251
|
Riso P, Del Bo’ C, Vendrame S. Preventive Effects of Broccoli Bioactives. Cancer 2014. [DOI: 10.1016/b978-0-12-405205-5.00011-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
252
|
Thakur VS, Deb G, Babcook MA, Gupta S. Plant phytochemicals as epigenetic modulators: role in cancer chemoprevention. AAPS JOURNAL 2013; 16:151-63. [PMID: 24307610 DOI: 10.1208/s12248-013-9548-5] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 11/18/2013] [Indexed: 12/18/2022]
Abstract
In recent years, "nutri-epigenetics," which focuses on the influence of dietary agents on epigenetic mechanism(s), has emerged as an exciting novel area in epigenetics research. Targeting of aberrant epigenetic modifications has gained considerable attention in cancer chemoprevention research because, unlike genetic changes, epigenetic alterations are reversible and occur during early carcinogenesis. Aberrant epigenetic mechanisms, such as promoter DNA methylation, histone modifications, and miRNA-mediated post-transcriptional alterations, can silence critical tumor suppressor genes, such as transcription factors, cell cycle regulators, nuclear receptors, signal transducers, and apoptosis-inducing and DNA repair gene products, and ultimately contribute to carcinogenesis. In an effort to identify and develop anticancer agents which cause minimal harm to normal cells while effectively killing cancer cells, a number of naturally occurring phytochemicals in food and medicinal plants have been investigated. This review highlights the potential role of plant-derived phytochemicals in targeting epigenetic alterations that occur during carcinogenesis, by modulating the activity or expression of DNA methyltransferases, histone modifying enzymes, and miRNAs. We present in detail the epigenetic mode of action of various phytochemicals and discuss their potential as safe and clinically useful chemopreventive strategies.
Collapse
Affiliation(s)
- Vijay S Thakur
- Department of Urology, Case Western Reserve University, University Hospitals Case Medical Center, 10900 Euclid Avenue, Cleveland, Ohio, 44106, USA
| | | | | | | |
Collapse
|
253
|
Sulforaphane induces reactive oxygen species-mediated mitotic arrest and subsequent apoptosis in human bladder cancer 5637 cells. Food Chem Toxicol 2013; 64:157-65. [PMID: 24296129 DOI: 10.1016/j.fct.2013.11.034] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Revised: 11/10/2013] [Accepted: 11/24/2013] [Indexed: 11/21/2022]
Abstract
The present study was undertaken to determine whether sulforaphane-derived reactive oxygen species (ROS) might cause growth arrest and apoptosis in human bladder cancer 5637 cells. Our results show that the reduced viability of 5637 cells by sulforaphane is due to mitotic arrest, but not the G2 phase. The sulforaphane-induced mitotic arrest correlated with an induction of cyclin B1 and phosphorylation of Cdk1, as well as a concomitant increased complex between cyclin B1 and Cdk1. Sulforaphane-induced apoptosis was associated with the activation of caspase-8 and -9, the initiators caspases of the extrinsic and intrinsic apoptotic pathways, respectively, and activation of effector caspase-3 and cleavage of poly (ADP-ribose) polymerase. However, blockage of caspase activation inhibited apoptosis and abrogated growth inhibition in sulforaphane-treated 5637 cells. This study further investigated the roles of ROS with respect to mitotic arrest and the apoptotic effect of sulforaphane, and the maximum level of ROS accumulation was observed 3h after sulforaphane treatment. However, a ROS scavenger, N-acetyl-L-cysteine, notably attenuated sulforaphane-mediated apoptosis as well as mitotic arrest. Overall, these results suggest that sulforaphane induces mitotic arrest and apoptosis of 5637 cells via a ROS-dependent pathway.
Collapse
|
254
|
Lee YR, Noh EM, Han JH, Kim JM, Hwang BM, Kim BS, Lee SH, Jung SH, Youn HJ, Chung EY, Kim JS. Sulforaphane controls TPA-induced MMP-9 expression through the NF-κB signaling pathway, but not AP-1, in MCF-7 breast cancer cells. BMB Rep 2013; 46:201-6. [PMID: 23615261 PMCID: PMC4133889 DOI: 10.5483/bmbrep.2013.46.4.160] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Sulforaphane [1-isothiocyanato-4-(methylsulfinyl)-butane] is an isothiocyanate found in some cruciferous vegetables, especially broccoli. Sulforaphane has been shown to display anti-cancer properties against various cancer cell lines. Matrix metalloproteinase-9 (MMP-9), which degrades the extracellular matrix (ECM), plays an important role in cancer cell invasion. In this study, we investigated the effect of sulforaphane on 12-O-tetradecanoyl phorbol-13-acetate (TPA)-induced MMP-9 expression and cell invasion in MCF-7 cells. TPA-induced MMP-9 expression and cell invasion were decreased by sulforaphane treatment. TPA substantially increased NF-κB and AP-1 DNA binding activity. Pre-treatment with sulforaphane inhibited TPA-stimulated NF-κB binding activity, but not AP-1 binding activity. In addition, we found that sulforaphane suppressed NF-κB activation, by inhibiting phosphorylation of IκB in TPA-treated MCF-7 cells. In this study, we demonstrated that the inhibition of TPA-induced MMP-9 expression and cell invasion by sulforaphane was mediated by the suppression of the NF-κB pathway in MCF-7 cells. [BMB Reports 2013; 46(4): 201-206]
Collapse
Affiliation(s)
- Young-Rae Lee
- Department of Anesthesiology and Pain Medicine, Bucheon St. Mary's Hospital, The Catholic University of Korea, Bucheon 420-717, Korea.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
255
|
Guo S, Zou J, Wang G. Advances in the proteomic discovery of novel therapeutic targets in cancer. DRUG DESIGN DEVELOPMENT AND THERAPY 2013; 7:1259-71. [PMID: 24187485 PMCID: PMC3810204 DOI: 10.2147/dddt.s52216] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Proteomic approaches are continuing to make headways in cancer research by helping to elucidate complex signaling networks that underlie tumorigenesis and disease progression. This review describes recent advances made in the proteomic discovery of drug targets for therapeutic development. A variety of technical and methodological advances are overviewed with a critical assessment of challenges and potentials. A number of potential drug targets, such as baculoviral inhibitor of apoptosis protein repeat-containing protein 6, macrophage inhibitory cytokine 1, phosphoglycerate mutase 1, prohibitin 1, fascin, and pyruvate kinase isozyme 2 were identified in the proteomic analysis of drug-resistant cancer cells, drug action, and differential disease state tissues. Future directions for proteomics-based target identification and validation to be more translation efficient are also discussed.
Collapse
Affiliation(s)
- Shanchun Guo
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Clark Atlanta University, Atlanta, GA, USA
| | | | | |
Collapse
|
256
|
Houghton CA, Fassett RG, Coombes JS. Sulforaphane: translational research from laboratory bench to clinic. Nutr Rev 2013; 71:709-26. [PMID: 24147970 DOI: 10.1111/nure.12060] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cruciferous vegetables are widely acknowledged to provide chemopreventive benefits in humans, but they are not generally consumed at levels that effect significant change in biomarkers of health. Because consumers have embraced the notion that dietary supplements may prevent disease, this review considers whether an appropriately validated sulforaphane-yielding broccoli sprout supplement may deliver clinical benefit. The crucifer-derived bioactive phytochemical sulforaphane is a significant inducer of nuclear factor erythroid 2-related factor 2 (Nrf2), the transcription factor that activates the cell's endogenous defenses via a battery of cytoprotective genes. For a broccoli sprout supplement to demonstrate bioactivity in vivo, it must retain both the sulforaphane-yielding precursor compound, glucoraphanin, and the activity of glucoraphanin's intrinsic myrosinase enzyme. Many broccoli sprout supplements are myrosinase inactive, but current labeling does not reflect this. For the benefit of clinicians and consumers, this review summarizes the findings of in vitro studies and clinical trials, interpreting them in the context of clinical relevance. Standardization of sulforaphane nomenclature and assay protocols will be necessary to remove inconsistency and ambiguity in the labeling of currently available broccoli sprout products.
Collapse
Affiliation(s)
- Christine A Houghton
- School of Human Movement Studies, University of Queensland, Brisbane, Queensland, Australia
| | | | | |
Collapse
|
257
|
Ziaei A, Schmedt T, Chen Y, Jurkunas UV. Sulforaphane decreases endothelial cell apoptosis in fuchs endothelial corneal dystrophy: a novel treatment. Invest Ophthalmol Vis Sci 2013; 54:6724-34. [PMID: 24030461 DOI: 10.1167/iovs.13-12699] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Fuchs endothelial corneal dystrophy (FECD) is an oxidative stress disorder that leads to age-related and gradual loss of corneal endothelial cells resulting in corneal edema and loss of vision. To date, other than surgical intervention, there are no treatment options for patients with FECD. We have shown that in FECD, there is a deficiency in nuclear factor erythroid 2-related factor 2 (Nrf2)-regulated antioxidant defense due to decreased Nrf2 nuclear translocation and activation of antioxidant response element (ARE). In this study, we used sulforaphane (SFN) and D3T to investigate a strategy of targeting Nrf2-ARE in FECD. METHODS FECD and normal ex vivo corneas and human corneal endothelial cell lines were pretreated with SFN or D3T and exposed to oxidative stress with tert-Butyl hydroperoxide (tBHP). Apoptosis was detected with TUNEL. Cellular localization of Nrf2 and p53 was assessed by immunohistochemistry. Effect of SFN was determined by using DCFDA assay, Western blot and real-time PCR. RESULTS After pretreatment with SFN, oxidative stress was induced with tBHP. In ex vivo FECD specimens, SFN decreased CEC apoptosis by 55% in unstressed group and by 43% in tBHP-treated specimens. SFN enhanced nuclear translocation of Nrf2 in FECD specimens and decreased p53 staining under oxidative stress. Pretreatment with SFN enhanced cell viability by decreasing intracellular reactive oxygen species production. Upregulation of Nrf2 levels led to increased synthesis of DJ-1, heme oxygenase 1, and nicotinamide adenine dinucleotide quinone oxidoreductase-1. SFN significantly upregulated major ARE-dependent antioxidants and ameliorated oxidative stress-induced apoptosis in FECD. CONCLUSIONS Our results suggest that targeting Nrf2-ARE pathway may arrest degenerative cell loss seen in FECD.
