3390/brainsci12081057] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/03/2022] [Accepted: 08/06/2022] [Indexed: 12/02/2022] Open
Abstract
The NLRP inflammasome is a multi-protein complex which mainly consists of the nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain. Its activation is linked to microglial-mediated neuroinflammation and partial neuronal degeneration. Many neuropsychiatric illnesses have increased inflammatory responses as both a primary cause and a defining feature. The NLRP inflammasome inhibition delays the progression and alleviates the deteriorating effects of neuroinflammation on several neuropsychiatric disorders. Evidence on the central effects of the NLRP inflammasome potentially provides the scientific base of a promising drug target for the treatment of neuropsychiatric disorders. This review elucidates the classification, composition, and functions of the NLRP inflammasomes. It also explores the underlying mechanisms of NLRP inflammasome activation and its divergent role in neuropsychiatric disorders, including Alzheimer’s disease, Huntington’s disease, Parkinson’s disease, depression, drug use disorders, and anxiety. Furthermore, we explore the treatment potential of the NLRP inflammasome inhibitors against these disorders.
Collapse
Affiliation(s)
- Yao Shen
- Department of Public Health, School of Medicine, Ningbo University, Ningbo 315021, China
| | - Liyin Qian
- Department of Public Health, School of Medicine, Ningbo University, Ningbo 315021, China
| | - Hu Luo
- Department of Psychology, Faculty of Teacher Education, Ningbo University, Ningbo 315021, China
| | - Xiaofang Li
- Department of Psychology, Faculty of Teacher Education, Ningbo University, Ningbo 315021, China
| | - Yuer Ruan
- Department of Psychology, Faculty of Teacher Education, Ningbo University, Ningbo 315021, China
| | - Runyue Fan
- Department of Public Health, School of Medicine, Ningbo University, Ningbo 315021, China
- Ningbo Yinzhou District Center for Disease Control and Prevention, Ningbo 315199, China
| | - Zizhen Si
- Department of Physiological Pharmacology, School of Medicine, Ningbo University, Ningbo 315021, China
- Department of Pharmacology, Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China
| | - Yunpeng Chen
- Department of Public Health, School of Medicine, Ningbo University, Ningbo 315021, China
| | - Longhui Li
- Ningbo Kangning Hospital, Ningbo 315201, China
| | - Yu Liu
- Department of Physiological Pharmacology, School of Medicine, Ningbo University, Ningbo 315021, China
- Correspondence:
| |
Collapse
|
271
|
The Potential Mechanism of HDAC1-Catalyzed Histone Crotonylation of Caspase-1 in Nonsmall Cell Lung Cancer. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5049116. [PMID: 35958929 PMCID: PMC9363190 DOI: 10.1155/2022/5049116] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 11/18/2022]
Abstract
Nonsmall cell lung cancer (NSCLC) is a predominant subtype of lung cancer and accounts for over 80% of all lung cancer cases. The resistance to pemetrexed (PEM) is frequently occurred and severely affects the NSCLC therapy. Proteomic analysis of histones indicated that the histone deacetylase 1 (HDAC1) complex could hydrolyze lysine crotonylation on histone3 (H3K18cr), affecting epigenetic regulation in cancers. However, the effect of HDAC1-mediated H3K18cr on the PEM resistance of NSCLC is still unclear. Here, we aimed to explore the function of HDAC1-mediated H3K18cr in NSCLC PEM resistance. The expression of HDAC1 was upregulated in clinical NSCLC tissues and cell lines and correlated with the poor prognosis of NSCLC samples. We constructed the PEM-resistant NSCLC cell lines, and the depletion of HDAC1 remarkably reduced the viability of the cells. The proliferation of PEM-resistant NSCLC cells was decreased by HDAC1 knockdown, and the IC50 of PEM was repressed by the silencing of HDAC1 in the cells. Mechanically, we identified the enrichment of HDAC1 on the promoter of caspase-1 in PEM-resistant NSCLC cells. The depletion of HDAC1 inhibited the enrichment of histone H3K18cr and RNA polymerase II (RNA pol II) on the caspase-1 promoter in the cells. The expression of caspase-1 was suppressed by HDAC1 knockdown. The knockdown of HDAC1 reduced proliferation of PEM-resistant NSCLC cells, in which caspase-1 or GSDMD depletion reversed the effect. Clinically, the HDAC1 expression was negatively associated with caspase-1 and GSDMD in clinical NSCLC tissues, while caspase-1 and GSDMD expression was positively correlated in the samples. Therefore, we concluded that HDAC1-catalyzed histone crotonylation of caspase-1 modulates PEM sensitivity of NSCLC by targeting GSDMD.
Collapse
|
272
|
Zhang Y, Hu B, Qian X, Xu G, Jin X, Chen D, Tang J, Xu L. Transcriptomics-based analysis of co-exposure of cadmium (Cd) and 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) indicates mitochondrial dysfunction induces NLRP3 inflammasome and inflammatory cell death in renal tubular epithelial cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113790. [PMID: 35753275 DOI: 10.1016/j.ecoenv.2022.113790] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Environmental pollution often releases multiple contaminants resulting in as yet largely uncharacterized additive toxicities. Cadmium (Cd) is a widespread pollutant that induces nephrotoxicity in animal models and humans. However, the combined effect of Cd in causing nephrotoxicity with 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), a typical congener of polybrominated diphenyl ethers (PBDEs), has not been evaluated and mechanisms are not completely clear. Here, we applied transcriptome sequencing analysis to investigate the combined toxicity of Cd and BDE-47 in the renal tubular epithelial cell lines HKCs. Cd or BDE-47 exposure decreased cell viability in a dose-dependent manner, and exhibited cell swelling and rounding similar to necrosis, which was exacerbated by co-exposure. Transcriptomic analysis revealed 2191, 1331 and 3787 differentially-expressed genes following treatment with Cd, BDE-47 and co-exposure, respectively. Interestingly, functional annotation and enrichment analyses showed involvement of pathways for oxidative stress, NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome and inflammatory cell death for all three treatments. Examination of indices of mitochondrial function and oxidative stress in HKC cells showed that the levels of reactive oxygen species (ROS), malondialdehyde (MDA) and intracellular calcium ion concentration [Ca2+]i were elevated, while superoxide dismutase (SOD) and mitochondrial membrane potential (MMP) were decreased. The ratio of apoptotic and necrotic cells and intracellular lactate dehydrogenase (LDH) release were increased by Cd or BDE-47 exposure, and was aggravated by co-exposure, and was attenuated by ROS scavenger N-Acetyl-L-cysteine (NAC). NLRP3 inflammasome and pyroptosis pathway-related genes of NLRP3, adaptor molecule apoptosis-associated speck-like protein (ASC), caspase-1, interleukin-18 (IL-18) and IL-1β were elevated, while gasdermin D (GSDMD) was down-regulated, and protein levels of NLRP3, cleaved caspase-1 and cleaved GSDMD were increased, most of which were relieved by NAC. Our data demonstrate that exposure to Cd and BDE-47 induces mitochondrial dysfunction and triggers NLRP3 inflammasome and GSDMD-dependent pyroptosis leading to nephrotoxicity, and co-exposure exacerbates this effect, which could be attenuated by inhibiting ROS. This study provides a further mechanistic understanding of kidney damage, and co-exposure impact is worthy of concern and should be considered to improve the accuracy of environmental health assessment.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Pathology and Key-Innovative Discipline Molecular Diagnostics, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing University, Jiaxing 314001, Zhejiang, China
| | - Bo Hu
- Department of Pathology and Key-Innovative Discipline Molecular Diagnostics, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing University, Jiaxing 314001, Zhejiang, China
| | - Xiaolan Qian
- Department of Pathology and Key-Innovative Discipline Molecular Diagnostics, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing University, Jiaxing 314001, Zhejiang, China
| | - Guangtao Xu
- Forensic and Pathology Laboratory, Department of Public Health, Department of Pathology, Institute of Forensic Science, Jiaxing University, Jiaxing 314001, Zhejiang, China
| | - Xin Jin
- Forensic and Pathology Laboratory, Department of Public Health, Department of Pathology, Institute of Forensic Science, Jiaxing University, Jiaxing 314001, Zhejiang, China
| | - Deqing Chen
- Forensic and Pathology Laboratory, Department of Public Health, Department of Pathology, Institute of Forensic Science, Jiaxing University, Jiaxing 314001, Zhejiang, China
| | - Jie Tang
- Department of Pathology and Key-Innovative Discipline Molecular Diagnostics, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing University, Jiaxing 314001, Zhejiang, China.
