251
|
Pham TN, Spaulding C, Shields MA, Metropulos AE, Shah DN, Khalafalla MG, Principe DR, Bentrem DJ, Munshi HG. Inhibiting MNK kinases promotes macrophage immunosuppressive phenotype to limit CD8+ T cell anti-tumor immunity. JCI Insight 2022; 7:152731. [PMID: 35380995 PMCID: PMC9090262 DOI: 10.1172/jci.insight.152731] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 03/30/2022] [Indexed: 11/17/2022] Open
Abstract
To elicit effective anti-tumor responses, CD8+ T cells need to infiltrate tumors and sustain their effector function within the immunosuppressive tumor microenvironment. Here we evaluate the role of MNK kinase activity in regulating CD8+ T cell infiltration and anti-tumor activity in pancreatic and thyroid tumors. We first show that human pancreatic and thyroid tumors with increased MNK kinase activity are associated with decreased infiltration by CD8+ T cells. We then show that while MNK inhibitors increase CD8+ T cells in these tumors, they induce a T cell exhaustion phenotype in the tumor microenvironment. Mechanistically, we show that the exhaustion phenotype is not caused by upregulation of PD-L1 but by tumor-associated macrophages (TAMs) becoming more immunosuppressive following MNK inhibitor treatment. Reversal of CD8+ T cell exhaustion by an anti-PD-1 antibody or TAM depletion synergizes with MNK inhibitors to control tumor growth and prolong animal survival. Importantly, we show in ex vivo human pancreatic tumor slice cultures that MNK inhibitors increase the expression of markers associated with immunosuppressive TAMs. Together, these findings demonstrate a previously unknown role of MNK kinases in modulating a pro-tumoral phenotype in macrophages and identify combination regimens involving MNK inhibitors to enhance anti-tumor immune responses.
Collapse
Affiliation(s)
- Thao Nd Pham
- Department of Medicine, Feinberg School of Medicine Northwestern University, Chicago, United States of America
| | - Christina Spaulding
- Department of Medicine, Feinberg School of Medicine Northwestern University, Chicago, United States of America
| | - Mario A Shields
- Department of Medicine, Feinberg School of Medicine Northwestern University, Chicago, United States of America
| | - Anastasia E Metropulos
- Department of Medicine, Feinberg School of Medicine Northwestern University, Chicago, United States of America
| | - Dhavan N Shah
- Department of Surgery, Feinberg School of Medicine Northwestern University, Chicago, United States of America
| | - Mahmoud G Khalafalla
- Department of Medicine, Feinberg School of Medicine Northwestern University, Chicago, United States of America
| | - Daniel R Principe
- Medical Scientist Training Program, University of Illinois College of Medicine, Chicago, United States of America
| | - David J Bentrem
- Department of Surgery, Feinberg School of Medicine Northwestern University, Chicago, United States of America
| | - Hidayatullah G Munshi
- Department of Medicine, Feinberg School of Medicine Northwestern University, Chicago, United States of America
| |
Collapse
|
252
|
Yang C, Li J, Guo Y, Gan D, Zhang C, Wang R, Hua L, Zhu L, Ma P, Shi J, Li S, Su H. Role of TFRC as a Novel Prognostic Biomarker and in Immunotherapy for Pancreatic Carcinoma. Front Mol Biosci 2022; 9:756895. [PMID: 35372510 PMCID: PMC8965864 DOI: 10.3389/fmolb.2022.756895] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 01/26/2022] [Indexed: 12/12/2022] Open
Abstract
Objective: To explore the expression of the transferrin receptor (TFRC) gene in pancreatic cancer and to analyze the pathogenesis and immunotherapy of TFRC in patients using bioinformatics methods. Methods: We used public data from the cancer genome atlas (TCGA) and gene expression omnibus databases to explore the expression level of the TFRC gene in pancreatic cancer patients. At the same time, we analyzed the correlation between the TFRC gene expression and patient survival, and further analyzed the correlation between TFRC and survival time of patients with different clinicopathological characteristics. Co-expressed genes and pathway enrichment analyses were used to analyze the mechanism of the TFRC in the occurrence and development of pancreatic cancer. Ultimately, we used the R software to examine the relationship between TFRC and immune phenotypes and immune cell infiltration using the TCGA database. Results: The results of the study showed that TFRC is highly expressed in pancreatic cancer tissue. The upregulated expression of TFRC was negatively correlated with the survival in patients with pancreatic cancer. The bioinformatics analysis showed that TFRC plays a role in the occurrence and development of pancreatic cancer mainly through signaling pathways (including cell adhesion molecule binding, condensed chromosomes, chromosome segregation, and cell cycle checkpoints). Finally, TFRC is associated with immune phenotypes and immune cell infiltration, which may influence immunotherapy. Conclusion: TFRC is significantly increased in pancreatic cancer and is associated with a poor prognosis. Moreover, research on TFRC may generate new ideas for the immunotherapy of pancreatic cancer.
Collapse
|
253
|
Tang T, Huang X, Zhang G, Lu M, Hong Z, Wang M, Huang J, Zhi X, Liang T. Oncolytic peptide LTX-315 induces anti-pancreatic cancer immunity by targeting the ATP11B-PD-L1 axis. J Immunother Cancer 2022; 10:jitc-2021-004129. [PMID: 35288467 PMCID: PMC8921947 DOI: 10.1136/jitc-2021-004129] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2022] [Indexed: 12/14/2022] Open
Abstract
Background LTX-315 is an oncolytic peptide deriving from bovine lactoferrin, with the ability to induce cancer immunogenic cell death. However, the mechanism used by LTX-315 to trigger the antitumor immune response is still poorly understood. The expression of programmed cell death ligand 1 (PD-L1) largely determines the efficacy and effectiveness of cancer immunotherapies targeting this specific immune checkpoint. This study aimed to demonstrate the potential effect and mechanism of LTX-315 in PD-L1 inhibition-induced anti-pancreatic cancer immunity. Methods Both immunodeficient and immunocompetent mouse models were used to evaluate the therapeutic efficacy of monotherapy and combination therapy. Flow cytometry and immunohistochemistry were used to assess the immune microenvironment. Multiomic analysis was used to identify the potential target and down-streaming signaling pathway. Both in-house tissue microarray and open accessed The Cancer Genome Atlas data sets were used to evaluate the clinical relevance in pancreatic cancer prognosis. Results LTX-315 treatment inhibited PD-L1 expression and enhanced lymphocyte infiltration in pancreatic tumors. ATP11B was identified as a potential target of LTX-315 and a critical regulator in maintaining PD-L1 expression in pancreatic cancer cells. As regards the mechanism, ATP11B interacted with PD-L1 in a CKLF-like MARVEL transmembrane domain containing 6 (CMTM6)-dependent manner. The depletion of ATP11B promoted CMTM6-mediated lysosomal degradation of PD-L1, thus reactivating the immune microenvironment and inducing an antitumor immune response. The significant correlation among ATP11B, CMTM6, and PD-L1 was confirmed in clinical samples of pancreatic cancer. Conclusions LTX-315 was first identified as a peptide drug inducing PD-L1 downregulation via ATP11B. Therefore, LTX-315, or the development of ATP11B-targeting drugs, might improve the efficacy of cancer immunotherapy.
Collapse
Affiliation(s)
- Tianyu Tang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, People's Republic of China.,The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, People's Republic of China.,Cancer Center, Zhejiang University, Hangzhou, People's Republic of China
| | - Xing Huang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China .,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, People's Republic of China.,The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, People's Republic of China.,Cancer Center, Zhejiang University, Hangzhou, People's Republic of China
| | - Gang Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, People's Republic of China.,The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, People's Republic of China.,Cancer Center, Zhejiang University, Hangzhou, People's Republic of China
| | - Minghao Lu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, People's Republic of China.,The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, People's Republic of China.,Cancer Center, Zhejiang University, Hangzhou, People's Republic of China
| | - Zhengtao Hong
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, People's Republic of China.,The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, People's Republic of China.,Cancer Center, Zhejiang University, Hangzhou, People's Republic of China
| | - Meng Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, People's Republic of China.,The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, People's Republic of China.,Cancer Center, Zhejiang University, Hangzhou, People's Republic of China
| | - Junming Huang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, People's Republic of China.,The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, People's Republic of China.,Cancer Center, Zhejiang University, Hangzhou, People's Republic of China
| | - Xiao Zhi
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, People's Republic of China.,The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, People's Republic of China.,Cancer Center, Zhejiang University, Hangzhou, People's Republic of China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China .,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, People's Republic of China.,The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, People's Republic of China.,Cancer Center, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
254
|
Chen J, Zhou C, Liu Y. Establishing a Macrophage Phenotypic Switch-Associated Signature-Based Risk Model for Predicting the Prognoses of Lung Adenocarcinoma. Front Oncol 2022; 11:771988. [PMID: 35284334 PMCID: PMC8905507 DOI: 10.3389/fonc.2021.771988] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 12/30/2021] [Indexed: 11/13/2022] Open
Abstract
Background Tumor-associated macrophages are important components of the tumor microenvironment, and the macrophage phenotypic switch has been shown to correlate with tumor development. However, the use of a macrophage phenotypic switch-related gene (MRG)-based prognosis signature for lung adenocarcinoma (LADC) has not yet been investigated. Methods In total, 1,114 LADC cases from two different databases were collected. The samples from TCGA were used as the training set (N = 490), whereas two independent datasets (GSE31210 and GSE72094) from the GEO database were used as the validation sets (N = 624). A robust MRG signature that predicted clinical outcomes of LADC patients was identified through multivariate COX and Lasso regression analysis. Gene set enrichment analysis was applied to analyze molecular pathways associated with the MRG signature. Moreover, the fractions of 22 immune cells were estimated using CIBERSORT algorithm. Results An eight MRG-based signature comprising CTSL, ECT2, HCFC2, HNRNPK, LRIG1, OSBPL5, P4HA1, and TUBA4A was used to estimate the LADC patients’ overall survival. The MRG model was capable of distinguishing high-risk patients from low-risk patients and accurately predict survival in both the training and validation cohorts. Subsequently, the eight MRG-based signature and other features were used to construct a nomogram to better predict the survival of LADC patients. Calibration plots and decision curve analysis exhibited good consistency between the nomogram predictions and actual observation. ROC curves displayed that the signature had good robustness to predict LADC patients’ prognostic outcome. Conclusions We identified a phenotypic switch-related signature for predicting the survival of patients with LADC.
Collapse
Affiliation(s)
- Jun Chen
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chao Zhou
- Department of Neurology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, China
| | - Ying Liu
- Department of Emergency, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
255
|
Wu M, Huang Q, Xie Y, Wu X, Ma H, Zhang Y, Xia Y. Improvement of the anticancer efficacy of PD-1/PD-L1 blockade via combination therapy and PD-L1 regulation. J Hematol Oncol 2022; 15:24. [PMID: 35279217 PMCID: PMC8917703 DOI: 10.1186/s13045-022-01242-2] [Citation(s) in RCA: 186] [Impact Index Per Article: 93.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/22/2022] [Indexed: 02/06/2023] Open
Abstract
Immune checkpoint molecules are promising anticancer targets, among which therapeutic antibodies targeting the PD-1/PD-L1 pathway have been widely applied to cancer treatment in clinical practice and have great potential. However, this treatment is greatly limited by its low response rates in certain cancers, lack of known biomarkers, immune-related toxicity, innate and acquired drug resistance, etc. Overcoming these limitations would significantly expand the anticancer applications of PD-1/PD-L1 blockade and improve the response rate and survival time of cancer patients. In the present review, we first illustrate the biological mechanisms of the PD-1/PD-L1 immune checkpoints and their role in the healthy immune system as well as in the tumor microenvironment (TME). The PD-1/PD-L1 pathway inhibits the anticancer effect of T cells in the TME, which in turn regulates the expression levels of PD-1 and PD-L1 through multiple mechanisms. Several strategies have been proposed to solve the limitations of anti-PD-1/PD-L1 treatment, including combination therapy with other standard treatments, such as chemotherapy, radiotherapy, targeted therapy, anti-angiogenic therapy, other immunotherapies and even diet control. Downregulation of PD-L1 expression in the TME via pharmacological or gene regulation methods improves the efficacy of anti-PD-1/PD-L1 treatment. Surprisingly, recent preclinical studies have shown that upregulation of PD-L1 in the TME also improves the response and efficacy of immune checkpoint blockade. Immunotherapy is a promising anticancer strategy that provides novel insight into clinical applications. This review aims to guide the development of more effective and less toxic anti-PD-1/PD-L1 immunotherapies.
Collapse
Affiliation(s)
- Mengling Wu
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qianrui Huang
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yao Xie
- Department of Obstetrics and Gynaecology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China
| | - Xuyi Wu
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province/Rehabilitation Medicine Research Institute, Chengdu, 610041, China
| | - Hongbo Ma
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yiwen Zhang
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Yong Xia
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China. .,Key Laboratory of Rehabilitation Medicine in Sichuan Province/Rehabilitation Medicine Research Institute, Chengdu, 610041, China.
| |
Collapse
|
256
|
Li F, Huang K, Pan C, Xiao Y, Zheng Q, Zhong K. Expression Patterns of Glycosylation Regulators Define Tumor Microenvironment and Immunotherapy in Gastric Cancer. Front Cell Dev Biol 2022; 10:811075. [PMID: 35242759 PMCID: PMC8886025 DOI: 10.3389/fcell.2022.811075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/06/2022] [Indexed: 11/16/2022] Open
Abstract
Glycosylation (Glyc) is prevalently related to gastric cancer (GC) pathophysiology. However, studies on the relationship between glycosylation regulators and tumor microenvironment (TME) and immunotherapy of GC remain scarce. We extracted expression data of 1,956 patients with GC from eight cohorts and systematically characterized the glycosylation patterns of six marker genes into phenotype clusters using the unsupervised clustering method. Next, we constructed a Glyc. score to quantify the glycosylation index of each patient with GC. Finally, we analyzed the relationship between Glyc. score and clinical traits including molecular subtype, TME, and immunotherapy of GC. On the basis of prognostic glycosylation-related differentially expressed genes, we constructed the Glyc. score and divided the samples into the high– and low–Glyc. score groups. The high–Glyc. score group showed a poor prognosis and was validated in multiple cohorts. Functional enrichment analysis revealed that the high–Glyc. score group was enriched in metabolism-related pathways. Furthermore, the high–Glyc. score group was associated with the infiltration of immune cells. Importantly, the established Glyc. score would contribute to predicting the response to anti–PD-1/L1 immunotherapy. In conclusion, the Glyc. score is a potentially useful tool to predict the prognosis of GC. Comprehensive analysis of glycosylation may provide novel insights into the epigenetics of GC and improve treatment strategies.
Collapse
Affiliation(s)
- Fang Li
- Department of Gastrointestinal, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Kaibin Huang
- Department of Gastrointestinal, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Chaohu Pan
- YuceBio Technology Co., Ltd, Shenzhen, China.,Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, China.,The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
| | - Yajie Xiao
- YuceBio Technology Co., Ltd, Shenzhen, China
| | - Qijun Zheng
- Department of Cardiovascular Surgery, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Keli Zhong
- Department of Gastrointestinal, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, Shenzhen, China
| |
Collapse
|
257
|
Kuang W, Wang X, Ding J, Li J, Ji M, Chen W, Wang L, Yang P. PTPN2, A Key Predictor of Prognosis for Pancreatic Adenocarcinoma, Significantly Regulates Cell Cycles, Apoptosis, and Metastasis. Front Immunol 2022; 13:805311. [PMID: 35154122 PMCID: PMC8829144 DOI: 10.3389/fimmu.2022.805311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/07/2022] [Indexed: 12/13/2022] Open
Abstract
Objective This study conducted a comprehensive analysis of the members of the PTPN family and emphasized the key role of PTPN2 as a potential therapeutic target and diagnostic biomarker in improving the survival rate of PAAD. Method Oncomine was used to analyze the pan-cancer expression of the PTPN gene family. The Cancer Genome Atlas (TCGA) data as well as Genotype-Tissue Expression (GTEx) data were downloaded to analyze the expression and prognosis of PTPNs. The diagnosis of PTPNs was evaluated by the experimental ROC curve. The protein-protein interaction (PPI) network was constructed by combining STRING and Cytoscape. The genes of 50 proteins most closely related to PTPN2 were screened and analyzed by GO and KEGG enrichment. The differentially expressed genes of PTPN2 were found by RNA sequencing, and GSEA enrichment analysis was carried out to find the downstream pathways and targets, which were verified by online tools and experiments. Finally, the relationship between PTPN2 and immune cell infiltration in PAAD, and the relationship with immune score and immune checkpoint were studied. Result The expression patterns and the prognostic value of multiple PTPNs in PAAD have been reported through bioinformatic analyzes. Among these members, PTPN2 is the most important prognostic signature that regulates the progression of PAAD by activating JAK-STAT signaling pathway. Comparison of two PAAD cell lines with normal pancreatic epithelial cell lines revealed that PTPN2 expression was up-regulated as a key regulator of PAAD, which was associated with poor prognosis. Knockdown of PTPN2 caused a profound decrease in PAAD cell growth, migration, invasion, and induced PAAD cell cycle and apoptosis. In addition, we conducted a series of enrichment analyses to investigate the PTPN2-binding proteins and the PTPN2 expression-correlated genes. We suggest that STAT1 and EGFR are the key factors to regulate PTPN2, which are involved in the progression of PAAD. Meanwhile, the silencing of PTPN2 induced the repression of STAT1 and EGFR expression. Conclusion These findings provide a comprehensive analysis of the PTPN family members, and for PAAD, they also demonstrate that PTPN2 is a diagnostic biomarker and a therapeutic target.
