251
|
Affiliation(s)
- Adriana Fonseca
- Division of Haematology Oncology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada (A.F., E.B.)
| | - Eric Bouffet
- Division of Haematology Oncology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada (A.F., E.B.)
| |
Collapse
|
252
|
Milde T, Rodriguez FJ, Barnholtz-Sloan JS, Patil N, Eberhart CG, Gutmann DH. Reimagining Pilocytic Astrocytomas in the Context of Pediatric Low-Grade Gliomas. Neuro Oncol 2021; 23:1634-1646. [PMID: 34131743 DOI: 10.1093/neuonc/noab138] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pediatric low-grade gliomas (pLGGs) are the most common brain tumor in children, and are associated with life-long clinical morbidity. Relative to their high-grade adult counterparts or other malignant childhood brain tumors, there is a paucity of authenticated preclinical models for these pediatric low-grade gliomas and an incomplete understanding of their molecular and cellular pathogenesis. While large scale genomic profiling efforts have identified the majority of pathogenic driver mutations, which converge on the MAPK/ERK signaling pathway, it is now appreciated that these events may not be sufficient by themselves for gliomagenesis and clinical progression. In light of the recent World Health Organization reclassification of pLGGs, and pilocytic astrocytoma (PA) in particular, we review our current understanding of these pediatric brain tumors, provide a conceptual framework for future mechanistic studies, and outline the challenges and pressing needs for the pLGG clinical and research communities.
Collapse
Affiliation(s)
- Till Milde
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany.,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany.,Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Fausto J Rodriguez
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore MD, USA
| | - Jill S Barnholtz-Sloan
- Department of Population and Quantitative Health Sciences, Case Western Reserve School of Medicine, Cleveland OH, USA.,University Hospitals, Cleveland OH, USA.,Central Brain Tumor Registry of the United States (CBTRUS), Hinsdale, IL, USA
| | - Nirav Patil
- University Hospitals, Cleveland OH, USA.,Central Brain Tumor Registry of the United States (CBTRUS), Hinsdale, IL, USA
| | - Charles G Eberhart
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore MD, USA
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis MO, USA
| |
Collapse
|
253
|
Yeo KK, Burgers DE, Brodigan K, Fasciano K, Frazier AL, Warren KE, Reardon DA. Adolescent and young adult neuro-oncology: a comprehensive review. Neurooncol Pract 2021; 8:236-246. [PMID: 34055371 PMCID: PMC8153805 DOI: 10.1093/nop/npab001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Adolescent and young adult (AYA; ages 15-39) patients represent a population that experiences significant challenges in cancer care and research, exemplified by poorer clinical outcomes as well as unmet psychosocial and reproductive health needs. Despite central nervous system (CNS) tumors being one of the most common malignancies diagnosed in the age group, there is a clear paucity of AYA CNS tumor-specific publications, especially those related to the unique psychosocial and reproductive health needs of this population of patients. In this review, we examine various aspects of AYA oncological care including tumor biology, clinical outcome, clinical trials enrollment rate, site of care, unique psychosocial needs, and oncofertility. We assess the current state of these issues, highlight areas of deficiencies, and outline the steps needed to address these concerns. We emphasize the importance of comprehensive molecular testing as part of the diagnostic work-up, expansion of clinical trial availability, access to psychosocial care and oncofertility expertise, and the development of AYA-specific clinical research to define best practices and advancing care for this population.
Collapse
Affiliation(s)
- Kee Kiat Yeo
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Boston, Massachusetts
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - Darcy E Burgers
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Boston, Massachusetts
- Department of Psychosocial Oncology and Palliative Care, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Katelynn Brodigan
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Boston, Massachusetts
| | - Karen Fasciano
- Department of Psychosocial Oncology and Palliative Care, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Psychiatry, Brigham and Women’s Hospital, Boston, Massachusetts
| | - A Lindsay Frazier
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Boston, Massachusetts
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - Katherine E Warren
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Boston, Massachusetts
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - David A Reardon
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
254
|
Xiao Z, Yao S, Wang ZM, Zhu DM, Bie YN, Zhang SZ, Chen WL. Multiparametric MRI Features Predict the SYP Gene Expression in Low-Grade Glioma Patients: A Machine Learning-Based Radiomics Analysis. Front Oncol 2021; 11:663451. [PMID: 34136394 PMCID: PMC8202412 DOI: 10.3389/fonc.2021.663451] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/06/2021] [Indexed: 11/13/2022] Open
Abstract
Purpose Synaptophysin (SYP) gene expression levels correlate with the survival rate of glioma patients. This study aimed to explore the feasibility of applying a multiparametric magnetic resonance imaging (MRI) radiomics model composed of a convolutional neural network to predict the SYP gene expression in patients with glioma. Method Using the TCGA database, we examined 614 patients diagnosed with glioma. First, the relationship between the SYP gene expression level and outcome of survival rate was investigated using partial correlation analysis. Then, 7266 patches were extracted from each of the 108 low-grade glioma patients who had available multiparametric MRI scans, which included preoperative T1-weighted images (T1WI), T2-weighted images (T2WI), and contrast-enhanced T1WI images in the TCIA database. Finally, a radiomics features-based model was built using a convolutional neural network (ConvNet), which can perform autonomous learning classification using a ROC curve, accuracy, recall rate, sensitivity, and specificity as evaluation indicators. Results The expression level of SYP decreased with the increase in the tumor grade. With regard to grade II, grade III, and general patients, those with higher SYP expression levels had better survival rates. However, the SYP expression level did not show any significant association with the outcome in Level IV patients. Conclusion Our multiparametric MRI radiomics model constructed using ConvNet showed good performance in predicting the SYP gene expression level and prognosis in low-grade glioma patients.
Collapse
Affiliation(s)
- Zheng Xiao
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shun Yao
- Center for Pituitary Tumor Surgery, Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Center for Skull Base Surgery, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Zong-Ming Wang
- Center for Pituitary Tumor Surgery, Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Di-Min Zhu
- Center for Pituitary Tumor Surgery, Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ya-Nan Bie
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Shi-Zhong Zhang
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wen-Li Chen
- Center for Pituitary Tumor Surgery, Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
255
|
Farouk Sait S, Gilheeney SW, Bale TA, Haque S, Dinkin MJ, Vitolano S, Rosenblum MK, Ibanez K, Prince DE, Spatz KH, Dunkel IJ, Karajannis MA. Debio1347, an Oral FGFR Inhibitor: Results From a Single-Center Study in Pediatric Patients With Recurrent or Refractory FGFR-Altered Gliomas. JCO Precis Oncol 2021; 5:PO.20.00444. [PMID: 34250399 PMCID: PMC8232545 DOI: 10.1200/po.20.00444] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/30/2021] [Accepted: 04/16/2021] [Indexed: 11/20/2022] Open
Affiliation(s)
- Sameer Farouk Sait
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Pediatrics, Weill Cornell Medical College, New York, NY
| | - Stephen W. Gilheeney
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Pediatrics, Weill Cornell Medical College, New York, NY
| | - Tejus A. Bale
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Sofia Haque
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Marc J. Dinkin
- Department of Ophthalmology and Neurology, Weill Cornell Medical College, New York, NY
| | - Stephanie Vitolano
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Marc K. Rosenblum
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Katarzyna Ibanez
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Daniel E. Prince
- Department of Orthopedics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Krisoula H. Spatz
- Department of Pharmacy, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ira J. Dunkel
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Pediatrics, Weill Cornell Medical College, New York, NY
| | - Matthias A. Karajannis
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Pediatrics, Weill Cornell Medical College, New York, NY
| |
Collapse
|
256
|
Sulman EP, Eisenstat DD. World Cancer Day 2021 - Perspectives in Pediatric and Adult Neuro-Oncology. Front Oncol 2021; 11:659800. [PMID: 34041027 PMCID: PMC8142853 DOI: 10.3389/fonc.2021.659800] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/07/2021] [Indexed: 12/13/2022] Open
Abstract
Significant advances in our understanding of the molecular genetics of pediatric and adult brain tumors and the resulting rapid expansion of clinical molecular neuropathology have led to improvements in diagnostic accuracy and identified new targets for therapy. Moreover, there have been major improvements in all facets of clinical care, including imaging, surgery, radiation and supportive care. In selected cohorts of patients, targeted and immunotherapies have resulted in improved patient outcomes. Furthermore, adaptations to clinical trial design have facilitated our study of new agents and other therapeutic innovations. However, considerable work remains to be done towards extending survival for all patients with primary brain tumors, especially children and adults with diffuse midline gliomas harboring Histone H3 K27 mutations and adults with isocitrate dehydrogenase (IDH) wild-type, O6 guanine DNA-methyltransferase gene (MGMT) promoter unmethylated high grade gliomas. In addition to improvements in therapy and care, access to the advances in technology, such as particle radiation or biologic therapy, neuroimaging and molecular diagnostics in both developing and developed countries is needed to improve the outcome of patients with brain tumors.
Collapse
Affiliation(s)
- Erik P. Sulman
- Section of Neuro-oncology & Neurosurgical Oncology, Frontiers in Oncology and Frontiers in Neurology, Lausanne, Switzerland
- Department of Radiation Oncology, NYU Grossman School of Medicine, New York, NY, United States
- Brain and Spine Tumor Center, Laura and Isaac Perlmutter Cancer Center, New York, NY, United States
- NYU Langone Health, New York, NY, United States
| | - David D. Eisenstat
- Section of Neuro-oncology & Neurosurgical Oncology, Frontiers in Oncology and Frontiers in Neurology, Lausanne, Switzerland
- Children’s Cancer Centre, Royal Children’s Hospital, Parkville, VIC, Australia
- Murdoch Children’s Research Institute, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
257
|
Chang EK, Smith-Cohn MA, Tamrazi B, Ji J, Krieger M, Holdhoff M, Eberhart CG, Margol AS, Cotter JA. IDH-mutant brainstem gliomas in adolescent and young adult patients: Report of three cases and review of the literature. BRAIN PATHOLOGY (ZURICH, SWITZERLAND) 2021; 31:e12959. [PMID: 33960568 PMCID: PMC8412065 DOI: 10.1111/bpa.12959] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/23/2021] [Indexed: 11/30/2022]
Affiliation(s)
- Ellen K Chang
- Division of Hematology, Oncology and Blood & Marrow Transplantation, Children's Center for Cancer and Blood Diseases, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Matthew A Smith-Cohn
- Department of Neurology, Johns Hopkins Hospital, Baltimore, MD, USA.,Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Benita Tamrazi
- Department of Radiology, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Jianling Ji
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Mark Krieger
- Division of Neurosurgery, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Matthias Holdhoff
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | | | - Ashley S Margol
- Division of Hematology, Oncology and Blood & Marrow Transplantation, Children's Center for Cancer and Blood Diseases, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Jennifer A Cotter
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
258
|
Deland L, Keane S, Olsson Bontell T, Sjögren H, Fagman H, Øra I, De La Cuesta E, Tisell M, Nilsson JA, Ejeskär K, Sabel M, Abel F. Discovery of a rare GKAP1-NTRK2 fusion in a pediatric low-grade glioma, leading to targeted treatment with TRK-inhibitor larotrectinib. Cancer Biol Ther 2021; 22:184-195. [PMID: 33820494 PMCID: PMC8043191 DOI: 10.1080/15384047.2021.1899573] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Here we report a case of an 11-year-old girl with an inoperable tumor in the optic chiasm/hypothalamus, who experienced several tumor progressions despite three lines of chemotherapy treatment. Routine clinical examination classified the tumor as a BRAF-negative pilocytic astrocytoma. Copy-number variation profiling of fresh frozen tumor material identified two duplications in 9q21.32–33 leading to breakpoints within the GKAP1 and NTRK2 genes. RT-PCR Sanger sequencing revealed a GKAP1-NTRK2 exon 10–16 in-frame fusion, generating a putative fusion protein of 658 amino acids with a retained tyrosine kinase (TK) domain. Functional analysis by transient transfection of HEK293 cells showed the GKAP1-NTRK2 fusion protein to be activated through phosphorylation of the TK domain (Tyr705). Subsequently, downstream mediators of the MAPK- and PI3K-signaling pathways were upregulated in GKAP1-NTRK2 cells compared to NTRK2 wild-type; phosphorylated (p)ERK (3.6-fold), pAKT (1.8- fold), and pS6 ribosomal protein (1.4-fold). Following these findings, the patient was enrolled in a clinical trial and treated with the specific TRK-inhibitor larotrectinib, resulting in the arrest of tumor growth. The patient’s condition is currently stable and the quality of life has improved significantly. Our findings highlight the value of comprehensive clinical molecular screening of BRAF-negative pediatric low-grade gliomas, to reveal rare fusions serving as targets for precision therapy.