| | - Long Xu
- Forensic and Pathology Laboratory, Department of Public Health, Department of Pathology, Institute of Forensic Science, Jiaxing University, Jiaxing 314001, Zhejiang, China.
| |
Collapse
|
273
|
Recurrent Hypoglycemia Impaired Vascular Function in Advanced T2DM Rats by Inducing Pyroptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7812407. [PMID: 35915611 PMCID: PMC9338872 DOI: 10.1155/2022/7812407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/14/2022] [Accepted: 06/23/2022] [Indexed: 11/18/2022]
Abstract
Background Hypoglycemia is a dangerous side effect of intensive glucose control in diabetes. Even though it leads to adverse cardiovascular events, the effects of hypoglycemia on vascular biology in diabetes have not been adequately studied. Methods Aged Sprague-Dawley rats were fed a high-fat diet and given streptozotocin to induce type 2 diabetes mellitus (T2DM). Acute and recurrent hypoglycemia were then induced by glucose via insulin administration. Vascular function, oxidative stress, and pyroptosis levels in aortic tissue were assessed by physiological and biochemical methods. Results Hypoglycemia was associated with a marked decrease in vascular function, elevated oxidative stress, and elevated pyroptosis levels in the thoracic aorta. The changes in oxidative stress and pyroptosis were greater in rats with recurrent hypoglycemia than in those with acute hypoglycemia. Conclusions Hypoglycemia impaired vascular function in aged rats with T2DM by inducing pyroptosis. The extent of injury increased with the duration of blood glucose fluctuation.
Collapse
|
274
|
Fan J, Ren M, Adhikari BK, Wang H, He Y. The NLRP3 Inflammasome as a Novel Therapeutic Target for Cardiac Fibrosis. J Inflamm Res 2022; 15:3847-3858. [PMID: 35836721 PMCID: PMC9273832 DOI: 10.2147/jir.s370483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/01/2022] [Indexed: 11/23/2022] Open
Abstract
Cardiac fibrosis often has adverse cardiovascular effects, including heart failure, sudden death, and malignant arrhythmias. However, there is no targeted therapy for cardiac fibrosis. Inflammation is known to play a crucial role in the disorder, and the NLR pyrin domain-containing-3 (NLRP3) inflammasome is closely associated with innate immunity. Therefore, further understanding the pathophysiological role of the inflammasome in cardiac fibrosis may provide novel strategies for the prevention and treatment of the disorder. The aim of this review was to summarize the present knowledge of NLRP3 inflammasome-related mechanisms underlying cardiac fibrosis and to suggest potential targeted therapy that could be used to treat the condition.
Collapse
Affiliation(s)
- Jiwen Fan
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| | - Meng Ren
- Department of Medical Oncology, Jilin Provincial Cancer Hospital, Changchun, People's Republic of China
| | - Binay Kumar Adhikari
- Department of Cardiology, Nepal Armed Police Force (APF) Hospital, Kathmandu, Nepal
| | - Haodong Wang
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| | - Yuquan He
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| |
Collapse
|
275
|
Quercetin Protects Ethanol-Induced Hepatocyte Pyroptosis via Scavenging Mitochondrial ROS and Promoting PGC-1α-Regulated Mitochondrial Homeostasis in L02 Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4591134. [PMID: 35879991 PMCID: PMC9308520 DOI: 10.1155/2022/4591134] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/21/2022] [Accepted: 07/07/2022] [Indexed: 01/08/2023]
Abstract
Alcoholic liver disease (ALD) is a multifaceted process that involves excessive lipid, reactive oxygen species (ROS) production, unbalanced mitochondrial homeostasis, and ultimate cell death. Quercetin is a dietary phytochemical presented in various fruits and vegetables, which has anti-inflammatory and antioxidant effects. According to recent advances in pharmanutritional management, the effects of quercetin on various mitochondrial processes have attracted attention. In the study, we explored whether quercetin could attenuate ethanol-induced hepatocyte pyroptosis by maintaining mitochondrial homeostasis and studied its hepatoprotective effect and the underlying mechanism. We chose L02 cells to establish an in vitro model with ethanol-induced hepatocyte pyroptosis. Then, the cells at approximately 80% confluence were treated with quercetin (80, 40, and 20 μM). The cell viability (CCK-8) was used to investigate the effect of quercetin on ethanol-induced L02 cell proliferation. Relative assay kits were used to measure oxidative stress index (OSI = TOS/TAS), lipid peroxidation (LPO) release, and mitochondrial membrane potential (δΨm). The morphology of mitochondria was characterized by transmission electron microscopy- (TEM-) based analysis. Mitochondrial dynamics (Mito Tracker Green), mitROS (MitoSOX Red Mitochondrial Superoxide) production, and nuclear DNA (nDNA) damage (γH2AX) markers were detected by immunofluorescence. The mRNA levels of mitochondrial function (including mitochondrial DNA (mtDNA) transcription genes TWNK, MTCO1, and MFND) and pyroptosis-related genes were detected by RT-qPCR, and the protein levels of NLRP3, ASC, caspase1, cleaved-caspase1, IL-18, IL-1β, and GSDMD-N were detected by western blot. The results showed that quercetin treatment downregulated redox status, lipid droplets, and LPO release, restored damaged mitochondrial membrane potential, and repaired mtDNA damage, PGC-1α nuclear transfer, and mitochondrial dynamics. The gene and protein expressions of NLRP3, ASC, cleaved-caspase1, IL-18, IL-1β, and GSDMD-N were decreased, which effectively inhibited cell pyroptosis. Therefore, the results indicated that quercetin protected ethanol-induced hepatocyte pyroptosis via scavenging mitROS and promoting PGC-1α-mediated mitochondrial homeostasis in L02 cells.
Collapse
|
276
|
Lactobacillus pentosus Alleviates Lipopolysaccharide-Induced Neuronal Pyroptosis via Promoting BIRC3-Mediated Inactivation of NLRC4. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2124876. [PMID: 35783533 PMCID: PMC9246584 DOI: 10.1155/2022/2124876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/28/2022]
Abstract
Objective Neurodegenerative disease is a common neurodegenerative disorder. Lactobacillus pentosus (L. pentosus) plays a neuron-protective role. This study aimed to investigate the effects of L. pentosus on neurodegenerative diseases. Methods Cells were treated with lipopolysaccharide (LPS) to establish neurodegenerative diseases model in vivo and with L. pentosus strain S-PT84. Reverse transcription-quantitative PCR (RT-qPCR) was applied to determine mRNA levels. Western blot was performed to detect protein expression. Cellular behaviors were detected using Cell Counting Kit-8 (CCK-8), flow cytometry, and TdT-mediated dUTP nick-end labeling (TUNEL) assay. The interaction between baculoviral IAP repeat containing 3 (BIRC3) and NLR family CARD domain containing 4 (NLRC4) was predicted by STING and verified by western blot. Result L. pentosus suppressed LPS-induced pyroptosis and promoted the cell viability of neurons. Additionally, L. pentosus suppressed the release of proinflammatory cytokines (interleukin 1 beta (IL-1β) and IL-18) and the protein expression of pyroptosis biomarkers (cleaved caspase1 (CL-CASP1) and N-terminal fragment gasdermin D (GSDMD-N)). Moreover, L. pentosus upregulated BIRC3, which induced the inactivation of NLRC4. However, BIRC3 knockdown alleviated the effects of L. pentosus and induced neuronal degeneration. Conclusion L. pentosus may play a neuron-protective role via regulating BIRC3/NLRC4 signaling pathways. Therefore, L. pentosus may be a promising strategy for neurodegenerative diseases.
Collapse
|
277
|
Huang Y, Li R, Yang Y. Role of Pyroptosis in Gynecological Oncology and Its Therapeutic Regulation. Biomolecules 2022; 12:biom12070924. [PMID: 35883480 PMCID: PMC9313147 DOI: 10.3390/biom12070924] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 02/04/2023] Open
Abstract
With the continuous advances in molecular biotechnology, many new cell death methods have been discovered. Pyroptosis is a programmed cell death process that differs from apoptosis and autophagy in cell morphology and function. Compared with apoptosis and autophagy, pyroptosis is primarily mediated by intracellular inflammasome and gasdermin D of the gasdermin protein family and involves the release of numerous inflammatory factors. Pyroptosis has been found to be involved in the occurrence and development of infectious diseases and other diseases involving the nervous system and the cardiovascular system. Recent studies have also reported the occurrence of pyroptosis in tumor cells. Accordingly, exploring its effect on tumors has become one of the research hotspots. Herein, recent research progress on pyroptosis is reviewed, especially its role in the development of gynecological tumors. As the pathogenesis of gynecological tumor is better understood, new targets have been introduced for the prevention and clinical treatment of gynecological tumors.