Collapse
Affiliation(s)
- Wenbin Kuang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiao Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jiayu Ding
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jiaxing Li
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Minghui Ji
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Weijiao Chen
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Liping Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Peng Yang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
258
|
De Marco M, Gauttier V, Pengam S, Mary C, Ranieri B, Basile A, Festa M, Falco A, Reppucci F, Cammarota AL, Acernese F, De Laurenzi V, Sala G, Brongo S, Miyasaka M, Shalapour S, Vanhove B, Poirier N, Iaccarino R, Karin M, Turco MC, Rosati A, Marzullo L. Concerted BAG3 and SIRPα blockade impairs pancreatic tumor growth. Cell Death Dis 2022; 8:94. [PMID: 35241649 PMCID: PMC8894496 DOI: 10.1038/s41420-022-00817-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/09/2021] [Accepted: 01/04/2022] [Indexed: 11/29/2022]
Abstract
The BAG3- and SIRPα- mediated pathways trigger distinct cellular targets and signaling mechanisms in pancreatic cancer microenvironment. To explore their functional connection, we investigated the effects of their combined blockade on cancer growth in orthotopic allografts of pancreatic cancer mt4–2D cells in immunocompetent mice. The anti-BAG3 + anti-SIRPα mAbs treatment inhibited (p = 0.007) tumor growth by about the 70%; also the number of metastatic lesions was decreased, mostly by the effect of the anti-BAG3 mAb. Fibrosis and the expression of the CAF activation marker α-SMA were reduced by about the 30% in animals treated with anti-BAG3 mAb compared to untreated animals, and appeared unaffected by treatment with the anti-SIRPα mAb alone; however, the addition of anti-SIRPα to anti-BAG3 mAb in the combined treatment resulted in a > 60% (p < 0.0001) reduction of the fibrotic area and a 70% (p < 0.0001) inhibition of CAF α-SMA positivity. Dendritic cells (DCs) and CD8+ lymphocytes, hardly detectable in the tumors of untreated animals, were modestly increased by single treatments, while were much more clearly observable (p < 0.0001) in the tumors of the animals subjected to the combined treatment. The effects of BAG3 and SIRPα blockade do not simply reflect the sum of the effects of the single blockades, indicating that the two pathways are connected by regulatory interactions and suggesting, as a proof of principle, the potential therapeutic efficacy of a combined BAG3 and SIRPα blockade in pancreatic cancer.
Collapse
Affiliation(s)
- Margot De Marco
- Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, SA, 84081, Italy.,BIOUNIVERSA s.r.l., R&D Division, Baronissi, SA, 84081, Italy
| | | | | | | | - Bianca Ranieri
- Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, SA, 84081, Italy
| | - Anna Basile
- Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, SA, 84081, Italy.,BIOUNIVERSA s.r.l., R&D Division, Baronissi, SA, 84081, Italy
| | - Michela Festa
- BIOUNIVERSA s.r.l., R&D Division, Baronissi, SA, 84081, Italy.,Department of Pharmacy, University of Salerno, Fisciano, SA, 84084, Italy
| | - Antonia Falco
- Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, SA, 84081, Italy.,BIOUNIVERSA s.r.l., R&D Division, Baronissi, SA, 84081, Italy
| | - Francesca Reppucci
- Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, SA, 84081, Italy
| | - Anna Lisa Cammarota
- Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, SA, 84081, Italy
| | - Fausto Acernese
- Department of Pharmacy, University of Salerno, Fisciano, SA, 84084, Italy
| | - Vincenzo De Laurenzi
- BIOUNIVERSA s.r.l., R&D Division, Baronissi, SA, 84081, Italy.,Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" of Chieti-Pescara, 66100, Chieti, Italy
| | - Gianluca Sala
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" of Chieti-Pescara, 66100, Chieti, Italy
| | - Sergio Brongo
- Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, SA, 84081, Italy
| | - Masayuki Miyasaka
- Immunology Frontier Research Center, Osaka University, Yamada-oka, Suita, Japan
| | - Shabnam Shalapour
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | | | | | - Roberta Iaccarino
- Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, SA, 84081, Italy
| | - Michael Karin
- Department of Pharmacology, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Maria Caterina Turco
- Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, SA, 84081, Italy. .,BIOUNIVERSA s.r.l., R&D Division, Baronissi, SA, 84081, Italy.
| | - Alessandra Rosati
- Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, SA, 84081, Italy.,BIOUNIVERSA s.r.l., R&D Division, Baronissi, SA, 84081, Italy
| | - Liberato Marzullo
- Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, SA, 84081, Italy.,BIOUNIVERSA s.r.l., R&D Division, Baronissi, SA, 84081, Italy
| |
Collapse
|
259
|
Wang L, Liu Z, Zhu R, Liang R, Wang W, Li J, Zhang Y, Guo C, Han X, Sun Y. Multi-omics landscape and clinical significance of a SMAD4-driven immune signature: implications for risk stratification and frontline therapies in pancreatic cancer. Comput Struct Biotechnol J 2022; 20:1154-1167. [PMID: 35317237 PMCID: PMC8908051 DOI: 10.1016/j.csbj.2022.02.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 12/12/2022] Open
Abstract
SMAD4 mutation affect the oncogenesis, progression and immunity of pancreatic cancer. Combined with immune subtypes, a SMAD4-driven immune signature (SDIS) was established. SDIS could robustly predict prognosis and efficacy in six independent cohorts. SDIS might serve as an attractive platform to further tailor decision-making.
SMAD4 mutation was recently implicated in promoting invasion and poor prognosis of pancreatic cancer (PACA) by regulating the tumor immune microenvironment. However, SMAD4-driven immune landscape and clinical significance remain elusive. In this study, we applied the consensus clustering and weighted correlation network analysis (WGCNA) to identify two heterogeneous immune subtypes and immune genes. Combined with SMAD4-driven genes determined by SMAD4 mutation status, a SMAD4-driven immune signature (SDIS) was developed in ICGC-AU2 (microarray data) via machine learning algorithm, and then was validated by RNA-seq data (TCGA, ICGC-AU and ICGC-CA) and microarray data (GSE62452 and GSE85916). The high-risk group displayed a worse prognosis, and multivariate Cox regression indicated that SDIS was an independent prognostic factor. In six cohorts, SDIS also displayed excellent accuracy in predicting prognosis. Moreover, the high-risk group was characterized by higher frequencies of TP53/CDKN2A mutations and SMAD4 deletion, superior immune checkpoint molecules expression and more sensitive to chemotherapy and immunotherapy. Meanwhile, the low-risk group was significantly enriched in metabolism-related pathways and suggested the potential to target tumor metabolism to develop specific drugs. Overall, SDIS could robustly predict prognosis in PACA, which might serve as an attractive platform to further tailor decision-making in chemotherapy and immunotherapy in clinical settings.
Collapse
|
260
|
Hosein AN, Dougan SK, Aguirre AJ, Maitra A. Translational advances in pancreatic ductal adenocarcinoma therapy. NATURE CANCER 2022; 3:272-286. [PMID: 35352061 DOI: 10.1038/s43018-022-00349-2] [Citation(s) in RCA: 96] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 02/23/2022] [Indexed: 02/07/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer that is most frequently detected at advanced stages, limiting treatment options to systemic chemotherapy with modest clinical responses. Here, we review recent advances in targeted therapy and immunotherapy for treating subtypes of PDAC with diverse molecular alterations. We focus on the current preclinical and clinical evidence supporting the potential of these approaches and the promise of combinatorial regimens to improve the lives of patients with PDAC.
Collapse
Affiliation(s)
- Abdel Nasser Hosein
- Division of Hematology & Oncology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Sheikh Ahmed Bin Zayed Al Nahyan Center for Pancreatic Cancer Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Advocate Aurora Health, Vince Lombardi Cancer Clinic, Sheboygan, WI, USA.
| | - Stephanie K Dougan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Immunology, Harvard Medical School, Boston, MA, USA.
| | - Andrew J Aguirre
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Anirban Maitra
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Sheikh Ahmed Bin Zayed Al Nahyan Center for Pancreatic Cancer Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
261
|
Zhu X, Cao Y, Liu W, Ju X, Zhao X, Jiang L, Ye Y, Jin G, Zhang H. Stereotactic body radiotherapy plus pembrolizumab and trametinib versus stereotactic body radiotherapy plus gemcitabine for locally recurrent pancreatic cancer after surgical resection: an open-label, randomised, controlled, phase 2 trial. Lancet Oncol 2022; 23:e105-e115. [PMID: 35240087 DOI: 10.1016/s1470-2045(22)00066-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND There is paucity of investigations into immunotherapy or targeted therapy for postoperative locally recurrent pancreatic cancer. We aimed to assess the efficacy of stereotactic body radiotherapy (SBRT) plus pembrolizumab and trametinib in these patients. METHODS In this open-label, randomised, controlled, phase 2 study, participants were recruited from Changhai Hospital affiliated to the Naval Medical University, Shanghai, China. Eligible patients were aged 18 years or older with histologically confirmed pancreatic ductal adenocarcinoma characterised by mutant KRAS and positive immunohistochemical staining of PD-L1, Eastern Cooperative Oncology Group performance status of 0 or 1, and documented local recurrence after surgery followed by chemotherapy (mFOLFIRINOX [ie, 5-fluorouracil, oxaliplatin, irinotecan, and folinic acid] or 5-fluorouracil). Eligible participants were randomly assigned (1:1) using an interactive voice or web response system, without stratification, to receive SBRT with doses ranging from 35-40 Gy in five fractions, intravenous pembrolizumab 200 mg once every 3 weeks, and oral trametinib 2 mg once daily or SBRT (same regimen) and intravenous gemcitabine (1000 mg/m2) on day 1 and 8 of a 21-day cycle for eight cycles until disease progression, death, unacceptable toxicity, or consent withdrawal. The primary endpoint was overall survival in the intention-to-treat population. Safety was assessed in the as-treated population in all participants who received at least one dose of study treatment. This trial is registered with ClinicalTrials.gov, NCT02704156, and is now complete. FINDINGS Between Oct 10, 2016, and Oct 28, 2017, 198 patients were screened, of whom 170 patients were enrolled and randomly assigned to receive SBRT plus pembrolizumab and trametinib (n=85) or SBRT plus gemcitabine (n=85). As of the clinical cutoff date (Nov 30, 2020), median follow-up was 13·1 months (IQR 10·2-17·1). Median overall survival was 14·9 months (12·7-17·1) with SBRT plus pembrolizumab and trametinib and 12·8 months (95% CI 11·2-14·4) with SBRT plus gemcitabine (hazard ratio [HR] 0·69 [95% CI 0·51-0·95]; p=0·021). The most common grade 3 or 4 adverse effects were increased alanine aminotransferase or aspartate aminotransferase (ten [12%] of 85 in SBRT plus pembrolizumab and trametinib group vs six [7%] of 85 in SBRT plus gemcitabine group), increased blood bilirubin (four [5%] vs none), neutropenia (one [1%] vs nine [11%]), and thrombocytopenia (one [1%] vs four [5%]). Serious adverse events were reported by 19 (22%) participants in the SBRT plus pembrolizumab and trametinib group and 12 (14%) in the SBRT plus gemcitabine group. No treatment-related deaths occurred. INTERPRETATION The combination of SBRT plus pembrolizumab and trametinib could be a novel treatment option for patients with locally recurrent pancreatic cancer after surgery. Phase 3 trials are needed to confirm our findings. FUNDING Shanghai Shenkang Center and Changhai Hospital. TRANSLATION For the Chinese translation of the abstract see Supplementary Materials section.
Collapse
Affiliation(s)
- Xiaofei Zhu
- Department of Radiation Oncology, Changhai Hospital affiliated to Naval Medical University, Shanghai, China
| | - Yangsen Cao
- Department of Radiation Oncology, Changhai Hospital affiliated to Naval Medical University, Shanghai, China
| | - Wenyu Liu
- Department of Radiation Oncology, Changhai Hospital affiliated to Naval Medical University, Shanghai, China
| | - Xiaoping Ju
- Department of Radiation Oncology, Changhai Hospital affiliated to Naval Medical University, Shanghai, China
| | - Xianzhi Zhao
- Department of Radiation Oncology, Changhai Hospital affiliated to Naval Medical University, Shanghai, China
| | - Lingong Jiang
- Department of Radiation Oncology, Changhai Hospital affiliated to Naval Medical University, Shanghai, China
| | - Yusheng Ye
- Department of Radiation Oncology, Changhai Hospital affiliated to Naval Medical University, Shanghai, China
| | - Gang Jin
- Department of Hepatobiliary and Pancreatic Surgery, Changhai Hospital affiliated to Naval Medical University, Shanghai, China.
| | - Huojun Zhang
- Department of Radiation Oncology, Changhai Hospital affiliated to Naval Medical University, Shanghai, China.
| |
Collapse
|
262
|
Perspectives on Vascular Regulation of Mechanisms Controlling Selective Immune Cell Function in the Tumor Immune Response. Int J Mol Sci 2022; 23:ijms23042313. [PMID: 35216427 PMCID: PMC8877013 DOI: 10.3390/ijms23042313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 02/06/2023] Open
Abstract
The vasculature plays a major role in regulating the tumor immune cell response although the underlying mechanisms explaining such effects remain poorly understood. This review discusses current knowledge on known vascular functions with a viewpoint on how they may yield distinct immune responses. The vasculature might directly influence selective immune cell infiltration into tumors by its cell surface expression of cell adhesion molecules, expression of cytokines, cell junction properties, focal adhesions, cytoskeleton and functional capacity. This will alter the tumor microenvironment and unleash a plethora of responses that will influence the tumor’s immune status. Despite our current knowledge of numerous mechanisms operating, the field is underexplored in that few functions providing a high degree of specificity have yet been provided in relation to the enormous divergence of responses apparent in human cancers. Further exploration of this field is much warranted.
Collapse
|
263
|
Li X, He G, Liu J, Yan M, Shen M, Xu L, An M, Huang J, Gao Z. CCL2-mediated monocytes regulate immune checkpoint blockade resistance in pancreatic cancer. Int Immunopharmacol 2022; 106:108598. [PMID: 35183036 DOI: 10.1016/j.intimp.2022.108598] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 01/16/2022] [Accepted: 01/27/2022] [Indexed: 12/21/2022]
Abstract
The immunosuppressive microenvironment of pancreatic ductal adenocarcinoma (PDAC) contributes to resistance to immune checkpoint blockade. C-C motif chemokine ligand 2 (CCL2) is believed to participate in pancreatic tumorigenesis, but its role in PDAC progression and resistance to immune checkpoint blockade remains unclear. We hypothesized that CCL2 contributes to the pancreatic immunosuppressive microenvironment. In this study, we found that CCL2 recruits monocytes to and decrease CD8+ T cell infiltration in pancreatic tumors. CCL2 inhibition and monocyte neutralization increased the sensitivity of PDAC to immune checkpoint blockade. The findings of our study suggest the potential of CCL2-mediated monocytes as a target for PDAC treatment.