Collapse
Affiliation(s)
- Alireza Ziaei
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | | | | | | |
Collapse
|
258
|
Minarini A, Milelli A, Fimognari C, Simoni E, Turrini E, Tumiatti V. Exploring the effects of isothiocyanates on chemotherapeutic drugs. Expert Opin Drug Metab Toxicol 2013; 10:25-38. [PMID: 24087843 DOI: 10.1517/17425255.2013.843668] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Chemoprevention has emerged as a promising strategy to reduce the risk and to control cancer. In this context, isothiocyanates (ITCs), found in abundance in the form of glucosinolates in cruciferous vegetables, have gained increasing consideration for their chemopreventive activity. ITCs exert their effects mainly by inducing carcinogen metabolism or by inhibiting tumor cell proliferation. AREAS COVERED In recent years, novel combination treatments, by coupling chemopreventive agents and typical chemotherapeutics, have been exploited to increase the antitumor activities. The aim of this article is to examine the foremost studies carried out, so far, on the effects of dietary and synthetic ITCs on different signaling pathways involved in the pharmacokinetics and pharmacodynamics of chemotherapeutic agents, in order to enhance their effectiveness. EXPERT OPINION Undoubtedly, the beneficial anticarcinogenic potential of ITCs, both singly and in combination, has emerged in in vitro and in vivo studies. However, only a few clinical trials have been carried out so far with ITCs, which try to better define both the pharmacokinetic and pharmacodynamic impacts in humans. More toxicological evaluations after long-term administration of ITCs in different species are required for the clinical development of ITCs as anticarcinogenic agents.
Collapse
Affiliation(s)
- Anna Minarini
- Alma Mater Studiorum-University of Bologna, Department of Pharmacy and Biotechnology , Via Belmeloro 6, 40126 Bologna , Italy +39 051 2099709 ; +39 051 2099734 ;
| | | | | | | | | | | |
Collapse
|
259
|
Grandhi BK, Thakkar A, Wang J, Prabhu S. A novel combinatorial nanotechnology-based oral chemopreventive regimen demonstrates significant suppression of pancreatic cancer neoplastic lesions. Cancer Prev Res (Phila) 2013; 6:1015-1025. [PMID: 24072676 DOI: 10.1158/1940-6207.capr-13-0172] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Pancreatic cancer is a deadly disease killing 37,000 Americans each year. Despite two decades of research on treatment options, the chances of survival are still less than 5% upon diagnosis. Recently, chemopreventive strategies have gained considerable attention as an alternative to treatment. We have previously shown significant in vitro chemopreventive effects with low-dose combinations of aspirin, curcumin, and sulforaphane (ACS) on pancreatic cancer cell lines. Here, we report the results of 24-week chemopreventive study with the oral administration of ACS combinations on the N-nitrosobis (2-oxopropyl) amine (BOP)-treated Syrian golden hamster model to suppress the progression of pancreatic intraepithelial neoplasms (PanIN) using unmodified (free drug) combinations of ACS, and nanoencapsulated (solid lipid nanoparticles; SLN) combinations of aspirin, curcumin, and free sulforaphane. The use of three different doses (low, medium, and high) of unmodified ACS combinations exhibited reduction in tumor incidence by 18%, 50%, and 68.7% respectively; whereas the modified nanoencapsulated ACS regimens reduced tumor incidence by 33%, 67%, and 75%, respectively, at 10 times lower dose compared with the free drug combinations. Similarly, although the unmodified free ACS showed a notable reduction in cell proliferation, the SLN encapsulated ACS regimens showed significant reduction in cell proliferation at 6.3%, 58.6%, and 72.8% as evidenced by proliferating cell nuclear antigen expression. Cell apoptotic indices were also upregulated by 1.5, 2.8, and 3.2 times, respectively, compared with BOP control. These studies provide a proof-of-concept for the use of an oral, low-dose, nanotechnology-based combinatorial regimen for the long-term chemoprevention of pancreatic cancer.
Collapse
Affiliation(s)
- B Karthik Grandhi
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, 309 E 2 Street, Pomona, CA 91766, USA
| | - Arvind Thakkar
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, 309 E 2 Street, Pomona, CA 91766, USA
| | - Jeffrey Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, 309 E 2 Street, Pomona, CA 91766, USA
| | - Sunil Prabhu
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, 309 E 2 Street, Pomona, CA 91766, USA
| |
Collapse
|
260
|
Abstract
Literature to support the chemopreventive potential of several bioactive molecules has been prolific and convincing, but the clinical development of these agents has been slow. Major hurdles for development of bioactive chemoprevention approaches include low potency, lack of reliable formulations with high bioavailability that are suitable for oral administration, and relevant preclinical primary prevention models that use meaningful doses that can be translated to humans. The paper presented in this issue (Grandhi and colleagues) is an important step forward in this direction. It shows the efficacy of an oral, low dose, solid-lipid nanoparticles encapsulated curcumin and aspirin combined with free sulforaphane for long-term chemoprevention of pancreatic cancer in a carcinogen-induced hamster model. Reproducing this benefit in multiple cancer models, accompanied by development of intermediate markers of response will allow rapid translation of these findings. It will constitute the first successful multipronged attack at key pathways known to initiate and promote carcinogenesis.
Collapse
Affiliation(s)
- Dipali Sharma
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21231. ; and Dipali Sharma,
| | | |
Collapse
|
261
|
Wang Z, Fan J, Liu M, Yeung S, Chang A, Chow MSS, Pon D, Huang Y. Nutraceuticals for prostate cancer chemoprevention: from molecular mechanisms to clinical application. Expert Opin Investig Drugs 2013; 22:1613-26. [DOI: 10.1517/13543784.2013.833183] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
262
|
Detection of electrophile-sensitive proteins. Biochim Biophys Acta Gen Subj 2013; 1840:913-22. [PMID: 24021887 DOI: 10.1016/j.bbagen.2013.09.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 08/22/2013] [Accepted: 09/03/2013] [Indexed: 01/01/2023]
Abstract
BACKGROUND Redox signaling is an important emerging mechanism of cellular function. Dysfunctional redox signaling is increasingly implicated in numerous pathologies, including atherosclerosis, diabetes, and cancer. The molecular messengers in this type of signaling are reactive species which can mediate the post-translational modification of specific groups of proteins, thereby effecting functional changes in the modified proteins. Electrophilic compounds comprise one class of reactive species which can participate in redox signaling. Electrophiles modulate cell function via formation of covalent adducts with proteins, particularly cysteine residues. SCOPE OF REVIEW This review will discuss the commonly used methods of detection for electrophile-sensitive proteins, and will highlight the importance of identifying these proteins for studying redox signaling and developing novel therapeutics. MAJOR CONCLUSIONS There are several methods which can be used to detect electrophile-sensitive proteins. These include the use of tagged model electrophiles, as well as derivatization of endogenous electrophile-protein adducts. GENERAL SIGNIFICANCE In order to understand the mechanisms by which electrophiles mediate redox signaling, it is necessary to identify electrophile-sensitive proteins and quantitatively assess adduct formation. Strengths and limitations of these methods will be discussed. This article is part of a Special Issue entitled Current methods to study reactive oxygen species - pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn.
Collapse
|
263
|
Li Y, Zhang T, Li X, Zou P, Schwartz SJ, Sun D. Kinetics of sulforaphane in mice after consumption of sulforaphane-enriched broccoli sprout preparation. Mol Nutr Food Res 2013; 57:2128-36. [PMID: 23929742 DOI: 10.1002/mnfr.201300210] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 05/23/2013] [Accepted: 05/25/2013] [Indexed: 12/31/2022]
Abstract
SCOPE Sulforaphane (SF) is a natural isothiocyanate in broccoli sprouts with cancer chemopreventive activity. This study is aimed to use different methods to develop broccoli sprout preparations to compare their ability to deliver SF to the mice and to evaluate the kinetics and biodistribution of SF. METHODS AND RESULTS The SF-enriched sprout preparation generated by two-step procedure (quick-steaming followed by myrosinase treatment) contained the highest level of SF, which was 11 and 5 times higher than the freeze-dried fresh broccoli sprouts and the quick-steamed, freeze-dried broccoli sprouts, respectively. After oral administration of 2.5 mg/g body weight of the broccoli sprout preparations, SF was quickly absorbed and distributed throughout the tissues. The SF-rich preparation resulted in the highest exposure, with peak plasma SF concentration of 337 ng/mL, which is 6.0 times and 2.6 times higher compared to the other two preparations. A whole body physiologically based pharmacokinetic model (developed with ADAPT 5 software) suggests that distribution of SF is perfusion-limited in all organs. CONCLUSION This study provides a broccoli sprout preparation that can serve as a good source of SF, and the model can be utilized to guide the dose designed for the use of broccoli sprout preparation in chemoprevention.