Collapse
Affiliation(s)
- Yi Huang
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (Y.H.); (R.L.)
| | - Ruiyun Li
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (Y.H.); (R.L.)
| | - Yuan Yang
- The Reproductive Medicine Center, The 1st Hospital of Lanzhou University, Lanzhou 730000, China
- Correspondence:
| |
Collapse
|
278
|
Fu YS, Kang N, Yu Y, Mi Y, Guo J, Wu J, Weng CF. Polyphenols, flavonoids and inflammasomes: the role of cigarette smoke in COPD. Eur Respir Rev 2022; 31:31/164/220028. [PMID: 35705209 PMCID: PMC9648508 DOI: 10.1183/16000617.0028-2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 04/20/2022] [Indexed: 11/24/2022] Open
Abstract
COPD is predicted to become the third leading cause of morbidity and mortality worldwide by 2030. Cigarette smoking (active or passive) is one of its chief causes, with about 20% of cigarette smokers developing COPD from cigarette smoke (CS)-induced irreversible damage and sustained inflammation of the airway epithelium. Inflammasome activation leads to the cleavage of pro-interleukin (IL)-1β and pro-IL-18, along with the release of pro-inflammatory cytokines via gasdermin D N-terminal fragment membrane pores, which further triggers acute phase pro-inflammatory responses and concurrent pyroptosis. There is currently intense interest in the role of nucleotide-binding oligomerisation domain-like receptor family, pyrin domain containing protein-3 inflammasomes in chronic inflammatory lung diseases such as COPD and their potential for therapeutic targeting. Phytochemicals including polyphenols and flavonoids have phyto-medicinal benefits in CS-COPD. Here, we review published articles from the last decade regarding the known associations between inflammasome-mediated responses and ameliorations in pre-clinical manifestations of CS-COPD via polyphenol and flavonoid treatment, with a focus on the underlying mechanistic insights. This article will potentially assist the development of drugs for the prevention and therapy of COPD, particularly in cigarette smokers. This review compiles current investigations into the role of polyphenols/flavonoids in the alleviation of cigarette smoke-induced inflammasome; notably it provides a promising hit for rectifying the treatment of COPD.https://bit.ly/36OcUO9
Collapse
Affiliation(s)
- Yaw-Syan Fu
- Anatomy and Functional Physiology Section, Dept of Basic Medical Science, Xiamen Medical College, Xiamen, Fujian, China.,Institute of Respiratory Disease, Dept of Basic Medical Science, Xiamen Medical College, Xiamen, Fujian, China
| | - Ning Kang
- Dept of Otorhinolaryngology, the Second Affiliated Hospital of Xiamen Medical College, Xiamen, Fujian, China
| | - Yanping Yu
- Institute of Respiratory Disease, Dept of Basic Medical Science, Xiamen Medical College, Xiamen, Fujian, China
| | - Yan Mi
- Institute of Respiratory Disease, Dept of Basic Medical Science, Xiamen Medical College, Xiamen, Fujian, China
| | - Jialin Guo
- Anatomy and Functional Physiology Section, Dept of Basic Medical Science, Xiamen Medical College, Xiamen, Fujian, China
| | - Jingyi Wu
- Anatomy and Functional Physiology Section, Dept of Basic Medical Science, Xiamen Medical College, Xiamen, Fujian, China
| | - Ching-Feng Weng
- Anatomy and Functional Physiology Section, Dept of Basic Medical Science, Xiamen Medical College, Xiamen, Fujian, China .,Institute of Respiratory Disease, Dept of Basic Medical Science, Xiamen Medical College, Xiamen, Fujian, China
| |
Collapse
|
279
|
Mata-Martínez E, Díaz-Muñoz M, Vázquez-Cuevas FG. Glial Cells and Brain Diseases: Inflammasomes as Relevant Pathological Entities. Front Cell Neurosci 2022; 16:929529. [PMID: 35783102 PMCID: PMC9243488 DOI: 10.3389/fncel.2022.929529] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/27/2022] [Indexed: 12/13/2022] Open
Abstract
Inflammation mediated by the innate immune system is a physiopathological response to diverse detrimental circumstances such as microbe infections or tissular damage. The molecular events that underlie this response involve the assembly of multiprotein complexes known as inflammasomes. These assemblages are essentially formed by a stressor-sensing protein, an adapter protein and a non-apoptotic caspase (1 or 11). The coordinated aggregation of these components mediates the processing and release of pro-inflammatory interleukins (IL-β and IL-18) and cellular death by pyroptosis induction. The inflammatory response is essential for the defense of the organism; for example, it triggers tissue repair and the destruction of pathogen microbe infections. However, when inflammation is activated chronically, it promotes diverse pathologies in the lung, liver, brain and other organs. The nervous system is one of the main tissues where the inflammatory process has been characterized, and its implications in health and disease are starting to be understood. Thus, the regulation of inflammasomes in specific cellular types of the central nervous system needs to be thoroughly understood to innovate treatments for diverse pathologies. In this review, the presence and participation of inflammasomes in pathological conditions in different types of glial cells will be discussed.
Collapse
|
280
|
Huang D, Shi S, Wang Y, Wang X, Shen Z, Wang M, Pei C, Wu Y, He Y, Wang Z. Astragaloside IV alleviates PM2.5-caused lung toxicity by inhibiting inflammasome-mediated pyroptosis via NLRP3/caspase-1 axis inhibition in mice. Biomed Pharmacother 2022; 150:112978. [PMID: 35462332 DOI: 10.1016/j.biopha.2022.112978] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/07/2022] [Accepted: 04/13/2022] [Indexed: 11/18/2022] Open
Abstract
Exposure to particulate matter (PM)2.5 in air pollution is a serious health issue worldwide. At present, effective prevention measures and modalities of treatment for PM2.5-caused lung toxicity are lacking. This study elucidated the protective effect of astragaloside IV (Ast), a natural product from Astragalus membranaceous Bunge, against PM2.5-caused lung toxicity and its possible molecular mechanisms. The mice model of lung toxicity was performed by intratracheal instillation of PM2.5 dust suspension. The investigation was performed with Ast or in combination with nigericin, which is a NOD-like receptor protein 3 (NLRP3) activator. The results revealed that PM2.5 lead significant lung inflammation and promoted the pyroptosis pattern of cell death by upregulating pro-inflammatory cytokines and causing oxidative stress related to the NLRP3 inflammasome-mediated pyroptosis pathway. Ast protected against PM2.5 resulted lung toxicity via suppressing NLRP3 inflammasome-mediated pyroptosis via NLRP3/caspase-1 axis inhibition, thereby protecting the lung against PM2.5-induced lung inflammation and oxidative damage, eventually resulting in prolonged survival in mice. Nigericin partially reversed the protective effects of Ast. The present research provides new insights into the therapeutic potential of Ast, demonstrating that it might be a possible candidate for the prevention of PM2.5-caused respiratory diseases. Targeting the NLRP3 inflammasome might be a novel therapeutic tactic for PM2.5-caused respiratory diseases.
Collapse
Affiliation(s)
- Demei Huang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Shihua Shi
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Yilan Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Xiaomin Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Zherui Shen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Mingjie Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Caixia Pei
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Yongcan Wu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Yacong He
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Zhenxing Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China.
| |
Collapse
|
281
|
The NLRP3 inflammasome: molecular activation and regulation in spermatogenesis and male infertility; a systematic review. Basic Clin Androl 2022; 32:8. [PMID: 35637440 PMCID: PMC9150048 DOI: 10.1186/s12610-022-00157-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/05/2022] [Indexed: 11/21/2022] Open
Abstract
Background Infertility related to varicocele, infections, metabolic dysfunctions, oxidative stress and environmental toxicants is also associated with inflammatory processes that ultimately lead to the activation of the inflammasome pathway (IP). IP is classically activated by DAMPs, MAMPs or LAMPs, which stand for Damage-, Microbe- or Lifestyle-Associated Molecular Patterns, respectively. The most important player in IP activation is the NLRP3 (NOD[Nuclear oligomerization domain]-, LRR[Leucine rich repeat]- and pyrin domain-containing protein 3) which functions as an intracellular sensor of D/M/L-AMPs resulting in activation of caspase-1, promotion of apoptosis, pyroptosis and generation of inflammatory cytokines. This review addresses the question of whether IP activation might be associated with male infertility situations. Results & conclusions We conducted a systematic review of articles published in the Google Scholar, and PubMed databases through October 2021. It turns out that inflammasome activation and its consequences including cytokine storms, apoptosis and pyroptosis could be associated with the reduced sperm count as well as the structural and functional sperm defects recorded in several situations associated with male infertility suggesting that anti-inflammatory therapeutic strategies could be possibly considered to restore male fertility in future research.