Collapse
Affiliation(s)
- Xiaocui Li
- Department of Gastroenterology, QingPu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai 201700, China
| | - Guijun He
- Department of Gastroenterology, QingPu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai 201700, China
| | - Jican Liu
- Department of Pathology, QingPu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai 201700, China
| | - Meizhu Yan
- Department of Gastroenterology, QingPu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai 201700, China
| | - Manru Shen
- Department of Gastroenterology, QingPu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai 201700, China
| | - Linfang Xu
- Department of Gastroenterology, QingPu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai 201700, China
| | - Min An
- Department of Gastroenterology, QingPu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai 201700, China
| | - Jiying Huang
- Department of Gastroenterology, QingPu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai 201700, China.
| | - Zhenjun Gao
- Department of Gastroenterology, QingPu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai 201700, China.
| |
Collapse
|
264
|
Donahue KL, Pasca di Magliano M. Cleaved CDCP1 marks the spot: a neoepitope for RAS-driven cancers. J Clin Invest 2022; 132:e157168. [PMID: 35166242 PMCID: PMC8843638 DOI: 10.1172/jci157168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
A challenge in cancer treatment is targeting cancer cells while sparing normal cells. Thus, identifying cancer-specific neoepitopes is an active research area. Neoepitopes are generated by the accumulation of mutations; however, deadly cancer types, including pancreatic cancer, have a low mutational burden and, consequently, a paucity of neoantigens. In this issue of the JCI, Lim, Zhou, and colleagues describe a neoepitope generated upon proteolytic cleavage of the transmembrane CUB domain containing protein 1 (CDCP1). CDCP1 is overexpressed in cancer and portends a worse prognosis; previous attempts to target CDCP1 reduced cancer growth, but adversely affected the host. Here, the authors generated an antibody that specifically targeted cleaved CDCP1 (c-CDCP1) and developed a drug conjugate, a vector for radioactive ions, and a mediator of T cell activation. The therapeutics inhibited pancreatic cancer cell growth in vitro and in vivo. Exploiting proteolytic cleavage-derived neoantigens opens an attractive way for specifically targeting cancer cells.
Collapse
Affiliation(s)
| | - Marina Pasca di Magliano
- Department of Surgery, Department of Cell and Developmental Biology, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
265
|
Liu L, Huang X, Shi F, Song J, Guo C, Yang J, Liang T, Bai X. Combination therapy for pancreatic cancer: anti-PD-(L)1-based strategy. J Exp Clin Cancer Res 2022; 41:56. [PMID: 35139879 PMCID: PMC8827285 DOI: 10.1186/s13046-022-02273-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/24/2022] [Indexed: 12/24/2022] Open
Abstract
Mortality associated with pancreatic cancer is among the highest of all malignancies, with a 5-year overall survival of 5-10%. Immunotherapy, represented by the blocking antibodies against programmed cell death protein 1 or its ligand 1 (anti-PD-(L)1), has achieved remarkable success in a number of malignancies. However, due to the immune-suppressive tumor microenvironment, the therapeutic efficacy of anti-PD-(L)1 in pancreatic cancer is far from expectation. To address such a fundamental issue, chemotherapy, radiotherapy, targeted therapy and even immunotherapy itself, have individually been attempted to combine with anti-PD-(L)1 in preclinical and clinical investigation. This review, with a particular focus on pancreatic cancer therapy, collects current anti-PD-(L)1-based combination strategy, highlights potential adverse effects of accumulative combination, and further points out future direction in optimization of combination, including targeting post-translational modification of PD-(L)1 and improving precision of treatment.
Collapse
Affiliation(s)
- Lingyue Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79# Qingchun Road, Hangzhou, 310003, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Xing Huang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79# Qingchun Road, Hangzhou, 310003, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Fukang Shi
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79# Qingchun Road, Hangzhou, 310003, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Jinyuan Song
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79# Qingchun Road, Hangzhou, 310003, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Chengxiang Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79# Qingchun Road, Hangzhou, 310003, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Jiaqi Yang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79# Qingchun Road, Hangzhou, 310003, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, 310009, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, 310003, Zhejiang, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79# Qingchun Road, Hangzhou, 310003, Zhejiang, China.
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, 310009, Zhejiang, China.
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, 310003, Zhejiang, China.
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79# Qingchun Road, Hangzhou, 310003, Zhejiang, China.
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, 310009, Zhejiang, China.
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, 310003, Zhejiang, China.
| |
Collapse
|
266
|
Therapeutic effect of two Co(II) coordination polymers by inhibiting tumor cell proliferation and invasion on pancreatic cancer. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
267
|
Zhou Y, Jin X, Yu H, Qin G, Pan P, Zhao J, Chen T, Liang X, Sun Y, Wang B, Ren D, Zhu S, Wu H. HDAC5 modulates PD-L1 expression and cancer immunity via p65 deacetylation in pancreatic cancer. Theranostics 2022; 12:2080-2094. [PMID: 35265200 PMCID: PMC8899586 DOI: 10.7150/thno.69444] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/13/2022] [Indexed: 11/26/2022] Open
Abstract
Rationale: Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease with a dismal 5-year survival less than 10%. Most patients with PDAC exhibit poor response to single-agent immunotherapy. Multimodal therapies targeting mechanisms of resistance to immunotherapy are urgently needed. We found that the class IIa histone deacetylase (HDAC) member, HDAC5 is downregulated in multiple solid tumors and its level were associated with favorable prognosis in PDAC patients. Upregulated genes in patients harboring HDAC5 deletions were enriched in adaptive immune responses and lymphocyte-mediated immunity in The Cancer Genome Atlas (TCGA) pancreatic cancer dataset. Methods: Tissue microarray of pancreatic cancer were used to analysis the correlation between HDAC5 and PD-L1. RNA-seq, transcription factor motif analysis, drug screening and molecular biology assays were performed to identify the mechanism of HDAC5's repression on PD-L1. Allografts of pancreatic cancer in mouse were applied to test the efficiency of HDAC5 inhibition and anti-PD1 co-treatment. Results: HDAC5 regulated PD-L1 expression by directly interacting with NF-κB p65; this interaction was suppressed by p65 phosphorylation at serine-311. Additionally, HDAC5 diminished p65 acetylation at lysine-310, which is essential for the transcriptional activity of p65. Importantly, we demonstrated that HDAC5 silencing or inhibition sensitized PDAC tumors to immune checkpoint blockade (ICB) therapy in syngeneic mouse model and KPC mouse derived PDAC model. Conclusion: Our findings revealed a previously unknown role of HDAC5 in regulating the NF-κB signaling pathway and antitumor immune responses. These findings provide a strong rationale for augment the antitumor effects of ICB in immunotherapy-resistant PDAC by inhibiting HDAC5.
Collapse
Affiliation(s)
- Yingke Zhou
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Xin Jin
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Uro-Oncology Institute of Central South University, Changsha, Hunan, 410011, China
| | - Haixin Yu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Gengdu Qin
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Penglin Pan
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Jingyuan Zhao
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Taoyu Chen
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Xueyi Liang
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Yan Sun
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Bo Wang
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Dianyun Ren
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Shikai Zhu
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Organ Transplant Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731 China
| | - Heshui Wu
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| |
Collapse
|
268
|
Xu X, Liang JH, Li JH, Xu QC, Yin XY. Values of a novel pyroptosis-related genetic signature in predicting outcome and immune status of pancreatic ductal adenocarcinoma. Gastroenterol Rep (Oxf) 2022; 10:goac051. [PMID: 36196256 PMCID: PMC9522386 DOI: 10.1093/gastro/goac051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/18/2022] [Accepted: 08/14/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
Background
Pyroptosis is an emerging form of programmed cell death associated with progression in malignancies. Yet, there are few studies reporting on the association between pancreatic ductal adenocarcinoma (PDAC) and pyroptosis. Therefore, we aimed to construct a pyroptosis-related genetic signature to predict the clinical outcome and immune status in PDAC patients.
Methods
RNA-seq data of 176 PDAC patients from The Cancer Genome Atlas (TCGA) and 167 PDAC patients from the Genotype-Tissue Expression Project were analysed for pyroptosis-related differentially expressed genes (DEGs) between PDAC and normal pancreas. The risk signature of DEGs was analysed using the least absolute shrinkage and selection operator (LASSO) Cox regression analysis and its accuracy was validated in the Gene Expression Omnibus (GEO) cohort (n = 190). Functional enrichment analyses were performed to explore the mechanisms of the DEGs. The immune characteristics were evaluated using single-sample gene set enrichment analysis and ESTIMATE algorithms for each group.
Results
A nine-gene risk signature was generated from LASSO Cox regression analysis and classified PDAC patients into either a high- or low-risk group according to the median risk score. The high-risk group had significantly shorter overall survival than the low-risk group and it was verified in the external GEO database. A nomogram based on the risk signature was constructed and showed an ideal prediction performance. Functional enrichment analyses revealed that pyroptosis might regulate the tumor immune microenvironment in PDAC. Immune infiltration evaluation suggested that immune status was more activated in the low-risk group than in the high-risk group.
Conclusion
The risk signature encompassing nine pyroptosis-related genes may be a prognostic marker for PDAC. Pyroptosis might affect the prognosis of PDAC patients via regulating the tumor immune microenvironment.
Collapse
Affiliation(s)
- Xiang Xu
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University , Guangzhou, Guangdong, P. R. China
| | - Jia-Hua Liang
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University , Guangzhou, Guangdong, P. R. China
| | - Jian-Hui Li
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University , Guangzhou, Guangdong, P. R. China
| | - Qiong-Cong Xu
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University , Guangzhou, Guangdong, P. R. China
| | - Xiao-Yu Yin
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University , Guangzhou, Guangdong, P. R. China
| |
Collapse
|
269
|
Wang X, Dou X, Ren X, Rong Z, Sun L, Deng Y, Chen P, Li Z. A Ductal-Cell-Related Risk Model Integrating Single-Cell and Bulk Sequencing Data Predicts the Prognosis of Patients With Pancreatic Adenocarcinoma. Front Genet 2022; 12:763636. [PMID: 35047000 PMCID: PMC8762279 DOI: 10.3389/fgene.2021.763636] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/02/2021] [Indexed: 01/14/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly heterogeneous malignancy. Single-cell sequencing (scRNA-seq) technology enables quantitative gene expression measurements that underlie the phenotypic diversity of cells within a tumor. By integrating PDAC scRNA-seq and bulk sequencing data, we aim to extract relevant biological insights into the ductal cell features that lead to different prognoses. Firstly, differentially expressed genes (DEGs) of ductal cells between normal and tumor tissues were identified through scRNA-seq data analysis. The effect of DEGs on PDAC survival was then assessed in the bulk sequencing data. Based on these DEGs (LY6D, EPS8, DDIT4, TNFSF10, RBP4, NPY1R, MYADM, SLC12A2, SPCS3, NBPF15) affecting PDAC survival, a risk score model was developed to classify patients into high-risk and low-risk groups. The results showed that the overall survival was significantly longer in the low-risk group (p < 0.05). The model also revealed reliable predictive power in different subgroups of patients. The high-risk group had a higher tumor mutational burden (TMB) (p < 0.05), with significantly higher mutation frequencies in KRAS and ADAMTS12 (p < 0.05). Meanwhile, the high-risk group had a higher tumor stemness score (p < 0.05). However, there was no significant difference in the immune cell infiltration scores between the two groups. Lastly, drug candidates targeting risk model genes were identified, and seven compounds might act against PDAC through different mechanisms. In conclusion, we have developed a validated survival assessment model, which acted as an independent risk factor for PDAC.
Collapse
Affiliation(s)
- Xitao Wang
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaolin Dou
- Department of Pancreatic Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Xinxin Ren
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhuoxian Rong
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Lunquan Sun
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yuezhen Deng
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Pan Chen
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Zhi Li
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
270
|
De Sanctis F, Lamolinara A, Boschi F, Musiu C, Caligola S, Trovato R, Fiore A, Frusteri C, Anselmi C, Poffe O, Cestari T, Canè S, Sartoris S, Giugno R, Del Rosario G, Zappacosta B, Del Pizzo F, Fassan M, Dugnani E, Piemonti L, Bottani E, Decimo I, Paiella S, Salvia R, Lawlor RT, Corbo V, Park Y, Tuveson DA, Bassi C, Scarpa A, Iezzi M, Ugel S, Bronte V. Interrupting the nitrosative stress fuels tumor-specific cytotoxic T lymphocytes in pancreatic cancer. J Immunother Cancer 2022; 10:jitc-2021-003549. [PMID: 35022194 PMCID: PMC8756272 DOI: 10.1136/jitc-2021-003549] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2021] [Indexed: 12/11/2022] Open
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest tumors owing to its robust desmoplasia, low immunogenicity, and recruitment of cancer-conditioned, immunoregulatory myeloid cells. These features strongly limit the success of immunotherapy as a single agent, thereby suggesting the need for the development of a multitargeted approach. The goal is to foster T lymphocyte infiltration within the tumor landscape and neutralize cancer-triggered immune suppression, to enhance the therapeutic effectiveness of immune-based treatments, such as anticancer adoptive cell therapy (ACT). Methods We examined the contribution of immunosuppressive myeloid cells expressing arginase 1 and nitric oxide synthase 2 in building up a reactive nitrogen species (RNS)-dependent chemical barrier and shaping the PDAC immune landscape. We examined the impact of pharmacological RNS interference on overcoming the recruitment and immunosuppressive activity of tumor-expanded myeloid cells, which render pancreatic cancers resistant to immunotherapy. Results PDAC progression is marked by a stepwise infiltration of myeloid cells, which enforces a highly immunosuppressive microenvironment through the uncontrolled metabolism of L-arginine by arginase 1 and inducible nitric oxide synthase activity, resulting in the production of large amounts of reactive oxygen and nitrogen species. The extensive accumulation of myeloid suppressing cells and nitrated tyrosines (nitrotyrosine, N-Ty) establishes an RNS-dependent chemical barrier that impairs tumor infiltration by T lymphocytes and restricts the efficacy of adoptive immunotherapy. A pharmacological treatment with AT38 ([3-(aminocarbonyl)furoxan-4-yl]methyl salicylate) reprograms the tumor microenvironment from protumoral to antitumoral, which supports T lymphocyte entrance within the tumor core and aids the efficacy of ACT with telomerase-specific cytotoxic T lymphocytes. Conclusions Tumor microenvironment reprogramming by ablating aberrant RNS production bypasses the current limits of immunotherapy in PDAC by overcoming immune resistance.