Collapse
Affiliation(s)
- Yanyan Li
- Department of Health and Nutrition Sciences, Montclair State University, Montclair, NJ, USA; Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA; Department of Food Science and Technology, Ohio State University, Columbus, OH, USA
| | | | | | | | | | | |
Collapse
|
264
|
González-Vallinas M, González-Castejón M, Rodríguez-Casado A, Ramírez de Molina A. Dietary phytochemicals in cancer prevention and therapy: a complementary approach with promising perspectives. Nutr Rev 2013; 71:585-99. [DOI: 10.1111/nure.12051] [Citation(s) in RCA: 181] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
265
|
Li Y, Zhang T. Targeting cancer stem cells with sulforaphane, a dietary component from broccoli and broccoli sprouts. Future Oncol 2013; 9:1097-103. [DOI: 10.2217/fon.13.108] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Many studies have supported the protective effects of broccoli and broccoli sprouts against cancer. The chemopreventive properties of sulforaphane, which is derived from the principal glucosinolate of broccoli and broccoli sprouts, have been extensively studied. Recent research into the effects of sulforaphane on cancer stem cells (CSCs) has drawn lots of interest. CSCs are suggested to be responsible for initiating and maintaining cancer, and to contribute to recurrence and drug resistance. A number of studies have indicated that sulforaphane may target CSCs in different types of cancer through modulation of NF-κB, SHH, epithelial–mesenchymal transition and Wnt/β-catenin pathways. Combination therapy with sulforaphane and chemotherapy in preclinical settings has shown promising results. In this article, we focus on the effects of sulforaphane on CSCs and self-renewal pathways, as well as giving a brief review of recent human studies using broccoli sprout preparations.
Collapse
Affiliation(s)
- Yanyan Li
- Department of Health & Nutrition Sciences, Montclair State University, University Hall 4190, 1 Normal Avenue, Montclair, NJ 07043, USA
| | - Tao Zhang
- Drug Metabolism & Pharmacokinetics, Novartis Institute for Biomedical Research, Novartis Pharmaceutical Corporation, East Hanover, NJ 07936, USA
| |
Collapse
|
266
|
Effect of environmental conditions and water status on the bioactive compounds of broccoli. Open Life Sci 2013. [DOI: 10.2478/s11535-013-0172-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
AbstractFour experiments were carried out in 2010 and 2011 to determine how cultivation period (spring or autumn), harvest season (summer or autumn), and plant water status (irrigated or rainfed) influenced content and composition of broccoli cultivar Parthenon F1 with respect to sulforaphane and phenolics under field conditions in Gödöllő, Hungary. Sulforaphane content was significantly higher in the autumn harvests, regardless of irrigation treatments. Harvest season also influenced total phenolics content, with the highest values occurring in the spring season. Harvest season also affected trolox equivalent antioxidant capacity (TEAC) and this capacity was also the greatest in spring. Caffeic acid glucoside was a major phenolics component in both spring and autumn season harvests. The season and irrigation related changes in other phenolic component contents were also characterised in this study.
Collapse
|
267
|
Wu Y, Mao J, Mei L, Liu S. Kinetic studies of the thermal degradation of sulforaphane and its hydroxypropyl-β-cyclodextrin inclusion complex. Food Res Int 2013. [DOI: 10.1016/j.foodres.2013.05.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
268
|
Extraction, chemical characterization and biological activity determination of broccoli health promoting compounds. J Chromatogr A 2013; 1313:78-95. [PMID: 23899380 DOI: 10.1016/j.chroma.2013.07.051] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 06/25/2013] [Accepted: 07/11/2013] [Indexed: 12/11/2022]
Abstract
Broccoli (Brassica oleracea L. var. Italica) contains substantial amount of health-promoting compounds such as vitamins, glucosinolates, phenolic compounds, and dietary essential minerals; thus, it benefits health beyond providing just basic nutrition, and consumption of broccoli has been increasing over the years. This review gives an overview on the extraction and separation techniques, as well as the biological activity of some of the above mentioned compounds which have been published in the period January 2008 to January 2013. The work has been distributed according to the different families of health promoting compounds discussing the extraction procedures and the analytical techniques employed for their characterization. Finally, information about the different biological activities of these compounds has been also provided.
Collapse
|
269
|
Assessing competence of broccoli consumption on inflammatory and antioxidant pathways in restraint-induced models: estimation in rat hippocampus and prefrontal cortex. BIOMED RESEARCH INTERNATIONAL 2013; 2013:590379. [PMID: 23936822 PMCID: PMC3725709 DOI: 10.1155/2013/590379] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 06/03/2013] [Indexed: 01/23/2023]
Abstract
A growing body of evidence advocated the protective and therapeutic potential of natural compounds and phytochemicals used in diets against pathological conditions. Herein, the outcome of dietary whole broccoli consumption prior to restraint stress has been investigated in the hippocampus and prefrontal cortex of male rats, two important regions involved in the processing of responses to stressful events. Interestingly, a region-specific effect was detected regarding some of antioxidant defense system factors: nuclear factor erythroid-derived 2-related factor 2 (Nrf-2) antioxidant pathway, mitochondrial prosurvival proteins involved in mitochondrial biogenesis, and apoptotic cell death proteins. Dietary broccoli supplementation modulated the restraint-induced changes towards a consistent overall protection in the hippocampus. In the prefrontal cortex, however, despite activation of most of the protective factors, presumably as an attempt to save the system against the stress insult, some detrimental outcomes such as induced malate dehydrogenase (MDA) level and cleaved form of caspase-3 were detectable. Such diversity may be attributed in one hand to the different basic levels and/or availability of defensive mechanisms within the two studied cerebral regions, and on the other hand to the probable dose-dependent and hormetic effects of whole broccoli. More experiments are essential to demonstrate these assumptions.
Collapse
|
270
|
Nguyen NM, Gonda S, Vasas G. A Review on the Phytochemical Composition and Potential Medicinal Uses of Horseradish (Armoracia rusticana) Root. FOOD REVIEWS INTERNATIONAL 2013. [DOI: 10.1080/87559129.2013.790047] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
271
|
Pocasap P, Weerapreeyakul N, Barusrux S. Cancer preventive effect of Thai rat-tailed radish (Raphanus sativus L. var. caudatus Alef). J Funct Foods 2013. [DOI: 10.1016/j.jff.2013.05.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
272
|
W Watson G, M Beaver L, E Williams D, H Dashwood R, Ho E. Phytochemicals from cruciferous vegetables, epigenetics, and prostate cancer prevention. AAPS JOURNAL 2013; 15:951-61. [PMID: 23800833 DOI: 10.1208/s12248-013-9504-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 06/11/2013] [Indexed: 12/21/2022]
Abstract
Epidemiological evidence has demonstrated a reduced risk of prostate cancer associated with cruciferous vegetable intake. Follow-up studies have attributed this protective activity to the metabolic products of glucosinolates, a class of secondary metabolites produced by crucifers. The metabolic products of glucoraphanin and glucobrassicin, sulforaphane, and indole-3-carbinol respectively, have been the subject of intense investigation by cancer researchers. Sulforaphane and indole-3-carbinol inhibit prostate cancer by both blocking initiation and suppressing prostate cancer progression in vitro and in vivo. Research has largely focused on the anti-initiation and cytoprotective effects of sulforaphane and indole-3-carbinol through induction of phases I and II detoxification pathways. With regards to suppressive activity, research has focused on the ability of sulforaphane and indole-3-carbinol to antagonize cell signaling pathways known to be dysregulated in prostate cancer. Recent investigations have characterized the ability of sulforaphane and indole-3-carbinol derivatives to modulate the activity of enzymes controlling the epigenetic status of prostate cancer cells. In this review, we will summarize the well-established, "classic" non-epigenetic targets of sulforaphane and indole-3-carbinol, and highlight more recent evidence supporting these phytochemicals as epigenetic modulators for prostate cancer chemoprevention.
Collapse
Affiliation(s)
- Gregory W Watson
- Molecular and Cellular Biology, Oregon State University, Corvallis, Oregon, 97331, USA
| | | | | | | | | |
Collapse
|
273
|
|
274
|
Hu K, Qi YJ, Zhao J, Jiang HF, Chen X, Ren J. Synthesis and biological evaluation of sulforaphane derivatives as potential antitumor agents. Eur J Med Chem 2013; 64:529-39. [DOI: 10.1016/j.ejmech.2013.03.045] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 03/19/2013] [Accepted: 03/24/2013] [Indexed: 10/27/2022]
|
275
|
Changes in SeMSC, glucosinolates and sulforaphane levels, and in proteome profile in broccoli (Brassica oleracea var. Italica) fertilized with sodium selenate. Molecules 2013; 18:5221-34. [PMID: 23652991 PMCID: PMC6270319 DOI: 10.3390/molecules18055221] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 04/16/2013] [Accepted: 04/27/2013] [Indexed: 11/29/2022] Open
Abstract
The aim of this work was to analyze the effect of sodium selenate fortification on the content of selenomethyl selenocysteine (SeMSC), total glucosinolates and sulforaphane, as well as the changes in protein profile of the inflorescences of broccoli (Brassica oleracea var. Italica). Two experimental groups were considered: plants treated with 100 μmol/L sodium selenate (final concentration in the pot) and control plants treated with water. Fortification began 2 weeks after transplantation and was repeated once a week during 10 weeks. Broccoli florets were harvested when they reached appropriate size. SeMSC content in broccoli florets increased significantly with sodium selenate fortification; but total glucosinolates and sulforaphane content as well as myrosinase activity were not affected. The protein profile of broccoli florets changed due to fortification with sodium selenate. Some proteins involved in general stress-responses were up-regulated, whereas down-regulated proteins were identified as proteins involved in protection against pathogens. This is the first attempt to evaluate the physiological effect of fortification with sodium selenate on broccoli at protein level. The results of this work will contribute to better understanding the metabolic processes related with selenium uptake and accumulation in broccoli.