Collapse
|
282
|
DeAntoneo C, Danthi P, Balachandran S. Reovirus Activated Cell Death Pathways. Cells 2022; 11:cells11111757. [PMID: 35681452 PMCID: PMC9179526 DOI: 10.3390/cells11111757] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/18/2022] [Accepted: 05/23/2022] [Indexed: 11/16/2022] Open
Abstract
Mammalian orthoreoviruses (ReoV) are non-enveloped viruses with segmented double-stranded RNA genomes. In humans, ReoV are generally considered non-pathogenic, although members of this family have been proven to cause mild gastroenteritis in young children and may contribute to the development of inflammatory conditions, including Celiac disease. Because of its low pathogenic potential and its ability to efficiently infect and kill transformed cells, the ReoV strain Type 3 Dearing (T3D) is clinical trials as an oncolytic agent. ReoV manifests its oncolytic effects in large part by infecting tumor cells and activating programmed cell death pathways (PCDs). It was previously believed that apoptosis was the dominant PCD pathway triggered by ReoV infection. However, new studies suggest that ReoV also activates other PCD pathways, such as autophagy, pyroptosis, and necroptosis. Necroptosis is a caspase-independent form of PCD reliant on receptor-interacting serine/threonine-protein kinase 3 (RIPK3) and its substrate, the pseudokinase mixed-lineage kinase domain-like protein (MLKL). As necroptosis is highly inflammatory, ReoV-induced necroptosis may contribute to the oncolytic potential of this virus, not only by promoting necrotic lysis of the infected cell, but also by inflaming the surrounding tumor microenvironment and provoking beneficial anti-tumor immune responses. In this review, we summarize our current understanding of the ReoV replication cycle, the known and potential mechanisms by which ReoV induces PCD, and discuss the consequences of non-apoptotic cell death—particularly necroptosis—to ReoV pathogenesis and oncolysis.
Collapse
Affiliation(s)
- Carly DeAntoneo
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA;
- Molecular and Cellular Biology and Genetics, Drexel University, Philadelphia, PA 19102, USA
| | - Pranav Danthi
- Department of Biology, Indiana University, Bloomington, IN 47405, USA;
| | - Siddharth Balachandran
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA;
- Correspondence:
| |
Collapse
|
283
|
Du H, Li CH, Gao RB, Cen XQ, Li P. Ablation of GSDMD Attenuates Neurological Deficits and Neuropathological Alterations After Traumatic Brain Injury. Front Cell Neurosci 2022; 16:915969. [PMID: 35669106 PMCID: PMC9164823 DOI: 10.3389/fncel.2022.915969] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/02/2022] [Indexed: 11/28/2022] Open
Abstract
Pyroptosis plays a significant role in neuroinflammation after traumatic brain injury (TBI). However, the role of pyroptosis executor Gasdermin D (GSDMD) in neurological deficits and neuropathological alterations after TBI have not been elucidated. Our results demonstrated that GSDMD-KO exerted striking neuroprotective effects on motor dysfunction and neuropathological alterations (loss of synaptic proteins, microglia activation, astrogliosis, dendrite injury, and neuron death) at 3 days after TBI. GSDMD-KO inhibited the expression and release of pro-inflammatory cytokine releases (IL-1β and TNF-α) while promoting those of anti-inflammatory cytokines (IL-10 and TGF-β1). The temporal pattern of diverse inflammasome signals showed long-lasting elevations of NLRP3, caspase 1, and caspase 1 p20 after TBI, rather than NLRP1, NLRC4 or AIM2, similar to the change in GSDMD postinjury; and NLRP3-KO not only inhibited the expression and cleavage of GSDMD but also attenuated the loss of synaptic proteins and neurological deficits. Notably, RNA sequencing showed both GSDMD-KO and NLRP3-KO reversed the global expression of neuroinflammation- and neuropathology-related genes after TBI. Our findings proved that the inhibition of GSDMD exerts neuroprotective effects after TBI and is mainly driven by the NLRP3 inflammasome. GSDMD serves as a potent therapeutic target for the treatment of TBI.
Collapse
Affiliation(s)
- Hao Du
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery and Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Chang-Hong Li
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery and Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ruo-Bing Gao
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery and Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiao-Qing Cen
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery and Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- College of Bioengineering, Chongqing University, Chongqing, China
| | - Ping Li
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery and Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- Institute of Brain and Intelligence, Army Medical University (Third Military Medical University), Chongqing, China
- *Correspondence: Ping Li
| |
Collapse
|
284
|
Role of Sodium-Glucose Co-Transporter 2 Inhibitors in the Regulation of Inflammatory Processes in Animal Models. Int J Mol Sci 2022; 23:ijms23105634. [PMID: 35628443 PMCID: PMC9144929 DOI: 10.3390/ijms23105634] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/14/2022] [Accepted: 05/16/2022] [Indexed: 12/12/2022] Open
Abstract
Sodium-glucose co-transporter 2 inhibitors, also known as gliflozins, were developed as a novel class of anti-diabetic agents that promote glycosuria through the prevention of glucose reabsorption in the proximal tubule by sodium-glucose co-transporter 2. Beyond the regulation of glucose homeostasis, they resulted as being effective in different clinical trials in patients with heart failure, showing a strong cardio-renal protective effect in diabetic, but also in non-diabetic patients, which highlights the possible existence of other mechanisms through which gliflozins could be exerting their action. So far, different gliflozins have been approved for their therapeutic use in T2DM, heart failure, and diabetic kidney disease in different countries, all of them being diseases that have in common a deregulation of the inflammatory process associated with the pathology, which perpetuates and worsens the disease. This inflammatory deregulation has been observed in many other diseases, which led the scientific community to have a growing interest in the understanding of the biological processes that lead to or control inflammation deregulation in order to be able to identify potential therapeutic targets that could revert this situation and contribute to the amelioration of the disease. In this line, recent studies showed that gliflozins also act as an anti-inflammatory drug, and have been proposed as a useful strategy to treat other diseases linked to inflammation in addition to cardio-renal diseases, such as diabetes, obesity, atherosclerosis, or non-alcoholic fatty liver disease. In this work, we will review recent studies regarding the role of the main sodium-glucose co-transporter 2 inhibitors in the control of inflammation.
Collapse
|
285
|
Gong Z, Li Q, Yang J, Zhang P, Sun W, Ren Q, Tang J, Wang W, Gong H, Li J. Identification of a Pyroptosis-Related Gene Signature for Predicting the Immune Status and Prognosis in Lung Adenocarcinoma. Front Bioeng Biotechnol 2022; 10:852734. [PMID: 35646872 PMCID: PMC9133407 DOI: 10.3389/fbioe.2022.852734] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/14/2022] [Indexed: 12/14/2022] Open
Abstract
Background: Pyroptosis is a form of programmed cell death triggered by the rupture of cell membranes and the release of inflammatory substances; it is essential in the occurrence and development of cancer. A considerable number of studies have revealed that pyroptosis is closely associated to the biological process of several cancers. However, the role of pyroptosis in lung adenocarcinoma (LUAD) remains elusive. The purpose of this study was to explore the prognostic role of pyroptosis-related genes (PRGs) and their relationship with the tumor immune microenvironment (TIME) in LUAD.Methods: Gene expression profiles and clinical information were downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. A prognostic PRG signature was established in the training set and verified in the validation sets. Functional enrichment and immune microenvironment analyses related to PRGs were performed and a nomogram based on the risk score and clinical characteristics was established. What is more, quantitative real-time PCR (qRT-PCR) analysis was applied in order to verify the potential biomarkers for LUAD.Results: A prognostic signature based on five PRGs was constructed to separate LUAD patients into two risk groups. Patients in the high-risk group had worse prognoses than those in the low-risk group. The signature was identified as independent via Cox regression analyses and obtained the largest area under the curve (AUC = 0.677) in the receiver operating characteristic (ROC). Functional enrichment and immune microenvironment analyses demonstrated that the immune status was significantly different in the two subgroups and that immunotherapy may be effective for the high-risk group. Furthermore, qRT-PCR analysis verified that serum PRKACA and GPX4 could serve as diagnostic biomarkers for LUAD.Conclusion: Overall, a risk signature based on five PRGs was generated, providing a novel perspective on the determinants of prognosis and survival in LUAD, as well as a basis for the development of individualized regimes.