Collapse
Affiliation(s)
- Francesco De Sanctis
- Department of Medicine, Section of Immunology, University of Verona, Verona, Italy
| | - Alessia Lamolinara
- Department of Neurosciences, Imaging and Clinical Sciences, Center for Advanced Studies and Technnology (CAST), G. d'Annunzio University of Chieti Pescara, Chieti, Italy
| | - Federico Boschi
- Department of Computer Science, University of Verona, Verona, Italy
| | - Chiara Musiu
- Department of Medicine, Section of Immunology, University of Verona, Verona, Italy
| | - Simone Caligola
- Department of Medicine, Section of Immunology, University of Verona, Verona, Italy
| | - Rosalinda Trovato
- Department of Medicine, Section of Immunology, University of Verona, Verona, Italy
| | - Alessandra Fiore
- Department of Medicine, Section of Immunology, University of Verona, Verona, Italy
| | - Cristina Frusteri
- Department of Medicine, Section of Immunology, University of Verona, Verona, Italy
| | - Cristina Anselmi
- Department of Medicine, Section of Immunology, University of Verona, Verona, Italy
| | - Ornella Poffe
- Department of Medicine, Section of Immunology, University of Verona, Verona, Italy
| | - Tiziana Cestari
- Department of Medicine, Section of Immunology, University of Verona, Verona, Italy
| | - Stefania Canè
- Department of Medicine, Section of Immunology, University of Verona, Verona, Italy
| | - Silvia Sartoris
- Department of Medicine, Section of Immunology, University of Verona, Verona, Italy
| | - Rosalba Giugno
- Department of Computer Science, University of Verona, Verona, Italy
| | | | | | - Francesco Del Pizzo
- Department of Neurosciences, Imaging and Clinical Sciences, Center for Advanced Studies and Technnology (CAST), G. d'Annunzio University of Chieti Pescara, Chieti, Italy
| | - Matteo Fassan
- Department of Medicine, University of Padua, Padova, Italy.,Veneto Institute of Oncology-Institute for Hospitalization and Care Scientific, Padova, Italy
| | - Erica Dugnani
- Diabetes Research Institute, San Raffaele Research Centre, Milano, Italy
| | - Lorenzo Piemonti
- Diabetes Research Institute, San Raffaele Research Centre, Milano, Italy.,School of Medicine and Surgery, Vita-Salute San Raffaele University, Milano, Italy
| | - Emanuela Bottani
- Department of Diagnostic and Public Health, Section of Pharmacology, University of Verona, Verona, Italy
| | - Ilaria Decimo
- Department of Diagnostic and Public Health, Section of Pharmacology, University of Verona, Verona, Italy
| | - Salvatore Paiella
- General and Pancreatic Surgery Unit, University of Verona, Verona, Italy
| | - Roberto Salvia
- General and Pancreatic Surgery Unit, University of Verona, Verona, Italy
| | | | - Vincenzo Corbo
- ARC-NET, University of Verona, Verona, Italy.,Department of Diagnostic and Public Health, University of Verona, Verona, Italy
| | - Youngkyu Park
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA.,Pancreatic Cancer Research Laboratory, Lustgarten Foundation, Cold Spring Harbor, New York, USA
| | - David A Tuveson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA.,Pancreatic Cancer Research Laboratory, Lustgarten Foundation, Cold Spring Harbor, New York, USA
| | - Claudio Bassi
- General and Pancreatic Surgery Unit, University of Verona, Verona, Italy
| | - Aldo Scarpa
- ARC-NET, University of Verona, Verona, Italy.,Department of Diagnostic and Public Health, University of Verona, Verona, Italy
| | - Manuela Iezzi
- Department of Neurosciences, Imaging and Clinical Sciences, Center for Advanced Studies and Technnology (CAST), G. d'Annunzio University of Chieti Pescara, Chieti, Italy
| | - Stefano Ugel
- Department of Medicine, Section of Immunology, University of Verona, Verona, Italy
| | - Vincenzo Bronte
- Department of Medicine, Section of Immunology, University of Verona, Verona, Italy
| |
Collapse
|
271
|
Demirtürk N, Bilensoy E. Nanocarriers targeting the diseases of the pancreas. Eur J Pharm Biopharm 2022; 170:10-23. [PMID: 34852262 DOI: 10.1016/j.ejpb.2021.11.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 11/20/2021] [Accepted: 11/25/2021] [Indexed: 02/08/2023]
Abstract
Diseases of the pancreas include acute and chronic pancreatitis, exocrine pancreatic insufficiency, diabetes and pancreatic cancer. These pathologies can be difficult to treat due to the innate properties of the pancreas, its structure and localization. The need for effective targeting of the pancreatic tissue by means of nanoparticles delivering therapeutics is a major focus area covered and discussed in this review. Most common diseases of the pancreas do not have specific and direct medical treatment option, and existing treatment options are generally aimed at relieving symptoms. Diabetes has different treatment options for different subtypes based on insulin having stability problems and requiring injections reducing patient compliance. Pancreatic cancer progresses silently and can only be diagnosed in advanced stages. Therefore, survival rate of patients is very low. Gemcitabine and FOLFIRINOX treatment regimens, the most commonly used clinical standard treatments, are generally insufficient due to the chemoresistance that develops in cancer cells and also various side effects. Therefore new treatment options for pancreatic cancer are also under focus. Overcoming drug resistance and pancreatic targeting can be achieved with active and passive targeting methods, and a more effective and safer treatment regimen can be provided at lower drug doses. This review covers the current literature and clinical trials concerning pancreatic drug delivery systems in the nanoscale focusing on the challenges and opportunities provided by these smart delivery systems.
Collapse
Affiliation(s)
- Nurbanu Demirtürk
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Technology, 06100 Ankara, Turkey
| | - Erem Bilensoy
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Technology, 06100 Ankara, Turkey.
| |
Collapse
|
272
|
Antoñana-Vildosola A, Zanetti SR, Palazon A. Enabling CAR-T cells for solid tumors: Rage against the suppressive tumor microenvironment. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 370:123-147. [PMID: 35798503 DOI: 10.1016/bs.ircmb.2022.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Adoptive T cell therapies based on chimeric antigen receptors (CAR-T) are emerging as genuine therapeutic options for the treatment of hematological malignancies. The observed clinical success has not yet been extended into solid tumor indications as a result of multiple factors including immunosuppressive features of the tumor microenvironment (TME). In this context, an emerging strategy is to design CAR-T cells for the elimination of defined cellular components of the TME, with the objective of re-shaping the tumor immune contexture to control tumor growth. Relevant cell components that are currently under investigation as targets of CAR-T therapies include the tumor vasculature, cancer-associated fibroblasts (CAFs), and immunosuppressive tumor associated macrophages (TAMs) and myeloid derived suppressor cells (MDSCs). In this review, we recapitulate the rapidly expanding field of CAR-T cell therapies that directly target cellular components within the TME with the ultimate objective of promoting immune function, either alone or in combination with other cancer therapies.
Collapse
Affiliation(s)
- Asier Antoñana-Vildosola
- Cancer Immunology and Immunotherapy Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia, Spain
| | - Samanta Romina Zanetti
- Cancer Immunology and Immunotherapy Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia, Spain
| | - Asis Palazon
- Cancer Immunology and Immunotherapy Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Bizkaia, Spain.
| |
Collapse
|
273
|
Wu SQ, Huang SH, Lin QW, Tang YX, Huang L, Xu YG, Wang SP. FDI-6 and olaparib synergistically inhibit the growth of pancreatic cancer by repressing BUB1, BRCA1 and CDC25A signaling pathways. Pharmacol Res 2022; 175:106040. [PMID: 34954029 DOI: 10.1016/j.phrs.2021.106040] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/14/2021] [Accepted: 12/19/2021] [Indexed: 11/28/2022]
Abstract
Inducing homologous recombination (HR) deficiency is a promising strategy to broaden the indication of PARP1/2 inhibitors in pancreatic cancer treatment. In addition to inhibition kinases, repression of the transcriptional function of FOXM1 has been reported to inhibit HR-mediated DNA repair. We found that FOXM1 inhibitor FDI-6 and PARP1/2 inhibitor Olaparib synergistically inhibited the malignant growth of pancreatic cancer cells in vitro and in vivo. The results of bioinformatic analysis and mechanistic study showed that FOXM1 directly interacted with PARP1. Olaparib induced the feedback overexpression of PARP1/2, FOXM1, CDC25A, CCND1, CDK1, CCNA2, CCNB1, CDC25B, BRCA1/2 and Rad51 to promote the acceleration of cell mitosis and recovery of DNA repair, which caused the generation of adaptive resistance. FDI-6 reversed Olaparib-induced adaptive resistance and inhibited cell cycle progression and DNA damage repair by repressing the expression of FOXM1, PARP1/2, BUB1, CDC25A, BRCA1 and other genes-involved in cell cycle control and DNA damage repair. We believe that targeting FOXM1 and PARP1/2 is a promising combination therapy for pancreatic cancer without HR deficiency.
Collapse
Affiliation(s)
- Shi-Qi Wu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Shi-Hui Huang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Qian-Wen Lin
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Yi-Xuan Tang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Lei Huang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Yun-Gen Xu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, 211198 Nanjing, China.
| | - Shu-Ping Wang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
274
|
Blake SJ, James J, Ryan FJ, Caparros-Martin J, Eden GL, Tee YC, Salamon JR, Benson SC, Tumes DJ, Sribnaia A, Stevens NE, Finnie JW, Kobayashi H, White DL, Wesselingh SL, O’Gara F, Lynn MA, Lynn DJ. The immunotoxicity, but not anti-tumor efficacy, of anti-CD40 and anti-CD137 immunotherapies is dependent on the gut microbiota. Cell Rep Med 2021; 2:100464. [PMID: 35028606 PMCID: PMC8714857 DOI: 10.1016/j.xcrm.2021.100464] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 09/30/2021] [Accepted: 11/11/2021] [Indexed: 02/06/2023]
Abstract
Immune agonist antibodies (IAAs) are promising immunotherapies that target co-stimulatory receptors to induce potent anti-tumor immune responses, particularly when combined with checkpoint inhibitors. Unfortunately, their clinical translation is hampered by serious dose-limiting, immune-mediated toxicities, including high-grade and sometimes fatal liver damage, cytokine release syndrome (CRS), and colitis. We show that the immunotoxicity, induced by the IAAs anti-CD40 and anti-CD137, is dependent on the gut microbiota. Germ-free or antibiotic-treated mice have significantly reduced colitis, CRS, and liver damage following IAA treatment compared with conventional mice or germ-free mice recolonized via fecal microbiota transplant. MyD88 signaling is required for IAA-induced CRS and for anti-CD137-induced, but not anti-CD40-induced, liver damage. Importantly, antibiotic treatment does not impair IAA anti-tumor efficacy, alone or in combination with anti-PD1. Our results suggest that microbiota-targeted therapies could overcome the toxicity induced by IAAs without impairing their anti-tumor activity.
Collapse
Affiliation(s)
- Stephen J. Blake
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Jane James
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, SA 5000, Australia
| | - Feargal J. Ryan
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Jose Caparros-Martin
- School of Pharmacy and Biomedical Sciences, Curtin University, Perth, WA, Australia
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth, WA, Australia
| | - Georgina L. Eden
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Yee C. Tee
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, SA 5000, Australia
| | - John R. Salamon
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, SA 5000, Australia
| | - Saoirse C. Benson
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, SA 5000, Australia
| | - Damon J. Tumes
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia
| | - Anastasia Sribnaia
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Natalie E. Stevens
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - John W. Finnie
- Adelaide Medical School, University of Adelaide and SA Pathology, Adelaide, SA 5000, Australia
| | - Hiroki Kobayashi
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
- School of Medicine, The University of Adelaide, Adelaide, SA, Australia
| | - Deborah L. White
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
- School of Medicine, The University of Adelaide, Adelaide, SA, Australia
| | - Steve L. Wesselingh
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, SA 5000, Australia
| | - Fergal O’Gara
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth, WA, Australia
- BIOMERIT Research Centre, University College Cork, Cork, Ireland
| | - Miriam A. Lynn
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - David J. Lynn
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, SA 5000, Australia
| |
Collapse
|
275
|
Differential Expression of Polyamine Pathways in Human Pancreatic Tumor Progression and Effects of Polyamine Blockade on Tumor Microenvironment. Cancers (Basel) 2021; 13:cancers13246391. [PMID: 34945011 PMCID: PMC8699198 DOI: 10.3390/cancers13246391] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Pancreatic cancer has a five-year survival rate of less than 8% and is the fourth leading cause of cancer death in the United States. Existing therapeutics have failed to improve pancreatic ductal adenocarcinoma (PDAC) patient outcomes. There has been success with other tumor types in targeting aberrant polyamine upregulation as a therapeutic strategy. The present study identified dysregulation of polyamine pathways to be evident in human PDAC progression. Additionally, reduced survival of pancreatic cancer patients was associated with increased expression of specific polyamine-related genes. Polyamine blockade therapy significantly increased overall survival of pancreatic tumor-bearing mice, along with macrophage presence (F4/80) and significantly increased T-cell co-stimulatory marker (CD86) in the tumor microenvironment. Based on these findings, we hypothesized that a polyamine blockade therapy could potentially prime the tumor microenvironment to be more susceptible to existing therapeutics. Future studies which test polyamine blockade therapy with existing therapeutics could increase the molecular tools available to treat PDAC. Abstract Pancreatic cancer is the fourth leading cause of cancer death. Existing therapies only moderately improve pancreatic ductal adenocarcinoma (PDAC) patient prognosis. The present study investigates the importance of the polyamine metabolism in the pancreatic tumor microenvironment. Relative mRNA expression analysis identified differential expression of polyamine biosynthesis, homeostasis, and transport mediators in both pancreatic epithelial and stromal cells from low-grade pancreatic intraepithelial neoplasia (PanIN-1) or primary PDAC patient samples. We found dysregulated mRNA levels that encode for proteins associated with the polyamine pathway of PDAC tumors compared to early lesions. Next, bioinformatic databases were used to assess expression of select genes involved in polyamine metabolism and their impact on patient survival. Higher expression of pro-polyamine genes was associated with poor patient prognosis, supporting the use of a polyamine blockade therapy (PBT) strategy for inhibiting pancreatic tumor progression. Moreover, PBT treatment of syngeneic mice injected intra-pancreatic with PAN 02 tumor cells resulted in increased survival and decreased tumor weights of PDAC-bearing mice. Histological assessment of PBT-treated tumors revealed macrophage presence and significantly increased expression of CD86, a T cell co-stimulatory marker. Collectively, therapies which target polyamine metabolism can be used to disrupt tumor progression, modulate tumor microenvironment, and extend overall survival.
Collapse
|
276
|
Opportunities and challenges in targeted therapy and immunotherapy for pancreatic cancer. Expert Rev Mol Med 2021; 23:e21. [PMID: 34906271 DOI: 10.1017/erm.2021.26] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pancreatic cancer is one of the most malignant tumours with a poor prognosis. In recent years, the incidence of pancreatic cancer is on the rise. Traditional chemotherapy and radiotherapy for pancreatic cancer have been improved, first-line and second-line palliative treatments have been developed, and adjuvant treatments have also been used in clinical. However, the 5-year survival rate is still less than 10% and new treatment methods such as targeted therapy and immunotherapy need to be investigated. In the past decades, many clinical trials of targeted therapies and immunotherapies for pancreatic cancer were launched and some of them showed an ideal prospect in a subgroup of pancreatic cancer patients. The experience of both success and failure of these clinical trials will be helpful to improve these therapies in the future. Therefore, the current research progress and challenges of selected targeted therapies and immunotherapies for pancreatic cancer are reviewed.
Collapse
|
277
|
Cleary JM, Wolpin BM, Dougan SK, Raghavan S, Singh H, Huffman B, Sethi NS, Nowak JA, Shapiro GI, Aguirre AJ, D'Andrea AD. Opportunities for Utilization of DNA Repair Inhibitors in Homologous Recombination Repair-Deficient and Proficient Pancreatic Adenocarcinoma. Clin Cancer Res 2021; 27:6622-6637. [PMID: 34285063 PMCID: PMC8678153 DOI: 10.1158/1078-0432.ccr-21-1367] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/04/2021] [Accepted: 07/06/2021] [Indexed: 11/16/2022]
Abstract
Pancreatic cancer is rapidly progressive and notoriously difficult to treat with cytotoxic chemotherapy and targeted agents. Recent demonstration of the efficacy of maintenance PARP inhibition in germline BRCA mutated pancreatic cancer has raised hopes that increased understanding of the DNA damage response pathway will lead to new therapies in both homologous recombination (HR) repair-deficient and proficient pancreatic cancer. Here, we review the potential mechanisms of exploiting HR deficiency, replicative stress, and DNA damage-mediated immune activation through targeted inhibition of DNA repair regulatory proteins.