Collapse
Affiliation(s)
- Lily Deland
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden.,Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Simon Keane
- Translational Medicine, School of Health Sciences, University of Skövde, Skövde, Sweden
| | - Thomas Olsson Bontell
- Department of Clinical Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden.,Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Helene Sjögren
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Henrik Fagman
- Department of Clinical Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Ingrid Øra
- Department of Clinical Sciences, Lund University Hospital, Lund, Sweden.,HOPE/ITCC Phase I/II Trial Unit, Pediatric Oncology, Karolinska Hospital, Stockholm, Sweden
| | - Esther De La Cuesta
- Pharmaceuticals, Global Medical Affairs - Oncology, Bayer U.S., Whippany, USA
| | - Magnus Tisell
- Department of Clinical Neuroscience and Rehabilitation, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Jonas A Nilsson
- Sahlgrenska Cancer Center, Department of Laboratory Medicine Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Katarina Ejeskär
- Translational Medicine, School of Health Sciences, University of Skövde, Skövde, Sweden
| | - Magnus Sabel
- Childhood Cancer Centre, Queen Silvia Children's Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden.,Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Frida Abel
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden.,Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
259
|
Wulfovich S, Tucker S, Levy M, Crawford JR. Novel KRAS mutation in an unusual tectal low-grade glioma. BMJ Case Rep 2021; 14:e242306. [PMID: 33795262 PMCID: PMC8021738 DOI: 10.1136/bcr-2021-242306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2021] [Indexed: 11/03/2022] Open
Affiliation(s)
- Sharon Wulfovich
- School of Medicine University of California San Diego Health Sciences, San Diego, California, USA
| | | | - Michael Levy
- Neurosurgery, University of California San Diego, San Diego, California, USA
| | - John Ross Crawford
- Neurosciences and Pediatrics, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
260
|
Bag AK, Chiang J, Patay Z. Radiohistogenomics of pediatric low-grade neuroepithelial tumors. Neuroradiology 2021; 63:1185-1213. [PMID: 33779771 PMCID: PMC8295117 DOI: 10.1007/s00234-021-02691-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/10/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE In addition to histology, genetic alteration is now required to classify many central nervous system (CNS) tumors according to the most recent World Health Organization CNS tumor classification scheme. Although that is still not the case for classifying pediatric low-grade neuroepithelial tumors (PLGNTs), genetic and molecular features are increasingly being used for making treatment decisions. This approach has become a standard clinical practice in many specialized pediatric cancer centers and will likely be more widely practiced in the near future. This paradigm shift in the management of PLGNTs necessitates better understanding of how genetic alterations influence histology and imaging characteristics of individual PLGNT phenotypes. METHODS The complex association of genetic alterations with histology, clinical, and imaging of each phenotype of the extremely heterogeneous PLGNT family has been addressed in a holistic approach in this up-to-date review article. A new imaging stratification scheme has been proposed based on tumor morphology, location, histology, and genetics. Imaging characteristics of each PLGNT entity are also depicted in light of histology and genetics. CONCLUSION This article reviews the association of specific genetic alteration with location, histology, imaging, and prognosis of a specific tumor of the PLGNT family and how that information can be used for better imaging of these tumors.
Collapse
Affiliation(s)
- Asim K Bag
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 220, Memphis, TN, 38105, USA.
| | - Jason Chiang
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Zoltan Patay
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 220, Memphis, TN, 38105, USA
| |
Collapse
|
261
|
Galvin R, Watson AL, Largaespada DA, Ratner N, Osum S, Moertel CL. Neurofibromatosis in the Era of Precision Medicine: Development of MEK Inhibitors and Recent Successes with Selumetinib. Curr Oncol Rep 2021; 23:45. [PMID: 33721151 DOI: 10.1007/s11912-021-01032-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2021] [Indexed: 02/02/2023]
Abstract
PURPOSE OF REVIEW Patients with neurofibromatosis type 1 (NF1) are at increased risk for benign and malignant neoplasms. Recently, targeted therapy with the MEK inhibitor class has helped address these needs. We highlight recent successes with selumetinib while acknowledging ongoing challenges for NF1 patients and future directions. RECENT FINDINGS MEK inhibitors have demonstrated efficacy for NF1-related conditions, including plexiform neurofibromas and low-grade gliomas, two common causes of NF1-related morbidity. Active investigations for NF1-related neoplasms have benefited from advanced understanding of the genomic and cell signaling alterations in these conditions and development of sound preclinical animal models. Selumetinib has become the first FDA-approved targeted therapy for NF1 following its demonstrated efficacy for inoperable plexiform neurofibroma. Investigations of combination therapy and the development of a representative NF1 swine model hold promise for translating therapies for other NF1-associated pathology.
Collapse
Affiliation(s)
- Robert Galvin
- Divisions of Pediatric Hematology & Oncology and Bone Marrow Transplant, University of Minnesota, Minneapolis, MN, USA
| | | | - David A Largaespada
- Division of Pediatric Hematology & Oncology, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Nancy Ratner
- Cincinnati Children's Hospital Division of Exp. Hematology and Cancer Biology, Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
| | - Sara Osum
- Division of Pediatric Hematology & Oncology, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Christopher L Moertel
- Division of Pediatric Hematology & Oncology, University of Minnesota, Minneapolis, MN, USA.
- Pediatric Hematology MMC 484 Mayo, 8484B (Campus Delivery Code), 420 Delaware St SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
262
|
[Histomolecular diagnosis of glial and glioneuronal tumours]. Ann Pathol 2021; 41:137-153. [PMID: 33712303 DOI: 10.1016/j.annpat.2020.12.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/08/2020] [Accepted: 12/22/2020] [Indexed: 11/20/2022]
Abstract
While rare compared to extra-cranial neoplasms, glial and glioneuronal tumors are responsible of high morbidity and mortality. In 2016, the World Health Organization introduced histo-molecular ("integrated") diagnostics for central nervous system tumors based on morphology, immunohistochemistry and the presence of key genetic alterations. This combined phenotypic-genotypic classification allows for a more objective diagnostic of brain tumors. The implementation of such a classification in daily practice requires immunohistochemical surrogates to detect common genetic alterations and sometimes expensive and not widely available molecular biology techniques. The first step in brain tumor diagnostics is to inquire about the clinical picture and the imaging findings. When dealing with a glial tumor, the pathologist needs to assess its nature, infiltrative or circumscribed. If the tumor is infiltrative, IDH1/2 genes (prognostic marker) and chromosomes 1p/19q (diagnosis of oligodendroglioma) need to be assessed. If the tumor appears circumscribed, the pathologist should look for a neuronal component associated with the glial component (glioneuronal tumor). A limited immunohistochemistry panel will help distinguish between diffuse glioma (IDH1-R132H, ATRX, p53) and circumscribed glial/glioneuronal tumor (CD34, neuronal markers, BRAF-V600E), and some antibodies may reliably detect genetic alterations (IDH1-R132H, BRAF-V600E and H3-K27M mutations). Chromosomal imbalances (1p/19q codeletion in oligodendroglioma; chromosome 7 gain/chromosome 10 loss and EGFR amplification in glioblastoma) and gene rearrangements (BRAF fusion, FGFR1 fusion) will be identified by molecular biology techniques. The up-coming edition of the WHO classification of the central nervous system tumors will rely more heavily on molecular alterations to accurately diagnose and treat brain tumors.
Collapse
|
263
|
Morris M, Driscoll M, Henson JW, Cobbs C, Jiang L, Gocke CD, Chen L, Rodriguez FJ. Low-Grade Gemistocytic Morphology in H3 G34R-Mutant Gliomas and Concurrent K27M Mutation: Clinicopathologic Findings. J Neuropathol Exp Neurol 2021; 79:1038-1043. [PMID: 32954438 DOI: 10.1093/jnen/nlaa101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Mutations in histone H3 are key molecular drivers of pediatric and young adult high-grade gliomas. Histone H3 G34R mutations occur in hemispheric high-grade gliomas and H3 K27M mutations occur in aggressive, though histologically diverse, midline gliomas. Here, we report 2 rare cases of histologically low-grade gliomas with gemistocytic morphology and sequencing-confirmed histone H3 G34R mutations. One case is a histologically low-grade gemistocytic astrocytoma with a G34R-mutation in H3F3A. The second case is a histologically low-grade gemistocytic astrocytoma with co-occurring K27M and G34R mutations in HIST1H3B. Review of prior histone H3-mutant gliomas sequenced at our institution shows a divergent clinical and immunohistochemical pattern in the 2 cases. The first case is similar to prior histone H3 G34R-mutant tumors, while the second case most closely resembles prior histone H3 K27M-mutant gliomas. These represent novel cases of sequencing-confirmed histone H3 G34R-mutant gliomas with low-grade histology and add to the known rare cases of G34R-mutant tumors with gemistocytic morphology. Although K27M and G34R mutations are thought to be mutually exclusive, we document combined K27M and G34R mutations in HIST1H3B and present evidence suggesting the K27M-mutation drove tumor phenotype in this dual mutant glioma.