Collapse
Affiliation(s)
- Zetian Gong
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qifan Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jian Yang
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Pengpeng Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Sun
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qianhe Ren
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Junjie Tang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Wei Wang, ; Hui Gong, ; Jun Li,
| | - Hui Gong
- Department of Trauma Center, Affiliated Hospital of Nantong University, Nantong, China
- *Correspondence: Wei Wang, ; Hui Gong, ; Jun Li,
| | - Jun Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Wei Wang, ; Hui Gong, ; Jun Li,
| |
Collapse
|
286
|
Yu W, Zong S, Zhou P, Wei J, Wang E, Ming R, Xiao H. Cochlear Marginal Cell Pyroptosis Is Induced by Cisplatin via NLRP3 Inflammasome Activation. Front Immunol 2022; 13:823439. [PMID: 35529876 PMCID: PMC9067579 DOI: 10.3389/fimmu.2022.823439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 03/16/2022] [Indexed: 11/13/2022] Open
Abstract
Better understanding the mechanism of cisplatin-induced ototoxicity is of great significance for clinical prevention and treatment of cisplatin-related hearing loss. However, the mechanism of cisplatin-induced inflammatory response in cochlear stria vascularis and the mechanism of marginal cell (MC) damage have not been fully clarified. In this study, a stable model of cisplatin-induced MC damage was established in vitro, and the results of PCR and Western blotting showed increased expressions of NLRP3, Caspase-1, IL-1β, and GSDMD in MCs. Incomplete cell membranes including many small pores appearing on the membrane were also observed under transmission electron microscopy and scanning electron microscopy. In addition, downregulation of NLRP3 by small interfering RNA can alleviate cisplatin-induced MC pyroptosis, and reducing the expression level of TXNIP possesses the inhibition effect on NLRP3 inflammasome activation and its mediated pyroptosis. Taken together, our results suggest that NLRP3 inflammasome activation may mediate cisplatin-induced MC pyroptosis in cochlear stria vascularis, and TXNIP is a possible upstream regulator, which may be a promising therapeutic target for alleviating cisplatin-induced hearing loss.
Collapse
Affiliation(s)
- Wenting Yu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shimin Zong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Zhou
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahui Wei
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Enhao Wang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruijie Ming
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongjun Xiao
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
287
|
Zhang Z, Zhang H, Chen T, Shi L, Wang D, Tang D. Regulatory role of short-chain fatty acids in inflammatory bowel disease. Cell Commun Signal 2022; 20:64. [PMID: 35546404 PMCID: PMC9097439 DOI: 10.1186/s12964-022-00869-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/26/2022] [Indexed: 02/07/2023] Open
Abstract
Inflammatory bowel disease (IBD) comprises a group of chronic inflammatory disorders of the gastrointestinal tract. Accumulating evidence shows that the development of IBD is always accompanied by the dysbiosis of the gut microbiota (GM), causing a decrease in prebiotic levels and an increase in harmful metabolite levels. This leads to persistent immune response and inflammation in the intestine, greatly impairing the physiological function of the gastrointestinal tract. Short-chain fatty acids (SCFAs) are produced by probiotic gut bacteria from a fiber-rich diet that cannot be digested directly. SCFAs with significant anti-inflammatory functions regulate immune function and prevent an excessive immune response, thereby delaying the clinical progression of IBD. In this review, we summarize the generation of SCFAs and their potential therapeutic effects on IBD. Furthermore, we suggest that SCFAs may modulate innate immune recognition and cytokine production to intervene in the progression of IBD. Additional randomized controlled trials and prospective cohort studies should also investigate the clinical impact of SCFA. Video Abstract.
Collapse
Affiliation(s)
- Zhilin Zhang
- grid.268415.cClinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province People’s Republic of China
| | - Huan Zhang
- grid.268415.cClinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province People’s Republic of China
| | - Tian Chen
- grid.268415.cClinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province People’s Republic of China
| | - Lin Shi
- grid.268415.cClinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province People’s Republic of China
| | - Daorong Wang
- grid.268415.cDepartment of General Surgery, Institute of General Surgery, Clinical Medical College, Yangzhou University, Northern Jiangsu People’s Hospital, Yangzhou, 225001 People’s Republic of China
| | - Dong Tang
- grid.268415.cDepartment of General Surgery, Institute of General Surgery, Clinical Medical College, Yangzhou University, Northern Jiangsu People’s Hospital, Yangzhou, 225001 People’s Republic of China
| |
Collapse
|
288
|
Tan C, Reilly B, Jha A, Murao A, Lee Y, Brenner M, Aziz M, Wang P. Active Release of eCIRP via Gasdermin D Channels to Induce Inflammation in Sepsis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2184-2195. [PMID: 35418465 PMCID: PMC9050887 DOI: 10.4049/jimmunol.2101004] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 02/23/2022] [Indexed: 12/12/2022]
Abstract
Extracellular cold-inducible RNA binding protein (eCIRP) is an inflammatory mediator that causes inflammation and tissue injury in sepsis. Gasdermin D (GSDMD) is a protein that, when cleaved, forms pores in the cell membrane, releasing intracellular contents into the extracellular milieu to exacerbate inflammation. We hypothesize that eCIRP is released actively from viable macrophages via GSDMD pores. We found that LPS induced eCIRP secretion from macrophages into the extracellular space. LPS significantly increased the expression of caspase-11 and cleavage of the GSDMD, as evidenced by increased N-terminal GSDMD expression in RAW 264.7 cells and mouse primary peritoneal macrophages. GSDMD inhibitor disulfiram decreased eCIRP release in vitro. Treatment with glycine to prevent pyroptosis-induced cell lysis did not significantly decrease eCIRP release from LPS-treated macrophages, indicating that eCIRP was actively released and was independent of pyroptosis. Downregulation of GSDMD gene expression by siRNA transfection suppressed eCIRP release in vitro after LPS stimulation. Moreover, GSDMD-/- peritoneal macrophages and mice had decreased levels of eCIRP in the culture supernatants and in blood treated with LPS in vitro and in vivo, respectively. GSDMD inhibitor disulfiram inhibited serum levels of eCIRP in endotoxemia and cecal ligation and puncture-induced sepsis. We conclude that eCIRP release from living macrophages is mediated through GSDMD pores, suggesting that targeting GSDMD could be a novel and potential therapeutic approach to inhibit eCIRP-mediated inflammation in sepsis.
Collapse
Affiliation(s)
- Chuyi Tan
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY
| | - Bridgette Reilly
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY
| | - Alok Jha
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY
| | - Atsushi Murao
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY
| | - Yongchan Lee
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY
| | - Max Brenner
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY.,Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY; and
| | - Monowar Aziz
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY; .,Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY; and.,Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY; .,Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY; and.,Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY
| |
Collapse
|
289
|
Hu H, Yang M, Dong W, Yin B, Ding J, Huang B, Zheng Q, Li F, Han L. A Pyroptosis-Related Gene Panel for Predicting the Prognosis and Immune Microenvironment of Cervical Cancer. Front Oncol 2022; 12:873725. [PMID: 35574296 PMCID: PMC9099437 DOI: 10.3389/fonc.2022.873725] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/08/2022] [Indexed: 11/13/2022] Open
Abstract
Cervical cancer (CC) is one of the most common malignant tumors of the female reproductive system. And the immune system disorder in patients results in an increasing incidence rate and mortality rate. Pyroptosis is an immune system-related programmed cell death pathway that produces systemic inflammation by releasing pro-inflammatory intracellular components. However, the diagnostic significance of pyroptosis-related genes (PRGs) in CC is still unclear. Therefore, we identified 52 PRGs from the TCGA database and screened three Differentially Expressed Pyroptosis-Related Genes (DEPRGs) in the prognosis of cervical cancer: CHMP4C, GZMB, TNF. The least absolute shrinkage and selection operator (LASSO) regression analysis and multivariate COX regression analysis were then used to construct a gene panel based on the three prognostic DEPRGs. The patients were divided into high-and low-risk groups based on the median risk score of the panel. According to the Kaplan-Meier curve, there was a substantial difference in survival rates between the two groups, with the high-risk group’s survival rate being significantly lower than the low-risk group’s. The PCA and t-SNE analyses revealed that the panel was able to differentiate patients into high-and low-risk groups. The area under the ROC curve (AUC) shows that the prognostic panel has high sensitivity and specificity. The risk score could then be employed as an independent prognostic factor using univariate and multivariate COX regression analyses paired with clinical data. The analyses of GO and KEGG functional enrichment of differentially expressed genes (DEGs) in the high-and low-risk groups revealed that these genes were primarily engaged in immune response and inflammatory cell chemotaxis. To illustrate immune cell infiltration in CC patients further, we used ssGSEA to compare immune-related cells and immune pathway activation between the high-and low-risk groups. The link between three prognostic DEPRGs and immune-related cells was still being discussed after evaluating immune cell infiltration in the TCGA cohort with “CIBERSORT.” In addition, the GEPIA database and qRT-PCR analysis were used to verify the expression levels of prognostic DEPRGs. In conclusion, PRGs are critical in tumor immunity and can be utilized to predict the prognosis of CC.