Collapse
Affiliation(s)
- James M Cleary
- Dana-Farber Brigham and Women's Cancer Center, Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.
| | - Brian M Wolpin
- Dana-Farber Brigham and Women's Cancer Center, Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Stephanie K Dougan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Srivatsan Raghavan
- Dana-Farber Brigham and Women's Cancer Center, Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Harshabad Singh
- Dana-Farber Brigham and Women's Cancer Center, Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Brandon Huffman
- Dana-Farber Brigham and Women's Cancer Center, Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Nilay S Sethi
- Dana-Farber Brigham and Women's Cancer Center, Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Jonathan A Nowak
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Geoffrey I Shapiro
- Dana-Farber Brigham and Women's Cancer Center, Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Andrew J Aguirre
- Dana-Farber Brigham and Women's Cancer Center, Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Alan D D'Andrea
- Dana-Farber Brigham and Women's Cancer Center, Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, Massachusetts
| |
Collapse
|
278
|
Chen Y, Wang C, Song J, Xu R, Ruze R, Zhao Y. S100A2 Is a Prognostic Biomarker Involved in Immune Infiltration and Predict Immunotherapy Response in Pancreatic Cancer. Front Immunol 2021; 12:758004. [PMID: 34887861 PMCID: PMC8650155 DOI: 10.3389/fimmu.2021.758004] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/02/2021] [Indexed: 12/13/2022] Open
Abstract
Pancreatic cancer (PC) is a highly fatal and aggressive disease with its incidence and mortality quite discouraging. It is of great significance to construct an effective prognostic signature of PC and find the novel biomarker for the optimization of the clinical decision-making. Due to the crucial role of immunity in tumor development, a prognostic model based on nine immune-related genes was constructed, which was proved to be effective in The Cancer Genome Atlas (TCGA) training set, TCGA testing set, TCGA entire set, GSE78229 set, and GSE62452 set. Furthermore, S100A2 (S100 Calcium Binding Protein A2) was identified as the gene occupying the most paramount position in risk model. Gene set enrichment analysis (GSEA), ESTIMATE and CIBERSORT algorithm revealed that S100A2 was closely associated with the immune status in PC microenvironment, mainly related to lower proportion of CD8+T cells and activated NK cells and higher proportion of M0 macrophages. Meanwhile, patients with high S100A2 expression might get more benefit from immunotherapy according to immunophenoscore algorithm. Afterwards, our independent cohort was also used to demonstrate S100A2 was an unfavorable marker of PC, as well as its remarkably positive correlation with the expression of PD-L1. In conclusion, our results demonstrate S100A2 might be responsible for the preservation of immune-suppressive status in PC microenvironment, which was identified with significant potentiality in predicting prognosis and immunotherapy response in PC patients.
Collapse
Affiliation(s)
- Yuan Chen
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Chengcheng Wang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jianlu Song
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Ruiyuan Xu
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Rexiati Ruze
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yupei Zhao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
279
|
Deng Y, Xia X, Zhao Y, Zhao Z, Martinez C, Yin W, Yao J, Hang Q, Wu W, Zhang J, Yu Y, Xia W, Yao F, Zhao D, Sun Y, Ying H, Hung MC, Ma L. Glucocorticoid receptor regulates PD-L1 and MHC-I in pancreatic cancer cells to promote immune evasion and immunotherapy resistance. Nat Commun 2021; 12:7041. [PMID: 34873175 PMCID: PMC8649069 DOI: 10.1038/s41467-021-27349-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 11/16/2021] [Indexed: 02/08/2023] Open
Abstract
Despite unprecedented responses of some cancers to immune checkpoint blockade (ICB) therapies, the application of checkpoint inhibitors in pancreatic cancer has been unsuccessful. Glucocorticoids and glucocorticoid receptor (GR) signaling are long thought to suppress immunity by acting on immune cells. Here we demonstrate a previously undescribed tumor cell-intrinsic role for GR in activating PD-L1 expression and repressing the major histocompatibility complex class I (MHC-I) expression in pancreatic ductal adenocarcinoma (PDAC) cells through transcriptional regulation. In mouse models of PDAC, either tumor cell-specific depletion or pharmacologic inhibition of GR leads to PD-L1 downregulation and MHC-I upregulation in tumor cells, which in turn promotes the infiltration and activity of cytotoxic T cells, enhances anti-tumor immunity, and overcomes resistance to ICB therapy. In patients with PDAC, GR expression correlates with high PD-L1 expression, low MHC-I expression, and poor survival. Our results reveal GR signaling in cancer cells as a tumor-intrinsic mechanism of immunosuppression and suggest that therapeutic targeting of GR is a promising way to sensitize pancreatic cancer to immunotherapy.
Collapse
Affiliation(s)
- Yalan Deng
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xianghou Xia
- Department of Breast Surgery, Zhejiang Cancer Hospital, Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, 310022, Hangzhou, Zhejiang, China
| | - Yang Zhao
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Zilong Zhao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Consuelo Martinez
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Wenjuan Yin
- Department of Pathology, Zhejiang Cancer Hospital, Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, 310022, Hangzhou, Zhejiang, China
| | - Jun Yao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Qinglei Hang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Weiche Wu
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jie Zhang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yang Yu
- Department of Breast Surgery, Zhejiang Cancer Hospital, Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, 310022, Hangzhou, Zhejiang, China
| | - Weiya Xia
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Fan Yao
- Hubei Hongshan Laboratory, College of Life Science and Technology, College of Biomedicine and Health, Huazhong Agricultural University, 430070, Wuhan, Hubei, China
| | - Di Zhao
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Yutong Sun
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Haoqiang Ying
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- Graduate Institute of Biomedical Sciences and Center for Molecular Medicine, China Medical University, Taichung, 404, Taiwan.
- Department of Biotechnology, Asia University, Taichung, 413, Taiwan.
| | - Li Ma
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
| |
Collapse
|
280
|
Mohseni G, Li J, Ariston Gabriel AN, Du L, Wang YS, Wang C. The Function of cGAS-STING Pathway in Treatment of Pancreatic Cancer. Front Immunol 2021; 12:781032. [PMID: 34858438 PMCID: PMC8630697 DOI: 10.3389/fimmu.2021.781032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/25/2021] [Indexed: 12/23/2022] Open
Abstract
The activation of stimulator of interferon genes (STING) signalling pathway has been suggested to promote the immune responses against malignancy. STING is activated in response to the detection of cytosolic DNA and can induce type I interferons and link innate immunity with the adaptive immune system. Due to accretive evidence demonstrating that the STING pathway regulates the immune cells of the tumor microenvironment (TME), STING as a cancer biotherapy has attracted considerable attention. Pancreatic cancer, with a highly immunosuppressive TME, remains fatal cancer. STING has been applied to the treatment of pancreatic cancer through distinct strategies. This review reveals the role of STING signalling on pancreatic tumors and other diseases related to the pancreas. We then discuss new advances of STING in either monotherapy or combination methods for pancreatic cancer immunotherapy.
Collapse
Affiliation(s)
- Ghazal Mohseni
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Clinical Laboratory Diagnostics, School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Juan Li
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Abakundana Nsenga Ariston Gabriel
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Clinical Laboratory Diagnostics, School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lutao Du
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yun-Shan Wang
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chuanxin Wang
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
281
|
Hashimoto M, Konda JD, Perrino S, Celia Fernandez M, Lowy AM, Brodt P. Targeting the IGF-Axis Potentiates Immunotherapy for Pancreatic Ductal Adenocarcinoma Liver Metastases by Altering the Immunosuppressive Microenvironment. Mol Cancer Ther 2021; 20:2469-2482. [PMID: 34552012 PMCID: PMC8677570 DOI: 10.1158/1535-7163.mct-20-0144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/13/2021] [Accepted: 09/15/2021] [Indexed: 01/18/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy, resistant to chemotherapy and associated with high incidence of liver metastases and poor prognosis. Using murine models of aggressive PDAC, we show here that in mice bearing hepatic metastases, treatment with the IGF-Trap, an inhibitor of type I insulin-like growth factor receptor (IGF-IR) signaling, profoundly altered the local, immunosuppressive tumor microenvironment in the liver, curtailing the recruitment of myeloid-derived suppressor cells, reversing innate immune cell polarization and inhibiting metastatic expansion. Significantly, we found that immunotherapy with anti-PD-1 antibodies also reduced the growth of experimental PDAC liver metastases, and this effect was enhanced when combined with IGF-Trap treatment, resulting in further potentiation of a T-cell response. Our results show that a combinatorial immunotherapy based on dual targeting of the prometastatic immune microenvironment of the liver via IGF blockade, on one hand, and reversing T-cell exhaustion on the other, can provide a significant therapeutic benefit in the management of PDAC metastases.
Collapse
Affiliation(s)
- Masakazu Hashimoto
- Department of Surgery, McGill University and the Cancer Program of the Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| | - John David Konda
- Department of Surgery, McGill University and the Cancer Program of the Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| | - Stephanie Perrino
- Department of Surgery, McGill University and the Cancer Program of the Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| | - Maria Celia Fernandez
- Department of Surgery, McGill University and the Cancer Program of the Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| | - Andrew M Lowy
- Division of Surgical Oncology, Department of Surgery, Moores Cancer Centre at UC San Diego Health, La Jolla, California
| | - Pnina Brodt
- Department of Surgery, McGill University and the Cancer Program of the Research Institute of the McGill University Health Center, Montreal, Quebec, Canada.
- Department of Medicine, McGill University and the Cancer Program of the Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
- Department of Oncology, McGill University and the Cancer Program of the Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| |
Collapse
|
282
|
Andersen HB, Ialchina R, Pedersen SF, Czaplinska D. Metabolic reprogramming by driver mutation-tumor microenvironment interplay in pancreatic cancer: new therapeutic targets. Cancer Metastasis Rev 2021; 40:1093-1114. [PMID: 34855109 DOI: 10.1007/s10555-021-10004-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers globally with a mortality rate exceeding 95% and very limited therapeutic options. A hallmark of PDAC is its acidic tumor microenvironment, further characterized by excessive fibrosis and depletion of oxygen and nutrients due to poor vascularity. The combination of PDAC driver mutations and adaptation to this hostile environment drives extensive metabolic reprogramming of the cancer cells toward non-canonical metabolic pathways and increases reliance on scavenging mechanisms such as autophagy and macropinocytosis. In addition, the cancer cells benefit from metabolic crosstalk with nonmalignant cells within the tumor microenvironment, including pancreatic stellate cells, fibroblasts, and endothelial and immune cells. Increasing evidence shows that this metabolic rewiring is closely related to chemo- and radioresistance and immunosuppression, causing extensive treatment failure. Indeed, stratification of human PDAC tumors into subtypes based on their metabolic profiles was shown to predict disease outcome. Accordingly, an increasing number of clinical trials target pro-tumorigenic metabolic pathways, either as stand-alone treatment or in conjunction with chemotherapy. In this review, we highlight key findings and potential future directions of pancreatic cancer metabolism research, specifically focusing on novel therapeutic opportunities.
Collapse
Affiliation(s)
- Henriette Berg Andersen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Renata Ialchina
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Stine Falsig Pedersen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, 2100, Copenhagen, Denmark.
| | - Dominika Czaplinska
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, 2100, Copenhagen, Denmark
| |
Collapse
|
283
|
Pan W, Wang Q, Yang M, Zhang L, Wang J, Sun K. Pancreatic carcinoma presented with panniculitis and polyarthritis: A rare case. J Cancer Res Ther 2021; 17:1751-1754. [PMID: 35381750 DOI: 10.4103/jcrt.jcrt_2386_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Extrapancreatic manifestations can complicate pancreatic disorders. Pancreatic panniculitis, characterized by subcutaneous fat necrosis, develops in 0.3%-3% of patients with pancreatic disorders. Occasionally, pancreatic panniculitis and polyarthritis occur in the same patient with pancreatic diseases, a rare symptomatic triad known as pancreatitis, panniculitis, and polyarthritis (PPP) syndrome. PPP syndrome is primarily caused by acute or chronic pancreatitis and pancreatic carcinoma. Almost half of the patients with PPP syndrome do not present with gastrointestinal signs, which may lead to a delayed diagnosis of underlying pancreatic disease. The skin and arthritic symptoms may be mistaken for rheumatic diseases. The histological finding of skin lesions is a valuable clue for diagnosing pancreatic diseases. Due to the high mortality rate when PPP syndrome is associated with pancreatic carcinoma, we highlight that the pancreas should be thoroughly examined if a skin biopsy indicates pancreatic panniculitis.
Collapse
Affiliation(s)
- Wenping Pan
- Department of Rheumatology, First Affiliated Hospital of Shandong First Medical University, Shandong Province, Jinan, China
| | - Qing Wang
- Department of Rheumatology, First Affiliated Hospital of Shandong First Medical University, Shandong Province, Jinan, China
| | - Min Yang
- Department of Pathology, First Affiliated Hospital of Shandong First Medical University, Shandong Province, Jinan, China
| | - Li Zhang
- Department of Ultrasonography, First Affiliated Hospital of Shandong First Medical University, Shandong Province, Jinan, China
| | - Jun Wang
- Department of Oncology, First Affiliated Hospital of Shandong First Medical University, Shandong Province, Jinan, China
| | - Kai Sun
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Shandong First Medical University, Shandong Province, Jinan, China
| |
Collapse
|
284
|
Xu Z, Hu K, Bailey P, Springfeld C, Roth S, Kurilov R, Brors B, Gress T, Buchholz M, An J, Wei K, Peccerella T, Büchler MW, Hackert T, Neoptolemos JP. Clinical Impact of Molecular Subtyping of Pancreatic Cancer. Front Cell Dev Biol 2021; 9:743908. [PMID: 34805152 PMCID: PMC8603393 DOI: 10.3389/fcell.2021.743908] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/17/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma is a highly lethal malignancy, which has now become the seventh most common cause of cancer death in the world, with the highest mortality rates in Europe and North America. In the past 30 years, there has been some progress in 5-year survival (rates increasing from 2.5 to 10%), but this is still extremely poor compared to all other common cancer types. Targeted therapies for advanced pancreatic cancer based on actionable mutations have been disappointing, with only 3–5% showing even a short clinical benefit. There is, however, a molecular diversity beyond mutations in genes responsible for producing classical canonical signaling pathways. Pancreatic cancer is almost unique in promoting an excess production of other components of the stroma, resulting in a complex tumor microenvironment that contributes to tumor development, progression, and response to treatment. Various transcriptional subtypes have also been described. Most notably, there is a strong alignment between the Classical/Pancreatic progenitor and Quasi-mesenchymal/Basal-like/Squamous subtype signatures of Moffit, Collinson, Bailey, Puleo, and Chan-Seng-Yue, which have potential clinical impact. Sequencing of epithelial cell populations enriched by laser capture microscopy combined with single-cell RNA sequencing has revealed the potential genomic evolution of pancreatic cancer as being a consequence of a gene expression continuum from mixed Basal-like and Classical cell populations within the same tumor, linked to allelic imbalances in mutant KRAS, with metastatic tumors being more copy number-unstable compared to primary tumors. The Basal-like subtype appears more chemoresistant with reduced survival compared to the Classical subtype. Chemotherapy and/or chemoradiation will also enrich the Basal-like subtype. Squamous/Basal-like programs facilitate immune infiltration compared with the Classical-like programs. The immune infiltrates associated with Basal and Classical type cells are distinct, potentially opening the door to differential strategies. Single-cell and spatial transcriptomics will now allow single cell profiling of tumor and resident immune cell populations that may further advance subtyping. Multiple clinical trials have been launched based on transcriptomic response signatures and molecular subtyping including COMPASS, Precision Promise, ESPAC6/7, PREDICT-PACA, and PASS1. We review several approaches to explore the clinical relevance of molecular profiling to provide optimal bench-to-beside translation with clinical impact.