Collapse
Affiliation(s)
- Meaghan Morris
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - John W Henson
- Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Swedish Medical Center, Seattle, Washington
| | - Charles Cobbs
- Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Swedish Medical Center, Seattle, Washington
| | - LiQun Jiang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Christopher D Gocke
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Liam Chen
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Fausto J Rodriguez
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
264
|
Guan Q, Yuan L, Lin A, Lin H, Huang X, Ruan J, Zhuo Z. KRAS gene polymorphisms are associated with the risk of glioma: a two-center case-control study. Transl Pediatr 2021; 10:579-586. [PMID: 33850816 PMCID: PMC8039792 DOI: 10.21037/tp-20-359] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Glioma, also known as neuroglioma, is the most common primary tumors of the central nervous system. Many previous studies have reported associations between RAS gene polymorphisms and multiple tumors. However, the role of RAS gene polymorphisms on glioma risk has not been investigated. METHODS We conducted a two-center case-control study to investigate whether the RAS gene polymorphisms predispose individuals to gliomas in 248 healthy controls and 191 glioma patients. RAS gene polymorphisms (rs12587 G>T, rs7973450 A>G, rs7312175 G>A in KRAS, rs2273267 A>T in NRAS) were genotyped by the TaqMan assay. The relationship between RAS gene functional single nucleotide polymorphisms (SNPs) and the risk of glioma was evaluated based on odds ratios (ORs) and 95% confidence intervals (CIs). RESULTS Individuals with KRAS rs7312175 GA genotype were more likely to develop glioma than those with GG genotype (adjusted OR =1.66, 95% CI: 1.05-2.64, P=0.030). However, the other three SNPs could not affect glioma risk. In stratified analysis of age, gender, subtypes, and clinical stages, rs7312175 GA carriers were more likely to develop glioma in the following subgroups: children less than 60 months, tumor derived from the astrocytic tumors, and clinical stages I. CONCLUSIONS The study showed that polymorphism rs7312175 GA in the KRAS gene was associated with increased glioma susceptibility. Further investigation is warranted to confirm these findings and to better elucidate the involved biological pathways.
Collapse
Affiliation(s)
- Qian Guan
- School of Medicine, South China University of Technology, Guangzhou, China.,Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Li Yuan
- Department of Pathology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Ao Lin
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Huiran Lin
- Faculty of Medicine, Macau University of Science and Technology, Macau, China
| | - Xiaokai Huang
- Department of Hematology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jichen Ruan
- Department of Pathology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Zhenjian Zhuo
- School of Medicine, South China University of Technology, Guangzhou, China.,Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou, China
| |
Collapse
|
265
|
Lim-Fat MJ, Song KW, Iorgulescu JB, Andersen BM, Forst DA, Jordan JT, Gerstner ER, Reardon DA, Wen PY, Arrillaga-Romany I. Clinical, radiological and genomic features and targeted therapy in BRAF V600E mutant adult glioblastoma. J Neurooncol 2021; 152:515-522. [PMID: 33646525 DOI: 10.1007/s11060-021-03719-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/13/2021] [Indexed: 01/25/2023]
Abstract
PURPOSE Although uncommon, detection of BRAF V600E mutations in adult patients with glioblastoma has become increasingly relevant given the widespread application of molecular diagnostics and encouraging therapeutic activity of BRAF/MEK inhibitors. METHODS We performed a retrospective study of adult glioblastoma patients treated at Dana-Farber Cancer Institute/Brigham and Women's Hospital or Massachusetts General Hospital from January 2011 to July 2019 with an identified BRAF V600E mutation by either immunohistochemistry or molecular testing. Patient characteristics, molecular genomics, and preoperative MRI were analyzed. RESULTS Nineteen glioblastoma patients were included, with median age at diagnosis of 41-years-old (range 22-69). Only 1/18 was IDH1/2-mutant; 10/17 had MGMT unmethylated tumors. The most common additional molecular alterations were CDKN2A/2B biallelic loss/loss-of-function (10/13, 76.9%), polysomy 7 (8/12, 66.7%), monosomy 10 (5/12, 41.7%), PTEN biallelic loss/loss-of-function (5/13, 38.5%) and TERT promoter mutations (5/15, 33.3%). Most tumors were well-circumscribed (11/14) and all were contrast-enhancing on MRI. Twelve patients eventually developed subependymal or leptomeningeal dissemination. Six patients were treated with BRAF/MEK inhibition following disease progression after standard of care therapy, with 4/6 patients showing partial response or stable disease as best response. Median time to progression after BRAF/MEK inhibition was 6.0 months (95% CI 1.2-11.8). Grade 1 skin rash was present in 2 patients, but no other adverse events were reported. Median OS for the entire cohort was 24.1 months (95% CI 15.7-38.9). CONCLUSION Understanding the natural history and features of BRAF V600E glioblastoma may help better identify patients for BRAF/MEK inhibition and select therapeutic strategies.
Collapse
Affiliation(s)
- Mary Jane Lim-Fat
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, M4N 3M5, Canada. .,Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA. .,Pappas Center for Neuro-Oncology, Massachusetts General Hospital, Boston, MA, 02114, USA.
| | - Kun Wei Song
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA.,Department of Neurology, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - J Bryan Iorgulescu
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Brian M Andersen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA.,Pappas Center for Neuro-Oncology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Deborah A Forst
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA.,Pappas Center for Neuro-Oncology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Justin T Jordan
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA.,Pappas Center for Neuro-Oncology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Elizabeth R Gerstner
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA.,Pappas Center for Neuro-Oncology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - David A Reardon
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA.,Department of Neurology, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Isabel Arrillaga-Romany
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA. .,Pappas Center for Neuro-Oncology, Massachusetts General Hospital, Boston, MA, 02114, USA.
| |
Collapse
|
266
|
Fangusaro J, Onar-Thomas A, Poussaint TY, Wu S, Ligon AH, Lindeman N, Campagne O, Banerjee A, Gururangan S, Kilburn L, Goldman S, Qaddoumi I, Baxter P, Vezina G, Bregman C, Patay Z, Jones JY, Stewart CF, Fisher MJ, Doyle LA, Smith M, Dunkel IJ, Fouladi M. A Phase 2 Trial of Selumetinib in Children with Recurrent Optic Pathway and Hypothalamic Low-Grade Glioma without NF1: A Pediatric Brain Tumor Consortium Study. Neuro Oncol 2021; 23:1777-1788. [PMID: 33631016 DOI: 10.1093/neuonc/noab047] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Pediatric low-grade gliomas (pLGGs) are the most common childhood brain tumor. Progression-free survival (PFS) is much lower than overall survival, emphasizing the need for alternative treatments. Sporadic (without neurofibromatosis type-1) optic pathway and hypothalamic glioma (OPHGs) are often multiply recurrent and cause significant visual deficits. Recently, there has been a prioritization of functional outcomes. METHODS We present results from children with recurrent/progressive OPHGs treated on a PBTC phase 2 trial evaluating efficacy of selumetinib, (AZD6244, ARRY-142886) a MEK-1/2 inhibitor. Stratum 4 of PBTC-029 included patients with sporadic recurrent/progressive OPHGs treated with selumetinib at the recommended phase 2 dose (25mg/m 2 /dose BID) for a maximum of 26 courses. RESULTS Twenty-five eligible and evaluable patients were enrolled with a median of 4 (1-11) previous therapies. Six of 25 (24%) had partial response, 14/25 (56%) had stable disease and 5 (20%) had progressive disease while on treatment. The median treatment courses were 26 (2-26); 14/25 patients completed all 26 courses. Two-year PFS was 78 ± 8.5%. Nineteen of 25 patients were evaluable for visual acuity which improved in 4/19 patients (21%), was stable in 13/19 (68%) and worsened in 2/19 (11%). Five of 19 patients (26%) had improved visual fields and 14/19 (74%) were stable. The most common toxicities were grade 1/2 CPK elevation, anemia, diarrhea, headache, nausea/emesis, fatigue, AST and ALT increase, hypoalbuminemia and rash. CONCLUSIONS Selumetinib was tolerable and led to responses and prolonged disease stability in children with recurrent/progressive OPHGs based upon radiographic response, PFS and visual outcomes.
Collapse
Affiliation(s)
- Jason Fangusaro
- Department of Hematology, Oncology, and Stem Cell Transplantation. Children's Healthcare of Atlanta and Emory University, Atlanta, GA, USA
| | - Arzu Onar-Thomas
- Department of Biostatistics (AOT and SW), Department of Oncology (IQ), Department of Diagnostic Imaging (ZP) and Department of Pharmaceutical Sciences (OC and CFS). St. Jude Children's Research Center, Memphis, TN, USA
| | | | - Shengjie Wu
- Department of Biostatistics (AOT and SW), Department of Oncology (IQ), Department of Diagnostic Imaging (ZP) and Department of Pharmaceutical Sciences (OC and CFS). St. Jude Children's Research Center, Memphis, TN, USA
| | - Azra H Ligon
- Department of Pathology. Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Neal Lindeman
- Department of Pathology. Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Olivia Campagne
- Department of Biostatistics (AOT and SW), Department of Oncology (IQ), Department of Diagnostic Imaging (ZP) and Department of Pharmaceutical Sciences (OC and CFS). St. Jude Children's Research Center, Memphis, TN, USA
| | - Anu Banerjee
- Center for Cancer and Blood Disorders. University of California, San Francisco, CA
| | | | - Lindsay Kilburn
- Division of Oncology (LBK) and Department of Radiology (GV). Children's National Hospital, Washington DC
| | - Stewart Goldman
- Department of Hematology, Oncology, Neuro-Oncology and Stem Cell Transplantation (SG) and Department of Medical Imaging (CB). Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL
| | - Ibrahim Qaddoumi
- Department of Biostatistics (AOT and SW), Department of Oncology (IQ), Department of Diagnostic Imaging (ZP) and Department of Pharmaceutical Sciences (OC and CFS). St. Jude Children's Research Center, Memphis, TN, USA
| | - Patricia Baxter
- Department of Hematology and Oncology. Texas Children's Hospital, Houston, TX, USA
| | - Gilbert Vezina
- Division of Oncology (LBK) and Department of Radiology (GV). Children's National Hospital, Washington DC
| | - Corey Bregman
- Department of Hematology, Oncology, Neuro-Oncology and Stem Cell Transplantation (SG) and Department of Medical Imaging (CB). Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL
| | - Zoltan Patay
- Department of Biostatistics (AOT and SW), Department of Oncology (IQ), Department of Diagnostic Imaging (ZP) and Department of Pharmaceutical Sciences (OC and CFS). St. Jude Children's Research Center, Memphis, TN, USA
| | - Jeremy Y Jones
- Department of Radiology (JYJ) and Department of Hematology and Oncology (MF). Nationwide Children's Hospital, Columbus, OH
| | - Clinton F Stewart
- Department of Biostatistics (AOT and SW), Department of Oncology (IQ), Department of Diagnostic Imaging (ZP) and Department of Pharmaceutical Sciences (OC and CFS). St. Jude Children's Research Center, Memphis, TN, USA
| | - Michael J Fisher
- Division of Oncology. The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Laurence Austin Doyle
- Investigational Drug Branch (LAD) and Clinical Investigation Branch (MS). National Cancer Institute and Cancer Therapy Evaluation Program, Rockville, MD
| | - Malcolm Smith
- Investigational Drug Branch (LAD) and Clinical Investigation Branch (MS). National Cancer Institute and Cancer Therapy Evaluation Program, Rockville, MD
| | - Ira J Dunkel
- Department of Pediatrics. Memorial Sloan Kettering Cancer Center, NY
| | - Maryam Fouladi
- Department of Radiology (JYJ) and Department of Hematology and Oncology (MF). Nationwide Children's Hospital, Columbus, OH
| |
Collapse
|
267
|
Peeters SM, Muftuoglu Y, Na B, Daniels DJ, Wang AC. Pediatric Gliomas: Molecular Landscape and Emerging Targets. Neurosurg Clin N Am 2021; 32:181-190. [PMID: 33781501 DOI: 10.1016/j.nec.2020.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Next-generation sequencing of pediatric gliomas has revealed the importance of molecular genetic characterization in understanding the biology underlying these tumors and a breadth of potential therapeutic targets. Promising targeted therapies include mTOR inhibitors for subependymal giant cell astrocytomas in tuberous sclerosis, BRAF and MEK inhibitors mainly for low-grade gliomas, and MEK inhibitors for NF1-deficient BRAF:KIAA fusion tumors. Challenges in developing targeted molecular therapies include significant intratumoral and intertumoral heterogeneity, highly varied mechanisms of treatment resistance and immune escape, adequacy of tumor penetrance, and sensitivity of brain to treatment-related toxicities.