Collapse
Affiliation(s)
- Haoran Hu
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Meiqin Yang
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wei Dong
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Bo Yin
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jianyi Ding
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Baoyou Huang
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qingliang Zheng
- Prenatal Diagnosis Center, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- *Correspondence: Lingfei Han, ; Fang Li, ; Qingliang Zheng,
| | - Fang Li
- Department of Gynecology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Lingfei Han, ; Fang Li, ; Qingliang Zheng,
| | - Lingfei Han
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Lingfei Han, ; Fang Li, ; Qingliang Zheng,
| |
Collapse
|
290
|
Liao Y, Liu K, Zhu L. Emerging Roles of Inflammasomes in Cardiovascular Diseases. Front Immunol 2022; 13:834289. [PMID: 35464402 PMCID: PMC9021369 DOI: 10.3389/fimmu.2022.834289] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/07/2022] [Indexed: 01/12/2023] Open
Abstract
Cardiovascular diseases are known as the leading cause of morbidity and mortality worldwide. As an innate immune signaling complex, inflammasomes can be activated by various cardiovascular risk factors and regulate the activation of caspase-1 and the production and secretion of proinflammatory cytokines such as IL-1β and IL-18. Accumulating evidence supports that inflammasomes play a pivotal role in the progression of atherosclerosis, myocardial infarction, and heart failure. The best-known inflammasomes are NLRP1, NLRP3, NLRC4, and AIM2 inflammasomes, among which NLRP3 inflammasome is the most widely studied in the immune response and disease development. This review focuses on the activation and regulation mechanism of inflammasomes, the role of inflammasomes in cardiovascular diseases, and the research progress of targeting NLRP3 inflammasome and IL-1β for related disease intervention.
Collapse
Affiliation(s)
- Yingnan Liao
- Xiamen Key Laboratory of Cardiovascular Disease, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Kui Liu
- Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing, China
| | - Liyuan Zhu
- Xiamen Key Laboratory of Cardiovascular Disease, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
291
|
Lian H, Fang X, Li Q, Liu S, Wei Q, Hua X, Li W, Liao C, Yuan X. NLRP3 Inflammasome-Mediated Pyroptosis Pathway Contributes to the Pathogenesis of Candida albicans Keratitis. Front Med (Lausanne) 2022; 9:845129. [PMID: 35463001 PMCID: PMC9020473 DOI: 10.3389/fmed.2022.845129] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/03/2022] [Indexed: 02/03/2023] Open
Abstract
Purpose Fungal keratitis is a sight-threatening corneal infection caused by fungal pathogens, and the pathogenic mechanisms have not been fully elucidated. The aim of this study was to determine whether NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome-mediated pyroptosis contributes to Candida albicans (C. albicans) keratitis and explore the underlying mechanism. Methods An in vivo mouse model of C. albicans keratitis and an in vitro culture model of human corneal epithelial cells (HCECs) challenged with heat-killed C. albicans (HKCA) were established in this study. The degree of corneal infection was evaluated by clinical scoring. Gene expression was assessed using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot analysis or immunofluorescence staining was performed to evaluate protein expression. TdT-mediated dUTP nick end labeling (TUNEL) staining was performed to examine the pyroptotic cell death. A lactate dehydrogenase (LDH) release assay was performed to assess cytotoxicity. Results Compared with the mock-infected group, we observed that the mRNA levels of NLRP3, caspase-1 (CASP1), interleukin (IL)−1β and gasdermin-D (GSDMD) in C. albicans-infected mice cornea was significantly increased. Our data also demonstrated that the protein expression of NLRP3 and the pyroptosis-related markers apoptosis-associated speck-like protein containing a CARD (ASC), cleaved CASP1, N-GSDMD, cleaved IL-1β and cleaved IL-18 as well as pyroptotic cell death were dramatically elevated in the mouse model of C. albicans keratitis. More importantly, NLRP3 knockdown markedly alleviated pyroptosis and consequently reduced corneal inflammatory reaction in C. albicans keratitis. In vitro, the presence of activated NLRP3 inflammasome and pyroptotic cell death were validated in HCECs exposed to HKCA. Furthermore, the potassium (K+) channel inhibitor glyburide decreased LDH release and suppressed NLRP3 inflammasome activation and pyroptosis in HCECs exposed to HKCA. Conclusion In conclusion, the current study revealed for the first time that NLRP3 inflammasome activation and pyroptosis occur in C. albicans-infected mouse corneas and HCECs. Moreover, NLRP3 inflammasome-mediated pyroptosis signaling is involved in the disease severity of C. albicans keratitis. Therefore, This NLRP3 inflammasome-dependent pathway may be an attractive target for the treatment of fungal keratitis.
Collapse
Affiliation(s)
- Huifang Lian
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China.,Tianjin Eye Hospital, Tianjin Eye Institute, Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin, China.,Department of Ophthalmology, Baoding First Central Hospital, Baoding, China.,State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - XiaoLong Fang
- Tianjin Eye Hospital, Tianjin Eye Institute, Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin, China.,State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,The School of Medicine, Nankai University, Tianjin, China
| | - Qingyu Li
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China.,Tianjin Eye Hospital, Tianjin Eye Institute, Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin, China
| | - Shuang Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qiuhong Wei
- Department of Ophthalmology, Baoding First Central Hospital, Baoding, China
| | - Xia Hua
- Aier Eye Hospital, Tianjin, China
| | - Wenguang Li
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Chunyang Liao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Xiaoyong Yuan
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China.,Tianjin Eye Hospital, Tianjin Eye Institute, Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin, China.,The School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
292
|
Mezzasoma L, Bellezza I, Romani R, Talesa VN. Extracellular Vesicles and the Inflammasome: An Intricate Network Sustaining Chemoresistance. Front Oncol 2022; 12:888135. [PMID: 35530309 PMCID: PMC9072732 DOI: 10.3389/fonc.2022.888135] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/23/2022] [Indexed: 12/24/2022] Open
Abstract
Extracellular vesicles (EVs) are membrane enclosed spherical particles devoted to intercellular communication. Cancer-derived EVs (Ca-EVs) are deeply involved in tumor microenvironment remodeling, modifying the inflammatory phenotype of cancerous and non-cancerous residing cells. Inflammation plays a pivotal role in initiation, development, and progression of many types of malignancies. The key feature of cancer-related inflammation is the production of cytokines that incessantly modify of the surrounding environment. Interleukin-1β (IL-1β) is one of the most powerful cytokines, influencing all the initiation-to-progression stages of many types of cancers and represents an emerging critical contributor to chemoresistance. IL-1β production strictly depends on the activation of inflammasome, a cytoplasmic molecular platform sensing exogenous and endogenous danger signals. It has been recently shown that Ca-EVs can activate the inflammasome cascade and IL-1β production in tumor microenvironment-residing cells. Since inflammasome dysregulation has been established as crucial regulator in inflammation-associated tumorigenesis and chemoresistance, it is conceivable that the use of inflammasome-inhibiting drugs may be employed as adjuvant chemotherapy to counteract chemoresistance. This review focuses on the role of cancer-derived EVs in tuning tumor microenvironment unveiling the intricate network between inflammasome and chemoresistance.
Collapse
|
293
|
Li H, Cao Z, Wang L, Liu C, Lin H, Tang Y, Yao P. Macrophage Subsets and Death Are Responsible for Atherosclerotic Plaque Formation. Front Immunol 2022; 13:843712. [PMID: 35432323 PMCID: PMC9007036 DOI: 10.3389/fimmu.2022.843712] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 02/17/2022] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases, the notorious killer, are mainly caused by atherosclerosis (AS) characterized by lipids, cholesterol, and iron overload in plaques. Macrophages are effector cells and accumulate to the damaged and inflamed sites of arteries to internalize native and chemically modified lipoproteins to transform them into cholesterol-loaded foam cells. Foam cell formation is determined by the capacity of phagocytosis, migration, scavenging, and the features of phenotypes. Macrophages are diverse, and the subsets and functions are controlled by their surrounding microenvironment. Generally, macrophages are divided into classically activated (M1) and alternatively activated (M2). Recently, intraplaque macrophage phenotypes are recognized by the stimulation of CXCL4 (M4), oxidized phospholipids (Mox), hemoglobin/haptoglobin complexes [HA-mac/M(Hb)], and heme (Mhem). The pro-atherogenic or anti-atherosclerotic phenotypes of macrophages decide the progression of AS. Besides, apoptosis, necrosis, ferroptosis, autophagy and pyrotopsis determine plaque formation and cardiovascular vulnerability, which may be associated with macrophage polarization phenotypes. In this review, we first summarize the three most popular hypotheses for AS and find the common key factors for further discussion. Secondly, we discuss the factors affecting macrophage polarization and five types of macrophage death in AS progression, especially ferroptosis. A comprehensive understanding of the cellular and molecular mechanisms of plaque formation is conducive to disentangling the candidate targets of macrophage-targeting therapies for clinical intervention at various stages of AS.