Collapse
|
276
|
Differential modulation of dibenzo[def,p]chrysene transplacental carcinogenesis: maternal diets rich in indole-3-carbinol versus sulforaphane. Toxicol Appl Pharmacol 2013; 270:60-9. [PMID: 23566957 DOI: 10.1016/j.taap.2013.02.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 02/15/2013] [Accepted: 02/18/2013] [Indexed: 11/24/2022]
Abstract
Cruciferous vegetable components have been documented to exhibit anticancer properties. Targets of action span multiple mechanisms deregulated during cancer progression, ranging from altered carcinogen metabolism to the restoration of epigenetic machinery. Furthermore, the developing fetus is highly susceptible to changes in nutritional status and to environmental toxicants. Thus, we have exploited a mouse model of transplacental carcinogenesis to assess the impact of maternal dietary supplementation on cancer risk in offspring. In this study, transplacental and lactational exposure to a maternal dose of 15mg/Kg B.W. of dibenzo[def,p]chrysene (DBC) resulted in significant morbidity of offspring due to an aggressive T-cell lymphoblastic lymphoma. As in previous studies, indole-3-carbinol (I3C, feed to the dam at 100, 500 or 1000ppm), derived from cruciferous vegetables, dose-dependently reduced lung tumor multiplicity and also increased offspring survival. Brussels sprout and broccoli sprout powders, selected for their relative abundance of I3C and the bioactive component sulforaphane (SFN), respectively, surprisingly enhanced DBC-induced morbidity and tumorigenesis when incorporated into the maternal diet at 10% wt/wt. Purified SFN, incorporated in the maternal diet at 400ppm, also decreased the latency of DBC-dependent morbidity. Interestingly, I3C abrogated the effect of SFN when the two purified compounds were administered in equimolar combination (500ppm I3C and 600ppm SFN). SFN metabolites measured in the plasma of neonates positively correlated with exposure levels via the maternal diet but not with offspring mortality. These findings provide justification for further study of the safety and bioactivity of cruciferous vegetable phytochemicals at supplemental concentrations during the perinatal period.
Collapse
|
277
|
Shankar S, Kumar D, Srivastava RK. Epigenetic modifications by dietary phytochemicals: implications for personalized nutrition. Pharmacol Ther 2013; 138:1-17. [PMID: 23159372 PMCID: PMC4153856 DOI: 10.1016/j.pharmthera.2012.11.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 11/01/2012] [Indexed: 12/20/2022]
Abstract
In the last two decades, the study of epigenetic modification emerged as one of the major areas of cancer treatment targeted by dietary phytochemicals. Recent studies with various types of cancers revealed that the epigenetic modifications are associated with the food source corresponds to dietary phytochemicals. The dietary phytochemicals have been used in Asian countries for thousands of years to cure several diseases including cancer. They have been reported to modulate the several biological processes including histone modification, DNA methylation and non-coding microRNA expression. These events play a vital role in carcinogenesis. Various studies suggest that a number of dietary compounds present in vegetables, spices and other herbal products have epigenetic targets in cancer cells. Dietary phytochemicals have been reported to repair DNA damage by enhancing histone acetylation that helps to restrain cell death, and also alter DNA methylation. These phytochemicals are able to modulate epigenetic modifications and their targets to cure several cancers. Epigenetic aberrations dynamically contribute to cancer pathogenesis. Given the individualized traits of epigenetic biomarkers, the personalized nutrition will help us to prevent various types of cancer. In this review, we will discuss the effect of dietary phytochemicals on genetic and epigenetic modifications and how these modifications help to prevent various types of cancers and improve health outcomes.
Collapse
Affiliation(s)
- Sharmila Shankar
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, The University of Kansas Cancer Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
| | - Dhruv Kumar
- Department of Pharmacology, Toxicology and Therapeutics, and Medicine, The University of Kansas Medical Center, The University of Kansas Cancer Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
| | - Rakesh K. Srivastava
- Department of Pharmacology, Toxicology and Therapeutics, and Medicine, The University of Kansas Medical Center, The University of Kansas Cancer Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
| |
Collapse
|
278
|
Divergent effects of sulforaphane on basal and glucose-stimulated insulin secretion in β-cells: role of reactive oxygen species and induction of endogenous antioxidants. Pharm Res 2013; 30:2248-59. [PMID: 23468051 DOI: 10.1007/s11095-013-1013-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 02/15/2013] [Indexed: 02/07/2023]
Abstract
PURPOSE Oxidative stress is implicated in pancreatic β-cell dysfunction, yet clinical outcomes of antioxidant therapies on diabetes are inconclusive. Since reactive oxygen species (ROS) can function as signaling intermediates for glucose-stimulated insulin secretion (GSIS), we hypothesize that exogenously boosting cellular antioxidant capacity dampens signaling ROS and GSIS. METHODS To test the hypothesis, we formulated a mathematical model of redox homeostatic control circuit comprising known feedback and feedforward loops and validated model predictions with plant-derived antioxidant sulforaphane (SFN). RESULTS SFN acutely (30-min treatment) stimulated basal insulin secretion in INS-1(832/13) cells and cultured mouse islets, which could be attributed to SFN-elicited ROS as N-acetylcysteine or glutathione ethyl ester suppressed SFN-stimulated insulin secretion. The mathematical model predicted an adapted redox state characteristic of strong induction of endogenous antioxidants but marginally increased ROS under prolonged SFN exposure, a state that attenuates rather than facilitates glucose-stimulated ROS and GSIS. We validated the prediction by demonstrating that although 24-h treatment of INS-1(832/13) cells with low, non-cytotoxic concentrations of SFN (2-10 μM) protected the cells from cytotoxicity by oxidative insult, it markedly suppressed insulin secretion stimulated by 20 mM glucose. CONCLUSIONS Our study indicates that adaptive induction of endogenous antioxidants by exogenous antioxidants, albeit cytoprotective, inhibits GSIS in β-cells.
Collapse
|
279
|
Chuang WY, Kung PH, Kuo CY, Wu CC. Sulforaphane prevents human platelet aggregation through inhibiting the phosphatidylinositol 3-kinase/Akt pathway. Thromb Haemost 2013; 109:1120-30. [PMID: 23426129 DOI: 10.1160/th12-09-0636] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 01/23/2013] [Indexed: 01/05/2023]
Abstract
Sulforaphane, a dietary isothiocyanate found in cruciferous vegetables, has been shown to exert beneficial effects in animal models of cardiovascular diseases. However, its effect on platelet aggregation, which is a critical factor in arterial thrombosis, is still unclear. In the present study, we show that sulforaphane inhibited human platelet aggregation caused by different receptor agonists, including collagen, U46619 (a thromboxane A2 mimic), protease-activated receptor 1 agonist peptide (PAR1-AP), and an ADP P2Y12 receptor agonist. Moreover, sulforaphane significantly reduced thrombus formation on a collagen-coated surface under whole blood flow conditions. In exploring the underlying mechanism, we found that sulforaphane specifically prevented phosphatidylinositol 3-kinase (PI3K)/Akt signalling, without markedly affecting other signlaling pathways involved in platelet aggregation, such as protein kinase C activation, calcium mobilisation, and protein tyrosine phosphorylation. Although sulforaphane did not directly inhibit the catalytic activity of PI3K, it caused ubiquitination of the regulatory p85 subunit of PI3K, and prevented PI3K translocation to membranes. In addition, sulforaphane caused ubiquitination and degradation of phosphoinositide-dependent kinase 1 (PDK1), which is required for Akt activation. Therefore, sulforaphane is able to inhibit the PI3K/Akt pathway at two distinct sites. In conclusion, we have demonstrated that sulforaphane prevented platelet aggregation and reduced thrombus formation in flow conditions; our data also support that the inhibition of the PI3K/Akt pathway by sulforaphane contributes it antiplatelet effects.
Collapse
Affiliation(s)
- Wen-Ying Chuang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | | | |
Collapse
|
280
|
Korenori Y, Tanigawa S, Kumamoto T, Qin S, Daikoku Y, Miyamori K, Nagai M, Hou DX. Modulation of Nrf2/Keap1 system by Wasabi 6-methylthiohexyl isothiocyanate in ARE-mediated NQO1 expression. Mol Nutr Food Res 2013; 57:854-64. [PMID: 23390006 DOI: 10.1002/mnfr.201200689] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 11/28/2012] [Accepted: 12/06/2012] [Indexed: 12/20/2022]
Abstract
SCOPE 6-Methylthiohexyl isothiocyanate (6-MTITC), one of the major bioactive ingredients in Japanese Wasabi, has revealed cytoprotective and cancer chemopreventive effects. This study aims to clarify the molecular mechanisms how 6-MTITC modulates nuclear factor E2-related factor 2 (Nrf2)/Kelchlike ECH-associating protein 1 (Keap1) system in antioxidant-responsive element (ARE)-mediated nicotinamide adenine dinucleotide phosphate (NADP): quinone oxidoreductase 1 (NQO1) expression. METHODS AND RESULTS HepG2 cells were treated with 6-MTITC with varying time and dose. NQO1, Nrf2, and Keap1 proteins were detected by Western blotting. ARE transactivation was detected by electrophilic mobility shift assay and reporter gene assay. Nuclear localization of Nrf2 was determined by immunocytochemistry assay. Ubiquitination of Nrf2 and Keap1 was detected using immunoprecipitation after treatment with MG132. Small interfering RNA was used to knockdown Nrf2 or Keap1. The results revealed that 6-MTITC modulated Nrf2/ARE pathway by stimulating Keap1 modification, and inhibiting Nrf2 ubiquitination and protein turnover. These actions finally increased nuclear Nrf2 accumulation and ARE-binding activity. Moreover, silencing Nrf2 markedly reduced ARE-driven activity induced by 6-MTITC. CONCLUSION 6-MTITC modulated ARE-driven NQO1 expression by stabilizing Nrf2 with enhanced Keap1 modification and decreased Nrf2 degradation.