Collapse
Affiliation(s)
- Sophie M Peeters
- Department of Neurosurgery, University of California Los Angeles, 300 Stein Plaza, Suite #520, Los Angeles, CA 90095, USA
| | - Yagmur Muftuoglu
- Department of Neurosurgery, University of California Los Angeles, 300 Stein Plaza, Suite #520, Los Angeles, CA 90095, USA
| | - Brian Na
- Department of Pediatrics, Division of Hematology/Oncology, University of California Los Angeles, 200 UCLA Medical Plaza, Suite 265, Los Angeles, CA 90095, USA
| | - David J Daniels
- Department of Neurosurgery, Mayo Clinic, 200 1st St SW, Rochester, MN 55905, USA
| | - Anthony C Wang
- Department of Neurosurgery, University of California Los Angeles, 300 Stein Plaza, Suite #520, Los Angeles, CA 90095, USA.
| |
Collapse
|
268
|
Wagner MW, Hainc N, Khalvati F, Namdar K, Figueiredo L, Sheng M, Laughlin S, Shroff MM, Bouffet E, Tabori U, Hawkins C, Yeom KW, Ertl-Wagner BB. Radiomics of Pediatric Low-Grade Gliomas: Toward a Pretherapeutic Differentiation of BRAF-Mutated and BRAF-Fused Tumors. AJNR Am J Neuroradiol 2021; 42:759-765. [PMID: 33574103 DOI: 10.3174/ajnr.a6998] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/23/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND PURPOSE B-Raf proto-oncogene, serine/threonine kinase (BRAF) status has important implications for prognosis and therapy of pediatric low-grade gliomas. Currently, BRAF status classification relies on biopsy. Our aim was to train and validate a radiomics approach to predict BRAF fusion and BRAF V600E mutation. MATERIALS AND METHODS In this bi-institutional retrospective study, FLAIR MR imaging datasets of 115 pediatric patients with low-grade gliomas from 2 children's hospitals acquired between January 2009 and January 2016 were included and analyzed. Radiomics features were extracted from tumor segmentations, and the predictive model was tested using independent training and testing datasets, with all available tumor types. The model was selected on the basis of a grid search on the number of trees, opting for the best split for a random forest. We used the area under the receiver operating characteristic curve to evaluate model performance. RESULTS The training cohort consisted of 94 pediatric patients with low-grade gliomas (mean age, 9.4 years; 45 boys), and the external validation cohort comprised 21 pediatric patients with low-grade gliomas (mean age, 8.37 years; 12 boys). A 4-fold cross-validation scheme predicted BRAF status with an area under the curve of 0.75 (SD, 0.12) (95% confidence interval, 0.62-0.89) on the internal validation cohort. By means of the optimal hyperparameters determined by 4-fold cross-validation, the area under the curve for the external validation was 0.85. Age and tumor location were significant predictors of BRAF status (P values = .04 and <.001, respectively). Sex was not a significant predictor (P value = .96). CONCLUSIONS Radiomics-based prediction of BRAF status in pediatric low-grade gliomas appears feasible in this bi-institutional exploratory study.
Collapse
Affiliation(s)
- M W Wagner
- From the Departments of Diagnostic Imaging (M.W.W., N.H., F.K., K.N., M.S., S.L., M.M.S., B.B.E.-W.)
| | - N Hainc
- From the Departments of Diagnostic Imaging (M.W.W., N.H., F.K., K.N., M.S., S.L., M.M.S., B.B.E.-W.).,Department of Neuroradiology (N.H.), Zurich University Hospital, University of Zurich, Zurich, Switzerland
| | - F Khalvati
- From the Departments of Diagnostic Imaging (M.W.W., N.H., F.K., K.N., M.S., S.L., M.M.S., B.B.E.-W.)
| | - K Namdar
- From the Departments of Diagnostic Imaging (M.W.W., N.H., F.K., K.N., M.S., S.L., M.M.S., B.B.E.-W.)
| | - L Figueiredo
- Division of Neuroradiology, Neurooncology (L.F., E.B., U.T.)
| | - M Sheng
- From the Departments of Diagnostic Imaging (M.W.W., N.H., F.K., K.N., M.S., S.L., M.M.S., B.B.E.-W.)
| | - S Laughlin
- From the Departments of Diagnostic Imaging (M.W.W., N.H., F.K., K.N., M.S., S.L., M.M.S., B.B.E.-W.)
| | - M M Shroff
- From the Departments of Diagnostic Imaging (M.W.W., N.H., F.K., K.N., M.S., S.L., M.M.S., B.B.E.-W.)
| | - E Bouffet
- Division of Neuroradiology, Neurooncology (L.F., E.B., U.T.)
| | - U Tabori
- Division of Neuroradiology, Neurooncology (L.F., E.B., U.T.)
| | - C Hawkins
- Paediatric Laboratory Medicine (C.H.), Division of Pathology, The Hospital for Sick Children and Department of Medical Imaging, University of Toronto, Ontario, Canada
| | - K W Yeom
- Department of Radiology (K.W.Y.), Stanford University School of Medicine, Lucile Packard Children's Hospital, Palo Alto, California
| | - B B Ertl-Wagner
- From the Departments of Diagnostic Imaging (M.W.W., N.H., F.K., K.N., M.S., S.L., M.M.S., B.B.E.-W.)
| |
Collapse
|
269
|
Abstract
PURPOSE OF REVIEW Recent genetic and molecular findings have impacted the diagnosis, prognosis, and in some instances, treatment strategies for children with pediatric central nervous system tumors. Herein, we review the most up-to-date molecular findings and how they have impacted tumor classification and clinical care. RECENT FINDINGS It is now recognized that aberrations of the mitogen-activated protein kinase pathway are present in the majority of pediatric low-grade glioma. Also, there has been the identification of recurrent histone H3 K27M mutations in diffuse intrinsic pontine and other midline gliomas. Medulloblastoma is now divided into four molecular subgroups with distinct characteristics and prognoses. The classification of other unique embryonal tumors is also highlighted. Finally, we present the newest classification of ependymoma; supratentorial ependymomas comprise two subtypes based on expression of the chromosome 11 Open Reading Frame 95-reticuloendotheliosis Viral Oncogene Homolog A or yes-associated protein 1 fusion, whereas posterior fossa ependymomas are divided into two distinct molecular subgroups, posterior fossa-A and posterior fossa-B. SUMMARY These advances in the molecular classification of pediatric central nervous system tumors have not only assisted in diagnoses, but they have led to a new era of tumor classification and prognostication. They also have served as drivers for the evaluation of new targeted therapies based upon molecular aberrations with the hope for improved survival outcomes for our patients.
Collapse
|
270
|
Ronsley R, Dunham C, Yip S, Brown L, Zuccato JA, Karimi S, Zadeh G, Goddard K, Singhal A, Hukin J, Cheng S. A case series of pediatric survivors of anaplastic pleomorphic xanthoastrocytoma. Neurooncol Adv 2021; 3:vdaa176. [PMID: 33543147 PMCID: PMC7849951 DOI: 10.1093/noajnl/vdaa176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Background Anaplastic pleomorphic xanthoastrocytoma (APXA) is a rare subtype of CNS astrocytoma. They are generally treated as high-grade gliomas; however, uncertainty exists regarding the optimal therapy. Here, we report on 3 pediatric cases of APXA. Methods Our institutional database was queried for cases of APXA and 3 cases were identified. Surgical samples were processed for methylation profiling and chromosomal microarray analysis. Methylation data were uploaded to the online CNS tumor classifier to determine methylation-based diagnoses to determine copy number variations (CNVs). Results Two patients were male, 1 female, and all were aged 12 years at diagnosis. All underwent a gross total resection (GTR) and were diagnosed with an APXA. Immunohistochemical analysis demonstrated that 2 cases were BRAF V600E positive. Methylation-based tumor classification supported the APXA diagnosis in all cases. CNV analyses revealed homozygous CKDN2A deletions in all and chromosome 9p loss in 2 cases. All patients received radiation therapy (54 Gy in 30 fractions) with concurrent temozolomide. Two patients received maintenance chemotherapy with temozolomide and lomustine for 6 cycles as per the Children’s Oncology Group ACNS0423. The third patient recurred and went on to receive a second GTR and 6 cycles of lomustine, vincristine, and procarbazine. All are alive with no evidence of disease >4 years post-treatment completion (overall survival = 100%, event free survival = 67%). Conclusions The natural history and optimal treatment of this rare pediatric tumor are not well understood. This case series supports the use of adjuvant chemoradiotherapy in the treatment of APXA. The genetic landscape may be informative for optimizing treatment and prognosis.
Collapse
Affiliation(s)
- Rebecca Ronsley
- Division of Pediatric Hematology, Oncology and Bone Marrow Transplantation, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher Dunham
- Department of Pathology and Laboratory Medicine, Division of Anatomical Pathology, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stephen Yip
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lindsay Brown
- Division of Genome Diagnostics, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jeffrey A Zuccato
- MacFeeters-Hamilton Center for Neuro-Oncology, Princess Margaret Cancer Center, Toronto, Ontario, Canada
| | - Shirin Karimi
- MacFeeters-Hamilton Center for Neuro-Oncology, Princess Margaret Cancer Center, Toronto, Ontario, Canada
| | - Gelareh Zadeh
- MacFeeters-Hamilton Center for Neuro-Oncology, Princess Margaret Cancer Center, Toronto, Ontario, Canada
| | - Karen Goddard
- Division of Pediatric Hematology, Oncology and Bone Marrow Transplantation, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Radiation Oncology, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Ash Singhal
- Division of Neurosurgery, Department of Surgery, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Juliette Hukin
- Division of Pediatric Hematology, Oncology and Bone Marrow Transplantation, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada.,Division of Pediatric Neurology, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sylvia Cheng
- Division of Pediatric Hematology, Oncology and Bone Marrow Transplantation, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
271
|
Yang JH, Malicki DM, Levy ML, Crawford JR. Unusual case of occipital lobe dysembryoplastic neuroepithelial tumour with GNAi1-BRAF fusion. BMJ Case Rep 2021; 14:14/1/e241440. [PMID: 33504544 PMCID: PMC7843307 DOI: 10.1136/bcr-2020-241440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- Jennifer H Yang
- Department of Neurosciences, University of California San Diego, La Jolla, California, USA
| | - Denise M Malicki
- Pathology, Rady Children's Hospital University of California San Diego, San Diego, California, USA
| | - Michael L Levy
- Neurosurgery, University of California San Diego, San Diego, California, USA
| | - John Ross Crawford
- Neurosciences and Pediatrics, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
272
|
Nör C, Ramaswamy V. Piecing together the Pediatric Brain Tumor Puzzle. Trends Genet 2021; 37:204-206. [PMID: 33455817 DOI: 10.1016/j.tig.2021.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 01/04/2021] [Indexed: 11/28/2022]
Abstract
A recent study by Petralia et al. of 218 pediatric brain tumors across seven different entities applied an integrated approach incorporating proteomics, phosphoproteomics, whole-genome sequencing, and RNA sequencing. This elegant study unveiled new signaling pathways, the composition of tumor microenvironments, and functional effects of copy number variants and somatic mutations.