Collapse
Affiliation(s)
- Hongxia Li
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiqiang Cao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lili Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chang Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongkun Lin
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuhan Tang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Yao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
294
|
Chai R, Xue W, Shi S, Zhou Y, Du Y, Li Y, Song Q, Wu H, Hu Y. Cardiac Remodeling in Heart Failure: Role of Pyroptosis and Its Therapeutic Implications. Front Cardiovasc Med 2022; 9:870924. [PMID: 35509275 PMCID: PMC9058112 DOI: 10.3389/fcvm.2022.870924] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/31/2022] [Indexed: 12/17/2022] Open
Abstract
Pyroptosis is a kind of programmed cell death closely related to inflammation. The pathways that mediate pyroptosis can be divided into the Caspase-1-dependent canonical pathway and the Caspase4/5/11-dependent non-canonical pathway. The most significant difference from other cell death is that pyroptosis rapidly causes rupture of the plasma membrane, cell expansion, dissolution and rupture of the cell membrane, the release of cell contents and a large number of inflammatory factors, and send pro-inflammatory signals to adjacent cells, recruit inflammatory cells and induce inflammatory responses. Cardiac remodeling is the basic mechanism of heart failure (HF) and the core of pathophysiological research on the underlying mechanism. A large number of studies have shown that pyroptosis can cause cardiac fibrosis, cardiac hypertrophy, cardiomyocytes death, myocardial dysfunction, excessive inflammation, and cardiac remodeling. Therefore, targeting pyroptosis has a good prospect in improving cardiac remodeling in HF. In this review, the basic molecular mechanism of pyroptosis is summarized, the relationship between pyroptosis and cardiac remodeling in HF is analyzed in-depth, and the potential therapy of targeting pyroptosis to improve adverse cardiac remodeling in HF is discussed, providing some ideas for improving the study of adverse cardiac remodeling in HF.
Collapse
Affiliation(s)
- Ruoning Chai
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenjing Xue
- Department of Clinical Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Shuqing Shi
- Department of Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yu Zhou
- Department of Clinical Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yihang Du
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuan Li
- Department of Clinical Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Qingqiao Song
- Department of Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huaqin Wu
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Huaqin Wu
| | - Yuanhui Hu
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Yuanhui Hu
| |
Collapse
|
295
|
Wang X, Hua P, He C, Chen M. Non-apoptotic cell death-based cancer therapy: Molecular mechanism, pharmacological modulators, and nanomedicine. Acta Pharm Sin B 2022; 12:3567-3593. [PMID: 36176912 PMCID: PMC9513500 DOI: 10.1016/j.apsb.2022.03.020] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/25/2022] [Accepted: 02/16/2022] [Indexed: 02/08/2023] Open
Abstract
As an emerging cancer therapeutic target, non-apoptotic cell death such as ferroptosis, necroptosis and pyroptosis, etc., has revealed significant potential in cancer treatment for bypassing apoptosis to enhance the undermined therapeutic efficacy triggered by apoptosis resistance. A variety of anticancer drugs, synthesized compounds and natural products have been proven recently to induce non-apoptotic cell death and exhibit excellent anti-tumor effects. Moreover, the convergence of nanotechnology with functional materials and biomedicine science has provided tremendous opportunities to construct non-apoptotic cell death-based nanomedicine for innovative cancer therapy. Nanocarriers are not only employed in targeted delivery of non-apoptotic inducers, but also used as therapeutic components to induce non-apoptotic cell death to achieve efficient tumor treatment. This review first introduces the main characteristics, the mechanism and various pharmacological modulators of different non-apoptotic cell death forms, including ferroptosis, necroptosis, pyroptosis, autophagy, paraptosis, lysosomal-dependent cell death, and oncosis. Second, we comprehensively review the latest progresses of nanomedicine that induces various forms of non-apoptotic cell death and focus on the nanomedicine targeting different pathways and components. Furthermore, the combination therapies of non-apoptotic cell death with photothermal therapy, photodynamic therapy, immunotherapy and other modalities are summarized. Finally, the challenges and future perspectives in this regard are also discussed.
Collapse
|
296
|
Metformin Protects against Spinal Cord Injury and Cell Pyroptosis via AMPK/NLRP3 Inflammasome Pathway. Anal Cell Pathol 2022; 2022:3634908. [PMID: 35387358 PMCID: PMC8977347 DOI: 10.1155/2022/3634908] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 02/13/2022] [Accepted: 03/16/2022] [Indexed: 11/17/2022] Open
Abstract
Spinal cord injury (SCI) is an extreme neurological impairment with few effective drug treatments. Pyroptosis is a recently found and proven type of programmed cell death that is characterized by a reliance on inflammatory caspases and the release of a large number of proinflammatory chemicals. Pyroptosis differs from other cell death mechanisms such as apoptosis and necrosis in terms of morphological traits, incidence, and regulatory mechanism. Pyroptosis is widely involved in the occurrence and development of SCI. In-depth research on pyroptosis will help researchers better understand its involvement in the onset, progression, and prognosis of SCI, as well as provide new therapeutic prevention and treatment options. Herein, we investigated the role of AMPK-mediated activation of the NLRP3 inflammasome in the neuroprotection of MET-regulated pyroptosis. We found that MET treatment reduced NLRP3 inflammasome activation by activating phosphorylated AMPK and reduced proinflammatory cytokine (IL-1β, IL-6, and TNF-α) release. At the same time, MET improved motor function recovery in rats after SCI by reducing motor neuron loss in the anterior horn of the spinal cord. Taken together, our study confirmed that MET inhibits neuronal pyroptosis after SCI via the AMPK/NLRP3 signaling pathway, which is mostly dependent on the AMPK pathway increase, hence decreasing NLRP3 inflammasome activation.
Collapse
|
297
|
Gu L, Sun M, Li R, Zhang X, Tao Y, Yuan Y, Luo X, Xie Z. Didymin Suppresses Microglia Pyroptosis and Neuroinflammation Through the Asc/Caspase-1/GSDMD Pathway Following Experimental Intracerebral Hemorrhage. Front Immunol 2022; 13:810582. [PMID: 35154128 PMCID: PMC8828494 DOI: 10.3389/fimmu.2022.810582] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/04/2022] [Indexed: 12/17/2022] Open
Abstract
Neuroinflammation has been proven to exert an important effect on brain injury after intracerebral hemorrhage (ICH). Previous studies reported that Didymin possessed anti-inflammatory properties after acute hepatic injury, hyperglycemia-induced endothelial dysfunction, and death. However, the role of Didymin in microglial pyroptosis and neuroinflammation after ICH is unclear. The current study aimed to investigate the effect of Didymin on neuroinflammation mediated by microglial pyroptosis in mouse models of ICH and shed some light on the underlying mechanisms. In this study, we observed that Didymin treatment remarkably improved neurobehavioral performance and decreased BBB disruption and brain water content. Microglial activation and neutrophil infiltration in the peri-hematoma tissue after ICH were strikingly mitigated by Didymin as well. At the molecular level, administration of Didymin significantly unregulated the expression of Rkip and downregulated the expression of pyroptotic molecules and inflammatory cytokines such as Nlrp3 inflammasome, GSDMD, caspase-1, and mature IL-1β, TNF-α, and MPO after ICH. Besides, Didymin treatment decreased the number of Caspase-1-positive microglia and GSDMD-positive microglia after ICH. Inversely, Locostatin, an Rkip-specific inhibitor, significantly abolished the anti-pyroptosis and anti-neuroinflammation effects of Didymin. Moreover, Rkip binding with Asc could interrupt the activation and assembly of the inflammasome. Mechanistically, inhibition of Caspase-1 by VX-765 attenuated brain injury and suppressed microglial pyroptosis and neuroinflammation by downregulation of GSDMD, mature IL-1β, TNF-α, and MPO based on Locostatin-treated ICH. Taken together, Didymin alleviated microglial pyroptosis and neuroinflammation, at least in part through the Asc/Caspase-1/GSDMD pathway via upregulating Rkip expression after ICH. Therefore, Didymin may be a potential agent to attenuate neuroinflammation via its anti-pyroptosis effect after ICH.