Collapse
Affiliation(s)
- Yoshimi Korenori
- Department of Biochemical Science and Technology, Faculty of Agriculture, Kagoshima University, Korimoto, Kagoshima, Japan
| | | | | | | | | | | | | | | |
Collapse
|
281
|
de Souza CG, Sattler JA, de Assis AM, Rech A, Perry MLS, Souza DO. Metabolic effects of sulforaphane oral treatment in streptozotocin-diabetic rats. J Med Food 2013; 15:795-801. [PMID: 22925073 DOI: 10.1089/jmf.2012.0016] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Diabetes has reached epidemic levels in the whole world, and the use of bioactive compounds that may have the capacity to prevent and treat diabetes is of great interest. Sulforaphane (SFN) is a compound which is found in cruciferous vegetables and that acts as both a potent antioxidant and regulator of gene expression. The aim of this study was to evaluate the effect of SFN in diabetes induced by streptozotocin (STZ). Male Wistar rats were gavaged with water or 0.1, 0.25, or 0.5 mg/kg of SFN before an injection of STZ (80 mg/kg). Animals treated with SFN showed fasting glycemia, insulin sensitivity, and hepatic glycogen concentrations, similar to the control group (nondiabetic), and different from the diabetic group. Diabetic animals also presented elevated levels of serum triacylglycerols (TAG), urea, and creatinine, and all SFN doses were able to reverse these alterations. However, the same doses of SFN accentuated alterations in total cholesterol, alanine, and aspartate aminotransferase levels, and had no effect on hepatic TAG, HDL cholesterol, and uptake of 2-deoxy glucose in adipose tissue and soleum muscle. Based on the effects inferred by the present data, SFN presented some positive effects against diabetes induction, although the impairment of hepatic function and cholesterol levels were aggravated after treatment with the compound.
Collapse
Affiliation(s)
- Carolina Guerini de Souza
- Department of Biochemistry, Basic Health Sciences Institute, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.
| | | | | | | | | | | |
Collapse
|
282
|
Shah MS, Davidson LA, Chapkin RS. Mechanistic insights into the role of microRNAs in cancer: influence of nutrient crosstalk. Front Genet 2012; 3:305. [PMID: 23293655 PMCID: PMC3531809 DOI: 10.3389/fgene.2012.00305] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Accepted: 12/10/2012] [Indexed: 12/14/2022] Open
Abstract
A plethora of studies have described the disruption of key cellular regulatory mechanisms involving non-coding RNAs, specifically microRNAs (miRNA) from the let-7 family, the miR-17 family, miR-21, miR-143, and the miR-200 family, which contribute to aberrant signaling and tumor formation. Certain environmental factors, such as bioactive dietary agents, e.g., folate, curcumin, polyunsaturated fatty acids, are also thought to impact the progression and severity of cancer. In terms of the chemoprotective mechanisms of action, these bioactive dietary agents appear to act, in part, by modulating tissue levels of miR-16, miR-17 family, miR-26b, miR-106b, and miR-200 family miRNAs and their target genes. However, the mechanisms of nutrient action are not yet fully understood. Therefore, additional characterization of the putative underlying mechanisms is needed to further our understanding of the biology, early diagnosis, prevention, and the treatment of cancer. For the purpose of elucidating the epigenetic landscape of cancer, this review will summarize the key findings from recent studies detailing the effect of bioactive dietary agents on miRNA regulation in cancer.
Collapse
Affiliation(s)
- Manasvi S Shah
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station TX, USA ; Intercollegiate Faculty of Genetics, Texas A&M University, College Station TX, USA
| | | | | |
Collapse
|
283
|
Vira D, Basak SK, Veena MS, Wang MB, Batra RK, Srivatsan ES. Cancer stem cells, microRNAs, and therapeutic strategies including natural products. Cancer Metastasis Rev 2012; 31:733-51. [PMID: 22752409 DOI: 10.1007/s10555-012-9382-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Embryonic stem cells divide continuously and differentiate into organs through the expression of specific transcription factors at specific time periods. Differentiated adult stem cells on the other hand remain in quiescent state and divide by receiving cues from the environment (extracellular matrix or niche), as in the case of wound healing from tissue injury or inflammation. Similarly, it is believed that cancer stem cells (CSCs), forming a smaller fraction of the tumor bulk, also remain in a quiescent state. These cells are capable of initiating and propagating neoplastic growth upon receiving environmental cues, such as overexpression of growth factors, cytokines, and chemokines. Candidate CSCs express distinct biomarkers that can be utilized for their identification and isolation. This review focuses on the known and candidate cancer stem cell markers identified in various solid tumors and the promising future of disease management and therapy targeted at these markers. The review also provides details on the differential expression of microRNAs (miRNAs), and the miRNA- and natural product-based therapies that could be applied for the treatment of cancer stem cells.
Collapse
Affiliation(s)
- Darshni Vira
- Department of Surgery, VAGLAHS West Los Angeles, Los Angeles, CA 90073, USA
| | | | | | | | | | | |
Collapse
|
284
|
Melega S, Canistro D, Pagnotta E, Iori R, Sapone A, Paolini M. Effect of sprout extract from Tuscan black cabbage on xenobiotic-metabolizing and antioxidant enzymes in rat liver. Mutat Res 2012. [PMID: 23183052 DOI: 10.1016/j.mrgentox.2012.10.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
In recent years, health protection by natural products has received considerable attention, and a multitude of nutraceuticals have been characterized and their use promoted. Dietary consumption of Cruciferous vegetables, rich in glucosinolates (GLs), and their myrosinase-mediated hydrolysis products isothiocyanates (ITCs), were associated with reductions in cancer risk. In this study, the chemo-preventive potential of sprout extract of Tuscan black cabbage (Brassica oleracea L. var. acephala subvar. Laciniata L.) (TBCSE), through modulation of the xenobiotic-metabolizing apparatus and antioxidant defenses, was investigated in Sprague-Dawley rat liver. TBCSE was administered either orally or intraperitoneally, at a dose of 15mg/kg b.w., daily for twenty-one consecutive days, in the absence or presence of exogenous myrosinase, β-thioglucoside glucohydrolase (MYR), to distinguish the effects of intact GLs and ITCs, in the context of the extract. A complex, mild modulation pattern of P450-related monooxygenases was observed, mainly regarding CYP content (up to 36% loss), NADPH cytochrome (P450) c-reductase (up to 26% loss), CYP1A1 (up to 23% loss), but no evident distinctions among the effects of the extracts containing GLs or ITCs, were noted. In contrast, significant inductions of phase-II enzymes (up to 107% for UDP-glucuronosyl-transferase, and up to 36% for glutathione S-transferase) were recorded only where the GLs to ITCs conversion had occurred. A boosting effect on catalase (up to 38%), NAD(P)H:quinone reductase (up to 70%), glutathione reductase and glutathione peroxidase (up to 10%) was also recorded, suggesting an indirect antioxidant capacity of the extracts. Overall, the general phase-I inhibition, together with the up-regulation of detoxifying phase-II and antioxidant enzymes, exerted by the TBCSE supplementation, seem to be in line with the classical chemopreventive theory, but whether the addition of exogenous MYR is relevant, still remains to be clarified. These results are in support of the potential health-promoting application of TBCSE, as a nutraceutical.
Collapse
Affiliation(s)
- Simone Melega
- Department of Pharmacy and Biotechnology, Molecular Toxicology Unit, Alma Mater Studiorum-University of Bologna, Via Irnerio 48, 40126 Bologna, Italy.
| | | | | | | | | | | |
Collapse
|
285
|
Shan Y, Zhang L, Bao Y, Li B, He C, Gao M, Feng X, Xu W, Zhang X, Wang S. Epithelial-mesenchymal transition, a novel target of sulforaphane via COX-2/MMP2, 9/Snail, ZEB1 and miR-200c/ZEB1 pathways in human bladder cancer cells. J Nutr Biochem 2012; 24:1062-9. [PMID: 23159064 DOI: 10.1016/j.jnutbio.2012.08.004] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Revised: 06/21/2012] [Accepted: 08/02/2012] [Indexed: 01/07/2023]
Abstract
Metastasis and recurrence of bladder cancer are the main reasons for its poor prognosis and high mortality rates. Because of its biological activity and high metabolic accumulation in urine, sulforaphane, a phytochemical exclusively occurring in cruciferous vegetables, has a powerful and specific potential for preventing bladder cancer. In this paper, sulforaphane is shown to significantly suppress a variety of biochemical pathways including the attachment, invasion, migration and chemotaxis motion in malignant transitional bladder cancer T24 cells. Transfection with cyclooxygenase-2 (COX-2) overexpression plasmid largely abolished inhibition of MMP2/9 expression as well as cell invasive capability by sulforaphane. Moreover, sulforaphane inhibited the epithelial-to-mesenchymal transition (EMT) process which underlies tumor cell invasion and migration mediated by E-cadherin induction through reducing transcriptional repressors, such as ZEB1 and Snail. Under conditions of over-expression of COX-2 and/or MMP2/9, sulforaphane was still able to induce E-cadherin or reduce Snail/ZEB1 expression, suggesting that additional pathways might be involved. Further studies indicated that miR-200c played a role in the regulation of E-cadherin via the ZEB1 repressor but not by the Snail repressor. In conclusion, the EMT and two recognized signaling pathways (COX-2/MMP2,9/ ZEB1, Snail and miR-200c/ZEB1) are all targets for sulforaphane. This study indicated that sulforaphane may possess therapeutic potential in preventing recurrence of human bladder cancer.