Collapse
Affiliation(s)
- Carolina Nör
- Programme in Developmental and Stem Cell Biology, Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, ON, Canada.
| | - Vijay Ramaswamy
- Programme in Developmental and Stem Cell Biology, Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, ON, Canada; Division of Haematology/Oncology, Hospital for Sick Children, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
273
|
Perreault S, Chami R, Deyell RJ, El Demellawy D, Ellezam B, Jabado N, Morgenstern DA, Narendran A, Sorensen PHB, Wasserman JD, Yip S. Canadian Consensus for Biomarker Testing and Treatment of TRK Fusion Cancer in Pediatric Patients. Curr Oncol 2021; 28:346-366. [PMID: 33435412 PMCID: PMC7903261 DOI: 10.3390/curroncol28010038] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/03/2021] [Accepted: 01/05/2021] [Indexed: 12/11/2022] Open
Abstract
Neurotrophic tyrosine receptor kinase gene fusions (NTRK) are oncogenic drivers present at a low frequency in most tumour types (<5%), and at a higher frequency (>80%) in a small number of rare tumours (e.g., infantile fibrosarcoma [IFS]) and considered mutually exclusive with other common oncogenic drivers. Health Canada recently approved two tyrosine receptor kinase (TRK) inhibitors, larotrectinib (for adults and children) and entrectinib (for adults), for the treatment of solid tumours harbouring NTRK gene fusions. In Phase I/II trials, these TRK inhibitors have demonstrated promising overall response rates and tolerability in patients with TRK fusion cancer who have exhausted other treatment options. In these studies, children appear to have similar responses and tolerability to adults. In this report, we provide a Canadian consensus on when and how to test for NTRK gene fusions and when to consider treatment with a TRK inhibitor for pediatric patients with solid tumours. We focus on three pediatric tumour types: non-rhabdomyosarcoma soft tissue sarcoma/unspecified spindle cell tumours including IFS, differentiated thyroid carcinoma, and glioma. We also propose a tumour-agnostic consensus based on the probability of the tumour harbouring an NTRK gene fusion. For children with locally advanced or metastatic TRK fusion cancer who have either failed upfront therapy or lack satisfactory treatment options, TRK inhibitor therapy should be considered.
Collapse
Affiliation(s)
- Sébastien Perreault
- Department of Neurosciences, Division of Child Neurology CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada
| | - Rose Chami
- Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada;
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Rebecca J. Deyell
- Division of Pediatric Hematology, Oncology and Bone Marrow Transplant, British Columbia Children’s Hospital and Research Institute, Vancouver, BC V6H 3N1, Canada;
| | - Dina El Demellawy
- Pathology Department, Children’s Hospital of Eastern Ontario, Ottawa, ON K1H 8L1, Canada;
| | - Benjamin Ellezam
- Department of Pathology, Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal, Montreal, QC H3T 1C5, Canada;
| | - Nada Jabado
- Department of Pediatric Hematology-Oncology, MUHC, Montreal, QC H4A 3J1, Canada;
| | - Daniel A. Morgenstern
- Division of Pediatric Hematology/Oncology, The Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1X8, Canada;
| | - Aru Narendran
- Departments of Pediatrics, Oncology and, Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada;
| | - Poul H. B. Sorensen
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Molecular Oncology, BC Cancer, Vancouver, BC V5Z 1L3, Canada;
| | - Jonathan D. Wasserman
- Division of Endocrinology, Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1X8, Canada;
| | - Stephen Yip
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
274
|
Wesseling P. Neurooncology: 2021 update. FREE NEUROPATHOLOGY 2021; 2:5. [PMID: 37284615 PMCID: PMC10210005 DOI: 10.17879/freeneuropathology-2021-3271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 03/09/2021] [Indexed: 06/08/2023]
Abstract
This article briefly presents 10 topics that were selected by the author as 'top 10 discoveries' published in 2020 in the broader field of neurooncological pathology including neurosciences as well as clinical neurooncology of interest for neurooncological pathology. The selected topics concern new information on the molecular characteristics of gliomas (infratentorial IDH-mutant diffuse astrocytomas, pediatric low-grade gliomas, infant-type high-grade gliomas, hypermutation in gliomas), the immunological aspects of the brain tumor microenvironment (TME), the impact of the TME on preclinical glioma models, and the importance of lymphatic drainage on brain tumor surveillance. Furthermore, important papers were published on two 'new' genetic syndromes predisposing to medulloblastoma, on liquid biopsy-based diagnosis of central nervous system (CNS) tumors, and on the 'microbiome' in glioblastomas (and other cancers). In the last part of this review, a dozen of papers are given as examples of papers that did not make it to the top 10 list of the author, underscoring the subjective component in the selection process. Acknowledging that 2020 will be remembered as the year in which the world changed because of the COVID-19 pandemic, some of the consequences of this pandemic for neurooncological pathology are briefly discussed as well. Hopefully, this review forms an incentive to appreciate the wealth of information provided by the papers that were used as building blocks for the present manuscript.
Collapse
Affiliation(s)
- Pieter Wesseling
- Department of Pathology, Amsterdam University Medical Centers, location VUmc, Brain Tumor Center Amsterdam, Amsterdam, The Netherlands
- Laboratory for Childhood Cancer Pathology, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| |
Collapse
|
275
|
Raswoli M, Nobre L, Hawkins C, Bartels UK, Tabori U, Bouffet E. Salvage chemotherapy after failure of targeted therapy in a child with BRAF V600E low-grade glioma. Pediatr Blood Cancer 2021; 68:e28561. [PMID: 32681754 DOI: 10.1002/pbc.28561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 06/21/2020] [Indexed: 11/12/2022]
Affiliation(s)
- Musthafa Raswoli
- Division of Haematology/Oncology, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Liana Nobre
- Division of Haematology/Oncology, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Cynthia Hawkins
- Department of Laboratory Medicine and Pathobiology, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Ute Katharina Bartels
- Division of Haematology/Oncology, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Uri Tabori
- Division of Haematology/Oncology, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Eric Bouffet
- Division of Haematology/Oncology, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
276
|
Clinical Pharmacokinetics and Pharmacodynamics of Selumetinib. Clin Pharmacokinet 2020; 60:283-303. [PMID: 33354735 DOI: 10.1007/s40262-020-00967-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2020] [Indexed: 02/07/2023]
Abstract
Selumetinib, a highly specific mitogen-activated protein kinase 1/2 inhibitor, is approved for children older than 2 years of age with neurofibromatosis 1 who have inoperable plexiform neurofibromas. By selectively binding to mitogen-activated protein kinase 1/2 proteins, selumetinib can arrest the mitogen-activated protein kinase/extracellular signal-regulated kinase signaling pathway that regulates critical cellular responses. Selumetinib has shown promising results as a single agent or in combination with conventional chemotherapy and other targeted therapies both preclinically and clinically, in multiple cancers including pediatric low-grade glioma, non-small cell lung cancer, and melanoma, among others. The pharmacokinetic profiles of selumetinib and its active metabolite N-desmethyl selumetinib have been well characterized in both adults and children. Both compounds exhibited rapid absorption and mean terminal elimination half-lives of about 7.5 h, with minimal accumulation at steady state. Three population pharmacokinetic models have been developed in adults and children, characterizing large inter- and intra-patient variabilities, and identifying significant covariates including food intake on selumetinib absorption, weight metrics, age, co-administration of cytochrome modulators, and Asian ethnicity on selumetinib apparent oral clearance. The most common side effects associated with selumetinib are dermatologic, gastrointestinal toxicities, and fatigue. Most toxicities are mild or moderate, generally tolerated and manageable. Cardiovascular and ocular toxicities remain less frequent but can be potentially more severe and require close monitoring. Overall, selumetinib exhibits a favorable safety profile and pharmacokinetic properties, with promising activity in multiple solid tumors, supporting current and further evaluation in combination with conventional chemotherapy and other targeted agents.
Collapse
|
277
|
Bennett J, Erker C, Lafay-Cousin L, Ramaswamy V, Hukin J, Vanan MI, Cheng S, Coltin H, Fonseca A, Johnston D, Lo A, Zelcer S, Alvi S, Bowes L, Brossard J, Charlebois J, Eisenstat D, Felton K, Fleming A, Jabado N, Larouche V, Legault G, Mpofu C, Perreault S, Silva M, Sinha R, Strother D, Tsang DS, Wilson B, Crooks B, Bartels U. Canadian Pediatric Neuro-Oncology Standards of Practice. Front Oncol 2020; 10:593192. [PMID: 33415075 PMCID: PMC7783450 DOI: 10.3389/fonc.2020.593192] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/16/2020] [Indexed: 11/13/2022] Open
Abstract
Primary CNS tumors are the leading cause of cancer-related death in pediatrics. It is essential to understand treatment trends to interpret national survival data. In Canada, children with CNS tumors are treated at one of 16 tertiary care centers. We surveyed pediatric neuro-oncologists to create a national standard of practice to be used in the absence of a clinical trial for seven of the most prevalent brain tumors in children. This allowed description of practice across the country, along with a consensus. This had a multitude of benefits, including understanding practice patterns, allowing for a basis to compare in future research and informing Health Canada of the current management of patients. This also allows all children in Canada to receive equivalent care, regardless of location.