Collapse
Affiliation(s)
- Lingui Gu
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Mingjiang Sun
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ruihao Li
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xingyu Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yihao Tao
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ye Yuan
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xu Luo
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Zongyi Xie
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
298
|
El-Benhawy SA, Elblehi SS, Hammoury SI, El-Soud AAA. Studying ferroptosis and pyroptosis as new cell death mechanisms induced by ionizing radiation in Ehrlich solid tumor-bearing mice. Cancer Treat Res Commun 2022; 31:100545. [PMID: 35305365 DOI: 10.1016/j.ctarc.2022.100545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/16/2022] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
OBJECTIVE Our objective was to explore the effect of different fractionation schedule on ferroptosis and pyroptosis biomarkers as new cell death mechanisms induced by IR. MATERIALS AND METHODS This study included 40 tumor bearing mice divided into: Group I: Includes 8 untreated tumor-bearing mice. Group II: Includes 8 tumor bearing mice exposed to single dose 6 Gy of IR. Group III: Includes 8 tumor bearing mice exposed to 12 Gy in 2 fractions (2 × 6 Gy) of IR. Group IV: Includes 8 tumor bearing mice exposed to 12 Gy in 3 fractions (3 × 4 Gy) of IR. Group V: Includes 8 tumor bearing mice exposed to 8 Gy in 4 fractions (4 × 2 Gy) of IR. IL-1β, IL-18, and GSDMD-CT levels were assessed by ELISA. PTGS2 and ACSL4 expression were assessed by RT-PCR. RESULTS (2 × 6 Gy) group showed the highest ACSL4 expression followed by (3 × 4 Gy), then (4 × 2 Gy) and finally 6 Gy. (2 × 6 Gy) group resulted in the highest PTGS2 expression followed by (3 × 4 Gy), then 6 Gy, and finally (4 × 2 Gy). MDA significantly increased at (2 × 6 Gy), (3 × 4 Gy), and 6 Gy groups and insignificantly increased at (4 × 2 Gy) group. Iron significantly increased at (2 × 6 Gy), (3 × 4 Gy), and (4 × 2 Gy) groups and insignificantly at 6 Gy. Glutathione was significantly decreased at (2 × 6 Gy), (3 × 4 Gy), and (4 × 2 Gy) groups and insignificantly at 6 Gy. GSDMD-CT, IL-1β, and IL-18 levels significantly reduced in tumor tissues after exposure to IR at all doses. CONCLUSION High dose per fraction regimens induce the expression of ferroptosis markers more than low dose per fraction regimen and single dose of IR. IR at all doses induces pyroptotic cell death.
Collapse
Affiliation(s)
- Sanaa A El-Benhawy
- Radiation Sciences Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Samar S Elblehi
- Pathology Department, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Sabbah I Hammoury
- Medical Physics Department, Alexandria Ayadi El mostakbl Oncology Center, Alexandria, Egypt
| | - Amira A Abo El-Soud
- Radiation Sciences Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| |
Collapse
|
299
|
Zhao X, Cui D, Yuan W, Chen C, Liu Q. Berberine represses Wnt/β-catenin pathway activation via modulating the microRNA-103a-3p/Bromodomain-containing protein 4 axis, thereby refraining pyroptosis and reducing the intestinal mucosal barrier defect induced via colitis. Bioengineered 2022; 13:7392-7409. [PMID: 35259053 PMCID: PMC8973728 DOI: 10.1080/21655979.2022.2047405] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Intestinal barrier dysfunction is inflammatory bowel disease’s hallmark. Berberine (BBR) has manifested its anti-inflammatory properties in colitis. For exploring the molecular mechanism of BBR’s impacts on colitis, application of a dextran sodium sulfate-induced mouse colitis in vivo model was with recording the body weight, stool consistency, stool occult blood and general physical symptoms of all groups of mice every day. Behind assessment of intestinal permeability, detection of colon damage’s degree and apoptosis, and inflammatory factors for assessment of pyroptosis was conducted. Application of interleukin-6-stimulated Caco-2 cells was for construction of an in vitro model. Then detection of cell advancement with inflammation and measurement of the barrier’s integrity were put into effect. Verification of microRNA (miR)-103a-3p and Bromodomain-containing protein 4 (BRD4)’s targeting link was conducted. Experiments have clarified BBR, elevated miR-103a-3p or repressive BRD4 was available to alleviate colitis-stimulated pyroptosis and intestinal mucosal barrier defects. BBR elevated miR-103a-3p to target BRD4; Refraining miR-103a-3p or enhancive BRD4 turned around BBR’s therapeutic action on colitis injury. BBR depressed Wnt/β-catenin pathway activation via controlling the miR-103a-3p/BRD4 axis. All in all, BBR represses Wnt/β-catenin pathway activation via modulating the miR-103a-3p/BRD4 axis, thereby mitigating colitis-stimulated pyroptosis and the intestinal mucosal barrier defect. The research suggests BBR is supposed to take on potential in colitis cure.
Collapse
Affiliation(s)
- Xun Zhao
- The Graduate School, Guizhou Medical University, Guiyang City, Guizhou Province, China
| | - DeJun Cui
- Department of Gastroenterology, Guizhou Provincial People's Hospital, Guiyang City, Guizhou Province, China
| | - WenQiang Yuan
- The Graduate School, Guizhou Medical University, Guiyang City, Guizhou Province, China
| | - Chen Chen
- Department of Gastroenterology, Guizhou Provincial People's Hospital, Guiyang City, Guizhou Province, China
| | - Qi Liu
- The Graduate School, Guizhou Medical University, Guiyang City, Guizhou Province, China
| |
Collapse
|
300
|
Zhai Y, Sang W, Su L, Shen Y, Hu Y, Zhang W. Analysis of the expression and prognostic value of MT1-MMP, β1-integrin and YAP1 in glioma. Open Med (Wars) 2022; 17:492-507. [PMID: 35350840 PMCID: PMC8919829 DOI: 10.1515/med-2022-0449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 01/23/2022] [Accepted: 02/07/2022] [Indexed: 11/19/2022] Open
Abstract
Increased expression of membrane type 1-matrix metalloproteinase (MT1-MMP/MMP14) is associated with the development of many cancers. MT1-MMP may promote the entry of yes-associated protein1 (YAP1) into the nucleus by regulating the regulation of β1-integrin. The purpose of this study was to investigate the effects of MT1-MMP, β1-integrin and YAP1 on the prognosis of gliomas. The expression of proteins was detected by bioinformatics and immunohistochemistry. The relationship between three proteins and clinicopathological parameters was analyzed by the χ2 test. Survival analysis was used to investigate the effects of three proteins on prognosis. The results showed that high expressions of MT1-MMP, β1-integrin and YAP1 were found in glioblastoma (GBM) compared with lower-grade glioma (LGG). There was a significantly positive correlation between MT1-MMP and β1-integrin (r = 0.387), MT1-MMP and YAP1 (r = 0.443), β1-integrin and YAP1 (r = 0.348). Survival analysis showed that patients with overexpression of MT1-MMP, β1-integrin and YAP1 had a worse prognosis. YAP1 expression was the independent prognostic factor for progression-free survival (PFS). There was a statistical correlation between the expression of MT1-MMP and YAP1 and isocitrate dehydrogenase 1 (IDHl) mutation. Thus, this study suggested that MT1-MMP, β1-integrin and YAP1, as tumor suppressors, are expected to be promising prognostic biomarkers and therapeutic targets for glioma patients.
Collapse
Affiliation(s)
- Yangyang Zhai
- Department of Pathology, First Affiliated Hospital, Xinjiang Medical University , Urumqi , Xinjiang, 830054 , P. R. China
- State Key Laboratory of Etiology and Prevention of High Incidence in Central Asia , Xinjiang Medical University, 830000 , P. R. China
| | - Wei Sang
- Department of Pathology, First Affiliated Hospital, Xinjiang Medical University , Urumqi , Xinjiang, 830054 , P. R. China
| | - Liping Su
- Department of Pathology, First Affiliated Hospital, Xinjiang Medical University , Urumqi , Xinjiang, 830054 , P. R. China
| | - Yusheng Shen
- Department of Neurosurgery, First Affiliated Hospital, Xinjiang Medical University , Urumqi , Xinjiang 830054 , P. R. China
| | - Yanran Hu
- Xinjiang Medical University, Urumqi, The Xinjiang Uygur Autonomous Region of China , 830011 , P. R. China
| | - Wei Zhang
- Department of Pathology, First Affiliated Hospital, Xinjiang Medical University , Urumqi , Xinjiang, 830054 , P. R. China
| |
Collapse
|