Collapse
Affiliation(s)
- Yujuan Shan
- School of Food Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
286
|
The potential to intensify sulforaphane formation in cooked broccoli (Brassica oleracea var. italica) using mustard seeds (Sinapis alba). Food Chem 2012; 138:1734-41. [PMID: 23411305 DOI: 10.1016/j.foodchem.2012.10.119] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 10/12/2012] [Accepted: 10/16/2012] [Indexed: 11/20/2022]
Abstract
Sulforaphane, a naturally occurring cancer chemopreventive, is the hydrolysis product of glucoraphanin, the main glucosinolate in broccoli. The hydrolysis requires myrosinase isoenzyme to be present in sufficient activity; however, processing leads to its denaturation and hence reduced hydrolysis. In this study, the effect of adding mustard seeds, which contain a more resilient isoform of myrosinase, to processed broccoli was investigated with a view to intensify the formation of sulforaphane. Thermal inactivation of myrosinase from both broccoli and mustard seeds was studied. Thermal degradation of broccoli glucoraphanin was investigated in addition to the effects of thermal processing on the formation of sulforaphane and sulforaphane nitrile. Limited thermal degradation of glucoraphanin (less than 12%) was observed when broccoli was placed in vacuum sealed bag (sous vide) and cooked in a water bath at 100°C for 8 and 12 min. Boiling broccoli in water prevented the formation of any significant levels of sulforaphane due to inactivated myrosinase. However, addition of powdered mustard seeds to the heat processed broccoli significantly increased the formation of sulforaphane.
Collapse
|
287
|
Sulforaphane regulates self-renewal of pancreatic cancer stem cells through the modulation of Sonic hedgehog-GLI pathway. Mol Cell Biochem 2012; 373:217-27. [PMID: 23129257 DOI: 10.1007/s11010-012-1493-6] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 10/17/2012] [Indexed: 12/28/2022]
Abstract
Sulforaphane (SFN), a component of dietary cruciferous vegetables has been characterized for its anti-proliferative properties. We have recently demonstrated that pancreatic CSCs display activation of sonic hedgehog pathway which are fundamental drivers of stem cell renewal, and SFN inhibits the self-renewal of pancreatic CSCs in vitro. Consistent with these observations, we sought to determine the chemopreventive potential of SFN in an in vivo setting. We show here for the first time that sulforaphane treatment resulted in a significant reduction in the tumor growth of orthotopically implanted primary pancreatic CSCs isolated from human pancreatic tumors into the pancreas of NOD/SCID/IL2Rgamma mice, which is mediated through the modulation of Sonic hedgehog-GLI signaling. Hedgehog pathway blockade by SFN at a dose of 20 mg/kg resulted in a 45 % reduction in growth of pancreatic cancer tumors and reduced expression of Shh pathway components, Smo, Gli 1, and Gli 2 in mouse tissues. Further, SFN inhibited the expression of pluripotency maintaining transcription factors Nanog and Oct-4 and angiogenic markers VEGF and PDGFRα which are downstream targets of Gli transcription. Furthermore, SFN treatment resulted in a significant reduction in EMT markers Zeb-1, which correlated with increase in E-Cadherin expression suggesting the blockade of signaling involved in early metastasis. Interestingly, SFN downregulated the expression of Bcl-2 and XIAP to induce apoptosis. These data demonstrate that, at a tolerable dose, inhibition of Shh pathway by SFN results in marked reduction in EMT, metastatic, angiogenic markers with significant inhibition in tumor growth in mice. Since aberrant Shh signaling occurs in pancreatic tumorigenesis, therapeutics that target Shh pathway may improve the outcomes of patients with pancreatic cancer by targeting CSCs, thus suggesting the use of sulforaphane to further improve preventive and therapeutic approaches in patients with this devastating disease.
Collapse
|
288
|
Increased sulforaphane concentration in brussels sprout following high hydrostatic pressure treatment. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s13765-012-2123-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
289
|
Liby KT, Sporn MB. Synthetic oleanane triterpenoids: multifunctional drugs with a broad range of applications for prevention and treatment of chronic disease. Pharmacol Rev 2012; 64:972-1003. [PMID: 22966038 PMCID: PMC3462991 DOI: 10.1124/pr.111.004846] [Citation(s) in RCA: 336] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We review the rationale for the use of synthetic oleanane triterpenoids (SOs) for prevention and treatment of disease, as well as extensive biological data on this topic resulting from both cell culture and in vivo studies. Emphasis is placed on understanding mechanisms of action. SOs are noncytotoxic drugs with an excellent safety profile. Several hundred SOs have now been synthesized and in vitro have been shown to: 1) suppress inflammation and oxidative stress and therefore be cytoprotective, especially at low nanomolar doses, 2) induce differentiation, and 3) block cell proliferation and induce apoptosis at higher micromolar doses. Animal data on the use of SOs in neurodegenerative diseases and in diseases of the eye, lung, cardiovascular system, liver, gastrointestinal tract, and kidney, as well as in cancer and in metabolic and inflammatory/autoimmune disorders, are reviewed. The importance of the cytoprotective Kelch-like erythroid cell-derived protein with CNC homology-associated protein 1/nuclear factor (erythroid-derived 2)-like 2/antioxidant response element (Keap1/Nrf2/ARE) pathway as a mechanism of action is explained, but interactions with peroxisome proliferator-activated receptor γ (PARPγ), inhibitor of nuclear factor-κB kinase complex (IKK), janus tyrosine kinase/signal transducer and activator of transcription (JAK/STAT), human epidermal growth factor receptor 2 (HER2)/ErbB2/neu, phosphatase and tensin homolog (PTEN), the phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) pathway, mammalian target of rapamycin (mTOR), and the thiol proteome are also described. In these interactions, Michael addition of SOs to reactive cysteine residues in specific molecular targets triggers biological activity. Ultimately, SOs are multifunctional drugs that regulate the activity of entire networks. Recent progress in the earliest clinical trials with 2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oic acid (CDDO) methyl ester (bardoxolone methyl) is also summarized.
Collapse
Affiliation(s)
- Karen T Liby
- Departments of Medicine and Pharmacology, Dartmouth Medical School, Hanover, NH 03755, USA.
| | | |
Collapse
|
290
|
Rodova M, Fu J, Watkins DN, Srivastava RK, Shankar S. Sonic hedgehog signaling inhibition provides opportunities for targeted therapy by sulforaphane in regulating pancreatic cancer stem cell self-renewal. PLoS One 2012; 7:e46083. [PMID: 23029396 PMCID: PMC3461003 DOI: 10.1371/journal.pone.0046083] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 08/27/2012] [Indexed: 12/13/2022] Open
Abstract
Dysregulation of the sonic hedgehog (Shh) signaling pathway has been associated with cancer stem cells (CSC) and implicated in the initiation of pancreatic cancer. Pancreatic CSCs are rare tumor cells characterized by their ability to self-renew, and are responsible for tumor recurrence accompanied by resistance to current therapies. The lethality of these incurable, aggressive and invasive pancreatic tumors remains a daunting clinical challenge. Thus, the objective of this study was to investigate the role of Shh pathway in pancreatic cancer and to examine the molecular mechanisms by which sulforaphane (SFN), an active compound in cruciferous vegetables, inhibits self-renewal capacity of human pancreatic CSCs. Interestingly, we demonstrate here that Shh pathway is highly activated in pancreatic CSCs and plays important role in maintaining stemness by regulating the expression of stemness genes. Given the requirement for Hedgehog in pancreatic cancer, we investigated whether hedgehog blockade by SFN could target the stem cell population in pancreatic cancer. In an in vitro model, human pancreatic CSCs derived spheres were significantly inhibited on treatment with SFN, suggesting the clonogenic depletion of the CSCs. Interestingly, SFN inhibited the components of Shh pathway and Gli transcriptional activity. Interference of Shh-Gli signaling significantly blocked SFN-induced inhibitory effects demonstrating the requirement of an active pathway for the growth of pancreatic CSCs. SFN also inhibited downstream targets of Gli transcription by suppressing the expression of pluripotency maintaining factors (Nanog and Oct-4) as well as PDGFRα and Cyclin D1. Furthermore, SFN induced apoptosis by inhibition of BCL-2 and activation of caspases. Our data reveal the essential role of Shh-Gli signaling in controlling the characteristics of pancreatic CSCs. We propose that pancreatic cancer preventative effects of SFN may result from inhibition of the Shh pathway. Thus Sulforaphane potentially represents an inexpensive, safe and effective alternative for the management of pancreatic cancer.