Collapse
Affiliation(s)
- Julie Bennett
- Division of Neuro-Oncology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Craig Erker
- Division of Pediatric Hematology/Oncology, IWK Health Centre, Halifax, NS, Canada
| | - Lucie Lafay-Cousin
- Department of Oncology, Alberta Children's Hospital, Calgary, AB, Canada
| | - Vijay Ramaswamy
- Division of Neuro-Oncology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Juliette Hukin
- Division of Hematology, Oncology and Bone Marrow Transplant, British Columbia Children's Hospital, Vancouver, BC, Canada
| | | | - Sylvia Cheng
- Division of Hematology, Oncology and Bone Marrow Transplant, British Columbia Children's Hospital, Vancouver, BC, Canada
| | - Hallie Coltin
- Division of Hematology/Oncology, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - Adriana Fonseca
- Division of Neuro-Oncology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Donna Johnston
- Division of Hematology/Oncology, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - Andrea Lo
- Division of Radiation Oncology and Developmental Radiotherapeutics, BC Cancer Centre, Vancouver, BC, Canada
| | - Shayna Zelcer
- Division of Pediatric Hematology/Oncology, London Health Sciences Centre, London, ON, Canada
| | - Saima Alvi
- Pediatric Oncology, Saskatchewan Cancer Agency, Regina, SK, Canada
| | - Lynette Bowes
- Division of Pediatrics, Memorial University, St. John's, NF, Canada
| | - Josée Brossard
- Division of Pediatric Hematology/Oncology, Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Janie Charlebois
- Division of Pediatric Hematology/Oncology, Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - David Eisenstat
- Division of Pediatric Hematology/Oncology & Palliative Care, Stollery Children's Hospital, Edmonton, AB, Canada
| | - Kathleen Felton
- Division of Pediatric Hematology/Oncology, Jim Pattison Children's Hospital, Saskatoon, SK, Canada
| | - Adam Fleming
- Division of Pediatric Hematology/Oncology, McMaster Children's Hospital, Hamilton, ON, Canada
| | - Nada Jabado
- Division of Hematology/Oncology, Montreal Children's Hospital, Montreal, QC, Canada
| | - Valérie Larouche
- Division of Hematology/Oncology, CHU de Quebec, Quebec City, QC, Canada
| | - Geneviève Legault
- Division of Hematology/Oncology, Montreal Children's Hospital, Montreal, QC, Canada
| | - Chris Mpofu
- Division of Pediatric Hematology/Oncology, Jim Pattison Children's Hospital, Saskatoon, SK, Canada
| | | | - Mariana Silva
- Division of Pediatrics, Queen's University, Kingston, ON, Canada
| | - Roona Sinha
- Division of Pediatric Hematology/Oncology, Jim Pattison Children's Hospital, Saskatoon, SK, Canada
| | - Doug Strother
- Department of Oncology, Alberta Children's Hospital, Calgary, AB, Canada
| | - Derek S Tsang
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Beverly Wilson
- Division of Pediatric Hematology/Oncology & Palliative Care, Stollery Children's Hospital, Edmonton, AB, Canada
| | - Bruce Crooks
- Division of Pediatric Hematology/Oncology, IWK Health Centre, Halifax, NS, Canada
| | - Ute Bartels
- Division of Neuro-Oncology, The Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
278
|
Peterson RK, McKeown T, Tabori U, Bartels U, Bouffet E, Janzen L. Neuropsychological impact of trametinib in pediatric low-grade glioma: A case series. Pediatr Blood Cancer 2020; 67:e28690. [PMID: 32930446 DOI: 10.1002/pbc.28690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Clinical trials of MEK inhibitors are underway in pediatric low-grade glioma (PLGG) with BRAF oncogene mutations and recurrent/refractory disease. Cognitive and behavioral impacts of MEK inhibitors, such as trametinib, are unknown as these outcomes have not yet been studied. This case series compared cognition and behavior in eight PLGG cases prior to and while on treatment with trametinib compared to four PLGG controls. Intelligence in the trametinib cases was mainly unchanged while on treatment, with mild decline in one of seven cases with complete data. Parent-reported depression symptoms increased in five of eight trametinib cases relative to one of four controls.
Collapse
Affiliation(s)
- Rachel K Peterson
- Department of Neuropsychology, Kennedy Krieger Institute, Baltimore, Maryland
| | - Tara McKeown
- Division of Hematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Uri Tabori
- Division of Hematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ute Bartels
- Division of Hematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Eric Bouffet
- Division of Hematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Laura Janzen
- Division of Hematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Psychology, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
279
|
Dono A, Lopez-Rivera V, Chandra A, Lewis CT, Abdelkhaleq R, Sheth SA, Ballester LY, Esquenazi Y. Predictors of outcome in pleomorphic xanthoastrocytoma. Neurooncol Pract 2020; 8:222-229. [PMID: 33898055 DOI: 10.1093/nop/npaa076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Background Pleomorphic xanthoastrocytomas (PXA) are circumscribed gliomas that typically have a favorable prognosis. Limited studies have revealed factors affecting survival outcomes in PXA. Here, we analyzed the largest PXA dataset in the literature and identify factors associated with outcomes. Methods Using the Surveillance, Epidemiology, and End Results (SEER) 18 Registries database, we identified histologically confirmed PXA patients between 1994 and 2016. Overall survival (OS) was analyzed using Kaplan-Meier survival and multivariable Cox proportional hazard models. Results In total, 470 patients were diagnosed with PXA (males = 53%; median age = 23 years [14-39 years]), the majority were Caucasian (n = 367; 78%). The estimated mean OS was 193 months [95% CI: 179-206]. Multivariate analysis revealed that greater age at diagnosis (≥39 years) (3.78 [2.16-6.59], P < .0001), larger tumor size (≥30 mm) (1.97 [1.05-3.71], P = .034), and postoperative radiotherapy (RT) (2.20 [1.31-3.69], P = .003) were independent predictors of poor OS. Pediatric PXA patients had improved survival outcomes compared to their adult counterparts, in which chemotherapy (CT) was associated with worse OS. Meanwhile, in adults, females and patients with temporal lobe tumors had an improved survival; conversely, tumor size ≥30 mm and postoperative RT were associated with poor OS. Conclusions In PXA, older age and larger tumor size at diagnosis are risk factors for poor OS, while pediatric patients have remarkably improved survival. Postoperative RT and CT appear to be ineffective treatment strategies while achieving GTR confer an improved survival in male patients and remains the cornerstone of treatment. These findings can help optimize PXA treatment while minimizing side effects. However, further studies of PXAs with molecular characterization are needed.
Collapse
Affiliation(s)
- Antonio Dono
- Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston - McGovern Medical School, Houston, Texas.,Department of Pathology and Laboratory Medicine, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Victor Lopez-Rivera
- Department of Neurology, The University of Texas Health Science Center at Houston - McGovern Medical School, Houston, Texas
| | - Ankush Chandra
- Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston - McGovern Medical School, Houston, Texas
| | - Cole T Lewis
- Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston - McGovern Medical School, Houston, Texas
| | - Rania Abdelkhaleq
- Department of Neurology, The University of Texas Health Science Center at Houston - McGovern Medical School, Houston, Texas
| | - Sunil A Sheth
- Department of Neurology, The University of Texas Health Science Center at Houston - McGovern Medical School, Houston, Texas
| | - Leomar Y Ballester
- Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston - McGovern Medical School, Houston, Texas.,Department of Pathology and Laboratory Medicine, The University of Texas Health Science Center at Houston, Houston, Texas.,Memorial Hermann Hospital-TMC, Houston, Texas
| | - Yoshua Esquenazi
- Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston - McGovern Medical School, Houston, Texas.,Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston - McGovern Medical School, Houston, Texas.,Memorial Hermann Hospital-TMC, Houston, Texas
| |
Collapse
|
280
|
Mueller T, Stucklin ASG, Postlmayr A, Metzger S, Gerber N, Kline C, Grotzer M, Nazarian J, Mueller S. Advances in Targeted Therapies for Pediatric Brain Tumors. Curr Treat Options Neurol 2020. [DOI: 10.1007/s11940-020-00651-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Abstract
Purpose of Review
Over the last years, our understanding of the molecular biology of pediatric brain tumors has vastly improved. This has led to more narrowly defined subgroups of these tumors and has created new potential targets for molecularly driven therapies. This review presents an overview of the latest advances and challenges of implementing targeted therapies into the clinical management of pediatric brain tumors, with a focus on gliomas, craniopharyngiomas, and medulloblastomas.
Recent Findings
Pediatric low-grade gliomas (pLGG) show generally a low mutational burden with the mitogen-activated protein kinase (MAPK) signaling presenting a key driver for these tumors. Direct inhibition of this pathway through BRAF and/or MEK inhibitors has proven to be a clinically relevant strategy. More recently, MEK and IL-6 receptor inhibitors have started to be evaluated in the treatment for craniopharyngiomas. Aside these low-grade tumors, pediatric high-grade gliomas (pHGG) and medulloblastomas exhibit substantially greater molecular heterogeneity with various and sometimes unknown tumor driver alterations. The clinical benefit of different targeted therapy approaches to interfere with altered signaling pathways and restore epigenetic dysregulation is undergoing active clinical testing. For these multiple pathway-driven tumors, combination strategies will most likely be required to achieve clinical benefit.
Summary
The field of pediatric neuro-oncology made tremendous progress with regard to improved diagnosis setting the stage for precision medicine approaches over the last decades. The potential of targeted therapies has been clearly demonstrated for a subset of pediatric brain tumors. However, despite clear response rates, questions of sufficient blood-brain barrier penetration, optimal dosing, treatment duration as well as mechanisms of resistance and how these can be overcome with potential combination strategies need to be addressed in future investigations. Along this line, it is critical for future trials to define appropriate endpoints to assess therapy responses as well as short and long-term toxicities in the growing and developing child.
Collapse
|
281
|
Guerreiro Stücklin AS, Mueller S. Opportunities for the treatment of NF1-associated low-grade gliomas: how to decide on the best treatment options for patients? Neuro Oncol 2020; 22:1415-1416. [PMID: 32974639 DOI: 10.1093/neuonc/noaa201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ana S Guerreiro Stücklin
- Department of Oncology and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Sabine Mueller
- Department of Oncology and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland.,Department of Neurology, Neurosurgery and Pediatrics, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
282
|
Response to trametinib treatment in progressive pediatric low-grade glioma patients. J Neurooncol 2020; 149:499-510. [PMID: 33026636 PMCID: PMC7609413 DOI: 10.1007/s11060-020-03640-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 09/29/2020] [Indexed: 12/13/2022]
Abstract
Introduction A hallmark of pediatric low-grade glioma (pLGG) is aberrant signaling of the mitogen activated protein kinase (MAPK) pathway. Hence, inhibition of MAPK signaling using small molecule inhibitors such as MEK inhibitors (MEKi) may be a promising strategy. Methods In this multi-center retrospective centrally reviewed study, we analyzed 18 patients treated with the MEKi trametinib for progressive pLGG as an individual treatment decision between 2015 and 2019. We have investigated radiological response as per central radiology review, molecular classification and investigator observed toxicity. Results We observed 6 partial responses (PR), 2 minor responses (MR), and 10 stable diseases (SD) as best overall responses. Disease control rate (DCR) was 100% under therapy. Responses were observed in KIAA1549:BRAF- as well as neurofibromatosis type 1 (NF1)-driven tumors. Median treatment time was 12.5 months (range: 2 to 27 months). Progressive disease was observed in three patients after cessation of trametinib treatment within a median time of 3 (2–4) months. Therapy related adverse events occurred in 16/18 patients (89%). Eight of 18 patients (44%) experienced severe adverse events (CTCAE III and/or IV; most commonly skin rash and paronychia) requiring dose reduction in 6/18 patients (33%), and discontinuation of treatment in 2/18 patients (11%). Conclusions Trametinib was an active and feasible treatment for progressive pLGG leading to disease control in all patients. However, treatment related toxicity interfered with treatment in individual patients, and disease control after MEKi withdrawal was not sustained in a fraction of patients. Our data support in-class efficacy of MEKi in pLGGs and necessity for upfront randomized testing of trametinib against current standard chemotherapy regimens.
Collapse
|
283
|
|
284
|
Shofty B, Ben Sira L, Constantini S. Neurofibromatosis 1-associated optic pathway gliomas. Childs Nerv Syst 2020; 36:2351-2361. [PMID: 32524182 DOI: 10.1007/s00381-020-04697-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 05/21/2020] [Indexed: 01/04/2023]
Abstract
BACKGROUND Optic Pathway Gliomas (OPG) are the most common brain tumor in Neurofibromatosis 1 patients (NF1). They are found along the optic pathway and may involve the optic nerves, chiasm, retro-chiasmatic structures, and the optic radiations. NF1 associate OPG (NF1-OPG) have variable presentation, disease course and response to treatment. The optimal management is patient-specific and should be tailored by a multidisciplinary team. Age, sex, histology, and molecular markers may be important factors in the individualized decision-making process. Chemotherapy is the first-line treatment in cases of progressive tumors, and visual preservation is the main goal of treatment. PURPOSE In this paper we will review the disease, practical management, and recent advances of NF1-OPG.