Collapse
Affiliation(s)
- Zhou Xu
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany.,Section of Surgical Research, Heidelberg University Hospital, Heidelberg, Germany
| | - Kai Hu
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany.,Section of Surgical Research, Heidelberg University Hospital, Heidelberg, Germany
| | - Peter Bailey
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany.,Section of Surgical Research, Heidelberg University Hospital, Heidelberg, Germany.,Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Christoph Springfeld
- Department of Medical Oncology, National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Susanne Roth
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Roma Kurilov
- Division of Applied Bioinformatics, German Cancer Research Center, Heidelberg, Germany
| | - Benedikt Brors
- Department of Medical Oncology, National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany.,Division of Applied Bioinformatics, German Cancer Research Center, Heidelberg, Germany
| | - Thomas Gress
- Department of Gastroenterology and Endocrinology, Philipps University of Marburg, Marburg, Germany
| | - Malte Buchholz
- Department of Gastroenterology and Endocrinology, Philipps University of Marburg, Marburg, Germany
| | - Jingyu An
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany.,Section of Surgical Research, Heidelberg University Hospital, Heidelberg, Germany
| | - Kongyuan Wei
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany.,Section of Surgical Research, Heidelberg University Hospital, Heidelberg, Germany
| | - Teresa Peccerella
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany.,Section of Surgical Research, Heidelberg University Hospital, Heidelberg, Germany
| | - Markus W Büchler
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Thilo Hackert
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - John P Neoptolemos
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany.,Section of Surgical Research, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
285
|
Chen B, Deng T, Deng L, Yu H, He B, Chen K, Zheng C, Wang D, Wang Y, Chen G. Identification of tumour immune microenvironment-related alternative splicing events for the prognostication of pancreatic adenocarcinoma. BMC Cancer 2021; 21:1211. [PMID: 34772375 PMCID: PMC8590242 DOI: 10.1186/s12885-021-08962-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/01/2021] [Indexed: 11/10/2022] Open
Abstract
PURPOSE Pancreatic adenocarcinoma (PAAD) is characterized by low antitumour immune cell infiltration in an immunosuppressive microenvironment. This study aimed to systematically explore the impact on prognostic alternative splicing events (ASs) of tumour immune microenvironment (TIME) in PAAD. METHODS The ESTIMATE algorithm was implemented to compute the stromal/immune-related scores of each PAAD patient, followed by Kaplan-Meier (KM) survival analysis of patients with different scores grouped by X-tile software. TIME-related differentially expressed ASs (DEASs) were determined and evaluated through functional annotation analysis. In addition, Cox analyses were implemented to construct a TIME-related signature and an AS clinical nomogram. Moreover, comprehensive analyses, including gene set enrichment analysis (GSEA), immune infiltration, immune checkpoint gene expression, and tumour mutation were performed between the two risk groups to understand the potential mechanisms. Finally, Cytoscape was implemented to illuminate the AS-splicing factor (SF) regulatory network. RESULTS A total of 437 TIME-related DEASs significantly related to PAAD tumorigenesis and the formation of the TIME were identified. Additionally, a robust TIME-related prognostic signature based on seven DEASs was generated, and an AS clinical nomogram combining the signature and four clinical predictors also exhibited prominent discrimination by ROC (0.762 ~ 0.804) and calibration curves. More importantly, the fractions of CD8 T cells, regulatory T cells and activated memory CD4 T cells were lower, and the expression of four immune checkpoints-PD-L1, CD47, CD276, and PVR-was obviously higher in high-risk patients. Finally, functional analysis and tumour mutations revealed that aberrant immune signatures and activated carcinogenic pathways in high-risk patients may be the cause of the poor prognosis. CONCLUSION We extracted a list of DEASs associated with the TIME through the ESTIMATE algorithm and constructed a prognostic signature on the basis of seven DEASs to predict the prognosis of PAAD patients, which may guide advanced decision-making for personalized precision intervention.
Collapse
Affiliation(s)
- Bo Chen
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Tuo Deng
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Liming Deng
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Haitao Yu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Bangjie He
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kaiyu Chen
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chongming Zheng
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Daojie Wang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yi Wang
- Division of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China.
| | - Gang Chen
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China. .,Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
286
|
Feng L, Wang J, Zhang J, Diao J, He L, Fu C, Liao H, Xu X, Gao Y, Zhou C. Comprehensive Analysis of E3 Ubiquitin Ligases Reveals Ring Finger Protein 223 as a Novel Oncogene Activated by KLF4 in Pancreatic Cancer. Front Cell Dev Biol 2021; 9:738709. [PMID: 34722520 PMCID: PMC8551701 DOI: 10.3389/fcell.2021.738709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/15/2021] [Indexed: 12/22/2022] Open
Abstract
Pancreatic cancer is one of the major malignancies and causes of mortality worldwide. E3 ubiquitin-protein ligases transfer activated ubiquitin from ubiquitin-conjugating enzymes to protein substrates and confer substrate specificity in cancer. In this study, we first downloaded data from The Cancer Genome Atlas pancreatic adenocarcinoma dataset, acquired all 27 differentially expressed genes (DEGs), and identified genomic alterations. Then, the prognostic significance of DEGs was analyzed, and eight DEGs (MECOM, CBLC, MARCHF4, RNF166, TRIM46, LONRF3, RNF39, and RNF223) and two clinical parameters (pathological N stage and T stage) exhibited prognostic significance. RNF223 showed independent significance as an unfavorable prognostic marker and was chosen for subsequent analysis. Next, the function of RNF223 in the pancreatic cancer cell lines ASPC-1 and PANC-1 was investigated, and RNF223 silencing promoted pancreatic cancer growth and migration. To explore the potential targets and pathways of RNF223 in pancreatic cancer, quantitative proteomics was applied to analyze differentially expressed proteins, and metabolism-related pathways were primarily enriched. Finally, the reason for the elevated expression of RNF223 was analyzed, and KLF4 was shown to contribute to the increased expression of RNF233. In conclusion, this study comprehensively analyzed the clinical significance of E3 ligases. Functional assays revealed that RNF223 promotes cancer by regulating cell metabolism. Finally, the elevated expression of RNF223 was attributed to KLF4-mediated transcriptional activation. This study broadens our knowledge regarding E3 ubiquitin ligases and signal transduction and provides novel markers and therapeutic targets in pancreatic cancer.
Collapse
Affiliation(s)
- Lei Feng
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jieqing Wang
- The First Affiliated Hospital, Sun Yat-sen university, Guangzhou, China
| | - Jianmin Zhang
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jingfang Diao
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | | | - Chaoyi Fu
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Hui Liao
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoping Xu
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yi Gao
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| | - Chenjie Zhou
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
287
|
Chen X, Zeh HJ, Kang R, Kroemer G, Tang D. Cell death in pancreatic cancer: from pathogenesis to therapy. Nat Rev Gastroenterol Hepatol 2021; 18:804-823. [PMID: 34331036 DOI: 10.1038/s41575-021-00486-6] [Citation(s) in RCA: 159] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/18/2021] [Indexed: 02/06/2023]
Abstract
Pancreatic cancer is a devastating gastrointestinal cancer characterized by late diagnosis, limited treatment success and dismal prognosis. Exocrine tumours account for 95% of pancreatic cancers and the most common pathological type is pancreatic ductal adenocarcinoma (PDAC). The occurrence and progression of PDAC involve multiple factors, including internal genetic alterations and external inflammatory stimuli. The biology and therapeutic response of PDAC are further shaped by various forms of regulated cell death, such as apoptosis, necroptosis, ferroptosis, pyroptosis and alkaliptosis. Cell death induced by local or systemic treatments suppresses tumour proliferation, invasion and metastasis. However, unrestricted cell death or tissue damage might result in an inflammation-related immunosuppressive microenvironment, which is conducive to tumour progression or recurrence. The precise extent to which cell death affects PDAC is not yet well described. A growing body of preclinical and clinical studies document significant correlations between mutations (for example, in KRAS and TP53), stress responses (such as hypoxia and autophagy), metabolic reprogramming and chemotherapeutic responses. Here, we describe the molecular machinery of cell death, discuss the complexity and multifaceted nature of lethal signalling in PDAC cells, and highlight the challenges and opportunities for activating cell death pathways through precision oncology treatments.
Collapse
Affiliation(s)
- Xin Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, The Third Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China.,Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China.,Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Herbert J Zeh
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France. .,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France. .,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France. .,Suzhou Institute for Systems Biology, Chinese Academy of Sciences, Suzhou, China. .,Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.
| | - Daolin Tang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, The Third Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China. .,Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
288
|
Sun CY. Current status of immunotherapy for pancreatic cancer. Shijie Huaren Xiaohua Zazhi 2021; 29:1151-1157. [DOI: 10.11569/wcjd.v29.i20.1151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is a kind of digestive tract malignant tumor with a poor prognosis. Radical surgery is the preferred alternative choice for patients with pancreatic cancer, but most patients have no chance of radical surgery when they are diagnosed. At present, a number of studies have been carried out on immunotherapies for pancreatic cancer, mainly including immune checkpoint inhibitors, tumor vaccines, and adoptive cell therapy, which are expected to become a new strategy for the treatment of pancreatic cancer, and ultimately achieve the purpose of improving the overall prognosis of patients with pancreatic cancer. In this paper, we summarize the current status of pancreatic cancer immunotherapy and analyze the future trend of immunotherapy for pancreatic cancer.
Collapse
Affiliation(s)
- Cheng-Yi Sun
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, China
| |
Collapse
|
289
|
Hajda J, Leuchs B, Angelova AL, Frehtman V, Rommelaere J, Mertens M, Pilz M, Kieser M, Krebs O, Dahm M, Huber B, Engeland CE, Mavratzas A, Hohmann N, Schreiber J, Jäger D, Halama N, Sedlaczek O, Gaida MM, Daniel V, Springfeld C, Ungerechts G. Phase 2 Trial of Oncolytic H-1 Parvovirus Therapy Shows Safety and Signs of Immune System Activation in Patients With Metastatic Pancreatic Ductal Adenocarcinoma. Clin Cancer Res 2021; 27:5546-5556. [PMID: 34426438 DOI: 10.1158/1078-0432.ccr-21-1020] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/02/2021] [Accepted: 08/17/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE To investigate the safety, clinical efficacy, virus pharmacokinetics, shedding, and immune response after administration of an oncolytic parvovirus (H-1PV, ParvOryx) to patients with metastatic pancreatic ductal adenocarcinoma (PDAC) refractory to first-line therapy. PATIENTS AND METHODS This is a noncontrolled, single-arm, open-label, dose-escalating, single-center clinical trial. Seven patients with PDAC and at least one liver metastasis were included. ParvOryx was administered intravenously on 4 consecutive days and as an intralesional injection, 6 to 13 days thereafter. Altogether, three escalating dose levels were investigated. In addition, gemcitabine treatment was initiated on day 28. RESULTS ParvOryx showed excellent tolerability with no dose-limiting toxicities. One patient had a confirmed partial response and one patient revealed an unconfirmed partial response according to RECIST criteria. Both patients showed remarkably long surivial of 326 and 555 days, respectively. Investigation of pharmacokinetics and virus shedding revealed dose dependency with no excretion of active virus particles in saliva or urine and very limited excretion in feces. H-1PV nucleic acids were detected in tumor samples of four patients. All patients showed T-cell responses to viral proteins. An interesting immunologic pattern developed in tumor tissues and in blood of both patients with partial response suggesting immune activation after administration of ParvOryx. CONCLUSIONS The trial met all primary objectives, revealed no environmental risks, and indicated favorable immune modulation after administration of ParvOryx. It can be considered a good basis for further systematic clinical development alone or in combination with immunomodulatory compounds.
Collapse
Affiliation(s)
- Jacek Hajda
- Coordination Centre for Clinical Trials, University Hospital, Marsilius-Arkaden, Tower West, Heidelberg, Germany.
| | - Barbara Leuchs
- Virus Production & Development Unit (VP&DU), Division of Tumor Virology (F010), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Assia L Angelova
- Clinical Cooperation Unit Virotherapy (F230), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Veronika Frehtman
- Virus Production & Development Unit (VP&DU), Division of Tumor Virology (F010), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jean Rommelaere
- Clinical Cooperation Unit Virotherapy (F230), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Maximilian Pilz
- Institute of Medical Biometry and Informatics, University Hospital Heidelberg, Marsilius-Arkaden, Tower West, Heidelberg, Germany
| | - Meinhard Kieser
- Institute of Medical Biometry and Informatics, University Hospital Heidelberg, Marsilius-Arkaden, Tower West, Heidelberg, Germany
| | | | | | | | - Christine E Engeland
- Clinical Cooperation Unit Virotherapy (F230), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Medical Oncology, University Hospital Heidelberg and National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg, Germany.,Faculty of Health/School of Medicine, Institute of Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Germany
| | - Athanasios Mavratzas
- Department of Medical Oncology, University Hospital Heidelberg and National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg, Germany
| | - Nicolas Hohmann
- Department of Medical Oncology, University Hospital Heidelberg and National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg, Germany
| | - Jutta Schreiber
- Department of Medical Oncology, University Hospital Heidelberg and National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg, Germany
| | - Dirk Jäger
- Department of Medical Oncology, University Hospital Heidelberg and National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg, Germany
| | - Niels Halama
- Department of Medical Oncology, University Hospital Heidelberg and National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg, Germany.,Tissue Imaging & Analysis Center (TIGA), BioQuant, University Heidelberg, Heidelberg, Germany
| | - Oliver Sedlaczek
- Department of Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Matthias M Gaida
- Department of Pathology, University Hospital Heidelberg, Heidelberg, Germany.,Institute of Pathology, University Medical Center, University Mainz, Mainz, Germany
| | - Volker Daniel
- Department of Transplantation-Immunology, Institute of Immunology, University Heidelberg, Heidelberg, Germany
| | - Christoph Springfeld
- Department of Medical Oncology, University Hospital Heidelberg and National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg, Germany
| | - Guy Ungerechts
- Clinical Cooperation Unit Virotherapy (F230), German Cancer Research Center (DKFZ), Heidelberg, Germany. .,Department of Medical Oncology, University Hospital Heidelberg and National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg, Germany
| |
Collapse
|
290
|
The tumor microenvironment in pancreatic ductal adenocarcinoma: current perspectives and future directions. Cancer Metastasis Rev 2021; 40:675-689. [PMID: 34591240 DOI: 10.1007/s10555-021-09988-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is among the most lethal malignancies and is characterized by a unique tumor microenvironment (TME) consisting of an abundant stromal component. Many features contained with the PDAC stroma contribute to resistance to cytotoxic and immunotherapeutic regimens, as well as the propensity for this tumor to metastasize. At the cellular level, PDAC cells crosstalk with a complex mixture of non-neoplastic cell types including fibroblasts, endothelial cells, and immune cells. These intricate interactions fuel the progression and therapeutic resistance of this aggressive cancer. Moreover, data suggest the polarization of these cell types, in particular immune and fibroblast populations, dictate how PDAC tumors grow, metastasize, and respond to therapy. As a result, current research is focused on how to best target these populations to render tumors responsive to treatment. Herein, we summarize the cell populations implicated in providing a supporting role for the development and progression of PDAC. We focus on stromal fibroblasts and immune subsets that have been widely researched. We discuss factors which govern the phenotype of these populations and provide insight on how they have been targeted therapeutically. This review provides an overview of the tumor microenvironment and postulates that cellular and soluble factors within the microenvironment can be specifically targeted to improve patient outcomes.
Collapse
|
291
|
Murase Y, Ono H, Ogawa K, Yoshioka R, Ishikawa Y, Ueda H, Akahoshi K, Ban D, Kudo A, Tanaka S, Tanabe M. Inhibitor library screening identifies ispinesib as a new potential chemotherapeutic agent for pancreatic cancers. Cancer Sci 2021; 112:4641-4654. [PMID: 34510663 PMCID: PMC8586681 DOI: 10.1111/cas.15134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 09/05/2021] [Accepted: 09/06/2021] [Indexed: 12/17/2022] Open
Abstract
Screening custom‐made libraries of inhibitors may reveal novel drugs for treating pancreatic cancer. In this manner, we identified ispinesib as a candidate and attempted to determine its clinical efficacy and the biological significance of its functional target Eg5 in pancreatic cancer. One hundred compounds in our library were screened for candidate drugs using cell cytotoxicity assays. Ispinesib was found to mediate effective antitumor effects in pancreatic cancer. The clinical significance of the expression of the ispinesib target Eg5 was investigated in 165 pancreatic cancer patients by immunohistochemical staining and in Eg5‐positive pancreatic cancer patient‐derived xenograft (PDX) mouse models. Patients with Eg5‐positive tumors experienced significantly poorer clinical outcomes than those not expressing Eg5 (overall survival; P < .01, recurrence‐free survival; P < .01). Ispinesib or Eg5 inhibition with specific siRNA significantly suppressed cell proliferation and induced apoptosis in pancreatic cancer cell lines. Mechanistically, ispinesib acted by inducing incomplete mitosis with nuclear disruption, resulting in multinucleated monoastral spindle cells. In the PDX mouse model, ispinesib dramatically reduced tumor growth relative to vehicle control (652.2 mm3 vs 18.1 mm3 in mean tumor volume, P < .01 by ANOVA; 545 mg vs 28 mg in tumor weight, P < .01, by ANOVA). Ispinesib, identified by inhibitor library screening, could be a promising novel therapeutic agent for pancreatic cancer. The expression of its target Eg5 is associated with poorer postoperative prognosis and is important for the clinical efficacy of ispinesib in pancreatic cancer.