Collapse
Affiliation(s)
- Mariana Rodova
- Department of Pathology and Laboratory Medicine, The University of Kansas Cancer Center, The University of Kansas Medical Center, Kansas City, Kansas, United States of America
- Department of Pharmacology, Toxicology and Therapeutics, and Medicine, The University of Kansas Cancer Center, The University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Junsheng Fu
- Department of Pathology and Laboratory Medicine, The University of Kansas Cancer Center, The University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Dara Nall Watkins
- Department of Pathology and Laboratory Medicine, The University of Kansas Cancer Center, The University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Rakesh K. Srivastava
- Department of Pharmacology, Toxicology and Therapeutics, and Medicine, The University of Kansas Cancer Center, The University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Sharmila Shankar
- Department of Pathology and Laboratory Medicine, The University of Kansas Cancer Center, The University of Kansas Medical Center, Kansas City, Kansas, United States of America
| |
Collapse
|
291
|
Wall SB, Oh JY, Diers AR, Landar A. Oxidative modification of proteins: an emerging mechanism of cell signaling. Front Physiol 2012; 3:369. [PMID: 23049513 PMCID: PMC3442266 DOI: 10.3389/fphys.2012.00369] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 08/28/2012] [Indexed: 01/01/2023] Open
Abstract
There are a wide variety of reactive species which can affect cell function, including reactive oxygen, nitrogen, and lipid species. Some are formed endogenously through enzymatic or non-enzymatic pathways, and others are introduced through diet or environmental exposure. Many of these reactive species can interact with biomolecules and can result in oxidative post-translational modification of proteins. It is well documented that some oxidative modifications cause macromolecular damage and cell death. However, a growing body of evidence suggests that certain classes of reactive species initiate cell signaling by reacting with specific side chains of peptide residues without causing cell death. This process is generally termed "redox signaling," and its role in physiological and pathological processes is a subject of active investigation. This review will give an overview of oxidative protein modification as a mechanism of redox signaling, including types of reactive species and how they modify proteins, examples of modified proteins, and a discussion about the current concepts in this area.
Collapse
Affiliation(s)
- Stephanie B Wall
- Departments of Pathology, University of Alabama at Birmingham Birmingham, AL, USA ; Center for Free Radical Biology, University of Alabama at Birmingham Birmingham, AL, USA
| | | | | | | |
Collapse
|
292
|
Lee JH, Moon MH, Jeong JK, Park YG, Lee YJ, Seol JW, Park SY. Sulforaphane induced adipolysis via hormone sensitive lipase activation, regulated by AMPK signaling pathway. Biochem Biophys Res Commun 2012; 426:492-7. [PMID: 22982310 DOI: 10.1016/j.bbrc.2012.08.107] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 08/22/2012] [Indexed: 10/27/2022]
Abstract
Sulforaphane, an aliphatic isothiocyanate derived from cruciferous vegetables, is known for its antidiabetic properties. The effects of sulforaphane on lipid metabolism in adipocytes are not clearly understood. Here, we investigated whether sulforaphane stimulates lipolysis. Mature adipocytes were incubated with sulforaphane for 24h and analyzed using a lipolysis assay which quantified glycerol released into the medium. We investigated gene expression of hormone-sensitive lipase (HSL), and levels of HSL phosphorylation and AMP-activated protein kinase on sulforaphane-mediated lipolysis in adipocytes. Sulforaphane promoted lipolysis and increased both HSL gene expression and HSL activation. Sulforaphane suppressed AMPK phosphorylation at Thr-172 in a dose-dependent manner, which was associated with a decrease in HSL phosphorylation at Ser-565, enhancing the phosphorylation of HSL Ser-563. Taken together, these results suggest that sulforaphane promotes lipolysis via hormone sensitive lipase activation mediated by decreasing AMPK signal activation in adipocytes.
Collapse
Affiliation(s)
- Ju-Hee Lee
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Jeonju, Jeonbuk 561 756, South Korea
| | | | | | | | | | | | | |
Collapse
|
293
|
Kombairaju P, Ma J, Thimmulappa RK, Yan SG, Gabrielson E, Singh A, Biswal S. Prolonged sulforaphane treatment does not enhance tumorigenesis in oncogenic K-ras and xenograft mouse models of lung cancer. J Carcinog 2012; 11:8. [PMID: 22919281 PMCID: PMC3424666 DOI: 10.4103/1477-3163.98459] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2012] [Accepted: 05/22/2012] [Indexed: 11/04/2022] Open
Abstract
Background: Sulforaphane (SFN), an activator of nuclear factor erythroid-2 related factor 2 (Nrf2), is a promising chemopreventive agent which is undergoing clinical trial for several diseases. Studies have indicated that there is gain of Nrf2 function in lung cancer and other solid tumors because of mutations in the inhibitor Kelch-like ECH-associated protein 1 (Keap1). More recently, several oncogenes have been shown to activate Nrf2 signaling as the main prosurvival pathway mediating ROS detoxification, senescence evasion, and neoplastic transformation. Thus, it is important to determine if there is any risk of enhanced lung tumorigenesis associated with prolonged administration of SFN using mouse models of cancer. Materials and Methods: We evaluated the effect of prolonged SFN treatment on oncogenic K-ras (K-rasLSL-G12D)-driven lung tumorigenesis. One week post mutant-K-ras expression, mice were treated with SFN (0.5 mg, 5 d/wk) for 3 months by means of a nebulizer. Fourteen weeks after mutant K-ras expression (K-rasLSL-G12D), mice were sacrificed, and lung sections were screened for neoplastic foci. Expression of Nrf2-dependent genes was measured using real time RT-PCR. We also determined the effect of prolonged SFN treatment on the growth of preclinical xenograft models using human A549 (with mutant K-ras and Keap1 allele) and H1975 [with mutant epidermal growth factor receptor (EGFR) allele] nonsmall cell lung cancer cells. Results: Systemic SFN administration did not promote the growth of K-rasLSL-G12D-induced lung tumors and had no significant effect on the growth of A549 and H1975 established tumor xenografts in nude mice. Interestingly, localized delivery of SFN significantly attenuated the growth of A549 tumors in nude mice, suggesting an Nrf2-independent antitumorigenic activity of SFN. Conclusions: Our results demonstrate that prolonged SFN treatment does not promote lung tumorigenesis in various mouse models of lung cancer.
Collapse
Affiliation(s)
- Ponvijay Kombairaju
- Department of Environmental Health Sciences, Bloomberg School of Public Health, Baltimore, Maryland
| | | | | | | | | | | | | |
Collapse
|
294
|
Macdonald RS, Wagner K. Influence of dietary phytochemicals and microbiota on colon cancer risk. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:6728-6735. [PMID: 22632581 DOI: 10.1021/jf204230r] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Colon cancer is the third most commonly diagnosed type of cancer in the United States. Lifestyle and dietary patterns influence colon cancer risk both positively and negatively. Among the dietary factors, several plant-derived compounds have been found to afford colon cancer protection. These compounds potentially influence all aspects of colonic cellular regulation and develop complex interrelationships with the colonic microbiome. Increasing understanding of the role of microorganisms in determining the colonic environment has led to awareness of this important interrelationship among dietary factors and the microbial population. Plant-derived polyphenols are active mediators of cellular events, target key carcinogenic pathways, and modulate colonic microbial populations. In turn, the colonic microorganisms metabolize dietary compounds and mediate cellular events. In addition, the role of estrogen receptors in colon cancer and the importance of dietary components that mediate estrogen receptor-β are increasingly being discovered. Hence, dietary bioactive compounds and the intestinal microbiota create a complex milieu that directly affects the carcinogenic events of the colon. These relationships must be carefully characterized in future research to provide dietary recommendations that will reduce colon cancer risk.
Collapse
Affiliation(s)
- Ruth S Macdonald
- Food Science and Human Nutrition, Iowa State University , Ames, Iowa 50011, United States
| | | |
Collapse
|
295
|
Singh SV, Singh K. Cancer chemoprevention with dietary isothiocyanates mature for clinical translational research. Carcinogenesis 2012; 33:1833-42. [PMID: 22739026 DOI: 10.1093/carcin/bgs216] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Inverse association between dietary intake of cruciferous vegetables and cancer risk observed in population-based case-control studies is partly attributable to structurally simple but mechanistically complex phytochemicals with an isothiocyanate (-N=C=S) functional group. Cancer protective role for dietary isothiocyanates (ITCs) is substantiated by preclinical studies in rodent models. A common feature of many naturally occurring ITCs relates to their ability to cause growth arrest and cell death selectively in cancer cells. At the same time, evidence continues to accumulate to suggest that even subtle change in chemical structure of the ITCs can have a profound effect on their activity and mechanism of action. Existing mechanistic paradigm stipulates that ITCs may not only prevent cancer initiation by altering carcinogen metabolism but also inhibit post-initiation cancer development by suppressing many processes relevant to tumor progression, including cellular proliferation, neoangiogenesis, epithelial-mesenchymal transition, and self-renewal of cancer stem cells. Moreover, the ITCs are known to suppress diverse oncogenic signaling pathways often hyperactive in human cancers (e.g. nuclear factor-κB, hormone receptors, signal transducer and activator of transcription 3) to elicit cancer chemopreventive response. However, more recent studies highlight potential adverse effect of Notch activation by ITCs on their ability to inhibit migration of cancer cells. Mechanisms underlying ITC-mediated modulation of carcinogen metabolism, growth arrest, and cell death have been reviewed extensively. This article provides a perspective on bench-cage-bedside evidence supporting cancer chemopreventive role for some of the most promising ITCs. Structure-activity relationship and mechanistic complexity in the context of cancer chemoprevention with ITCs is also highlighted.