Collapse
Affiliation(s)
- Ben Shofty
- Department of Neurosurgery, Tel-Aviv Medical Center, The Gilbert Israeli International Neurofibromatosis Center (GIINFC), Tel Aviv University, Tel Aviv, Israel
| | - Liat Ben Sira
- Pediatric Radiology, Tel-Aviv Medical Center, The Gilbert Israeli International Neurofibromatosis Center (GIINFC), Tel Aviv University, Tel Aviv, Israel
| | - Shlomi Constantini
- Department of Pediatric Neurosurgery, Dana Children's Hospital, Tel-Aviv Medical Center, The Gilbert Israeli International Neurofibromatosis Center (GIINFC), Tel Aviv University, 6th Weizmann St., 64239, Tel-Aviv, Israel.
| |
Collapse
|
285
|
Lo YY, Malicki DM, Levy ML, Crawford JR. Low-grade glioneuronal tumour with novel molecular features associated with unusual partial epilepsy in a child. BMJ Case Rep 2020; 13:13/9/e237373. [PMID: 32900747 DOI: 10.1136/bcr-2020-237373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Yan Yuen Lo
- Neurosciences, University of California San Diego, La Jolla, California, USA
| | - Denise M Malicki
- Pathology, Rady Children's Hospital University of California San Diego, San Diego, California, USA
| | - Michael L Levy
- Neurosurgery, University of California San Diego, San Diego, California, USA
| | - John Ross Crawford
- Neurosciences and Pediatrics, University of California San Diego, San Diego, California, USA
| |
Collapse
|
286
|
Dono A, Vu J, Anapolsky M, Hines G, Takayasu T, Yan Y, Tandon N, Zhu JJ, Bhattacharjee MB, Esquenazi Y, Ballester LY. Additional genetic alterations in BRAF-mutant gliomas correlate with histologic diagnoses. J Neurooncol 2020; 149:463-472. [PMID: 33009979 PMCID: PMC7642042 DOI: 10.1007/s11060-020-03634-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 09/23/2020] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Recently, the term "Diffuse glioma, BRAF V600E-mutant" has been recommended for IDH-wildtype gliomas with BRAF p.V600E mutation and without CDKN2A/B deletion. However, additional alterations in gliomas that coexist with BRAF-mutations are poorly defined. METHODS We analyzed next-generation sequencing results in 315 cancer-associated genes for 372 gliomas from our institution (2010 to 2017). In addition, we reviewed IDH-WT gliomas with mutation and copy-number alterations available in cBioPortal, to further characterize BRAF-mutant gliomas. RESULTS Seventeen (4.6%) showed BRAF mutations. Tumor types included 8 glioblastomas, 2 epithelioid glioblastomas (E-GBM), 2 pleomorphic xanthoastrocytomas (PXA), 1 anaplastic oligodendroglioma, 1 diffuse astrocytoma, and 3 pilocytic astrocytomas. Fifty-three percent (53%) of cases exhibited BRAF-alterations other than p.V600E. The majority of the tumors were localized in the temporal lobe (52.9%). In addition to BRAF mutations, glioblastomas showed concomitant mutations in TP53 (3/8), CDKN2A/B-loss (6/8), TERT-promoter (6/8), and/or PTEN (5/8). Both E-GBMs and PXAs showed CDKN2A/B-loss and BRAF p.V600E with absence of TERTp, TP53, and PTEN mutations. Similar findings were observed in BRAF-mutant infiltrating gliomas from cBioPortal. CONCLUSIONS Knowledge of additional alterations that co-occur with BRAF-mutations in gliomas may improve diagnosis and help identify patients that could benefit from targeted therapies. Furthermore, we provide examples of two patients whose tumors responded to BRAF pathway inhibitors, arguing in favor of these therapies in patients with BRAF-mutant gliomas.
Collapse
Affiliation(s)
- Antonio Dono
- Department of Pathology and Laboratory Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jennifer Vu
- Department of Pathology and Laboratory Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Molly Anapolsky
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Gabriella Hines
- Department of Pathology and Laboratory Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Takeshi Takayasu
- Department of Pathology and Laboratory Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Yuanqing Yan
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Nitin Tandon
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Memorial Hermann Hospital-TMC, Houston, TX, USA
| | - Jay-Jiguang Zhu
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Memorial Hermann Hospital-TMC, Houston, TX, USA
| | - Meenakshi B Bhattacharjee
- Department of Pathology and Laboratory Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Memorial Hermann Hospital-TMC, Houston, TX, USA
| | - Yoshua Esquenazi
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.
- Memorial Hermann Hospital-TMC, Houston, TX, USA.
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA.
- Department of Pathology and Laboratory Medicine, Department of Neurosurgery, McGovern Medical School, UT Neuroscience, University of Texas Health Science Center at Houston, 6431 Fannin St., MSB 2.136, Houston, TX, 77030, USA.
| | - Leomar Y Ballester
- Department of Pathology and Laboratory Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.
- Memorial Hermann Hospital-TMC, Houston, TX, USA.
- Vivian L. Smith Department of Neurosurgery and Center for Precision Health, UT-Neuroscience, McGovern Medical School, The University of Texas Health Science Center at Houston, 6400 Fannin Street, Suite # 2800, Houston, TX, 77030, USA.
| |
Collapse
|
287
|
Jünger ST, Andreiuolo F, Mynarek M, Wohlers I, Rahmann S, Klein-Hitpass L, Dörner E, Zur Mühlen A, Velez-Char N, von Hoff K, Warmuth-Metz M, Kortmann RD, Timmermann B, von Bueren A, Rutkowski S, Pietsch T. CDKN2A deletion in supratentorial ependymoma with RELA alteration indicates a dismal prognosis: a retrospective analysis of the HIT ependymoma trial cohort. Acta Neuropathol 2020; 140:405-407. [PMID: 32514758 PMCID: PMC7423858 DOI: 10.1007/s00401-020-02169-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/24/2020] [Accepted: 05/25/2020] [Indexed: 11/26/2022]
Affiliation(s)
- Stephanie T Jünger
- Department of Neuropathology, Institute of Neuropathology, DGNN Brain Tumor Reference Center, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
- Department of Neurosurgery, University of Cologne Medical Center, Cologne, Germany
| | - Felipe Andreiuolo
- Department of Neuropathology, Institute of Neuropathology, DGNN Brain Tumor Reference Center, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Martin Mynarek
- Department of Pediatric Hematology and Oncology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Inken Wohlers
- Genome Informatics, Institute of Human Genetics, University of Duisburg-Essen, Essen, Germany
- Medical Systems Biology Division, Lübeck Institute of Experimental Dermatology and Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
| | - Sven Rahmann
- Genome Informatics, Institute of Human Genetics, University of Duisburg-Essen, Essen, Germany
| | - Ludger Klein-Hitpass
- Department of Cell Biology (Tumor Research), University of Duisburg-Essen, Essen, Germany
| | - Evelyn Dörner
- Department of Neuropathology, Institute of Neuropathology, DGNN Brain Tumor Reference Center, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Anja Zur Mühlen
- Department of Neuropathology, Institute of Neuropathology, DGNN Brain Tumor Reference Center, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Natalia Velez-Char
- Department of Neuropathology, Institute of Neuropathology, DGNN Brain Tumor Reference Center, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Katja von Hoff
- Department of Pediatric Hematology and Oncology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Monika Warmuth-Metz
- Institute of Diagnostic and Interventional Neuroradiology, University Hospital Würzburg, Würzburg, Germany
| | | | | | - Andre von Bueren
- Department of Pediatric Hematology and Oncology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Obstetrics and Gynecology, University Hospital of Geneva, Geneva, Switzerland
| | - Stefan Rutkowski
- Department of Pediatric Hematology and Oncology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Torsten Pietsch
- Department of Neuropathology, Institute of Neuropathology, DGNN Brain Tumor Reference Center, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| |
Collapse
|
288
|
Lucas CHG, Gupta R, Doo P, Lee JC, Cadwell CR, Ramani B, Hofmann JW, Sloan EA, Kleinschmidt-DeMasters BK, Lee HS, Wood MD, Grafe M, Born D, Vogel H, Salamat S, Puccetti D, Scharnhorst D, Samuel D, Cooney T, Cham E, Jin LW, Khatib Z, Maher O, Chamyan G, Brathwaite C, Bannykh S, Mueller S, Kline CN, Banerjee A, Reddy A, Taylor JW, Clarke JL, Oberheim Bush NA, Butowski N, Gupta N, Auguste KI, Sun PP, Roland JL, Raffel C, Aghi MK, Theodosopoulos P, Chang E, Hervey-Jumper S, Phillips JJ, Pekmezci M, Bollen AW, Tihan T, Chang S, Berger MS, Perry A, Solomon DA. Comprehensive analysis of diverse low-grade neuroepithelial tumors with FGFR1 alterations reveals a distinct molecular signature of rosette-forming glioneuronal tumor. Acta Neuropathol Commun 2020; 8:151. [PMID: 32859279 PMCID: PMC7456392 DOI: 10.1186/s40478-020-01027-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 08/19/2020] [Indexed: 01/09/2023] Open
Abstract
The FGFR1 gene encoding fibroblast growth factor receptor 1 has emerged as a frequently altered oncogene in the pathogenesis of multiple low-grade neuroepithelial tumor (LGNET) subtypes including pilocytic astrocytoma, dysembryoplastic neuroepithelial tumor (DNT), rosette-forming glioneuronal tumor (RGNT), and extraventricular neurocytoma (EVN). These activating FGFR1 alterations in LGNET can include tandem duplication of the exons encoding the intracellular tyrosine kinase domain, in-frame gene fusions most often with TACC1 as the partner, or hotspot missense mutations within the tyrosine kinase domain (either at p.N546 or p.K656). However, the specificity of these different FGFR1 events for the various LGNET subtypes and accompanying genetic alterations are not well defined. Here we performed comprehensive genomic and epigenomic characterization on a diverse cohort of 30 LGNET with FGFR1 alterations. We identified that RGNT harbors a distinct epigenetic signature compared to other LGNET with FGFR1 alterations, and is uniquely characterized by FGFR1 kinase domain hotspot missense mutations in combination with either PIK3CA or PIK3R1 mutation, often with accompanying NF1 or PTPN11 mutation. In contrast, EVN harbors its own distinct epigenetic signature and is characterized by FGFR1-TACC1 fusion as the solitary pathogenic alteration. Additionally, DNT and pilocytic astrocytoma are characterized by either kinase domain tandem duplication or hotspot missense mutations, occasionally with accompanying NF1 or PTPN11 mutation, but lacking the accompanying PIK3CA or PIK3R1 mutation that characterizes RGNT. The glial component of LGNET with FGFR1 alterations typically has a predominantly oligodendroglial morphology, and many of the pilocytic astrocytomas with FGFR1 alterations lack the biphasic pattern, piloid processes, and Rosenthal fibers that characterize pilocytic astrocytomas with BRAF mutation or fusion. Together, this analysis improves the classification and histopathologic stratification of LGNET with FGFR1 alterations.