Collapse
Affiliation(s)
- Yoshiki Murase
- Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroaki Ono
- Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kosuke Ogawa
- Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Risa Yoshioka
- Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshiya Ishikawa
- Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroki Ueda
- Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Keiichi Akahoshi
- Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Daisuke Ban
- Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Atsushi Kudo
- Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shinji Tanaka
- Division of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Minoru Tanabe
- Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
292
|
Zhu X, Cao Y, Liu W, Ju X, Zhao X, Jiang L, Ye Y, Jin G, Zhang H. Stereotactic body radiotherapy plus pembrolizumab and trametinib versus stereotactic body radiotherapy plus gemcitabine for locally recurrent pancreatic cancer after surgical resection: an open-label, randomised, controlled, phase 2 trial. Lancet Oncol 2021; 22:1093-1102. [PMID: 34237249 DOI: 10.1016/s1470-2045(21)00286-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND There is paucity of investigations into immunotherapy or targeted therapy for postoperative locally recurrent pancreatic cancer. We aimed to assess the efficacy of stereotactic body radiotherapy (SBRT) plus pembrolizumab and trametinib in these patients. METHODS In this open-label, randomised, controlled, phase 2 study, participants were recruited from Changhai Hospital affiliated to Naval Medical University, Shanghai, China. Eligible patients were aged 18 years or older with histologically confirmed pancreatic ductal adenocarcinoma characterised by mutant KRAS and positive immunohistochemical staining of PD-L1, Eastern Cooperative Oncology Group performance status of 0 or 1, and documented local recurrence after surgery followed by chemotherapy (mFOLFIRINOX or 5-fluorouracil). Eligible participants were randomly assigned (1:1) using an interactive voice or web response system, without stratification, to receive SBRT with doses ranging from 35-40 Gy in five fractions, intravenous pembrolizumab 200 mg once every 3 weeks, and oral trametinib 2 mg once daily or SBRT (same regimen) and intravenous gemcitabine (1000 mg/m2) on day 1 and 8 of a 21-day cycle for eight cycles until disease progression, death, unacceptable toxicity, or consent withdrawal. The primary endpoint was overall survival in the intention-to-treat population. Safety was assessed in the as-treated population in all participants who received at least one dose of study treatment. This trial is registered with ClinicalTrials.gov, NCT02704156, and is now complete. FINDINGS Between Oct 10, 2016, and Oct 28, 2017, 198 patients were screen, of whom 170 patients were enrolled and randomly assigned to receive SBRT plus pembrolizumab and trametinib (n=85) or SBRT plus gemcitabine (n=85). As of the clinical cutoff date (Nov 30, 2020), median follow-up was 23·3 months (IQR 20·5-27·4). Median overall survival was 24·9 months (23·3-26·5) with SBRT plus pembrolizumab and trametinib and 22·4 months (95% CI 21·2-23·6) with SBRT plus gemcitabine (hazard ratio [HR] 0·60 [95% CI 0·44-0·82]; p=0·0012). The most common grade 3 or 4 adverse effects were increased alanine aminotransferase or aspartate aminotransferase (ten [12%] of 85 in SBRT plus pembrolizumab and trametinib group vs six [7%] of 85 in SBRT plus gemcitabine group), increased blood bilirubin (four [5%] vs none), neutropenia (one [1%] vs nine [11%]), and thrombocytopenia (one [1%] vs four [5%]). Serious adverse events were reported by 19 (22%) participants in the SBRT plus pembrolizumab and trametinib group and 12 (14%) in the SBRT plus gemcitabine group. No treatment-related deaths occurred. INTERPRETATION The combination of SBRT plus pembrolizumab and trametinib could be a novel treatment option for patients with locally recurrent pancreatic cancer after surgery. Phase 3 trials are needed to confirm our findings. FUNDING Shanghai Shenkang Center and Changhai Hospital. TRANSLATION For the Chinese translation of the abstract see Supplementary Materials section.
Collapse
Affiliation(s)
- Xiaofei Zhu
- Department of Radiation Oncology, Changhai Hospital affiliated to Naval Medical University, Shanghai, China
| | - Yangsen Cao
- Department of Radiation Oncology, Changhai Hospital affiliated to Naval Medical University, Shanghai, China
| | - Wenyu Liu
- Department of Hepatobiliary and Pancreatic Surgery, Changhai Hospital affiliated to Naval Medical University, Shanghai, China
| | - Xiaoping Ju
- Department of Radiation Oncology, Changhai Hospital affiliated to Naval Medical University, Shanghai, China
| | - Xianzhi Zhao
- Department of Radiation Oncology, Changhai Hospital affiliated to Naval Medical University, Shanghai, China
| | - Lingong Jiang
- Department of Radiation Oncology, Changhai Hospital affiliated to Naval Medical University, Shanghai, China
| | - Yusheng Ye
- Department of Radiation Oncology, Changhai Hospital affiliated to Naval Medical University, Shanghai, China
| | - Gang Jin
- Department of Hepatobiliary and Pancreatic Surgery, Changhai Hospital affiliated to Naval Medical University, Shanghai, China.
| | - Huojun Zhang
- Department of Radiation Oncology, Changhai Hospital affiliated to Naval Medical University, Shanghai, China.
| |
Collapse
|
293
|
Springfeld C, Bailey P, Hackert T, Neoptolemos JP. Perioperative immunotherapy for pancreatic cancer is on its way. Hepatobiliary Surg Nutr 2021; 10:534-537. [PMID: 34430537 PMCID: PMC8350999 DOI: 10.21037/hbsn-21-238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 06/28/2021] [Indexed: 11/06/2022]
Affiliation(s)
- Christoph Springfeld
- Department of Medical Oncology, National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Peter Bailey
- Department of Surgery, Heidelberg University Hospital, Heidelberg, Germany
- Institute of Cancer Sciences, University of Glasgow, Scotland, UK
| | - Thilo Hackert
- Department of Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | | |
Collapse
|
294
|
Zhang X, Huang X, Xu J, Li E, Lao M, Tang T, Zhang G, Guo C, Zhang X, Chen W, Yadav DK, Bai X, Liang T. NEK2 inhibition triggers anti-pancreatic cancer immunity by targeting PD-L1. Nat Commun 2021; 12:4536. [PMID: 34315872 PMCID: PMC8316469 DOI: 10.1038/s41467-021-24769-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 07/07/2021] [Indexed: 01/06/2023] Open
Abstract
Despite the substantial impact of post-translational modifications on programmed cell death 1 ligand 1 (PD-L1), its importance in therapeutic resistance in pancreatic cancer remains poorly defined. Here, we demonstrate that never in mitosis gene A-related kinase 2 (NEK2) phosphorylates PD-L1 to maintain its stability, causing PD-L1-targeted pancreatic cancer immunotherapy to have poor efficacy. We identify NEK2 as a prognostic factor in immunologically "hot" pancreatic cancer, involved in the onset and development of pancreatic tumors in an immune-dependent manner. NEK2 deficiency results in the suppression of PD-L1 expression and enhancement of lymphocyte infiltration. A NEK binding motif (F/LXXS/T) is identified in the glycosylation-rich region of PD-L1. NEK2 interacts with PD-L1, phosphorylating the T194/T210 residues and preventing ubiquitin-proteasome pathway-mediated degradation of PD-L1 in ER lumen. NEK2 inhibition thereby sensitizes PD-L1 blockade, synergically enhancing the anti-pancreatic cancer immune response. Together, the present study proposes a promising strategy for improving the effectiveness of pancreatic cancer immunotherapy.
Collapse
Affiliation(s)
- Xiaozhen Zhang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Innovation Center for the Study of Pancreatic Diseases, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, China
- Zhejiang University Cancer Center, Hangzhou, Zhejiang, China
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, Zhejiang, China
| | - Xing Huang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
- Innovation Center for the Study of Pancreatic Diseases, Hangzhou, Zhejiang, China.
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, China.
- Zhejiang University Cancer Center, Hangzhou, Zhejiang, China.
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, Zhejiang, China.
| | - Jian Xu
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Innovation Center for the Study of Pancreatic Diseases, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, China
- Zhejiang University Cancer Center, Hangzhou, Zhejiang, China
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, Zhejiang, China
| | - Enliang Li
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Innovation Center for the Study of Pancreatic Diseases, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, China
- Zhejiang University Cancer Center, Hangzhou, Zhejiang, China
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, Zhejiang, China
| | - Mengyi Lao
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Innovation Center for the Study of Pancreatic Diseases, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, China
- Zhejiang University Cancer Center, Hangzhou, Zhejiang, China
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, Zhejiang, China
| | - Tianyu Tang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Innovation Center for the Study of Pancreatic Diseases, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, China
- Zhejiang University Cancer Center, Hangzhou, Zhejiang, China
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, Zhejiang, China
| | - Gang Zhang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Innovation Center for the Study of Pancreatic Diseases, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, China
- Zhejiang University Cancer Center, Hangzhou, Zhejiang, China
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, Zhejiang, China
| | - Chengxiang Guo
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Innovation Center for the Study of Pancreatic Diseases, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, China
- Zhejiang University Cancer Center, Hangzhou, Zhejiang, China
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, Zhejiang, China
| | - Xiaoyu Zhang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Innovation Center for the Study of Pancreatic Diseases, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, China
- Zhejiang University Cancer Center, Hangzhou, Zhejiang, China
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, Zhejiang, China
| | - Wen Chen
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Innovation Center for the Study of Pancreatic Diseases, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, China
- Zhejiang University Cancer Center, Hangzhou, Zhejiang, China
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, Zhejiang, China
| | - Dipesh Kumar Yadav
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Innovation Center for the Study of Pancreatic Diseases, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, China
- Zhejiang University Cancer Center, Hangzhou, Zhejiang, China
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, Zhejiang, China
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
- Innovation Center for the Study of Pancreatic Diseases, Hangzhou, Zhejiang, China.
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, China.
- Zhejiang University Cancer Center, Hangzhou, Zhejiang, China.
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, Zhejiang, China.
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
- Innovation Center for the Study of Pancreatic Diseases, Hangzhou, Zhejiang, China.
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, China.
- Zhejiang University Cancer Center, Hangzhou, Zhejiang, China.
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, Zhejiang, China.
| |
Collapse
|
295
|
Lin X, Ye L, Wang X, Liao Z, Dong J, Yang Y, Zhang R, Li H, Li P, Ding L, Li T, Zhang W, Xu S, Han X, Xu H, Wang W, Gao H, Yu X, Liu L. Follicular Helper T Cells Remodel the Immune Microenvironment of Pancreatic Cancer via Secreting CXCL13 and IL-21. Cancers (Basel) 2021; 13:cancers13153678. [PMID: 34359579 PMCID: PMC8345153 DOI: 10.3390/cancers13153678] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/11/2021] [Accepted: 07/14/2021] [Indexed: 11/29/2022] Open
Abstract
Simple Summary The immunosuppressive microenvironment is closely related to the poor prognosis of patients with PDAC. Tfh cells play an anti-tumor function in various malignant solid tumors; however, the role of Tfh cells in PDAC has not been determined. In this study, we aimed to explore the function of Tfh cells in PDAC, and revealed a novel immunosuppressive mechanism mediated by Tfh cells. Tfh cells promoted the formation of an immunoactive tumor microenvironment by secreting CXCL13 and IL-21, and the high infiltration of Tfh cells correlated with better patient prognosis. However, the anti-tumor function of Tfh cells was inhibited by the PD-L1/PD-1 signaling pathway. Neoadjuvant chemotherapy could further reverse the function of Tfh cells. Our results provided new strategies to remodel the immunoactive tumor microenvironment of PDAC. Abstract Immunosuppression is an important factor for the poor prognosis of pancreatic ductal adenocarcinoma (PDAC). Follicular helper T cells (Tfh cells) play an anti-tumor role in various malignant solid tumors and predict better patient prognosis. In the present study, we aimed to determine the immunosuppressive mechanism associated with Tfh cells and explore a new strategy to improve the tumor microenvironment of PDAC. Flow cytometry was used to detect the infiltration and proportion of Tfh cells in tumor tissues and peripheral blood from patients with PDAC. The spatial correlations of Tfh cells with related immune cells were evaluated using immunofluorescence. The function of Tfh cells was examined using in vitro and in vivo model systems. The high infiltration of Tfh cells predicted better prognosis in patients with PDAC. Tfh cells recruited CD8+ T cells and B cells by secreting C-X-C motif chemokine ligand 13 (CXCL13), and promoted the maturation of B cells into antibody-producing plasma cells by secreting interleukin 21 (IL-21), thereby promoting the formation of an immunoactive tumor microenvironment. The function of Tfh cells was inhibited by the programmed cell death 1 ligand 1 (PD-L1)/programmed cell death 1 (PD-1) signaling pathway in PDAC, which could be reversed using neoadjuvant chemotherapy. Treatment with recombinant CXCL13, IL-21 and Tfh cells alleviated tumor growth and enhanced the infiltration of CD8+ T cells and B cells, as well as B cell maturation in a PDAC mouse model. Our results revealed the important role of Tfh cells in mediating anti-tumor cellular immunity and humoral immunity in PDAC via secreting CXCL13 and IL-21 and determined a novel mechanism of immunosuppression in PDAC.