Collapse
Affiliation(s)
- Shivendra V Singh
- Department of Pharmacology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| | | |
Collapse
|
296
|
Xia J, Chen C, Chen Z, Miele L, Sarkar FH, Wang Z. Targeting pancreatic cancer stem cells for cancer therapy. Biochim Biophys Acta Rev Cancer 2012; 1826:385-99. [PMID: 22728049 DOI: 10.1016/j.bbcan.2012.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 04/14/2012] [Accepted: 06/13/2012] [Indexed: 12/15/2022]
Abstract
Pancreatic cancer (PC) is the fourth most frequent cause of cancer death in the United States. Emerging evidence suggests that pancreatic cancer stem cells (CSCs) play a crucial role in the development and progression of PC. Recently, there is increasing evidence showing that chemopreventive agents commonly known as nutraceuticals could target and eliminate CSCs that have been proposed as the root of the tumor progression, which could be partly due to attenuating cell signaling pathways involved in CSCs. Therefore, targeting pancreatic CSCs by nutraceuticals for the prevention of tumor progression and treatment of PC may lead to the development of novel strategy for achieving better treatment outcome of PC patients. In this review article, we will summarize the most recent advances in the pancreatic CSC field, with particular emphasis on nutraceuticals that target CSCs, for fighting this deadly disease.
Collapse
Affiliation(s)
- Jun Xia
- Department of Biochemistry and Molecular Biology, Bengbu Medical College, Anhui, People's Republic of China
| | | | | | | | | | | |
Collapse
|
297
|
Wiczk A, Hofman D, Konopa G, Herman-Antosiewicz A. Sulforaphane, a cruciferous vegetable-derived isothiocyanate, inhibits protein synthesis in human prostate cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1295-305. [PMID: 22640870 DOI: 10.1016/j.bbamcr.2012.05.020] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 05/17/2012] [Accepted: 05/18/2012] [Indexed: 12/21/2022]
Abstract
Sulforaphane (SFN) is a compound derived from cruciferous plants. Its anticancer properties have been demonstrated both, in cancer cell lines as well as tumors in animal models. It has been shown that SFN inhibits cell proliferation, induces apoptosis, autophagy, and sensitizes cancer cells to therapies. As induction of catabolic processes is often related to perturbation in protein synthesis we aimed to investigate the impact of SFN on this process in PC-3 human prostate cancer cells. In the present study we show that SFN inhibits protein synthesis in PC-3 cells in a dose- and time-dependent manner which is accompanied by a decreased phosphorylation of mTOR substrates. Translation inhibition is independent of mitochondria-derived ROS as it is observed in PC-3 derivatives devoid of functional mitochondrial respiratory chain (Rho0 cells). Although SFN affects mitochondria and slightly decreases glycolysis, the ATP level is maintained on the level characteristic for control cells. Inhibition of protein synthesis might be a protective response of prostate cancer cells to save energy. However, translation inhibition contributes to the death of PC-3 cells due to decreased level of a short-lived protein, survivin. Overexpression of this anti-apoptotic factor protects PC-3 cells against SFN cytotoxicity. Protein synthesis inhibition by SFN is not restricted to prostate cancer cells as we observed similar effect in SKBR-3 breast cancer cell line.
Collapse
Affiliation(s)
- Aleksandra Wiczk
- Department of Molecular Biology, University of Gdansk, Gdansk, Poland
| | | | | | | |
Collapse
|
298
|
Nodin C, Zhu C, Blomgren K, Nilsson M, Blomstrand F. Decreased oxidative stress during glycolytic inhibition enables maintenance of ATP production and astrocytic survival. Neurochem Int 2012; 61:291-301. [PMID: 22634249 DOI: 10.1016/j.neuint.2012.05.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 04/18/2012] [Accepted: 05/14/2012] [Indexed: 11/17/2022]
Abstract
Depressed energy metabolism and oxidative stress are common features in many pathological situations in the brain, including stroke. In order to investigate astrocytic responses to such stress, we induced metabolic depression in cultured rat astrocytes. Iodoacetate (IA), an inhibitor of the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used and resulted in a rapid inhibition of GAPDH activity. After 1h of GAPDH inhibition the ATP levels started to decrease and were completely abolished at 4h. In parallel, the activity of reactive oxygen species (ROS) was significantly increased, followed by extensive cell death involving flipping of phosphatidylserine and translocation of apoptosis-inducing factor, but not caspase-3 activation. When IA was combined with azide, a respiratory chain complex IV inhibitor, the ATP levels decreased immediately. Interestingly, with azide present, the ROS activity remained low and the astrocytes remained viable even at very low ATP levels. Addition of exogenous ROS-scavengers prevented the IA-induced ROS activity, the ATP levels were maintained and cell death was prevented. Similar protection could be obtained when astrocytes, prior to addition of IA, were incubated with substances known to activate the nuclear factor erythroid 2-related factor 2 (Nrf2)-regulated endogenous antioxidant system. When IA was washed out, after a relatively moderate ATP depression, massive cell death occurred. This was efficiently prevented by addition of azide or ROS scavengers during the IA treatment or by pre-activation of the Nrf2 system. Our results demonstrate that astrocytes in culture can endure and recover from glycolytic inhibition if the ROS activity remained at a low level and suggest that oxidative stress can be an important component for astrocytic cell death following metabolic stress.
Collapse
Affiliation(s)
- Christina Nodin
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Sweden
| | | | | | | | | |
Collapse
|
299
|
He HJ, Wang GY, Gao Y, Ling WH, Yu ZW, Jin TR. Curcumin attenuates Nrf2 signaling defect, oxidative stress in muscle and glucose intolerance in high fat diet-fed mice. World J Diabetes 2012; 3:94-104. [PMID: 22645638 PMCID: PMC3360224 DOI: 10.4239/wjd.v3.i5.94] [Citation(s) in RCA: 176] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Revised: 04/19/2012] [Accepted: 05/11/2012] [Indexed: 02/05/2023] Open
Abstract
AIM: To investigate the signaling mechanism of anti-oxidative action by curcumin and its impact on glucose disposal.
METHODS: Male C57BL/6J mice were fed with either a normal diet (n = 10) or a high fat diet (HFD) (n = 20) to induce obesity and insulin resistance. After 16 wk, 10 HFD-fed mice were further treated with daily curcumin oral gavage at the dose of 50 mg/kg body weight (BW) (HFD + curcumin group). After 15 d of the curcumin supplementation, an intraperitoneal glucose tolerance test was performed. Fasting blood samples were also collected for insulin and glucose measurements. Insulin-sensitive tissues, including muscle, adipose tissue and the liver, were isolated for the assessments of malondialdehyde (MDA), reactive oxygen species (ROS) and nuclear factor erythroid-2-related factor-2 (Nrf2) signaling.
RESULTS: We show here that in a HFD mouse model, short-term curcumin gavage attenuated glucose intolerance without affecting HFD-induced BW gain. Curcumin also attenuated HFD-induced elevations of MDA and ROS in the skeletal muscle, particularly in its mitochondrial fraction, but it had no such an effect in either adipose tissue or the liver of HFD-fed mice. Correspondingly, in skeletal muscle, the levels of total or nuclear content of Nrf2, as well as its downstream target, heme oxygenase-1, were reduced by HFD-feeding. Curcumin intervention dramatically reversed these defects in Nrf2 signaling. Further analysis of the relationship of oxidative stress with glucose level by a regression analysis showed a positive and significant correlation between the area under the curve of a glucose tolerance test with MDA levels either in muscle or muscular mitochondria.
CONCLUSION: These findings suggest that the short-term treatment of curcumin in HFD-fed mice effectively ameliorates muscular oxidative stress by activating Nrf2 function that is a novel mechanism for its effect in improving glucose intolerance.
Collapse
Affiliation(s)
- Hui-Jun He
- Hui-Jun He, Guo-Yu Wang, Yuan Gao, Wen-Hua Ling, Zhi-Wen Yu, Tian-Ru Jin, Department of Nutrition, School of Public Health, Sun Yat-sen University, Room 517, 74 Zhongshan 2 Road, Guangzhou 510080, Guangdong Province, China
| | | | | | | | | | | |
Collapse
|
300
|
Sulforaphane potentiates RNA damage induced by different xenobiotics. PLoS One 2012; 7:e35267. [PMID: 22539965 PMCID: PMC3335137 DOI: 10.1371/journal.pone.0035267] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 03/12/2012] [Indexed: 12/25/2022] Open
Abstract
Background The isothiocyanate sulforaphane (SFN) possesses interesting anticancer activities. However, recent studies reported that SFN promotes the formation of reactive oxygen species (ROS) as well as DNA breakage. Methodology/Principal Findings We investigated whether SFN is able to damage RNA, whose loss of integrity was demonstrated in different chronic diseases. Considering the ability of SFN to protect from genotoxicity, we also examined whether SFN is able to protect from RNA damage induced by different chemicals (doxorubicin, spermine, S-nitroso-N-acetylpenicillamine, H2O2). We observed that SFN was devoid of either RNA damaging and RNA protective activity in human leukemic cells. It was able to potentiate the RNA damage by doxorubicin and spermine. In the first case, the effect was attributable to its ability of modulating the bioreductive activation of doxorubicin. For spermine, the effects were mainly due to its modulation of ROS levels produced by spermine metabolism. As to the cytotoxic relevance of the RNA damage, we found that the treatment of cells with a mixture of spermine or doxorubicin plus SFN increased their proapoptotic potential. Thus it is conceivable that the presence of RNA damage might concur to the overall toxic response induced by a chemical agent in targeted cells. Conclusions/Significance Since RNA is emerging as a potential target for anticancer drugs, its ability to enhance spermine- and doxorubicin-induced RNA damage and cytotoxicity could represent an additional mechanism for the potentiating effects of SFN associated with anticancer drugs.
Collapse
|