Collapse
|
289
|
Grob ST, Nobre L, Campbell KR, Davies KD, Ryall S, Aisner DL, Hoffman L, Zahedi S, Morin A, Crespo M, Nellan A, Green AL, Foreman N, Vibhakar R, Hankinson TC, Handler MH, Hawkins C, Tabori U, Kleinschmidt-DeMasters BK, Mulcahy Levy JM. Clinical and molecular characterization of a multi-institutional cohort of pediatric spinal cord low-grade gliomas. Neurooncol Adv 2020; 2:vdaa103. [PMID: 33063010 PMCID: PMC7542983 DOI: 10.1093/noajnl/vdaa103] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background The mitogen-activated protein kinases/extracelluar signal-regulated kinases pathway is involved in cell growth and proliferation, and mutations in BRAF have made it an oncogene of interest in pediatric cancer. Previous studies found that BRAF mutations as well as KIAA1549–BRAF fusions are common in intracranial low-grade gliomas (LGGs). Fewer studies have tested for the presence of these genetic changes in spinal LGGs. The aim of this study was to better understand the prevalence of BRAF and other genetic aberrations in spinal LGG. Methods We retrospectively analyzed 46 spinal gliomas from patients aged 1–25 years from Children’s Hospital Colorado (CHCO) and The Hospital for Sick Children (SickKids). CHCO utilized a 67-gene panel that assessed BRAF and additionally screened for other possible genetic abnormalities of interest. At SickKids, BRAFV600E was assessed by droplet digital polymerase chain reaction and immunohistochemistry. BRAF fusions were detected by fluorescence in situ hybridization, reverse transcription polymerase chain reaction, or NanoString platform. Data were correlated with clinical information. Results Of 31 samples with complete fusion analysis, 13 (42%) harbored KIAA1549–BRAF. All 13 (100%) patients with confirmed KIAA1549–BRAF survived the entirety of the study period (median [interquartile range] follow-up time: 47 months [27–85 months]) and 15 (83.3%) fusion-negative patients survived (follow-up time: 37.5 months [19.8–69.5 months]). Other mutations of interest were also identified in this patient cohort including BRAFV600E, PTPN11, H3F3A, TP53, FGFR1, and CDKN2A deletion. Conclusion KIAA1549–BRAF was seen in higher frequency than BRAFV600E or other genetic aberrations in pediatric spinal LGGs and experienced lower death rates compared to KIAA1549–BRAF negative patients, although this was not statistically significant.
Collapse
Affiliation(s)
- Sydney T Grob
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado, USA.,The Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Liana Nobre
- Department of Hematology and Oncology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Kristen R Campbell
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado, USA
| | - Kurtis D Davies
- Department of Pathology, University of Colorado Denver, Aurora, Colorado, USA
| | - Scott Ryall
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Dara L Aisner
- Department of Pathology, University of Colorado Denver, Aurora, Colorado, USA
| | - Lindsey Hoffman
- Center for Cancer and Blood Disorders, Phoenix Children's Hospital, Phoenix, Arizona, USA
| | - Shadi Zahedi
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado, USA.,The Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Andrew Morin
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado, USA.,The Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Michele Crespo
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado, USA.,The Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Anandani Nellan
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado, USA.,The Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Adam L Green
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado, USA.,The Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Nicholas Foreman
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado, USA.,The Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Rajeev Vibhakar
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado, USA.,The Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Todd C Hankinson
- The Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, Colorado, USA.,Department of Neurosurgery, University of Colorado Denver, Aurora, Colorado, USA
| | - Michael H Handler
- The Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, Colorado, USA.,Department of Neurosurgery, University of Colorado Denver, Aurora, Colorado, USA
| | - Cynthia Hawkins
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Uri Tabori
- Department of Hematology and Oncology, Hospital for Sick Children, Toronto, Ontario, Canada.,The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | - Jean M Mulcahy Levy
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado, USA.,The Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, Colorado, USA
| |
Collapse
|
290
|
Tateishi K, Ikegaya N, Udaka N, Sasame J, Hayashi T, Miyake Y, Okabe T, Minamimoto R, Murata H, Utsunomiya D, Yamanaka S, Yamamoto T. BRAF V600E mutation mediates FDG-methionine uptake mismatch in polymorphous low-grade neuroepithelial tumor of the young. Acta Neuropathol Commun 2020. [PMID: 32811569 DOI: 10.1186/s40478-020-01023-3.pmid:32811569;pmcid:pmc7436956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
We present a case of a 14-year old boy with tumor-associated refractory epilepsy. Positron emission tomography imaging demonstrated a region with heterogeneous high 11C-methionine uptake and a region with homogenous low 18F-fluorodeoxyglucose uptake within the tumor. Histopathological and genomic analyses confirmed the tumor as BRAF V600E-mutated polymorphous low-grade neuroepithelial tumor of the young (PLNTY). Within the high-methionine-uptake region, we observed increased protein levels of L-type amino acid transporter 1 (LAT1), a major transporter of methionine; c-Myc; and constituents of the mitogen-activated protein kinase (MAPK) pathway. We also found that LAT1 expression was linked to the BRAF V600E mutation and subsequent activation of MAPK signaling and c-Myc. Pharmacological and genetic inhibition of the MAPK pathway suppressed c-Myc and LAT1 expression in BRAF V600E-mutated PLNTY and glioblastoma cells. The BRAF inhibitor dabrafenib moderately suppressed cell viability in PLNTY. Collectively, our results indicate that BRAF V600E mutation-activated MAPK signaling and downstream c-Myc induces specific metabolic alterations in PLNTY, and may represent an attractive target in the treatment of the disease.
Collapse
Affiliation(s)
- Kensuke Tateishi
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa, Yokohama, 2360004, Japan.
| | - Naoki Ikegaya
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa, Yokohama, 2360004, Japan
| | - Naoko Udaka
- Department of Pathology, Yokohama City University Hospital, Yokohama, Japan
| | - Jo Sasame
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa, Yokohama, 2360004, Japan
| | - Takahiro Hayashi
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa, Yokohama, 2360004, Japan
| | - Yohei Miyake
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa, Yokohama, 2360004, Japan
| | - Tetsuhiko Okabe
- Department of Radiology, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Ryogo Minamimoto
- Departmento of Radiology, Division of Nuclear Medicine, National Center for Global Health and Medicine, Tokyo, Japan
| | - Hidetoshi Murata
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa, Yokohama, 2360004, Japan
| | - Daisuke Utsunomiya
- Department of Radiology, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Shoji Yamanaka
- Department of Pathology, Yokohama City University Hospital, Yokohama, Japan
| | - Tetsuya Yamamoto
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa, Yokohama, 2360004, Japan
| |
Collapse
|
291
|
Tateishi K, Ikegaya N, Udaka N, Sasame J, Hayashi T, Miyake Y, Okabe T, Minamimoto R, Murata H, Utsunomiya D, Yamanaka S, Yamamoto T. BRAF V600E mutation mediates FDG-methionine uptake mismatch in polymorphous low-grade neuroepithelial tumor of the young. Acta Neuropathol Commun 2020; 8:139. [PMID: 32811569 PMCID: PMC7436956 DOI: 10.1186/s40478-020-01023-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/12/2020] [Indexed: 02/06/2023] Open
Abstract
We present a case of a 14-year old boy with tumor-associated refractory epilepsy. Positron emission tomography imaging demonstrated a region with heterogeneous high 11C-methionine uptake and a region with homogenous low 18F-fluorodeoxyglucose uptake within the tumor. Histopathological and genomic analyses confirmed the tumor as BRAF V600E-mutated polymorphous low-grade neuroepithelial tumor of the young (PLNTY). Within the high-methionine-uptake region, we observed increased protein levels of L-type amino acid transporter 1 (LAT1), a major transporter of methionine; c-Myc; and constituents of the mitogen-activated protein kinase (MAPK) pathway. We also found that LAT1 expression was linked to the BRAF V600E mutation and subsequent activation of MAPK signaling and c-Myc. Pharmacological and genetic inhibition of the MAPK pathway suppressed c-Myc and LAT1 expression in BRAF V600E-mutated PLNTY and glioblastoma cells. The BRAF inhibitor dabrafenib moderately suppressed cell viability in PLNTY. Collectively, our results indicate that BRAF V600E mutation-activated MAPK signaling and downstream c-Myc induces specific metabolic alterations in PLNTY, and may represent an attractive target in the treatment of the disease.
Collapse
|
292
|
Cacciotti C, Fleming A, Ramaswamy V. Advances in the molecular classification of pediatric brain tumors: a guide to the galaxy. J Pathol 2020; 251:249-261. [PMID: 32391583 DOI: 10.1002/path.5457] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/31/2020] [Accepted: 05/04/2020] [Indexed: 12/19/2022]
Abstract
Central nervous system (CNS) tumors are the most common solid tumor in pediatrics, accounting for approximately 25% of all childhood cancers, and the second most common pediatric malignancy after leukemia. CNS tumors can be associated with significant morbidity, even those classified as low grade. Mortality from CNS tumors is disproportionately high compared to other childhood malignancies, although surgery, radiation, and chemotherapy have improved outcomes in these patients over the last few decades. Current therapeutic strategies lead to a high risk of side effects, especially in young children. Pediatric brain tumor survivors have unique sequelae compared to age-matched patients who survived other malignancies. They are at greater risk of significant impairment in cognitive, neurological, endocrine, social, and emotional domains, depending on the location and type of the CNS tumor. Next-generation genomics have shed light on the broad molecular heterogeneity of pediatric brain tumors and have identified important genes and signaling pathways that serve to drive tumor proliferation. This insight has impacted the research field by providing potential therapeutic targets for these diseases. In this review, we highlight recent progress in understanding the molecular basis of common pediatric brain tumors, specifically low-grade glioma, high-grade glioma, ependymoma, embryonal tumors, and atypical teratoid/rhabdoid tumor (ATRT). © 2020 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Chantel Cacciotti
- Division of Pediatric Hematology/Oncology, McMaster Children's Hospital, Hamilton, ON, Canada.,Dana Farber/Boston Children's Cancer and Blood Disorder Center, Boston, MA, USA
| | - Adam Fleming
- Division of Pediatric Hematology/Oncology, McMaster Children's Hospital, Hamilton, ON, Canada
| | - Vijay Ramaswamy
- Division of Haematology/Oncology, Department of Pediatrics, University of Toronto and The Hospital for Sick Children, Toronto, ON, Canada.,Programme in Developmental and Stem Cell Biology, Arthur and Sonia Labatt Brain Tumor Research Centre, Hospital for Sick Children, Toronto, ON, Canada.,Department of Medical Biophysics and Pediatrics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
293
|
Affiliation(s)
- Julie Bennett
- Division of Neuro-Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Eric Bouffet
- Division of Neuro-Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
294
|
Abstract
In this issue of Cancer Cell, Ryall et al. report on the largest clinically and molecularly characterized cohort of pediatric low-grade gliomas (pLGGs) published to date. They provide new insight into the pLGG molecular landscape and a novel risk stratification system with the potential to revolutionize prognostication and impact treatment.
Collapse
Affiliation(s)
- Jason Fangusaro
- Department of Pediatric Hematology and Oncology, Children's Healthcare of Atlanta, Atlanta, GA, USA; Aflac Cancer and Blood Disorder Center, Atlanta, GA, USA; Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.
| | - Pratiti Bandopadhayay
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|