Collapse
Affiliation(s)
- Xuan Lin
- Department of Pancreatic Surgery, Shanghai Cancer Center, Fudan University, Shanghai 200032, China; (X.L.); (L.Y.); (X.W.); (Z.L.); (J.D.); (Y.Y.); (H.L.); (P.L.); (L.D.); (T.L.); (W.Z.); (S.X.); (X.H.); (H.X.); (W.W.); (H.G.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Longyun Ye
- Department of Pancreatic Surgery, Shanghai Cancer Center, Fudan University, Shanghai 200032, China; (X.L.); (L.Y.); (X.W.); (Z.L.); (J.D.); (Y.Y.); (H.L.); (P.L.); (L.D.); (T.L.); (W.Z.); (S.X.); (X.H.); (H.X.); (W.W.); (H.G.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Xu Wang
- Department of Pancreatic Surgery, Shanghai Cancer Center, Fudan University, Shanghai 200032, China; (X.L.); (L.Y.); (X.W.); (Z.L.); (J.D.); (Y.Y.); (H.L.); (P.L.); (L.D.); (T.L.); (W.Z.); (S.X.); (X.H.); (H.X.); (W.W.); (H.G.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Zhenyu Liao
- Department of Pancreatic Surgery, Shanghai Cancer Center, Fudan University, Shanghai 200032, China; (X.L.); (L.Y.); (X.W.); (Z.L.); (J.D.); (Y.Y.); (H.L.); (P.L.); (L.D.); (T.L.); (W.Z.); (S.X.); (X.H.); (H.X.); (W.W.); (H.G.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Jia Dong
- Department of Pancreatic Surgery, Shanghai Cancer Center, Fudan University, Shanghai 200032, China; (X.L.); (L.Y.); (X.W.); (Z.L.); (J.D.); (Y.Y.); (H.L.); (P.L.); (L.D.); (T.L.); (W.Z.); (S.X.); (X.H.); (H.X.); (W.W.); (H.G.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Ying Yang
- Department of Pancreatic Surgery, Shanghai Cancer Center, Fudan University, Shanghai 200032, China; (X.L.); (L.Y.); (X.W.); (Z.L.); (J.D.); (Y.Y.); (H.L.); (P.L.); (L.D.); (T.L.); (W.Z.); (S.X.); (X.H.); (H.X.); (W.W.); (H.G.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Rulin Zhang
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai 200080, China;
| | - Hao Li
- Department of Pancreatic Surgery, Shanghai Cancer Center, Fudan University, Shanghai 200032, China; (X.L.); (L.Y.); (X.W.); (Z.L.); (J.D.); (Y.Y.); (H.L.); (P.L.); (L.D.); (T.L.); (W.Z.); (S.X.); (X.H.); (H.X.); (W.W.); (H.G.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Pengcheng Li
- Department of Pancreatic Surgery, Shanghai Cancer Center, Fudan University, Shanghai 200032, China; (X.L.); (L.Y.); (X.W.); (Z.L.); (J.D.); (Y.Y.); (H.L.); (P.L.); (L.D.); (T.L.); (W.Z.); (S.X.); (X.H.); (H.X.); (W.W.); (H.G.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Lei Ding
- Department of Pancreatic Surgery, Shanghai Cancer Center, Fudan University, Shanghai 200032, China; (X.L.); (L.Y.); (X.W.); (Z.L.); (J.D.); (Y.Y.); (H.L.); (P.L.); (L.D.); (T.L.); (W.Z.); (S.X.); (X.H.); (H.X.); (W.W.); (H.G.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Tianjiao Li
- Department of Pancreatic Surgery, Shanghai Cancer Center, Fudan University, Shanghai 200032, China; (X.L.); (L.Y.); (X.W.); (Z.L.); (J.D.); (Y.Y.); (H.L.); (P.L.); (L.D.); (T.L.); (W.Z.); (S.X.); (X.H.); (H.X.); (W.W.); (H.G.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Wuhu Zhang
- Department of Pancreatic Surgery, Shanghai Cancer Center, Fudan University, Shanghai 200032, China; (X.L.); (L.Y.); (X.W.); (Z.L.); (J.D.); (Y.Y.); (H.L.); (P.L.); (L.D.); (T.L.); (W.Z.); (S.X.); (X.H.); (H.X.); (W.W.); (H.G.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Shuaishuai Xu
- Department of Pancreatic Surgery, Shanghai Cancer Center, Fudan University, Shanghai 200032, China; (X.L.); (L.Y.); (X.W.); (Z.L.); (J.D.); (Y.Y.); (H.L.); (P.L.); (L.D.); (T.L.); (W.Z.); (S.X.); (X.H.); (H.X.); (W.W.); (H.G.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Xuan Han
- Department of Pancreatic Surgery, Shanghai Cancer Center, Fudan University, Shanghai 200032, China; (X.L.); (L.Y.); (X.W.); (Z.L.); (J.D.); (Y.Y.); (H.L.); (P.L.); (L.D.); (T.L.); (W.Z.); (S.X.); (X.H.); (H.X.); (W.W.); (H.G.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Huaxiang Xu
- Department of Pancreatic Surgery, Shanghai Cancer Center, Fudan University, Shanghai 200032, China; (X.L.); (L.Y.); (X.W.); (Z.L.); (J.D.); (Y.Y.); (H.L.); (P.L.); (L.D.); (T.L.); (W.Z.); (S.X.); (X.H.); (H.X.); (W.W.); (H.G.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Wenquan Wang
- Department of Pancreatic Surgery, Shanghai Cancer Center, Fudan University, Shanghai 200032, China; (X.L.); (L.Y.); (X.W.); (Z.L.); (J.D.); (Y.Y.); (H.L.); (P.L.); (L.D.); (T.L.); (W.Z.); (S.X.); (X.H.); (H.X.); (W.W.); (H.G.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Heli Gao
- Department of Pancreatic Surgery, Shanghai Cancer Center, Fudan University, Shanghai 200032, China; (X.L.); (L.Y.); (X.W.); (Z.L.); (J.D.); (Y.Y.); (H.L.); (P.L.); (L.D.); (T.L.); (W.Z.); (S.X.); (X.H.); (H.X.); (W.W.); (H.G.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Shanghai Cancer Center, Fudan University, Shanghai 200032, China; (X.L.); (L.Y.); (X.W.); (Z.L.); (J.D.); (Y.Y.); (H.L.); (P.L.); (L.D.); (T.L.); (W.Z.); (S.X.); (X.H.); (H.X.); (W.W.); (H.G.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
- Correspondence: (X.Y.); (L.L.); Tel./Fax: +86-21-6403-1446 (X.Y.); +86-21-6403-1446 (L.L.)
| | - Liang Liu
- Department of Pancreatic Surgery, Shanghai Cancer Center, Fudan University, Shanghai 200032, China; (X.L.); (L.Y.); (X.W.); (Z.L.); (J.D.); (Y.Y.); (H.L.); (P.L.); (L.D.); (T.L.); (W.Z.); (S.X.); (X.H.); (H.X.); (W.W.); (H.G.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
- Correspondence: (X.Y.); (L.L.); Tel./Fax: +86-21-6403-1446 (X.Y.); +86-21-6403-1446 (L.L.)
| |
Collapse
|
296
|
3D tumor spheroid microarray for high-throughput, high-content natural killer cell-mediated cytotoxicity. Commun Biol 2021; 4:893. [PMID: 34290356 PMCID: PMC8295284 DOI: 10.1038/s42003-021-02417-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 07/05/2021] [Indexed: 02/06/2023] Open
Abstract
Immunotherapy has emerged as a promising approach to treating several forms of cancer. Use of immune cells, such as natural killer (NK) cells, along with small molecule drugs and antibodies through antibody dependent cell-mediated cytotoxicity (ADCC) has been investigated as a potential combination therapy for some difficult to treat solid tumors. Nevertheless, there remains a need to develop tools that support co-culture of target cancer cells and effector immune cells in a contextually relevant three-dimensional (3D) environment to provide a rapid means to screen for and optimize ADCC-drug combinations. To that end, here we have developed a high throughput 330 micropillar-microwell sandwich platform that enables 3D co-culture of NK92-CD16 cells with pancreatic (MiaPaCa-2) and breast cancer cell lines (MCF-7 and MDA-MB-231). The platform successfully mimicked hypoxic conditions found in a tumor microenvironment and was used to demonstrate NK-cell mediated cell cytotoxicity in combination with two monoclonal antibodies; Trastuzumab and Atezolizumab. The platform was also used to show dose response behavior of target cancer cells with reduced EC50 values for paclitaxel (an anti-cancer chemotherapeutic) when treated with both NK cells and antibody. Such a platform may be used to develop more personalized cancer therapies using patient-derived cancer cells.
Collapse
|
297
|
Zhou X, Zhu X, Yao J, Wang X, Wang N. Comprehensive analysis of clinical prognosis and molecular immune characterization of tropomyosin 4 in pancreatic cancer. Invest New Drugs 2021; 39:1469-1483. [PMID: 33983530 DOI: 10.1007/s10637-021-01128-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/05/2021] [Indexed: 11/26/2022]
Abstract
Pancreatic cancer (PC) is one of the most lethal human solid malignancies with devastating prognosis, making biomarker detection considerably important. Immune infiltrates in microenvironment is associated with patients' survival in PC. The role of Tropomyosin 4 (TPM4) gene in PC has not been reported. Our study first identifies TPM4 expression and its potential biological functions in PC. The potential oncogenic roles of TPM4 was examined using the datasets of TCGA (The cancer genome atlas) and GEO (Gene expression omnibus). We investigated the clinical significance and prognostic value of TPM4 gene based on The Gene Expression Profiling Interactive Analysis (GEPIA) and survival analysis. TIMER and TISIDB databases were used to analyze the correlations between TPM4 gene and tumor-infiltrating immune cells. We found that the expression level of TPM4 was upregulated in PC malignant tissues with the corresponding normal tissues as controls. High TPM4 expression was correlated with the worse clinicopathological features and poor prognosis in PC cohorts. The positive association between TPM4 expression and tumor-infiltrating immune cells was identified in tumor microenvironment (TME). Moreover, functional enrichment analysis suggested that TPM4 might participate in cell adhesion and promote tumor cell migration. This is the first comprehensive study to disclose that TPM4 may serve as a novel prognostic biomarker associating with immune infiltrates and provide a potential therapeutic target for the treatment of PC.
Collapse
Affiliation(s)
- Xue Zhou
- Department of Nephrology, Tianjin Haihe Hospital, Tianjin, 300350, China
| | - Xiaowei Zhu
- Tianjin Third Central Hospital, 83 Jintang Road, Hedong District, Tianjin, 300170, China
| | - Junchao Yao
- Department of Hepatobiliary Surgery, Tianjin Third Central Hospital, Tianjin, 300170, China
| | - Xue Wang
- Department of Respiratory Medicine, Tianjin Third Central Hospital, Tianjin, 300170, China
| | - Ning Wang
- Tianjin Third Central Hospital, 83 Jintang Road, Hedong District, Tianjin, 300170, China.
| |
Collapse
|
298
|
Chen S, Chen C, Hu Y, Song G, Shen X. The diverse roles of circular RNAs in pancreatic cancer. Pharmacol Ther 2021; 226:107869. [PMID: 33895187 DOI: 10.1016/j.pharmthera.2021.107869] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/15/2021] [Accepted: 04/20/2021] [Indexed: 12/13/2022]
Abstract
Pancreatic cancer is one of the malignant tumors with poor prognosis. The molecular mechanisms of pancreatic oncogenesis and malignant progression are not fully elucidated. Several key signaling pathways, such as Notch, Wnt and hedgehog pathways, are important to drive pancreatic carcinogenesis. Recently, noncoding RNAs, especially circular RNAs (circRNAs), have been characterized to participate into pancreatic cancer development. Therefore, in this review article, we describe the association between circRNAs and pancreatic cancer prognosis. Moreover, we discuss how circRNAs are involved in regulation of cellular processes in pancreatic cancer, including proliferation, apoptosis, cell cycle, migration, invasion, EMT, metastasis, angiogenesis, drug resistance and immune escape. Furthermore, we mention that several compounds could regulate the expression of circRNAs, indicating that targeting circRNAs by compounds might be helpful for treating pancreatic cancer patients.
Collapse
Affiliation(s)
- Sian Chen
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Chenbin Chen
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yuanbo Hu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Gendi Song
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Xian Shen
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| |
Collapse
|
299
|
Sams L, Kruger S, Heinemann V, Bararia D, Haebe S, Alig S, Haas M, Zhang D, Westphalen CB, Ormanns S, Metzger P, Werner J, Weigert O, von Bergwelt-Baildon M, Rataj F, Kobold S, Boeck S. Alterations in regulatory T cells and immune checkpoint molecules in pancreatic cancer patients receiving FOLFIRINOX or gemcitabine plus nab-paclitaxel. Clin Transl Oncol 2021; 23:2394-2401. [PMID: 33876417 PMCID: PMC8455387 DOI: 10.1007/s12094-021-02620-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 04/02/2021] [Indexed: 01/11/2023]
Abstract
Purpose This pilot study aimed on generating insight on alterations in circulating immune cells during the use of FOLFIRINOX and gemcitabine/nab-paclitaxel in pancreatic ductal adenocarcinoma (PDAC). Patients and methods Peripheral blood mononuclear cells were isolated before and 30 days after initiation of chemotherapy from 20 patients with advanced PDAC. Regulatory T cells (FoxP3+) and immune checkpoints (PD-1 and TIM-3) were analyzed by flow cytometry and immunological changes were correlated with clinical outcome. Results Heterogeneous changes during chemotherapy were observed in circulating T-cell subpopulations with a pronounced effect on PD-1+ CD4+/CD8+ T cells. An increase in FoxP3+ or PD-1+ T cells had no significant effect on survival. An increase in TIM3+/CD8+ (but not TIM3+/CD4+) T cells was associated with a significant inferior outcome: median progression-free survival in the subgroup with an increase of TIM-3+/CD8+ T cells was 6.0 compared to 14.0 months in patients with a decrease/no change (p = 0.026); corresponding median overall survival was 13.0 and 20.0 months (p = 0.011), respectively. Conclusions Chemotherapy with FOLFIRNOX or gemcitabine/nab-paclitaxel induces variable changes in circulating T-cell populations that may provide prognostic information in PDAC.
Collapse
Affiliation(s)
- L Sams
- Department of Internal Medicine III and Comprehensive Cancer Center, Grosshadern University Hospital, Ludwig-Maximilians-University of Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - S Kruger
- Department of Internal Medicine III and Comprehensive Cancer Center, Grosshadern University Hospital, Ludwig-Maximilians-University of Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - V Heinemann
- Department of Internal Medicine III and Comprehensive Cancer Center, Grosshadern University Hospital, Ludwig-Maximilians-University of Munich, Marchioninistr. 15, 81377, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - D Bararia
- Laboratory for Experimental Leukemia and Lymphoma Research (ELLF), Department of Internal Medicine III, Grosshadern University Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - S Haebe
- Department of Internal Medicine III and Comprehensive Cancer Center, Grosshadern University Hospital, Ludwig-Maximilians-University of Munich, Marchioninistr. 15, 81377, Munich, Germany.,Laboratory for Experimental Leukemia and Lymphoma Research (ELLF), Department of Internal Medicine III, Grosshadern University Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - S Alig
- Department of Internal Medicine III and Comprehensive Cancer Center, Grosshadern University Hospital, Ludwig-Maximilians-University of Munich, Marchioninistr. 15, 81377, Munich, Germany.,Laboratory for Experimental Leukemia and Lymphoma Research (ELLF), Department of Internal Medicine III, Grosshadern University Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - M Haas
- Department of Internal Medicine III and Comprehensive Cancer Center, Grosshadern University Hospital, Ludwig-Maximilians-University of Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - D Zhang
- Department of Internal Medicine III and Comprehensive Cancer Center, Grosshadern University Hospital, Ludwig-Maximilians-University of Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - C B Westphalen
- Department of Internal Medicine III and Comprehensive Cancer Center, Grosshadern University Hospital, Ludwig-Maximilians-University of Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - S Ormanns
- Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - P Metzger
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, University Hospital of the Ludwig-Maximilians-University, Munich, Germany
| | - J Werner
- Department of General, Visceral and Transplantation Surgery, Ludwig-Maximilians-University, Munich, Germany
| | - O Weigert
- Department of Internal Medicine III and Comprehensive Cancer Center, Grosshadern University Hospital, Ludwig-Maximilians-University of Munich, Marchioninistr. 15, 81377, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany.,Laboratory for Experimental Leukemia and Lymphoma Research (ELLF), Department of Internal Medicine III, Grosshadern University Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - M von Bergwelt-Baildon
- Department of Internal Medicine III and Comprehensive Cancer Center, Grosshadern University Hospital, Ludwig-Maximilians-University of Munich, Marchioninistr. 15, 81377, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - F Rataj
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, University Hospital of the Ludwig-Maximilians-University, Munich, Germany
| | - S Kobold
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany.,Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, University Hospital of the Ludwig-Maximilians-University, Munich, Germany
| | - S Boeck
- Department of Internal Medicine III and Comprehensive Cancer Center, Grosshadern University Hospital, Ludwig-Maximilians-University of Munich, Marchioninistr. 15, 81377, Munich, Germany. .,German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany.
| |
Collapse
|
300
|
Holbrook MC, Goad DW, Grdzelishvili VZ. Expanding the Spectrum of Pancreatic Cancers Responsive to Vesicular Stomatitis Virus-Based Oncolytic Virotherapy: Challenges and Solutions. Cancers (Basel) 2021; 13:1171. [PMID: 33803211 PMCID: PMC7963195 DOI: 10.3390/cancers13051171] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a devastating malignancy with poor prognosis and a dismal survival rate, expected to become the second leading cause of cancer-related deaths in the United States. Oncolytic virus (OV) is an anticancer approach that utilizes replication-competent viruses to preferentially infect and kill tumor cells. Vesicular stomatitis virus (VSV), one such OV, is already in several phase I clinical trials against different malignancies. VSV-based recombinant viruses are effective OVs against a majority of tested PDAC cell lines. However, some PDAC cell lines are resistant to VSV. Upregulated type I IFN signaling and constitutive expression of a subset of interferon-simulated genes (ISGs) play a major role in such resistance, while other mechanisms, such as inefficient viral attachment and resistance to VSV-mediated apoptosis, also play a role in some PDACs. Several alternative approaches have been shown to break the resistance of PDACs to VSV without compromising VSV oncoselectivity, including (i) combinations of VSV with JAK1/2 inhibitors (such as ruxolitinib); (ii) triple combinations of VSV with ruxolitinib and polycations improving both VSV replication and attachment; (iii) combinations of VSV with chemotherapeutic drugs (such as paclitaxel) arresting cells in the G2/M phase; (iv) arming VSV with p53 transgenes; (v) directed evolution approach producing more effective OVs. The latter study demonstrated impressive long-term genomic stability of complex VSV recombinants encoding large transgenes, supporting further clinical development of VSV as safe therapeutics for PDAC.
Collapse
Affiliation(s)
| | | | - Valery Z. Grdzelishvili
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; (M.C.H.); (D.W.G.)
| |
Collapse
|